AU2002258605A1 - Enantioselective synthesis of azetidinone intermediate compounds - Google Patents

Enantioselective synthesis of azetidinone intermediate compounds

Info

Publication number
AU2002258605A1
AU2002258605A1 AU2002258605A AU2002258605A AU2002258605A1 AU 2002258605 A1 AU2002258605 A1 AU 2002258605A1 AU 2002258605 A AU2002258605 A AU 2002258605A AU 2002258605 A AU2002258605 A AU 2002258605A AU 2002258605 A1 AU2002258605 A1 AU 2002258605A1
Authority
AU
Australia
Prior art keywords
formula
compound
acid
catalyst
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2002258605A
Other versions
AU2002258605B2 (en
Inventor
Xiaoyong Fu
Timothy L. Mcallister
Chou-Hong Tann
T.K. Thiruvengadam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Sharp and Dohme LLC
Original Assignee
Merck Sharp and Dohme LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Sharp and Dohme LLC filed Critical Merck Sharp and Dohme LLC
Priority claimed from PCT/US2002/009123 external-priority patent/WO2002079174A2/en
Publication of AU2002258605A1 publication Critical patent/AU2002258605A1/en
Application granted granted Critical
Publication of AU2002258605B2 publication Critical patent/AU2002258605B2/en
Assigned to MERCK SHARP & DOHME CORP. reassignment MERCK SHARP & DOHME CORP. Request to Amend Deed and Register Assignors: SCHERING CORPORATION
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Description

