WO2023243783A1 - Blockchain-based new renewable energy consumption certification device - Google Patents

Blockchain-based new renewable energy consumption certification device Download PDF

Info

Publication number
WO2023243783A1
WO2023243783A1 PCT/KR2022/018306 KR2022018306W WO2023243783A1 WO 2023243783 A1 WO2023243783 A1 WO 2023243783A1 KR 2022018306 W KR2022018306 W KR 2022018306W WO 2023243783 A1 WO2023243783 A1 WO 2023243783A1
Authority
WO
WIPO (PCT)
Prior art keywords
consumption
renewable energy
blockchain
energy consumption
data
Prior art date
Application number
PCT/KR2022/018306
Other languages
French (fr)
Korean (ko)
Inventor
이재규
최중인
Original Assignee
재단법인차세대융합기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인차세대융합기술연구원 filed Critical 재단법인차세대융합기술연구원
Publication of WO2023243783A1 publication Critical patent/WO2023243783A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1097Protocols in which an application is distributed across nodes in the network for distributed storage of data in networks, e.g. transport arrangements for network file system [NFS], storage area networks [SAN] or network attached storage [NAS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols

Definitions

  • the present invention relates to a blockchain-based renewable energy consumption authentication device. More specifically, consumption data is generated by comprehensively calculating the consumption of multiple renewable energies such as electric energy, thermal energy, or water usage consumed within the building, and the consumption data is stored in a blockchain network to offset renewable energy consumption. It is about a blockchain-based renewable energy consumption certification device that allows the use of new and renewable energy to be recognized and capitalized by generating a certificate.
  • Carbon neutrality can be seen as an effort to reduce carbon emissions.
  • the first method is to supply renewable energy with zero or close to zero carbon emissions to individuals or companies.
  • Carbon offsetting involves reducing greenhouse gases by the amount of carbon dioxide previously emitted, investing in environmental funds, planting trees, or replacing previously consumed energy with new and renewable energy. This means canceling out.
  • the present invention was developed with an eye on this problem, and not only can solve the technical problems discussed above, but also provide additional technical elements that cannot be easily devised by those skilled in the art. It has been done.
  • the technical problem that the present invention aims to solve is that when measuring renewable energy consumption, it is possible to measure the consumption of various new and renewable energies rather than limiting it to only electrical energy, and based on this, it is possible to calculate integrated new and renewable energy consumption.
  • the goal is to provide a blockchain-based renewable energy consumption authentication device.
  • Another technical problem that the present invention aims to solve is to provide a blockchain-based renewable energy consumption authentication device that utilizes learned AI and big data to comprehensively and precisely analyze and calculate the consumption of various renewable energy.
  • Another technical problem that the present invention aims to solve is to provide a blockchain-based renewable energy consumption certification device that generates a renewable energy consumption offset certificate simply by storing the calculated renewable energy consumption in the blockchain network. will be.
  • the blockchain-based renewable energy consumption certification device measures and analyzes the amount of new and renewable energy consumed and certifies new and renewable energy consumption based on the blockchain network.
  • At least one smart meter that measures the consumption of at least one renewable energy in real time and generates measurement data;
  • a sensing unit that measures changes in surrounding phenomena in real time;
  • a calculation unit that calculates consumption data by analyzing the measured values from the sensing unit and measurement data generated from the smart meters;
  • a communication unit that receives other measurement data from an external device and collects the consumption data into one protocol;
  • a blockchain RTU that stores the consumption data collected by the single protocol in a blockchain network to generate a consumption offset certificate, wherein the renewable energy consumption offset certificate is generated by verifying and authenticating the consumption data.
  • This certificate is characterized in that the value for offsetting carbon emissions is replaced with the same value as the amount of renewable energy consumption included in the consumption data.
  • the at least one smart meter may be characterized as measuring the consumption of at least one or more renewable energy, such as electric energy, thermal energy, or water usage.
  • the calculation unit may analyze the consumption data in predetermined time units and calculate billing data for the consumption data.
  • the external device is a device that includes at least one of a solar inverter and an electric vehicle charger, and measures at least one of the used solar energy and electric energy. It may be characterized as a device that generates data.
  • the renewable energy consumption offset certificate stored in the blockchain network may be characterized in that it can be traded between users.
  • the blockchain RTU generates a transaction token based on the consumption offset certificate, and the transaction token is prepared in the form of a blockchain and can be traded between users. It can be characterized as possible.
  • a method of establishing a blockchain network for renewable energy consumption authentication by a renewable energy consumption authentication device includes the steps of obtaining measured values from measurement data and changes in surrounding phenomena. ; generating consumption data based on the obtained measurement data and values; And it may include a step of generating a renewable energy consumption offset certificate by storing the consumption data in a blockchain network.
  • a method of establishing a blockchain network for renewable energy consumption authentication by a renewable energy consumption authentication device includes generating a renewable energy consumption offset certificate, after which the consumption certificate is generated.
  • a step of generating a blockchain-type transaction token based on the offset certificate may be further included.
  • the smart meter of the renewable energy consumption authentication device is designed to measure the consumption of various renewable energies, so that the user can measure the consumption of the desired renewable energy even if he or she selects it. , it has the effect of bringing about the popularization of renewable energy consumption.
  • the blockchain RTU of the renewable energy consumption certification device generates a renewable energy consumption offset certificate simply by storing the calculated renewable energy consumption in the blockchain network, making it simple and convenient without the verification process of a national agency. It has the effect of allowing a renewable energy consumption offset certificate to be issued, and furthermore, since the new and renewable energy consumption offset certificate is created based on a secure blockchain network, it has the effect of building another economic market by capitalizing it. It can even be evoked.
  • Figure 1 is a diagram showing a conventional method of measuring carbon emission reduction through a graph.
  • Figure 2 is a diagram showing a graph to define the renewable energy consumption of the present invention.
  • Figure 3 is a schematic diagram showing a blockchain-based renewable energy consumption authentication device according to the first embodiment of the present invention.
  • Figure 4 is a diagram specifically showing the configuration of a blockchain-based renewable energy consumption authentication device according to the first embodiment of the present invention.
  • Figure 5 is a diagram showing the process of performing the role of the calculation unit of the blockchain-based renewable energy consumption authentication device according to the first embodiment of the present invention.
  • Figure 6 is a diagram showing the role performance process of the communication unit of the blockchain-based renewable energy consumption authentication device according to the first embodiment of the present invention.
  • Figure 7 is a diagram showing the role performance process of the blockchain RTU of the blockchain-based renewable energy consumption authentication device according to the first embodiment of the present invention.
  • Figures 8 to 10 are diagrams specifically showing how the blockchain-based renewable energy consumption authentication device builds a blockchain network according to the first embodiment of the present invention.
  • Figure 11 is a diagram specifically showing a method of utilizing a blockchain network for authentication of renewable energy consumption according to the second embodiment of the present invention.
  • Figure 12 is a diagram specifically showing a method of utilizing a blockchain network for authenticating renewable energy consumption according to the third embodiment of the present invention.
  • first and second are used to distinguish one component from another component, and the scope of rights should not be limited by these terms.
  • a first component may be named a second component, and similarly, the second component may also be named a first component.
  • the present invention relates to a blockchain-based renewable energy consumption authentication device. More specifically, consumption data is generated by comprehensively calculating the consumption of multiple new and renewable energies such as electric energy, thermal energy, hydroelectric energy, and wind energy consumed within the building, and the consumption data is stored in the blockchain network to generate new and renewable energy.
  • This relates to a blockchain-based renewable energy consumption authentication device (hereinafter abbreviated as consumption authentication device 100) that allows the use of new and renewable energy to be recognized and capitalized by generating a consumption offset certificate.
  • Korea is making a lot of efforts to reduce carbon emissions, and as one of these efforts, it is even introducing a plan to provide incentives to companies that reduce the amount of carbon emissions.
  • the first method (A in Figure 1) is a method of calculating the carbon reduction amount by calculating the difference between past carbon emissions and current carbon emissions.
  • the second method (B in Figure 1) analyzes the factors of the building to be measured (building area, number of residents, average cooling/heating use time, etc.) to calculate standard carbon emissions and adds the current carbon emissions to the standard carbon emissions. This is a method of calculating carbon reduction by subtracting.
  • the present invention sets the carbon reduction amount to the same value as ‘new and renewable energy consumption’ to calculate the carbon reduction amount more simply.
  • the present invention replaces the carbon reduction amount with the same value as the renewable energy consumption amount.
  • the present invention can be used interchangeably with the expression of reducing carbon emissions as well as the expression of offsetting carbon emissions. I understand that there is.
  • the present invention seeks to provide a renewable energy consumption offset certificate (hereinafter abbreviated as consumption offset certificate) that allows the subject issuing the certificate to be an individual or company.
  • consumption offset certificate a renewable energy consumption offset certificate
  • the consumption offset certificate can be used as an indicator of how much an individual or company has contributed to preventing international climate change and environmental conservation by offsetting carbon emissions, and can also be used as a certificate that can provide various benefits and incentives from national agencies or organizations. It can be.
  • the present invention can maximize the security and scalability of these consumption offset certificates through a blockchain-based network and enable them to be issued as new authentication assets.
  • Figure 3 is a schematic diagram showing a blockchain-based renewable energy consumption authentication device 100 according to the first embodiment of the present invention.
  • the consumption authentication device 100 generates consumption data by integrating a smart meter 110 that measures renewable energy consumption, a sensing unit 120 that measures ambient temperature, and a plurality of renewable energy consumption amounts. It includes an operation unit 130 that collects the generated consumption data into one protocol, a communication unit 140 that generates a consumption offset certificate based on the consumption data, and a blockchain RTU (150) that generates a consumption offset certificate and stores it in a blockchain network.
  • the smart meter 110 is a terminal-type device that can be installed in a building that consumes at least one new type of energy.
  • At least one new renewable energy mentioned here includes electric energy, hydroelectric energy, wind energy, as well as fuel cells. Includes coal gasification, hydrogen energy, solar heat, solar power generation, biomass, wind power, small hydro, geothermal energy, marine energy, and waste hydro energy.
  • the smart meter 110 does not stop at measuring just one of the types of renewable energy listed above, but can measure heterogeneous energy comprehensively. At this time, a plurality of smart meters 110 are provided so that each smart meter 110 is responsible for measuring one renewable energy, and a single smart meter 110 can measure a plurality of new and renewable energy in an integrated manner. It may be designed to do so.
  • the smart meter 110 generates measurement data on the consumption of at least one or more renewable energy.
  • measurement data for electrical energy kWh
  • thermal energy Measurement data for (kCal) is generated by converting the amount of thermal energy (kCal) from the source supplied through geothermal heat (renewable energy) into kWh.
  • Measurement data for water usage is generated by converting the unit to kWh. This is data generated by estimating the energy consumption consumed to produce the amount of water consumed by the user among the energy consumption of fuel cells (new and renewable energy) used for this purpose.
  • the meter 110 generates measurement data for 10L of water usage by estimating 1kWh.
  • the external device 200 may refer to devices that can measure the consumption of renewable energy only if they are inevitably located outside the building.
  • an electric vehicle charger located in the parking lot or outside of a building, or a solar inverter located on the exterior wall under the rooftop of a building measures the amount of new and renewable energy consumption generated while charging an electric vehicle, generates measurement data, and generates measurement data from solar energy.
  • Measurement data can be generated by measuring the amount of renewable energy consumed as it is converted and consumed into electrical energy.
  • the sensing unit 120 can be understood as a component that detects a fluctuating phenomenon in exchange for consuming energy resources, and may be a sensor that measures ambient temperature, for example.
  • the ambient temperature measured from the sensing unit 120 is not only used when the calculating unit 130, which will be described later, generates consumption data, but can also be used as a value to measure the efficiency of renewable energy (temperature increase/decrease compared to consumption).
  • the sensing unit 120 is not limited to sensors that sense the surrounding temperature, but also includes data (temperature, illuminance, air quality) that fluctuates in exchange for consuming energy resources, such as sensors that detect illuminance and sensors that determine air quality. ) can be used as the sensing unit 120 of the present invention.
  • the calculation unit 130 generates consumption data based on the value measured by the sensing unit 120 and at least one measurement data measured by the smart meter 110.
  • consumption data is data that integrates ambient temperature and multiple measurement data. It can also be said to be data in which the carbon offset value is calculated by analyzing the changed ambient temperature and multiple measurement data over a predetermined period of time (e.g., 15 minutes).
  • the calculation unit 130 can utilize learned AI and big data to analyze a plurality of measurement data.
  • the heterogeneous energies included in the measured data may have different carbon offset values compared to the amount consumed, and when the measured data is generated, various factors (heterogeneous energies are measured simultaneously, external temperature Changes may occur due to sudden changes in ambient temperature, etc.), and it is difficult to estimate carbon offset values and generate consumption data using only the obtained measurement data. Therefore, big data containing reference data and various This means that the learned AI can be used together to derive results even if the situation and conditions are different.
  • the reason why the carbon offset values for each of the heterogeneous energies included in the measurement data are different compared to the amount consumed is that the amount consumed is itself carbon dioxide for energy that does not emit carbon even when consumed, such as solar energy. This may be an offset value, but since coal gasification energy may emit a small amount of carbon in the same case, it is calculated by considering the amount of carbon emissions.
  • the communication unit 140 is a component designed to facilitate data exchange with device components or external servers (e.g., third-party server 400, ESS server, etc.).
  • device components or external servers e.g., third-party server 400, ESS server, etc.
  • the communication unit 140 serves to receive measurement data from the external device 200.
  • the smart meter 110 and the calculation unit 130 are components located within the consumption authentication device 100, so the smart meter 110 does not necessarily transmit measurement data to the calculation unit 130, but the two components are interconnected.
  • the external device 200 located outside the building cannot be linked with the calculation unit 130, the external device 200 transmits the measured data to the calculation unit 130.
  • a communication module (not shown) may be provided to transmit measurement data to the communication unit 140.
  • the external device 200 is connected to the consumption authentication device 100 by wire, it can be used in conjunction with the components of the consumption authentication device 1 without the need for the data transmission role of the communication unit 140 described above. there is.
  • the communication unit 140 collects the consumption data generated by the calculation unit 130 into one protocol, and the blockchain RTU 150, which will be described later, allows the consumption data to be stored in the blockchain network 300.
  • the blockchain RTU (150) uses the consumption authentication device (100) placed in each household or building as one blockchain node, and multiple blockchain nodes, that is, multiple consumption authentication devices (100), block each other through each other's communication network. It allows building a chain network (300).
  • the blockchain RTU (150) stores the consumption data in the blockchain network (300).
  • a plurality of blockchain nodes that is, a plurality of consumption authentication devices 100, confirm and verify each other's consumption data to generate a consumption offset certificate.
  • the blockchain RTU (150) can generate a consumption offset certificate on its own before the consumption data is stored in the blockchain network (300). Specifically, the blockchain RTU (150) builds a blockchain network (300) by generating a consumption offset certificate based on consumption data collected through the single protocol and storing the renewable energy consumption offset certificate. You can.
  • the verification server 500 which is linked to the blockchain RTU 150, is additionally included in the system and is used by existing national agencies and organizations before consumption data is stored in the blockchain network 300.
  • a consumption offset certificate can be created through relatively simple authentication and verification compared to the previous authentication and verification.
  • the authentication and verification performed by the verification server may include verification of whether the consumption data is compatible with the blockchain network 300, verification of errors in the consumption data, and verification of the possibility of manipulation/hacking of the consumption data. .
  • the consumption offset certificate generated in this way can become a transaction currency itself and can be implemented to enable consumption offset certificate transactions between users on the blockchain network.
  • the blockchain RTU (150) can generate a blockchain-type transaction token based on the consumption offset certificate and allows users to transact on the consumption offset certificate with the transaction token.
  • the transaction token since the transaction token is implemented in blockchain form, it does not go through an external agency (UN, government agency, or verification agency), allowing consumption offset certificate transactions between users without verification and relay fees, allowing users to offset carbon. Not only does it encourage this, but it also allows another economic market to be formed.
  • Figure 4 shows the specific components of the blockchain-based renewable energy consumption authentication device 100 according to the first embodiment of the present invention through a schematic diagram.
  • measurement data generated from the smart meter 110 is collected through a protocol called Modus through RS485 communication, and the collected data is implemented in an international web standard XML language called OBIX. and stored in the blockchain network 300.
  • data exchange with the external device 200 is also performed through TCP/IP or direct RS485 communication, but in the case of a solar inverter, it is collected as a separate SunSpec protocol through TCP/IP communication and used as the OBIX described above. It is implemented and stored in language.
  • the components of the consumption authentication device 100 shown in FIG. 4 are not limited to the above-mentioned components and the components shown, and that some components may be added or deleted.
  • Figure 5 is a diagram illustrating a process in which the calculation unit 130 generates consumption data and billing data.
  • the calculation unit 130 receives measurement data from the smart meter 110 and the external device 200, receives data on the surrounding temperature from the sensing unit 120, and combines this measurement data and the surrounding temperature. Based on this, consumption data and billing data are generated by estimating new and renewable energy consumption and expected billing amount (usage fee).
  • the billing data is data estimated by the calculation unit 130 by analyzing the consumption data in predetermined time units and calculating a usage fee for the consumption data.
  • the calculation unit 130 can utilize learned AI and big data technology to estimate renewable energy consumption and expected billing amount according to various factors. Specifically, the calculation unit 130 calculates factors such as the type of new and renewable energy consumed, carbon emissions compared to the consumption of new and renewable energy, and carbon emissions offset when using mixed renewable energy, as well as the area of the building, the number of residents, and the energy consumption of residents. Since it may be difficult to calculate consumption data and billing data for various factors such as patterns, it is possible to estimate renewable energy consumption and expected billing amount based on the various factors listed above by utilizing the vast reference data of big data and learned AI. That there is.
  • the calculation unit 130 can receive help from the third-party server 400 when estimating the amount of renewable energy consumption and the expected billing amount.
  • the third-party server 400 is a server that predicts and analyzes the price of energy. It not only predicts and analyzes the price of energy that can fluctuate due to weather, climate, temperature, current energy supply, various events/accidents, etc., but also predicts and analyzes the price of energy. Measurement data generated from the meter 110 is analyzed to analyze energy consumption, consumption patterns, etc. to generate third-party data and then transmit it to the communication unit 140 of the present invention. Furthermore, the third-party server 400 can perform the role of recommending energy suitable for consumption in the building, such as the location of the building and the area of the building.
  • Figure 6 is a schematic diagram showing the process in which the communication unit 140 collects and processes consumption data and billing data generated from the calculation unit 130 into one protocol.
  • the communication unit 140 receives consumption data and billing data generated from the calculation unit 130, collects these two data into one protocol, and thereafter, the communication unit 140 uses one protocol.
  • the collected data is transmitted to the blockchain RTU (150).
  • the communication unit 140 can transmit consumption data and billing data to the user terminal 10 so that the user can check the consumption data and billing data in real time. there is.
  • FIG. 7 is a diagram illustrating a process in which the blockchain RTU 150 receives collected data from the communication unit 140 and transmits the collected data to the blockchain network to generate a consumption offset certificate.
  • the blockchain RTU 150 allows a single consumption authentication device 100 to become one node in the blockchain network 300, and at this time, the consumption data collected from the communication unit 140 causes the blockchain RTU (150) to be stored in the blockchain network 300, and when the consumption data is stored in the blockchain network 300, a plurality of nodes in the blockchain network 300 verify and verify each other's consumption data. Confirm that the consumption data stored in the blockchain network 300 itself becomes a consumption offset certificate (A in Figure 7).
  • the consumption offset certificate can be implemented so that the blockchain RTU (150) can generate it itself before the consumption data is stored in the blockchain network (300) (B in FIG. 7).
  • the verification server 500 linked to the consumption authentication device 100 can be implemented to verify the consumption data and generate a consumption offset certificate. (C in Figure 7).
  • the consumption offset certificate generated in this way can be used as a transaction currency on its own, or it can be created as a transaction token in the form of a blockchain by the blockchain RYU (150) to enable transactions between users.
  • Figures 8 to 10 are diagrams specifically showing how the consumption authentication device 100 builds a blockchain network according to the first embodiment of the present invention.
  • the consumption authentication device 100 in order for the consumption authentication device 100 to build the blockchain network 300, first, it acquires measurement data from the smart meter 110 and the external device 200, and then obtains measurement data from the surrounding area from the sensing unit 120. It starts with the step of acquiring data about temperature (S101).
  • step S101 the calculation unit 130 generates consumption data based on measurement data and data on ambient temperature obtained using learned AI and big data (S102).
  • step S102 the communication unit 140 collects the generated consumption data into one protocol, and the blockchain RTU 150 stores the consumption data in the blockchain network to generate a consumption offset certificate (S103).
  • the blockchain RTU 150 may include a step (S103a-1) of automatically generating a consumption offset certificate based on consumption data collected from the communication unit 130.
  • the blockchain RTU 150 may include a step (S103a-2) of storing the self-generated consumption offset certificate in the blockchain network 300.
  • the blockchain RTU 150 may include a step (S103b-1) in which the consumption data collected from the communication unit 130 is verified by the verification server 500.
  • the blockchain RTU 150 receives a consumption offset certificate generated by the verification server 500 verifying the consumption data, and stores the received consumption offset certificate in the blockchain network 300 ( S103b-2) may be included.
  • the blockchain RTU (150) can generate a blockchain-type transaction token based on the consumption offset certificate (S104), and enables consumption offset certificate transactions between users through the generated transaction token.
  • Figure 11 is a diagram specifically showing a method of utilizing a blockchain network for authentication of renewable energy consumption according to the second embodiment of the present invention.
  • the second embodiment of the present invention is an embodiment of a method for calculating the user's contribution to the act of consuming renewable energy and discounting the bill to be paid by the user according to the calculated contribution.
  • the method of utilizing a blockchain network for renewable energy consumption authentication includes the steps of first, the user terminal 10 transmitting a request to calculate the user's contribution to the consumption authentication device 100 (Star from S201).
  • the user terminal 10 is a user terminal with a consumption authentication device 100 installed in the user's building, and the user terminal 10 at this time has an interface capable of exchanging data with the blockchain network 300. It can be assumed that the application is already installed.
  • the consumption authentication device 100 retrieves the consumption offset certificate for the previously stored period from the blockchain network 300 (S202).
  • the previously stored period may be a monthly payment period generated by consuming energy, or may be a period arbitrarily set by the user.
  • the consumption authentication device 100 uses the learned AI, big data, and the third-party server 400 to calculate the contribution of the consumption offset certificate viewed in step S201 (S203). For example, if renewable energy was consumed despite the difficulty in supplying new and renewable energy due to disasters, calamities, or other accidents, the contribution weight to reducing carbon emissions can be measured highly, and the government can measure the environmental Even when renewable energy is consumed during a period specifically designated for protection, the contribution to reducing carbon emissions may be given a high weight.
  • the consumption authentication device 100 matches the calculated contribution to the consumption offset certificate for the previously stored period (S204).
  • the calculated contribution not only matches the consumption offset certificates for the previously stored period, but may also match each consumption offset certificate, allowing the user to check the contribution for one consumption offset certificate.
  • the consumption authentication device 100 transmits the consumption offset certificate with the matching contribution to the billing collection server 600 (S205).
  • the billing collection server 600 calculates a billing discount according to the contribution matched to the certificate (S206) and delivers the calculated billing discount to the user terminal 10 or the blockchain network 300 (S207), The method of utilizing a blockchain network for authentication of renewable energy consumption according to the second embodiment of the present invention is completed.
  • the second embodiment can start from the step where the user terminal 10 transmits a contribution calculation request, but consumption data and consumption offset generated even without the contribution calculation request step (S201) of the user terminal 10. It can be implemented to immediately calculate the contribution to the certificate and match the calculated contribution to the consumption offset certificate.
  • Figure 12 is a diagram specifically showing a method of utilizing a blockchain network for authenticating renewable energy consumption according to the third embodiment of the present invention.
  • the third embodiment of the present invention is an embodiment of a method of brokering transactions to enable certificate transactions between user terminals 10 using the blockchain network 300.
  • the third embodiment it will be mentioned that several steps are carried out on the blockchain network 300, but in reality, these steps are performed by one node constituting the blockchain network 300, or a consumption authentication device ( 100), or it is understood that it can be executed by a server device with computing capabilities.
  • the first user terminal (10A) and the second user terminal (10B) set purchase/sell conditions for consumption offset certificates, and send a purchase/sell request based on the conditions through the blockchain. It starts with the step of transmitting to the network 300 (S301).
  • the first user terminal 10A will be a terminal of a user who wants to purchase a consumption offset certificate
  • the second user terminal 10B will be a terminal of a user who wants to sell a consumption offset certificate.
  • the purchase/sale conditions refer to conditions under which the user can satisfy his or her needs through transactions, such as the desired purchase/sell price at which the user wishes to purchase/sell the certificate, contribution level, date on which the certificate was created, etc.
  • the consumption authentication device 100 will be installed in the buildings of the first and second users who are the owners of the first user terminal 10A and the second user terminal 10B, and in particular, the second user The consumption authentication device 100 installed in the building will assume that the second user's consumption offset certificate is already stored in the blockchain network 300.
  • the consumption offset certificate transaction between these users can be conducted through the transaction token described in the first embodiment above.
  • the blockchain network 300 matches transactions meeting the purchase/sale conditions received from the first user terminal 10A and the second user terminal 10B (S302). At this time, the matched transaction not only matches the purchase conditions and sales conditions that are perfectly matched, but also matches the transaction in which the purchase conditions and sales conditions are closest to each other.
  • the blockchain network 300 calculates the value of the consumption offset certificate subject to the transaction, that is, the consumption offset certificate with which the transaction is matched (S303).
  • the reason for calculating the value of the consumption offset certificate is to prevent users who are making the transaction for the first time from making unfair transactions, in other words, to once again remind them of the fairness of the transaction.
  • learned AI and big data can be used to calculate the value of consumption offset certificates.
  • the current market price, amount of renewable energy supplied at the time of consumption, contribution, etc. can be considered as factors to calculate the value of the consumption offset certificate.
  • step S303 the blockchain network 300 settles the transaction when it is confirmed whether the transaction is normal from the first user terminal 10A and the second user terminal 10B (S304).
  • the blockchain network 300 changes the ownership of the consumption offset certificate when the transaction is settled (S304). Specifically, since the first user purchased the consumption offset certificate that was stored as the second user's ownership, it is changed to the first user's ownership.
  • step S305 the blockchain network 300 pays the settlement amount (value calculated in step S203) to the sold second user terminal 10B (S306) and certifies renewable energy consumption according to the third embodiment of the present invention.
  • the method of utilizing the blockchain network for this is completed.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Tourism & Hospitality (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present invention relates to a blockchain-based new renewable energy consumption certification device. More specifically, the present invention relates to a blockchain-based new renewable energy consumption certification device which generates consumption data by comprehensively calculating the consumption amounts of a plurality of new renewable energies such as electric energy, thermal energy, or water usage consumed in a building, stores the consumption data in a blockchain network, and enables a new renewable energy consumption offset certificate to be generated, and, thereby, allows the cost of using new renewable energy to be acknowledged and even turned into an asset.

