AU2002229722A1 - Stent delivery system and method of manufacturing same - Google Patents

Stent delivery system and method of manufacturing same

Info

Publication number
AU2002229722A1
AU2002229722A1 AU2002229722A AU2002229722A AU2002229722A1 AU 2002229722 A1 AU2002229722 A1 AU 2002229722A1 AU 2002229722 A AU2002229722 A AU 2002229722A AU 2002229722 A AU2002229722 A AU 2002229722A AU 2002229722 A1 AU2002229722 A1 AU 2002229722A1
Authority
AU
Australia
Prior art keywords
stent
self
catheter
expandable stent
delivery system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2002229722A
Other versions
AU2002229722B2 (en
Inventor
Jonathan S. Stinson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Ltd Barbados
Original Assignee
Boston Scientific Ltd Barbados
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/767,212 external-priority patent/US6699274B2/en
Application filed by Boston Scientific Ltd Barbados filed Critical Boston Scientific Ltd Barbados
Publication of AU2002229722A1 publication Critical patent/AU2002229722A1/en
Application granted granted Critical
Publication of AU2002229722B2 publication Critical patent/AU2002229722B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

STENT DELIVERY SYSTEM AND METHOD OF MANUFACTURING SAME
BACKGROUND OF THE INVENTION
The present invention relates generally to medical stents (hereinafter "stents") and relates more particularly to stent delivery systems.
A stent is a tubular endoprosthesis placed within a body lumen to maintain its patency. For example, a stent may be used to maintain the patency of an esophagus or other passageway occluded by a tumor or of a blood vessel constricted by plaque. Most stents fall into one of the following two classes: (i) balloon-expandable stents; and (ii) self-expandable stents. Generally speaking, a stent delivery system includes the stent and some means for positioning and fixing the stent in place within a body lumen.
A balloon-expandable stent is typically a ductile metal tube. The delivery system for such a stent typically includes an inflatable balloon secured to the distal end of a catheter, the balloon-expandable stent being secured to the catheter over the inflatable balloon. In use, the catheter is introduced to a desired site within a body lumen, and the balloon is expanded until the stent positioned thereover is inelastically expanded to its desired size against the walls of the lumen. The balloon is then deflated, and the catheter is withdrawn from the site, thereby leaving the expanded stent in place against the walls of the lumen. An example of a balloon-expandable stent and delivery system therefor is disclosed in U.S. Patent No. 4,922,905, inventor Strecker, issued May 1990, the disclosure of which is incorporated herein by reference . A self-expandable stent is typically an elastic tube that self-expands after having been compacted. Illustrative examples of self-expandable stents are disclosed in the? following documents, all of which are incorporated herein by reference: U.S. Patent No. 5,876,445, inventors Andersen et al., issued March 2, 1999; U.S. Patent No. 5,366,504, inventors Andersen et al., issued November 22, 1994; U.S. Patent No. 5,234,457, inventor Andersen, is- sued August 10, 1993; U.S. Patent No. 5,061,275, inventors Wallsten et al., issued October 29, 1991; Watkinson et al., "The Role of Self-Expanding Metallic Endoprosthe- ses in Esophageal Strictures," Seminars in Interventional Radiology, 13(1): 17-26 (March 1996); and Strecker et al . , "Nitinol Esophageal Stents: New Designs and Clinical Indications," Cadiovasc. Intervent . Radiol., 19:15-20 (1996) .
The delivery system for a self-expandable stent typically comprises a catheter and a restraint for temporarily holding the stent in a compressed state at the distal end of the catheter. In use, the catheter is introduced to a desired site within a body lumen, and the restraint is removed, thereby allowing the stent to expand by its own elastic restoring force against the walls of the lumen. One of the more common self-expandable stent delivery systems of the above-described type comprises a coaxial tube assembly. More specifically, said delivery system comprises an inner catheter and an outer catheter, said outer catheter being coaxial with said inner catheter.
The inner and outer catheters are appropriately sized so that a stent inserted over the distal end of the inner catheter is maintained in a compressed state by the inner surface of the outer catheter. In use, the assembly is introduced to a desired site, and the outer catheter is axially retracted relative to the inner catheter, thereby allowing the stent to self-expand off the inner catheter and against the walls of the lumen.
Illustrative examples of the aforementioned type of delivery system include the following U.S. patents, all of which are incorporated herein by reference: U.S. Patent No. 5,484,444, inventors Braunschweiler et al . , issued January 16, 1996; U.S. Patent No. 5,026,377, inventors Burton et al . , issued June 25, 1991; U.S. Patent No. 4,990,151, inventor Wallsten, issued February 5, 1991; and U.S. Patent No. 4,732,152, inventors Wallsten et al . , issued March 22, 1988. A commercial embodiment of the above-described delivery system is the UNISTEP PLUS™ delivery system (Boston Scientific Corporation, Natick, Massachusetts) .
Although the above-described coaxial tube delivery system is well-suited for many types of self-expandable stents, such a delivery system is not particularly well-suited for those self-expandable stents that have limited axial strength, such as the Strecker stent - a knitted nitinol wire stent disclosed in U.S. Patent No 5,366,504 and commercially available from Boston Scientific Corporation, Natick, Massachusetts. This is because such stents are often unable to resist becoming axially compressed during assembly of the coaxial tube delivery system, when the distal end of the outer catheter must be drawn across the stent, and/or during deployment of the coaxial tube delivery system, when the distal end of the outer catheter must be withdrawn across the stent.
Consequently, alternative delivery systems have been devised for use with the Strecker stent and with other like stents of limited axial strength. One such system, which is exemplified by the ULTRAFLEX™ esophageal stent system (Boston Scientific Corporation, Natick, Massachusetts) , comprises a stent of the aforementioned type, said stent being mounted on an inner catheter and being encased in a pharmaceutical grade dissolvable gelatin to maintain the stent in a compressed state. An outer catheter surrounds the gelatin-encased stent. In use, the system is in- serted into a patient's esophagus and the outer catheter is retracted. Moisture present in the esophagus causes the restraining gelatin to dissolve, thereby allowing the stent to expand.
Another delivery system devised for use with the Strecker stent and like stents of limited axial strength is disclosed in U.S. Patent No. 5,405,378, inventor Strecker, which issued April 11, 1995, and which is incorporated herein by reference. Said delivery system, which does not include an outer catheter, uses a crocheted suture cord to compress the stent against a catheter core. The crocheted cord is connected to a finger ring at the proximal end of the delivery system. Retraction of the finger ring unravels the cord in a circular manner down the length of the stent, gradually deploying the stent. A commercial embodiment of the aforementioned delivery system is the COVERED ULTRAFLEX™ esophageal stent system (Boston Scientific Corporation, Natick, Massachusetts) .
Unfortunately, the manufacture of the aforementioned crocheted cord delivery system is typically performed manually and can be quite taxing physically as a great deal of strength is required to tightly stretch the stent down on the catheter while crocheting the cord around the stent. Another problem with the foregoing system is that, during deployment, the crocheted cord does not always unravel correctly and completely.
SUMMARY OF THE INVENTION It is an object of the present invention to provide a novel stent delivery system.
It is another object of the present invention to provide a stent delivery system as described above that overcomes at least some of the above-described shortcomings associated with existing stent delivery systems.
It is still another object of the present invention to provide a stent delivery system that has a minimal number of parts, that can be mass-produced, that is easy to manufacture and that is easy to use.
Therefore, in furtherance of the above and other objects to be described or to become apparent from the description below, there is provided herein a stent delivery system constructed according to the teachings of the present invention, said stent delivery system comprising, in one embodiment, (a) an inner catheter; (b) an outer catheter, said outer catheter surrounding at least a portion of the length of said inner catheter and adapted for axial movement relative to said inner catheter; (c) a self-expandable stent disposed between said inner catheter and said outer catheter; and (d) a stent restraining member disposed between said outer catheter and said self-expandable stent, said stent restraining member being dimensioned to maintain said self-expandable stent in a compressed state.
The aforementioned stent restraining member may be a braided tube (or any other type of tube) surrounding said self-expandable stent, said braided tube preferably being made from a strong, flexible, filamentary material having a low coefficient of friction. Examples of such ateri- als may be a fine polyester or metal wire. The braided tube may be formed directly over the stent, preferably using an automated braiding machine, or may be pre-formed and then .inserted over the stent. Where the braided tube is pre-formed and inserted over the stent, the system preferably further includes a braid holding sleeve se- cured to the inner catheter, said braid holding sleeve being adapted to receive the proximal end of the braided tube. The distal end of the stent restraining member is preferably mechanically coupled to the distal end of the outer catheter so that retraction of the outer catheter causes the stent restraining member to retract from the stent, thereby allowing the stent to self-expand. Instead of being a tube, the stent restraining member may be a coil helically wrapped around the stent, said coil preferably being made from a strong, flexible, wire-like, thread-like or ribbon-like material having a low coefficient of friction.
The self-expandable stent is preferably a knitted mesh of nitinol wire flexible in both the radial and longitudinal axes, said stent preferably being coaxially positioned relative to the inner catheter and being stretched longitudinally thereacross.
The outer catheter may be a solid tube or may be a tube having a longitudinal split extending proximally from its distal end at least partially along its length. Where the outer catheter has a longitudinal split, said split is preferably sealed after the outer catheter has been advanced over and secured to the stent restraining member.