ENANTIOSELECTIVE SYNTHESIS OF AZETIDINONE INTERMEDIATE
COMPOUNDS
BACKGROUND OF THE INVENTION
This invention relates to a process for producing intermediates for hydroxy- alkyl substituted azetidinones. Hydroxy-alkyl substituted azetidinones, for example, 1- (4-fluorophenyl)-3(R)-[3(S)-hydroxy-3-(4-fluorophenyl)propyl)]-4(S)-(4-hydroxyphenyl)- 2-azetidinone, are described in US Patent No. 5,767, 115. These compounds are useful as hypocholesterolemic agents in the treatment and prevention of atheroschlerosis. Processes for preparing the corresponding azetidinone without the 3-hydroxy substituent are claimed in US Patent No. 5,728,827 and US Patent No. 5,561 ,227. Other processes for preparing 1-(4-fluorophenyl)-3(R)-[3(S)-hydroxy-3-(4- fluorophenyl)-propyl)]-4(S)-(4-hydroxyphenyl)-2-azetidinone are disclosed in US Patent No. 5,631 ,365, US Patent No. 5,739,321 and US Patent No. 6,207,822 B1 (the '822 patent).
As per the procedure described in the '822 patent, the intermediate compound of Formula I, is protected with a suitable hydroxy-protecting group, such as a silyl protecting group such as that derived from chlorotrimethylsilane (TMSCI) or t- butyldimethyl-silyl chloride (TBDMSCI). This silylated product is further reacted with a silyl-enol ether silylating agent such as bistrimethylsilyl acetamide (BSA). A cyclizing agent such as a quaternary alkyl-, aryl-alkyl or arylalkyl-alkylammonium fluoride salt is then added to cause an intra-molecular cyclization of the previously silylated compound of Formula I. Finally, the protecting groups are removed from the cyclizied compound using conventional methods, such as treatment with a dilute acid, in order to form the hypocholesterolemic azetidinone having the Formula
SUMMARY OF THE INVENTION This invention provides an improved, simple, high yielding process for preparing an intermediate compound useful in the production of azetidinones. The intermediate, a compound of Formula I:
Formula I
is prepared by a process which comprises:
a) mixing a compound of Formula I!
Formula II
in tetrahydrofuran in the presence of an acid, or alternatively in tetrahydrofuran in the absence of an acid, to form a mixture; b) combining the mixture of step a) with a catalyst selected from either (A) a compound selected from the group of compounds represented by Formula III, or (B) a compound of Formula IV,
Formula IV wherein R1 of Formula III is a (Cι-C6)alkyl and wherein R and S indicate stereochemistry at the chiral carbons; c) reducing the ketone adjacent to the p-fluorophenyl with a borane- tetrahydrofuran complex; and d) quenching the reaction with MeOH.
DETAILED DESCRIPTION
In one embodiment, there is described herein a process for preparing a compound of Formula I
Formula which comprises the steps (a)-(d) shown above.
In a preferred embodiment, the process comprises: a) mixing a compound of Formula II in tetrahydrofuran in the presence of an acid to form a mixture; b) combining the mixture of step a) with a catalyst selected from either (A) a compound selected from the group of compounds represented by Formula III, or (B) a compound of Formula IV
Formula
Formula IV wherein R1 of Formula III is a (Cι-C-6)alkyl and wherein R and S indicate stereochemistry at the chiral carbons; c) reducing the ketone adjacent to the p-fluorophenyl with a borane- tetrahydrofuran complex; and d) quenching the reaction with MeOH.
Except where stated otherwise, the following definitions apply throughout the present specification and claims. These definitions apply regardless of whether a term is used by itself or in combination with other terms. Hence the definition of "alkyl" applies to "alkyl" as well as to the "alkyl" portions of "alkoxy", "alkylamino" etc. "Alkyl" represents a straight or branched saturated hydrocarbon chain having the designated number of carbon atoms. Where the number of carbon atoms is not specified, 1 to 6 carbons are intended.
The acid in step a) is selected from the group consisting of BF3*OEt2, BCI3, p- toluene sulfonic acid, trifluoroacetic acid, methanesulfonic acid and camphorsulfonic acid.
If the catalyst of Formula IV is employed, it must be used in the presence of a trialkyl borate, preferably a trimethyl borate.
In another embodiment of the present invention, the ratio of the acid to the compound of Formula II is in a mole % of 1-10%, preferably 1-5%, more preferably in a mole % of 2-3%.
In another embodiment of the present invention, the ratio of the catalyst to the compound of Formula II of step b) is in a mole percent of 0.1-10%, preferably 1-5%, more preferably in a mole % of 2-3%.
In further embodiments of the present invention, the temperature of the reduction step c) is generally between -15 and 65°C, preferably between -10 and 55°C, more preferably between 0° and 30°C and typically between 23° and 28°C.