Description

블록체인 기반의 신재생에너지 소비 인증 장치Blockchain-based renewable energy consumption authentication device
본 발명은 블록체인 기반의 신재생에너지 소비 인증 장치에 관한 것이다. 보다 자세하게는 건물 내에서 소비되는 전기에너지, 열에너지, 또는 물사용량 등과 같은 복수의 신재생에너지의 소비량을 통합적으로 연산하여 소비데이터를 생성하고, 소비데이터를 블록체인 네트워크에 저장하여 신재생에너지 소비 상쇄 인증서가 생성되도록 함으로써, 신재생에너지를 사용한 대가를 인정받고 이를 자산화까지 할 수 있도록 해주는 블록체인 기반의 신재생에너지 소비 인증 장치에 관한 것이다.The present invention relates to a blockchain-based renewable energy consumption authentication device. More specifically, consumption data is generated by comprehensively calculating the consumption of multiple renewable energies such as electric energy, thermal energy, or water usage consumed within the building, and the consumption data is stored in a blockchain network to offset renewable energy consumption. It is about a blockchain-based renewable energy consumption certification device that allows the use of new and renewable energy to be recognized and capitalized by generating a certificate.
전 세계가 탄소 중립에 주목하고 있다. 탄소 중립은 탄소 배출량을 줄이기 위한 노력의 일환이라고 볼 수 있다.The whole world is paying attention to carbon neutrality. Carbon neutrality can be seen as an effort to reduce carbon emissions.
탄소 중립이 이루어지도록 하는 방법에는 크게 두 가지 방법이 있다. 첫 번째 방법은 탄소 배출량이 제로 또는 제로에 가까운 신재생에너지를 개인이나 기업에 공급하는 것이다.There are two main ways to achieve carbon neutrality. The first method is to supply renewable energy with zero or close to zero carbon emissions to individuals or companies.
두 번째 방법은 탄소 상쇄를 이루는 것이다. 탄소 상쇄는 기존에 배출된 이산화탄소의 양만큼 온실가스 감축활동을 하는 것, 환경기금에 투자하는 것, 나무를 심는 행위 하는 것, 또는 기존에 소비되던 에너지를 신재생에너지로 대체 소비하여 탄소의 양을 상쇄시키는 것을 말한다.The second way is to achieve carbon offsets. Carbon offsetting involves reducing greenhouse gases by the amount of carbon dioxide previously emitted, investing in environmental funds, planting trees, or replacing previously consumed energy with new and renewable energy. This means canceling out.
한편, 정부와 단체는 상기 두 방법으로 탄소 중립을 수행한 기업 또는 개인에게 많은 인센티브를 제공하고 있지만, 적절한 검증과 인증 방법이 이루어지지 않고, 개인보다는 기업에 초점을 두어 만들어진 방법이기에 아직까지 탄소 중립이 대중적으로 이루어지지 않고 탄소 중립의 효과까지도 미미한 실정이다.Meanwhile, the government and organizations are providing many incentives to companies or individuals who have achieved carbon neutrality through the above two methods, but appropriate verification and certification methods have not been implemented, and the method was created with a focus on companies rather than individuals, so it is still carbon neutral. This is not widely achieved, and even the effect of carbon neutrality is minimal.
구체적인 문제의 예로, 기업이 힘들게 신재생에너지를 소비한다 하여도 소비한 행위를 인증 및 검증해주는 절차가 복잡하고 비용 또한 만만치 않으며, 인증 및 검증되는 대상의 신재생에너지가 전기에너지에 국한되어 있어 전기에너지 이외의 신재생에너지가 소외되거나 다양한 신재생에너지를 소비할 수 있는 선택의 기회가 박탈될 수 있으며, 신재생에너지 소비에 대한 인증 및 검증이 이루어진다 한들 이에 대한 보안성 및 호환성에 대한 대처가 아직까지 제대로 이루어지지 않고 있다.As an example of a specific problem, even if a company struggles to consume new and renewable energy, the process for certifying and verifying the consumption is complicated and expensive, and the renewable energy subject to certification and verification is limited to electrical energy, so electricity Renewable energy other than energy may be marginalized or the opportunity to choose to consume a variety of new and renewable energy may be deprived, and even if certification and verification of new and renewable energy consumption are implemented, there is still no response to security and compatibility. It is not being done properly so far.
본 발명은 이와 같은 문제점에 착안하여 도출된 것으로, 이상에서 살핀 기술적 문제점을 해소시킬 수 있음은 물론, 본 기술분야에서 통상의 지식을 가진 자가 용이하게 고안할 수 없는 추가적인 기술요소들을 제공하기 위해 발명되었다.The present invention was developed with an eye on this problem, and not only can solve the technical problems discussed above, but also provide additional technical elements that cannot be easily devised by those skilled in the art. It has been done.
참고로 본 발명은 아래 국가연구개발사업의 지원을 받은 것이다.For reference, this invention was supported by the following national research and development project.
[과제고유번호] 1615011052 [Assignment number] 1615011052
[과제번호] 153494 [Assignment number] 153494
[부처명] 국토교통부 [Name of Ministry] Ministry of Land, Infrastructure and Transport
[과제관리(전문)기관명] 국토교통과학기술진흥원 [Name of project management (professional) organization] Korea Agency for Land, Infrastructure and Transport Science and Technology Promotion
[연구사업명] 저탄소에너지고효율건축기술개발(R&D) [Research project name] Development of low-carbon energy and high-efficiency building technology (R&D)
[연구과제명] 저탄소 에너지효율화 기술 기반 에너지공유 커뮤니티 구축기술 개발 [Research project title] Development of technology to build an energy sharing community based on low-carbon energy efficiency technology
[기여율] 1/1 [Contribution rate] 1/1
[과제수행기관명] (재단)한국에너지기술연구원 [Name of project carrying out organization] (Foundation) Korea Institute of Energy Research
[연구기간] 2019.05.28 ~ 2023.12.31 [Research period] 2019.05.28 ~ 2023.12.31
본 발명이 해결하고자 하는 기술적 과제는 신재생에너지 소비량을 측정함에 있어서 전기에너지만을 한정하여 측정하지 않고 다양한 신재생에너지들의 소비량을 측정할 수 있으며, 이를 기반으로 통합적인 신재생에너지 소비량을 연산할 수 있는 블록체인 기반의 신재생에너지 소비 인증 장치를 제공하는 것이다. The technical problem that the present invention aims to solve is that when measuring renewable energy consumption, it is possible to measure the consumption of various new and renewable energies rather than limiting it to only electrical energy, and based on this, it is possible to calculate integrated new and renewable energy consumption. The goal is to provide a blockchain-based renewable energy consumption authentication device.
본 발명이 해결하고자 하는 또 다른 기술적 과제는 다양한 신재생에너지의 소비량을 통합적으로 정밀히 분석 및 연산하기 위하여 학습된 AI와 빅테이터가 활용되는 블록체인 기반의 신재생에너지 소비 인증 장치를 제공하는 것이다.Another technical problem that the present invention aims to solve is to provide a blockchain-based renewable energy consumption authentication device that utilizes learned AI and big data to comprehensively and precisely analyze and calculate the consumption of various renewable energy.
본 발명이 해결하고자 하는 또 다른 기술적 과제는 연산된 신재생에너지 소비량을 블록체인 네트워크에 저장하는 것만으로도 신재생에너지 소비 상쇄 인증서가 생성되도록 하는 블록체인 기반의 신재생에너지 소비 인증 장치를 제공하는 것이다. Another technical problem that the present invention aims to solve is to provide a blockchain-based renewable energy consumption certification device that generates a renewable energy consumption offset certificate simply by storing the calculated renewable energy consumption in the blockchain network. will be.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The technical problems of the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned will be clearly understood by those skilled in the art from the description below.
위와 같은 문제점을 해결하기 위하여, 본 발명에 따른 블록체인 기반의 신재생에너지 소비 인증 장치는 소비된 신재생에너지의 양을 측정 및 분석하여 블록체인 네트워크를 기반으로 신재생에너지 소비를 인증해주는 것을 특징으로 하는 것으로, 실시간으로 적어도 하나 이상의 신재생에너지의 소비량을 측정하여 측정 데이터를 생성하는 적어도 하나 이상의 스마트 미터; 실시간으로 주변 현상 변화를 측정하는 센싱부; 상기 센싱부로부터 측정된 값과 상기 스마트 미터들로부터 생성된 측정 데이터들을 분석하여 소비데이터를 연산하는 연산부; 외부 장치로부터 또 다른 측정 데이터를 수신하고, 상기 소비데이터를 하나의 프로토콜로 취합하는 통신부; 및 상기 하나의 프로토콜로 취합된 소비데이터를 블록체인 네트워크에 저장하여 소비 상쇄 인증서가 생성되도록 하는 블록체인 RTU;를 포함하고, 상기 신재생에너지 소비 상쇄 인증서는, 상기 소비데이터가 검증 및 인증됨으로써 생성된 인증서로서, 탄소배출을 상쇄하는 값을 상기 소비데이터 내에 포함된 신재생에너지 소비량과 동일한 값으로 치환하는 것을 특징으로 한다.In order to solve the above problems, the blockchain-based renewable energy consumption certification device according to the present invention measures and analyzes the amount of new and renewable energy consumed and certifies new and renewable energy consumption based on the blockchain network. At least one smart meter that measures the consumption of at least one renewable energy in real time and generates measurement data; A sensing unit that measures changes in surrounding phenomena in real time; a calculation unit that calculates consumption data by analyzing the measured values from the sensing unit and measurement data generated from the smart meters; a communication unit that receives other measurement data from an external device and collects the consumption data into one protocol; And a blockchain RTU that stores the consumption data collected by the single protocol in a blockchain network to generate a consumption offset certificate, wherein the renewable energy consumption offset certificate is generated by verifying and authenticating the consumption data. This certificate is characterized in that the value for offsetting carbon emissions is replaced with the same value as the amount of renewable energy consumption included in the consumption data.
또한, 상기 블록체인 기반의 신재생에너지 소비 인증 장치에 있어서 상기 적어도 하나 이상의 스마트 미터는, 전기에너지, 열에너지, 또는 물사용량 등 적어도 하나 이상의 신재생에너지의 소비량을 측정하는 것을 특징으로 할 수 있다.Additionally, in the blockchain-based renewable energy consumption authentication device, the at least one smart meter may be characterized as measuring the consumption of at least one or more renewable energy, such as electric energy, thermal energy, or water usage.
또한, 상기 블록체인 기반의 신재생에너지 소비 인증 장치에 있어서 상기 연산부는, 상기 소비데이터를 기 지정된 시간 단위로 분석하여 상기 소비데이터에 대한 과금데이터를 연산하는 것을 특징으로 할 수 있다.Additionally, in the blockchain-based renewable energy consumption authentication device, the calculation unit may analyze the consumption data in predetermined time units and calculate billing data for the consumption data.
또한, 상기 블록체인 기반의 신재생에너지 소비 인증 장치에 있어서 상기 외부장치는, 태양광 인버터, 전기 자동차 충전기 중 적어도 하나 이상이 포함된 장치로서, 사용된 태양광 에너지, 전기 에너지 중 적어도 하나 이상의 측정 데이터를 생성하는 장치인 것을 특징으로 할 수 있다.In addition, in the blockchain-based renewable energy consumption authentication device, the external device is a device that includes at least one of a solar inverter and an electric vehicle charger, and measures at least one of the used solar energy and electric energy. It may be characterized as a device that generates data.
또한, 상기 블록체인 기반의 신재생에너지 소비 인증 장치에 있어서 상기 블록체인 네트워크에 저장된 신재생에너지 소비 상쇄 인증서는, 사용자간에 거래가 가능한 것을 특징으로 할 수 있다.Additionally, in the blockchain-based renewable energy consumption authentication device, the renewable energy consumption offset certificate stored in the blockchain network may be characterized in that it can be traded between users.
또한, 상기 블록체인 기반의 신재생에너지 소비 인증 장치에 있어서 상기 블록체인 RTU는, 상기 소비 상쇄 인증서를 기반으로 거래용 토큰을 생성하며, 상기 거래용 토큰은, 블록체인 형태로 마련된 것으로서 사용자간에 거래가 가능한 것을 특징으로 할 수 있다.In addition, in the blockchain-based renewable energy consumption authentication device, the blockchain RTU generates a transaction token based on the consumption offset certificate, and the transaction token is prepared in the form of a blockchain and can be traded between users. It can be characterized as possible.
다른 한편, 본 발명의 또 다른 실시예에 따른 신재생에너지 소비 인증 장치가 신재생에너지 소비 인증을 위한 블록체인 네트워크를 구축하는 방법은, 측정데이터, 및 주변 현상 변화로부터 측정된 값을 획득하는 단계; 상기 획득된 측정데이터와 값을 기반으로 소비데이터를 생성하는 단계; 및 상기 소비데이터를 블록체인 네트워크에 저장함으로써, 신재생에너지 소비 상쇄 인증서가 생성되도록 하는 단계;를 포함할 수 있다.On the other hand, a method of establishing a blockchain network for renewable energy consumption authentication by a renewable energy consumption authentication device according to another embodiment of the present invention includes the steps of obtaining measured values from measurement data and changes in surrounding phenomena. ; generating consumption data based on the obtained measurement data and values; And it may include a step of generating a renewable energy consumption offset certificate by storing the consumption data in a blockchain network.
또한, 본 발명의 또 다른 실시예에 따른 신재생에너지 소비 인증 장치가 신재생에너지 소비 인증을 위한 블록체인 네트워크를 구축하는 방법은, 신재생에너지 소비 상쇄 인증서가 생성되도록 하는 단계 이후에, 상기 소비 상쇄 인증서를 기반으로 블록체인 형태의 거래용 토큰을 생성하는 단계를 더 포함할 수 있다.In addition, a method of establishing a blockchain network for renewable energy consumption authentication by a renewable energy consumption authentication device according to another embodiment of the present invention includes generating a renewable energy consumption offset certificate, after which the consumption certificate is generated. A step of generating a blockchain-type transaction token based on the offset certificate may be further included.
상기와 같은 본 발명에 따르면, 신재생에너지 소비 인증 장치의 스마트 미터가 다양한 신재생에너지들의 소비량을 측정할 수 있도록 설계함으로써, 사용자가 원하는 신재생에너지를 선택하여도 이에 대한 소비량을 측정 받을 수 있어, 신재생에너지 소비 대중화를 불러일으킬 수 있는 효과가 있다.According to the present invention as described above, the smart meter of the renewable energy consumption authentication device is designed to measure the consumption of various renewable energies, so that the user can measure the consumption of the desired renewable energy even if he or she selects it. , it has the effect of bringing about the popularization of renewable energy consumption.
또한, 신재생에너지 소비 인증 장치의 연산부가 다양한 신재생에너지의 소비량을 통합적으로 분석 및 연산할 때에 학습된 AI와 빅테이터가 활용되도록 함으로써, 보다 정밀한 신재생에너지 소비량을 추정할 수 있다.In addition, by allowing the learned AI and big data to be used when the calculation unit of the renewable energy consumption certification device comprehensively analyzes and calculates the consumption of various new and renewable energy, more precise renewable energy consumption can be estimated.
또한, 신재생에너지 소비 인증 장치의 블록체인 RTU가 연산된 신재생에너지 소비량을 블록체인 네트워크에 저장하는 것만으로도 신재생에너지 소비 상쇄 인증서가 생성되도록 함으로써, 국가기관의 검증절차 없이 간단하고 편리하게 신재생에너지 소비 상쇄 인증서를 발급받을 수 있도록 하는 효과가 있으며, 나아가, 상기 신재생에너지 소비 상쇄 인증서가 보안이 확실한 블록체인 네트워크 기반으로 생성되기에 이를 자산화 시켜 또 다른 경제 시장을 구축시킬 수 있는 효과까지 불러일으킬 수 있다.In addition, the blockchain RTU of the renewable energy consumption certification device generates a renewable energy consumption offset certificate simply by storing the calculated renewable energy consumption in the blockchain network, making it simple and convenient without the verification process of a national agency. It has the effect of allowing a renewable energy consumption offset certificate to be issued, and furthermore, since the new and renewable energy consumption offset certificate is created based on a secure blockchain network, it has the effect of building another economic market by capitalizing it. It can even be evoked.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해 될 수 있을 것이다.The effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description below.
