AU2001251146A1 - Method for the treatment of dermal lesions caused by envenomation - Google Patents

Method for the treatment of dermal lesions caused by envenomation

Info

Publication number
AU2001251146A1
AU2001251146A1 AU2001251146A AU2001251146A AU2001251146A1 AU 2001251146 A1 AU2001251146 A1 AU 2001251146A1 AU 2001251146 A AU2001251146 A AU 2001251146A AU 2001251146 A AU2001251146 A AU 2001251146A AU 2001251146 A1 AU2001251146 A1 AU 2001251146A1
Authority
AU
Australia
Prior art keywords
amines
group
amine
quinolin
envenomation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2001251146A
Other versions
AU2001251146B2 (en
Inventor
Herbert B. Slade
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/820,420 external-priority patent/US6894060B2/en
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of AU2001251146A1 publication Critical patent/AU2001251146A1/en
Application granted granted Critical
Publication of AU2001251146B2 publication Critical patent/AU2001251146B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

Method for the Treatment of Dermal Lesions Caused by Envenomation
Field of the Invention The present invention relates to methods for treating dermal lesions caused by envenomation. In particular the present invention relates to a method of treating dermal lesions caused by envenomation comprising applying a therapeutically effective amount of an immune response modifier compound selected from the group consisting of imidazoquinoline amines, imidazopyridine amines, 6,7-fused cycloalkylimidazopyridine amines, imidazonaphthyridine amines, tetrahydroimidazonaphthyridine amines, oxazolopyridine amines, oxazoloquinoline amines, thiazolopyridine amines, thiazoloquinoline amines and 1,2-bridged imidazoquinoline amines to the site of the lesion., The present invention also provides a method of preventing dermonecrosis caused by envenomation comprising applying a therapeutically effective amount of an immune response modifier compound selected from the group consisting of imidazoquinoline amines, imidazopyridine amines, 6,7-fused cycloalkylimidazopyridine amines, imidazonaphthyridine amines, tetrahydroimidazonaphthyridine amines, oxazolopyridine amines, oxazoloquinoline amines, thiazolopyridine amines, thiazoloquinoline amines and 1 ,2-bridged imidazoquinoline amines to the site of the envenomation.
Background of the Invention
Many imidazoquinoline amine, imidazopyridine amine, 6,7-fused cycloalkylimidazopyridine amine, imidazonaphthyridine amine, tetrahydroimidazonaphthyridine amine, oxazolopyridine amine, oxazoloquinoline amine, thiazolopyridine amine, thiazoloquinoline amine and 1,2-bridged imidazoquinoline amine immune response modifiers are known. These compounds are hereinafter sometimes referred to as immune response modifying compounds (IRMs). Such compounds, methods for preparing them, formulations containing them and methods of using them are disclosed in, for example, U.S. Patent Nos. 4,689,338; 5,389,640; 5,268,376; 4,929,624; 5,266,575; 5,352,784; 5,494,916; 5,482,936; 5,395,937; 5,238,944; 5,175,296; 5,693,811; 5,741,908; 5,756,747; 5,939,090; 6,110,929; 4,988,815; 5,376,076; 6,083,505; 6,039,969; and PCT Publications WO 99/29693. WO 00/40228, WO 00/76505, WO 00/76518 and WO 00/76518.
The E M compounds have demonstrated antiviral and antitumor activity. The antiviral and antitumor activity is not direct but is believed to result from their ability to stimulate an innate immune response. In cultures of human peripheral blood mononuclear cells, members of this class of compounds have been shown to stimulate the production and release of a variety of cytokines and chemokines including interferon-α, tumor necrosis factor-α, interleukin-1 (IL-1), IL-1 receptor antagonist, IL-6, IL-8, IL-12, monocyte chemotactic protein-1 (MCP-1) and macrophage inflammatory protein (MIP- lα).
In addition to stimulating an innate immune response, the IRM compounds have been found to mediate the acquired immune response. In human peripheral blood mononuclear cell cultures, members of this class of compounds have been shown to induce the production of the T helper type 1 (THl) cytokine interferon-γ and to inhibit the production of T helper type 2 (IT 12) cytokines IL-4 and IL-5.
One of these IRM compounds, known as imiquimod (l-(2-methylpropyl)-lH- imidazo[4,5-c]quinolin-4-amine), has been commercialized in a topical formulation, Aldara™ cream, for the treatment of anogenital warts associated with human papillomavirus. Imiquimod is also being evaluated in clinical trials for use in treating superficial basal cell carcinoma and actinic kcralosis.
Another of these IRM compounds, known as resiquimod (4-amino-2- ethoxymethyl-α,α-dimethyl-lH-imidazo[4,5-c]quinoline-l-ethanol), is being evaluated in clinical trials for use in preventing genital heipes recurrences.
There are numerous venomous flora and fauna in the world, some of which possess venom that causes significant medical problems when a human or an animal is exposed to the venom. Envenomation by such a plant or animal can cause both systemic and local reactions. Examples of local reactions include edema, erythema, induration, necrolic ulcers, pain, pruritis, and vesicles. The severity of the reaction is dependent on a variety of factors including the source of the venom (e.g. Loxosceles spider, box jellyfish, fire ant), the amount of venom injected, the location of the bite or sting (e.g. arm, thigh), and prior exposure to the venom. A variety of treatments have been used including analgesics, antibiotics, antivenoms, corticosteroids, Dapsone, and hyperbaric oxygen. In those instances where the initial dermal lesion progresses to dcπnonccrosis, surgical intervention is often necessary. There is a continuing need for new treatments and in particular for treatments that will prevent dermonecrosis.
Summary of the Invention
The present invention relates to a method of treating dermal lesions caused by envenomation comprising applying a therapeutically effective amount of an immune response modifier compound selected from the group consisting of imidazoquinoline amines, imidazopyridine amines, 6,7-fused cycloalkylimidazopyridine amines, imidazonaphthyridine amines, tetrahydroimidazonaphthyridine amines, oxazolopyridine amines, oxazoloquinoline amines, thiazolopyridine amines, thiazoloquinoline amines and 1,2-bridged imidazoquinoline amines to the site of the lesion.
The present invention also provides a method of preventing dermonecrosis caused by envenomation comprising applying a therapeutically effective amount of an immune response modifier compound selected from the group consisting of imidazoquinoline amines, imidazopyridine amines, 6,7-fused cycloalkylimidazopyridine amines, imidazonaphthyridine amines, tetrahydroimidazonaphthyridine amines, oxazolopyridine amines, oxazoloquinoline amines, thiazolopyridine amines, thiazoloquinoline amines and 1,2-bridged imidazoquinoline amines to the site of the envenomation.
Detailed Description of the Invention
As used herein the term "envenomation" means injection of a poisonous material (venom) by sting, spine, fang, tooth, or other venom delivery apparatus.
Immune response modifier (IRM) compounds that are useful in practicing the methods of the present invention are selected from the group consisting of imidazoquinoline amines, imidazopyridine amines, 6,7-fused cycloalkylimidazopyridine amines, imidazonaphthyridine amines, tetrahydroimidazonaphthyridine amines, oxazolopyridine amines, oxazoloquinoline amines, thiazolopyridine amines, thiazoloquinoline amines and 1,2-bridged imidazoquinoline amines. Such compounds and methods for preparing them are disclosed in, for example, U.S. Patent Nos. 4,689,338;
5,389,640; 5,268,376; 4,929,624; 5,266,575; 5,352,784; 5,494,916; 5,482,936; 5,395,937; 5,175,296; 5,693,811; 5,741,908; 5, 756,747; 6,110,929; 4,988,815; 5,376,076; 6,083,505; 6,039,969; and International Publications WO 99/29693; WO 00/76505; WO 00/76518 and WO 00/76518. The entire disclosure of each of these patents and patent applications is incorporated herein by reference.
Preferred IRM compounds for use in the practice of the methods of the invention include compounds of Formula I
wherein
Ri is selected from the group consisting of S and NR3, R2 is selected from the group consisting of hydrogen, straight and branched chain alkyl containing one to six carbon atoms, and alkoxyalkyl wherein the alkoxy moiety contains one to four carbon atoms and the alkyl moiety contains one to four carbon atoms; and
R3 is selected from the group consisting of straight and branched chain alkyl containing one to six carbon atoms and straight and branched chain hydroxy alkyl containing one to six carbon atoms; or a pharmaceutically acceptable salt thereof.
Preferred R groups include hydrogen, methyl, ethyl, propyl, butyl, and ethoxymethyl.
Preferred R3 groups include 2-methylpropyl and 2-hydroxy-2-methylpropyl. Particularly preferred IRM compounds include 4~amino-2-ethoxymethyl-α,α- dimethyl-lH-imidazo[4,5-c]quinoline-l-ethanol (resiquimod), 1 -(2-methylpropyl)- 1H- imidazo[4,5-c]quinolin-4-amine (imiquimod), 2-methylthiazolo[4,5-c]quinolin-4-amine, 2-ethylthiazolo[4,5-c]quinolin-4~amine, 2-propylthiazolo[4,5-c]quinolin-4-amine and 2- butylthiazolo[4,5-c]quinolin-4-amine. In the method of the invention a therapeutically effective amount of the IRM compound is applied. The term "therapeutically effective amount" means an amount sufficient to induce a therapeutic effect such as the amelioration of symptoms (e.g. pain, erythema diminution of lesions,) or the prevention of dermonecrosis. The specific amount that will constitute a therapeutically effective amount will vary according to factors readily determined by those skilled in the art including the activity of the particular IRM compound being used, the particular formulation being administered, the duration of the administration and the frequency of the administration. Generally from about 1 μg to about 125 mg, preferably from about 10 μg to about 25 mg, of the IRM compound is applied to the dermal lesion.
