AU2003200906A1 - A Method for the Production of Powder with High Tannin Content and its Use - Google Patents

A Method for the Production of Powder with High Tannin Content and its Use Download PDF

Info

Publication number
AU2003200906A1
AU2003200906A1 AU2003200906A AU2003200906A AU2003200906A1 AU 2003200906 A1 AU2003200906 A1 AU 2003200906A1 AU 2003200906 A AU2003200906 A AU 2003200906A AU 2003200906 A AU2003200906 A AU 2003200906A AU 2003200906 A1 AU2003200906 A1 AU 2003200906A1
Authority
AU
Australia
Prior art keywords
powder
tannin
adhesive
tannin content
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2003200906A
Other versions
AU2003200906B2 (en
Inventor
Huijian Jiang
Frank Lawson
Yusho Nakamoto
Keiko Ono
Toshihiko Tsunoda
Peter Heinz Theodore Uhlherr
Hiroyuki Yano
Yoshikazu Yazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monash University
Wood One Co Ltd
Original Assignee
Monash University
Wood One Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monash University, Wood One Co Ltd filed Critical Monash University
Publication of AU2003200906A1 publication Critical patent/AU2003200906A1/en
Application granted granted Critical
Publication of AU2003200906B2 publication Critical patent/AU2003200906B2/en
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B9/00Combinations of apparatus for screening or sifting or for separating solids from solids using gas currents; General arrangement of plant, e.g. flow sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H99/00Subject matter not provided for in other groups of this subclass, e.g. flours, kernels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J161/00Adhesives based on condensation polymers of aldehydes or ketones; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J161/00Adhesives based on condensation polymers of aldehydes or ketones; Adhesives based on derivatives of such polymers
    • C09J161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09J161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J197/00Adhesives based on lignin-containing materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J197/00Adhesives based on lignin-containing materials
    • C09J197/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J199/00Adhesives based on natural macromolecular compounds or on derivatives thereof, not provided for in groups C09J101/00 -C09J107/00 or C09J189/00 - C09J197/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compounds Of Unknown Constitution (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Disintegrating Or Milling (AREA)
  • Medicines Containing Plant Substances (AREA)