도 1은 종래의 탄소 배출 감축량 측정 방법을 그래프를 통하여 나타낸 도면이다.Figure 1 is a diagram showing a conventional method of measuring carbon emission reduction through a graph.
도 2는 본 발명의 신재생에너지 소비량을 정의하기 위하여 그래프를 통하여 나타낸 도면이다.Figure 2 is a diagram showing a graph to define the renewable energy consumption of the present invention.
도 3은 본 발명의 제 1 실시 얘에 따른 블록체인 기반의 신재생에너지 소비 인증 장치를 모식도로 나타낸 도면이다.Figure 3 is a schematic diagram showing a blockchain-based renewable energy consumption authentication device according to the first embodiment of the present invention.
도 4는 본 발명의 제 1 실시 예에 따른 블록체인 기반의 신재생에너지 소비 인증 장치의 구성을 구체적으로 나타낸 도면이다.Figure 4 is a diagram specifically showing the configuration of a blockchain-based renewable energy consumption authentication device according to the first embodiment of the present invention.
도 5는 본 발명의 제 1 실시 예에 따른 블록체인 기반의 신재생에너지 소비 인증 장치의 연산부의 역할 수행과정을 나타낸 도면이다.Figure 5 is a diagram showing the process of performing the role of the calculation unit of the blockchain-based renewable energy consumption authentication device according to the first embodiment of the present invention.
도 6은 본 발명의 제 1 실시 예에 따른 블록체인 기반의 신재생에너지 소비 인증 장치의 통신부의 역할 수행과정을 나타낸 도면이다.Figure 6 is a diagram showing the role performance process of the communication unit of the blockchain-based renewable energy consumption authentication device according to the first embodiment of the present invention.
도 7은 본 발명의 제 1 실시 예에 따른 블록체인 기반의 신재생에너지 소비 인증 장치의 블록체인 RTU의 역할 수행과정을 나타낸 도면이다.Figure 7 is a diagram showing the role performance process of the blockchain RTU of the blockchain-based renewable energy consumption authentication device according to the first embodiment of the present invention.
도 8 내지 도 10은 본 발명의 제 1 실시 예에 따른 블록체인 기반의 신재생에너지 소비 인증 장치가 블록체인 네트워크를 구축하는 방법을 구체적으로 나타낸 도면이다.Figures 8 to 10 are diagrams specifically showing how the blockchain-based renewable energy consumption authentication device builds a blockchain network according to the first embodiment of the present invention.
도 11은 본 발명의 제 2 실시 예에 따른 신재생에너지 소비 인증을 위한 블록체인 네트워크 활용방법을 구체적으로 나타낸 도면이다.Figure 11 is a diagram specifically showing a method of utilizing a blockchain network for authentication of renewable energy consumption according to the second embodiment of the present invention.
도 12는 본 발명의 제 3 실시 예에 따른 신재생에너지 소비 인증을 위한 블록체인 네트워크 활용방법을 구체적으로 나타낸 도면이다.Figure 12 is a diagram specifically showing a method of utilizing a blockchain network for authenticating renewable energy consumption according to the third embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명한다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 게시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 게시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the attached drawings. The advantages and features of the present invention and methods for achieving them will become clear by referring to the embodiments described in detail below along with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below and may be implemented in various different forms, and the present embodiments are merely intended to ensure that the disclosure of the present invention is complete and to provide common knowledge in the technical field to which the present invention pertains. It is provided to fully inform those who have the scope of the invention, and the present invention is only defined by the scope of the claims. Like reference numerals refer to like elements throughout the specification.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다. 본 명세서에서 사용된 용어는 실시 예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다.Unless otherwise defined, all terms (including technical and scientific terms) used in this specification may be used with meanings that can be commonly understood by those skilled in the art to which the present invention pertains. Additionally, terms defined in commonly used dictionaries are not interpreted ideally or excessively unless clearly specifically defined. The terms used in this specification are for describing embodiments and are not intended to limit the invention. As used herein, singular forms also include plural forms, unless specifically stated otherwise in the context.
"제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위한 것으로, 이들 용어들에 의해 권리범위가 한정되어서는 아니 된다. 예를 들어, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.Terms such as “first” and “second” are used to distinguish one component from another component, and the scope of rights should not be limited by these terms. For example, a first component may be named a second component, and similarly, the second component may also be named a first component.
본 명세서에서 사용되는 "포함한다 (Comprises)" 및/또는 "포함하는 (Comprising)"은 언급된 구성 요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성 요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.As used herein, “comprises” and/or “comprising” refers to a referenced component, step, operation and/or element that includes one or more other components, steps, operations and/or elements. Does not exclude presence or addition.
본 발명은 블록체인 기반의 신재생에너지 소비 인증 장치에 관한 것이다. 보다 자세하게는 건물 내에서 소비되는 전기에너지, 열에너지, 수력에너지, 풍력에너지 등과 같은 복수의 신재생에너지의 소비량을 통합적으로 연산하여 소비데이터를 생성하고, 소비데이터를 블록체인 네트워크에 저장하여 신재생에너지 소비 상쇄 인증서가 생성되도록 함으로써, 신재생에너지를 사용한 대가를 인정받고 이를 자산화까지 할 수 있도록 해주는 블록체인 기반의 신재생에너지 소비 인증 장치(이하 소비 인증 장치(100)로 약칭함)에 관한 것이다.The present invention relates to a blockchain-based renewable energy consumption authentication device. More specifically, consumption data is generated by comprehensively calculating the consumption of multiple new and renewable energies such as electric energy, thermal energy, hydroelectric energy, and wind energy consumed within the building, and the consumption data is stored in the blockchain network to generate new and renewable energy. This relates to a blockchain-based renewable energy consumption authentication device (hereinafter abbreviated as consumption authentication device 100) that allows the use of new and renewable energy to be recognized and capitalized by generating a consumption offset certificate.
이러한 신재생에너지 소비 인증 장치(100)에 대하여 살펴보기 이전에, 본 발명에서 말하는 신재생에너지 소비량과 신재생에너지 소비 상쇄 인증서에 대하여 먼저 살펴보도록 한다.Before looking at this renewable energy consumption certification device 100, let's first look at the renewable energy consumption and the renewable energy consumption offset certificate referred to in the present invention.
[신재생에너지 소비량][Renewable energy consumption]
앞서 발명의 배경에서 설명하였듯이, 우리나라는 탄소 배출량을 줄이기 위하여 많은 노력을 하고 있으며 이러한 노력 중 하나로, 탄소 배출 양을 감축한 기업에게 인센티브를 주는 방안까지 도입하고 있다.As previously explained in the background of the invention, Korea is making a lot of efforts to reduce carbon emissions, and as one of these efforts, it is even introducing a plan to provide incentives to companies that reduce the amount of carbon emissions.
도 1을 참고하면, 우리나라는 상기 방안을 실시하기 위하여 기업의 탄소 감축량을 측정하고 있으며, 탄소 감축량 측정을 위하여 이하 두 가지 방법이 활용되고 있다. Referring to Figure 1, Korea is measuring the carbon reduction amount of companies in order to implement the above plan, and the following two methods are used to measure the carbon reduction amount.
첫 번째 방법(도1의 A)은 과거의 탄소 배출량과 현재의 탄소 배출량의 차이를 계산하여 탄소 감축량을 산출하는 방법이다. The first method (A in Figure 1) is a method of calculating the carbon reduction amount by calculating the difference between past carbon emissions and current carbon emissions.
두 번째 방법(도 1의 B)은 측정 대상 건물의 요인(건물의 면적, 거주자 수, 냉/난방 평균 사용시간 등)을 분석하여 표준탄소배출량을 산출하고 상기 표준탄소배출량에 현재의 탄소 배출량을 차감하여 탄소 감축량을 계산하는 방법이다.The second method (B in Figure 1) analyzes the factors of the building to be measured (building area, number of residents, average cooling/heating use time, etc.) to calculate standard carbon emissions and adds the current carbon emissions to the standard carbon emissions. This is a method of calculating carbon reduction by subtracting.
하지만 상기 언급된 종래의 탄소 감축량 계산 방법들은, 일일이 하나의 건물에 대한 탄소 감축량을 연산하고 분석해야 한다는 불편함이 있었으며, 특히 표준탄소배출량을 산출할 때에는 검증된 국가기관이 개입되어야 하기에 많은 시간이 소요될 뿐만 아니라 산출되는 과정에서 많은 비용까지도 소모된다.However, the conventional carbon reduction calculation methods mentioned above had the inconvenience of having to calculate and analyze the carbon reduction for each building individually, and in particular, a verified national agency must be involved when calculating the standard carbon emissions. Not only does it take a lot of time, but it also costs a lot of money during the calculation process.
이러한 문제점을 해결하고자 본 발명은 탄소 감축량을 ‘신재생에너지 소비량’과 동일한 값으로 하여 보다 간단히 탄소 감축량을 산출하도록 한다.In order to solve this problem, the present invention sets the carbon reduction amount to the same value as ‘new and renewable energy consumption’ to calculate the carbon reduction amount more simply.
도 2 를 참고하면, 어느 한 건물이 일반에너지(소비 되었을 때에 탄소가 배출되는 에너지)와 신재생에너지를 혼용하여 사용한다고 할 때, 일반에너지의 소비량와 신재생에너지의 소비량을 합한 값은 당연 ‘총 에너지 소비량’일 것이다. 이 때, 일반에너지는 소비되면 탄소가 배출되는 반면, 신재생에너지는 소비되어도 탄소가 배출되지 않을 것이므로 ‘총 에너지 소비량’에서 신재생에너지 소비량을 차감한 값이 상기 건물의 ‘총 탄소 배출량’이 될 것이며, 마찬가지로 ‘총 에너지 소비량’에서 ‘총 탄소 배출량’차감한 값이 탄소 감축량이 될 것이며, 이 값은 ‘신재생에너지 소비량’과 동일할 것이다.Referring to Figure 2, when a building uses a mixture of general energy (energy that emits carbon when consumed) and new and renewable energy, the sum of the consumption of general energy and the consumption of new and renewable energy is naturally the 'total energy'. It would be ‘energy consumption’. At this time, while general energy emits carbon when consumed, new and renewable energy does not emit carbon even when consumed, so the 'total carbon emission' of the building is calculated by subtracting the new and renewable energy consumption from the 'total energy consumption'. Likewise, the value obtained by subtracting 'total carbon emissions' from 'total energy consumption' will be the carbon reduction amount, and this value will be the same as 'renewable energy consumption'.
이러한 이유에 있어서 본 발명은 탄소 감축량을 신재생에너지 소비량과 동일한 값으로 치환한다. 또한, 한 건물의 ‘총 에너지 소비량’은 신재생에너지 소비량이 증가됨에 따라 ‘총 탄소배출량’이 상쇄되므로 본 발명은 탄소 배출량을 감축한다는 표현뿐만 아니라 탄소 배출량을 상쇄한다는 표현도 혼용되어 활용될 수 있음을 이해한다.For this reason, the present invention replaces the carbon reduction amount with the same value as the renewable energy consumption amount. In addition, since the 'total energy consumption' of a building is offset by the 'total carbon emissions' as the consumption of new and renewable energy increases, the present invention can be used interchangeably with the expression of reducing carbon emissions as well as the expression of offsetting carbon emissions. I understand that there is.
[신재생에너지 소비 상쇄 인증서][Renewable energy consumption offset certificate]
우리나라를 포함한 일부 국가들에서는 탄소 배출 양을 상쇄한 기업에게 인센티브를 주고 있지만, 기업이 그 인센티브를 제공받으려면 탄소 배출 양을 상쇄하였다는 증거를 국가 기관이나 단체에 제출해야 한다. Some countries, including Korea, provide incentives to companies that offset their carbon emissions, but in order for companies to receive the incentives, they must submit evidence that they have offset their carbon emissions to a national agency or organization.
다만, 아직까지 우리나라를 포함한 일부 국가에서는 신재생에너지 공급 인증서(REC: Renewable Energy Certificate)와 같이 전력을 공급하는 발전 사업자가 주체인 인증서에만 초점을 두고 있고, 신재생에너지의 소비에 관한 인증서 발급에 대해서는 제대로 이루어지고 있지 않다. 이러한 이유에서 본 발명은 인증서를 발급받는 주체가 개인이나 기업이 되도록 하는 신재생에너지 소비 상쇄 인증서(이하, 소비 상쇄 인증서라고 약칭함)를 제공하고자 한다. However, some countries, including Korea, are still focusing only on certificates issued by power generation companies that supply electricity, such as the Renewable Energy Certificate (REC), and are not involved in issuance of certificates for the consumption of renewable energy. This is not being done properly. For this reason, the present invention seeks to provide a renewable energy consumption offset certificate (hereinafter abbreviated as consumption offset certificate) that allows the subject issuing the certificate to be an individual or company.
소비 상쇄 인증서는 개인이나 기업이 탄소 배출을 상쇄하여 국제적인 기후 변화를 막고 환경보전에 얼마나 기여 하였는지에 대한 지표로서 활용될 수 있을 뿐만 아니라 국가 기관 또는 단체로부터 다양한 혜택과 인센티브를 제공받을 수 있는 인증서로서도 활용될 수 있다.The consumption offset certificate can be used as an indicator of how much an individual or company has contributed to preventing international climate change and environmental conservation by offsetting carbon emissions, and can also be used as a certificate that can provide various benefits and incentives from national agencies or organizations. It can be.
나아가, 본 발명은 이러한 소비 상쇄 인증서를 블록체인 기반의 네트워크를 통해서 보안성 및 확장성을 극대화 시키고, 새로운 인증자산으로서 발급받을 수 있도록 할 수 있다.Furthermore, the present invention can maximize the security and scalability of these consumption offset certificates through a blockchain-based network and enable them to be issued as new authentication assets.
이상, 본 발명에서 말하는 신재생에너지 소비량과 신재생에너지 소비 상쇄 인증서에 대하여 살펴보았다.Above, we looked at the renewable energy consumption and the renewable energy consumption offset certificate referred to in the present invention.
다음으로, 본 발명의 제 1실시 예에 따른 블록체인 기반의 신재생에너지 소비 인증 장치(100)에 대하여 살펴보도록 한다.Next, let's look at the blockchain-based renewable energy consumption authentication device 100 according to the first embodiment of the present invention.
