WO2021181590A1 - Calibration value calculation device, radar calibration device, and calibration value calculation method - Google Patents

Calibration value calculation device, radar calibration device, and calibration value calculation method Download PDF

Info

Publication number
WO2021181590A1
WO2021181590A1 PCT/JP2020/010695 JP2020010695W WO2021181590A1 WO 2021181590 A1 WO2021181590 A1 WO 2021181590A1 JP 2020010695 W JP2020010695 W JP 2020010695W WO 2021181590 A1 WO2021181590 A1 WO 2021181590A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
calibration value
sub
array
value calculation
Prior art date
Application number
PCT/JP2020/010695
Other languages
French (fr)
Japanese (ja)
Inventor
善樹 高橋
正資 大島
龍平 高橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/010695 priority Critical patent/WO2021181590A1/en
Publication of WO2021181590A1 publication Critical patent/WO2021181590A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating

Definitions

  • This disclosure relates to a calibration value calculation device, a radar calibration device, and a calibration value calculation method.
  • radar using an array antenna has been developed.
  • a distributed radar using a distributed array antenna has been developed.
  • a MIMO radar using a MIMO (Multi Input Multi Output) array antenna has been developed.
  • distributed MIMO radar has been developed.
  • Non-Patent Document 1 discloses such a calibration method.
  • the error due to mutual coupling between elements has an angle dependence. Therefore, when calculating the calibration value for correcting such an error, it is required to use the data corresponding to a plurality of incident angles different from each other.
  • Such data is collected, for example, as follows. That is, one signal source for calibration is sequentially arranged at a plurality of known positions. Alternatively, a plurality of signal sources for calibration are arranged at the plurality of positions. By sequentially transmitting calibration signals from the one signal source or the plurality of signal sources, data corresponding to the plurality of positions (that is, data corresponding to a plurality of incident angles different from each other) are collected. Will be done.
  • the number of data required to calculate such a calibration value differs depending on the number of antenna elements included in the array antenna. Therefore, the number of times the signal is transmitted (that is, the number of times the data is acquired) required for collecting such data also differs depending on the number of such antenna elements.
  • the number of antenna elements included in the array antenna is large, there is a problem that the number of times the signal is transmitted (that is, the number of times the data is acquired) required for collecting such data is large.
  • the present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to calculate a calibration value using data collected with a smaller number of data acquisitions.
  • the calibration value calculation device includes a calibration data acquisition unit that acquires calibration data corresponding to calibration signals received by individual antenna elements included in the individual sub-arrays included in the first array antenna. Using the calibration data, a calibration value calculation unit that calculates a calibration value including a first calibration value corresponding to an error in the sub-array in each sub-array and a second calibration value corresponding to an error between sub-arrays in the first array antenna, and a calibration value calculation unit. It is equipped with a calibration value output unit that outputs calibration values, and the calibration data corresponds to the calibration signal received by each antenna element with the calibration signal source arranged in a predetermined area. Yes, the region is included in the far field for each sub-array and is included in the near field for the first array antenna.
  • the calibration value can be calculated using the data collected with a smaller number of data acquisitions.
  • FIG. 1 It is a block diagram which shows the main part of the calibration data collection system which concerns on Embodiment 1.
  • FIG. It is explanatory drawing which shows the example of a plurality of incident angles.
  • FIG. It is a block diagram which shows the main part of the radar calibration apparatus which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the main part of the calibration value calculation part in the calibration value calculation apparatus which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the hardware composition of the main part of the radar calibration apparatus which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the other hardware configuration of the main part of the radar calibration apparatus which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the other hardware configuration of the main part of the radar calibration apparatus which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the operation of the calibration value calculation apparatus which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the operation of the radar calibration apparatus which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the main part of the calibration data collection system which concerns on Embodiment 2.
  • FIG. It is a flowchart which shows the operation of the calibration value calculation apparatus which concerns on Embodiment 3.
  • FIG. 1 is a block diagram showing a main part of the calibration data collection system according to the first embodiment.
  • the calibration data collection system according to the first embodiment will be described with reference to FIG.
  • the calibration data collection system 100 includes an array antenna 1.
  • the array antenna 1 includes M sub-arrays 2.
  • Each sub-array 2 includes L antenna elements 3.
  • M is an integer of 2 or more.
  • L is an integer of 2 or more.