Description

S&F Ref: 628368
AUSTRALIA
PATENTS ACT 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT
ORIGINAL
Name and Address of Applicants: Kabushiki Kaisha Wood One 1-1, Mokuzaiko-Minami Hatsukaichi-shi Hiroshima-ken Japan Monash University Wellington Road Clayton Victoria 3800 Australia Actual Inventor(s): Address for Service: Invention Title: Yusho Nakamoto, Toshihiko Tsunoda, Keiko Ono, Hiroyuki Yano, Yoshikazu Yazaki, Huijian Jiang, Frank Lawson and Peter Heinz Theodore Uhlherr Spruson Ferguson St Martins Tower,Level 31 Market Street Sydney NSW 2000 (CCN 3710000177) A Method for the Production of Powder with High Tannin Content and its Use The following statement is a full description of this invention, including the best method of performing it known to me/us:- 5845c A METHOD FOR THE PRODUCTION OF POWDER WITH HIGH TANNIN CONTENT AND ITS USE BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for the production of powder with high tannin content, powder with high tannin content obtained by the same method, and a use thereof. More specifically, the present invention relates to a method for the production of powder with high tannin content in an adhesive or a binder for wood as a main component, molding, a binder for molding, a filler an enhancer, a health-care food and a drug.
2. Description of the Related Art Various components are widely present in plants. It is known that extraction of such components with solvents such as water, aqueous solvents and lower alcohols can give rise to a substance usually called tannin that can be used as an adhesive, a binder, a drug or the like.
In the case where tannin is used as a raw material of adhesives, binders or moldings, plant resources with much tannin contents, for example, bark or wood of mangrove, acacia, radiata pine (Pinus radiata), pine, larch, quebracho, eucalyptus, oak, or Japanese hemlock are crushed to a suitable particle size. Then, tannin is extracted therefrom with water, an aqueous solvent or organic solvent such as a lower alcohol and filtered. The tannin filtrate is concentrated and then used as high concentration tannin solutions or it is dried and then used as powdered tannin.
To efficiently extract tannin, it is advantageous to crush plant resources into particles as small as possible so that an extraction solvent can sufficiently and speedily penetrate into the substances to be extracted, the plant resources.
Although the particle size distribution of plant resources after crushing may be different depending on the kind of plant resource, such as bark, it has been known that a filter having a pore diameter of 20 to 60 pm is suitable for the filtration of tannin solutions in a filtration step after the extraction. However, use of such a filter could in some cases result in formation of a large amount of fine powder that is so fine as to cause the problem of clogging of the filter, so that efficient filtration cannot be performed.
Conventionally, the extraction has been performed after removing the fine particles obtained after the pulverization. However, mere removal of the fine particles not only results in a great loss of raw material but also raises a problem of causing environmental pollution when they are discarded.
SUMMARY OF THE INVENTION A basic objective of the present invention is to effectively utilize such a fine particle fraction obtained after crushing of a plant resource.
Therefore, an objective of the present invention is to provide a method for production of powder with a high tannin content, which is free of the above-mentioned problems.
Another objective of the present invention is to provide powder with a high tannin content produced by such a method.
Still another objective of the present invention is to provide a method of using such powder.
Under the circumstances, the inventors of the present invention have made extensive studies with a view to effective utilization of the above-mentioned fine particles formed when a plant resource is crushed into particles having a particle size suitable for the extraction of tannin which is conventionally performed. That is, the inventors extracted the fine particles with methanol by a conventional method to obtain tannin and then examined the Stiasny values of the obtained tannin (ratio of tannin contained in the extract that reacts with aldehyde). As a result, it was revealed that the methanol extract was obtained from the fine particles at high yields and the Stiasny value of tannin thereof was very high.
Accordingly, the inventors prepared a liquid from the powder fraction of the pulverized and classified fine particles without extraction as a main component of an adhesive and performed adhesive tests, the results of which revealed that the liquid had an adhesive strength identical to or higher than that of the conventional tannin adhesive.
Further, the inventors have confirmed that adhesives prepared by adding the powder fraction of the mechanically crushed and classified fine particles to conventional tannin as a filler or adhesive enhancer also have an adhesive strength identical to or higher than that of conventional tannin adhesives.
Similarly, also in the case of adhesives composed of a synthetic phenol resin adhesive and the above-mentioned powder fraction added thereto as a filler or adhesive enhancer, improvements in adhesive strength and water resistance have been observed.
Therefore, the present invention provides a method for production of powder with a high tannin content, comprising crushing a tannin-containing plant resource and classifying the pulverized plant resource.
The present invention also provides powder with a high tannin content obtained by the above-mentioned production method.
Furthermore, the present invention provides a method of using the powder with a high tannin content as a substitute for tannin.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention can be applied to various plant resources with tannin without any particular limitations. Therefore, preferred plant resources are those plants conventionally used for the extraction of tannin. Furthermore, to obtain a fine powder fraction having characteristics that can be utilized for adhesives, binders, moldings, etc., bark and wood of mangrove, acacia, radiata pine (Pinus radiata), pine, larch, eucalyptus, oak, hemlock, quebracho, and the like are desirable. In particular, the bark thereof is preferable from the viewpoint of utilization of resources and availability of powder with high tannin content.
In crushing of plant resources, in a case of plant resources with high tannin contents, forest resources, bark, etc. are crushed as they are or after adjustment to a suitable moisture content, into a particle size of 1 mm or less or formed into a fiber by a hammer mill, a Wiley mill, a ball mill, a roller mill or a high speed rotary grinder and used.