<제 1 실시 예><First embodiment>
도 3은 본 발명의 제 1 실시 예에 따른 블록체인 기반의 신재생에너지 소비 인증 장치(100)를 모식도로 나타낸 도면이다.Figure 3 is a schematic diagram showing a blockchain-based renewable energy consumption authentication device 100 according to the first embodiment of the present invention.
[소비 인증 장치(100)][Consumption authentication device (100)]
도 3을 참고하면, 소비 인증 장치(100)는 신재생에너지 소비량을 측정하는 스마트 미터(110), 주변 온도를 측정하는 센싱부(120), 복수의 신재생에너지 소비량을 통합하여 소비데이터를 생성하는 연산부(130), 생성된 소비데이터를 하나의 프로토콜로 취합하는 통신부(140) 및 상기 소비데이터를 기반으로 소비 상쇄 인증서를 생성하고 블록체인 네트워크에 저장하는 블록체인 RTU(150)를 포함한다.Referring to FIG. 3, the consumption authentication device 100 generates consumption data by integrating a smart meter 110 that measures renewable energy consumption, a sensing unit 120 that measures ambient temperature, and a plurality of renewable energy consumption amounts. It includes an operation unit 130 that collects the generated consumption data into one protocol, a communication unit 140 that generates a consumption offset certificate based on the consumption data, and a blockchain RTU (150) that generates a consumption offset certificate and stores it in a blockchain network.
[스마트 미터(110)][Smart Meter (110)]
먼저, 스마트 미터(110)는 적어도 하나 이상의 신새쟁에너지를 소비하는 건물에 설치될 수 있는 단말형태의 장치이다. 여기서 말하는 적어도 하나 이상의 신재생에너지는 전기 에너지, 수력에너지, 풍력에너지를 포함할 뿐만 아니라 연료전지. 석탄가스화, 수소에너지, 태양열, 태양광발전, 바이오매스, 풍력, 소수력, 지열, 해양에너지 및 폐기수력에너지 등을 포함한다.First, the smart meter 110 is a terminal-type device that can be installed in a building that consumes at least one new type of energy. At least one new renewable energy mentioned here includes electric energy, hydroelectric energy, wind energy, as well as fuel cells. Includes coal gasification, hydrogen energy, solar heat, solar power generation, biomass, wind power, small hydro, geothermal energy, marine energy, and waste hydro energy.
스마트 미터(110)는 상기 나열된 신재생에너지 종류 중 어느 하나만 측정하는 것에 그치지 않으며, 이종 에너지에 대하여 통합적으로 측정할 수 있다. 이 때, 스마트 미터(110)는 복수 개로 마련되어 각각의 스마트 미터(110)가 하나의 신재생에너지를 담당하여 측정할 수 있고, 단일의 스마트 미터(110)가 복수의 신재생에너지를 통합적으로 측정할 수 있도록 설계될 수도 있다.The smart meter 110 does not stop at measuring just one of the types of renewable energy listed above, but can measure heterogeneous energy comprehensively. At this time, a plurality of smart meters 110 are provided so that each smart meter 110 is responsible for measuring one renewable energy, and a single smart meter 110 can measure a plurality of new and renewable energy in an integrated manner. It may be designed to do so.
스마트 미터(110)는 적어도 하나 이상의 신재생에너지의 소비량에 대한 측정데이터를 생성한다. 구체적인 예로, 1) 전기에너지(kWh)에 대한 측정데이터는 신재생에너지 생산량(태양광 생산량)에 기존 외부기관(예: 한국 전력 공사)으로부터 전달받은 전기에너지 소비량을 차감하여 생성되고, 2) 열에너지(kCal)에 대한 측정데이터는 지열(신재생에너지)을 통해 공급된 원천의 열에너지량(kCal)을 kWh로 단위 변환하여 생성되며, 3) 물 사용량(m3)에 대한 측정데이터는 물을 생산하기 위해 사용되는 연료전지(신재생에너지) 에너지 소비량 중에서 사용자가 소비한 물을 양만큼을 생산하는 데 소비되는 에너지 소비량을 추정하여 생성된 데이터이다. 예를 들어, 한 건물에 물을 생산하기 위하여 100kWh의 연료전지가 투입되고, 이 100kWh의 연료전지가 10L의 물을 생산하려면 1kWh의 에너지를 소비한다고 가정하였을 때에 사용자가 10L의 물을 사용하였으면 스마트 미터(110)는 물 사용량 10L에 대한 측정데이터를 1kWh로 추정하여 생성한다는 것이다.The smart meter 110 generates measurement data on the consumption of at least one or more renewable energy. As a specific example, 1) measurement data for electrical energy (kWh) is generated by subtracting the electrical energy consumption received from existing external organizations (e.g. Korea Electric Power Corporation) from new and renewable energy production (solar power production), and 2) thermal energy Measurement data for (kCal) is generated by converting the amount of thermal energy (kCal) from the source supplied through geothermal heat (renewable energy) into kWh. 3) Measurement data for water usage (m 3 ) is generated by converting the unit to kWh. This is data generated by estimating the energy consumption consumed to produce the amount of water consumed by the user among the energy consumption of fuel cells (new and renewable energy) used for this purpose. For example, assuming that a 100 kWh fuel cell is used to produce water in a building, and that this 100 kWh fuel cell consumes 1 kWh of energy to produce 10 L of water, if the user used 10 L of water, the smart The meter 110 generates measurement data for 10L of water usage by estimating 1kWh.
한편, 외부 장치(200)는 불가피하게 건물 외부에 위치해야만 신재생에너지의 소비량을 측정할 수 있는 장치들을 의미할 수 있다. 예를 들어, 건물의 주차장 또는 외부에 위치한 전기차 충전기, 건물의 옥상 밑 외벽에 위치한 태양광 인버터를 말할 수 있으며, 전기차가 충전되면서 발생되는 신재생에너지 소비량을 측정하여 측정데이터를 생성하고, 태양광이 전기 에너지로 변환되고 소비되면서 발생되는 신재생에너지 소비량을 측정하여 측정데이터를 생성할 수 있다.Meanwhile, the external device 200 may refer to devices that can measure the consumption of renewable energy only if they are inevitably located outside the building. For example, an electric vehicle charger located in the parking lot or outside of a building, or a solar inverter located on the exterior wall under the rooftop of a building, measures the amount of new and renewable energy consumption generated while charging an electric vehicle, generates measurement data, and generates measurement data from solar energy. Measurement data can be generated by measuring the amount of renewable energy consumed as it is converted and consumed into electrical energy.
[센싱부(120)][Sensing unit (120)]
센싱부(120)는 에너지 자원을 소비하는 반대급부로 변동되는 현상을 감지하는 구성으로 이해될 수 있으며, 일 예로 주변 온도를 측정하는 센서일 수 있다. 센싱부(120)로부터 측정된 주변온도는 후술할 연산부(130)가 소비데이터를 생성할 때에 활용될 뿐만 아니라 신재생에너지의 효율(소비량 대비 온도 증감량)을 측정하는 수치로도 활용될 수 있다. 참고로, 센싱부(120)는 주변 온도를 센싱하는 센서로만 국한되지 않으며, 조도를 감지하는 센서, 대기질을 판단하는 센서 등 에너지 자원을 소비하는 대가로 변동되는 데이터(온도, 조도, 대기질)를 센싱할 수 있는 센서라면 본 발명의 센싱부(120)가 될 수 있다.The sensing unit 120 can be understood as a component that detects a fluctuating phenomenon in exchange for consuming energy resources, and may be a sensor that measures ambient temperature, for example. The ambient temperature measured from the sensing unit 120 is not only used when the calculating unit 130, which will be described later, generates consumption data, but can also be used as a value to measure the efficiency of renewable energy (temperature increase/decrease compared to consumption). . For reference, the sensing unit 120 is not limited to sensors that sense the surrounding temperature, but also includes data (temperature, illuminance, air quality) that fluctuates in exchange for consuming energy resources, such as sensors that detect illuminance and sensors that determine air quality. ) can be used as the sensing unit 120 of the present invention.
[연산부(130)][Computation unit (130)]
연산부(130)는 센싱부(120)로부터 측정된 값 및 스마트 미터(110)로부터 측정된 적어도 하나 이상의 측정데이터를 기반으로 소비데이터를 생성한다. 예를 들어, 소비데이터는 주변온도와 복수의 측정데이터를 통합시킨 데이터이며. 기 지정된 시간(예: 15분) 동안 변화된 주변온도와 복수 개의 측정데이터를 분석하여 탄소 상쇄값이 연산된 데이터라고도 할 수 있다.The calculation unit 130 generates consumption data based on the value measured by the sensing unit 120 and at least one measurement data measured by the smart meter 110. For example, consumption data is data that integrates ambient temperature and multiple measurement data. It can also be said to be data in which the carbon offset value is calculated by analyzing the changed ambient temperature and multiple measurement data over a predetermined period of time (e.g., 15 minutes).
연산부(130)는 복수 개의 측정데이터를 분석하기 위하여 학습된 AI와 빅데이터를 활용할 수 있다. 구체적으로, 측정데이터 내에 포함된 이종(異種) 에너지들은 소비되는 양에 대비하여 각각의 탄소 상쇄값이 상이할 수 있으며, 측정데이터가 생성될 때에 여러 요인(이종의 에너지들이 동시에 측정, 외부 온도에 따른 주변 온도 급변화 등)들에 의하여 변동 사항이 발생될 수 있고, 획득된 원천의 측정데이터만으로는 탄소 상쇄값을 추정하여 소비데이터를 생성하기에는 어려움이 있기에, 레퍼런스 데이터들이 포함되어 있는 빅데이터와 여러 가지의 상황과 조건이 달라지더라도 결과 값을 도출할 수 있도록 학습된 AI가 같이 활용될 수 있다는 것이다.The calculation unit 130 can utilize learned AI and big data to analyze a plurality of measurement data. Specifically, the heterogeneous energies included in the measured data may have different carbon offset values compared to the amount consumed, and when the measured data is generated, various factors (heterogeneous energies are measured simultaneously, external temperature Changes may occur due to sudden changes in ambient temperature, etc.), and it is difficult to estimate carbon offset values and generate consumption data using only the obtained measurement data. Therefore, big data containing reference data and various This means that the learned AI can be used together to derive results even if the situation and conditions are different.
참고로, 측정데이터 내에 포함된 이종(異種) 에너지들이 소비되는 양에 대비하여 각각의 탄소 상쇄값이 상이한 이유는, 태양열 에너지와 같이 소비되어도 탄소가 배출되지 않는 에너지는 소비되는 양 그 자체가 탄소 상쇄값이 될 수 있지만, 석탄가스화 에너지는 같은 경우 소량의 탄소가 배출될 수 있으므로 탄소가 배출되는 양까지 고려하여 연산되기 때문이다. For reference, the reason why the carbon offset values for each of the heterogeneous energies included in the measurement data are different compared to the amount consumed is that the amount consumed is itself carbon dioxide for energy that does not emit carbon even when consumed, such as solar energy. This may be an offset value, but since coal gasification energy may emit a small amount of carbon in the same case, it is calculated by considering the amount of carbon emissions.
[통신부(140)][Communication Department (140)]
통신부(140)는 장치의 구성요소 또는 외부 서버(예: 써드파티 서버(400), ESS 서버 등) 와의 데이터 교환이 원활히 이루어질 수 있도록 마련된 구성요소이다.The communication unit 140 is a component designed to facilitate data exchange with device components or external servers (e.g., third-party server 400, ESS server, etc.).
또한, 통신부(140)는 외부장치(200)로부터 측정데이터를 수신하는 역할을 수행한다. 구체적으로, 스마트 미터(110)와 연산부(130)는 소비 인증 장치(100) 내에 위치하고 있는 구성요소들이기에 스마트 미터(110)가 굳이 연산부(130)에 측정데이터를 전송하지 않아도 두 구성요소 간의 연동에 의하여 연산부(130)에 전달되지만, 건물 외부에 위치한 외부 장치(200)는 위치적으로 연산부(130)와의 연동이 불가능 하기 때문에, 외부 장치(200)는 측정데이터를 연산부(130)에 전달하기 위하여 통신모듈(미도시)이 구비되어 측정데이터를 통신부(140)에 전송할 수 있도록 구현될 수 있다. 참고로, 외부 장치(200)가 소비 인증 장치(100)와 유선으로 연결되어 있을 경우, 상술한 통신부(140)의 데이터 전달 역할 필요 없이 소비 인증장치(1)의 구성요소들과 연동되어 사용될 수 있다.Additionally, the communication unit 140 serves to receive measurement data from the external device 200. Specifically, the smart meter 110 and the calculation unit 130 are components located within the consumption authentication device 100, so the smart meter 110 does not necessarily transmit measurement data to the calculation unit 130, but the two components are interconnected. However, since the external device 200 located outside the building cannot be linked with the calculation unit 130, the external device 200 transmits the measured data to the calculation unit 130. To this end, a communication module (not shown) may be provided to transmit measurement data to the communication unit 140. For reference, if the external device 200 is connected to the consumption authentication device 100 by wire, it can be used in conjunction with the components of the consumption authentication device 1 without the need for the data transmission role of the communication unit 140 described above. there is.
한편, 통신부(140)는 연산부(130)가 생성한 소비데이터를 하나의 프로토콜로 취합하여, 후술할 블록체인 RTU(150)가 상기 소비데이터가 블록체인 네트워크(300)에 저장될 수 있도록 한다.Meanwhile, the communication unit 140 collects the consumption data generated by the calculation unit 130 into one protocol, and the blockchain RTU 150, which will be described later, allows the consumption data to be stored in the blockchain network 300.
[블록체인 RTU(150)][Blockchain RTU(150)]
블록체인 RTU(150)는 각 세대 또는 건물에 배치된 소비 인증 장치(100)를 하나의 블록체인 노드로 하여, 복수 개의 블록체인 노드 즉, 복수 개의 소비 인증 장치(100)들이 서로의 통신망으로 블록체인 네트워크(300)를 구축할 수 있도록 한다.The blockchain RTU (150) uses the consumption authentication device (100) placed in each household or building as one blockchain node, and multiple blockchain nodes, that is, multiple consumption authentication devices (100), block each other through each other's communication network. It allows building a chain network (300).
블록체인 RTU(150)는 통신부(140)가 소비데이터를 하나의 프로토콜로 취합하면, 소비데이터를 블록체인 네트워크(300)에 저장한다. 이렇게 블록체인 네트워크에 저장된 소비데이터는 블록체인 네트워크에 저장된 것 만으로도 복수 개의 블록체인 노드 즉, 복수 개의 소비 인증 장치(100)들이 서로의 소비데이터를 확인 및 검증함으로써 소비 상쇄인증서를 생성한다.When the communication unit 140 collects consumption data into one protocol, the blockchain RTU (150) stores the consumption data in the blockchain network (300). As for the consumption data stored in the blockchain network, a plurality of blockchain nodes, that is, a plurality of consumption authentication devices 100, confirm and verify each other's consumption data to generate a consumption offset certificate.
한편, 블록체인 RTU(150)는 소비데이터가 블록체인 네트워크(300)에 저장되기 이전에 블록체인 RTU(150)가 자체적으로 소비 상쇄인증서를 생성할 수 있다. 구체적으로, 블록체인 RTU(150)는 상기 하나의 프로토콜로 취합된 소비데이터를 기반으로 소비 상쇄 인증서를 생성하고, 상기 신재생에너지 소비 상쇄 인증서를 저장하는 방식으로 블록체인 네트워크(300)를 구축할 수 있다.Meanwhile, the blockchain RTU (150) can generate a consumption offset certificate on its own before the consumption data is stored in the blockchain network (300). Specifically, the blockchain RTU (150) builds a blockchain network (300) by generating a consumption offset certificate based on consumption data collected through the single protocol and storing the renewable energy consumption offset certificate. You can.
또 다른 한편, 블록체인 RTU(150)와 연동되는 검증 서버(500)는, 시스템상으로 부가적으로 포함되어 소비데이터가 블록체인 네트워크(300)에 저장되기 이전에, 기존의 국가기관 및 단체가 행하였던 인증 및 검증에 비하여 비교적 간소한 인증 및 검증을 거쳐 소비 상쇄인증서를 생성할 수 있다. 이 때, 검증 서버가 실시하는 인증 및 검증은 소비데이터가 블록체인 네트워크(300)에 호환가능한지에 대한 검증, 소비데이터의 오류 여부, 소비데이터에 대한 조작/해킹 가능성에 대한 여부 검증이 이루어질 수 있다.On the other hand, the verification server 500, which is linked to the blockchain RTU 150, is additionally included in the system and is used by existing national agencies and organizations before consumption data is stored in the blockchain network 300. A consumption offset certificate can be created through relatively simple authentication and verification compared to the previous authentication and verification. At this time, the authentication and verification performed by the verification server may include verification of whether the consumption data is compatible with the blockchain network 300, verification of errors in the consumption data, and verification of the possibility of manipulation/hacking of the consumption data. .
