AT219735B - Device for heating objects by means of electric current - Google Patents

Device for heating objects by means of electric current

Info

Publication number
AT219735B
AT219735B AT243760A AT243760A AT219735B AT 219735 B AT219735 B AT 219735B AT 243760 A AT243760 A AT 243760A AT 243760 A AT243760 A AT 243760A AT 219735 B AT219735 B AT 219735B
Authority
AT
Austria
Prior art keywords
electric current
powder
gas
heating objects
current
Prior art date
Application number
AT243760A
Other languages
German (de)
Original Assignee
To A Kako Kabushiki Kaisha Fa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by To A Kako Kabushiki Kaisha Fa filed Critical To A Kako Kabushiki Kaisha Fa
Application granted granted Critical
Publication of AT219735B publication Critical patent/AT219735B/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/60Heating arrangements wherein the heating current flows through granular powdered or fluid material, e.g. for salt-bath furnace, electrolytic heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/42Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed subjected to electric current or to radiations this sub-group includes the fluidised bed subjected to electric or magnetic fields
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/40Direct resistance heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D13/00Heat-exchange apparatus using a fluidised bed

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Resistance Heating (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Description

  

   <Desc/Clms Page number 1> 
 



  Vorrichtung zum Aufheizen von Gegenständen mittels elektrischen
Stromes 
Die Erfindung bezieht sich auf eine Vorrichtung zum Aufheizen von Gegenständen mittels elektrischen Stromes, bestehend aus einem mit durch eine aufsteigende Gasströmung aufgewirbelten Pulver angefüllten Behälter. 



   Eine Vorrichtung ähnlicher Art wird in der französischen Patentschrift Nr. 1.   171. 035   beschrieben. Hier wird das Schwebebett durch Feststoffteilchen gebildet, die mittels eines Trägergases durch die Erhitzungs-   kammer geführt werden. Es ist   auch möglich, das im Raum des Bettes befindliche Einschlussgas von aussen zu erwärmen, wodurch das eingeschlossene Gas einer selbständigen Strömung unterworfen wird, wobei die leichten Festteilchen von der Strömung mitgerissen werden. Auf diese Weise werden die Teilchen nur durch die dem Gas innewohnende Wärmebewegung getragen. 



   Dem   erstgenanntenLösungsvorschlag   haftet   der Nachteil an, dass dieMitführung derFestkörperteilchen   im Trägergasstrom einen aufwendigen Mechanismus erforderlich macht. Im zweiten Fall ist die Gasströmung völlig willkürlich und damit die Bewegung der Teilchen. Dies führt jedoch zu einer unreelmässigen Aufheizung des zu erwärmenden Körpers. 



   Diese Nachteile werden dadurch vermieden, dass zur Einführung des das Pulver in Schwebezustand setzenden Gases in Bodennähe des Behälters eine in diesen Behälter eingepasste, mikroporöse, gasdurchlässige Platte vorgesehen ist. 



   Zweckmässig ist es, als stromleitendes Pulver Kohlepulver zu verwenden, wenngleich auch andere strom- oder halbstromleitende Pulver Verwendung finden können, beispielsweise Karbonsilikatpulver. Die Korngrösse des Pulvers wird durch die spezifische Schwere und andere physikalische Eigenschaften des pulvrigen Materials   bestimmt, muss   aber zur Fluidization geeignet sein. Es empfiehlt sich, beispielsweise bei Verwendung von Kohlepulver, eine Korngrösse von   100 - 150   Maschen. Die aus mikroporösem Werkstoff gefertigte Platte kann aus einer   porösen Kachelplatte   bestehen, die ihrer Natur nach Gas durchlässt, jedoch kein stromleitendes Pulver. Der zu verwendende Gasdruck zum In-Bewegung-Versetzen des stromleitenden 
 EMI1.1 
 wenden, um eine Oxydation der   aufzuheizenden Werkstücke   zu vermeiden.

   Die Elektroden werden zweckmässigerweise so gestaltet, dass die Stromdichte in der Kammer so gleichmässig wie möglich ist. Der Stromfluss kann dadurch verbessert oder erhöht werden, dass zusätzlich zu den Hauptelektroden Hilfselektroden verwendet werden. Als Strom kann sowohl Wechselstrom beliebiger Frequenz als auch Gleichstrom benutzt werden. 



