AT525676A1 - Brennstoffzellensystem - Google Patents
Brennstoffzellensystem Download PDFInfo
- Publication number
- AT525676A1 AT525676A1 ATA50911/2021A AT509112021A AT525676A1 AT 525676 A1 AT525676 A1 AT 525676A1 AT 509112021 A AT509112021 A AT 509112021A AT 525676 A1 AT525676 A1 AT 525676A1
- Authority
- AT
- Austria
- Prior art keywords
- heat exchanger
- fuel
- fuel cell
- section
- cell system
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 151
- 230000003647 oxidation Effects 0.000 claims description 18
- 238000007254 oxidation reaction Methods 0.000 claims description 18
- 238000011144 upstream manufacturing Methods 0.000 claims description 14
- 230000003197 catalytic effect Effects 0.000 claims description 13
- 239000003054 catalyst Substances 0.000 claims description 12
- 230000001681 protective effect Effects 0.000 claims description 8
- 239000007789 gas Substances 0.000 description 56
- 101001021103 Homo sapiens Oxygen-dependent coproporphyrinogen-III oxidase, mitochondrial Proteins 0.000 description 9
- 102100036201 Oxygen-dependent coproporphyrinogen-III oxidase, mitochondrial Human genes 0.000 description 9
- 238000009833 condensation Methods 0.000 description 7
- 230000005494 condensation Effects 0.000 description 7
- 239000002912 waste gas Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000000629 steam reforming Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
- H01M8/04022—Heating by combustion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04097—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04223—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
- H01M8/04268—Heating of fuel cells during the start-up of the fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/10—Fuel cells in stationary systems, e.g. emergency power source in plant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/20—Fuel cells in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Fuel Cell (AREA)
Abstract
Die Erfindung betrifft ein Brennstoffzellensystem (1), insbesondere SOFC-System, umfassend zumindest einen Brennstoffzellenstapel (2) mit einem Anodenabschnitt (3) und einem Kathodenabschnitt (4), einen Luftzuführabschnitt (5), einen Brenn- stoffzuführabschnitt (6) und einen Rezirkulationsabschnitt (7), wobei im Rezirkulati- onsabschnitt (7) ein Wärmetauschernetzwerk mit zumindest einem ersten Wärme- tauscher (8) und einem zweiten Wärmetauscher (9) vorgesehen ist, wobei der zweite Wärmetauscher (9) stromabwärts des ersten Wärmetauschers (8) angeordnet ist, wobei eine kalte Seite des ersten Wärmetauschers (8) im Brennstoffzuführabschnitt (6) und eine kalte Seite des zweiten Wärmetauscher (9) im Luftzuführabschnitt (7) angeordnet ist. Weiter betrifft die Erfindung eine Verwendung eines solchen Brennstoffzellensystem (1).
Description
Brennstoffzellensystem
Die Erfindung betrifft ein Brennstoffzellensystem, insbesondere ein SOFC-System, umfassend zumindest einen Brennstoffzellenstapel mit einem Anodenabschnitt und einem Kathodenabschnitt, einen Luftzuführabschnitt, einen Brennstoffzuführabschnitt und einen Rezirkulationsabschnitt, wobei im Rezirkulationsabschnitt ein Wärmetauschernetzwerk mit zumindest einem ersten Wärmetauscher und einem zweiten Wärmetauscher vorgesehen ist, wobei der zweite Wärmetauscher stromabwärts des ersten Wärmetauschers angeordnet ist.
Weiter betrifft die Erfindung eine Verwendung eines solchen Brennstoffzellensys-
tems.
SOFC-Systeme sind aus dem Stand der Technik bekannt. Um die Effizienz eines SOFC-Systems zu erhöhen ist es bekannt, heißes Anodenabgas zu rezirkulieren und damit auch die Brennstoffausnutzung des Systems zu erhöhen. Diese Rezirkulation kann beispielsweise mit HeiRgasgebläsen umgesetzt werden. Hierbei ist die technische Umsetzung und auch die Lebensdauer des HeiRgasgebläses jedoch problematisch. Anodenabgas in einem Hochtemperatur-Brennstoffzellensystem, insbesondere einem SOFC-System weist nämlich eine Temperatur zwischen 500 °C und 1000 °C. Darüber hinaus benötigen viele Brennstoffzellensysteme ein Schutzgas, um den Brennstoffzellenstapel, insbesondere die Brennstoffelektrode, vor Degradation während des Aufheizvorganges zu schützen. Dabei kann es notwendig sein Wärme in das System einzubringen, was nicht trivial, da es im Brennstoffzellensystem sehr unterschiedliche Temperaturanforderungen gibt.
Hier setzt die Erfindung an. Aufgabe der Erfindung ist es, ein Brennstoffzellensystem bereitzustellen, welches besonders effizient betreibbar ist, in welchem insbesondere
ein Gebläse in einem Rezirkulationsabschnitt problemlos betreibbar ist.
Weiter ist es ein Ziel, ein eine Verwendung eines solchen Brennstoffzellensystems
anzugeben.
