AT154007B - Electrode consisting of several partial electrodes for electric melting furnaces. - Google Patents

Electrode consisting of several partial electrodes for electric melting furnaces.

Info

Publication number
AT154007B
AT154007B AT154007DA AT154007B AT 154007 B AT154007 B AT 154007B AT 154007D A AT154007D A AT 154007DA AT 154007 B AT154007 B AT 154007B
Authority
AT
Austria
Prior art keywords
partial electrodes
several partial
electrode consisting
electric melting
melting furnaces
Prior art date
Application number
Other languages
German (de)
Original Assignee
Stickstoffduenger Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stickstoffduenger Ag filed Critical Stickstoffduenger Ag
Application granted granted Critical
Publication of AT154007B publication Critical patent/AT154007B/en

Links

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

  

   <Desc/Clms Page number 1> 
 



  Aus mehreren Teilelektroden bestehende Elektrode für elektrische Schmelzöfen. 
 EMI1.1 
 

 <Desc/Clms Page number 2> 

 
 EMI2.1 
 bad 2 (Fig. 1) oberhalb der Sohle 6 und verringert dadurch die Strahlungsverluste der Schmelze erheblich. 



   Die Abstände der Teilelektroden entsprechen der Breite der Zwischenräume 5 (Fig. 2 und 3). 



  Die Teilelektroden können durch die Haltevorrichtung 4   (Fig.   2) zueinander und zum Schmelzbad verstellt werden. 



   Durch die erfindungsgemässe Elektrodenanordnung wird zunächst auch bei Öfen von grossen Dimensionen die Bildung eines einzigen grossen Schmelzherdes gewährleistet, dessen Vorzüge gegenüber mehreren Einzelbädern in bezug auf Abstich, Gleichmässigkeit der Phasenbelastung und der erzeugten Produkte aus dem oben erwähnten ohne weiteres hervorgehen. 



   Stellt man ausserdem die Teilelektroden zu einander so ein, dass sie nicht nur geringe, sondern auch noch möglichst gleiche Abstände voneinander haben, so bietet der   erfindungsgemässe   Ofen weitere Vorteile auch in elektrischer Beziehung. Denn bei den fast unmittelbar nebeneinanderstehenden Elektroden   (Fig. 2 und 3), deren Abstände so klein wie möglich und ausserdem noch untereinander gleich sind,   ist die Gesamtinduktion in allen Phasen sehr klein und gleich. Und daraus folgt, dass die gesamten Sekundärleitungen einschliesslich der Elektroden bis zu ihrem direkt über dem Schmelzbad befindlichen Ende weitgehend kompensiert sind und dass die geringe Gesamtinduktion des beschriebenen Ofens dessen Leistungsfaktor sehr günstig beeinflussen wird. 



   Den   Ofenherd 1 (Fig. 1)   baut man am besten rund, denn die Schmelze 2 (Fig. 1) im Ofen hat dann überall gleichen Abstand von der Ofenwand, so dass das Abstichloch an beliebiger Stelle am Umfang der äusseren Ofenwand angebracht werden kann. Die Elektroden 3 können im Ofen selbst gestampft und gebrannt werden. Es können aber auch vorgebrannte Elektroden Verwendung finden, die dann angenippelt oder angestückelt werden müssen. 



   Die Zwischenräume zwischen den Elektroden können mit Isoliermitteln, z. B. Asbest, oder mit Beschickungsmaterial ausgefüllt werden oder auch als Gasabzugskanäle Verwendung finden. Beispielsweise bei der Karbidherstellung kann man den Kalk in die isolierenden Zwischenräume einführen, während man die Kohle ausserhalb der Elektroden zuführt. 



   Die Sohle 6 (Fig. 1) kann Nullpunkt oder Gegenphase sein. 



   Verwendet wird der beschriebene Ofentyp vorzugsweise für die Herstellung von Karbiden und   Ferrolegierungen.  



   <Desc / Clms Page number 1>
 



  Electrode consisting of several partial electrodes for electric melting furnaces.
 EMI1.1
 

 <Desc / Clms Page number 2>

 
 EMI2.1
 bath 2 (Fig. 1) above the sole 6 and thereby considerably reduces the radiation losses of the melt.



   The distances between the partial electrodes correspond to the width of the spaces 5 (FIGS. 2 and 3).



  The partial electrodes can be adjusted to each other and to the weld pool by the holding device 4 (FIG. 2).



   The electrode arrangement according to the invention initially ensures the formation of a single large melting hearth, even in furnaces of large dimensions, whose advantages over several individual baths with regard to tapping, uniformity of the phase load and the products produced are readily apparent from the above.