The method for crushing is not particularly limited; however, crushing may be performed preferably by a method in which no high temperature is reached at the time of crushing, and for a short time.
The plant resources crushed to a size of 1 mm or less is fed to a classifier and classified into fine particle powder having a particle size of 10 to 1000 pm, preferably not greater than 100 gm, and more preferably 50 to 80 Rm or less by a screen classifier such as a rotary drum screen or a sieve shaker, or a dry classifier based on, for example, gravitational classification, inertial classification or centrifugal classification.
The method of classification is not particularly limited but is advantageously performed for a short time and by a method in which no high temperature is reached at the time of classification, mainly based on mechanical classification of particle size.
Furthermore, since the particle size of fractions of particles with high tannin content may vary depending on the kind of plant resource and configuration of particles after crushing, the particle size for the classification is not particularly limited.
The particle size of fine powder that is used as it is for adhesives, binders, moldings, etc. is preferably 100 pm or less, more preferably 60 to 70 pm or less. Those fractions with a particle size of 100 to 1000 pm may be recycled to be used in the step of tannin extraction.
The particles after classification may further be crushed depending on the purpose for which they are subsequently used.
The tannin content (Stiasny value) of the extractives which is extracted with methanol from the fine powder with high tannin content obtained by the present invention, which reacts with aldehyde is 80% or more (preferably 90% or more), to 106.8% which is a theoretical value of a reaction product with aldehyde in case where the tannin is 100% catechine as a standard (weight percentage: this applies to rest of the specification).
A mixed solution of the fine powder with high tannin content and an aqueous solution as an adhesive and a binder desirably has a viscosity of 6000 mPa.s or less which is suitable for coating in an extruder or a flow coater of a coating apparatus. A mixed solution with a solids content of 35 to 45% produces with an adhesion strength equal to that of phenol resin. An adhesive, which is prepared from the fine powder with high tannin content obtained by the present invention, has good processing properties as well as good coating properties. Such an adhesive has high adhesion strength to wood test pieces, and wood failure is also observed. Furthermore, the fine powder with high tannin content obtained by the present invention may be added to tannin adhesives and other resins, for example, synthetic formaldehyde resin.
They can be mixed at a ratio in the range of (tannin or synthetic resin) (powder with high tannin content) 1:99 to 99:1.
The reason that the fine particles obtained by the method of the present invention have high tannin content has not been elucidated in detail yet. Presumably, the portion of a plant resource containing a significant amount of tannin is more easily crushed than the other portions thereof. Therefore, fine particles portion generated upon crushing into a size suitable for filtration after extraction in a conventional tannin extraction operation may be used. Alternatively, as in the case of outer bark of radiata pine (Pinus radiata), the content of tannin may be measured in advance and only the portions of the bark that are known to have high tannin contents may be crushed and used.
The powder with high tannin content obtained by the production method of the present invention can be used in various materials such as an adhesive, a binder, molding, a binder for molding, a filler, an enhancer, a health-care food, and a drug either singly or as an enhancer or filler to the conventional tannin powder or high concentration tannin solution.
Examples Hereinafter, the present invention will be described by way of illustrative examples. It should be noted that the present invention is not limited thereto.
Particularly, here, bark of radiata pine (Pinus radiate) and of acacia (Acacia mangium) is divided into outer and inner bark and experiments on the outer bark, which contains more tannin than the inner bark, will be explained. However, the bark can be crushed directly without dividing into outer bark and inner bark and then classified into a predetermined particle size to obtain bark as a fine powder with high tannin content.
In the following examples, unless otherwise specified, and "parts" denote by weight" and "parts by weight".
ExampleA- As a plant resource containing tannin, radiata pine (Pinus radiate) bark discarded and discharged in large amounts in the step of processing wood was used.
The bark was separated into the outer bark that is corky and has higher tannin content and the inner bark that is fibrous and has lower tannin content by the method described in Japanese Patent Application Laid-open No. 2002-302497. The separated outer bark of radiate pine (Pinus radiate) was dried to have a moisture content of 20% or less and then crushed in a hammer mill so as to pass through a 1.6 mm mesh screen. The outer bark powder pulverized to a particle size of 1.6 mm or less was classified into eight particle size fractions in a sieve shaker (Fisher-Wheeler Sieve Shaker) provided with seven sieves (Endecotts B5410) of 38, 45, 53, 63, 75, and 106 Ftm mesh openings, respectively.
The eight particle size fractions obtained by use of the above-mentioned seven types of sieves were each extracted with methanol for 15 minutes to obtain tannin/methanol solutions. Methanol was evaporated from the tannin/methanol solutions to obtain concentrated tannin solutions, which then were subjected to freeze drying to obtain tannin powder. Table 1 shows the yield of extractives by such methanol extraction (tannin powder), with respect to the total dry weight of the bark, and the Stiasny value of tannin thereof. As can be seen from Table 1, the fractions of high classification yields were fractions with a particle size of not smaller than 106 I.m and of 53pn to 63pn and, furthermore, fractions having high methanol extract yields were fractions with a particle size of not greater than 631. The fraction having the highest Stiasny value of tannin was the outer bark powder fraction with a particle size of 53pn to 631pn. The fine powder with a particle size of not greater than 631pn causes clogging when filtration is performed through a filter with a pore size of pn to 60 p in the conventional tannin extraction.