  • the array antenna 1 may be referred to as a "first array antenna”.
  • the array antenna 1 is composed of a distributed array antenna.
  • the array antenna 1 is used for distributed radar.
  • the arrangement shape of the L antenna elements 3 in each sub array 2 is referred to as an “element arrangement shape”.
  • the M sub-arrays 2 have element arrangement shapes common to each other. That is, the M sub-arrays 2 have the same element arrangement shape.
  • the calibration data collection system 100 includes a calibration signal source 4.
  • the calibration signal source 4 is arranged in a predetermined area A. More specifically, the calibration signal source 4 is sequentially arranged at a plurality of positions P included in the area A by moving in the area A. The individual positions P are known.
  • the region A is included in the far field for each sub-array 2 and is included in the near field for the entire array antenna 1. That is, each of the plurality of positions P is included in the far field with respect to the individual sub-array 2 and is included in the near field with respect to the entire array antenna 1.
  • the calibration signal source 4 transmits a calibration signal (hereinafter referred to as "calibration signal”) in a state of being arranged at each of a plurality of positions P. That is, the calibration signal source 4 transmits the calibration signal a plurality of times.
  • the transmitted calibration signal is received by the individual antenna elements 3 included in the individual sub-arrays 2.
  • the calibration data collection system 100 includes M analog-to-digital converters (hereinafter referred to as "A / D converters") 5.
  • the M A / D converters 5 have a one-to-one correspondence with the M sub-arrays 2.
  • Each A / D converter 5 outputs the changed digital data.
  • the converted digital data is referred to as "calibration signal data”.
  • each A / D converter 5 the frequency of the received calibration signal is converted into a frequency in the baseband by executing the frequency conversion process for the received calibration signal. .. Further, in each A / D converter 5, the received calibration signals are sampled at timings synchronized with each other.
  • the calibration data collection system 100 includes a storage device 6.
  • the storage device 6 stores calibration signal data output by each A / D converter 5. Further, the storage device 6 stores data indicating the position P corresponding to each calibration signal data (hereinafter, referred to as “signal source position data”).
  • signal source position data data indicating the position P corresponding to each calibration signal data
  • the calibration signal data and the corresponding signal source position data may be collectively referred to as “calibration data”.
  • the calibration signal data stored in the storage device 6 includes a component corresponding to an error in each sub-array 2 (hereinafter referred to as “error in sub-array”) (hereinafter referred to as “error component in sub-array”). It is an error. That is, when the calibration signal is received by the L antenna elements 3 included in the individual sub-arrays 2, the amplitude, phase, delay time, and the like of the received calibration signal may vary. In other words, the amplitude, phase, delay time, and the like may differ between each of the two antenna elements 3 of the L antenna elements 3. As a result, the calibration signal data includes the error component in the sub-array.
  • the error in the sub-array is due to mutual coupling between elements in each sub-array 2.
  • the calibration signal data stored in the storage device 6 has a component corresponding to an error between each of the two sub-arrays 2 of the M sub-arrays 2 (hereinafter referred to as “sub-array error”) (hereinafter, “sub-array error”). It is called "error component between sub-arrays”). That is, when the calibration signal is received by the M sub-arrays, the amplitude, phase, delay time, etc. of the received calibration signal may vary. In other words, the amplitude, phase, delay time, etc. may differ between each of the two sub-arrays 2 of the M sub-arrays 2. As a result, the calibration signal data includes an error component between sub-arrays.
  • the calibration value H corresponding to the error in the sub-array may be referred to as “calibration value in sub-array” or “first calibration value”.
  • the calibration value G corresponding to the error between sub-arrays may be referred to as “calibration value between sub-arrays” or “second calibration value”.
  • the error in the sub-array is due to the mutual coupling between the elements in each sub-array 2. Therefore, in order to calculate the calibration value H in the sub-array, it is required to collect calibration data corresponding to a plurality of incident angles ⁇ different from each other. More specifically, it is required to collect calibration data corresponding to (L + 1) or more incident angles ⁇ different from each other.
  • the calibration signal source 4 is arranged in the area A as described above.
  • the region A is included in the far field for each sub-array 2 and is included in the near field for the entire array antenna 1. Therefore, each time the calibration signal source 4 transmits a calibration signal once (that is, each time the calibration signal source 4 transmits a calibration signal at one position P), a plurality of incidents different from each other are incident.