In another embodiment of the invention, there is described a process for preparing a compound of Formula I
Formula 1 which process has no acid in step (a). The process, thus, comprises:
a) dissolving a compound of Formula II in tetrahydrofuran to form a mixture; b) combining the mixture of step a) with a catalyst selected from either (A) a compound selected from the group of compounds represented by Formula III, or (B) a compound of Formula IV
Formula IV wherein R1 of Formula III is a (Cι-C6)alkyl and wherein R and S indicate stereochemistry at the chiral carbons; c) reducing the ketone adjacent to the p-fluorophenyl with a borane- tetrahydrofuran complex; and d) quenching the reaction with MeOH.
In a preferred embodiment of the alternate process (with no acid in step (a)) described immediately above, the temperature of the reduction step c) is between 23 and 28°C.
In another embodiment of the alternate process (with no acid in step (a)) described immediately above, the ratio of the catalyst to the compound of Formula II of step b) is in a mole % of 0.1-10%, preferably 1-5%, more preferably in a mole % of
2-3%.
Formula II Formula I
The present invention discloses a novel chemo selective and stereo selective reduction of the ketone adjacent to the p-fluorophenyl using a BH3-THF complex. In a previous process patent, U.S. Patent No. 6,207,822 B1 (the '822 patent), the disclosure of which is incorporated herein by reference thereto, there is disclosed a reduction of said ketone using BH3 Me2S (BMS) complex as a reducing agent. However, use of said BMS complex may lead to environmental concerns. The replacement of BMS with borane tetrahydrofuran complex eliminates the environmental issues raised by use of the BMS complex.
However, simple replacement of BH3 Me2S with BH3-THF in the reduction generated a substantial amount of over-reduction of the amide bond, compared to the reduction of the ketone adjacent to the p-fluororophenyl, thus resulting in poor selectivity. Thus, initial experiments with BH3-THF yielded a desirable % of desired enantiomer (SS) to the undesired enantiomer (SR), however, the solution yield was not optimized due to the production of the above-noted over-reduced by-product from the amide. Applicants found, in the present process, that reversing the addition sequence surprisingly overcame the poor chemoselectivity in the reduction. The production of the over-reduced by-product from the amide was significantly reduced while at the same time resulting in high diasteroselectivity in the product.
The new process calls for adding BH3-THF to the solution of Formula II and (R)-tetrahydro-1-methyl-3,3-diphenyl-1 H,3H-pyrrolo[1 ,2-c] [1 ,3,2] oxazaborolidine (abbreviated as (R)-MeCBS) catalyst in THF (from Sigma-Aldrich, St. Louis, Missouri). Several experiments yielded results where the over-reduced by-product was minimized to <1 % with diastereoselectivity of 97:3. In fact, the molar equivalent (eq) of BH3-THF was kept to -0.6 eq, while % molar yields were generally over 97%.
Similar results could be obtained with a "in-situ" prepared catalyst using the compound of Formula IV (R-diphenylprolinol) and trimethylborate. (See reference: M.
Masui, T. Shioiri, Synlett, 1997, 273).
The following examples used to prepare the compound of Formula I illustrate the present invention, although such examples should not be construed as limiting the scope of the invention. Alternative reagents and analogous processes within the scope of the invention will be apparent to those skilled in the art. The product solutions of the following examples (which contain the compound of Formula I) can be directly used as such in subsequent process steps to make hydroxy-alkyl substituted azetidinones, or in the alternative, the compounds of Formula I can be crystallized or isolated using methods known and recognized by one of ordinary skill in the art.
Examples
Abbreviations which are used in the description of the schemes, preparations and the examples are:
(R)-MeCBS = (R)-tetrahydro-1-methyl-3,3-diphenyl-1 H,3H-pyrrolo[1 ,2-c] [1 ,3,2] oxazaborolidine
THF = tetrahydrofuran HPLC = High Performance Liquid Chromatography
MeOH = methanol
Atm = atmospheres mL = milliϋters g = grams PTSA = p-toluene sulfonic acid
CSA = (1S)-(+)-10-camphorsulfonic acid
TFA = trifluoroacetic acid de = difference between SS% and SR% Example 1 (Acid absent in step(a))