The stent delivery system preferably further comprises means for deterring said self-expandable stent from sliding proximally relative to said inner catheter during deployment, said deterring means further comprising a stent engaging sleeve fixed to said inner catheter, said self- expandable stent surrounding said stent engaging sleeve, said stent engaging sleeve having an outer surface adapted to engage said self-expandable stent in such a way as to deter said self-expandable stent from sliding proximally relative thereto.
In another embodiment, the stent delivery system of the present invention comprises (a) an inner catheter; (b) an outer catheter, said outer catheter surrounding at least a portion of the length of said inner catheter and adapted for axial movement relative to said inner cathe- ter; and (c) a self-expandable stent disposed between said inner catheter and said outer catheter, said self- expandable stent being flexible in both the radial and longitudinal axes, said self-expandable stent being held in a compressed state by said outer catheter.
The aforementioned self-expandable stent is preferably a knitted mesh of nitinol wire coaxially mounted on said inner catheter. The outer catheter preferably has a longitudinal split extending proximally from its distal end at least partially along its length, said split preferably being sealed after the outer catheter has been advanced over and secured to the stent restraining member.
The stent delivery system preferably further comprises means for deterring said self-expandable stent from sliding proximally relative to said inner catheter during deployment, said deterring means further comprising a stent engaging sleeve fixed to said inner catheter, said self- expandable stent surrounding said stent engaging sleeve, said stent engaging sleeve having an outer surface adapted to engage said self-expandable stent in such a way as to deter said self-expandable stent from sliding proximally relative thereto.
The present invention is also directed to a method of manufacturing a stent delivery system, said method com- prising, in one embodiment, the steps of (a) providing an inner catheter; (b) compressing a self-expandable stent over said inner catheter; (c) while said self-expandable stent is in a compressed state, positioning a braided tube around said inner catheter and said self-expandable stent, said braided tube being dimensioned to maintain said self-expandable stent in said compressed state; and (d) positioning an outer catheter around said braided tube, said outer catheter being adapted for axial move- ment relative to said inner catheter.
The aforementioned braided tube positioning step may comprise forming a braided tube over said self-expandable stent and said inner catheter or may comprise pre-forming a braided tube and then sliding said pre-formed braided tube over said stent and said inner catheter.
The stent and the inner catheter are preferably coaxially disposed, with said stent being flexible in both the lon- gitudinal and radial axes. The aforementioned compressing step preferably comprises stretching said stent longitudinally across the length of said inner catheter.
Preferably, said method further comprises mechanically coupling said outer catheter to said braided tube for axial movement. The outer catheter may be a solid tube or may be a tube provided with a longitudinal slit extending at least a part of the length thereof. In the case of the tube with a longitudinal slit, the method preferably further comprises, after said outer catheter positioning step, the step of sealing said longitudinal slit. The above method preferably further comprises, before said compressing step, the step of fixing a stent engaging sleeve to said inner catheter, said self-expandable stent surrounding said stent engaging sleeve, said stent engaging sleeve having an outer surface adapted to engage said self-expandable stent in such a way as to deter said self-expandable stent from sliding proximally relative thereto. In addition, said method preferably also comprises, before said outer catheter positioning step, the steps of fixing a braid holding sleeve to said inner catheter and securing the proximal end of s'aid braided tube to said braid holding sleeve.
In another embodiment, the method of the present inven- tion comprises the steps of (a) providing an inner catheter; (b) compressing a self-expandable stent over said inner catheter; (c) while said self-expandable stent is in a compressed state, wrapping a helical restraint around said inner catheter and said self-expandable stent, said helical restraint being dimensioned to maintain said self-expandable stent in said compressed state; and (d) positioning an outer catheter around said helical restraint, said outer catheter being adapted for axial movement relative to said inner catheter.
The aforementioned helical restraint is preferably made from a strong, flexible filamentary or ribbon-like material having a low coefficient of friction. Preferably, said method further comprises mechanically coupling said outer catheter to said braided tube for axial movement. The outer catheter is preferably a tube provided with a longitudinal slit extending at least a part of the length thereof, the method preferably further comprising, after said outer catheter positioning step, the step of sealing said longitudinal slit.
The subject method preferably still further comprises, before said compressing step, the step of fixing a stent engaging sleeve to said inner catheter, said self- expandable stent surrounding said stent engaging sleeve, said stent engaging sleeve having an outer surface adapted to engage said self-expandable stent in such a way as to deter said self-expandable stent from sliding proximally relative thereto.
In still another embodiment, the method of the present invention comprises the steps of (a) providing an inner catheter; (b) compressing a self-expandable stent over said inner catheter, said self-expandable stent being flexible in both the radial and longitudinal axes; and (c) positioning an outer catheter around said self- expandable stent, said outer catheter being adapted for axial movement relative to said inner catheter and being dimensioned to maintain said self-expandable stent in a compressed state.
Preferably, the aforementioned stent is a knitted mesh of nitinol wire. In addition, the outer catheter is preferably provided with a longitudinal slit extending at least a part of the length thereof, said method further comprising, after said outer catheter positioning step, the step of sealing said longitudinal slit.
The subject method preferably further comprises, before said compressing step, the step of fixing a stent engag- ing sleeve to said inner catheter, said self-expandable stent surrounding said stent engaging sleeve, said stent engaging sleeve having an outer surface adapted to engage said self-expandable stent in such a way as to deter said self-expandable stent from sliding proximally relative thereto.
Additional objects, features, aspects and advantages of the present invention will be set forth, in part, in the description which follows and, in part, will be obvious from the description or may be learned by practice of the invention. In the description, reference is made to the accompanying drawings which form a part thereof and in which is shown by way of illustration specific embodiments for practicing the invention. These embodiments will be described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that structural changes may be made without departing from the scope of the invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is best defined by the appended claims .
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are hereby incorporated into and constitute a part of this specification, illustrate preferred embodiments of the invention and, together with the description, serve to explain the principles of the invention. In the drawings wherein like ref- erence numerals represent like parts:
Fig. 1 is a side view of a first embodiment of a stent delivery system constructed according to the teachings of the present invention;
Fig. 2 is a fragmentary schematic longitudinal section view of the stent delivery system of Fig. 1, showing the distal end thereof;
Fig. 3 is a schematic transverse section view of the stent delivery system of Fig. 1 taken along line 1-1;
Fig. 4 is an enlarged perspective view of the stent engaging sleeve of the stent delivery system of Fig. 1; Fig. 5 is a side view of the stent of the stent delivery system of Fig. 1, the stent being shown in a relaxed, expanded state;
Fig. 6 is an enlarged perspective view of the stent re- straining sleeve of the stent delivery system of Fig. 1;
Fig. 7 is a schematic fragmentary side view illustrating the manner in which the stent restraining sleeve of the stent delivery system of Fig. 1 may be formed over the stent thereof by a rolling braid technique;
Fig. 8 is a fragmentary schematic longitudinal section view of a second embodiment of a stent delivery system constructed according to the teachings of the present in- vention;
Fig. 9 is a schematic fragmentary longitudinal section view of the distal end of the stent delivery system of Fig. 1, illustrating the system during stent deployment;
Fig. 10 is a schematic fragmentary longitudinal section view of a third embodiment of a stent delivery system constructed according to the teachings of the present invention;
Fig. 11 is a schematic transverse section view of the stent delivery system of Fig. 10;
Fig. 12 is schematic fragmentary longitudinal section view of a fourth embodiment of a stent delivery system constructed according to the teachings of the present invention;
Fig. 13 is a schematic transverse section view of the stent delivery system of Fig. 12; Fig. 14 is a side view of a fifth embodiment of a stent delivery system constructed according to the teachings of the present invention;
Fig. 15 is a schematic transverse section view of the stent delivery system of Fig. 14 taken along line 2-2; and
Fig. 16 is a schematic longitudinal section view of a sixth embodiment of a stent delivery system constructed according to the teachings of the present invention.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
Referring now to Figs. 1 through 3, there are shown various views of a first embodiment of a stent delivery system constructed according to the teachings of the present invention, said stent delivery system being represented generally by reference numeral 11.
System 11 comprises a flexible, inner catheter 13. A handle 15 is disposed at the proximal end of catheter 13, and an enlarged tip 17 is disposed at the distal end of catheter 13. A lumen 19 extends longitudinally through catheter 13, lumen 19 being adapted to receive a guide wire for use in positioning system 11 at a desired position within a body lumen.
System 11 further comprises a stent engaging sleeve 21, sleeve 21 coaxially surrounding and secured (e.g., by a frictional fit) to that portion of catheter 13 proximally contiguous to tip 17. The primary purpose of sleeve 21 is to engage a stent mounted thereover in such a way as to prevent said stent, during deployment, from sliding proximally relative to catheter 13. To this end, as can be seen in Fig. 4, the outer surface of sleeve 21 is pro- vided with a plurality of projections 23 adapted to engage the mesh-like structure of a stent in such a way as to restrain axial movement of the stent. Although, in the embodiment shown, projections 23 are in the form of bumps, it can readily be appreciated that projections 23 may take a variety of shapes including, but not limited to, ridges, hooks, threads, pegs, etc. Alternatively, sleeve 21 may be provided with a roughened surface, such as that of sandpaper, to increase the coefficient of friction between the stent and sleeve 21 and, thereby, to restrain axial movement of the stent during deployment. In still another alternative embodiment, sleeve 21 may be made of a soft, compressible material, such as silicone, so that a stent mounted thereover becomes partially em- bedded therein and cannot easily slide proximally relative thereto during deployment.
Referring back to Figs. 2 and 3, system 11 additionally comprises a self-expandable stent 31 (shown separately in Fig. 5) . Although, in the present embodiment, stent 31 is a self-expandable stent of the type comprising a knitted mesh of nitinol (a nickel/titanium alloy) wire flexible in both the radial and longitudinal axes, stent 31 is not so limited and may be virtually any type of self- expandable stent. A preferred example of stent 31 is the ULTRAFLEX™ Strecker esophageal stent - a self-expandable stent comprising a knitted mesh of 0.15 inch nitinol wire flexible in both the radial and longitudinal axes. Said ULTRAFLEX™ Strecker esophageal stent has a length of 7 cm, 10 cm or 15 cm and an expanded diameter of 18 mm, the proximal end of the stent forming a 5 mm collar 32 having an expanded diameter of 20 mm.
Stent 31 is mounted over sleeve 21 in a stretched or com- pressed state and is maintained, until deployment, in said stretched or compressed state in the manner to be described below.
System 11 further comprises a stent restraining sleeve 41 (shown separately in Fig. 6). Sleeve 41 coaxially sur- rounds stent 31 and is appropriately sized to maintain stent 31 in its stretched state. In the present embodiment, sleeve 41 is a braided tube, said braided tube preferably being made from a wire or filament that is strong, flexible and has a low coefficient of friction. Said wire or filament may be made of a fine polyester, metal or like material.
In the present embodiment, sleeve 41 is formed directly over stent 31 in the following manner: First, as shown in Fig. 7, stent 31 is stretched tightly over sleeve 21 and catheter 13. This may be done by looping or hooking proximal and distal strings PS and DS, respectively, onto the proximal and distal ends, respectively, of stent 31 and then by tightly pulling proximal strings PS proxi- mally and distal strings DS distally, either manually or using a motorized pulling mechanism, until stent 31 is fully stretched. In its stretched state, stent 31 may have a diameter of about 5-6 mm, as compared to a diameter of 18-20 mm in its expanded or un-stretched state. Adhesive tape T or the like is then used to secure proximal strings PS and distal strings DS to catheter 13 in their pulled-apart states to maintain stent 31 in its stretched configuration. Next, the above-described assembly is then passed through a wire braiding machine M in the direction indicated by arrow A, which forms sleeve 41 directly over stent 31. Machine M may be a conventional wire braiding machine, such as Model 40/98 from Rotek Technologies, Inc. (Ormond Beach, Florida) , which is capable of braiding twenty wires or filaments. After sleeve 41 has been formed, strings PS and DS and tape T are removed, leaving sleeve 41 to restrain stent 31 in its stretched state.
Referring back now to Figs. 1 through 3, system 11 also comprises a flexible, outer catheter 51, catheter 51 coaxially surrounding much of the distal end of catheter 13 up to tip 17. Catheter 51 is adapted for axial movement relative to catheter 13, and a handle 53 is disposed at the proximal end of catheter 51 for use in axially moving catheter 51 relative to catheter 13. In order to accommodate sleeve 41, stent 31 and sleeve 21 between catheter 51 and catheter 13, the distal end of catheter 51 is provided with an increased inside diameter. Alternatively, instead of constructing catheter 51 to have an increased inside diameter at its distal end, there is shown in Fig. 8 a system 11' comprising an outer catheter 51' of constant inside diameter, system 11' further comprising a space-filling jacket 61 secured (e.g., by a friction-fit) to catheter 13 proximally relative to sleeve 21. Jacket 61 serves to prevent proximal sliding of stent 31 and sleeve 21 during deployment and also serves to prevent buckling and/or kinking of catheter 51' during deployment .
Referring back to Figs. 2 and 3, the distal end of catheter 51 is secured to the distal end of sleeve 41 by an adhesive 52 so that sleeve 41 is mechanically coupled to catheter 51 for purposes of axial movement. (Instead of using adhesive 52, catheter 51 and sleeve 41 may be cou- pled together using other mechanical means, such as a clamp, a cable-tie, pins or a crimp.) Due to the coupling together of catheter 51 and sleeve 41, retraction (i.e., proximal movement) of catheter 51 relative to catheter 13 simultaneously results in the retraction of sleeve 41 relative to stent 31. To facilitate the advancement of catheter 51 over sleeve 41 during the assembly of system 11, catheter 51 is provided with a longitudinal split 55 extending proximally from its distal end. The reason for providing split 55 in catheter 51 is to avoid having to slide catheter 51 past sleeve 41 and possibly dislodging sleeve 41 from stent 31. In the present embodiment, split 55 extends proximally only partially from the distal end of catheter 51; however, it can readily be appreciated that split 55 could extend the entire length of catheter 51. After catheter 51 has been properly positioned over sleeve 41, adhesive 52 is used to bond the distal ends of catheter 51 and sleeve 41, as described above, and is also used to seal split 55. As can readily be appreciated, instead of sealing split 55 with adhesive 52, split 55 could be welded together.
In use, system 11 is inserted into a body lumen and advanced to a desired site therewithin in the conventional fashion. System 11 is then deployed by retracting (i.e., sliding proximally) catheter 51 relative to catheter 13. As seen in Fig. 9, as catheter 51 is retracted, sleeve 41 slides off stent 31, thereby permitting stent 31 to self- expand. Sleeve 21 helps to ensure that stent 31 does not retract with sleeve 41 and catheter 51.
Referring now to Figs. 10 and 11, there are shown longitudinal and transverse section views, respectively, of a third embodiment of a stent delivery system constructed according to the teachings of the present invention, said stent delivery system being represented generally by reference numeral 101.
System 101 is similar in most respects to system 11, the principal difference between the two systems being that system 101 does not include sleeve 41 of system 11. Instead, system 101 relies on catheter 51 to function as the external restraint mechanism for keeping stent 31 in its compressed state until deployment. A lubricant (not shown) may be applied to the inside surface of catheter 51 to ensure that stent 31 does not axially compress, during deployment, as catheter 51 is moved proximally.
As can readily be appreciated, catheter 51 of system 101 could be replaced with catheter 51' and jacket 61.
System 101 is used in the same manner as system 11. Referring now to Figs. 12 and 13, there are shown longitudinal and transverse section views, respectively, of a fourth embodiment of a stent delivery system constructed according to the teachings of the present invention, said stent delivery system being represented generally by ref- erence numeral 201.
System 201 is similar in most respects to system 11, the principal difference between the two systems being that system 201 comprises, instead of sleeve 41, a stent re- straining element in the form of a single helical coil 203 wrapped around stent 31. Coil 203 may be made of wire, thread, ribbon or like materials and may be wrapped around stent 31 either manually or with the use of an automated winding machine. The distal end of coil 203 is coupled to the distal end of catheter 51. One advantage to using coil 203, instead of sleeve 41, is that it is less complicated and less costly, particularly in terms of automated equipment, to apply a single, coiled con- strainment element than it is to apply multiple elements in the form of a braid. As can readily be appreciated, catheter 51 of system 201 could be replaced with catheter 51' and jacket 61.
System 201 is used in the same manner as system 11, Referring now to Figs. 14 and 15, there are shown side and transverse section views, respectively, of a fifth embodiment of a stent delivery system constructed according to the teachings of the present invention, said stent delivery system being represented generally by reference numeral 301.
System 301 is similar in most respects to system 11, the principal difference between the two systems being that system 301 includes a flexible outer catheter 303 that is identical to catheter 51, except that catheter 303 is not fabricated with a longitudinal split. The distal end of catheter 303 is mechanically coupled to the distal end of sleeve 41. As can readily be appreciated, catheter 51 of system 301 could be replaced with catheter 51' and jacket 61.
System 301 is used in the same manner as system 11. Referring now to Fig. 16, there is shown a longitudinal section view of a sixth embodiment of a stent delivery system constructed according to the teachings of the present invention, said stent delivery system being represented generally by reference numeral 401.
System 401 is similar in many respects to system 11. One difference between the two systems is that system 401 includes a braided sleeve 403 that, instead of being fabricated directly on top of stent 31 (as in the case of sleeve 41) , is separately fabricated and is then slid o- ver stretched stent 31. The inner diameter of sleeve 403 is preferably made to be slightly greater than the outer diameter of stent 31 in a stretched-out state so that sleeve 403 can be easily slid over stretched-out stent 31 while still being capable of retaining stent in said stretched-out state. Another difference between the two system is that system 401 includes a flexible outer ca- catheter 405, catheter 405 being identical to catheter 303. The distal end of catheter 405 is mechanically coupled to the distal end of sleeve 403. Still another difference between the two systems is that system 401 fur- ther includes a sleeve holding member 407. Member 407, which is secured to catheter 13, preferably by a friction fit, is adapted to securely receive the proximal end of sleeve 403 in such a way as to prevent sleeve 403 from sliding distally as catheter 405 is advanced over sleeve 403. As can readily be appreciated, catheter 51 of system 401 could be replaced with catheter 51' and jacket 61.
System 401 is used in the same manner as system 11
The embodiments of the present invention recited herein are intended to be merely exemplary and those skilled in the art will be able to make numerous variations and modifications to it without departing from the spirit of the present invention. All such variations and modifications are intended to be within the scope of the present invention as defined by the claims appended hereto.

Claims (4)

Patentanspruche
1. A stent delivery system comprising: (a) an inner catheter;
(b) an outer catheter, said outer catheter surrounding at least a portion of the length of said inner catheter and adapted for axial movement relative to said inner catheter; (c) a self-expandable stent disposed between said inner catheter and said outer catheter; and (d) a stent restraining member disposed between said outer catheter and said self-expandable stent, said stent restraining member being dimensioned to main- tain said self-expandable stent in a compressed state .
2. The stent delivery system as claimed in claim 1 wherein said stent restraining member is a tube sur- rounding said self-expandable stent.
3. The stent delivery system as claimed in claim 2 wherein said tube is a braided tube.
4. The stent delivery system as claimed in claim 3 wherein said braided tube is made from a strong, flexible, filamentary material having a low coefficient of friction.
5. The stent delivery system as claimed in claim 3 wherein said braided tube is made from a fine polyester filamentary material that is strong, flexible and has a low coefficient of friction.
6. The stent delivery system as claimed in claim 3 wherein said braided tube is made from a fine metal wire wire that is strong, flexible and has a low coefficient of friction.
7. The stent delivery system as claimed in claim 2 whe- rein said tube is mechanically coupled to said outer catheter for axial movement.
8. The stent delivery system as claimed in claim 2 wherein said stent restraining member is a coil sur- rounding said self-expandable stent.
9. The stent delivery system as claimed in claim 8 wherein said coil is made from a strong, flexible material having a low coefficient of friction.
10. The stent delivery system as claimed in claim 9 wherein said strong, flexible material is selected from the group consisting of wire, thread and ribbon.
11. The stent delivery system as claimed in claim 8 wherein said coil is mechanically coupled to said outer catheter for axial movement.
12. The stent delivery system as claimed in claim 1 whe- rein said self-expandable stent is a knitted mesh of nitinol wire flexible in both the radial and longitudinal axes .
13. The stent delivery system as claimed in claim 1 fur- ther comprising means for deterring said self- expandable stent from sliding proximally relative to said inner catheter during deployment.
14. The stent delivery system as claimed in claim 13 wherein said deterring means comprises a stent engaging sleeve fixed to said inner catheter, said stent engaging sleeve being provided with projections on its outer surface adapted to engage said self- expandable stent in such a way as to deter said self- expanding stent from sliding proximally relative thereto.
15. The stent delivery system as claimed in claim 1 further comprising a stent engaging sleeve fixed to said inner catheter, said self-expandable stent surround- ing said stent engaging sleeve, said stent engaging sleeve having an outer surface adapted to engage said self-expandable stent in such a way as to deter said self-expandable stent from sliding proximally relative thereto.
16. The stent delivery system as claimed in claim 15 wherein said self-expandable stent is knitted mesh of nitinol wire flexible in both the radial and longitudinal axes, wherein said stent restraining member is a braided tube surrounding said self-expandable stent and wherein said braided tube is mechanically coupled to said outer catheter for axial movement.
17. The stent delivery system as claimed in claim 1 fur- ther comprising a sleeve holding member, said sleeve holding member being fixed to said inner catheter and being secured to the proximal end of said stent restraining member.
18. A stent delivery system comprising:
(a) an inner catheter;
(b) an outer catheter, said outer catheter surrounding at least a portion of the length of said inner catheter and adapted for axial movement relative to said inner catheter; and
(c) a self-expandable stent disposed between said in- ner catheter and said outer catheter, said self- expandable stent being flexible in both the radial and longitudinal axes, said self-expandable stent being held in a compressed state by said outer cathe- ter .
19. The stent delivery system as claimed in claim 18 wherein said self-expandable stent is a knitted mesh of nitinol wire coaxially mounted on said inner catheter.
20. The stent delivery system as claimed in claim 19 further comprising means for deterring said self- expandable stent from sliding proximally relative to said inner catheter during deployment.
21. The stent delivery system as claimed in claim 20 wherein said deterring means comprises a stent engaging sleeve fixed to said inner catheter, said stent engaging sleeve being provided with projections on its outer surface adapted to engage said self-expandable stent in such a way as to deter said self-expanding stent from sliding proximally relative thereto.
22. The stent delivery system as claimed in claim 19 further comprising a stent engaging sleeve fixed to said inner catheter, said self-expandable stent surrounding said stent engaging sleeve, said stent engaging sleeve having an outer surface adapted to engage said self-expandable stent in such a way as to deter said self-expandable stent from sliding proximally relative thereto.
23. A method of manufacturing a stent delivery system, said method comprising the steps of: (a) providing an inner catheter;
(b) compressing a self-expandable stent over said inner catheter;
(c) while said self-expandable stent is in a compres- sed state, positioning a braided tube around said inner catheter and said self-expandable stent, said braided tube being dimensioned to maintain said self- expandable stent in said compressed state; and
(d) positioning an outer catheter around said braided tube, said outer catheter being adapted for axial movement relative to said inner catheter.
24. The method as claimed in claim 23 wherein said braided tube positioning step comprises forming a braided tube over said self-expandable stent and said inner catheter.
25. The method as claimed in claim 24 further comprising mechanically coupling said outer catheter to said braided tube for axial movement.
26. The method as claimed in claim 25 wherein said inner catheter and said self-expandable stent are coaxially disposed, wherein said self-expandable stent is flexible in both the longitudinal and radial axes and wherein said compressing step comprises stretching said self-expandable stent longitudinally.
27. The method as claimed in claim 26 wherein said outer catheter is a solid tube, said outer catheter positioning step comprising sliding said outer catheter over said braided tube.
28. The method as claimed in claim 26 wherein said outer catheter is provided with a longitudinal slit extending at least a part of the length thereof, said me- thod further comprising, after said outer catheter positioning step, the step of sealing said longitudinal slit.
29. The method as claimed in claim 23 wherein said braided tube positioning step comprises sliding a pre-formed braided tube over said inner catheter and said self-expandable stent.
30. The method as claimed in claim 29 further comprising mechanically coupling said outer catheter to said braided tube for axial movement.
31. The method as claimed in claim 30 wherein said inner catheter and said self-expandable stent are coaxially disposed, wherein said self-expandable stent is flexible in both the longitudinal and radial axes and wherein said compressing step comprises stretching said self-expandable stent longitudinally.
32. The method as claimed in claim 31 wherein said outer catheter is a solid tube.
33. The method as claimed in claim 32 further comprising, before said outer catheter positioning step, the steps of fixing a braid holding sleeve to said inner catheter and securing the proximal end of said braided tube to said braid holding sleeve.
34. The method as claimed in claim 31 further comprising, before said compressing step, the step of fixing a stent engaging sleeve to said inner catheter, said self-expandable stent surrounding said stent engaging sleeve, said stent engaging sleeve having an outer surface adapted to engage said self-expandable stent in such a way as to deter said self-expandable stent from sliding proximally relative thereto.
35. A method of manufacturing a stent delivery system, said method comprising the steps of:
(a) providing an inner catheter;
(b) compressing a self-expandable stent over said inner catheter;
(c) while said self-expandable stent is in a compressed state, wrapping a helical restraint around said inner catheter and said self-expandable stent, said helical restraint being dimensioned to maintain said self-expandable stent in said compressed state; and (d) positioning an outer catheter around said helical restraint, said outer catheter being adapted for axial movement relative to said inner catheter.
36. The method as claimed in claim 35 wherein said helical restraint is a made from a strong, flexible filamentary or ribbon-like material having a low coefficient of friction.
37. The method as claimed in claim 36 further comprising the step of mechanically coupling said outer catheter to said helical restraint for axial movement.
38. The method as claimed in claim 37 wherein said inner catheter and said self-expandable stent are coaxially disposed, wherein said self-expandable stent is flexible in both the longitudinal and radial axes and wherein said compressing step comprises stretching said self-expandable stent longitudinally.
39. The method as claimed in claim 38 wherein said outer catheter is provided with a longitudinal slit exten- ding at least a part of the length thereof, said method further comprising, after said outer catheter positioning step, the step of sealing said longitudinal slit.
40. The method as claimed in claim 39 furthe.r comprising, before said compressing step, the step of fixing a stent engaging sleeve to said inner catheter, said self-expandable stent surrounding said stent engaging sleeve, said stent engaging sleeve having an outer surface adapted to engage said self-expandable stent in such a way as to deter said self-expandable stent from sliding proximally relative thereto.
41. A method of manufacturing a stent delivery system, said method comprising the steps of:
(a) providing an inner catheter;
(b) compressing a self-expandable stent over said inner catheter, said self-expandable stent being flexible in both the radial and longitudinal axes; and
(c) positioning an outer catheter around said self- expandable stent, said outer catheter being adapted for axial movement relative to said inner catheter and being dimensioned to maintain said self- expandable stent in a compressed state. 42. The method as claimed in claim 41 wherein said self- expandable stent is a knitted mesh of nitinol wire.
43. The method as claimed in claim 41 wherein said outer catheter is provided with a longitudinal slit extending at least a part of the length thereof, said method further comprising, after said outer catheter positioning step, the step of sealing said longitudinal slit.
4. The method as claimed in claim 43 further comprising, before said compressing step, the step of fixing a stent engaging sleeve to said inner catheter, said self-expandable stent surrounding said stent engaging sleeve, said stent engaging sleeve having an outer surface adapted to engage said self-expandable stent in such a way as to deter said self-expandable stent from sliding proximally relative thereto.
AU2002229722A 2001-01-22 2002-01-22 Stent delivery system and method of manufacturing same Ceased AU2002229722B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/767,212 US6699274B2 (en) 2001-01-22 2001-01-22 Stent delivery system and method of manufacturing same
US09/767,212 2001-01-22
PCT/EP2002/000611 WO2002056798A2 (en) 2001-01-22 2002-01-22 Stent delivery system and method of manufacturing same

Publications (2)

Publication Number Publication Date
AU2002229722A1 true AU2002229722A1 (en) 2003-02-13
AU2002229722B2 AU2002229722B2 (en) 2005-03-24

Family

ID=25078823

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2002229722A Ceased AU2002229722B2 (en) 2001-01-22 2002-01-22 Stent delivery system and method of manufacturing same

Country Status (9)

Country Link
US (4) US6699274B2 (en)
EP (1) EP1353609B1 (en)
JP (1) JP4780900B2 (en)
AT (1) ATE326195T1 (en)
AU (1) AU2002229722B2 (en)
CA (1) CA2434830C (en)
DE (1) DE60211475T2 (en)
ES (1) ES2265491T3 (en)
WO (1) WO2002056798A2 (en)

Families Citing this family (218)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7686846B2 (en) * 1996-06-06 2010-03-30 Devax, Inc. Bifurcation stent and method of positioning in a body lumen
US8728143B2 (en) * 1996-06-06 2014-05-20 Biosensors International Group, Ltd. Endoprosthesis deployment system for treating vascular bifurcations
US7238197B2 (en) 2000-05-30 2007-07-03 Devax, Inc. Endoprosthesis deployment system for treating vascular bifurcations
MXPA01003283A (en) * 1998-09-30 2002-07-02 Impra Inc Delivery mechanism for implantable stent.
US7018401B1 (en) 1999-02-01 2006-03-28 Board Of Regents, The University Of Texas System Woven intravascular devices and methods for making the same and apparatus for delivery of the same
US7758624B2 (en) * 2000-11-13 2010-07-20 C. R. Bard, Inc. Implant delivery device
US20030139803A1 (en) * 2000-05-30 2003-07-24 Jacques Sequin Method of stenting a vessel with stent lumenal diameter increasing distally
US6761733B2 (en) 2001-04-11 2004-07-13 Trivascular, Inc. Delivery system and method for bifurcated endovascular graft
US6733521B2 (en) 2001-04-11 2004-05-11 Trivascular, Inc. Delivery system and method for endovascular graft
DE10118944B4 (en) * 2001-04-18 2013-01-31 Merit Medical Systems, Inc. Removable, essentially cylindrical implants
JP4512362B2 (en) 2001-07-06 2010-07-28 アンギオメット ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コムパニー メディツィンテヒニク コマンデイトゲゼルシャフト Self-expanding stent rapid pusher assembly and delivery system with stent replacement configuration
DE10148185B4 (en) 2001-09-28 2005-08-11 Alveolus, Inc. Instrument for implanting vascular prostheses
GB0123633D0 (en) 2001-10-02 2001-11-21 Angiomed Ag Stent delivery system
US7125464B2 (en) 2001-12-20 2006-10-24 Boston Scientific Santa Rosa Corp. Method for manufacturing an endovascular graft section
US7090693B1 (en) 2001-12-20 2006-08-15 Boston Scientific Santa Rosa Corp. Endovascular graft joint and method for manufacture
US20100016943A1 (en) 2001-12-20 2010-01-21 Trivascular2, Inc. Method of delivering advanced endovascular graft
US6776604B1 (en) * 2001-12-20 2004-08-17 Trivascular, Inc. Method and apparatus for shape forming endovascular graft material
US6866679B2 (en) 2002-03-12 2005-03-15 Ev3 Inc. Everting stent and stent delivery system
US7780687B2 (en) * 2002-04-17 2010-08-24 Tyco Healthcare Group Lp Method and apparatus for anastomosis including expandable anchor
JP5108997B2 (en) * 2002-06-28 2012-12-26 クック メディカル テクノロジーズ エルエルシー Thoracic aortic aneurysm stent graft
US20040093056A1 (en) * 2002-10-26 2004-05-13 Johnson Lianw M. Medical appliance delivery apparatus and method of use
AU2002356575B2 (en) * 2002-11-08 2009-07-16 Jean-Claude Laborde Endoprosthesis for vascular bifurcation
JP4757187B2 (en) 2003-01-15 2011-08-24 アンジオメト・ゲーエムベーハー・ウント・コンパニー・メディツィンテクニク・カーゲー Tube surgery equipment
US20060058866A1 (en) * 2003-01-17 2006-03-16 Cully Edward H Deployment system for an expandable device
US7198636B2 (en) * 2003-01-17 2007-04-03 Gore Enterprise Holdings, Inc. Deployment system for an endoluminal device
US7753945B2 (en) * 2003-01-17 2010-07-13 Gore Enterprise Holdings, Inc. Deployment system for an endoluminal device
US20050209672A1 (en) * 2004-03-02 2005-09-22 Cardiomind, Inc. Sliding restraint stent delivery systems
US8016869B2 (en) * 2003-03-26 2011-09-13 Biosensors International Group, Ltd. Guidewire-less stent delivery methods
US7771463B2 (en) * 2003-03-26 2010-08-10 Ton Dai T Twist-down implant delivery technologies
AU2004226464A1 (en) * 2003-03-26 2004-10-14 Cardiomind, Inc. Implant delivery technologies
US7637934B2 (en) * 2003-03-31 2009-12-29 Merit Medical Systems, Inc. Medical appliance optical delivery and deployment apparatus and method
US7473271B2 (en) * 2003-04-11 2009-01-06 Boston Scientific Scimed, Inc. Stent delivery system with securement and deployment accuracy
US20040267348A1 (en) * 2003-04-11 2004-12-30 Gunderson Richard C. Medical device delivery systems
GB0309616D0 (en) 2003-04-28 2003-06-04 Angiomed Gmbh & Co Loading and delivery of self-expanding stents
US7604660B2 (en) * 2003-05-01 2009-10-20 Merit Medical Systems, Inc. Bifurcated medical appliance delivery apparatus and method
US7470282B2 (en) * 2003-06-30 2008-12-30 Boston Scientific Scimed, Inc. Stent grip and system for use therewith
US20050010138A1 (en) * 2003-07-11 2005-01-13 Mangiardi Eric K. Lumen-measuring devices and method
CA2534364A1 (en) * 2003-08-07 2005-02-17 Alveolus Inc. Therapeutic medical appliance, delivery and method of use
US7651521B2 (en) * 2004-03-02 2010-01-26 Cardiomind, Inc. Corewire actuated delivery system with fixed distal stent-carrying extension
US8267985B2 (en) 2005-05-25 2012-09-18 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
CA2758946C (en) 2004-05-25 2014-10-21 Tyco Healthcare Group Lp Vascular stenting for aneurysms
US20060206200A1 (en) 2004-05-25 2006-09-14 Chestnut Medical Technologies, Inc. Flexible vascular occluding device
EP1750619B1 (en) 2004-05-25 2013-07-24 Covidien LP Flexible vascular occluding device
US8623067B2 (en) 2004-05-25 2014-01-07 Covidien Lp Methods and apparatus for luminal stenting
US8617234B2 (en) * 2004-05-25 2013-12-31 Covidien Lp Flexible vascular occluding device
US20050278010A1 (en) * 2004-05-27 2005-12-15 Scimed Life Systems, Inc. Stent delivery system with imaging capability
CA2573889C (en) 2004-06-16 2014-02-04 Cook Incorporated Thoracic deployment device and stent graft
WO2006042114A1 (en) 2004-10-06 2006-04-20 Cook, Inc. Emboli capturing device having a coil and method for capturing emboli
US20060085057A1 (en) * 2004-10-14 2006-04-20 Cardiomind Delivery guide member based stent anti-jumping technologies
US7666217B2 (en) * 2004-10-29 2010-02-23 Boston Scientific Scimed, Inc. Implantable medical endoprosthesis delivery systems and related components
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
US8221446B2 (en) 2005-03-15 2012-07-17 Cook Medical Technologies Embolic protection device
US8945169B2 (en) 2005-03-15 2015-02-03 Cook Medical Technologies Llc Embolic protection device
US20060253193A1 (en) * 2005-05-03 2006-11-09 Lichtenstein Samuel V Mechanical means for controlling blood pressure
US20060253184A1 (en) * 2005-05-04 2006-11-09 Kurt Amplatz System for the controlled delivery of stents and grafts
US20070118207A1 (en) * 2005-05-04 2007-05-24 Aga Medical Corporation System for controlled delivery of stents and grafts
WO2007004076A2 (en) * 2005-05-09 2007-01-11 Angiomed Gmbh & Co. Medizintechnik Kg Implant delevery device
US9480589B2 (en) 2005-05-13 2016-11-01 Boston Scientific Scimed, Inc. Endoprosthesis delivery system
US20060271121A1 (en) * 2005-05-25 2006-11-30 Cardiac Pacemakers, Inc. Closed loop impedance-based cardiac resynchronization therapy systems, devices, and methods
US8273101B2 (en) 2005-05-25 2012-09-25 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
WO2006127005A1 (en) 2005-05-25 2006-11-30 Chestnut Medical Technologies, Inc. System and method for delivering and deploying and occluding device within a vessel
US20070073379A1 (en) * 2005-09-29 2007-03-29 Chang Jean C Stent delivery system
US8187298B2 (en) 2005-08-04 2012-05-29 Cook Medical Technologies Llc Embolic protection device having inflatable frame
WO2007022496A2 (en) * 2005-08-19 2007-02-22 Icon Medical Corp. Medical device deployment instrument
US8377092B2 (en) 2005-09-16 2013-02-19 Cook Medical Technologies Llc Embolic protection device
US8632562B2 (en) 2005-10-03 2014-01-21 Cook Medical Technologies Llc Embolic protection device
US8182508B2 (en) 2005-10-04 2012-05-22 Cook Medical Technologies Llc Embolic protection device
US8252017B2 (en) 2005-10-18 2012-08-28 Cook Medical Technologies Llc Invertible filter for embolic protection
US20070100414A1 (en) * 2005-11-02 2007-05-03 Cardiomind, Inc. Indirect-release electrolytic implant delivery systems
US8216269B2 (en) 2005-11-02 2012-07-10 Cook Medical Technologies Llc Embolic protection device having reduced profile
US20070106364A1 (en) * 2005-11-09 2007-05-10 Buzzard Jon D Deployment system for an intraluminal medical device
US8152831B2 (en) 2005-11-17 2012-04-10 Cook Medical Technologies Llc Foam embolic protection device
US8292827B2 (en) 2005-12-12 2012-10-23 Boston Scientific Scimed, Inc. Micromachined medical devices
US7225825B1 (en) * 2005-12-15 2007-06-05 Hartman Brian T Valve seal and method of installing a valve seal
US20070142892A1 (en) * 2005-12-15 2007-06-21 Vipul Bhupendra Dave Self-expanding stent delivery system
US20070173924A1 (en) * 2006-01-23 2007-07-26 Daniel Gelbart Axially-elongating stent and method of deployment
US8152833B2 (en) 2006-02-22 2012-04-10 Tyco Healthcare Group Lp Embolic protection systems having radiopaque filter mesh
EP1991179B1 (en) * 2006-02-27 2013-03-20 William A. Cook Australia Pty. Ltd. Retention of stents
US20070208405A1 (en) * 2006-03-06 2007-09-06 Boston Scientific Scimed, Inc. Stent delivery catheter
US8092508B2 (en) 2006-03-30 2012-01-10 Stryker Corporation Implantable medical endoprosthesis delivery system
US20070287879A1 (en) * 2006-06-13 2007-12-13 Daniel Gelbart Mechanical means for controlling blood pressure
US10219884B2 (en) 2006-07-10 2019-03-05 First Quality Hygienic, Inc. Resilient device
US10004584B2 (en) 2006-07-10 2018-06-26 First Quality Hygienic, Inc. Resilient intravaginal device
US8047980B2 (en) * 2006-07-10 2011-11-01 Mcneil-Ppc, Inc. Method of treating urinary incontinence
US8613698B2 (en) * 2006-07-10 2013-12-24 Mcneil-Ppc, Inc. Resilient device
JP5490533B2 (en) 2006-07-10 2014-05-14 マクニール−ピーピーシー・インコーポレイテッド Elastic device
DE102006033399B4 (en) * 2006-07-19 2009-04-09 Jotec Gmbh Marker system and delivery system for such a marker system
US20080071307A1 (en) 2006-09-19 2008-03-20 Cook Incorporated Apparatus and methods for in situ embolic protection
US9339632B2 (en) 2006-09-27 2016-05-17 Boston Scientific Scimed, Inc. Catheter shaft designs
CA2934202A1 (en) 2006-10-22 2008-05-02 Idev Technologies, Inc. Methods for securing strand ends and the resulting devices
EP2101682A4 (en) * 2006-12-15 2017-03-01 Biosensors International Group, Ltd. Stent systems
US9125761B2 (en) 2007-01-25 2015-09-08 Boston Scientific Scimed, Inc. Endoscope with preloaded or preloadable stent
US9901434B2 (en) 2007-02-27 2018-02-27 Cook Medical Technologies Llc Embolic protection device including a Z-stent waist band
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US7981148B2 (en) * 2007-05-16 2011-07-19 Boston Scientific Scimed, Inc. Stent delivery catheter
JP5248606B2 (en) 2007-06-26 2013-07-31 セント ジュード メディカル インコーポレイテッド Device for implanting a collapsible / expandable prosthetic heart valve
US8419748B2 (en) 2007-09-14 2013-04-16 Cook Medical Technologies Llc Helical thrombus removal device
US9138307B2 (en) 2007-09-14 2015-09-22 Cook Medical Technologies Llc Expandable device for treatment of a stricture in a body vessel
US8252018B2 (en) 2007-09-14 2012-08-28 Cook Medical Technologies Llc Helical embolic protection device
US8226701B2 (en) 2007-09-26 2012-07-24 Trivascular, Inc. Stent and delivery system for deployment thereof
US8663309B2 (en) 2007-09-26 2014-03-04 Trivascular, Inc. Asymmetric stent apparatus and method
US8066755B2 (en) 2007-09-26 2011-11-29 Trivascular, Inc. System and method of pivoted stent deployment
US10159557B2 (en) 2007-10-04 2018-12-25 Trivascular, Inc. Modular vascular graft for low profile percutaneous delivery
US8328861B2 (en) 2007-11-16 2012-12-11 Trivascular, Inc. Delivery system and method for bifurcated graft
US8083789B2 (en) 2007-11-16 2011-12-27 Trivascular, Inc. Securement assembly and method for expandable endovascular device
US8128677B2 (en) 2007-12-12 2012-03-06 Intact Vascular LLC Device and method for tacking plaque to a blood vessel wall
US10166127B2 (en) 2007-12-12 2019-01-01 Intact Vascular, Inc. Endoluminal device and method
US7896911B2 (en) 2007-12-12 2011-03-01 Innovasc Llc Device and method for tacking plaque to blood vessel wall
US10022250B2 (en) 2007-12-12 2018-07-17 Intact Vascular, Inc. Deployment device for placement of multiple intraluminal surgical staples
US20090157048A1 (en) * 2007-12-18 2009-06-18 Boston Scientific Scimed, Inc. Spiral cut hypotube
US8460213B2 (en) * 2008-01-03 2013-06-11 Boston Scientific Scimed, Inc. Cut tubular members for a medical device and methods for making and using the same
US8715332B2 (en) * 2008-01-15 2014-05-06 Boston Scientific Scimed, Inc. Expandable stent delivery system with outer sheath
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
BR112012021347A2 (en) 2008-02-26 2019-09-24 Jenavalve Tecnology Inc stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart
US8313525B2 (en) * 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
CN102006842A (en) * 2008-03-27 2011-04-06 纽福克斯神经医疗公司 Friction-release distal latch implant delivery system and components
EP2460478B1 (en) 2008-04-21 2021-09-08 Covidien LP Braid-ball embolic devices and delivery systems
US8882821B2 (en) * 2008-05-02 2014-11-11 Cook Medical Technologies Llc Cartridge delivery system for delivery of medical devices
US9675482B2 (en) 2008-05-13 2017-06-13 Covidien Lp Braid implant delivery systems
US9750625B2 (en) 2008-06-11 2017-09-05 C.R. Bard, Inc. Catheter delivery device
GB0810749D0 (en) 2008-06-11 2008-07-16 Angiomed Ag Catherter delivery device
US20090318892A1 (en) * 2008-06-20 2009-12-24 Maria Aboytes Removable Core Implant Delivery Catheter
JP5134729B2 (en) 2008-07-01 2013-01-30 エンドロジックス、インク Catheter system
EP2341843A1 (en) * 2008-07-22 2011-07-13 Micro Therapeutics, Inc. Vascular remodeling device
US9731094B2 (en) * 2008-08-20 2017-08-15 Cook Medical Technologies Llc Introducer sheath having dual reinforcing elements
US8359721B2 (en) * 2008-09-04 2013-01-29 Cook Medical Technologies Llc Sliding split-sleeve implant compressor
GB0816965D0 (en) * 2008-09-16 2008-10-22 Angiomed Ag Stent device adhesively bonded to a stent device pusher
GB0818450D0 (en) * 2008-10-08 2008-11-12 Angiomed Ag Method of transferring a stent device from a crimping head to an outer sheath of a stent device delivery system
WO2010042950A2 (en) * 2008-10-10 2010-04-15 Sadra Medical, Inc. Medical devices and delivery systems for delivering medical devices
AU2009333533A1 (en) * 2008-12-08 2011-07-21 David R. Elmaleh Delivery system for intravascular device with netting
US20100145429A1 (en) * 2008-12-09 2010-06-10 Cook Incorporated Introducer sheath and method of manufacture
US8388644B2 (en) 2008-12-29 2013-03-05 Cook Medical Technologies Llc Embolic protection device and method of use
GB0901496D0 (en) 2009-01-29 2009-03-11 Angiomed Ag Delivery device for delivering a stent device
GB0909319D0 (en) 2009-05-29 2009-07-15 Angiomed Ag Transluminal delivery system
US8657870B2 (en) * 2009-06-26 2014-02-25 Biosensors International Group, Ltd. Implant delivery apparatus and methods with electrolytic release
JP5662324B2 (en) * 2009-09-16 2015-01-28 テルモ株式会社 Stent delivery system
JP5711251B2 (en) 2009-11-09 2015-04-30 コヴィディエン リミテッド パートナーシップ Features of braided ball embolizer
US20110152604A1 (en) * 2009-12-23 2011-06-23 Hull Jr Raymond J Intravaginal incontinence device
CN102770091B (en) * 2010-01-28 2015-07-08 泰科保健集团有限合伙公司 Vascular remodeling device
US9468442B2 (en) * 2010-01-28 2016-10-18 Covidien Lp Vascular remodeling device
GB201004314D0 (en) 2010-03-16 2010-04-28 Williamson Ben Sealant contour forming tool
BR112012029896A2 (en) 2010-05-25 2017-06-20 Jenavalve Tech Inc prosthetic heart valve for stent graft and stent graft
US9486348B2 (en) 2011-02-01 2016-11-08 S. Jude Medical, Cardiology Division, Inc. Vascular delivery system and method
JP5868432B2 (en) 2011-02-11 2016-02-24 コヴィディエン リミテッド パートナーシップ Two-stage deployed aneurysm embolization device
WO2012118901A1 (en) 2011-03-01 2012-09-07 Endologix, Inc. Catheter system and methods of using same
US9089332B2 (en) 2011-03-25 2015-07-28 Covidien Lp Vascular remodeling device
US10271973B2 (en) 2011-06-03 2019-04-30 Intact Vascular, Inc. Endovascular implant
WO2013009976A2 (en) * 2011-07-12 2013-01-17 Rush University Medical Center Vessel bifurcation stent deployment system with zippered catheters
US9119639B2 (en) 2011-08-09 2015-09-01 DePuy Synthes Products, Inc. Articulated cavity creator
US9763691B2 (en) * 2011-08-11 2017-09-19 Boston Scientific Scimed, Inc. Expandable scaffold with cutting elements mounted thereto
WO2013049448A1 (en) 2011-09-29 2013-04-04 Covidien Lp Vascular remodeling device
US10028854B2 (en) 2012-02-02 2018-07-24 Covidien Lp Stent retaining systems
US20130226278A1 (en) 2012-02-23 2013-08-29 Tyco Healthcare Group Lp Methods and apparatus for luminal stenting
US9072624B2 (en) 2012-02-23 2015-07-07 Covidien Lp Luminal stenting
US8992595B2 (en) 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
US9498363B2 (en) 2012-04-06 2016-11-22 Trivascular, Inc. Delivery catheter for endovascular device
US9078659B2 (en) 2012-04-23 2015-07-14 Covidien Lp Delivery system with hooks for resheathability
US9173753B1 (en) 2012-05-11 2015-11-03 W. L. Gore & Associates, Inc. System and method for forming an endoluminal device
JP5897408B2 (en) * 2012-06-04 2016-03-30 株式会社カネカ Stent delivery catheter
US9918837B2 (en) * 2012-06-29 2018-03-20 St. Jude Medical, Cardiology Division, Inc. System to assist in the release of a collapsible stent from a delivery device
US9155647B2 (en) 2012-07-18 2015-10-13 Covidien Lp Methods and apparatus for luminal stenting
US9724222B2 (en) 2012-07-20 2017-08-08 Covidien Lp Resheathable stent delivery system
WO2014062713A1 (en) 2012-10-15 2014-04-24 Elmaleh David R Material structures for intravascular device
US9114001B2 (en) 2012-10-30 2015-08-25 Covidien Lp Systems for attaining a predetermined porosity of a vascular device
US9452070B2 (en) 2012-10-31 2016-09-27 Covidien Lp Methods and systems for increasing a density of a region of a vascular device
US9314248B2 (en) 2012-11-06 2016-04-19 Covidien Lp Multi-pivot thrombectomy device
US9943427B2 (en) 2012-11-06 2018-04-17 Covidien Lp Shaped occluding devices and methods of using the same
US9241729B2 (en) 2012-12-14 2016-01-26 DePuy Synthes Products, Inc. Device to aid in the deployment of a shape memory instrument
US9295571B2 (en) 2013-01-17 2016-03-29 Covidien Lp Methods and apparatus for luminal stenting
US9439693B2 (en) 2013-02-01 2016-09-13 DePuy Synthes Products, Inc. Steerable needle assembly for use in vertebral body augmentation
US9157174B2 (en) 2013-02-05 2015-10-13 Covidien Lp Vascular device for aneurysm treatment and providing blood flow into a perforator vessel
US9827056B2 (en) * 2013-03-08 2017-11-28 St. Jude Medical, Atrial Fibrillation Division, Inc. Medical device positioner for remote catheter guidance systems
US9415196B2 (en) * 2013-03-13 2016-08-16 Boston Scientific Scimed, Inc. Pancreatic stent drainage system
US9463105B2 (en) 2013-03-14 2016-10-11 Covidien Lp Methods and apparatus for luminal stenting
EP2967571B1 (en) 2013-03-15 2022-08-31 Covidien LP Occlusive device
JP5904557B2 (en) * 2013-04-30 2016-04-13 朝日インテック株式会社 Pusher guide wire
US10130500B2 (en) 2013-07-25 2018-11-20 Covidien Lp Methods and apparatus for luminal stenting
US9827126B2 (en) 2013-08-27 2017-11-28 Covidien Lp Delivery of medical devices
US9782186B2 (en) 2013-08-27 2017-10-10 Covidien Lp Vascular intervention system
JP6563394B2 (en) 2013-08-30 2019-08-21 イェーナヴァルヴ テクノロジー インコーポレイテッド Radially foldable frame for an artificial valve and method for manufacturing the frame
CA2938614C (en) 2014-02-21 2024-01-23 Edwards Lifesciences Cardiaq Llc Delivery device for controlled deployement of a replacement valve
US10016292B2 (en) 2014-04-18 2018-07-10 Covidien Lp Stent delivery system
US10092428B2 (en) 2014-12-30 2018-10-09 Cook Medical Technologies Llc Low profile prosthesis delivery device
US9375336B1 (en) 2015-01-29 2016-06-28 Intact Vascular, Inc. Delivery device and method of delivery
US9433520B2 (en) 2015-01-29 2016-09-06 Intact Vascular, Inc. Delivery device and method of delivery
CN107530168B (en) 2015-05-01 2020-06-09 耶拿阀门科技股份有限公司 Device and method with reduced pacemaker ratio in heart valve replacement
EP3139860A4 (en) 2015-06-30 2018-02-07 Endologix, Inc. Locking assembly for coupling guidewire to delivery system
EP3370644A1 (en) * 2015-09-22 2018-09-12 Novartis AG Ocular implant container
US10478194B2 (en) 2015-09-23 2019-11-19 Covidien Lp Occlusive devices
US10993824B2 (en) 2016-01-01 2021-05-04 Intact Vascular, Inc. Delivery device and method of delivery
WO2017176553A1 (en) 2016-04-05 2017-10-12 Boston Scientific Scimed, Inc. Stent delivery device
US20170304097A1 (en) * 2016-04-21 2017-10-26 Medtronic Vascular, Inc. Stent-graft delivery system having an inner shaft component with a loading pad or covering on a distal segment thereof for stent retention
EP3454795B1 (en) 2016-05-13 2023-01-11 JenaValve Technology, Inc. Heart valve prosthesis delivery system for delivery of heart valve prosthesis with introducer sheath and loading system
US10799378B2 (en) 2016-09-29 2020-10-13 Merit Medical Systems, Inc. Pliant members for receiving and aiding in the deployment of vascular prostheses
US10376396B2 (en) 2017-01-19 2019-08-13 Covidien Lp Coupling units for medical device delivery systems
CN110392557A (en) 2017-01-27 2019-10-29 耶拿阀门科技股份有限公司 Heart valve simulation
EP3585305A1 (en) 2017-02-23 2020-01-01 Boston Scientific Scimed, Inc. Medical drain device
US11628078B2 (en) 2017-03-15 2023-04-18 Merit Medical Systems, Inc. Transluminal delivery devices and related kits and methods
US10744009B2 (en) 2017-03-15 2020-08-18 Merit Medical Systems, Inc. Transluminal stents and related methods
GB201704721D0 (en) 2017-03-24 2017-05-10 Oxford Endovascular Ltd Delivery system for deploying a self-expanding tube, and method of deploying a self-expanding tube
CN106923944B (en) * 2017-04-28 2018-10-02 杭州糖吉医疗科技有限公司 Membrane tube release is isolated in enteron aisle
US11660218B2 (en) 2017-07-26 2023-05-30 Intact Vascular, Inc. Delivery device and method of delivery
EP3773363B1 (en) 2018-04-09 2023-11-29 Boston Scientific Scimed, Inc. Stent delivery system with reduced deployment force
US11123209B2 (en) 2018-04-12 2021-09-21 Covidien Lp Medical device delivery
US11413176B2 (en) 2018-04-12 2022-08-16 Covidien Lp Medical device delivery
US10786377B2 (en) 2018-04-12 2020-09-29 Covidien Lp Medical device delivery
US11071637B2 (en) 2018-04-12 2021-07-27 Covidien Lp Medical device delivery
EP3574873A1 (en) * 2018-05-29 2019-12-04 Biotronik Ag Catheter system for implanting a self-expanding stent
CN109700572B (en) * 2018-12-29 2020-09-25 先健科技(深圳)有限公司 A stop device that contracts for conveyer and conveyer thereof
US11666464B2 (en) 2019-01-28 2023-06-06 Tensor Flow Ventures Llc Magnetic stent and stent delivery
US20200237540A1 (en) * 2019-01-28 2020-07-30 Spiros Manolidis Stent delivery for vascular surgery
US11413174B2 (en) 2019-06-26 2022-08-16 Covidien Lp Core assembly for medical device delivery systems
CN110251286B (en) * 2019-07-29 2024-02-02 江苏暖阳医疗器械有限公司 Self-expanding type support conveying system
CN211934438U (en) * 2019-12-27 2020-11-17 先健科技(深圳)有限公司 Conveyor and lumen instrument conveying system
US11517459B2 (en) * 2020-11-18 2022-12-06 Monarch Biosciences, Inc. Delivery system for endovascular devices
DE102021109635A1 (en) 2021-04-16 2022-10-20 Medi-Globe Gmbh Medical tube and connection device of a medical device
US11944558B2 (en) 2021-08-05 2024-04-02 Covidien Lp Medical device delivery devices, systems, and methods
CN113925650A (en) * 2021-09-30 2022-01-14 艾柯医疗器械(北京)有限公司 Short head end bracket system

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1186142B (en) 1984-12-05 1987-11-18 Medinvent Sa TRANSLUMINAL IMPLANTATION DEVICE
DE3640745A1 (en) 1985-11-30 1987-06-04 Ernst Peter Prof Dr M Strecker Catheter for producing or extending connections to or between body cavities
SE453258B (en) 1986-04-21 1988-01-25 Medinvent Sa ELASTIC, SELF-EXPANDING PROTEST AND PROCEDURE FOR ITS MANUFACTURING
SE8803444D0 (en) 1988-09-28 1988-09-28 Medinvent Sa A DEVICE FOR TRANSLUMINAL IMPLANTATION OR EXTRACTION
US4950227A (en) * 1988-11-07 1990-08-21 Boston Scientific Corporation Stent delivery system
DE9010130U1 (en) 1989-07-13 1990-09-13 American Medical Systems, Inc., Minnetonka, Minn., Us
US5876445A (en) 1991-10-09 1999-03-02 Boston Scientific Corporation Medical stents for body lumens exhibiting peristaltic motion
US5366504A (en) 1992-05-20 1994-11-22 Boston Scientific Corporation Tubular medical prosthesis
US5234457A (en) 1991-10-09 1993-08-10 Boston Scientific Corporation Impregnated stent
EP0553960B1 (en) 1992-01-31 1997-08-27 Advanced Cardiovascular Systems, Inc. Protective membrane for stent-carrying ballon catheter
EP0633798B1 (en) * 1992-03-31 2003-05-07 Boston Scientific Corporation Vascular filter
US5405378A (en) 1992-05-20 1995-04-11 Strecker; Ernst P. Device with a prosthesis implantable in the body of a patient
DE59206251D1 (en) 1992-10-31 1996-06-13 Schneider Europ Ag Arrangement for implanting self-expanding endoprostheses
JPH08500757A (en) * 1992-12-30 1996-01-30 シュナイダー・(ユーエスエイ)・インコーポレーテッド Device for deploying a stent implantable in the body
US5824041A (en) * 1994-06-08 1998-10-20 Medtronic, Inc. Apparatus and methods for placement and repositioning of intraluminal prostheses
ATE232067T1 (en) * 1995-04-14 2003-02-15 Boston Scient Ltd STENT DELIVERY DEVICE WITH ROLLING MEMBRANE
US5702418A (en) * 1995-09-12 1997-12-30 Boston Scientific Corporation Stent delivery system
ES2131253T3 (en) 1995-11-14 1999-07-16 Schneider Europ Gmbh DEVICE FOR THE IMPLEMENTATION OF AN ENDOPROTESIS.
JPH09215753A (en) 1996-02-08 1997-08-19 Schneider Usa Inc Self-expanding stent made of titanium alloy
US5843161A (en) * 1996-06-26 1998-12-01 Cordis Corporation Endoprosthesis assembly for percutaneous deployment and method of deploying same
FR2753907B1 (en) 1996-10-02 1999-07-16 Nycomed Lab Sa BALLOON FOR EXPANSION CATHETER AND MANUFACTURING METHOD THEREOF
US5876376A (en) * 1996-12-09 1999-03-02 Medtronic, Inc Catheter balloon bonding stopper
EP0850607A1 (en) * 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
US5957974A (en) * 1997-01-23 1999-09-28 Schneider (Usa) Inc Stent graft with braided polymeric sleeve
US6152944A (en) 1997-03-05 2000-11-28 Scimed Life Systems, Inc. Catheter with removable balloon protector and stent delivery system with removable stent protector
US5792144A (en) 1997-03-31 1998-08-11 Cathco, Inc. Stent delivery catheter system
US6004328A (en) * 1997-06-19 1999-12-21 Solar; Ronald J. Radially expandable intraluminal stent and delivery catheter therefore and method of using the same
US6224627B1 (en) * 1998-06-15 2001-05-01 Gore Enterprise Holdings, Inc. Remotely removable covering and support
US6036708A (en) * 1998-08-13 2000-03-14 Advanced Cardiovascular Systems, Inc. Cutting stent with flexible tissue extractor
MXPA01003283A (en) * 1998-09-30 2002-07-02 Impra Inc Delivery mechanism for implantable stent.
US6059813A (en) * 1998-11-06 2000-05-09 Scimed Life Systems, Inc. Rolling membrane stent delivery system
US6254609B1 (en) 1999-01-11 2001-07-03 Scimed Life Systems, Inc. Self-expanding stent delivery system with two sheaths
DK1156757T3 (en) 1999-02-01 2006-04-18 Univ Texas Woven intravascular devices and methods of making them
US5976155A (en) * 1999-03-05 1999-11-02 Advanced Cardiovascular Systems, Inc. System for removably securing a stent on a catheter assembly and method of use
US6258099B1 (en) 1999-03-31 2001-07-10 Scimed Life Systems, Inc. Stent security balloon/balloon catheter
US6375676B1 (en) * 1999-05-17 2002-04-23 Advanced Cardiovascular Systems, Inc. Self-expanding stent with enhanced delivery precision and stent delivery system
EP1180003B1 (en) * 1999-05-20 2008-01-16 Boston Scientific Limited Stent delivery system with nested stabilizer
US6270521B1 (en) 1999-05-21 2001-08-07 Cordis Corporation Stent delivery catheter system for primary stenting
US6241758B1 (en) * 1999-05-28 2001-06-05 Advanced Cardiovascular Systems, Inc. Self-expanding stent delivery system and method of use
US6264671B1 (en) * 1999-11-15 2001-07-24 Advanced Cardiovascular Systems, Inc. Stent delivery catheter and method of use

Similar Documents

Publication Publication Date Title
EP1353609B1 (en) Stent delivery system and method of manufacturing same
AU2002229722A1 (en) Stent delivery system and method of manufacturing same
AU2011210720B2 (en) Collapsing structure for reducing the diameter of a stent
US8702721B2 (en) Intraluminary stent relocating apparatus
US6514280B1 (en) Delivery catheter
US6019779A (en) Multi-filar coil medical stent
EP2037848A1 (en) Endoprosthesis delivery system with stent holder
JP2023024612A (en) Systems and methods for on-device constraining mechanism construction
AU2018427567B2 (en) Single fiber constraining for implantable medical devices
CN112789012A (en) Constraining mechanism and associated method