Table 1 Particle size distribution, extractive yield and Stiasny values of the powder from radiata pine (Pinus radiata) outer bark Particle size Classification yield Extractives Extract yield Stiasny values* >106 36.6 38.9 95.33 90-106 7.0 36.8 91.62 75-90 4.7 37.3 91.18 63-75 16.9 44.1 98.31 53-63 34.8 69.5 103.4 45-53 0.22 68.7 38-45 0.04 <38 0.005 Stiasny value of 106.8% for 100% catechin Water was added to prepare slurry such that the obtained resin powder with a particle size of 53pn to 63pn occupies a solid content of 40% of the resulting mixture. Then, 0.5part of sodium hydroxide and 10 parts of paraformaldehyde were mixed with respect to 100 parts of the outer bark powder with the slurry to prepare an adhesive (radiata pine (Pinus radiata) outer bark powder adhesive). Mixing examples and liquid viscosity of the adhesives are shown in Table 2.
On the other hand, the outer bark powder having a particle size greater than 63pro was extracted with methanol to obtain a tannin/methanol solution, from which methanol was then evaporated, followed by subjecting the residue to freeze drying to obtain a tannin powder. Similarly, by using the obtained tannin powder, a tannin adhesive (radiata pine (Pinus radiata) outer bark tannin adhesive) based on the formulation shown in Table 2 was obtained.
PALSpeciflcation"sf2836Bspeca As can be seen from Table 2, it is revealed that the adhesive containing the outer bark powder with a particle size of 53 to 63 gm had a viscosity identical with that of the conventional tannin adhesive, even without adding fillers such as coconut shell flour, wheat flour, and macadamia nuts shell flour. This viscosity was within the range of 500 to 6,000 mPa.s, which is suitable for a coating apparatus such as an extruder or a flow coater.
Table 2 An adhesive formulation from Radiata pine (Pinus radiata) outer bark The outer bark The outer bark Formulation powder adhesive tannin adhesive Outer bark powder (53-63pm) 100 parts 0 part Extract 0 part 100 parts Sodium hydroxide 0.5 part 0.5 part Paraformaldehyde 10 parts 10 parts Coconut shell flour 0 part 0 part Wheat flour 0 part 0 part Macadamia Nuts shell flour 0 part 10 parts Water 150 parts 150 parts Solids content in an adhesive 30-40(%) 3040(%) liud30 40 30 40 liquid Viscosity (mPa-s, 25 0 C) 1000 6000 1000 6000 The normal state and boiling adhesion test results of each adhesive formulated according to Table 2 are shown in Table 3. Table 3 also shows the results of the same tests on a commercially available phenol resin adhesive. As can be seen from Table 3, in the normal state and under boiling conditions, the adhesives of the present invention exhibited an adhesive strength and wood failure which are both identical with or higher than those of the conventional tannin adhesive or phenol resin adhesive.
The adhesion strength test was conducted in accordance with Japanese Agricultural Standard (JAS). Veneers of radiata pine (Pinus radiata) were used as test pieces (specimen). Each veneer was coated with an adhesive in an amount of 150 to 200 g/m 2 and pressed under a cold pressure of 0.8 MPa for 5 minutes and under a hot pressure of 1.0 MPa at 140°C for 7 minutes to be bonded to each other.
The adhesion strength test was conducted with respect to 10 test pieces in dry strength (in which the test pieces were as initially produced) and 10 test pieces after boiling in water for 72 hours. Table 3 shows average results.
In each column of the adhesive test in Table 3, the numerical values in the upper rows indicate adhesive strength (kgf/cm 2 and the numerical values in the brackets in the lower rows indicate wood failure (the same applies to the subsequent tables).
Table 3 Bark/formaldehyde adhesive using radiata pine (Pinus radiata) outer bark Adhesion test (kgf/cm 2 (Wood failure(%)) Test veneer Test conditions Radiata pine Radiata pine Phenol (Pinus radiata) (jinus radiata) Resin outer bark outer bark S, adhesive powder adhesive tannin adhesive 19 17 Normal state 1 1 1 Normal state (80) (90) (90) Radiata pine (Pinus radiata) 12 Boiling (60) (70) 21 25 23 Normal state 2 2 2 Normal state (80) (80) Kapur 16 17 Boiling (60) (60) Example 2 The fraction with high tannin content, 53-63 Im powder, of radiata pine (Pinus radiata) outer bark obtained in Example 1 was mixed with tannin powder obtained by methanol extraction of the bark or with commercially available phenol resin to prepare adhesives and their adhesive strength was examined. Table 4 shows mixing examples of adhesives and viscosity after mixing with adhesive liquid at a solids content of As can be seen from Table 4, the adhesive liquid with the outer bark powder showed coatable viscosity.
Furthermore, the normal state and boiling adhesion test results of each adhesive formulated according to Table 4 are shown in Table 5. As can be seen from Table 5, in the normal state and under boiling conditions, the adhesives of the present invention exhibited an adhesive strength and wood failure which are both identical with or higher than those of the conventional tannin adhesive or phenol resin adhesive.
Table 4 Mixing samples of a bark adhesives using Radiata Pine (Pinus radiata) outer bark Mixing Mixing Mixing Formulation example example example 1 2 3 Outer bark powder (53-63pm) 50 parts 50 parts 70 parts Extract 50 parts 0 part 30 parts Commercially available phenol resin 0 part 50 parts 0 part Sodium hydroxide 0.5 parts 0.5 parts 0.5 parts Paraformaldehyde 10.0 parts 10.0 parts 10.0 parts Coconut shell flour 0 part 0 part 0 part Wheat flour 0 part 0 part 0 part Macadamia nuts shell flour 0 part 0 part 0 Water 150 parts 150 parts 150 parts Solids content in an Viscadhesityve liquid 30 40 30 30 Viscosity (mPa-s, 25°C) 2000 6000 2000 6000 3000 6000 Table 5 Radiata pine (Pinus radiata) outer bark/ and bark extract/ formaldehyde adhesives Adhesion test: (kgf/cm 2 Test (Wood failure(%)) Test veneer conditions Mixing Mixing Mixing example example Example 1 2 3 18 20 Normal state (80) (80) Radiata pine (Pinus radiata) 12 11 (60) 21 25 22 Normal state 21 25 22 (90) Kapur Boiling 13 12 14 (60) (70) Example 3 Acacia mangium bark was used as a plant resource. The bark was separated into outer bark having a high tannin content and inner bark having a low tannin content. The separated Acacia mangium outer bark was dried at 400C so as to have a moisture content of 10 to 15% and then crushed in a Wiley mill by use of a mm mesh screen. The thus obtained crushed Acacia mangium outer bark powder was charged to a sieve shaker (Fisher Wheeler Sieve Shaker) provided with four sieves of 63, 125, 250 and 500 pm mesh opening, and classified for a suitable time.
Five particle size fractions obtained by use of the four kinds of sieves were each extracted with methanol on a warm bath at 300C for 1 hour to obtain tannin/methanol-extracted solutions. After evaporation of methanol and addition of a small amount of water, the extracted solutions were subjected to freeze drying to obtain tannin powders. Table 6 shows yields and Stiasny values of the extracts (tannin powders) obtained by extraction with methanol, based on the dry weight of total bark.