Fifty (50) g of the compound of Formula II was charged into a 1000 mL three necked round bottom flask equipped with a thermometer, N2 inlet and addition funnel. 500 mL THF was charged to dissolve the 50 g of the compound Formula II at about 20° to 25°C. The batch was concentrated at 1 atm to a batch volume of about 150 mL. The temperature was adjusted to about 20° to 25°C. 4.2 mL of lab pre-formed (R)-MeCBS catalyst in toluene (3 mole%) was charged. 70.4 mL of 1M borane THF complex in THF solution (from Aldrich Chemical Company, Milwaukee, Wisconsin) was slowly charged over 1.5 hrs at temperature between about 23° and 28°C. The batch was sampled for HPLC to monitor the progress of the reaction. After the reaction was judged complete, 20 mL of MeOH was slowly charged to keep the temperature below 25°C in order to quench the reaction. The batch was concentrated under vacuum to afford a batch volume of about 100 mL at a temperature below 40°C. 250 mL of toluene and a solution of 5 mL sulfuric acid in 100 mL water was charged. The mixture was agitated for about 10 min. and the batch was allowed to settle. The bottom acid layer was split off. 100 mL of water was charged to wash the batch twice. The batch was concentrated under vacuum at below 50°C to afford a volume of about 100 mL. Results varied, but in general, yields of -99% and 95% de were obtained.
Example 2 (Acid (pTSA) present in step (a))
Fifty (50) kg of the compound of Formula II and 0.8 kg of p-toluene sulfonic acid (PTSA) was charged into a 300 gallon glass lined reactor equipped with a thermocouple, N2 inlet and feed tank. 267 kg of dry THF was charged to dissolve the 50 kg of the compound Formula II and the p-toluene sulfonic acid at about 20 to 25°C. The batch was concentrated at 1 atm to a batch volume of about 185 liters. The temperature was adjusted to about 20 to 25°C. 200 liters of THF was charged to the batch. The batch was concentrated at 1 atm to a batch volume of about 185 liters. The temperature was adjusted to about 20 to 25°C. 3.4 kg of pre-formed (R )-MeCBS catalyst in toluene (3 mole %) was charged. 70.3 kg 1 M of borane THF complex in THF solution was slowly charged over 1.5 hours at a temperature range between about 23 and 28°C. The batch was sampled for HPLC to monitor the progress of the reaction. After the reaction was judged complete, using the same subsequent procedure as described in Example 1 (i.e. quenching with MeOH, vacuum concentration of the batch, etc., but in appropriate ratios of reagents for this example), the compound of Formula I was obtained in an average yield of 98.4%. A percentage yield of -97 %, a solution yield of 100% and de of 93.6% was obtained.
Example 3 (Acid present in step (a))
Fifteen (15) kg of the compound of Formula II was charged into a 50 gallon glass lined reactor equipped with a thermocouple, N2 inlet and feed tank. 150 liters of dry THF was charged to dissolve the 15 kg of the compound Formula II at about 20 to 25°C. The batch was concentrated at 1 atm to a batch volume of about 55 liters. The temperature was adjusted to about 20 to 25°C. 1.5 kg of preformed (R)-MeCBS catalyst in toluene (3 mole %) was charged. 18.55 kg of 1M borane THF complex in THF solution was charged over 1.5 hours at a temperature range between about 23 and 28 °C. The batch was sampled for HPLC to monitor the progress of the reaction. After the reaction was judged complete, using the same subsequent procedure as described in Example 1 (i.e. quenching with MeOH, vacuum concentration of the batch, etc., but in appropriate ratios of reagents for this example), the compound of Formula I was obtained in a yield of 100% with- a de of 95.4%.
Example 4 Acid (CSA) present in step (a))
Thirty (30) g of the compound of Formula II and 0.386 g (2 mole %) of (1S)-(+)-10- camphorsulfonic acid (CSA) was charged in a 500 mL 3 necked round bottom flask equipped with a thermometer, N2 inlet and addition funnel. 111 mL of dry THF was charged to dissolve the 30 g of the compound Formula II, and the (1 S)-(+)-10- camphorsulfonic acid at about 20 to 25°C. 2.2 mL of pre formed (R )-MCBS catalyst in toluene (3 mole %) was charged. 39.9 mL of 1 M borane THF complex in THF solution was slowly charged over 1.5 hours at a temperature range between about 23 and 28°C. The batch was sampled for HPLC to monitor the progress of the reaction. After the reaction was judged complete, using the same subsequent procedure as described in Example 1 (i.e. quenching with MeOH, vacuum concentration of the batch, etc., but in appropriate ratios of reagents for this example), the compound of Formula I was obtained. Results varied, but in general, -99% yield and -94% de were obtained.
Example 5
Using the method described above in example 4, other acids were substituted for CSA. This group of other acids included BF3»OEt2, BCI3, trifluoroacetic acid (TFA) or methansulfonic acid. Results varied, but in general, all yielded results with favorable SS:RS ratios of -95-97% to -3-5% and a % de range from -91 to - 93.8%. In general, chemical yields close to 97% and over were obtained.