  • Calibration data corresponding to the angle ⁇ is acquired. More specifically, calibration data corresponding to M different incident angles ⁇ are acquired.
  • the number of times the calibration signal is transmitted by the calibration signal source 4 (that is, the number of positions P) can be reduced when collecting calibration data corresponding to (L + 1) or more incident angles ⁇ different from each other. .. In other words, the number of acquisitions of calibration data can be reduced.
  • the calibration signal source 4 is included in the region A. Instead of being sequentially arranged at a plurality of positions P, it may be arranged at one position P included in the area A.
  • the calibration signal source 4 may transmit a calibration signal in a state of being arranged at the one position P. That is, the calibration signal source 4 may transmit the calibration signal once instead of transmitting the calibration signal a plurality of times.
  • the calibration signal source 4 is arranged at the one position P will be mainly described.
  • FIG. 3 is a block diagram showing a main part of the radar calibration device according to the first embodiment.
  • FIG. 4 is a block diagram showing a main part of the calibration value calculation unit in the calibration value calculation device according to the first embodiment.
  • the radar calibration device according to the first embodiment will be described with reference to FIGS. 3 and 4, and the calibration value calculation device according to the first embodiment will be described.
  • the radar calibration device 200 includes a calibration data acquisition unit 11, a calibration value calculation unit 12, a calibration value output unit 13, and a calibration processing unit 14.
  • the calibration value calculation unit 12 includes a first calibration value calculation unit 21 and a second calibration value calculation unit 22.
  • the calibration data acquisition unit 11, the calibration value calculation unit 12, and the calibration value output unit 13 constitute a main part of the calibration value calculation device 300.
  • the first calibration value calculation unit 21 includes the position-angle data table DT and the calibration value calculation unit 31 in the sub-array.
  • the second calibration value calculation unit 22 includes a position-angle data table DT, a beam formation processing unit 41, and a calibration value calculation unit 42 between sub-arrays.
  • the position-angle data table DT is included in either the first calibration value calculation unit 21 or the second calibration value calculation unit 22, and the position-angle data table DT is used as the first calibration value. It may be shared by the calculation unit 21 and the second calibration value calculation unit 22.
  • the calibration data acquisition unit 11 acquires the calibration data stored in the storage device 6.
  • the calibration data acquisition unit 11 outputs the acquired calibration data to the calibration value calculation unit 31 in the sub-array and the beam formation processing unit 41.
  • the calibration value calculation unit 31 in the sub-array acquires the calibration data output by the calibration data acquisition unit 11.
  • the calibration value calculation unit 31 in the sub-array uses the position-angle data table DT to calculate the incident angle ⁇ corresponding to the position P indicated by the individual signal source position data included in the acquired calibration data. be.
  • the calibration value calculation unit 31 in the sub-array calculates the calibration value H in the sub-array using the calibration signal data included in the acquired calibration data and the calculated incident angle ⁇ . The method of calculating the calibration value H in the sub-array will be described later.
  • the calibration value calculation unit 31 in the sub-array outputs the calculated calibration value H in the sub-array to the calibration value output unit 13 and the beam forming processing unit 41.
  • the beam forming processing unit 41 acquires the calibration data output by the calibration data acquisition unit 11, and also acquires the calibration value H in the sub-array output by the calibration value calculation unit 31 in the sub-array.
  • the beam forming processing unit 41 uses the position-angle data table DT to calculate the incident angle ⁇ corresponding to the position P indicated by the individual signal source position data included in the acquired calibration data. Further, the beam forming processing unit 41 uses the acquired calibration value H in the sub-array to correct the calibration signal data included in the acquired calibration data.
  • the beamforming processing unit 41 executes digital beamforming processing (hereinafter referred to as “first DBF processing”) corresponding to each sub-array 2 by using the corrected calibration signal data and the calculated incident angle ⁇ . To do. As a result, data corresponding to the beam output by each sub-array 2 is generated. The beam forming processing unit 41 outputs the generated data to the calibration value calculation unit 42 between sub-arrays.
  • first DBF processing digital beamforming processing
  • the calibration value calculation unit 42 between sub-arrays acquires the data output by the beam formation processing unit 41.
  • the inter-sub array calibration value calculation unit 42 calculates the inter-sub array calibration value G using the acquired data. The method of calculating the calibration value G between sub-arrays will be described later.