이렇게 생성된 소비 상쇄인증서는, 자체적으로 거래화폐가 되어 블록체인 네트워크 상에서 사용자들 간의 소비 상쇄 인증서 거래가 가능하도록 구현될 수 있다.The consumption offset certificate generated in this way can become a transaction currency itself and can be implemented to enable consumption offset certificate transactions between users on the blockchain network.
또한, 블록체인 RTU(150)는 소비 상쇄인증서를 기반으로 블록체인 형태의 거래용 토큰을 생성할 수 있으며, 사용자들이 거래용 토큰을 가지고 소비 상쇄인증서에 대한 거래를 할 수 있도록 한다. 참고로, 거래용 토큰은 블록체인 형태로 구현되어 있으므로 외부 기관(UN, 정부기관 또는 검증기관)을 거치지 않아 검증 및 중계 수수료 없이 사용자들 간의 소비 상쇄인증서 거래가 가능하도록 하여, 사용자들이 탄소 상쇄를 할 수 있도록 고무시킬 뿐만 아니라 이를 통해 또 다른 경제 시장이 형성될 수 있도록 한다. In addition, the blockchain RTU (150) can generate a blockchain-type transaction token based on the consumption offset certificate and allows users to transact on the consumption offset certificate with the transaction token. For reference, since the transaction token is implemented in blockchain form, it does not go through an external agency (UN, government agency, or verification agency), allowing consumption offset certificate transactions between users without verification and relay fees, allowing users to offset carbon. Not only does it encourage this, but it also allows another economic market to be formed.
도 4는 본 발명의 제 1 실시 예에 따른 블록체인 기반의 신재생에너지 소비 인증 장치(100)의 구체적인 구성요소를 모식도를 통하여 나타낸 것이다.Figure 4 shows the specific components of the blockchain-based renewable energy consumption authentication device 100 according to the first embodiment of the present invention through a schematic diagram.
도 4를 참고하여 상술한 구성요소들의 역할을 설명하자면, 스마트 미터(110)로부터 생성된 측정데이터는 RS485 통신을 통해 Modus라는 프로토콜로 취합되고, 취합된 데이터들은 OBIX라는 국제웹표준 XML언어로 구현되어 블록체인 네트워크(300)에 저장된다. 참고로, 외부 장치(200)와의 데이터 교환 또한 TCP/IP 혹은 직접적인 RS485 통신을 통하여 데이터 교환이 이루어지되, 태양광 인버터 같은 경우에는, TCP/IP 통신을 통해 별도의 SunSpec 프로토콜로 취합되어 상술한 OBIX 언어로 구현되어 저장된다. To explain the roles of the above-described components with reference to FIG. 4, measurement data generated from the smart meter 110 is collected through a protocol called Modus through RS485 communication, and the collected data is implemented in an international web standard XML language called OBIX. and stored in the blockchain network 300. For reference, data exchange with the external device 200 is also performed through TCP/IP or direct RS485 communication, but in the case of a solar inverter, it is collected as a separate SunSpec protocol through TCP/IP communication and used as the OBIX described above. It is implemented and stored in language.
한편, 도 4에 나타낸 소비 인증 장치(100)의 구성요소들은 상기 언급된 구성요소와 도시된 구성요소로 한정되지 않으며, 일부 구성요소가 추가 또는 삭제될 수 있다는 것을 이해한다.Meanwhile, it is understood that the components of the consumption authentication device 100 shown in FIG. 4 are not limited to the above-mentioned components and the components shown, and that some components may be added or deleted.
도 5는 연산부(130)가 소비데이터 및 과금데이터를 생성하는 과정을 예시적으로 나타낸 도면이다.Figure 5 is a diagram illustrating a process in which the calculation unit 130 generates consumption data and billing data.
도 5를 참고하면, 연산부(130)는 스마트 미터(110)와 외부장치(200)로부터 측정데이터를 전달받고, 센싱부(120)로부터 주변 온도에 대한 데이터를 전달받으며, 이 측정데이터와 주변 온도를 기반으로 신재생에너지 소비량과 예상되는 과금량(이용 요금)을 추정하여 소비데이터 및 과금데이터를 생성한다. 여기서, 과금데이터는 연산부(130)가 소비데이터를 기 지정된 시간 단위로 분석하여 소비데이터에 대한 이용 요금을 연산하여 추정한 데이터이다.Referring to FIG. 5, the calculation unit 130 receives measurement data from the smart meter 110 and the external device 200, receives data on the surrounding temperature from the sensing unit 120, and combines this measurement data and the surrounding temperature. Based on this, consumption data and billing data are generated by estimating new and renewable energy consumption and expected billing amount (usage fee). Here, the billing data is data estimated by the calculation unit 130 by analyzing the consumption data in predetermined time units and calculating a usage fee for the consumption data.
이 과정에서 연산부(130)는 다양한 요인에 따른 신재생에너지 소비량과 예상되는 과금량을 추정하기 위하여 학습된 AI와 빅데이터 기술을 활용할 수 있다. 구체적으로, 연산부(130)는 소비되는 신재생에너지의 종류, 신재생에너지의 소비량 대비 탄소 배출량, 신재생에너지 혼합 사용시 상쇄되는 탄소 배출량 등과 같은 요인과 더불어 건물의 면적, 거주자 수, 거주자의 에너지 소비 패턴 등의 다양한 요인에 대하여 소비데이터 및 과금데이터를 연산하기에는 어려울 수 있기에, 빅데이터의 방대한 레퍼런스 데이터, 학습된AI활용하여 상기 나열된 다양한 요인들을 토대로 신재생에너지 소비량과 예상되는 과금량을 추정할 수 있다는 것이다.In this process, the calculation unit 130 can utilize learned AI and big data technology to estimate renewable energy consumption and expected billing amount according to various factors. Specifically, the calculation unit 130 calculates factors such as the type of new and renewable energy consumed, carbon emissions compared to the consumption of new and renewable energy, and carbon emissions offset when using mixed renewable energy, as well as the area of the building, the number of residents, and the energy consumption of residents. Since it may be difficult to calculate consumption data and billing data for various factors such as patterns, it is possible to estimate renewable energy consumption and expected billing amount based on the various factors listed above by utilizing the vast reference data of big data and learned AI. That there is.
한편, 연산부(130)는 신재생에너지 소비량과 예상되는 과금량을 추정할 때에 써드파티 서버(400)의 도움을 받을 수 있다. 여기서, 써드파티 서버(400)는 에너지의 시세를 예측 분석하는 서버로서, 날씨, 기후, 온도 및 현재 에너지 공급량, 여러 가지의 사건/사고 등으로 변동될 수 있는 에너지의 시세를 예측 분석할 뿐만 아니라 스마트 미터(110)로부터 생성된 측정데이터를 분석하여 에너지 소비량, 소비 패턴 등을 분석해주어 써드파티 데이터를 생성시킨 뒤 본 발명의 통신부(140)에 전송한다. 나아가 써드파티 서버(400)는 건물의 위치, 건물의 면적 등 해당 건물에 소비되기 적합한 에너지를 추천해주는 역할을 수행할 수 있다.Meanwhile, the calculation unit 130 can receive help from the third-party server 400 when estimating the amount of renewable energy consumption and the expected billing amount. Here, the third-party server 400 is a server that predicts and analyzes the price of energy. It not only predicts and analyzes the price of energy that can fluctuate due to weather, climate, temperature, current energy supply, various events/accidents, etc., but also predicts and analyzes the price of energy. Measurement data generated from the meter 110 is analyzed to analyze energy consumption, consumption patterns, etc. to generate third-party data and then transmit it to the communication unit 140 of the present invention. Furthermore, the third-party server 400 can perform the role of recommending energy suitable for consumption in the building, such as the location of the building and the area of the building.
도 6은 통신부(140)가 연산부(130)로부터 생성된 소비데이터와 과금데이터를 하나의 프토토콜로 취합하고 처리하는 과정을 모식도로 나타낸 도면이다.Figure 6 is a schematic diagram showing the process in which the communication unit 140 collects and processes consumption data and billing data generated from the calculation unit 130 into one protocol.
도 6을 참고하면, 통신부(140)는 연산부(130)로부터 생성된 소비데이터와 과금데이터를 전달 받으며, 이 두 데이터를 하나의 프로토콜로 취합하고, 그 이후에 통신부(140)는 하나의 프로토콜로 취합된 데이터를 블록체인 RTU(150)에 전송한다.Referring to FIG. 6, the communication unit 140 receives consumption data and billing data generated from the calculation unit 130, collects these two data into one protocol, and thereafter, the communication unit 140 uses one protocol. The collected data is transmitted to the blockchain RTU (150).
한편, 통신부(140)는 사용자가 사용자 단말(10: 스마트 폰, PC 등과 같은 단말장치)로 하여금 소비데이터 및 과금데이터를 실시간으로 확인할 수 있도록 사용자 단말(10)에 소비데이터 및 과금데이터를 전달할 수 있다.Meanwhile, the communication unit 140 can transmit consumption data and billing data to the user terminal 10 so that the user can check the consumption data and billing data in real time. there is.
도 7은 블록체인 RTU(150)가 통신부(140)로부터 취합된 데이터들을 전달받고, 취합된 데이터들을 블록체인 네트워크에 전송함으로써 소비 상쇄 인증서를 생성하는 과정을 나타낸 도면이다. FIG. 7 is a diagram illustrating a process in which the blockchain RTU 150 receives collected data from the communication unit 140 and transmits the collected data to the blockchain network to generate a consumption offset certificate.
도 7을 참고하면, 블록체인 RTU(150)는 단일의 소비 인증 장치(100)가 블록체인 네트워크(300) 내의 하나의 노드가 될 수 있도록 하며, 이 때, 통신부(140)로부터 취합된 소비데이터는 블록체인 RTU(150)로 하여금 블록체인 네트워크(300)에 저장되고, 소비데이터가 블록체인 네트워크(300)에 저장되면, 블록체인 네트워크(300) 내의 복수 개의 노드들이 서로의 소비데이터를 검증 및 확인하여 블록체인 네트워크(300)에 저장된 소비데이터 자체가 소비 상쇄 인증서가 되도록 한다(도 7의 A). Referring to FIG. 7, the blockchain RTU 150 allows a single consumption authentication device 100 to become one node in the blockchain network 300, and at this time, the consumption data collected from the communication unit 140 causes the blockchain RTU (150) to be stored in the blockchain network 300, and when the consumption data is stored in the blockchain network 300, a plurality of nodes in the blockchain network 300 verify and verify each other's consumption data. Confirm that the consumption data stored in the blockchain network 300 itself becomes a consumption offset certificate (A in Figure 7).
한편, 소비 상쇄 인증서는, 소비데이터가 블록체인 네트워트(300)에 저장되기 이전에 블록체인 RTU(150) 자체적으로 생성할 수 있도록 구현될 수 있다(도 7의 B).Meanwhile, the consumption offset certificate can be implemented so that the blockchain RTU (150) can generate it itself before the consumption data is stored in the blockchain network (300) (B in FIG. 7).
또 다른 한편, 소비데이터가 블록체인 네트워트(300)에 저장되기 이전에 소비 인증 장치(100)와 연동된 검증 서버(500)가 소비데이터를 검증하여 소비 상쇄 인증서를 생성할 수 있도록 구현될 수 있다(도 7의 C).On the other hand, before the consumption data is stored in the blockchain network 300, the verification server 500 linked to the consumption authentication device 100 can be implemented to verify the consumption data and generate a consumption offset certificate. (C in Figure 7).
이렇게 생성된 소비 상쇄 인증서는 자체적으로 거래화폐로 활용되거나, 블록체인 RYU(150)로 하여금 블록체인 형태의 거래용 토큰으로 생성되어 사용자들 간의 거래가 가능하도록 구현될 수 있다.The consumption offset certificate generated in this way can be used as a transaction currency on its own, or it can be created as a transaction token in the form of a blockchain by the blockchain RYU (150) to enable transactions between users.
이상, 본 발명의 제 1실시 예에 따른 블록체인 기반의 신재생에너지 소비 인증 장치(100)에 대하여 살펴보았다. Above, we looked at the blockchain-based renewable energy consumption authentication device 100 according to the first embodiment of the present invention.
다음으로, 신재생에너지 소비 인증을 위한 블록체인 네트워크 활용방법을 단계별로 살펴보도록 한다. 참고로, 재생에너지 소비 인증을 위한 블록체인 네트워크 활용방법에 대한 설명은 앞서 설명한 소비 인증 장치(100)의 구성요소들의 역할에 대한 설명과 동일하기에 중복서술을 방지하고자 단계별 구체적인 설명은 생략하도록 한다.Next, let's take a step-by-step look at how to use the blockchain network to certify renewable energy consumption. For reference, the explanation of how to use the blockchain network for renewable energy consumption authentication is the same as the explanation of the roles of the components of the consumption authentication device 100 described above, so detailed step-by-step explanation will be omitted to prevent redundant description. .
도 8내지 도 10은 본 발명의 제 1 실시 예에 따른 소비 인증 장치(100)가 블록체인 네트워크를 구축하는 방법을 구체적으로 나타낸 도면이다. Figures 8 to 10 are diagrams specifically showing how the consumption authentication device 100 builds a blockchain network according to the first embodiment of the present invention.
도 8을 참고하면, 소비 인증 장치(100)가 블록체인 네트워크(300)를 구축하기 위해서는 먼저, 스마트 미터(110)와 외부장치(200)로부터 측정데이터를 획득하고, 센싱부(120)로부터 주변온도에 대한 데이터를 획득하는 단계에서 시작한다(S101). Referring to FIG. 8, in order for the consumption authentication device 100 to build the blockchain network 300, first, it acquires measurement data from the smart meter 110 and the external device 200, and then obtains measurement data from the surrounding area from the sensing unit 120. It starts with the step of acquiring data about temperature (S101).
S101 단계 이후, 연산부(130)는 학습된AI와 빅데이터를 활용하여 획득된 측정데이터와 주변온도에 대한 데이터를 기반으로 소비데이터를 생성한다(S102).After step S101, the calculation unit 130 generates consumption data based on measurement data and data on ambient temperature obtained using learned AI and big data (S102).
S102 단계 이후, 통신부(140)는 생성된 소비데이터를 하나의 프로토콜로 취합하며, 블록체인 RTU(150)는 소비데이터를 블록체인 네트워크에 저장하여 소비 상쇄 인증서가 생성되도록 한다(S103). After step S102, the communication unit 140 collects the generated consumption data into one protocol, and the blockchain RTU 150 stores the consumption data in the blockchain network to generate a consumption offset certificate (S103).
도 9를 참고하면, S102 단계 이후에는 블록체인 RTU(150)는 통신부(130)로부터 취합된 소비데이터를 기반으로 소비 상쇄 인증서를 자체적으로 생성하는 단계(S103a-1)가 포함될 수 있다.Referring to FIG. 9, after step S102, the blockchain RTU 150 may include a step (S103a-1) of automatically generating a consumption offset certificate based on consumption data collected from the communication unit 130.
S103a-1 단계 이후, 블록체인 RTU(150)는 자체적으로 생성한 소비 상쇄 인증서를 블록체인 네트워크(300)에 저장하는 단계(S103a-2)가 포함될 수 있다. After step S103a-1, the blockchain RTU 150 may include a step (S103a-2) of storing the self-generated consumption offset certificate in the blockchain network 300.
도 10을 참고하면, S102 단계 이후에는, 블록체인 RTU(150)는 통신부(130)로부터 취합된 소비데이터를 검증 서버(500)로부터 검증 받는 단계(S103b-1)를 포함할 수 있다.Referring to FIG. 10, after step S102, the blockchain RTU 150 may include a step (S103b-1) in which the consumption data collected from the communication unit 130 is verified by the verification server 500.