As can be seen from Table 6, the bark particle size fraction with a particle size of not greater than 63 pm, which could cause clogging when filtration is performed through a filter with a pore size of 20 to 60 pm in the conventional tannin extraction, had a high yield and a high Stiasny value of tannin when extracted with methanol.
Table 6 Particle size of outer bark powder, extractive yield and Stiasny value from Acacia mangium Particle size Classification Extract (Pm) yield Yield Stiasny value I M 250 500 28.3 32.6 88.0 125 250 24.7 32.5 94.4 63 125 17.7 29.2 96.5 <63 29.3 49.4 55.1 97.5 Furthermore, a slurry was prepared such that the obtained resin powder with a particle size of not greater than 63 ftm occupies a solid content of 40% of the resulting mixture. Then, 0.9 part of sodium hydroxide and 10 parts of paraformaldehyde were mixed with respect to 100 parts of the outer bark powder with the slurry to prepare an adhesive. Table 7 shows mixing examples and paste viscosities of the adhesives.
With respect to outer bark powder having a size of greater than 63 gm, extraction with methanol was performed to obtain a tannin/methanol extracted solution, from which methanol was then evaporated, followed by adding a small amount of water thereto and then subjecting the residue to freeze drying to obtain tannin powder. Similarly, by using the tannin powder, a tannin adhesive based on the formulation shown in Table 7 was obtained.
As can be seen from Table 7, it was revealed that an adhesive containing the outer bark powder having a particle size of not greater than 63 [m had a viscosity identical with that of the conventional tannin adhesive, even without adding fillers such as coconut shell flour and wheat flour. This viscosity was within the range of 500 to 6,000 mPa.s, which is suitable for a coating apparatus such as an extruder or a flow coater.
Table 7 The outer bark adhesive formulation from Acacia mangium Acacia mangium outer Acacia mangium outer Formulation l bark powder adhesive bark tannin adhesive Outer bark powder (<63pm) 100 parts 0 part Extract 0 part 100 parts Sodium hydroxide 0.9 part 0.9 part Paraformaldehyde 10 parts 10 parts Coconut shell flour 0 part 0 part Wheat flour 0 part 0 part Macadamia nuts shell flour 0 part 10 parts Water 140 parts 140 parts Solids content in Solids content in 30- 40 30- 40 an adhesive liquid Viscosity 3000 -6000 4000 6000 (mPa-s, 250C) The normal state and hot water and boiling adhesive adhesive formulated according to Table 7 are shown in Table 8.
test results of each The adhesive tests were performed according to JIS K-6851. As can be seen from Table 8, in the normal state and under hot water and boiling conditions, the adhesives of the present invention exhibited an adhesive strength and wood failure which are both identical with or-higher than those of the conventional acacia tannin adhesive or phenol resin adhesive.
Table 8 Acacia mangium outer bark/ and outer bark extract/ formaldehyde adhesives Adhesion test Test veneer Test conditions (kgf/cm) Acacia mangium outer Acacia tannin adhesive bark powder adhesive Normal state 15.4 12.0 Red meranti Hot water 12.4 6.8 Boiling 11.7 7.1 Example 4 Acacia mangium. barks were used as a plant resource. The bark was separated into outer bark having a high tannin content and inner bark having a low tannin content. The separated Acacia mangium outer bark was dried at 400C so as to have a moisture content of 10 to 15% and then crushed in a Wiley mill by use of a 0.5 mm mesh screen. Out of the thus crushed Acacia mangium outer bark powders, those which passed through a sieve of 63 pm mesh were used to produce moldings.
More particularly, 0.5 g of paraformaldehyde was added to 5 g of the Acacia mangium powder and was well mixed. Then, the mixture was charged in a cylindrical mold having a diameter of 50 mm and pressed at a pressing pressure of 100 MPa and at a temperature of 160 0 C for 30 minutes to obtain moldings of about 2 mm in thickness.
The density of the obtained moldings was about 1.4 g/cm 3 A sample having a width of 10 mm and a length of 40 mm was prepared from the moldings and the flexural strength ofit was determined by a centrally concentrated load method. Young's modulus in flexure and flexural strength of the sample were 4 to 5 GPa and 40 to 50 MPa, respectively. The flexural strength increased by 30 to by addition of 30% of wood flour (particle diameter: 63 4m or less) to the outer bark powder. Water absorbing rate and thickness swelling rate of the outer bark powder moldings after 1 hour's boiling were 3 to 4% and 4 to respectively. The water resistance value of the sample was substantially identical with that of novolak type phenol resin moldings containing 50% of wood flour prepared as a comparison.
Thus, it was revealed that the molded product from Acacia mangium outer bark powder has excellent water resistance.
Example Formaldehyde catching effect was measured.
The radiata pine (Pinus radiata) outer bark powder (particle size: 53 to 63 pm) of the present invention or conventional macadamia nuts shell flour was added as an additive to a commercially available phenol resin adhesive to prepare an adhesive paste. By using this adhesive paste, radiata pine (Pinus radiata) veneers each having a thickness of 4.0 mm were laminated to make a 5-ply plywood laminate.
Mixing conditions of the adhesive are shown in Table 9.
For each sample board cut out from the thus made plywood laminate, the formaldehyde exhalation amount thereof was measured according to JAS and compared. As a result, it was revealed that the sample board made by laminating the veneers (developed product) with the adhesive containing the radiata pine (Pinus radiata) outer bark powder had a very small formaldehyde exhalation amount, which easily satisfied FCO (0.5 mg/I) or less according to the prescription by JAS.
The results of measurement of each test board are shown in Table 9. In Table 9, the conventional product indicates a plywood laminate laminated with an adhesive containing macadamia nuts shell flour.
Table 9 Developed Conventional product product Commercially available 100 parts phenol resin 100 parts Macadamia nuts shell flour 0 part 10.0 parts Radiata pine (Pinus radiata) outer bark powder 10.0 parts 0 part (53 to 63 pm) Formaldehyde emission (mg/I) 0.10 0.38 According to the present invention, mere crushing of a plant resource containing tannin and classification of fine particles having a certain particle size or less can give rise to powder with a high tannin content. Although it depends on the tannin content thereof, the obtained powder with a high tannin content, like the conventional tannin powder, can be used as an adhesive, binder, etc. or it can form moldings by itself. Therefore, the present invention has various advantages, for example, in that the steps of extraction, concentration, drying, etc. needed in the conventional production method for tannin are unnecessary.