  • the inter-sub array calibration value calculation unit 42 outputs the calculated inter-sub array calibration value G to the calibration value output unit 13.
  • the calibration value output unit 13 acquires the calibration value H in the sub-array output by the calibration value calculation unit 31 in the sub-array, and also acquires the calibration value G in the sub-array output by the calibration value calculation unit 42 between sub-arrays. ..
  • the calibration value output unit 13 outputs the acquired calibration values H and G to the outside of the calibration value calculation device 300. That is, the calibration value output unit 13 outputs the acquired calibration values H and G to the calibration processing unit 14.
  • the calibration processing unit 14 acquires the calibration values H and G output by the calibration value output unit 13.
  • the calibration processing unit 14 executes the calibration processing of the radar (not shown) using the array antenna 1 by using the acquired calibration values H and G. That is, the calibration processing unit 14 executes the calibration processing of the distributed radar.
  • Various known techniques can be used for such calibration processing. Detailed description of these techniques will be omitted.
  • the main part of the radar calibration device 200 is configured.
  • the code of "F1” may be used for the function of the calibration data acquisition unit 11.
  • the code “F2_1” may be used for the function of the first calibration value calculation unit 21.
  • the code “F2_2” may be used for the function of the second calibration value calculation unit 22.
  • the reference numeral “F3” may be used for the function of the calibration value output unit 13.
  • the reference numeral “F4" may be used for the function of the calibration processing unit 14.
  • the processes executed by the calibration data acquisition unit 11 may be collectively referred to as “calibration data acquisition process”.
  • the processes executed by the first calibration value calculation unit 21 may be collectively referred to as “first calibration value calculation process”.
  • the processes executed by the second calibration value calculation unit 22 may be collectively referred to as “second calibration value calculation process”.
  • the processes executed by the calibration value output unit 13 may be collectively referred to as “calibration value output process”.
  • the processes executed by the calibration value calculation device 300 may be collectively referred to as “calibration value calculation process”.
  • the processing executed by the calibration processing unit 14 may be collectively referred to as "radar calibration processing”.
  • the radar calibration device 200 has a processor 51 and a memory 52.
  • the memory 52 stores programs corresponding to a plurality of functions F1, F2_1, F2_2, F3, and F4.
  • the processor 51 reads and executes the program stored in the memory 52. As a result, a plurality of functions F1, F2_1, F2_2, F3, and F4 are realized.
  • the radar calibration device 200 has a processing circuit 53.
  • the processing circuit 53 executes processing corresponding to a plurality of functions F1, F2_1, F2_2, F3, and F4. As a result, a plurality of functions F1, F2_1, F2_2, F3, and F4 are realized.
  • the radar calibration device 200 includes a processor 51, a memory 52, and a processing circuit 53.
  • the memory 52 stores programs corresponding to some of the plurality of functions F1, F2_1, F2_2, F3, and F4.
  • the processor 51 reads and executes the program stored in the memory 52. As a result, some of these functions are realized.
  • the processing circuit 53 executes processing corresponding to the remaining functions of the plurality of functions F1, F2_1, F2_2, F3, and F4. As a result, such a residual function is realized.
  • the processor 51 is composed of one or more processors.
  • processors for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microcontroller, or a DSP (Digital Signal Processor) is used.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • DSP Digital Signal Processor
  • the memory 52 is composed of one or more non-volatile memories.
  • the memory 52 is composed of one or more non-volatile memories and one or more volatile memories. That is, the memory 52 is composed of one or more memories.
  • the individual memory uses, for example, a semiconductor memory, a magnetic disk, an optical disk, a magneto-optical disk, a magnetic tape, or a magnetic drum. More specifically, each volatile memory uses, for example, a RAM (Random Access Memory).
  • individual non-volatile memories include, for example, ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmory), EEPROM (Electrically Erasable Programmory), flexible disk drive A compact disc, a DVD (Digital Versaille Disc), a Blu-ray disc, or a mini disc is used.
  • ROM Read Only Memory
  • flash memory EPROM (Erasable Programmable Read Only Memory)
  • EEPROM Electrically Erasable Programmory
  • EEPROM Electrical Erasable Programmory
  • flexible disk drive A compact disc, a DVD (Digital Versaille Disc), a Blu-ray disc, or a mini disc is used.
  • the processing circuit 53 is composed of one or more digital circuits.