Any conventional dosage form suitable for topical application may be used including creams, gels, lotions, ointments, sprays and transdermal patches. Preferred formulations include creams and gels. Suitable formulations are disclosed, for example, in U.S. Patents 5,238,944 and 5,939,090 and International Publication WO 00/40228, the disclosures of which are incorporated by reference herein.
The frequency and duration of administration can vary as needed for amelioration of symptoms and/or prevention of dermonecrosis. Treatment regimens may include administration from twice per day to once per week, preferably two to three times per week, for at least one week, preferably for two to three weeks.
There are many venomous creatures whose bite or sting causes local reactions in humans. Examples of such creatures include, for example, arthropods such as arachnids (e.g., scorpions, spiders) and insects of the order Hymenoptera (e.g., bees, wasps, ants), and marine animals such as jellyfish, stone fish, stingrays, and blue ringed octopus. The venom of some species is known to cause dermal lesions dial can progress lo dermonecrosis. Examples of such species include Loxosceles spiders (L. reclusa, L. deserta, L. laeta), hobo spiders (Tegenaria spp), yellow sac spiders (Cheiracanthium spp.), fire ants (Solenopsis invicta), and jellyfish (Chironex flecked, Carybdea alata, Cassiopea andromeda, Aurelia auήta). Venoms are frequently complex mixtures of a variety of substances. Substances that have been identified include enzymes e.g. phospholipases, hyaluronidases, cholinesterases; alkaloids e.g. methyl-N-piperidine; proteins e.g. melittin; and peptides. The particular constituents will depend on the source of the venom. When envenomation occurs a number of different types of epithelial and endothelial cells are exposed to the venom. These cells are capable of synthesizing and releasing a wide variety of chemokines and cytokines in response to a variety of stimuli. For example, it has been shown in vitro that Loxosceles deserta venom induces endothelial and epithelial cells to secrete both α and β chemokines. The release of chemokines and cytokines triggers additional events such as the attraction of neutrophils to the site of envenomation. While some of the local skin reactions that are manifested as a result of envenomation such as edema and erythema are caused directly by constituents of the venom due to the hemolytic action of various enzymes, it has been hypothesized that dermonecrosis may be due to an immune response.
While not wishing to be bound by theory, it is believed that effects of the IRM compound overwhelm the local physiological effects of the venom. This may occur by modifying the qualitative properties of the local soluble mediators of inflammation such that signaling for ncutr phil activation and dcgraπulation is inhibited. In addition, the early aggregation of neutrophils in dermal blood vessels may be diffused by IRM compound induced cytokines by stimulating the migration of neutrophils out of local vasculature and into surrounding tissue. Thus, if activated neutrophils are no longer aggregated in the discrete focal area of the site of envenomation, the amount of central necrosis may be inhibited. In essence, the venom induced "immune dysregulation" may be overcome by the immune stimulation provided by the IRM compound.
Example Treatment of Loxosceles reclusa envenomation with Imiquimod 5% Cream
Background
A privatized correctional facility in Texas experienced a cluster of spider bite cases due to L. reclusa shortly following the receipt of a shipment of used mattresses from a local county jail. Spiders may have inhabited the mattresses when they were stored for several weeks in a dark shed out behind the facility. Following the first several cases, fumigation with a synthetic pyrethroid (PT 1200, resmethrin) was performed. While this agent is considered effective against L. reclusa, the spiders must generally be contacted directly, and unhatched eggs are less susceptible.
The diagnosis of loxoscelism in these cases was made by exclusion. No spiders were recovered despite the use of glue traps, although in one case, a "brown spider" dropped from the ceiling of a shower onto the breast of a female patient, who brushed the spider away after sustaining a bite. The following aspects of these cases favor a diagnosis of L. reclusa envenomation: the spider is endemic to the area; the bites occurred mostly at night and were characterized by lack of immediate pain. Blanching and cyanosis slowly developed at the central core, with spreading erythema and progression to dermonecrosis. Other insects are known to inflict bites with similar clinical findings but can be excluded on the grounds that they are not found in Texas (various tarantulas, Australian funnel-web spiders (Atrax spp.), "hobo spiders" (Tegeneria spp.); they form characteristic webs not found in the facility (yellow sac spiders (Chiracanthiwn spp.), black-and-yellow orb weavers (Argiope spp.); or they bite during the day ("jumping spider" (Phidippus audax)). Pliidippus species are very aggressive and bite commonly, but they inflict only slightly painful bites resulting in erythematous papules or small urticarial wheals. The only alternative suspect is Latrodectus mactans ("Southern black widow"). This spider is shy in behavior, similar to L. reclusa, and bites often go unnoticed until a red papule progresses to a larger halo or target lesion up to 2 cm in diameter. Unlike the L, reclusa bite however, skin manifestations are minimal. Victims are more likely to experience muscle spasms and cramping within hours of envenomation, together with weakness of the legs and tightness of the chest. These clinical findings were absent in the cases reported here.
Methods Patients were seen in the facility clinic on Ihc day they complained of a painful lesion. Most patients related a history of discovering the lesion upon awakening in the morning. The treatment of the first 12 consecutive cases, occurring over a 5 month period, consisted of a single intramuscular dose of ceftriaxone 1 gm and oral dicloxicillin 500 mg bid x 10 days, plus either topical triamcinolone 0.1% applied bid, topical papain-urea- chlorophyllin copper complex sodium debriding-healing ointment (Panafil™) applied daily, or daily topical becaplermin (rh-PDGF-BB) 0.01% gel (Regranex™). Where necessary and appropriate, patients were transported to the local University Medical Center for surgical debridement of necrotic lesions.
A consecutive series of 7 bites on 5 patients were treated with imiquimod 5% cream (available under the tradename ALDARA from 3M Pharmaceuticals, St. Paul, MN,
USA) applied by the clinic staff, three times per week (typically Monday, Wednesday and Friday) for two weeks. Sufficient cream was used to cover the area of erythema, rubbing the cream gently until it "vanished" as per labeled instructions. In addition, a single intramuscular dose of ceftriaxone 1 gm was given together with oral dicloxicillin, 500 mg bid for 10 days. Patients were re-examined by a physician at 7, 14 and 28 days following initiation of therapy.
Results
The first 12 patients, managed using conventional therapy, presented with tender to painful lesions consisting of a central core of induration and blanching, surrounded by 3-8 cm of erythema. Among these, 7 progressed to tissue necrosis within 1 week after the bite, all of whom were referred for surgical debridement. One patient developed a healing contracture of the forearm which necessitated surgical release. Healing occun'ed by secondary intention over several months following the bites.
Seven consecutive bites occurring in 5 patients were treated with imiquimod.
These cases are summarized in the Table below. Presenting signs and symptoms were consistent with those recorded for patients treated by conventional means. Tenderness or pain, with erythema, characteristic blanching and firm induration were present in every case. In one case (L.S.), punctuate marks were noted at the center of the indurated area.
Pain relief was reported by all patients within 1-2 days following the first dose of imiquimod. Marked improvement in both induration and erythema was noted by day 7, with full resolution in all but one case by day 14. In patient Y.C., erythema was noted to be cleared at the day 7 visit but developed again by day 14. The reappearance of erythema is presumed to be secondary to imiquimod
Patients C.R. and L.S. each sustained two bites. In the case of L.S., the first bite was resolved 9 days after it occurred. The second bite occurred 16 days after the first bite and resolved completely, with treatment, by the 5th day. The difference in clinical course may have been due to differences in the age of the spider, the sex of the spider (females inject greater volumes of venom), or an acquired immunity following the first bite.
Necrosis did not develop in any of the imiquimod treated cases. No residual scarring or pigmentation changes were noted at the day 28 follow-up visit. The probability of observing 0 out of 7 consecutive cases with no necrosis, given the underlying historical rate of 7/12 (0.583), is quite low based on a binomial probability distribution (p=0.002) or a Chi-square analysis (p=0.01).

Claims (1)

  1. WHAT IS CLAIMED IS:
    1. A method of treating dermal lesions caused by envenomation comprising applying a therapeutically effective amount of an immune response modifier compound selected from the group consisting of imidazoquinoline amines, imidazopyridine amines, 6,7-fused cycloalkylimidazopyridine amines, imidazonaphthyridine amines, tetrahydroimidazonaphthyridine amines, oxazolopyridine amines, oxazoloquinoline amines, thiazolopyridine amines, thiazoloquinoline amines and 1,2-bridged imidazoquinoline amines to the site of the lesion.
    2. The method of Claim 1 wherein the immune response modifier compound is a compound of Formula I
    I wherein Ri is selected from the group consisting of S and NR3,
    R2 is selected from the group consisting of hydrogen, straight and branched chain alkyl containing one to six carbon atoms, and alkoxyalkyl wherein the alkoxy moiety contains one to four carbon atoms and the alkyl moiety contains one to four carbon atoms; and R3 is selected from the group consisting of straight and branched chain alkyl containing one to six carbon atoms and straight or branched chain hydroxy alkyl containing one to six carbon atoms; or a pharmaceutically acceptable salt thereof.
    The method of Claim 2 wherein Rι is NR3
    4. The method of Claim 2 wherein Rj is S.
    5. The method of Claim 2 wherein R2 is selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, and ethoxymethyl.
    6. The method of Claim 2 wherein R3 is selected from the group consisting of 2- methylpropyl and 2-hydroxy-2-methylpropyl.
    7. The method of Claim 2 wherein the IRM compound is selected from the group consisting of 4-amino-2-ethoxymethyl-α,α-dimethyl- 1 H-imidazo[4,5-c]quinoline- 1 - ethanol, l-(2-methylpropyl)-lH-imidazo[4,5-c]quinolin-4-amine, 2-methylthiazolo[4,5- c]quinolin-4-amine, 2-ethylthiazolo[4,5-c]quinolin-4-amine, 2-propylthiazolo[4,5- c]quinolin-4-amine and 2-butylthiazolo[4,5-c]quinolin-4-amine.
    8. The method of Claim 1 wherein the immune response modifier compound is applied via a cream or a gel.
    9. The method of Claim 1 wherein the source of the envenomation is an arthopod.
    10. The method Claim 9 wherein the arthopod is a spider.
    11. The method of Claim 9 wherein the arthodpod is an insect of the order
    Ηymenoptera.
    12. The method of Claim 1 wherein the source of envenomation is a marine animal.
    13. The method of Claim 12 wherein the marine animal is a jellyfish.
    14. A method of preventing dermonecrosis caused by envenomation comprising applying a therapeutically effective amount of an immune response modifier compound selected from the group consisting of imidazoquinoline amines, imidazopyridine amines, 6,7-fused cycloalkylimidazopyridine amines, imidazonaphthyridine amines, tetrahydroimidazonaphthyridine amines, oxazolopyridine amines, oxazoloquinoline amines, thiazolopyridine amines, thiazoloquinoline amines and 1,2-bridged imidazoquinoline amines to the site of the envenomation.
    15. The method of Claim 14 wherein the immune response modifier compound is a compound of Formula I
    I wherein
    Ri is selected from the group consisting of S and NR3,
    R2 is selected from the group consisting of hydrogen, straight and branched chain alkyl containing one to six carbon atoms, and alkoxyalkyl wherein the alkoxy moiety contains one to four carbon atoms and the alkyl moiety contains one to four carbon atoms; and
    R3 is selected from the group consisting of straight and branched chain alkyl containing one to six carbon atoms and straight or branched chain hydroxy alkyl containing one to six carbon atoms; or a pharmaceutically acceptable salt thereof.
    16. The method of Claim 15 wherein Ri is NR3.
    17. The method of Claim 15 wherein R( is S.
    18. The method of Claim 15 wherein R2 is selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, and ethoxymethyl.
    19. The method of Claim 15 wherein R3 is selected from the group consisting of 2- methylpropyl and 2-hydroxy-2-methyIpropyl.
    20. The method of Claim 15 wherein the IRM compound is selected from the group consisting of 4-amino-2-ethoxymethyl-α,α-dimethyl-lH-imidazo[4,5-c]quinoline-l- ethanol, l-(2-methylpropyl)-lH-imidazo[4,5-c]quinolin-4-amine, 2-methylthiazolo[4,5- c]quinolin-4-amine, 2-ethylthiazolo[4,5-c]quinolin-4-amine, 2-propylthiazolo[4,5- c]quinolin-4-amine and 2-butylthiazolo[4,5-c]quinolin-4-amine.
    21. The method of Claim 14 wherein the immune response modifier compound is applied via a cream or a gel.
    22. The method of Claim 14 wherein the source of the envenomation is an arthopod.
    23. The method Claim 22 wherein the arthopod is a spider.
    24. The method of Claim 22 wherein the arthodpod is an insect of the order Ηymenoptera.
    25. The method of Claim 14 wherein the source of envenomation is a marine animal.
    26. The method of Claim 25 wherein the marine animal is a jellyfish.
AU2001251146A 2000-03-30 2001-03-30 Method for the treatment of dermal lesions caused by envenomation Ceased AU2001251146B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US19312000P 2000-03-30 2000-03-30
US60/193,120 2000-03-30
US09/820,420 US6894060B2 (en) 2000-03-30 2001-03-29 Method for the treatment of dermal lesions caused by envenomation
US09/820,420 2001-03-29
PCT/US2001/010291 WO2001074343A2 (en) 2000-03-30 2001-03-30 Method for the treatment of dermal lesions caused by envenomation

Publications (2)

Publication Number Publication Date
AU2001251146A1 true AU2001251146A1 (en) 2002-01-03
AU2001251146B2 AU2001251146B2 (en) 2004-12-16

Family

ID=26888686

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2001251146A Ceased AU2001251146B2 (en) 2000-03-30 2001-03-30 Method for the treatment of dermal lesions caused by envenomation
AU5114601A Pending AU5114601A (en) 2000-03-30 2001-03-30 Method for the treatment of dermal lesions caused by envenomation

Family Applications After (1)

Application Number Title Priority Date Filing Date
AU5114601A Pending AU5114601A (en) 2000-03-30 2001-03-30 Method for the treatment of dermal lesions caused by envenomation

Country Status (3)

Country Link
US (1) US6894060B2 (en)
AU (2) AU2001251146B2 (en)
WO (1) WO2001074343A2 (en)

Families Citing this family (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741908A (en) 1996-06-21 1998-04-21 Minnesota Mining And Manufacturing Company Process for reparing imidazoquinolinamines
UA67760C2 (en) * 1997-12-11 2004-07-15 Міннесота Майнінг Енд Мануфакчурінг Компані Imidazonaphthyridines and use thereof to induce the biosynthesis of cytokines
US6756382B2 (en) * 1999-06-10 2004-06-29 3M Innovative Properties Company Amide substituted imidazoquinolines
US6331539B1 (en) * 1999-06-10 2001-12-18 3M Innovative Properties Company Sulfonamide and sulfamide substituted imidazoquinolines
US6573273B1 (en) 1999-06-10 2003-06-03 3M Innovative Properties Company Urea substituted imidazoquinolines
US6541485B1 (en) 1999-06-10 2003-04-01 3M Innovative Properties Company Urea substituted imidazoquinolines
US6916925B1 (en) 1999-11-05 2005-07-12 3M Innovative Properties Co. Dye labeled imidazoquinoline compounds
JP3436512B2 (en) * 1999-12-28 2003-08-11 株式会社デンソー Accelerator device
US6525064B1 (en) 2000-12-08 2003-02-25 3M Innovative Properties Company Sulfonamido substituted imidazopyridines
US6664265B2 (en) 2000-12-08 2003-12-16 3M Innovative Properties Company Amido ether substituted imidazoquinolines
US6677347B2 (en) 2000-12-08 2004-01-13 3M Innovative Properties Company Sulfonamido ether substituted imidazoquinolines
US6545016B1 (en) 2000-12-08 2003-04-08 3M Innovative Properties Company Amide substituted imidazopyridines
UA74852C2 (en) 2000-12-08 2006-02-15 3M Innovative Properties Co Urea-substituted imidazoquinoline ethers
US6545017B1 (en) * 2000-12-08 2003-04-08 3M Innovative Properties Company Urea substituted imidazopyridines
US6677348B2 (en) 2000-12-08 2004-01-13 3M Innovative Properties Company Aryl ether substituted imidazoquinolines
US6664264B2 (en) 2000-12-08 2003-12-16 3M Innovative Properties Company Thioether substituted imidazoquinolines
US6660735B2 (en) 2000-12-08 2003-12-09 3M Innovative Properties Company Urea substituted imidazoquinoline ethers
US6667312B2 (en) * 2000-12-08 2003-12-23 3M Innovative Properties Company Thioether substituted imidazoquinolines
US20060142202A1 (en) * 2000-12-08 2006-06-29 3M Innovative Properties Company Compositions and methods for targeted delivery of immune response modifiers
US7226928B2 (en) * 2001-06-15 2007-06-05 3M Innovative Properties Company Methods for the treatment of periodontal disease
US20040014779A1 (en) * 2001-11-16 2004-01-22 3M Innovative Properties Company Methods and compositions related to IRM compounds and toll-like recptor pathways
WO2004080430A2 (en) * 2003-03-13 2004-09-23 3M Innovative Properties Company Methods of improving skin quality
EP1450804B9 (en) 2001-11-29 2009-04-01 3M Innovative Properties Company Pharmaceutical formulations comprising an immune response modifier
CA2365732A1 (en) 2001-12-20 2003-06-20 Ibm Canada Limited-Ibm Canada Limitee Testing measurements
US6677349B1 (en) 2001-12-21 2004-01-13 3M Innovative Properties Company Sulfonamide and sulfamide substituted imidazoquinolines
EP1478327B1 (en) * 2002-02-22 2015-04-29 Meda AB Method of reducing and treating uvb-induced immunosuppression
EP1376872B1 (en) * 2002-05-07 2007-10-10 Schott Ag Illumination device for touchscreens
AU2003237386A1 (en) 2002-06-07 2003-12-22 3M Innovative Properties Company Ether substituted imidazopyridines
ATE488246T1 (en) 2002-08-15 2010-12-15 3M Innovative Properties Co IMMUNO-STIMULATORY COMPOSITIONS AND METHODS FOR STIMULATING AN IMMUNE RESPONSE
JP2006503068A (en) 2002-09-26 2006-01-26 スリーエム イノベイティブ プロパティズ カンパニー 1H-Imidazo dimer
AU2003301052A1 (en) 2002-12-20 2004-07-22 3M Innovative Properties Company Aryl / hetaryl substituted imidazoquinolines
EP2572715A1 (en) 2002-12-30 2013-03-27 3M Innovative Properties Company Immunostimulatory Combinations
WO2004071459A2 (en) * 2003-02-13 2004-08-26 3M Innovative Properties Company Methods and compositions related to irm compounds and toll-like receptor 8
EP1599726A4 (en) * 2003-02-27 2009-07-22 3M Innovative Properties Co Selective modulation of tlr-mediated biological activity
AU2004218349A1 (en) 2003-03-04 2004-09-16 3M Innovative Properties Company Prophylactic treatment of UV-induced epidermal neoplasia
AU2004220534A1 (en) * 2003-03-07 2004-09-23 3M Innovative Properties Company 1-amino 1H-imidazoquinolines
US7163947B2 (en) * 2003-03-07 2007-01-16 3M Innovative Properties Company 1-Amino 1H-imidazoquinolines
JP2006523212A (en) * 2003-03-13 2006-10-12 スリーエム イノベイティブ プロパティズ カンパニー Diagnosis method of skin lesion
JP2006520245A (en) 2003-03-13 2006-09-07 スリーエム イノベイティブ プロパティズ カンパニー How to remove a tattoo
US20040192585A1 (en) 2003-03-25 2004-09-30 3M Innovative Properties Company Treatment for basal cell carcinoma
US20040265351A1 (en) * 2003-04-10 2004-12-30 Miller Richard L. Methods and compositions for enhancing immune response
CA2521682A1 (en) * 2003-04-10 2004-12-16 3M Innovative Properties Company Delivery of immune response modifier compounds using metal-containing particulate support materials
WO2004096144A2 (en) * 2003-04-28 2004-11-11 3M Innovative Properties Company Compositions and methods for induction of opioid receptors
WO2004110991A2 (en) * 2003-06-06 2004-12-23 3M Innovative Properties Company PROCESS FOR IMIDAZO[4,5-c]PYRIDIN-4-AMINES
WO2004110992A2 (en) * 2003-06-06 2004-12-23 3M Innovative Properties Company Process for imidazo[4,5-c] pyridin-4-amines
JP2007501252A (en) * 2003-08-05 2007-01-25 スリーエム イノベイティブ プロパティズ カンパニー Formulation containing immune response modifier
AR045260A1 (en) * 2003-08-12 2005-10-19 3M Innovative Properties Co COMPOUNDS CONTAINING IMIDAZO-OXIMA REPLACED
EP2939693A1 (en) * 2003-08-14 2015-11-04 3M Innovative Properties Company Lipid-modified immune response modifiers
WO2005020912A2 (en) * 2003-08-25 2005-03-10 3M Innovative Properties Company Delivery of immune response modifier compounds
WO2005018574A2 (en) * 2003-08-25 2005-03-03 3M Innovative Properties Company Immunostimulatory combinations and treatments
AR045529A1 (en) * 2003-08-27 2005-11-02 3M Innovative Properties Co IMIDAZOQUINOLINAS REPLACED WITH ARILOXI OR ARILALQUILENOXI GROUPS
US20060216333A1 (en) * 2003-09-02 2006-09-28 Miller Richard L Methods related to the treatment of mucosal associated conditions
US20050054665A1 (en) * 2003-09-05 2005-03-10 3M Innovative Properties Company Treatment for CD5+ B cell lymphoma
JP2007505629A (en) * 2003-09-17 2007-03-15 スリーエム イノベイティブ プロパティズ カンパニー Selective regulation of TLR gene expression
SG149829A1 (en) 2003-10-03 2009-02-27 3M Innovative Properties Co Pyrazolopyridines and analogs thereof
US7544697B2 (en) * 2003-10-03 2009-06-09 Coley Pharmaceutical Group, Inc. Pyrazolopyridines and analogs thereof
US20090075980A1 (en) * 2003-10-03 2009-03-19 Coley Pharmaceutical Group, Inc. Pyrazolopyridines and Analogs Thereof
CN1897948A (en) 2003-10-03 2007-01-17 3M创新有限公司 Alkoxy substituted imidazoquinolines
WO2005041891A2 (en) * 2003-10-31 2005-05-12 3M Innovative Properties Company Neutrophil activation by immune response modifier compounds
EP1685129A4 (en) * 2003-11-14 2008-10-22 3M Innovative Properties Co Oxime substituted imidazo ring compounds
US8598192B2 (en) 2003-11-14 2013-12-03 3M Innovative Properties Company Hydroxylamine substituted imidazoquinolines
US7309326B2 (en) * 2003-11-18 2007-12-18 Icu Medical, Inc. Infusion set
JP4891088B2 (en) * 2003-11-25 2012-03-07 スリーエム イノベイティブ プロパティズ カンパニー Substituted imidazo ring systems and methods
US8778963B2 (en) * 2003-11-25 2014-07-15 3M Innovative Properties Company Hydroxylamine and oxime substituted imidazoquinolines, imidazopyridines, and imidazonaphthyridines
US8940755B2 (en) * 2003-12-02 2015-01-27 3M Innovative Properties Company Therapeutic combinations and methods including IRM compounds
US20050226878A1 (en) * 2003-12-02 2005-10-13 3M Innovative Properties Company Therapeutic combinations and methods including IRM compounds
CN1914203A (en) * 2003-12-04 2007-02-14 3M创新有限公司 Sulfone substituted imidazo ring ethers
JP2007517035A (en) * 2003-12-29 2007-06-28 スリーエム イノベイティブ プロパティズ カンパニー Arylalkenyl and arylalkynyl substituted imidazoquinolines
US7888349B2 (en) * 2003-12-29 2011-02-15 3M Innovative Properties Company Piperazine, [1,4]Diazepane, [1,4]Diazocane, and [1,5]Diazocane fused imidazo ring compounds
EP1699398A4 (en) * 2003-12-30 2007-10-17 3M Innovative Properties Co Enhancement of immune responses
US8735421B2 (en) * 2003-12-30 2014-05-27 3M Innovative Properties Company Imidazoquinolinyl sulfonamides
JP4991520B2 (en) * 2004-03-15 2012-08-01 スリーエム イノベイティブ プロパティズ カンパニー Immune response modulator formulation and method
EP1730143A2 (en) * 2004-03-24 2006-12-13 3M Innovative Properties Company Amide substituted imidazopyridines, imidazoquinolines, and imidazonaphthyridines
US20060051374A1 (en) * 2004-04-28 2006-03-09 3M Innovative Properties Company Compositions and methods for mucosal vaccination
US20050267145A1 (en) * 2004-05-28 2005-12-01 Merrill Bryon A Treatment for lung cancer
US20080015184A1 (en) * 2004-06-14 2008-01-17 3M Innovative Properties Company Urea Substituted Imidazopyridines, Imidazoquinolines, and Imidazonaphthyridines
WO2005123080A2 (en) * 2004-06-15 2005-12-29 3M Innovative Properties Company Nitrogen-containing heterocyclyl substituted imidazoquinolines and imidazonaphthyridines
WO2006009832A1 (en) * 2004-06-18 2006-01-26 3M Innovative Properties Company Substituted imidazo ring systems and methods
WO2006038923A2 (en) * 2004-06-18 2006-04-13 3M Innovative Properties Company Aryl substituted imidazonaphthyridines
WO2006065280A2 (en) * 2004-06-18 2006-06-22 3M Innovative Properties Company Isoxazole, dihydroisoxazole, and oxadiazole substituted imidazo ring compounds and methods
WO2006009826A1 (en) * 2004-06-18 2006-01-26 3M Innovative Properties Company Aryloxy and arylalkyleneoxy substituted thiazoloquinolines and thiazolonaphthyridines
US8541438B2 (en) 2004-06-18 2013-09-24 3M Innovative Properties Company Substituted imidazoquinolines, imidazopyridines, and imidazonaphthyridines
EP1765348B1 (en) * 2004-06-18 2016-08-03 3M Innovative Properties Company Substituted imidazoquinolines, imidazopyridines, and imidazonaphthyridines
WO2006026470A2 (en) * 2004-08-27 2006-03-09 3M Innovative Properties Company Hiv immunostimulatory compositions
AU2005282726B2 (en) 2004-09-02 2011-06-02 3M Innovative Properties Company 1-alkoxy 1H-imidazo ring systems and methods
WO2006029115A2 (en) 2004-09-02 2006-03-16 3M Innovative Properties Company 2-amino 1h imidazo ring systems and methods
US20090270443A1 (en) * 2004-09-02 2009-10-29 Doris Stoermer 1-amino imidazo-containing compounds and methods
EP1804583A4 (en) * 2004-10-08 2009-05-20 3M Innovative Properties Co Adjuvant for dna vaccines
WO2006063072A2 (en) * 2004-12-08 2006-06-15 3M Innovative Properties Company Immunomodulatory compositions, combinations and methods
US8034938B2 (en) 2004-12-30 2011-10-11 3M Innovative Properties Company Substituted chiral fused [1,2]imidazo[4,5-c] ring compounds
US8436176B2 (en) * 2004-12-30 2013-05-07 Medicis Pharmaceutical Corporation Process for preparing 2-methyl-1-(2-methylpropyl)-1H-imidazo[4,5-c][1,5]naphthyridin-4-amine
CA2594253C (en) * 2004-12-30 2015-08-11 3M Innovative Properties Company Treatment for cutaneous metastases
EP1831226B1 (en) 2004-12-30 2012-08-08 3M Innovative Properties Company Chiral tetracyclic compounds inducing interferon biosynthesis
CA2592897A1 (en) * 2004-12-30 2006-07-13 Takeda Pharmaceutical Company Limited 1-(2-methylpropyl)-1h-imidazo[4,5-c][1,5]naphthyridin-4-amine ethanesulfonate and 1-(2-methylpropyl)-1h-imidazo[4,5-c][1,5]naphthyridin-4-amine methanesulfonate
WO2006084251A2 (en) 2005-02-04 2006-08-10 Coley Pharmaceutical Group, Inc. Aqueous gel formulations containing immune reponse modifiers
WO2007120121A2 (en) 2005-02-09 2007-10-25 Coley Pharmaceutical Group, Inc. Oxime and hydroxylamine substituted thiazolo[4,5-c] ring compounds and methods
ES2475728T3 (en) 2005-02-09 2014-07-11 3M Innovative Properties Company Thiazoloquinolines and alkoxy substituted thiazolonaphthyridines
WO2006086634A2 (en) 2005-02-11 2006-08-17 Coley Pharmaceutical Group, Inc. Oxime and hydroxylamine substituted imidazo[4,5-c] ring compounds and methods
CA2597446A1 (en) 2005-02-11 2006-08-31 Coley Pharmaceutical Group, Inc. Substituted imidazoquinolines and imidazonaphthyridines
US8343993B2 (en) 2005-02-23 2013-01-01 3M Innovative Properties Company Hydroxyalkyl substituted imidazonaphthyridines
AU2006216798A1 (en) 2005-02-23 2006-08-31 Coley Pharmaceutical Group, Inc. Hydroxyalkyl substituted imidazoquinoline compounds and methods
EP1851224A2 (en) 2005-02-23 2007-11-07 3M Innovative Properties Company Hydroxyalkyl substituted imidazoquinolines
CA2598437A1 (en) 2005-02-23 2006-08-31 Coley Pharmaceutical Group, Inc. Method of preferentially inducing the biosynthesis of interferon
JP2008533148A (en) 2005-03-14 2008-08-21 スリーエム イノベイティブ プロパティズ カンパニー Treatment method for actinic keratosis
CA2602683A1 (en) 2005-04-01 2006-10-12 Coley Pharmaceutical Group, Inc. Pyrazolopyridine-1,4-diamines and analogs thereof
AU2006232375A1 (en) 2005-04-01 2006-10-12 Coley Pharmaceutical Group, Inc. 1-substituted pyrazolo (3,4-c) ring compounds as modulators of cytokine biosynthesis for the treatment of viral infections and neoplastic diseases
US20080193474A1 (en) * 2005-04-25 2008-08-14 Griesgraber George W Immunostimulatory Compositions
JP2009507856A (en) 2005-09-09 2009-02-26 コーリー ファーマシューティカル グループ,インコーポレイテッド Amide and carbamate derivatives of N- {2- [4-amino-2- (ethoxymethyl) -1H-imidazo [4,5-c] quinolin-1-yl] -1,1-dimethylethyl} methanesulfonamide and Method
ZA200803029B (en) * 2005-09-09 2009-02-25 Coley Pharm Group Inc Amide and carbamate derivatives of alkyl substituted /V-[4-(4-amino-1H-imidazo[4,5-c] quinolin-1-yl)butyl] methane-sulfonamides and methods
EP1948173B1 (en) 2005-11-04 2013-07-17 3M Innovative Properties Company Hydroxy and alkoxy substituted 1h-imidazoquinolines and methods
US7892216B2 (en) * 2006-02-07 2011-02-22 Icu Medical, Inc. Infusion set
US8951528B2 (en) 2006-02-22 2015-02-10 3M Innovative Properties Company Immune response modifier conjugates
WO2007106854A2 (en) 2006-03-15 2007-09-20 Coley Pharmaceutical Group, Inc. Hydroxy and alkoxy substituted 1h-imidazonaphthyridines and methods
US7906506B2 (en) * 2006-07-12 2011-03-15 3M Innovative Properties Company Substituted chiral fused [1,2] imidazo [4,5-c] ring compounds and methods
ES2393761T3 (en) * 2006-07-14 2012-12-27 Stiefel Research Australia Pty Ltd Pharmaceutical fatty acid foam
WO2008030511A2 (en) 2006-09-06 2008-03-13 Coley Pharmaceuticial Group, Inc. Substituted 3,4,6,7-tetrahydro-5h, 1,2a,4a,8-tetraazacyclopenta[cd]phenalenes
US20080149123A1 (en) * 2006-12-22 2008-06-26 Mckay William D Particulate material dispensing hairbrush with combination bristles
WO2008098232A1 (en) 2007-02-08 2008-08-14 Graceway Pharmaceuticals, Llc Methods of treating dermatological disorders and inducing interferon biosynthesis with shorter durations of imiquimod therapy
CA2679067A1 (en) * 2007-03-23 2008-10-02 Graceway Pharmaceuticals, Llc Method and packages to enhance safety when using imiquimod to treat children diagnosed with skin disorders
US20080300790A1 (en) * 2007-05-29 2008-12-04 James Kirunda Kakaire Environmental data delivery - edd
US20100160368A1 (en) 2008-08-18 2010-06-24 Gregory Jefferson J Methods of Treating Dermatological Disorders and Inducing Interferon Biosynthesis With Shorter Durations of Imiquimod Therapy
RS58566B1 (en) 2008-12-19 2019-05-31 Medicis Pharmaceutical Corp Lower dosage strength imiquimod formulations and short dosing regimens for treating actinic keratosis
JP5738839B2 (en) 2009-04-01 2015-06-24 ウイラ アイピー プロプライエタリー リミテッド Multiple dose packages, courses of treatment, and methods of treatment for delivering predetermined multiple doses of a drug
EA025993B1 (en) 2009-07-13 2017-02-28 Медисис Фармасьютикал Корпорейшн Lower dosage strength imiquimod formulations and short dosing regimens for treating genital and perianal warts
DK2584900T3 (en) 2010-06-25 2019-04-01 Medicis Pharmaceutical Corp Combination therapy with cryosurgery and low-dose imiquimod for the treatment of actinic keratosis
RS55819B1 (en) 2010-08-17 2017-08-31 3M Innovative Properties Co Lipidated immune response modifier compound compositions, formulations, and methods
CA2838158C (en) 2011-06-03 2019-07-16 3M Innovative Properties Company Heterobifunctional linkers with polyethylene glycol segments and immune response modifier conjugates made therefrom
BR112013031039B1 (en) 2011-06-03 2020-04-28 3M Innovative Properties Co hydrazine compounds 1h-imidazoquinoline-4-amines, conjugates made from these compounds, composition and pharmaceutical composition comprising said compounds and conjugates, uses thereof and method of manufacturing the conjugate
US20130023736A1 (en) 2011-07-21 2013-01-24 Stanley Dale Harpstead Systems for drug delivery and monitoring
WO2013040447A2 (en) 2011-09-14 2013-03-21 Medicis Pharmaceutical Corporation Combination therapy with low dosage strength imiquimod and photodynamic therapy to treat actinic keratosis
WO2013162828A1 (en) 2012-04-27 2013-10-31 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Use of cpg oligonucleotides co-formulated with an antibiotic to accelarate wound healing
BR102013031043B1 (en) * 2013-12-02 2018-03-13 Fundação Butantan USE OF CHEMICAL COMPOUNDS ABLE TO INHIBIT THE TOXIC ACTION OF SPXOMYELINASES D FROM LOXOSCEL SPIDEN POISON AND PHARMACEUTICAL COMPOSITION UNDERSTANDING THE COMPOUND COMPOUNDS
US10232048B1 (en) 2014-11-18 2019-03-19 Divine Api-Logics, LLC Apitherapy method and composition
JP7265989B2 (en) 2016-10-25 2023-04-27 ウロゲン ファーマ リミテッド Immunomodulatory treatment of body cavities
EP3728255B1 (en) 2017-12-20 2022-01-26 3M Innovative Properties Company Amide substituted imidazo[4,5-c]quinoline compounds with a branched chain linking group for use as an immune response modifier

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3314941A (en) * 1964-06-23 1967-04-18 American Cyanamid Co Novel substituted pyridodiazepins
US3917624A (en) * 1972-09-27 1975-11-04 Pfizer Process for producing 2-amino-nicotinonitrile intermediates
IL73534A (en) * 1983-11-18 1990-12-23 Riker Laboratories Inc 1h-imidazo(4,5-c)quinoline-4-amines,their preparation and pharmaceutical compositions containing certain such compounds
ZA848968B (en) * 1983-11-18 1986-06-25 Riker Laboratories Inc 1h-imidazo(4,5-c)quinolines and 1h-imidazo(4,5-c)quinolin-4-amines
US5238944A (en) * 1988-12-15 1993-08-24 Riker Laboratories, Inc. Topical formulations and transdermal delivery systems containing 1-isobutyl-1H-imidazo[4,5-c]quinolin-4-amine
US5037986A (en) * 1989-03-23 1991-08-06 Minnesota Mining And Manufacturing Company Olefinic 1H-imidazo[4,5-c]quinolin-4-amines
US4929624A (en) * 1989-03-23 1990-05-29 Minnesota Mining And Manufacturing Company Olefinic 1H-imidazo(4,5-c)quinolin-4-amines
US5389640A (en) * 1991-03-01 1995-02-14 Minnesota Mining And Manufacturing Company 1-substituted, 2-substituted 1H-imidazo[4,5-c]quinolin-4-amines
US5268376A (en) * 1991-09-04 1993-12-07 Minnesota Mining And Manufacturing Company 1-substituted 1H-imidazo[4,5-c]quinolin-4-amines
US5266575A (en) * 1991-11-06 1993-11-30 Minnesota Mining And Manufacturing Company 2-ethyl 1H-imidazo[4,5-ciquinolin-4-amines
IL105325A (en) 1992-04-16 1996-11-14 Minnesota Mining & Mfg Immunogen/vaccine adjuvant composition
US5352784A (en) * 1993-07-15 1994-10-04 Minnesota Mining And Manufacturing Company Fused cycloalkylimidazopyridines
ATE195735T1 (en) * 1993-07-15 2000-09-15 Minnesota Mining & Mfg IMIDAZO (4,5-C)PYRIDINE-4-AMINE
US5648516A (en) * 1994-07-20 1997-07-15 Minnesota Mining And Manufacturing Company Fused cycloalkylimidazopyridines
US5644063A (en) * 1994-09-08 1997-07-01 Minnesota Mining And Manufacturing Company Imidazo[4,5-c]pyridin-4-amine intermediates
US5482936A (en) * 1995-01-12 1996-01-09 Minnesota Mining And Manufacturing Company Imidazo[4,5-C]quinoline amines
US5585612A (en) * 1995-03-20 1996-12-17 Harp Enterprises, Inc. Method and apparatus for voting
JPH09208584A (en) 1996-01-29 1997-08-12 Terumo Corp Amide derivative, pharmaceutical preparation containing the same, and intermediate for synthesizing the same
US5741908A (en) 1996-06-21 1998-04-21 Minnesota Mining And Manufacturing Company Process for reparing imidazoquinolinamines
EP0938315B9 (en) * 1996-10-25 2008-02-20 Minnesota Mining And Manufacturing Company Immune response modifier compounds for treatment of th2 mediated and related diseases
US5939090A (en) * 1996-12-03 1999-08-17 3M Innovative Properties Company Gel formulations for topical drug delivery
US6069149A (en) * 1997-01-09 2000-05-30 Terumo Kabushiki Kaisha Amide derivatives and intermediates for the synthesis thereof
UA67760C2 (en) 1997-12-11 2004-07-15 Міннесота Майнінг Енд Мануфакчурінг Компані Imidazonaphthyridines and use thereof to induce the biosynthesis of cytokines
US6110929A (en) * 1998-07-28 2000-08-29 3M Innovative Properties Company Oxazolo, thiazolo and selenazolo [4,5-c]-quinolin-4-amines and analogs thereof
JP2000119271A (en) 1998-08-12 2000-04-25 Hokuriku Seiyaku Co Ltd 1h-imidazopyridine derivative
CA2361936C (en) 1999-01-08 2009-06-16 3M Innovative Properties Company Formulations comprising imiquimod or other immune response modifiers for treating mucosal conditions
US6541485B1 (en) 1999-06-10 2003-04-01 3M Innovative Properties Company Urea substituted imidazoquinolines
US6451810B1 (en) 1999-06-10 2002-09-17 3M Innovative Properties Company Amide substituted imidazoquinolines