Die Aufgabe wird erfindungsgemäß dadurch gelöst, dass bei einem Brennstoffzellensystem der eingangs genannten Art eine kalte Seite des ersten Wärmetauschers im Brennstoffzuführabschnitt und eine kalte Seite des zweiten Wärmetauscher im Luftzuführabschnitt angeordnet ist.
der zweite Wärmetauscher als Luft/Brennstoffwärmetauscher ausgebildet.
Das Brennstoffzellensystem ist insbesondere als Hochtemperatur-
Brennstoffzellensystem und bevorzugt als SOFC-System ausgebildet.
Der Rezirkulationsabschnitt dient der Rezirkulation von Anodenabgas als Rezirkulationsgas aus dem Anodenabschnitt des Brennstoffzellenstapels des Brennstoffzellensystems. Hierfür ist der Rezirkulationsabschnitt insbesondere mit einer Rezirkulationsleitung ausgestattet, welche insbesondere fluidkommunizierend mit dem Anodenabschnitt verbunden ist. Der Rezirkulationsabschnitt ist im Brennstoffzellensys-
tem eingebunden.
Beim Brennstoffzellensystem gemäß der Erfindung ist ein Luftzuführabschnitt vorgesehen, über welchen Luft von einer Luftquelle in Richtung des Kathodenabschnittes förderbar ist. Unter Luft ist im Rahmen der Erfindung ein sauerstoffhaltiges Gas zu verstehen. Weiter weist das Brennstoffzellensystem einen Brennstoffzuführabschnitt, über welchen Brennstoff von einer Brennstoffquelle in Richtung des Anodenabschnittes förderbar ist. Als Brennstoff kann beispielsweise ein kohlenstoffhaltiges Gas wie Methan oder Ethan, Erdgas oder auch Wasserstoff eingesetzt werden. Grundsätzlich kann auch ein flüssiger Brennstoff verwendet werden. Selbstverständlich sind im Brennstoffzellensystem vorzugsweise weitere Bauteile vorgesehen, beispielsweise ein Reformer oder ein Reformerwärmetauscher, welcher Brennstoff für die Umsetzung im Anodenabschnitt reformiert, Katalysatoren, beispielsweise in einer Abgasleitung, zum Umsetzten verbleibender Brennstoffanteile im Abgas oder weitere Wärme-
tauschervorrichtungen.
Bevorzugt ist stromabwärts des Brennstoffzellenstapels eine Aufteilvorrichtung vorgesehen, welche dem Aufteilen des Abgases in den Rezirkulationsabschnitt und in eine Abgasleitung dient. In der Abgasleitung ist bevorzugt ein Oxidationskatalysator zum Umsetzten verbleibender Brennstoffanteile im Abgas bzw. zur thermischen
Verwertung und ein weiterer als Luft/Luft-Wärmetauscher ausgebildeter Wärmetau-
scher zum Abgeben von Wärme an den Luftzuführabschnitt vorgesehen. Der andere
Teil wird über den Rezirkulationsabschnitt wieder dem Brennstoffzellenstapel zuge-
führt, um die Brennstoffausnutzung und damit den elektrischen Wirkungsgrad des
Brennstoffzellensystems zu erhöhen.
Im Rezirkulationsabschnitt wird Abgas geführt, welches nacheinander durch den ersten und den zweiten Wärmetauscher geführt wird, wobei dieses über den ersten Wärmetauscher Wärme an den Brennstoffzuführabschnitt und über den zweiten
Wärmetauscher Wärme an den Luftzuführabschnitt abgibt.
Besonders vorteilhaft ist es, wenn im Rezirkulationsabschnitt ein Gebläse, insbesondere stromabwärts des zweiten Wärmetauschers, angeordnet ist. Das Gebläse ist bevorzugt als Rezirkulationsgebläse ausgebildet und zur Förderung des Abgases im Rezirkulationsabschnitt wieder in Richtung des Brennstoffzellenstapels angeordnet und ausgebildet. Der erste Wärmetauscher ist dazu ausgebildet, eine Temperatur des rezirkulierten Abgases zu reduzieren, sodass das Gebläse nicht mehr als Heißgasgebläse ausgebildet werden muss. Durch den ersten Wärmetauscher wird dem rezirkulierten Abgases bereits ein großer Teil der Wärme entzogen. Das Abgas hat an einem Auslass des Brennstoffzellenstapels üblicherweise eine Temperatur im Bereich von 500 °C bis 1000 °C. Nach dem Rezirkulationsgebläse wird das rezirkulierte Abgas wieder über den ersten Wärmetauscher auf Temperatur gebracht und dem
Brennstoffzellenstapel, insbesondere über einen Reformer, wieder zugeführt.