Claims (14)

1. A method for production of powder with a high tannin content, comprising crushing a tannin-containing plant resource and classifying the pulverized plant resource.
2. A method for production according to claim 1, wherein the pulverization is mechanical pulverization.
3. A method for production according to claim 2, wherein the mechanical pulverization is performed by use of an apparatus selected from the group consisting of a hammer mill, a Wiley mill, a ball mill, a roller mill, and a high speed rotary crusher.
4. A method for production according to claim 1, wherein the classification is performed by use of a classifier.
A method for production according to claim 4, wherein the classifier is one selected from the group consisting of a screen classifier such as a rotary drum screen and a sieve shaker, and a dry classifier based on gravitational classification, inertial classification and centrifugal classification.
6. A method for production according to claim 1, wherein the powder with a high tannin content which is pulverized and classified has a particle size of 1,000 pm or less.
7. A method for production according to claim 1, wherein the powder with a high tannin content which is pulverized and classified has a particle size of 100 vm or less.
8. Powder with a high tannin content obtained by a production method according to claim 1.
9. A method of using powder with a high tannin content according to claim 8 as a substitute for conventional tannin.
A method according to claim 9, wherein the powder with a high tannin content is used as a substitute for conventional tannin, in one material selected from the group consisting of an adhesive, a binder, a moulded material, a binder for moulded materials, a filler, an adhesive enhancer, a health-care food, and a drug.
11. A method for production of powder with a high tannin content, said method being substantially as hereinbefore described with reference to any one of the examples but excluding any comparative examples.
12. A powder with a high tannin content prepared by the method of any one of claims 1 to 6 or 11.
13. A powder with a high tannin content according to claim 12 when used as a substitute for conventional tannin.
14. A powder according to clam 13 wherein the powder is used as a substitute for conventional tannin, in one material selected from the group consisting of an adhesive, a binder, a moulded material, a binder for moulded materials, a filler, an adhesive enhancer, a health-care food, and a drug. Dated 7 March 2003 KABUSHIKI KAISHA WOOD ONE Patent Attorneys for the Applicant/Nominated Person SPRUSON&FERGUSON PALSpecifications/628368spec
AU2003200906A 2002-03-08 2003-03-07 A Method for the Production of Powder with High Tannin Content and its Use Expired AU2003200906B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002064178A JP4683258B2 (en) 2002-03-08 2002-03-08 Method for producing tannin-rich powder and use thereof
JP2002-064178 2002-03-08