Similar Documents

Publication Publication Date Title
US6894060B2 (en) Method for the treatment of dermal lesions caused by envenomation
AU2001251146A1 (en) Method for the treatment of dermal lesions caused by envenomation
US8846039B2 (en) Method for ameliorating pruritus
US8835394B2 (en) Treatment for basal cell carcinoma
US8691283B2 (en) Standardized bee venom preparation
KR101279196B1 (en) Methods and composition for bactericide, bacteriostatic and anti-inflammation
EP2033635B1 (en) Use of phenylbutyric acid or salts thereof for treating pruritus
JP2021046455A (en) Compositions and methods for treating cutaneous t cell lymphoma
KR20140027122A (en) Method for treating disorders of the skin
JP3989188B2 (en) Bee venom therapy without a bee needle
JP4974813B2 (en) Ways to relieve itch
AU2007214300B2 (en) Method for Ameliorating Pruritus
US20120322751A1 (en) use of rhamnolipids as a drug of choice in the case of nuclear disasters in the treatment of the combination radiation injuries and illnesses in humans and animals
Carter et al. Studies on the topical treatment of experimental cutaneous leishmaniasis: the therapeutic effect of methyl benzethonium chloride and the aminoglycosides, gentamicin and paromomycin
CA2601999C (en) Method for ameliorating pruritus
Lazarenko et al. Pharmacological effects of the synthetic analogue of the indolicidin on the regeneration of burn and cold wounds in the experiment
Kumar Clinical management of maggot wounds in Asiatic Black Bear (Ursus thibetanus)‎
US20150258073A1 (en) INDICATION OF ANTHRA[2,1,c][1,2,5]THIADIAZOLE-6,11-DIONE COMPOUND IN ALLEVIATING PAIN
Dmitrievich et al. Pharmacological effects of the synthetic analogue of the indolicidin on the regeneration of burn and cold wounds in the experiment
Saleh Evaluate the effect of the metranidazole gel on healing of partial thickness flap in rats (serum TNF-a)
KR20090025559A (en) Method for ameliorating pruritus