Claims (22)

  1. We claim:
    A process for preparing a compound of Formula I
    Formula
    is prepared by a process which comprises:
    a) mixing a compound of Formula II
    Formula II
    in tetrahydrofuran in the presence of an acid, or alternatively in tetrahydrofuran in the absence of an acid, to form a mixture; b) combining the mixture of step a) with a catalyst selected from either (A) a compound selected from the group of compounds represented by Formula III, or (B) a compound of Formula IV,
    Formula III
    Formula IV wherein R1 of Formula III is a (Cι-C6)alkyl and wherein R and S indicate stereochemistry at the chiral carbons; c) reducing the ketone adjacent to the p-fluorophenyl with a borane- tetrahydrofuran complex; and d) quenching the reaction with MeOH.
  2. 2. The process of claim 1 wherein the acid in step a) is BF3«OEt2, BCI3, p-toluene sulfonic acid, trifluoroacetic acid, methanesulfonic acid, or camphorsulfonic acid.
  3. 3. The process of claim 2 wherein the catalyst of Formula IV is employed in the presence of a trialkyl borate.
  4. 4. The process of claim 3 wherein said trialkyl borate is a trimethyl borate.
  5. 5. The process of claim 2 wherein said acid is present in a 1-10 mole percent ratio with respect to said compound of Formula II.
  6. 6. The process of claim 2 wherein said acid is present in a 1-5 mole percent ratio with respect to said compound of Formula II.
  7. 7. The process of claim 2 wherein said acid is present in a 2-3 mole percent ratio with respect to said compound of Formula II.
  8. 8. The process of claim 1 wherein said catalyst is present in a 0.1-10 mole percent ratio with respect to said compound of Formula II.
  9. 9. The process of claim 1 wherein said catalyst is present in a 1-5 mole percent ratio with respect to said compound of Formula II.
  10. 10. The process of claim 1 wherein said catalyst is present in a 2-3 mole percent ratio with respect to said compound of Formula II.
  11. 11. The process of claim 1 wherein the temperature in the reduction step c) is between -15 and 65°C.
  12. 12. The process of claim 1 wherein the temperature in the reduction step c) is between -10 and 55°C.
  13. 13. The process of claim 1 wherein the temperature in the reduction step c) is between 0 and 30°C.
  14. 14. The process of claim 1 wherein the temperature in the reduction step c) is between 23 and 28°C.
  15. 15. The process of claim 1 , wherein acid is present in step (a).
  16. 16. The process of claim 1 , wherein acid is absent in step (a).
  17. 17. The process of claim 16 wherein the temperature in the reduction step c) is between 23 and 28°C.
  18. 18. The process of claim 16 wherein said catalyst is present in a 0.1-10 mole percent ratio with respect to said compound of Formula II.
  19. 19. The process of claim 16 wherein said catalyst is present in a 1-5 mole percent ratio with respect to said compound of Formula II.
  20. 20. The process of claim 16 wherein said catalyst is present in a 2-3 mole percent ratio with respect to said compound of Formula II.
  21. 21. A compound of Formula I
    Formula formed by the process of claim 15.
  22. 22. A compound of Formula I
    Formula formed by the process of claim 16.
AU2002258605A 2001-03-28 2002-03-25 Enantioselective synthesis of azetidinone intermediate compounds Expired AU2002258605B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US27928801P 2001-03-28 2001-03-28
US60/279,288 2001-03-28
PCT/US2002/009123 WO2002079174A2 (en) 2001-03-28 2002-03-25 Enantioselective synthesis of azetidinone intermediate compounds