  • the processing circuit 53 is composed of one or more digital circuits and one or more analog circuits. That is, the processing circuit 53 is composed of one or more processing circuits.
  • the individual processing circuits are, for example, ASIC (Application Special Integrated Circuit), PLD (Programmable Logic Device), FPGA (Field Programmable Gate Array), FPGA (Field Program Is.
  • the processor 51 when the processor 51 is composed of a plurality of processors, the correspondence between the plurality of functions F1, F2_1, F2_2, F3, F4 and the plurality of processors is arbitrary. That is, each of the plurality of processors may read and execute a program corresponding to one or more corresponding functions among the plurality of functions F1, F2_1, F2_2, F3, and F4.
  • the processor 51 may include a dedicated processor corresponding to each function F1, F2_1, F2_2, F3, F4.
  • each of the plurality of memories may store a program corresponding to one or more of the plurality of functions F1, F2_1, F2_2, F3, and F4.
  • the memory 52 may include a dedicated memory corresponding to each function F1, F2_1, F2_2, F3, F4.
  • the processing circuit 53 when the processing circuit 53 is composed of a plurality of processing circuits, the correspondence between the plurality of functions F1, F2_1, F2_2, F3, F4 and the plurality of processing circuits is arbitrary. That is, each of the plurality of processing circuits may execute processing corresponding to one or more corresponding functions among the plurality of functions F1, F2_1, F2_2, F3, and F4.
  • the processing circuit 53 may include a dedicated processing circuit corresponding to each function F1, F2_1, F2_2, F3, F4.
  • the calibration data acquisition unit 11 executes the calibration data acquisition process (step ST1). As a result, the calibration data stored in the storage device 6 is acquired.
  • the first calibration value calculation unit 21 executes the first calibration value calculation process (step ST2_1). As a result, the calibration value H in the sub array is calculated. The method of calculating the calibration value H in the sub-array will be described later.
  • the second calibration value calculation unit 22 executes the second calibration value calculation process (step ST2_2). As a result, the calibration value G between sub-arrays is calculated. The method of calculating the calibration value G between sub-arrays will be described later.
  • the calibration value output unit 13 executes the calibration value output process (step ST3).
  • the calibration value H in the sub-array calculated in step ST2_1 and the calibration value G between sub-arrays calculated in step ST2_1 are output to the outside of the calibration value calculation device 300.
  • the calibration value calculation device 300 executes the calibration value calculation process (step ST11). As a result, the processes of steps ST1, ST2_1, ST2_2, and ST3 shown in FIG. 8 are executed. That is, the calibration value H in the sub-array and the calibration value G between sub-arrays are calculated, and the calculated calibration values H and G are output.
  • the calibration processing unit 14 executes the radar calibration processing (step ST4).
  • the calibration values H and G output in step ST11 are used for the radar calibration process.
  • the input data vector z of L ⁇ Ns is represented by the following equations (1) to (3).
  • ARx is a matrix of L ⁇ K in which K reception array steering vectors a Rx are arranged in the column direction.
  • the individual received array steering vector a Rx contains information indicating the direction of the incoming wave (that is, the incident angle ⁇ ).
  • S is a signal matrix of K ⁇ Ns, and includes information that varies depending on the number of incoming waves (that is, the number k of incident waves) and time.
  • C is an error matrix and indicates an error in the array antenna 1.
  • the received data (that is, the calibration data acquired by the calibration data acquisition unit 11) has a form in which the steering vector is multiplied by the error matrix. Become.
  • the M sub-arrays 2 have the same element arrangement shape. Secondly, for the sake of simplicity, it is assumed that the number K of the incident waves is 1. Third, as described above, the M sub-arrays 2 are distributed. That is, the distance between each of the two sub-arrays 2 of the M sub-arrays 2 is set to a sufficiently large value. Then, the above equation (2) is rewritten as the following equations (4) to (6).
  • G is a matrix of LM ⁇ LM, and indicates a calibration value between sub-arrays.
  • H is an L ⁇ L matrix and indicates a calibration value in the sub-array.
  • a sub, m ( ⁇ ) indicates a steering vector corresponding to the mth sub-array 2 of the M sub-arrays 2.
  • the calibration value H in the sub-array is calculated by using, for example, the method described in Reference 1 below. By using such a method, the calibration value H in the sub-array can be calculated based on the calibration signal data and the signal source position data indicating the corresponding known position P.
