AU2003303136A1 - A method and apparatus for forming a high quality low temperature silicon nitride layer - Google Patents
A method and apparatus for forming a high quality low temperature silicon nitride layerInfo
- Publication number
- AU2003303136A1 AU2003303136A1 AU2003303136A AU2003303136A AU2003303136A1 AU 2003303136 A1 AU2003303136 A1 AU 2003303136A1 AU 2003303136 A AU2003303136 A AU 2003303136A AU 2003303136 A AU2003303136 A AU 2003303136A AU 2003303136 A1 AU2003303136 A1 AU 2003303136A1
- Authority
- AU
- Australia
- Prior art keywords
- forming
- low temperature
- silicon nitride
- high quality
- nitride layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910052581 Si3N4 Inorganic materials 0.000 title 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/0217—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
- C23C16/345—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/56—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02211—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02219—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/3003—Hydrogenation or deuterisation, e.g. using atomic hydrogen from a plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/665—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66575—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
- H01L29/6659—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Formation Of Insulating Films (AREA)
- Chemical Vapour Deposition (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US43581302P | 2002-12-20 | 2002-12-20 | |
US60/435,813 | 2002-12-20 | ||
US10/327,467 | 2002-12-20 | ||
US10/327,467 US7172792B2 (en) | 2002-12-20 | 2002-12-20 | Method for forming a high quality low temperature silicon nitride film |
PCT/US2003/040793 WO2004057653A2 (en) | 2002-12-20 | 2003-12-19 | A method and apparatus for forming a high quality low temperature silicon nitride layer |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2003303136A1 true AU2003303136A1 (en) | 2004-07-14 |
AU2003303136A8 AU2003303136A8 (en) | 2004-07-14 |
Family
ID=32684696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2003303136A Abandoned AU2003303136A1 (en) | 2002-12-20 | 2003-12-19 | A method and apparatus for forming a high quality low temperature silicon nitride layer |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1584100A2 (en) |
JP (1) | JP2006511087A (en) |
KR (1) | KR101022949B1 (en) |
AU (1) | AU2003303136A1 (en) |
WO (1) | WO2004057653A2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7972663B2 (en) * | 2002-12-20 | 2011-07-05 | Applied Materials, Inc. | Method and apparatus for forming a high quality low temperature silicon nitride layer |
US7172792B2 (en) | 2002-12-20 | 2007-02-06 | Applied Materials, Inc. | Method for forming a high quality low temperature silicon nitride film |
US7365029B2 (en) * | 2002-12-20 | 2008-04-29 | Applied Materials, Inc. | Method for silicon nitride chemical vapor deposition |
US20060019032A1 (en) * | 2004-07-23 | 2006-01-26 | Yaxin Wang | Low thermal budget silicon nitride formation for advance transistor fabrication |
JP2007012788A (en) * | 2005-06-29 | 2007-01-18 | Elpida Memory Inc | Method of manufacturing semiconductor device |
WO2007112780A1 (en) * | 2006-04-03 | 2007-10-11 | L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for depositing silicon nitride films and/or silicon oxynitride films by chemical vapor deposition |
JP2008235636A (en) * | 2007-03-22 | 2008-10-02 | Elpida Memory Inc | Method of manufacturing semiconductor device, and semiconductor device |
KR101223724B1 (en) * | 2010-10-25 | 2013-01-17 | 삼성디스플레이 주식회사 | Passivation film for electronic device and method of manufacturing the same |
US8586487B2 (en) * | 2012-01-18 | 2013-11-19 | Applied Materials, Inc. | Low temperature plasma enhanced chemical vapor deposition of conformal silicon carbon nitride and silicon nitride films |
US8728955B2 (en) * | 2012-02-14 | 2014-05-20 | Novellus Systems, Inc. | Method of plasma activated deposition of a conformal film on a substrate surface |
WO2013134661A1 (en) * | 2012-03-09 | 2013-09-12 | Air Products And Chemicals, Inc. | Barrier materials for display devices |
TWI753794B (en) | 2016-03-23 | 2022-01-21 | 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 | Si-containing film forming compositions and methods of making and using the same |
JP6942188B2 (en) * | 2017-01-13 | 2021-09-29 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | Methods and Equipment for Low Temperature Silicon Nitride Membranes |
US20180363133A1 (en) * | 2017-06-16 | 2018-12-20 | Applied Materials, Inc. | Method and Apparatus for Void Free SiN Gapfill |
WO2019147462A1 (en) * | 2018-01-26 | 2019-08-01 | Applied Materials, Inc. | Treatment methods for silicon nitride thin films |