Publications (2)

Publication Number Publication Date
AU2002258605A1 true AU2002258605A1 (en) 2003-04-03
AU2002258605B2 AU2002258605B2 (en) 2006-01-12

Family

ID=23068350

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2002258605A Expired AU2002258605B2 (en) 2001-03-28 2002-03-25 Enantioselective synthesis of azetidinone intermediate compounds

Country Status (29)

Country Link
US (1) US6627757B2 (en)
EP (1) EP1373230B1 (en)
JP (1) JP4145663B2 (en)
KR (1) KR100590342B1 (en)
CN (1) CN1275949C (en)
AT (1) ATE305459T1 (en)
AU (1) AU2002258605B2 (en)
BG (1) BG66189B1 (en)
BR (1) BRPI0208384B1 (en)
CA (1) CA2442219C (en)
CZ (1) CZ304929B6 (en)
DE (1) DE60206365T2 (en)
DK (1) DK1373230T3 (en)
EA (1) EA006898B1 (en)
EE (1) EE05453B1 (en)
ES (1) ES2245733T3 (en)
HK (1) HK1057546A1 (en)
HR (1) HRP20030760B1 (en)
HU (1) HU230229B1 (en)
IL (2) IL157552A0 (en)
MX (1) MXPA03008803A (en)
NZ (1) NZ527852A (en)
PL (1) PL205952B1 (en)
RS (1) RS50386B (en)
SI (1) SI1373230T1 (en)
SK (1) SK287408B6 (en)
UA (1) UA75644C2 (en)
WO (1) WO2002079174A2 (en)
ZA (1) ZA200306612B (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0215579D0 (en) 2002-07-05 2002-08-14 Astrazeneca Ab Chemical compounds
US20040132058A1 (en) 2002-07-19 2004-07-08 Schering Corporation NPC1L1 (NPC3) and methods of use thereof
US7135556B2 (en) * 2002-07-19 2006-11-14 Schering Corporation NPC1L1 (NPC3) and methods of use thereof
AR040588A1 (en) 2002-07-26 2005-04-13 Schering Corp PHARMACEUTICAL FORMULATION INCLUDING AN INHIBITOR OF CHOLESTEROL ABSORPTION AND AN INHIBITOR OF A HMGCO TO REDUCTASE
EP1918000A2 (en) 2003-11-05 2008-05-07 Schering Corporation Combinations of lipid modulating agents and substituted azetidinones and treatments for vascular conditions
CA2550215A1 (en) 2003-12-23 2005-07-07 Astrazeneca Ab Diphenylazetidinone derivates possessing cholesterol absorption inhibitory activity
CA2553769C (en) 2004-01-16 2011-01-04 Merck & Co., Inc. Npc1l1 (npc3) and methods of identifying ligands thereof
MX2007003732A (en) * 2004-09-29 2007-04-23 Schering Corp Combinations of substituted azetidonones and cb1 antagonists.
CN102558075A (en) 2004-12-03 2012-07-11 先灵公司 Substituted piperazines as CB1 antagonists
US8308559B2 (en) * 2007-05-07 2012-11-13 Jay Chun Paradise box gaming system
TW200726746A (en) * 2005-05-06 2007-07-16 Microbia Inc Processes for production of 4-biphenylylazetidin-2-ones
EP1885378A4 (en) * 2005-05-09 2010-10-27 Microbia Inc Organometal benzenephosphonate coupling agents
CA2608075A1 (en) * 2005-05-11 2006-11-16 Microbia, Inc. Processes for production of phenolic 4-biphenylylazetidin-2-ones
EP1896135A2 (en) * 2005-05-25 2008-03-12 Microbia, Inc. Processes for production of 4-(biphenylyl)azetidin-2-one phosphonic acids
CN101243072A (en) * 2005-06-20 2008-08-13 先灵公司 Piperidine derivatives useful as histamine H3 antagonists
SA06270191B1 (en) 2005-06-22 2010-03-29 استرازينيكا ايه بي Novel 2-Azetidinone Derivatives as Cholesterol Absorption Inhibitors for the Treatment of Hyperlipidaemic Conditions
JP2008517951A (en) * 2005-09-08 2008-05-29 テバ ファーマシューティカル インダストリーズ リミティド (3R, 4S) -4-((4-Benzyloxy) phenyl) -1- (4-fluorophenyl) -3-((S) -3- (4-fluorophenyl) -3-hydroxypropyl) -2 -Preparation of intermediates for the synthesis of azetidinones, ie ezetimibe
HU0501164D0 (en) * 2005-12-20 2006-02-28 Richter Gedeon Vegyeszet New industrial process for the production of ezetimibe
US7897601B2 (en) 2006-01-18 2011-03-01 Intervet, Inc. Cannabinoid receptor modulators
WO2007094480A1 (en) * 2006-02-16 2007-08-23 Kotobuki Pharmaceutical Co., Ltd. Method of producing optically active alcohol
WO2007100807A2 (en) * 2006-02-24 2007-09-07 Schering Corporation Npc1l1 orthologues
TW200811098A (en) 2006-04-27 2008-03-01 Astrazeneca Ab Chemical compounds
WO2008030382A1 (en) * 2006-09-05 2008-03-13 Schering Corporation Pharmaceutical combinations for lipid management and in the treatment of atherosclerosis and hepatic steatosis
WO2008130616A2 (en) * 2007-04-19 2008-10-30 Schering Corporation Diaryl morpholines as cb1 modulators
JP2010529148A (en) * 2007-06-07 2010-08-26 テバ ファーマシューティカル インダストリーズ リミティド Reduction method for the production of ezetimibe
BRPI0814806A2 (en) * 2007-06-28 2015-02-03 Intervet Int Bv PIRAZINS REPLACED AS CB1 ANTAGONISTS
CA2694264A1 (en) * 2007-06-28 2009-01-08 Intervet International B.V. Substituted piperazines as cb1 antagonists
US20090093627A1 (en) * 2007-08-30 2009-04-09 Lorand Szabo Process for preparing intermediates of ezetimibe by microbial reduction
US20090312302A1 (en) * 2008-06-17 2009-12-17 Ironwood Pharmaceuticals, Inc. Compositions and methods for treating nonalcoholic fatty liver disease-associated disorders
SI2329014T1 (en) 2008-08-29 2015-01-30 Codexis, Inc. Ketoreductase polypeptides for the stereoselective production of (4s)-3š(5s)-5(4-fluorophenyl)-5-hydroxypentanoylć-4-phenyl-1,3-oxazolidin-2-one
US9388440B2 (en) 2009-04-01 2016-07-12 Mylan Laboratories Limited Enzymatic process for the preparation of (S)-5-(4-fluoro-phenyl)-5-hydroxy-1morpholin-4-yl-pentan-1-one, an intermediate of Ezetimibe and further conversion to Ezetimibe
ES2575560T3 (en) 2009-08-19 2016-06-29 Codexis, Inc. Cetorreductase polypeptides to prepare phenylephrine
WO2011140219A1 (en) 2010-05-04 2011-11-10 Codexis, Inc. Biocatalysts for ezetimibe synthesis
WO2012155932A1 (en) 2011-05-17 2012-11-22 Pharmathen S.A. Improved process for the preparation of ezetimibe
CN111518046B (en) * 2020-06-04 2022-04-15 中山奕安泰医药科技有限公司 Ezetimibe intermediate and preparation method of ezetimibe