S103b-1 단계 이후, 블록체인 RTU(150)는 검증 서버(500)가 소비데이터를 검증함으로써 생성된 소비 상쇄 인증서를 수신하고, 수신된 소비 상쇄 인증서를 블록체인 네트워크(300)에 저장하는 단계(S103b-2)가 포함될 수 있다.After step S103b-1, the blockchain RTU 150 receives a consumption offset certificate generated by the verification server 500 verifying the consumption data, and stores the received consumption offset certificate in the blockchain network 300 ( S103b-2) may be included.
S103 단계 이후, 블록체인 RTU(150)는 소비 상쇄 인증서를 토대로 블록체인 형태의 거래용 토큰을 생성할 수 있으며(S104), 생성된 거래용 토큰을 통하여 사용자들간의 소비 상쇄 인증서 거래가 가능하도록 한다.After step S103, the blockchain RTU (150) can generate a blockchain-type transaction token based on the consumption offset certificate (S104), and enables consumption offset certificate transactions between users through the generated transaction token.
이상, 신재생에너지 소비 인증을 위한 블록체인 네트워크 활용방법에 대하여 살펴보았다.Above, we looked at how to use the blockchain network to certify renewable energy consumption.
다음으로, 본 발명의 제 2 실시 예에 따른 신재생에너지 소비 인증을 위한 블록체인 네트워크 활용방법에 대하여 살펴보도록 한다.Next, let's look at how to utilize a blockchain network for authenticating renewable energy consumption according to the second embodiment of the present invention.
<제 2 실시 예><Second Embodiment>
도 11은 본 발명의 제 2 실시 예에 따른 신재생에너지 소비 인증을 위한 블록체인 네트워크 활용방법을 구체적으로 나타낸 도면이다.Figure 11 is a diagram specifically showing a method of utilizing a blockchain network for authentication of renewable energy consumption according to the second embodiment of the present invention.
본 발명의 제 2 실시 예는 사용자가 신재생에너지를 소비한 행위에 대한 기여도를 산출하고 산출된 기여도에 따라 사용자가 납부해야하는 과금을 할인해주는 방법에 대한 실시 예이다.The second embodiment of the present invention is an embodiment of a method for calculating the user's contribution to the act of consuming renewable energy and discounting the bill to be paid by the user according to the calculated contribution.
본 발명의 제 2 실시 예에 따른 신재생에너지 소비 인증을 위한 블록체인 네트워크 활용방법은 먼저, 사용자 단말(10)이 본인의 기여도를 산출해달라는 요청을 소비 인증 장치(100)에 전송하는 단계(S201)부터 시작한다. 여기서, 사용자 단말(10)은 본인의 건물에 소비 인증 장치(100)가 설치된 사용자의 단말이며, 이 때의 사용자 단말(10)에는 블록체인 네트워크(300)와 데이터 교환이 가능한 인터페이스가 구현되어 있는 애플리케이션이 기 설치되어 있는 것을 전제로 할 수 있다.The method of utilizing a blockchain network for renewable energy consumption authentication according to the second embodiment of the present invention includes the steps of first, the user terminal 10 transmitting a request to calculate the user's contribution to the consumption authentication device 100 ( Start from S201). Here, the user terminal 10 is a user terminal with a consumption authentication device 100 installed in the user's building, and the user terminal 10 at this time has an interface capable of exchanging data with the blockchain network 300. It can be assumed that the application is already installed.
S201 단계 이후, 소비 인증 장치(100)는 블록체인 네트워크(300)로부터 기 저장된 기간 동안의 소비 상쇄 인증서를 조회한다(S202). 여기서, 기 저장된 기간 동안은 에너지를 소비함으로써 발생되는 월별 납입 기간이거나, 사용자가 임의로 설정한 기간일 수도 있다.After step S201, the consumption authentication device 100 retrieves the consumption offset certificate for the previously stored period from the blockchain network 300 (S202). Here, the previously stored period may be a monthly payment period generated by consuming energy, or may be a period arbitrarily set by the user.
S202 단계 이후, 소비 인증 장치(100)는 학습된 AI, 빅데이터 및 써드파티 서버(400)를 활용하여 S201단계에서 조회된 소비 상쇄 인증서의 기여도를 산출한다(S203). 기여도 산출에 대한 예를 들면, 재해, 재난 또는 여러 사건 사고에 의하여 신재생에너지 공급이 어려워졌음에도 불구하고 신재생에너지를 소비하였다면 탄소 배출 절감에 대한 기여도 가중치를 높게 측정할 수 있으며, 정부가 환경보호를 위하여 특별히 지정한 기간 동안 신재생에너지를 소비하였을 때에도 탄소 배출 절감에 대한 기여도 가중치가 높게 부여될 수 있다.After step S202, the consumption authentication device 100 uses the learned AI, big data, and the third-party server 400 to calculate the contribution of the consumption offset certificate viewed in step S201 (S203). For example, if renewable energy was consumed despite the difficulty in supplying new and renewable energy due to disasters, calamities, or other accidents, the contribution weight to reducing carbon emissions can be measured highly, and the government can measure the environmental Even when renewable energy is consumed during a period specifically designated for protection, the contribution to reducing carbon emissions may be given a high weight.
S203 단계 이후, 소비 인증 장치(100)는 산출한 기여도를 기 저장된 기간 동안의 소비 상쇄 인증서에 매칭시킨다(S204). 참고로, 산출된 기여도는 기 저장된 기간 동안의 소비 상쇄 인증서들에 매칭될 뿐만 아니라, 소비 상쇄 인증서 각각에 매칭될 수도 있어 사용자가 하나의 소비 상쇄 인증서에 대한 기여도를 확인할 수 있도록 할 수 있다.After step S203, the consumption authentication device 100 matches the calculated contribution to the consumption offset certificate for the previously stored period (S204). For reference, the calculated contribution not only matches the consumption offset certificates for the previously stored period, but may also match each consumption offset certificate, allowing the user to check the contribution for one consumption offset certificate.
S204 단계 이후, 소비 인증 장치(100)는 기여도가 매칭된 소비 상쇄 인증서를 과금 징수 서버(600)에 전송한다(S205).After step S204, the consumption authentication device 100 transmits the consumption offset certificate with the matching contribution to the billing collection server 600 (S205).
S205 단계 이후, 과금 징수 서버(600)는 인증서에 매칭된 기여도에 따라 과금 할인액을 산출(S206)하고 산출된 과금 할인액을 사용자 단말(10) 또는 블록체인 네트워크(300)에 전달(S207)하면서, 본 발명의 제 2 실시 예에 따른 신재생에너지 소비 인증을 위한 블록체인 네트워크 활용방법이 마무리된다.After step S205, the billing collection server 600 calculates a billing discount according to the contribution matched to the certificate (S206) and delivers the calculated billing discount to the user terminal 10 or the blockchain network 300 (S207), The method of utilizing a blockchain network for authentication of renewable energy consumption according to the second embodiment of the present invention is completed.
참고로, 앞서에서는 제 2실시 예가 사용자 단말(10)이 기여도 산출 요청을 전송하는 단계부터 시작할 수 있다고 설명하였으나, 사용자 단말(10)의 기여도 산출 요청 단계(S201) 없이도 생성된 소비데이터와 소비 상쇄 인증서에 대한 기여도를 즉각적으로 산출하고 상기 소비 상쇄 인증서에 산출된 기여도를 매칭시킬 수 있도록 구현될 수 있다.For reference, it was previously explained that the second embodiment can start from the step where the user terminal 10 transmits a contribution calculation request, but consumption data and consumption offset generated even without the contribution calculation request step (S201) of the user terminal 10. It can be implemented to immediately calculate the contribution to the certificate and match the calculated contribution to the consumption offset certificate.
이상 본 발명의 제 2 실시 예에 대하여 살펴보았다.The second embodiment of the present invention has been described above.
다음으로, 본 발명의 제 3 실시 예에 따른 신재생에너지 소비 인증을 위한 블록체인 네트워크 활용방법에 대하여 살펴보도록 한다.Next, let's look at how to utilize a blockchain network for authentication of renewable energy consumption according to the third embodiment of the present invention.
<제 3 실시 예><Third Embodiment>
도 12는 본 발명의 제 3 실시 예에 따른 신재생에너지 소비 인증을 위한 블록체인 네트워크 활용방법을 구체적으로 나타낸 도면이다.Figure 12 is a diagram specifically showing a method of utilizing a blockchain network for authenticating renewable energy consumption according to the third embodiment of the present invention.
본 발명의 제 3 실시 예는 블록체인 네트워크(300)를 활용하여 사용자 단말(10) 간의 인증서 거래가 가능하도록 거래를 중개하는 방법의 실시 예이다. 참고로 제 3 실시예에 대한 설명에서는 블록체인 네트워크(300) 상에서 여러 단계들이 진행되는 것으로 언급이 될 것이나, 실제 이 단계들은 블록체인 네트워크(300)를 구성하는 하나의 노드, 또는 소비 인증 장치(100), 또는 연산 능력을 갖춘 서버장치에 의해 실행이 될 수 있음을 이해한다.The third embodiment of the present invention is an embodiment of a method of brokering transactions to enable certificate transactions between user terminals 10 using the blockchain network 300. For reference, in the description of the third embodiment, it will be mentioned that several steps are carried out on the blockchain network 300, but in reality, these steps are performed by one node constituting the blockchain network 300, or a consumption authentication device ( 100), or it is understood that it can be executed by a server device with computing capabilities.
본 발명의 제 3 실시 예는 먼저, 제 1 사용자 단말(10A)과 제 2 사용자 단말(10B)이 소비 상쇄 인증서 구매/판매 조건을 설정 하고, 상기 조건을 기반으로 한 구매/판매 요청을 블록체인 네트워크(300)에 전송하는 단계(S301)로부터 시작한다. 여기서, 제 1 사용자 단말(10A)은 소비 상쇄 인증서를 구매하고자 하는 사용자의 단말일 것이며, 제 2 사용자 단말(10B)은 소비 상쇄 인증서를 판매하고자 하는 사용자의 단말일 것이다. 또한, 여기서, 상기 구매/판매 조건이란, 사용자가 인증서를 구매/판매 하기 원하는 희망 구매/판매가, 기여도, 인증서가 생성된 날짜 등과 같이 사용자가 거래를 통하여 욕구를 충족할 수 있는 조건을 말한다. 참고로, 이 때의 제 1 사용자 단말(10A)와 제 2사용자 단말(10B)의 소유자인 제 1 사용자와 제 2 사용자의 건물에는 소비 인증 장치(100)가 설치되어 있을 것이며, 특히 제 2 사용자의 건물에 설치된 소비 인증 장치(100)로 하여금 블록체인 네트워크(300)에 제 2 사용자의 소비 상쇄 인증서가 기 저장되어 있는 것을 전제로 할 것이다.In the third embodiment of the present invention, first, the first user terminal (10A) and the second user terminal (10B) set purchase/sell conditions for consumption offset certificates, and send a purchase/sell request based on the conditions through the blockchain. It starts with the step of transmitting to the network 300 (S301). Here, the first user terminal 10A will be a terminal of a user who wants to purchase a consumption offset certificate, and the second user terminal 10B will be a terminal of a user who wants to sell a consumption offset certificate. In addition, here, the purchase/sale conditions refer to conditions under which the user can satisfy his or her needs through transactions, such as the desired purchase/sell price at which the user wishes to purchase/sell the certificate, contribution level, date on which the certificate was created, etc. For reference, at this time, the consumption authentication device 100 will be installed in the buildings of the first and second users who are the owners of the first user terminal 10A and the second user terminal 10B, and in particular, the second user The consumption authentication device 100 installed in the building will assume that the second user's consumption offset certificate is already stored in the blockchain network 300.
참고로, 이 사용자 간의 소비 상쇄 인증서 거래는 앞서 제 1 실시 예에서 설명한 거래용 토큰을 통해서 거래가 진행될 수 있다.For reference, the consumption offset certificate transaction between these users can be conducted through the transaction token described in the first embodiment above.
S301 단계 이후, 블록체인 네트워크(300)는 제1 사용자 단말(10A)과 제 2 사용자 단말(10B)로부터 수신 받은 구매/판매 조건에 맞는 거래를 매칭한다(S302). 이 때 매칭되는 거래는 구매 조건과 판매 조건이 완벽하게 일치된 것을 매칭시킬 뿐만 아니라 구매 조건과 판매 조건이 서로 가장 근접한 거래를 매칭시킬 수 있다.After step S301, the blockchain network 300 matches transactions meeting the purchase/sale conditions received from the first user terminal 10A and the second user terminal 10B (S302). At this time, the matched transaction not only matches the purchase conditions and sales conditions that are perfectly matched, but also matches the transaction in which the purchase conditions and sales conditions are closest to each other.
S302 단계 이후, 블록체인 네트워크(300)는 거래 대상이 되는 소비 상쇄 인증서 즉, 거래가 매칭된 소비 상쇄 인증서에 대한 가치를 산출 한다(S303). 여기서, 소비 상쇄 인증서의 가치를 산출하는 이유는 해당 거래를 처음 하는 사용자가 불공정한 거래를 하지 않도록 방지하기 위함, 다시 말해 거래의 공정성을 다시 한번 상기 시키기 위함이다. After step S302, the blockchain network 300 calculates the value of the consumption offset certificate subject to the transaction, that is, the consumption offset certificate with which the transaction is matched (S303). Here, the reason for calculating the value of the consumption offset certificate is to prevent users who are making the transaction for the first time from making unfair transactions, in other words, to once again remind them of the fairness of the transaction.
참고로, 소비 상쇄 인증서의 가치를 산출하기 위하여 학습된 AI와 빅데이터가 활용될 수 있다. 이 때, 소비 상쇄 인증서의 가치를 산출하기 위한 요인으로 현재 시세, 소비 하였을 당시의 신재생에너지 공급량, 기여도 등이 고려될 수 있다. For reference, learned AI and big data can be used to calculate the value of consumption offset certificates. At this time, the current market price, amount of renewable energy supplied at the time of consumption, contribution, etc. can be considered as factors to calculate the value of the consumption offset certificate.
S303 단계 이후, 블록체인 네트워크(300)는 제 1 사용자 단말(10A)과 제 2 사용자 단말(10B)로부터 거래 정상 여부가 확인되면 거래를 정산한다(S304).After step S303, the blockchain network 300 settles the transaction when it is confirmed whether the transaction is normal from the first user terminal 10A and the second user terminal 10B (S304).
S304 단계 이후, 블록체인 네트워크(300)는 거래가 정산되면, 소비 상쇄 인증서의 소유권을 변동시킨다(S304). 구체적으로, 제 2 사용자의 소유권으로 저장되어 있던 소비 상쇄 인증서를 제 1 사용자가 구매하였으므로 제 1사용자의 소유권으로 변동시킨다는 것이다.After step S304, the blockchain network 300 changes the ownership of the consumption offset certificate when the transaction is settled (S304). Specifically, since the first user purchased the consumption offset certificate that was stored as the second user's ownership, it is changed to the first user's ownership.
S305 단계 이후, 블록체인 네트워크(300)는 판매한 제 2 사용자 단말(10B)에 정산액(S203단계에서 산출된 가치)을 지급하면서(S306) 본 발명의 제 3 실시 예에 따른 신재생에너지 소비 인증을 위한 블록체인 네트워크 활용방법이 마무리된다.After step S305, the blockchain network 300 pays the settlement amount (value calculated in step S203) to the sold second user terminal 10B (S306) and certifies renewable energy consumption according to the third embodiment of the present invention. The method of utilizing the blockchain network for this is completed.
이상 블록체인 기반의 신재생에너지 소비 인증 장치에 대한 실시 예를 모두 살펴보았다. We have looked at all embodiments of the blockchain-based renewable energy consumption authentication device above.
본 발명은 상술한 특정의 실시예 및 응용예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 구별되어 이해되어서는 안 될 것이다.The present invention is not limited to the specific embodiments and application examples described above, and various modifications can be made by those skilled in the art without departing from the gist of the invention as claimed in the claims. Of course, these modified implementations should not be understood separately from the technical idea or outlook of the present invention.