Es ist weiter günstig, wenn im Luftzuführabschnitt eine Bypassleitung vorgesehen ist, durch welche die kalte Seite des zweiten Wärmetauschers umgehbar ist. Der zweite Wärmetauscher ist insbesondere als Brennstoff/Luft-Wärmetauscher ausgebildet und angeordnet und kühlt das rezirkulierte Anodenabgas auf eine gewünschte, vorgegebene Temperatur ab. Eine Wärmesenke ist dabei durch die kühle Luft ausgestaltet. Dies bringt den Vorteil, dass das rezirkulierte Anodenabgas bis auf die Kondensationstemperatur abgekühlt werden kann und die von der Luft aufgenommene Wärme über die Luftzuführleitung wieder in das System eingetragen wird. Dadurch sind die Wirkungsgradanforderungen an den ersten Wärmetauscher durch den zweiten Wärmetauscher entschärft, wodurch der erste Wärmetauscher kleiner und kostengünstiger ausgebildet werden kann. Um die Temperatur des Anodenabgases im Rezirkulationsabschnitt (entspricht dem rezirkulierten Anodenabgas) regeln zu können, ist im
Luftzuführabschnitt die Bypassleitung vorgesehen. Durch geeignete Aktuatoren im
Luftzuführabschnitt ist hier die Aufteilung zwischen der Bypassleitung und dem zwei-
ten Wärmetauscher eingestellt, wodurch die Temperatur im Rezirkulationsabschnitt
regelbar ist.
Die Anordnung der beiden Wärmetauscher in Kombination mit der Bypassleitung bringen den Vorteil mit sich, dass auch bei unterschiedlichen Betriebszuständen die Temperatur an einem Einlass des Gebläses immer zwischen einem Maximalwert und einem Minimalwert einregelbar ist. Als sinnvolle Temperatur hat sich dabei beispielsweise eine Temperatur zwischen 80 °C und 250 °C herausgestellt.
Von Vorteil ist es, wenn beim erfindungsgemäßen Brennstoffzellensystem frischer Brennstoff in den Rezirkulationsabschnitt einbringbar ist, wofür der Brennstoffzu-
führabschnitt und er Rezirkulationsabschnitt fluidisch miteinander verbunden sind.
Zweckmäßig ist es, wenn der Brennstoffzuführabschnitt eine Brennstoffleitung umfasst, wobei über die Brennstoffleitung stromaufwärts des ersten Wärmetauschers Brennstoff dem Rezirkulationsabschnitt zuführbar ist. Es wird also frischer Brennstoff über eine fluidische Verbindung zwischen dem Brennstoffzuführabschnitt und dem Rezirkulationsabschnitt in den Rezirkulationsabschnitt eingebracht. Bei dieser Ausführungsvariante, ist vorgesehen, dass der Brennstoff stromaufwärts des zweiten Wärmetauscher und stromabwärts des ersten Wärmetauschers in den Rezirkulationsabschnitt zugeführt wird. Durch diese Anordnung kann der Versorgungsdruck des Brennstoffes, wenn dieser zu gering ist, durch das Gebläse angesaugt werden, wobei zur Regelung z. B. ein Ventil und Massenstrommessung vorgesehen sein kann. Weiter ist durch die Einbringung von Brennstoff stromaufwärts des zweiten Wärmetauschers (an dieser Stelle beträgt die Temperatur des Abgases im Rezirkulationsabschnitt noch etwa 200 °C) eine Gefahr von lokaler Kondensation verringert, da das Abgases im Rezirkulationsabschnitt noch heiß genug ist, um den frischen Brennstoff aufzuwärmen, ohne dadurch unter eine Kondensationstemperatur zu sinken. Die Kondensationstemperatur des Abgases im Rezirkulationsabschnitt beträgt etwa
80 °C, ist jedoch von einer Rezirkulationsrate und einer Brennstoffausnutzung am
Brennstoffzellenstapel abhängig.
Alternativ kann es günstig sein, wenn der Brennstoffzuführabschnitt eine Brennstoffleitung umfasst, wobei über die Brennstoffleitung zwischen dem zweiten Wärmetauscher und dem Gebläse Brennstoff dem Rezirkulationsabschnitt zuführbar ist. Hierbei
wird also frischer Brennstoff über eine fluidische Verbindung zwischen dem Brenn-
stoffzuführabschnitt und dem Rezirkulationsabschnitt stromabwärts des zweiten
Wärmetauschers und stromaufwärts des Gebläses in den Rezirkulationsabschnitt
eingebracht. Diese Anordnung ist insbesondere dann vorteilhaft, wenn ein Versor-
gungsdruck des frischen Brennstoffes gering ist und keine lokale Kondensation auf-
tritt.
Bei einer weiteren Ausgestaltungsvariante der Erfindung ist es vorteilhaft, wenn der Brennstoffzuführabschnitt eine Brennstoffleitung umfasst, wobei über die Brennstoffleitung zwischen dem Gebläse und dem ersten Wärmetauscher Brennstoff dem Rezirkulationsabschnitt zuführbar ist. Hierbei wird also frischer Brennstoff über eine fluidische Verbindung zwischen dem Brennstoffzuführabschnitt und dem Rezirkulationsabschnitt stromabwärts des Gebläses und stromaufwärts des ersten Wärmetauschers in den Rezirkulationsabschnitt eingebracht. Dies ist insbesondere dann günstig, wenn ein Brennstoffversorgungsdruck hoch genug ist, um z. B. über einen Massenstromregler (MFC) eingebracht zu werden. Da das Anodenabgas durch eine Kompression im Gebläse wieder erwärmt wird, ist das Risiko von lokaler Kondensa-
tion je nach Temperaturniveau wieder verringert.