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2046823A1 (en) 1970-09-23 1972-03-30 Farbwerke Hoechst AG vormals Meister Lucius & Brüning, 6000 Frankfurt New azetidinones (2) and processes for their preparation
JPS5628057A (en) 1979-08-13 1981-03-19 Isuzu Motors Ltd Front cab suspension device for tiltable cab
DE3006193C2 (en) 1980-02-19 1984-04-12 Siemens AG, 1000 Berlin und 8000 München Electrical connection of the electrodes of a gas discharge surge arrester
US4680391A (en) 1983-12-01 1987-07-14 Merck & Co., Inc. Substituted azetidinones as anti-inflammatory and antidegenerative agents
JPS61121479A (en) 1984-11-19 1986-06-09 Mitsubishi Electric Corp Solar battery element
JPS61180212A (en) 1985-02-06 1986-08-12 Asahi Optical Co Ltd Rear stop type photographic lens
JPS62219681A (en) 1986-03-20 1987-09-26 Toshiba Corp Reference light source for optical-signal processing element
IL84051A0 (en) 1986-10-03 1988-03-31 Lilly Co Eli 7-((meta-substituted)phenylglycine)1-carba-1-dethiacephalosporins
US4803266A (en) 1986-10-17 1989-02-07 Taisho Pharmaceutical Co., Ltd. 3-Oxoalkylidene-2-azetidinone derivatives
EP0333268A1 (en) 1988-03-18 1989-09-20 Merck & Co. Inc. Process for synthesis of a chiral 3-beta hydrogen (3R) 4-aroyloxy azetidinone
NZ228600A (en) 1988-04-11 1992-02-25 Merck & Co Inc 1-(benzylaminocarbonyl)-4-phenoxy-azetidin-2-one derivatives
US4952689A (en) 1988-10-20 1990-08-28 Taisho Pharmaceutical Co., Ltd. 3-(substituted propylidene)-2-azetidinone derivates for blood platelet aggregation
US4876365A (en) 1988-12-05 1989-10-24 Schering Corporation Intermediate compounds for preparing penems and carbapenems
FR2640621B1 (en) 1988-12-19 1992-10-30 Centre Nat Rech Scient N-ARYL-AZETIDINONES, PROCESS FOR THEIR PREPARATION AND THEIR USE AS ELASTASE INHIBITORS
US4983597A (en) 1989-08-31 1991-01-08 Merck & Co., Inc. Beta-lactams as anticholesterolemic agents
US5120729A (en) 1990-06-20 1992-06-09 Merck & Co., Inc. Beta-lactams as antihypercholesterolemics
IL99658A0 (en) 1990-10-15 1992-08-18 Merck & Co Inc Substituted azetidinones and pharmaceutical compositions containing them
JPH04356195A (en) 1991-05-30 1992-12-09 Kyowa Hakko Kogyo Co Ltd Production of azetidinone derivative
US5561227A (en) 1991-07-23 1996-10-01 Schering Corporation Process for the stereospecific synthesis of azetidinones
TW223059B (en) 1991-07-23 1994-05-01 Schering Corp
US5688785A (en) 1991-07-23 1997-11-18 Schering Corporation Substituted azetidinone compounds useful as hypocholesterolemic agents
US5688787A (en) 1991-07-23 1997-11-18 Schering Corporation Substituted β-lactam compounds useful as hypochlesterolemic agents and processes for the preparation thereof
LT3300B (en) 1992-12-23 1995-06-26 Schering Corp Combination of a cholesterol biosynhtesis inhibitor and a beta- lactam cholesterol absorbtion inhibitor
LT3595B (en) 1993-01-21 1995-12-27 Schering Corp Spirocycloalkyl-substituted azetidinones useful as hypocholesterolemic agents
EP0707567B1 (en) 1993-07-09 2001-09-12 Schering Corporation Process for the synthesis of azetidinones
US5631365A (en) 1993-09-21 1997-05-20 Schering Corporation Hydroxy-substituted azetidinone compounds useful as hypocholesterolemic agents
US5627176A (en) 1994-03-25 1997-05-06 Schering Corporation Substituted azetidinone compounds useful as hypocholesterolemic agents
US5624920A (en) 1994-11-18 1997-04-29 Schering Corporation Sulfur-substituted azetidinone compounds useful as hypocholesterolemic agents
US5633246A (en) 1994-11-18 1997-05-27 Schering Corporation Sulfur-substituted azetidinone compounds useful as hypocholesterolemic agents
US5656624A (en) 1994-12-21 1997-08-12 Schering Corporation 4-[(heterocycloalkyl or heteroaromatic)-substituted phenyl]-2-azetidinones useful as hypolipidemic agents
US5631635A (en) * 1995-05-08 1997-05-20 Motorola, Inc. Message/response tracking system and method for a two-way selective call receiving device
US5618707A (en) 1996-01-04 1997-04-08 Schering Corporation Stereoselective microbial reduction of 5-fluorophenyl-5-oxo-pentanoic acid and a phenyloxazolidinone condensation product thereof
EP0877750B1 (en) 1995-10-31 2002-06-19 Schering Corporation Sugar-substituted 2-azetidinones useful as hypocholesterolemic a gents
WO1997016424A1 (en) 1995-11-02 1997-05-09 Schering Corporation Process for preparing 1-(4-fluorophenyl)-3(r)-(3(s)-hydroxy-3-([phenyl or 4-fluorophenyl])-propyl)-4(s)-(4-hydroxyphenyl)-2-azetidinone
JP2000505063A (en) 1995-12-08 2000-04-25 スミスクライン・ビーチャム・パブリック・リミテッド・カンパニー Azetidinone compounds for the treatment of atherosclerosis
EP0915843A1 (en) 1996-04-26 1999-05-19 Smithkline Beecham Plc Azetidinone derivatives for the treatment of atheroscleroses
US5886171A (en) 1996-05-31 1999-03-23 Schering Corporation 3-hydroxy gamma-lactone based enantioselective synthesis of azetidinones
US5739321A (en) 1996-05-31 1998-04-14 Schering Corporation 3-hydroxy γ-lactone based enantionselective synthesis of azetidinones
GB9611947D0 (en) 1996-06-07 1996-08-07 Glaxo Group Ltd Medicaments
WO1998001100A2 (en) 1996-07-09 1998-01-15 Merck & Co., Inc. Method for treating homozygous familial hypercholesterolemia
WO1998005331A2 (en) 1996-08-02 1998-02-12 Ligand Pharmaceuticals Incorporated Prevention or treatment of type 2 diabetes or cardiovascular disease with ppar modulators
AU722289B2 (en) 1996-10-01 2000-07-27 Aptalis Pharmatech, Inc. Taste-masked microcapsule compositions and methods of manufacture
US5756470A (en) 1996-10-29 1998-05-26 Schering Corporation Sugar-substituted 2-azetidinones useful as hypocholesterolemic agents
FR2758461A1 (en) 1997-01-17 1998-07-24 Pharma Pass PHARMACEUTICAL COMPOSITION HAVING HIGH BIOAVAILABILITY AND PROCESS FOR PREPARING THE SAME
AU9426098A (en) 1997-10-07 1999-04-27 Boehringer Ingelheim (Canada) Ltd. Azetidinone derivatives for the treatment of hcmv infections
US6133001A (en) 1998-02-23 2000-10-17 Schering Corporation Stereoselective microbial reduction for the preparation of 1-(4-fluorophenyl)-3(R)-[3(S)-Hydroxy-3-(4-fluorophenyl)propyl)]-4(S)-(4 -hydroxyphenyl)-2-azetidinone
US5919672A (en) 1998-10-02 1999-07-06 Schering Corporation Resolution of trans-2-(alkoxycarbonylethyl)-lactams useful in the synthesis of 1-(4-fluoro-phenyl)-3(R)- (S)-hydroxy-3-(4-fluorophenyl)-propyl!-4(S)-(4-hydroxyphenyl)-2-azetidinone
US6207822B1 (en) * 1998-12-07 2001-03-27 Schering Corporation Process for the synthesis of azetidinones
CA2353981C (en) 1998-12-07 2005-04-26 Schering Corporation Process for the synthesis of azetidinones
CN1249250C (en) 1999-04-05 2006-04-05 先灵公司 Stereoselective microbial reduction for prpn. of 1-(4-fluorophenyl)-3(R)-[3(s)-hydroxy-3-(4-fluorophenyl)propyl)-4(s)-(-4hydroxyphenyl)-2-azetidinone
US6593078B1 (en) 1999-04-16 2003-07-15 Schering Corporation Use of azetidinone compounds
SI1593670T1 (en) 2000-12-20 2007-12-31 Schering Corp Hydroxy-substituted 2-azetidinones useful as hypocholesterolemic agents
RS50864B (en) 2000-12-21 2010-08-31 Sanofi-Aventis Deutschland Gmbh. Novel 1,2-diphenzylazetidinones, method for producing the same, medicaments containing said compounds, and the use thereof for treating disorders of the lipid metabolism
TWI291957B (en) 2001-02-23 2008-01-01 Kotobuki Pharmaceutical Co Ltd Beta-lactam compounds, process for repoducing the same and serum cholesterol-lowering agents containing the same