Claims (8)

  1. 소비된 신재생에너지의 양을 측정 및 분석하여 블록체인 네트워크를 기반으로 신재생에너지 소비를 인증해주는 장치에 있어서,In a device that measures and analyzes the amount of renewable energy consumed and certifies renewable energy consumption based on a blockchain network,
    실시간으로 적어도 하나 이상의 신재생에너지의 소비량을 측정하여 측정 데이터를 생성하는 적어도 하나 이상의 스마트 미터;At least one smart meter that measures the consumption of at least one renewable energy in real time and generates measurement data;
    실시간으로 주변 현상 변화를 측정하는 센싱부;A sensing unit that measures changes in surrounding phenomena in real time;
    상기 센싱부로부터 측정된 값과 상기 스마트 미터들로부터 생성된 측정 데이터들을 분석하여 소비데이터를 연산하는 연산부;a calculation unit that calculates consumption data by analyzing the measured values from the sensing unit and measurement data generated from the smart meters;
    외부 장치로부터 또 다른 측정 데이터를 수신하고, 상기 소비데이터를 하나의 프로토콜로 취합하는 통신부; 및a communication unit that receives other measurement data from an external device and collects the consumption data into one protocol; and
    상기 하나의 프로토콜로 취합된 소비데이터를 블록체인 네트워크에 저장하여 소비 상쇄 인증서가 생성되도록 하는 블록체인 RTU;A blockchain RTU that stores consumption data collected through the single protocol in a blockchain network to generate a consumption offset certificate;
    를 포함하고,Including,
    상기 신재생에너지 소비 상쇄 인증서는,The renewable energy consumption offset certificate is,
    상기 소비데이터가 검증 및 인증됨으로써 생성된 인증서로서, 탄소배출을 상쇄하는 값을 상기 소비데이터 내에 포함된 신재생에너지 소비량과 동일한 값으로 치환하는 것을 특징으로 하는,A certificate generated by verifying and authenticating the consumption data, characterized in that the value offsetting carbon emissions is replaced with the same value as the renewable energy consumption included in the consumption data,
    블록체인 기반의 신재생에너지 소비 인증 장치.Blockchain-based renewable energy consumption authentication device.
  2. 제 1항에 있어서,According to clause 1,
    상기 적어도 하나 이상의 스마트 미터는,The at least one smart meter is,
    전기에너지, 열에너지, 물사용량 등 적어도 하나 이상의 신재생에너지의 소비량을 측정하는 것을 특징으로 하는, Characterized by measuring the consumption of at least one or more renewable energy such as electric energy, heat energy, and water usage,
    블록체인 기반의 신재생에너지 소비 인증 장치.Blockchain-based renewable energy consumption authentication device.
  3. 제 1항에 있어서,According to clause 1,
    상기 연산부는,The calculation unit is,
    상기 소비데이터를 기 지정된 시간 단위로 분석하여 상기 소비데이터에 대한 과금데이터를 연산하는 것을 특징으로 하는,Characterized by analyzing the consumption data in predetermined time units and calculating billing data for the consumption data,
    블록체인 기반의 신재생에너지 소비 인증 장치.Blockchain-based renewable energy consumption authentication device.
  4. 제 1항에 있어서,According to clause 1,
    상기 외부장치는,The external device is,
    태양광 인버터, 전기 자동차 충전기 중 적어도 하나 이상이 포함된 장치로서, 사용된 태양광 에너지, 전기 에너지 중 적어도 하나 이상의 측정 데이터를 생성하는 장치인 것을 특징으로 하는,A device including at least one of a solar inverter and an electric vehicle charger, characterized in that it is a device that generates measurement data of at least one of used solar energy and electric energy.
    블록체인 기반의 신재생에너지 소비 인증 장치.Blockchain-based renewable energy consumption authentication device.
  5. 제 1항에 있어서,According to clause 1,
    상기 블록체인 네트워크에 저장된 신재생에너지 소비 상쇄 인증서는, 사용자간에 거래가 가능한 것을 특징으로 하는,The renewable energy consumption offset certificate stored in the blockchain network is characterized in that it can be traded between users.
    블록체인 기반의 신재생에너지 소비 인증 장치.Blockchain-based renewable energy consumption authentication device.
  6. 제 1항에 있어서,According to clause 1,
    상기 블록체인 RTU는,The blockchain RTU is,
    상기 소비 상쇄 인증서를 기반으로 거래용 토큰을 생성하며,A transaction token is generated based on the consumption offset certificate,
    상기 거래용 토큰은, 블록체인 형태로 마련된 것으로서 사용자간에 거래가 가능한 것을 특징으로 하는,The transaction token is prepared in blockchain form and is characterized in that it can be traded between users.
    블록체인 기반의 신재생에너지 소비 인증 장치.Blockchain-based renewable energy consumption authentication device.
  7. 신재생에너지 소비 인증 장치가 신재생에너지 소비 인증을 위한 블록체인 네트워크를 구축하는 방법에 있어서,In a method for a renewable energy consumption authentication device to build a blockchain network for renewable energy consumption authentication,
    측정데이터, 및 주변 현상 변화로부터 측정된 값을 획득하는 단계;Obtaining measured values from measurement data and changes in surrounding phenomena;
    상기 획득된 측정데이터와 값을 기반으로 소비데이터를 생성하는 단계; 및generating consumption data based on the obtained measurement data and values; and
    상기 소비데이터를 블록체인 네트워크에 저장함으로써, 신재생에너지 소비 상쇄 인증서가 생성되도록 하는 단계;Storing the consumption data in a blockchain network to generate a renewable energy consumption offset certificate;
    를 포함하는,Including,
    신재생에너지 소비 인증을 위한 블록체인 네트워크 구축 방법.How to build a blockchain network for renewable energy consumption certification.
  8. 제 7항에 있어서,According to clause 7,
    신재생에너지 소비 상쇄 인증서가 생성되도록 하는 단계 이후에,After steps to ensure that a renewable energy consumption offset certificate is generated,
    상기 소비 상쇄 인증서를 기반으로 블록체인 형태의 거래용 토큰을 생성하는 단계;Generating a blockchain-type transaction token based on the consumption offset certificate;
    를 더 포함하는,Containing more,
    신재생에너지 소비 인증을 위한 블록체인 네트워크 구축 방법.How to build a blockchain network for renewable energy consumption certification.
PCT/KR2022/018306 2022-06-14 2022-11-18 Blockchain-based new renewable energy consumption certification device WO2023243783A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0072328 2022-06-14
KR1020220072328A KR102542020B1 (en) 2022-06-14 2022-06-14 Blockchain- based renewable energy consumption authentication device