   If, in addition, the partial electrodes are set in relation to one another in such a way that they are not only small, but also as far as possible the same distances from one another, the furnace according to the invention offers further advantages also in electrical relation. Because in the case of the electrodes (FIGS. 2 and 3) which are almost directly next to one another, the distances between which are as small as possible and, moreover, are also equal to one another, the total induction in all phases is very small and the same. And it follows from this that all of the secondary lines including the electrodes are largely compensated up to their end located directly above the weld pool and that the low overall induction of the furnace described will have a very favorable effect on its power factor.



   The furnace hearth 1 (Fig. 1) is best built round, because the melt 2 (Fig. 1) in the furnace then has the same distance from the furnace wall everywhere, so that the tapping hole can be made anywhere on the circumference of the outer furnace wall. The electrodes 3 can be tamped and fired in the furnace itself. However, pre-burnt electrodes can also be used, which then have to be nippled or pieced together.



   The spaces between the electrodes can be filled with insulating means, e.g. B. asbestos, or filled with charge material or used as gas exhaust ducts. For example, when producing carbide, the lime can be introduced into the insulating interstices while the carbon is fed in outside the electrodes.



   The sole 6 (Fig. 1) can be zero or antiphase.



   The type of furnace described is preferably used for the production of carbides and ferro-alloys.

 

Claims (1)

PATENT-ANSPRUCH : Aus mehreren Teilelektroden bestehende Elektrode für elektrische Schmelzofen, dadurch gekennzeichnet, dass die Teilelektroden parallel und senkrecht zur Hauptachse der Gesamtelektrode einzeln und unabhängig voneinander beweglich angeordnet und durch kleine, im wesentlichen radial verlaufende Zwischenräume voneinander getrennt sind. PATENT CLAIM: Electrode consisting of several partial electrodes for electric smelting furnace, characterized in that the partial electrodes are arranged individually and independently movable parallel and perpendicular to the main axis of the overall electrode and are separated from one another by small, essentially radial gaps.
AT154007D 1935-02-22 1936-02-19 Electrode consisting of several partial electrodes for electric melting furnaces. AT154007B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE154007X 1935-02-22

Publications (1)

Publication Number Publication Date
AT154007B true AT154007B (en) 1938-08-10

Family

ID=5676098

Family Applications (1)

Application Number Title Priority Date Filing Date
AT154007D AT154007B (en) 1935-02-22 1936-02-19 Electrode consisting of several partial electrodes for electric melting furnaces.

Country Status (1)

Country Link
AT (1) AT154007B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE758549C (en) * 1939-01-24 1953-03-23 Siemens & Halske A G Electrode arrangement in large three-phase arc furnaces

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE758549C (en) * 1939-01-24 1953-03-23 Siemens & Halske A G Electrode arrangement in large three-phase arc furnaces

Similar Documents

Publication Publication Date Title
GB477027A (en) Improvements in electric furnaces
AT154007B (en) Electrode consisting of several partial electrodes for electric melting furnaces.
DE2847946C2 (en) DC powered arc furnace
US1472139A (en) Electric furnace
AT84161B (en) Electric oven.
DE624972C (en) Heating of electric multi-chamber tunnel ovens
DE403548C (en) Electric furnace intended for welding, hardening, burning or other heating purposes
AT96821B (en) Electric oven.
AT81394B (en) Electric arc furnace with resistance auxiliary heating Electric arc furnace with resistance auxiliary heating. izung.
DE689455C (en) Electric melting furnace with rod-shaped heating resistors arranged above the bath
DE631872C (en) Single-phase electrode furnace with a metal jacket that serves as the power supply and forms the furnace cladding
DE327911C (en) Process and device for the production of graphite in an electric furnace
DE4226867C1 (en) Resistance heated open furnace for silicon carbide prodn. - has multi-limb resistive core connected to poly phase supply
AT100207B (en) Connection bolts for electric ovens designed as supports for the resistance carriers.
DE904330C (en) Electrically heated high temperature furnace
AT100970B (en) Electric furnace for welding, hardening, burning or heating for other purposes.
DE390453C (en) Cathode arrangement in furnace for the production of aluminum by molten electrolysis
AT65453B (en) Electric resistance furnace for the extraction of zinc.
DE1024932B (en) Electric reduction furnace, especially for the continuous production of silicon
DE882124C (en) Electric furnace for heating gases and for performing endothermic chemical reactions
DE349187C (en) Electric oven
DE901576C (en) Electrically heated continuous furnace for continuous sheet rolling mills
AT57982B (en) Electric oven.
DE708779C (en) Electrically heated oven
DE2132353C3 (en) Process for the production of aluminum-silicon alloys