Günstig ist es, wenn eine Kathodenabführleitung und eine Anodenabführleitung vorgesehen ist. Bevorzugt sind diese getrennt voneinander ausgebildet, sodass keine gemeinsame Abgasleitung vom Brennstoffzellenstapel vorgesehen ist. Die Anodenabführleitung wird durch eine Aufteilvorrichtung stromabwärts des Brennstoffzellenstapels in den Rezirkulationsabschnitt und in eine Abgasleitung aufgeteilt, wobei Abgas über die Abgasleitung, in welcher zumindest ein Oxidationskatalysator angeord-
net ist an die Umgebung abgegeben.
Es ist vorteilhaft, wenn stromabwärts des Brennstoffzellenstapels ein OxidationskataIysator angeordnet ist, wobei dem Oxidationskatalysator ein Teil eines Abgases zuführbar ist. Besonders bevorzugt ist dem Oxidationskatalysator sowohl Anodenabgas als auch Kathodenabgas zuführbar, insbesondere über zwei getrennte Leitungen. Stromabwärts des Oxidationskatalysators ist bevorzugt ein weitere Wärmetauscher angeordnet, über welchem noch vorhandene Wärme des Abgases an die Luft, welche zum Kathodenabschnitt gefördert wird, abgegeben wird. Die kalte Seite dieses Wärmetauschers ist also im Luftzuführabschnitt angeordnet.
Zweckmäßig ist es, wenn ein Reformerwärmetauscher vorgesehen ist, wobei eine
heiße Seite des Reformerwärmetauschers in der Kathodenabführleitung angeordnet
zum Wärmetauscher am Reformer geleitet wird.
Vorteilhaft ist es, wenn ein Startbrenner vorgesehen ist. Durch den Startbrenner erfolgt ein Aufheizen des Brennstoffzellensystems. Der Startbrenner kann vorteilhaft beispielsweise als Flammenbrenner, als katalytischer Brenner oder als Hybridbrenner (katalytisch mit Flamme kombiniert) ausgeführt sein. Günstig kann es auch sein, wenn der Startbrenner in einen Oxidationskatalysator integriert oder kombiniert mit diesem ausgebildet ist. Die durch den Starbrenner freigesetzte Wärme kann mit Vorteil an verschiedenen Stellen in das System eingebracht werden, beispielsweise in eine Kathodenabgasleitung direkt stromabwärts des Kathodenabschnittes, in die Luftzuführleitung oder direkt in den Oxidationskatalysator oder stromabwärts davon. Die Anordnung des Startbrenner ist abhängig von einzelnen Komponentenspezifika-
tionen wie Temperaturlimits, Verträglichkeit von Verbrennungsabgas, und Ähnliches.
Von Vorteil ist es, wenn ein Reformer zum Herstellen von Schutzgas durch katalytisch partielle Oxidation vorgesehen ist. Um ein geeignetes Schutzgas intern herzustellen hat sich ein Reformer zum Herstellen von Schutzgas durch katalytisch partielle Oxidation (CPOX-Reformer) bewährt. Dabei wird Luft und Brennstoff katalytisch zu
einem Synthesegas umgesetzt. Diese Reaktion ist ein katalytischer Oxidationspro-
stapel eingebracht werden.
Um die Komplexität und den Bauraum des gesamten Brennstoffzellensystems gering zu halten, kann der CPOX-Reformer alternativ auch in den allgemeinen Reformer integriert werden. Dies bringt folgende Vorteile: Es werden keine zusätzliche Brennstoffleitung und kein zusätzlicher Reformer benötigt. Hier erfolgt die Aufwärmung über die Light-off Temperatur über das Brennstoffzellensystem intern über das heiße Kathodenabgas selbst, wobei die Light-off Temperatur hier bei im Bereich zwischen 250 °C und 500 °C liegt. Sobald die CPOX-Reaktion gestartet ist, beginnt die exotherme CPOX-Reaktion (> 600°C), wodurch der Katalysator aktiv gekühlt (Kathodenabgastemperatur liegt z. B. bei metallbasierten Brennstoffzellenstapel im Aufheizvorgang meist unter 600 °C). Der Reformerkatalysator sollte hierbei sowohl für CPOX-Reformierung als auch für Dampfreformierung ausgebildet sein. Dies kann bevorzugt über einen zweistufigen Reformer (z. B. einen Edelmetallkatalysator mit anschließenden Ni-basierten Katalysator) oder über einen dementsprechend robus-
ten einstufigen Katalysator erreicht werden.
Eine Verwendung eines erfindungsgemäßen Brennstoffzellensystems erfolgt mit Vorteil als stationäre Anlage oder in einem Kraftfahrzeug. Vorteilhaft kann das erfindungsgemäße Brennstoffzellensystem auch in marinen Anwendungen oder Flugzeu-
gen verwendet werden.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der
nachfolgenden Beschreibung, in der unter Bezugnahme auf die Zeichnung Ausfüh-
rungsbeispiele der Erfindung im Einzelnen beschrieben ist. Es zeigt schematisch:
Fig. 1a eine schematische Darstellung eines erfindungsgemäßen Brennstoffzellen-
systems;
Fig. 15 eine schematische Darstellung eines weiteren erfindungsgemäßen Brenn-
stoffzellensystems;
Fig. 2 eine schematische Darstellung eines weiteren erfindungsgemäßen Brennstoff-
zellensystems;
Fig. 3 eine schematische Darstellung eines weiteren erfindungsgemäßen Brennstoff-
zellensystems.