Publications (1)

Publication Number Publication Date
WO2023243783A1 true WO2023243783A1 (en) 2023-12-21

Family

ID=86762554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018306 WO2023243783A1 (en) 2022-06-14 2022-11-18 Blockchain-based new renewable energy consumption certification device

Country Status (2)

Country Link
KR (1) KR102542020B1 (en)
WO (1) WO2023243783A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117114952B (en) * 2023-10-23 2024-02-02 江苏省星霖工程咨询有限公司 Energy-saving carbon reduction value exchange system and method based on blockchain technology

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102178925B1 (en) * 2020-01-20 2020-11-13 영남이공대학교 산학협력단 Method andapparatus for solar power generation forcatst
KR20210154618A (en) * 2020-06-12 2021-12-21 한성대학교 산학협력단 Carbon credits trading method and system based on block chain
KR20220037571A (en) * 2020-09-18 2022-03-25 주식회사 세수 Renewable energy trading system using a renewable energy supply platform and method for operating the system
KR20220037581A (en) * 2020-09-18 2022-03-25 주식회사 세수 Apparatus and method for authenticating power consumption details based on blockchain
KR20220073617A (en) * 2020-11-26 2022-06-03 주식회사 테라플랫폼 Small scale carbon credit trading system based on block chain

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102178925B1 (en) * 2020-01-20 2020-11-13 영남이공대학교 산학협력단 Method andapparatus for solar power generation forcatst
KR20210154618A (en) * 2020-06-12 2021-12-21 한성대학교 산학협력단 Carbon credits trading method and system based on block chain
KR20220037571A (en) * 2020-09-18 2022-03-25 주식회사 세수 Renewable energy trading system using a renewable energy supply platform and method for operating the system
KR20220037581A (en) * 2020-09-18 2022-03-25 주식회사 세수 Apparatus and method for authenticating power consumption details based on blockchain
KR20220073617A (en) * 2020-11-26 2022-06-03 주식회사 테라플랫폼 Small scale carbon credit trading system based on block chain

Also Published As

Publication number Publication date
KR102542020B1 (en) 2023-06-13

Similar Documents

Publication Publication Date Title
WO2019035527A1 (en) Blockchain-based power trading operation system, method therefor, and computer readable storage medium that stores said method
JP5496782B2 (en) Management device and power supply system for individual small-scale power generator
WO2023243783A1 (en) Blockchain-based new renewable energy consumption certification device
Hossain et al. Utility grid: Present challenges and their potential solutions
WO2011074925A2 (en) Demand response system and method using a smart portal
WO2018190473A1 (en) P2p based energy trading intermediary system and method
WO2021100956A1 (en) Virtual power plant operation system and method for re100 participation of small and medium-sized businesses in industrial complex microgrid
US20130253973A1 (en) Power management system
Ping et al. Coordinating EV charging via blockchain
WO2020204262A1 (en) Method and server for managing distributed resource utilization, and microgrid power transaction system comprising same
JP2007295650A (en) Power management system for each dwelling of collective housing employing virtual power storage secondary battery, and power fee charging method
WO2012060481A1 (en) Certified emission reduction management system and certified emission reduction management method
WO2018026067A1 (en) Apparatus and method for supporting collection of demand-side resources from electricity consumers in micro grid
Xiao et al. Building accountable smart grids in neighborhood area networks
WO2024010131A1 (en) Method for operating microgrid on basis of digital twin
WO2022060012A1 (en) Device and method for authenticating power consumption details on basis of blockchain
JP2015192485A (en) Power control unit
WO2023063622A1 (en) Digital twin-based apparatus for providing operation and maintenance management platform service for photovoltaic power generation system, and method for operating and maintaining photovoltaic power generation system by using same
Dobrea et al. Data Security in Smart Grid
AU2021209785B2 (en) Certification of at least one facility-specific amount of energy of an energy system
WO2022050626A1 (en) Device and method for monitoring renewable energy power amount information and providing energy usage ratio information
WO2023153550A1 (en) Smart energy trading system and method
WO2011155647A1 (en) Network system
JP2023032358A (en) Estimation device, system, program, and method for estimating charge/discharge efficiency of storage battery
WO2023153551A1 (en) Power transaction mediation method and apparatus thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946988

Country of ref document: EP

Kind code of ref document: A1