   Die Neuerung wird an Hand eines Ausführungsbeispieles schematisch erläutert. Die Zeichnung zeigt einen Längsschnitt durch eine Heizvorrichtung gemäss der Neuerung. Mit 1 ist der Behälter bezeichnet, in dem das halbstromleitende bzw. stromleitende Pulver 2 untergebracht ist. Mit 3 und 4 sind die in das Pulver 2 eingetauchten Elektroden bezeichnet, die von der mit 5 bezeichneten Kraftquelle mit Strom versorgt werden. Von der gleichen Quelle können auch Hilfselektroden versorgt werden. Die mikroporöse Platte 6 ist in der Nähe des Bodens des Behälters 1 eingepasst. Die Platte lässt infolge ihres inneren Aufbaues Luft leicht hindurch, jedoch kein stromleitendes Pulver. Mit 7 ist ein der Gaszufuhr dienender Stutzen bezeichnet. 

 <Desc/Clms Page number 2> 

 
 EMI2.1 




   <Desc / Clms Page number 1>
 



  Device for heating objects by means of electrical
Current
The invention relates to a device for heating objects by means of electric current, consisting of a container filled with powder that is whirled up by an ascending gas flow.



   A device of a similar type is described in French patent specification no. 1,171,035. Here the floating bed is formed by solid particles that are guided through the heating chamber by means of a carrier gas. It is also possible to heat the confinement gas located in the space of the bed from the outside, as a result of which the enclosed gas is subjected to an independent flow, the light solid particles being entrained by the flow. In this way, the particles are only carried by the thermal movement inherent in the gas.



   The first-mentioned proposed solution has the disadvantage that the entrainment of the solid particles in the carrier gas flow requires a complex mechanism. In the second case the gas flow is completely arbitrary and with it the movement of the particles. However, this leads to irregular heating of the body to be heated.



   These disadvantages are avoided in that a microporous, gas-permeable plate fitted into this container is provided for the introduction of the gas that sets the powder in suspension near the bottom of the container.



   It is useful to use carbon powder as the conductive powder, although other conductive or semi-conductive powders can also be used, for example carbon silicate powder. The grain size of the powder is determined by the specific gravity and other physical properties of the powdery material, but must be suitable for fluidization. It is recommended, for example when using carbon powder, a grain size of 100 - 150 mesh. The plate made of microporous material can consist of a porous tile plate, which by its nature allows gas to pass through, but not an electrically conductive powder. The gas pressure to be used to set the electrically conductive
 EMI1.1
 to avoid oxidation of the workpieces to be heated.

   The electrodes are expediently designed so that the current density in the chamber is as uniform as possible. The current flow can be improved or increased in that auxiliary electrodes are used in addition to the main electrodes. Both alternating current of any frequency and direct current can be used as current.



   The innovation is explained schematically using an exemplary embodiment. The drawing shows a longitudinal section through a heating device according to the innovation. 1 with the container is designated in which the semi-conductive or conductive powder 2 is housed. 3 and 4 designate the electrodes immersed in the powder 2, which are supplied with current from the power source designated 5. Auxiliary electrodes can also be supplied from the same source. The microporous plate 6 is fitted near the bottom of the container 1. Due to its internal structure, the plate allows air to pass through easily, but no electrically conductive powder. With a 7 serving for the gas supply nozzle is designated.

 <Desc / Clms Page number 2>

 
 EMI2.1


 
AT243760A 1959-04-27 1960-03-30 Device for heating objects by means of electric current AT219735B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1353159 1959-04-27

Publications (1)

Publication Number Publication Date
AT219735B true AT219735B (en) 1962-02-12

Family

ID=11835728

Family Applications (1)

Application Number Title Priority Date Filing Date
AT243760A AT219735B (en) 1959-04-27 1960-03-30 Device for heating objects by means of electric current

Country Status (8)