Publications (2)

Publication Number Publication Date
AU2003200906A1 true AU2003200906A1 (en) 2003-09-25
AU2003200906B2 AU2003200906B2 (en) 2007-08-02

Family

ID=27751260

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2003200906A Expired AU2003200906B2 (en) 2002-03-08 2003-03-07 A Method for the Production of Powder with High Tannin Content and its Use

Country Status (13)

Country Link
US (2) US20030230653A1 (en)
EP (1) EP1342743B1 (en)
JP (1) JP4683258B2 (en)
CN (1) CN100584889C (en)
AR (1) AR038742A1 (en)
AT (1) ATE404613T1 (en)
AU (1) AU2003200906B2 (en)
DE (1) DE60322763D1 (en)
DK (1) DK1342743T3 (en)
HK (1) HK1056378A1 (en)
MY (1) MY135042A (en)
NZ (1) NZ524624A (en)
ZA (1) ZA200301899B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7976877B2 (en) 2003-11-12 2011-07-12 Oy Arbonova Ab Use of knotwood extracts
KR100824665B1 (en) * 2006-04-21 2008-04-24 경도화학공업주식회사 An adhesive comprising tannin and manufacturing method thereof
WO2008018142A1 (en) * 2006-08-10 2008-02-14 Wood One Co., Ltd. Antioxidant composition containing component originating in the bark of tree belonging to the genus acacia
JP2009073973A (en) * 2007-09-21 2009-04-09 Research Institute Of Tsukuba Biotech Ltd Solid fuel and its manufacturing method
US20090095694A1 (en) * 2007-10-11 2009-04-16 Owens Edward F Reducing tannin staining in wood plastic composite materials
KR100824666B1 (en) 2007-12-26 2008-04-24 경도화학공업주식회사 Manufacturing method of an adhesive comprising tannin
US10066164B2 (en) 2009-06-30 2018-09-04 Tiecheng Qiao Semiconductor nanocrystals used with LED sources
MY152707A (en) * 2010-05-06 2014-11-28 Koshii Wood Solutions Co Ltd Adhesive composition for plywood, method for producing plywood, and plywood
SI2738232T1 (en) * 2012-11-29 2015-09-30 Omura Consulting Gmbh Adhesive Composition
CN103773296A (en) * 2013-12-25 2014-05-07 广西宾阳县荣良新材料科技有限公司 Glue composition for plywood
US11149173B2 (en) 2015-10-23 2021-10-19 Wood One Co., Ltd. Adhesive using bark
WO2018199190A1 (en) 2017-04-25 2018-11-01 株式会社ウッドワン Adhesive
BR112020018829B1 (en) * 2018-03-23 2024-02-15 Foresa Technologies S.L.U SINGLE-COMPONENT ADHESIVE COMPOSITION COMPRISING FORMALDEHYDE-BASED RESIN WITH A FREE FORMALDEHYDE CONTENT BELOW 0.1% BY WEIGHT COMPRISING RESORCINOL, ALKYLRESORCINOL AND/OR TANNIN