Fig. 1a zeigt ein erfindungsgemäßes Brennstoffzellensystem 1 mit einem Brennstoffzellenstapel 2 umfassend einen Anodenabschnitt 3 und einen Kathodenabschnitt 4. Es ist eine Luftquelle 19 vorgesehen, an welche ein Luftzuführabschnitt 5 anschließt, um Luft in Richtung des Kathodenabschnittes 4 zu fördern. Ebenso ist eine Brennstoffquelle 20 vorgesehen, an welche sich ein Brennstoffzuführabschnitt 6 mit einer Brennstoffleitung 12 anschließt, um Brennstoff in Richtung des Anodenabschnittes 3 zu fördern. Das Brennstoffzellensystem 1 umfasst weiter einen Rezirkulationsabschnitt 7, über welches Abgas aus dem Anodenabschnitt 3 durch ein Gebläse 10 wieder in Richtung des Anodenabschnittes 3 gefördert wird. Stromabwärts des Brennstoffzellenstapels 2 ist eine erste Aufteilvorrichtung 21 vorgesehen über welche das Anodenabgas in den Rezirkulationsabschnitt 7 und in eine Abgasleitung 22 auf-
teilbar ist.
Der Teil des Anodenabgases im Rezirkulationsabschnitt 7, sprich das rezirkulierte Abgas, wird durch einen ersten Wärmetauscher 8 und einen zweiten Wärmetauscher 9 geleitet. Der erste Wärmetauscher 8 ist stromaufwärts des zweiten Wärmetauschers 9 angeordnet, wobei eine heiße Seite des ersten Wärmetauschers 8 im Rezirkulationsabschnitt 7 und eine kalte Seite des ersten Wärmetauschers 8 im Brennstoffzuführabschnitt 6 angeordnet ist. Dem heißen Anodenabgas wird also Wärme entzogen und der erste Wärmetauscher 8 ist als Brennstoff/BrennstoffWärmetauscher ausgebildet. Das Gebläse 10, welches als Rezirkulationsgebläse
tauscher 9 angeordnet und zur Förderung des Anodenabgases ausgebildet.
Stromaufwärts des zweiten Wärmetauschers 9 ist eine fluidische Verbindung 23 zwischen dem Rezirkulationsabschnitt 7 und dem Brennstoffzuführabschnitt 6 vorgesehen, sodass frischer Brennstoff über die Brennstoffleitung 12 in den Rezirkulationsabschnitt 7 einbringbar ist. Der frische Brennstoff wird nun zusammen mit dem rezirkulierten Abgas in Richtung des Anodenabschnittes 3 gefördert. Dabei wird dieser Brennstoff nun in einem ersten Schritt durch die kalte Seite des ersten Wärmetau-
schers 8 geführt, wodurch dieser wieder erwärmt wird.
Stromaufwärts des Anodenabschnittes 3 und stromabwärts der kalten Seite des ersten Wärmetauschers 8 ist ein Reformerwärmetauscher 16 angeordnet, welcher den Brennstoff zur Verwendung im Anodenabschnitt 3 aufbereitet. Dem Reformerwärmetauscher 16 wird zum Aufwärmen des entsprechenden Reformerabschnittes Katho-
denabgas über die Kathodenabführleitung 13 zugeführt.
Der Luftzuführabschnitt 5 weist eine Bypassleitung 11 auf, über welche der zweite Wärmetauscher 9 umgangen werden kann. Hierfür ist strromaufwärts des zweiten Wärmetauchers 9 eine Abzweigung 24, von welcher die Bypassleitung 11 abzweigt, und stromabwärts des zweiten Wärmetauschers 9 eine Verbindung 25, bei welcher die Bypassleitung 11 sich wieder verbindet, vorgesehen. Stromabwärts der Verbindung 25 ist ein weiterer Wärmetauscher 26 vorgesehen, wobei dessen kalte Seite in der Luftzuführleitung und dessen warme Seite in der Abgasleitung 22 angeordnet ist, sodass das heiße Abgas Wärme auf die Luft zur Verwendung im Kathodenabschnitt 4 überträgt. Der weitere Wärmetauscher 26 ist also als Luft/Luft-Wärmetauscher
ausgebildet und angeordnet.
In der Abgasleitung 22 ist ein Oxidationskatalysator 15 angeordnet, wobei in diesen sowohl die Abgasleitung als auch die Kathodenabführleitung 14 (stromabwärts des Reformerwärmetauschers 16) führen. Es wird also Anodenabgas unter Zufuhr von Kathodenabgas verbrannt. Das verbrannte Abgas wird dann über den weiteren
Wärmetauscher 26 an die Umgebung 27 abgeführt.
Das Brennstoffzellensystem 1 gemäß Fig. 1 umfasst weiter einen Startbrenner 17, welchem sowohl Brennstoff aus der Brennstoffquelle 20 als auch Luft aus der Luft-
quelle 19 zugeführt werden. Der Startbrenner 17 ist zum Aufheizen des Brennstoff-
zellensystems 1 angeordnet und ausgebildet. Hierfür wird die Wärme beispielsweise
direkt dem Oxidationskatalysator 15 (durchgezogenen Linie) oder der Abgasleitung
22 stromabwärts davon oder der Luftzuführleitung 5 oder der Kathodenabluftleitung
13 (jeweils dargestellt durch strichlierte Linien) zugeführt.
Darüber hinaus ist ein Reformer 18 zum Herstellen von Schutzgas durch katalytisch partielle Oxidation (CPOX-Reformer) vorgesehen. Auch diesem wird gemäß Fig. 1 sowohl Brennstoff als auch Luft zugeführt. Da es eine gewisse Light-off Temperatur braucht, um den CPOX-Reformer auf Betriebstemperatur zu bringen, ist eine Wärmezufuhr Q zum Reformer 18 vorgesehen. Durch den Reformer 18 bzw. die darin stattfindende Reaktion wird ein sogenanntes Schutzgas hergestellt welches beispielsweise stromaufwärts oder stromabwärts des Reformerwärmetauschers 16 zugeführt werden kann, um insbesondere den Brennstoffzellenstapel 2 zu schützen.
Fig. 1b zeigt ein weiteres erfindungsgemäßes Brennstoffzellensystem 1. Elemente, welche die gleiche Funktion und insbesondere gleiche Anordnung wie jene gemäß Fig. 1a haben, haben auch die gleichen Bezugszeichen und werden nicht weiter beschrieben. Im Unterschied zur Fig. 1a ist beim Brennstoffzellensystem 1 gemäß Fig . 1b der Reformer 18 zum Herstellen von Schutzgas durch katalytisch partielle Oxidation nicht als separates Element ausgebildet und angeordnet, sondern in den Reformerteil des Reformerwärmetauschers 16 integriert. Hierfür ist der Reformerwärme-
tauscher 16 sowohl für CPOX als auch für Dampfreformierung ausgebildet.
In Fig. 2 ist ein weiteres erfindungsgemäßes Brennstoffzellensystem 1 gezeigt. Auch hier haben Elemente, welche die gleiche Funktion und insbesondere gleiche Anordnung wie jene gemäß Fig. 1a oder 1b haben, haben auch die gleichen Bezugszeichen und werden nicht weiter beschrieben. Im Unterschied zu den Brennstoffzellensystemen 1 gemäß Fig. 1a und 1b ist hier die fluidische Verbindung 23 zwischen dem Brennstoffzuführabschnitt 12 und dem Rezirkulationsabschnitt 7 stromabwärts des zweiten Wärmetauschers 9 und stromaufwärts des Gebläses 10 angeordnet. Zur Vereinfachung sind in Fig. 2 der Startbrenner 17 und der CPOX-Reformer nicht dargestellt. Selbstverständlich kann jedoch auch das Brennstoffzellensystem 1 gemäß
Fig. 2 diese Elemente umfassen.
Fig. 3 zeigt ist ein weiteres erfindungsgemäßes Brennstoffzellensystem 1. Auch hier haben Elemente, welche die gleiche Funktion und insbesondere gleiche Anordnung
wie jene gemäß Fig. 1a, 1b oder 2 haben, haben auch die gleichen Bezugszeichen
mäß Fig. 2 diese Elemente umfassen.
Zusammenfassend weist das erfindungsgemäße Brennstoffzellensystem insbeson-
dere folgende Vorteile auf:
e Es können hohe Rezirkulationsraten mit Rezirkulationsgebläsen umgesetzt und die Temperatur am Einlass des Rezirkulationsgebläses auch auf sehr niedrigem Temperaturniveau geregelt werden;
e Aus dem Anodenpfad ausgekoppelte Wärme bleibt im System;
e Hohe Wirkungsgradanforderungen an den Brennstoff/BrennstoffWärmetauscher (erster Wärmetauscher 8) und den Luft/Luft-Wärmetauscher (weiterer Wärmetauscher 26) werden entschärft;
e Durch die Einbringung von frischem Brennstoff und die Umsetzung über das Rezirkulationsgebläse wird eine vorgeschaltete Verdichtung vom frischen Brennstoff zu vermeiden;
e Das Risiko von lokaler Kondensation vor dem Rezirkulationsgebläse und da-
mit einhergehender Beschädigung des Rezirkulationsgebläses ist verringert.
Claims (12)
1. Brennstoffzellensystem (1), insbesondere SOFC-System, umfassend zumindest einen Brennstoffzellenstapel (2) mit einem Anodenabschnitt (3) und einem Kathodenabschnitt (4), einen Luftzuführabschnitt (5), einen Brennstoffzuführabschnitt (6) und einen Rezirkulationsabschnitt (7), wobei im Rezirkulationsabschnitt (7) ein Wärmetauschernetzwerk mit zumindest einem ersten Wärmetauscher (8) und einem zweiten Wärmetauscher (9) vorgesehen ist, wobei der zweite Wärmetauscher (9) stromabwärts des ersten Wärmetauschers (8) angeordnet ist, dadurch gekennzeichnet, dass eine kalte Seite des ersten Wärmetauschers (8) im Brennstoffzuführabschnitt (6) und eine kalte Seite des zweiten Wärmetauscher (9) im Luftzuführabschnitt (7) angeordnet ist.