  • a calibration filter can be obtained by solving the equations shown in the following equations (7) to (10).
  • E N (q) is the calculated noise eigenvectors using q-th data in the calibration signal data matrix to the column element.
  • ⁇ q indicates the incident direction (that is, the incident angle ⁇ ) corresponding to the qth data in the calibration signal data.
  • E N (q) H and a ( ⁇ q) operator between is a Kronecker product operator.
  • H indicates a complex conjugate transpose.
  • T indicates transposition.
  • Such an equation can be solved using the method of least squares by fixing the value in the first row and first column of the matrix representing the calibration value to 1. That is, it can be solved as shown in the following equations (11) to (12).
  • the calibration value H in the sub array is calculated. That is, the calibration value H in the sub-array can be calculated using the calibration data collected at the reduced number of data acquisitions as described above.
  • the first calibration value calculation unit 21 separates the data corresponding to the plurality of waves into the data corresponding to each one wave. It may be a thing.
  • Doppler frequency or independent component analysis Independent Component Analysis, ICA
  • the method of calculating the calibration value H in the sub-array is not limited to the above specific example.
  • Various known techniques can be used to calculate the calibration value H in the sub-array. Detailed description of these techniques will be omitted.
  • the calibration value calculation unit 42 between sub-arrays When the calibration value H in the sub-array is calculated by the calibration value calculation unit 31 in the sub-array, the calibration value calculation unit 42 between sub-arrays generates the received data (that is, generated by the first DBF process) reflecting the calculated calibration value H in the sub-array.
  • the calibration value G between sub-arrays is calculated using the obtained data).
  • the distance between each of the two sub-arrays 2 of the M sub-arrays 2 is set to a sufficiently large value. Therefore, in the calculation of the calibration value G between sub-arrays, mutual coupling between elements can be ignored. Therefore, in calculating the individual calibration values g m in sub-array between calibration value G, it is not necessary to use the data corresponding to the calibration data corresponding to a plurality of incident angle theta. Individual calibration value g m, using the data corresponding to the calibration signal data corresponding to the selected angle of incidence the theta of a plurality of incident angle theta, is calculated by the following equation (13).
  • z m ( ⁇ ) indicates the data corresponding to the calibration signal data corresponding to the mth sub-array 2 corresponding to the selected incident angle ⁇ .
  • z m ( ⁇ ) may be acquired by using a measuring instrument such as a network analyzer.
  • z m ( ⁇ ) may be obtained by executing an integration process such as FFT (Fast Fourier Transform) or pulse compression on the corresponding calibration signal data.
  • FFT Fast Fourier Transform
  • each of the calibration values g m in sub-array between calibration value G may be one that is calculated by the equation (14) below instead of the equation (13). That is, the sub-array calibration value calculation unit 42 calculates a plurality of g m corresponding to different incident angles ⁇ , and smoothes the calculated plurality of g m to obtain individual calibration values g m. May be calculated.
  • the second calibration value calculation unit 22 performs the calibration value G between sub-arrays as follows. May be calculated. That is, the second calibration value calculation unit 22 executes a process of converting the near field and the far field with respect to the calibration signal data.
  • the second calibration value calculation unit 22 uses the data corresponding to a plurality of different incident angles ⁇ among the converted data by the same method as that described in Reference Document 1 (that is, in the sub-array).
  • the calibration value G between sub-arrays is calculated (by the same calculation method as the calculation method of the calibration value H).
  • the second calibration value calculation unit 22 may estimate the position error between each of the two sub-arrays 2 (that is, the position error corresponding to each sub-array 2).
  • the second calibration value calculation unit 22 may calculate the calibration value G between sub-arrays corrected according to the estimated position error. For the estimation of such a position error, for example, the technique described in Reference Document 2 below is used.
  • the array antenna 1 may include one or more other sub-arrays in addition to the M sub-arrays 2.
  • Each of the one or more other sub-arrays may have an element arrangement shape different from the element arrangement shape in each sub-array 2. That is, in the array antenna 1, all the sub-arrays may have the same element arrangement shape, or only some of the sub-arrays may have the same element arrangement shape.
  • the calibration value calculation device 300 is for calibration corresponding to the calibration signal received by the individual antenna elements 3 included in the individual sub-arrays 2 included in the first array antenna 1.