KR102466189B1 (en) * | 2020-08-25 | 2022-11-10 | 주식회사 한화 | Substrate processing apparatus using hydrogen radicals |
US11705312B2 (en) | 2020-12-26 | 2023-07-18 | Applied Materials, Inc. | Vertically adjustable plasma source |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6251264A (en) * | 1985-08-30 | 1987-03-05 | Hitachi Ltd | Manufcture of thin film transistor |
US4857140A (en) * | 1987-07-16 | 1989-08-15 | Texas Instruments Incorporated | Method for etching silicon nitride |
JPH04365379A (en) * | 1991-06-13 | 1992-12-17 | Fuji Electric Co Ltd | Manufacture of thin-film transistor |
JPH0613329A (en) * | 1992-06-25 | 1994-01-21 | Canon Inc | Semiconductor device and manufacture thereof |
US5273920A (en) * | 1992-09-02 | 1993-12-28 | General Electric Company | Method of fabricating a thin film transistor using hydrogen plasma treatment of the gate dielectric/semiconductor layer interface |
JPH06132284A (en) * | 1992-10-22 | 1994-05-13 | Kawasaki Steel Corp | Method for forming protective film of semiconductor device |
JP2641385B2 (en) * | 1993-09-24 | 1997-08-13 | アプライド マテリアルズ インコーポレイテッド | Film formation method |
JP3348509B2 (en) * | 1994-03-30 | 2002-11-20 | ソニー株式会社 | Method of forming insulating film |
US6083852A (en) * | 1997-05-07 | 2000-07-04 | Applied Materials, Inc. | Method for applying films using reduced deposition rates |
JPH10261658A (en) * | 1997-03-17 | 1998-09-29 | Toyota Motor Corp | Manufacture of semiconductor device |
JP2001258139A (en) * | 2000-03-09 | 2001-09-21 | Mitsubishi Electric Corp | Anchor mechanism of electric place |
-
2003
- 2003-12-19 EP EP03813046A patent/EP1584100A2/en not_active Withdrawn
- 2003-12-19 WO PCT/US2003/040793 patent/WO2004057653A2/en active Application Filing
- 2003-12-19 JP JP2004562356A patent/JP2006511087A/en active Pending
- 2003-12-19 KR KR1020057011377A patent/KR101022949B1/en not_active IP Right Cessation
- 2003-12-19 AU AU2003303136A patent/AU2003303136A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
WO2004057653A2 (en) | 2004-07-08 |
EP1584100A2 (en) | 2005-10-12 |
KR101022949B1 (en) | 2011-03-16 |
WO2004057653A3 (en) | 2004-08-12 |
JP2006511087A (en) | 2006-03-30 |
KR20050085779A (en) | 2005-08-29 |
AU2003303136A8 (en) | 2004-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2003301123A1 (en) | A method and apparatus for forming a high quality low temperature silicon nitride film | |
AU2003303136A1 (en) | A method and apparatus for forming a high quality low temperature silicon nitride layer | |
EP1634980A4 (en) | Method for producing group iii nitride single crystal and apparatus used therefor | |
AU2003293396A1 (en) | Gas distribution apparatus and method for uniform etching | |
AU2003262236A1 (en) | Composition for forming silicon film and method for forming silicon film | |
AU2002354254A1 (en) | Method for making nitride semiconductor substrate and method for making nitride semiconductor device | |
AU2003253907A1 (en) | Loadport apparatus and method for use thereof | |
AU2002252566A1 (en) | Method and apparatus for growing submicron group iii nitride structures utilizing hvpe techniques | |
AU2003252444A1 (en) | Method and device for polishing substrate | |
EP1282157A3 (en) | Apparatus and method for controlling the temperature of a substrate | |
AU2003223126A1 (en) | Apparatus and method for depositing thin film on wafer using remote plasma | |
AU2003295242A1 (en) | Substrate holding mechanism, substrate polishing apparatus and substrate polishing method | |
AU2001267703A1 (en) | Apparatus and method for investigating semiconductor wafers | |
AU2003238305A1 (en) | Method and apparatus for supporting a substrate | |
AU2003242168A1 (en) | Method and apparatus for splitting semiconducor wafer | |
AU2002307499A1 (en) | Method and apparatus for determining process layer conformality | |
AU2003289005A1 (en) | Method for forming tungsten nitride film | |
AU2002236931A1 (en) | Method and apparatus for transferring heat from a substrate to a chuck | |
TWI349311B (en) | Method and apparatus for forming silicon nitride film | |
AU2003263674A1 (en) | Mould parts of silicon nitride and method for producing such mould parts | |
EP1498517A4 (en) | Method for producing silicon single crystal and, silicon single crystal and silicon wafer | |
AU2003272882A1 (en) | Silicon carbide single crystal and method and apparatus for producing the same | |
AU2003257063A1 (en) | Semiconductor device and method for forming | |
AU2003281403A1 (en) | Method and apparatus for forming nitrided silicon film | |
AU2003255919A1 (en) | Method and apparatus for forming epitaxial layers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK6 | Application lapsed section 142(2)(f)/reg. 8.3(3) - pct applic. not entering national phase |