2. Brennstoffzellensystem (1) nach Anspruch 1, dadurch gekennzeichnet, dass im Rezirkulationsabschnitt (7) ein Gebläse (10), insbesondere stromabwärts
des zweiten Wärmetauschers (9), angeordnet ist.
3. Brennstoffzellensystem (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im Luftzuführabschnitt (5) eine Bypassleitung (11) vorgesehen ist, durch
welche die kalte Seite des zweiten Wärmetauschers (9) umgehbar ist.
4. Brennstoffzellensystem (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Brennstoffzuführabschnitt (6) eine Brennstoffleitung (12) umfasst, wobei über die Brennstoffleitung (12) stromaufwärts des zweiten Wärmetauschers (9) Brennstoff dem Rezirkulationsabschnitt (7) zuführbar ist.
5. Brennstoffzellensystem (1) nach einem der Ansprüche 2 bis 3, dadurch gekennzeichnet, dass der Brennstoffzuführabschnitt (6) eine Brennstoffleitung (12) umfasst, wobei über die Brennstoffleitung (12) zwischen dem zweiten Wärmetauscher (9) und dem Gebläse (10) Brennstoff dem Rezirkulationsabschnitt (6) zuführbar ist.
6. Brennstoffzellensystem (1) nach einem der Ansprüche 2 bis 3, dadurch gekennzeichnet, dass der Brennstoffzuführabschnitt (6) eine Brennstoffleitung
(12) umfasst, wobei über die Brennstoffleitung (12) zwischen dem Gebläse
7. Brennstoffzellensystem (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass eine Kathodenabführleitung (13) und eine Anodenabführ-
leitung (14) vorgesehen ist.
8. Brennstoffzellensystem (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass stromabwärts des Brennstoffzellenstapels (2) ein Oxidationskatalysator (15) angeordnet ist, wobei dem Oxidationskatalysator (15) ein
Teil eines Abgases zuführbar ist.
9. Brennstoffzellensystem (1) nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass ein Reformerwärmetauscher (16) vorgesehen ist, wobei eine heiße Seite des Reformerwärmetauschers (16) in der Kathodenabführleitung (13) ange-
ordnet ist.
10. Brennstoffzellensystem (1) nach einem der Ansprüche 1 bis 9, dadurch ge-
kennzeichnet, dass ein Startbrenner (17) vorgesehen ist.
11. Brennstoffzellensystem (1) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass ein Reformer (18) zum Herstellen von Schutzgas durch
katalytisch partielle Oxidation vorgesehen ist.
12. Verwendung eines Brennstoffzellensystems (1) nach einem der Ansprüche 1
bis 11 als stationäre Anlage oder in einem Kraftfahrzeug.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATA50911/2021A AT525676B1 (de) | 2021-11-15 | 2021-11-15 | Brennstoffzellensystem |
KR1020247017191A KR20240095273A (ko) | 2021-11-15 | 2022-11-14 | 연료 전지 시스템 |
EP22826312.5A EP4434107A2 (de) | 2021-11-15 | 2022-11-14 | Brennstoffzellensystem |
PCT/AT2022/060395 WO2023081952A2 (de) | 2021-11-15 | 2022-11-14 | Brennstoffzellensystem |
CN202280071864.5A CN118176607A (zh) | 2021-11-15 | 2022-11-14 | 燃料电池系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATA50911/2021A AT525676B1 (de) | 2021-11-15 | 2021-11-15 | Brennstoffzellensystem |
Publications (2)
Publication Number | Publication Date |
---|---|
AT525676A1 true AT525676A1 (de) | 2023-06-15 |
AT525676B1 AT525676B1 (de) | 2023-12-15 |
Family
ID=84537403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ATA50911/2021A AT525676B1 (de) | 2021-11-15 | 2021-11-15 | Brennstoffzellensystem |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4434107A2 (de) |
KR (1) | KR20240095273A (de) |
CN (1) | CN118176607A (de) |
AT (1) | AT525676B1 (de) |
WO (1) | WO2023081952A2 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT527087A1 (de) * | 2023-08-11 | 2024-08-15 | Avl List Gmbh | Brennstoffzellensystem mit Startreformervorrichtung und Verfahren zum Starten des Brennstoffzellensystems |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020240885A1 (ja) * | 2019-05-31 | 2020-12-03 | 三菱日立パワーシステムズ株式会社 | 加圧空気供給システム及びこの加圧空気供給システムを備える燃料電池システム並びにこの加圧空気供給システムの起動方法 |