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2563086A (en) * 1947-06-27 1951-08-07 Shell Dev Process for segregating powdered materials into fractions of different particle size
US2510119A (en) * 1948-04-20 1950-06-06 Us Agriculture Production of tannin and soft-grit blasting material from nutshells
JPS4747293B1 (en) * 1968-04-10 1972-11-29
CA1063274A (en) * 1975-11-19 1979-09-25 Seymour Hartman Bark extended tannin-aldehyde resinous adhesives
WO1998037148A2 (en) * 1997-02-20 1998-08-27 Kronospan Gmbh Adhesive composition
JP2002001155A (en) * 2000-06-19 2002-01-08 Kenjiro Makino Method for preparation of ultrafinery pulverized natural material, ultrafinely pulverized natural material and pulverizing device used in this method for preparation of ultrafinely pulverized natural material
JP2002001141A (en) * 2000-06-23 2002-01-08 Nisshin Seifun Group Inc Mechanical pulverizing machine
JP4241908B2 (en) * 2000-07-14 2009-03-18 興 永井 Solid material crushing equipment
JP2002125593A (en) * 2000-10-27 2002-05-08 Ito En Ltd Finely powdered and classified tea and method for producing finely powdered and classified tea
JP3723944B2 (en) 2001-03-30 2005-12-07 株式会社ウッドワン Tannin, production method thereof and use thereof
US20030054055A1 (en) * 2001-03-30 2003-03-20 Kabushiki Kaisha Juken Sangyo Method for the production of tannin and its use

Also Published As

Publication number Publication date
EP1342743B1 (en) 2008-08-13
ATE404613T1 (en) 2008-08-15
US7611082B2 (en) 2009-11-03
EP1342743A1 (en) 2003-09-10
US20030230653A1 (en) 2003-12-18
JP4683258B2 (en) 2011-05-18
US20070125890A1 (en) 2007-06-07
DE60322763D1 (en) 2008-09-25
NZ524624A (en) 2003-08-29
JP2003261853A (en) 2003-09-19
HK1056378A1 (en) 2004-02-13
DK1342743T3 (en) 2008-12-15
ZA200301899B (en) 2003-10-16
AU2003200906B2 (en) 2007-08-02
CN1443821A (en) 2003-09-24
MY135042A (en) 2008-01-31
AR038742A1 (en) 2005-01-26
CN100584889C (en) 2010-01-27

Similar Documents

Publication Publication Date Title
US7611082B2 (en) Method for the production of powder with high tannin content and its use
Aydin et al. Utilization of bark flours as additive in plywood manufacturing
US4364979A (en) Composition board
WO2016057390A1 (en) Adhesives containing a resin, a kraft lignin, and a surfactant and methods for making and using same
WO2018047047A1 (en) Glyoxalated lignin compositions
AU783264B2 (en) A process for the production of tannin and its use
Liang et al. Low-formaldehyde emission composite particleboard manufactured from waste chestnut bur
JP2009102604A (en) Tannin-base adhesive, woody composite material made by using the same, and method for producing the composite material
US3965056A (en) Adhesive extended composition
Dukarska et al. White mustard straw as an alternative raw material in the manufacture of particleboards resinated with different amount of urea formaldehyde resin
CA2938114A1 (en) Powdered lignin
US4200723A (en) Organic phenol extract compositions of peanut hull agricultural residues and method
US4201699A (en) Phenol-aldehyde resin composition containing pecan pith extract and an aldehyde
AU670702B2 (en) A method of producing a wood-derived material
KR20010080211A (en) Bonding resins
WO2010056213A1 (en) Adhesive with the addition of liquid wood and the process of its preparation
US4469858A (en) Tree foliage extracts and their use in phenol-aldehyde resins
JP2009154437A (en) Wood composite material and method for manufacturing the same
CA2489191C (en) Process for forming lignocellulosic products and products formed thereby
KR102716895B1 (en) Manufacturing method of eco-friendly materials with enhanced water resistance using vegetable by-products
JP4630607B2 (en) Manufacturing method of wood composite material
KR100729503B1 (en) Environment-friendly board using green tea and wood-based plate-shaped product comprising the same
JP2003055391A (en) Tannin and method for producing the tannin and use thereof
NZ524024A (en) A method for the production of tannin from the outer bark of pinus radiata

Legal Events

Date Code Title Description
TH Corrigenda

Free format text: IN VOL 17, NO 12, PAGE(S) 3497 UNDER THE HEADING COMPLETE APPLICATIONS FILED - NAME INDEX UNDER THE NAME KABUSHIKI KAISHA WOOD ONE, APPLICATION NO. 2003200906, UNDER INID (71) ADD APPLICANT MONASH UNIVERSITY.

FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired