AU2002211387A1 - Polishing pad with built-in optical sensor - Google Patents

Polishing pad with built-in optical sensor

Info

Publication number
AU2002211387A1
AU2002211387A1 AU2002211387A AU1138702A AU2002211387A1 AU 2002211387 A1 AU2002211387 A1 AU 2002211387A1 AU 2002211387 A AU2002211387 A AU 2002211387A AU 1138702 A AU1138702 A AU 1138702A AU 2002211387 A1 AU2002211387 A1 AU 2002211387A1
Authority
AU
Australia
Prior art keywords
polishing pad
optical sensor
polished
hub
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2002211387A
Inventor
Gregory L. Barbour
David G. Halley
Benjamin C. Smedley
Stephan H. Wolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Strasbaugh Inc
Original Assignee
Strasbaugh Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Strasbaugh Inc filed Critical Strasbaugh Inc
Publication of AU2002211387A1 publication Critical patent/AU2002211387A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/205Lapping pads for working plane surfaces provided with a window for inspecting the surface of the work being lapped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/013Devices or means for detecting lapping completion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means

Abstract

An optical sensor that includes a light source and a detector is located within a cavity in a polishing pad so as to face the surface that is being polished. Light from the light source is reflected from the surface being polished and the detector detects the reflected light. The electrical signal produced by the detector is conducted to a hub located at the central aperture of the polishing pad. The disposable polishing pad is removably connected, both mechanically and electrically to the hub. The hub contains electronic circuitry that is concerned with supplying power to the optical sensor and with transmitting the electrical signal to a non-rotating station. Several techniques are described for accomplishing these tasks. The system permits continuous monitoring of an optical characteristic of a surface that is being polished, even while the polishing machine is in operation, and permits the end point of the polishing process to be determined.
AU2002211387A 2000-09-29 2001-09-29 Polishing pad with built-in optical sensor Abandoned AU2002211387A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US23657500P 2000-09-29 2000-09-29
US60236575 2000-09-29
PCT/US2001/030922 WO2002026445A1 (en) 2000-09-29 2001-09-29 Polishing pad with built-in optical sensor

Publications (1)

Publication Number Publication Date
AU2002211387A1 true AU2002211387A1 (en) 2002-04-08

Family

ID=22890065

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2002211387A Abandoned AU2002211387A1 (en) 2000-09-29 2001-09-29 Polishing pad with built-in optical sensor

Country Status (10)

Country Link
US (4) US6739945B2 (en)
EP (1) EP1324859B1 (en)
JP (1) JP2004510337A (en)
KR (1) KR100821747B1 (en)
CN (1) CN1250372C (en)
AT (1) ATE496730T1 (en)
AU (1) AU2002211387A1 (en)
DE (1) DE60143948D1 (en)
TW (1) TW515021B (en)
WO (1) WO2002026445A1 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8485862B2 (en) 2000-05-19 2013-07-16 Applied Materials, Inc. Polishing pad for endpoint detection and related methods
US7127362B2 (en) * 2000-08-22 2006-10-24 Mundt Randall S Process tolerant methods and apparatus for obtaining data
US7001242B2 (en) * 2002-02-06 2006-02-21 Applied Materials, Inc. Method and apparatus of eddy current monitoring for chemical mechanical polishing
TWI220405B (en) * 2002-11-19 2004-08-21 Iv Technologies Co Ltd Method of fabricating a polishing pad having a detection window thereon
US7235154B2 (en) * 2004-01-08 2007-06-26 Strasbaugh Devices and methods for optical endpoint detection during semiconductor wafer polishing
DE102004024737A1 (en) * 2004-05-19 2005-12-15 Voith Paper Patent Gmbh production optimization
JP4938231B2 (en) * 2004-10-25 2012-05-23 ルネサスエレクトロニクス株式会社 Flatness measuring instrument
US7846008B2 (en) * 2004-11-29 2010-12-07 Semiquest Inc. Method and apparatus for improved chemical mechanical planarization and CMP pad
US7722434B2 (en) 2005-03-29 2010-05-25 Kla-Tencor Corporation Apparatus for measurement of parameters in process equipment
US20100168070A1 (en) * 2005-08-11 2010-07-01 Niklas Heine Compounds for the treatment of alzheimer's disease
US7537511B2 (en) * 2006-03-14 2009-05-26 Micron Technology, Inc. Embedded fiber acoustic sensor for CMP process endpoint
US7840305B2 (en) 2006-06-28 2010-11-23 3M Innovative Properties Company Abrasive articles, CMP monitoring system and method
US7698952B2 (en) * 2006-10-03 2010-04-20 Kla-Tencor Corporation Pressure sensing device
TW200929348A (en) * 2007-11-21 2009-07-01 Jian-Min Sung Examination method for trimming chemical mechanical polishing pad and related system thereof
US7927092B2 (en) * 2007-12-31 2011-04-19 Corning Incorporated Apparatus for forming a slurry polishing pad
US8231431B2 (en) * 2008-01-24 2012-07-31 Applied Materials, Inc. Solar panel edge deletion module
US8182312B2 (en) * 2008-09-06 2012-05-22 Strasbaugh CMP system with wireless endpoint detection system
US9017140B2 (en) 2010-01-13 2015-04-28 Nexplanar Corporation CMP pad with local area transparency
JP2011161520A (en) * 2010-02-04 2011-08-25 Koyo Electronics Ind Co Ltd Centerless grinding machine
US9156124B2 (en) 2010-07-08 2015-10-13 Nexplanar Corporation Soft polishing pad for polishing a semiconductor substrate
US8628384B2 (en) 2010-09-30 2014-01-14 Nexplanar Corporation Polishing pad for eddy current end-point detection
US8439994B2 (en) 2010-09-30 2013-05-14 Nexplanar Corporation Method of fabricating a polishing pad with an end-point detection region for eddy current end-point detection
US8657653B2 (en) 2010-09-30 2014-02-25 Nexplanar Corporation Homogeneous polishing pad for eddy current end-point detection
US9444242B2 (en) 2014-05-09 2016-09-13 Ruggedreel Inc. Capacitive plates used for passing signals between a frame and a rotatable element
US9873180B2 (en) 2014-10-17 2018-01-23 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US10875153B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Advanced polishing pad materials and formulations
CN107078048B (en) 2014-10-17 2021-08-13 应用材料公司 CMP pad construction with composite material properties using additive manufacturing process
US11745302B2 (en) 2014-10-17 2023-09-05 Applied Materials, Inc. Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process
CN113103145B (en) 2015-10-30 2023-04-11 应用材料公司 Apparatus and method for forming polishing article having desired zeta potential
US10391605B2 (en) 2016-01-19 2019-08-27 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
US11471999B2 (en) 2017-07-26 2022-10-18 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
WO2019032286A1 (en) 2017-08-07 2019-02-14 Applied Materials, Inc. Abrasive delivery polishing pads and manufacturing methods thereof
EP3691830A4 (en) * 2017-10-04 2021-11-17 Saint-Gobain Abrasives, Inc. Abrasive article and method for forming same
WO2019152222A1 (en) 2018-02-05 2019-08-08 Applied Materials, Inc. Piezo-electric end-pointing for 3d printed cmp pads
CN112654655A (en) 2018-09-04 2021-04-13 应用材料公司 Advanced polishing pad formulations
KR102461737B1 (en) * 2020-03-18 2022-11-02 서울대학교 산학협력단 Hybrid Laser-polishing machine and Laser-polishing method using the same
US11878389B2 (en) 2021-02-10 2024-01-23 Applied Materials, Inc. Structures formed using an additive manufacturing process for regenerating surface texture in situ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4793895A (en) * 1988-01-25 1988-12-27 Ibm Corporation In situ conductivity monitoring technique for chemical/mechanical planarization endpoint detection
JPH03234467A (en) 1990-02-05 1991-10-18 Canon Inc Polishing method of metal mold mounting surface of stamper and polishing machine therefor
US5081796A (en) 1990-08-06 1992-01-21 Micron Technology, Inc. Method and apparatus for mechanical planarization and endpoint detection of a semiconductor wafer
US6614529B1 (en) 1992-12-28 2003-09-02 Applied Materials, Inc. In-situ real-time monitoring technique and apparatus for endpoint detection of thin films during chemical/mechanical polishing planarization
US5433651A (en) 1993-12-22 1995-07-18 International Business Machines Corporation In-situ endpoint detection and process monitoring method and apparatus for chemical-mechanical polishing
JP3270282B2 (en) * 1994-02-21 2002-04-02 株式会社東芝 Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JP3313505B2 (en) * 1994-04-14 2002-08-12 株式会社日立製作所 Polishing method
US5893796A (en) 1995-03-28 1999-04-13 Applied Materials, Inc. Forming a transparent window in a polishing pad for a chemical mechanical polishing apparatus
US5838447A (en) 1995-07-20 1998-11-17 Ebara Corporation Polishing apparatus including thickness or flatness detector
US6010538A (en) * 1996-01-11 2000-01-04 Luxtron Corporation In situ technique for monitoring and controlling a process of chemical-mechanical-polishing via a radiative communication link
US6068539A (en) 1998-03-10 2000-05-30 Lam Research Corporation Wafer polishing device with movable window
US6106662A (en) 1998-06-08 2000-08-22 Speedfam-Ipec Corporation Method and apparatus for endpoint detection for chemical mechanical polishing
US6190234B1 (en) 1999-01-25 2001-02-20 Applied Materials, Inc. Endpoint detection with light beams of different wavelengths
US6146242A (en) * 1999-06-11 2000-11-14 Strasbaugh, Inc. Optical view port for chemical mechanical planarization endpoint detection

Also Published As

Publication number Publication date
ATE496730T1 (en) 2011-02-15
US20050009449A1 (en) 2005-01-13
US20070032170A1 (en) 2007-02-08
KR20030048050A (en) 2003-06-18
TW515021B (en) 2002-12-21
US7083497B2 (en) 2006-08-01
DE60143948D1 (en) 2011-03-10
US20060116051A1 (en) 2006-06-01
US6739945B2 (en) 2004-05-25
US6986701B2 (en) 2006-01-17
US20020090887A1 (en) 2002-07-11
KR100821747B1 (en) 2008-04-11
EP1324859B1 (en) 2011-01-26
JP2004510337A (en) 2004-04-02
WO2002026445A1 (en) 2002-04-04
CN1250372C (en) 2006-04-12
EP1324859A4 (en) 2004-10-13
CN1489509A (en) 2004-04-14
EP1324859A1 (en) 2003-07-09

Similar Documents

Publication Publication Date Title
AU2002211387A1 (en) Polishing pad with built-in optical sensor
SG133404A1 (en) Polishing pad with built-in optical sensor
CA2516068A1 (en) Automatic sharpening system for ice-skates
WO2002067593A8 (en) Capsule
DE60220039D1 (en) DEVICE FOR A PLASMA PROCESS
CA2086408A1 (en) Fiber-optic anticycling device for street lamps
US10468906B2 (en) Optical charging system with integrated sensor and power receiver
EP1850441A3 (en) Improvements relating to electrical power transmission
EP1187152A3 (en) Rotary contactless connector and non-rotary contactless connector
EP1306738A3 (en) Apparatus for supplying power from portable computer to extended station
DE3882028D1 (en) DEVICE FOR DETECTING THE CUTTING HORIZON FOR EXTRACTION MACHINES.
CN209148177U (en) A kind of reduced form distributed Raman fiber sensing temperature alarm
JP4806206B2 (en) Ear blood pressure monitor and its storage case
JP4907739B2 (en) Search set
JPS63145109U (en)
JP2009086412A (en) Glass search unit
JPS6361791U (en)
JPS63189921A (en) Portable electronic apparatus