Similar Documents

Publication Publication Date Title
EP1373230B1 (en) Enantioselective synthesis of azetidinone intermediate compounds
AU2002258605A1 (en) Enantioselective synthesis of azetidinone intermediate compounds
JP5035863B2 (en) Process for the preparation of quinolone antibiotic intermediates
Hou et al. Reaction of phosphinoyl-activated imines: stereocontrolled synthesis of either trans-or cis-vinylaziridines
EP0191259B1 (en) Hexacoordinated silicon complexes, process for their preparation and their use
US20030204096A1 (en) Enantioselective synthesis of azetidinone intermediate compounds
Hodgson et al. Straightforward synthesis of α, β-epoxysilanes from terminal epoxides by lithium 2, 2, 6, 6-tetramethylpiperidide-mediated deprotonation-in situ silylation
JPH05202074A (en) Method of catalytic alakylaton
JP4807549B2 (en) Siloxanes, silanols and silanes, and methods for producing the same
JPS63135393A (en) Production of alkylsilyl cyanide
CN1017991B (en) Process for preparing 4-acetyloxy-3-hydroxyethyl azacyclo-butan-2-one derivatives
TW202246275A (en) Methods of preparing carbanucleosides using amides
JPH0441128B2 (en)
US20020049350A1 (en) Process for preparing thrombin receptor antagonist building blocks
CN1054983A (en) The preparation method of PENEM ester
EP0154867A1 (en) 2-Substituted-1,3-butadiene derivatives and process for producing same
JP2001131160A (en) New oxazolidinone derivative and its use
JPH08134070A (en) New synthesis of 15-hydroxymilbemycin derivative
JP2001139581A (en) Method for producing phenoxysilane
JPH0625193B2 (en) Epoxidation of α, β-unsaturated ketones
JPH0733758A (en) (s)-2-(t-butyldimrthylsilyoxy)-1-nitropropan and its production
JP2002105074A (en) Method for producing isoxazoline derivative