WO2021155417A1 (de) * | 2020-02-06 | 2021-08-12 | Avl List Gmbh | Schutz-reformervorrichtung zum schutz eines anodenabschnitts eines brennstoffzellenstapels |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007311072A (ja) * | 2006-05-16 | 2007-11-29 | Acumentrics Corp | 燃料電池システム及びその運転方法 |
DE102007051705A1 (de) * | 2007-10-30 | 2009-05-07 | J. Eberspächer GmbH & Co. KG | Brennstoffzellensystem |
US20200119373A1 (en) * | 2016-03-22 | 2020-04-16 | Convion Oy | Recirculation arrangement and method for a high temperature cell system |
KR20210141982A (ko) * | 2019-04-12 | 2021-11-23 | 블룸 에너지 코퍼레이션 | 일산화탄소 내성 애노드 및 통합된 시프트 반응기를 구비한 수소 펌핑 전지를 갖는 고체 산화물 연료 전지 시스템 |
-
2021
- 2021-11-15 AT ATA50911/2021A patent/AT525676B1/de active
-
2022
- 2022-11-14 EP EP22826312.5A patent/EP4434107A2/de active Pending
- 2022-11-14 WO PCT/AT2022/060395 patent/WO2023081952A2/de active Application Filing
- 2022-11-14 KR KR1020247017191A patent/KR20240095273A/ko unknown
- 2022-11-14 CN CN202280071864.5A patent/CN118176607A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020240885A1 (ja) * | 2019-05-31 | 2020-12-03 | 三菱日立パワーシステムズ株式会社 | 加圧空気供給システム及びこの加圧空気供給システムを備える燃料電池システム並びにこの加圧空気供給システムの起動方法 |
WO2021155417A1 (de) * | 2020-02-06 | 2021-08-12 | Avl List Gmbh | Schutz-reformervorrichtung zum schutz eines anodenabschnitts eines brennstoffzellenstapels |
Also Published As
Publication number | Publication date |
---|---|
EP4434107A2 (de) | 2024-09-25 |
KR20240095273A (ko) | 2024-06-25 |
AT525676B1 (de) | 2023-12-15 |
WO2023081952A2 (de) | 2023-05-19 |
CN118176607A (zh) | 2024-06-11 |
WO2023081952A3 (de) | 2023-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2329555B1 (de) | Luftversorgungseinrichtung für einen brennstoffzellenstapel, brennstoffzellensystem und verfahren zum betreiben einer luftversorgungseinrichtung | |
DE102007039594B4 (de) | Energieerzeugungseinheit mit zumindest einer Hochtemperaturbrennstoffzelle | |
EP2580800B1 (de) | Brennstoffzellensystem mit einer in einem gehäuse angeordneten brennstoffzelle | |
AT521064B1 (de) | Stapelartig aufgebautes Brennstoffzellensystem | |
WO2023081952A2 (de) | Brennstoffzellensystem | |
AT523488A1 (de) | Schutz-Reformervorrichtung zum Schutz eines Anodenabschnitts eines Brennstoffzellenstapels | |
AT525722B1 (de) | Brennstoffzellensystem | |
WO2011101003A1 (de) | Brennstoffzellenversorgung für ein fahrzeug, brennstoffzellensystem mit der brennstoffzellenversorgung sowie verfahren zum betreiben | |
DE102008008907B4 (de) | Brennstoffzellensystem | |
AT525946B1 (de) | Brennstoffzellensystem | |
DE102007033864B4 (de) | Verfahren zum Betreiben einer Festoxidbrennstoffzellenanlage, Wärmetauscher für eine Festoxidbrennstoffzellenanlage und Festoxidbrennstoffzellenanlage | |
AT527078A1 (de) | Brennstoffzellensystem | |
AT525898B1 (de) | Brennstoffzellensystem, Brennstoffzellenanlage und Verfahren zum Erzeugen von Synthesegas | |
DE102010047523A1 (de) | Brennstoffzellensystem mit wenigstens einer Brennstoffzelle | |
WO2024164034A1 (de) | Brennstoffzellensystem | |
AT526077B1 (de) | Brennstoffzellensystem, Brennstoffzellenanlage und Verfahren zum Erzeugen von Synthesegas | |
DE102004004914A1 (de) | Verfahren zur Erzeugung von Strom und Wärme | |
DE102007001382B4 (de) | Reformierungssystem, Verfahren zum Betreiben eines Reformierungssystems und Verwendung eines Reformierungssystems | |
DE102019203137A1 (de) | Verfahren zur Herstellung von Ammoniak | |
EP3084869B1 (de) | Gaskreislauf für ein festoxidbrennstoffzellen-system und festoxidbrennstoffzellen-system | |
AT526370B1 (de) | Brennstoffzellensystem zur Erzeugung elektrischer Energie | |
DE10143156B4 (de) | Brennstoffzellensystem mit einer Vorrichtung zur Luftversorgung und Verfahren zum Betreiben des Brennstoffzellensystems und dessen Verwendung | |
AT520417B1 (de) | Stationäres Brennstoffzellensystem mit Heizvorrichtung außerhalb der Hotbox | |
DE102022204105A1 (de) | Wärmetauscher mit integrierter Anfahrheizung | |
DE102021106687A1 (de) | Luftverdichtungssystem, brennstoffzellensystem sowie fahrzeug |