Country Link
US (1) US3025385A (en)
AT (1) AT219735B (en)
BE (1) BE589173A (en)
CH (1) CH381778A (en)
DE (2) DE1180385B (en)
FR (1) FR1233467A (en)
GB (1) GB885607A (en)
NL (2) NL121306C (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3136836A (en) * 1960-12-08 1964-06-09 Kokusai Electric Co Ltd Fluid powder electric furnace
US3137781A (en) * 1960-12-17 1964-06-16 Kokusai Electric Co Ltd Fluid-motion powder, electric bath furnace
US3184530A (en) * 1961-03-04 1965-05-18 Properzi Ilario Process for the melting of metals, for example copper, and an electric furnace for the performance of said process
US3183293A (en) * 1961-08-11 1965-05-11 Ling Temco Vought Inc Electric furnace
NL273415A (en) * 1962-01-10
US3305661A (en) * 1964-02-03 1967-02-21 Shawinigan Chem Ltd Operation of electrically heated fluidized beds
US3448234A (en) * 1966-08-31 1969-06-03 Battelle Development Corp Electrical resistivity control of fluidized beds
US3510563A (en) * 1968-05-03 1970-05-05 Kelsey Hayes Co Chip drying method and apparatus
US3652426A (en) * 1969-10-06 1972-03-28 Marathon Oil Co Process and apparatus for removal of volatile matter by electrical resistance heating
US3749805A (en) * 1971-11-26 1973-07-31 Sola Basic Ind Inc Fluid bed furnace
DE2861409D1 (en) * 1977-09-08 1982-01-28 Nat Res Dev Electric contact device
US5188649A (en) * 1991-08-07 1993-02-23 Pedro Buarque de Macedo Process for vitrifying asbestos containing waste, infectious waste, toxic materials and radioactive waste
US5678236A (en) * 1996-01-23 1997-10-14 Pedro Buarque De Macedo Method and apparatus for eliminating volatiles or airborne entrainments when vitrifying radioactive and/or hazardous waste
US7327951B2 (en) * 2005-04-21 2008-02-05 Ivanhoe Chaput Instant water heater with PTC plastic conductive electrodes
DE102007035200A1 (en) * 2006-07-26 2008-02-07 Venta-Luftwäscher GmbH Device for the treatment of water for an atomizer or evaporator, comprises two ceramic electrodes, which are alternatively applied as anode and as cathode on a plus pole and/or a minus pole of a current source, and a container
US10314112B2 (en) 2015-11-06 2019-06-04 The United States Of America As Represented By Secretary Of The Navy Self-regulating packed-powder resistive heater
EP4108739A1 (en) 2021-06-21 2022-12-28 TotalEnergies OneTech Process for the incorporation of co2 into hydrocarbons

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US441401A (en) * 1890-11-25 Mark w
US749418A (en) * 1904-01-12 Method of making carbon articles
FR689165A (en) * 1930-01-31 1930-09-03 Method of heating metals and other electrically conductive bodies, with a view to fusion, welding, incandescence, etc.
DE941089C (en) * 1954-04-20 1956-08-02 Walter Dr-Ing Reinecken Contact device for the supply of electrical currents to moving, metallic profile material

Also Published As

Publication number Publication date
BE589173A (en) 1960-07-18
NL121306C (en) 1966-05-16
GB885607A (en) 1961-12-28
DE1801748U (en) 1959-12-10
FR1233467A (en) 1960-10-12
CH381778A (en) 1964-09-15
US3025385A (en) 1962-03-13
DE1180385B (en) 1964-10-29
NL250808A (en) 1966-05-16

Similar Documents

Publication Publication Date Title
AT219735B (en) Device for heating objects by means of electric current
DE1176046B (en) Heat insulating powder
DE1904381B2 (en) METHOD OF MANUFACTURING CARBON BODIES
DE1771019B2 (en) Process for the production of over 500 degrees C and radiation-resistant workpieces from a neutron-absorbing graphite product
DE1087705B (en) Alloy form for alloying contacts on semiconducting bodies
DE1086768B (en) Fuel element for generating electrical energy through direct conversion of gaseous fuels with oxidizing gases
DE2142767A1 (en) STORAGE HEATING PLATE
DE838375C (en) Process for the production of porous metal moldings
AT126373B (en) Process for the production of electrical resistance bodies.
DE919717C (en) Body for the reflection-free absorption of electromagnetic radiation and process for their production
Beck et al. Anomalous q-Dependance of Transverse Electromagnetic Form Factors in 13C and 9Be
DE2218104A1 (en) Process for reducing the oxygen content of nuclear fuels
GB934254A (en) Production of high density sintered uranium oxide
AT164641B (en) Process for sintering iron or steel powder compacts alloyed with aluminum or similar highly electronegative metals
AT386555B (en) Method for manufacturing iron powders suitable for powder metallurgy from fine iron oxide powder by reduction using hot gases
DE937697C (en) Sagging capsule and burning process for ceramic objects
DE1295460B (en) Hard material made from boron, carbon and silicon and process for its production
AT237139B (en) Process for the production of nuclear fuel elements
DE457074C (en) Silicate-containing electrical heating conductor
DE906928C (en) Corrosion-resistant filter material
AT218278B (en) Process for the production of sintered semiconductor bodies
GB1111681A (en) Improvements in or relating to the calcination of alumina
DE976937C (en) Process for the production of a sintered electrical resistance body
AT165245B (en) Electric semiconductors
DE485769C (en) Improvement of the adsorption capacity of active coals during production and revitalization