  • the calibration data acquisition unit 11 for acquiring data and the first calibration value (calibration value H in the sub-array) corresponding to the error in the sub-array in each sub-array 2 and the sub-array in the first array antenna 1 using the calibration data.
  • a calibration value calculation unit 12 for calculating calibration values H and G including a second calibration value (calibration value G between sub-arrays) corresponding to an error
  • a calibration value output unit 13 for outputting calibration values H and G.
  • the calibration data corresponds to the calibration signal received by the individual antenna elements 3 with the calibration signal source 4 arranged in the predetermined area A, and the area A is for each sub-array 2. It is included in the far field and is included in the near field with respect to the first array antenna 1. Thereby, the calibration values H and G can be calculated using the calibration data collected by the number of data acquisitions reduced according to the number M of the sub-array 2.
  • the individual sub-arrays 2 have an element arrangement shape common to each other, and the individual sub-arrays 2 are arranged in a distributed manner.
  • the calibration value H in the sub-array can be calculated by using the methods described with reference to the equations (4) to (12).
  • the calibration data corresponds to the calibration signal transmitted by the calibration signal source 4 and then received by the individual antenna elements 3.
  • the calibration values H and G can be calculated using the calibration data collected by the calibration data collection system 100 including the calibration signal source 4 having a function of transmitting the calibration signal.
  • the calibration value calculation unit 12 when the calibration value calculation unit 12 includes data corresponding to a plurality of waves (K waves), the calibration value calculation unit 12 separates the data corresponding to the plurality of waves (K waves) into the data corresponding to each one wave.
  • the calibration signal source 4 is sequentially arranged at a plurality of positions P included in the area A, and the calibration data is such that the calibration signal source 4 is arranged at each of the plurality of positions P. It corresponds to the calibration signal received by each antenna element 3 in the state.
  • the calibration values H and G can be calculated using the calibration data collected by the calibration data collection system 100 including the calibration signal source 4 moving in the area A.
  • the radar calibration device 200 includes a calibration value calculation device 300, a calibration processing unit 14 that executes a radar calibration process using the first array antenna 1 using the calibration values H and G, and a calibration processing unit 14. To be equipped. This makes it possible to calibrate the distributed radar. Such calibration can improve the angular resolution of such distributed radar. As a result, highly accurate angle measurement can be realized.
  • the calibration data acquisition unit 11 uses the calibration signal received by the individual antenna elements 3 included in the individual sub-arrays 2 included in the first array antenna 1 as the calibration signal.
  • Step ST1 to acquire the corresponding calibration data and the calibration value calculation unit 12 use the calibration data to obtain the first calibration value (calibration value H in the sub-array) and the first calibration value corresponding to the error in the sub-array in each sub-array 2.
  • Steps ST2_1 and ST2_2 for calculating calibration values H and G including a second calibration value (calibration value G between sub-arrays) corresponding to an error between sub-arrays in the 1-array antenna 1, and calibration value output units 13 perform calibration values H and G.
  • the calibration data includes the step ST3 for outputting the above, and the calibration data corresponds to the calibration signal received by the individual antenna elements 3 with the calibration signal source 4 arranged in the predetermined area A.
  • the region A is included in the far field with respect to each sub-array 2 and is included in the near field with respect to the first array antenna 1.
  • FIG. 10 is a block diagram showing a main part of the calibration data collection system according to the second embodiment.
  • the calibration data collection system according to the second embodiment will be described with reference to FIG.
  • the same blocks as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • the calibration data collection system 100a includes a calibration signal source 4a instead of the calibration signal source 4.
  • the calibration signal source 4a is composed of a reflective object such as a conductor sphere or a reflector.
  • the calibration signal source 4a does not have a function of transmitting a calibration signal.
  • the calibration data collection system 100a includes an antenna 7 for transmission.
  • the antenna 7 transmits the calibration signal in a state where the calibration signal source 4a is arranged at one position P or each of the plurality of positions P.
  • the transmitted calibration signal is reflected by the calibration signal source 4a.
  • the reflected calibration signal is received by the individual antenna elements 3 included in the individual sub-arrays 2.
  • the calibration data collection system 100a can be realized by using the calibration signal source 4a that does not have the function of transmitting the calibration signal.
  • the antenna 7 may be included in the array antenna 1. That is, the selected antenna element 3 among the (L ⁇ M) antenna elements 3 included in the array antenna 1 may perform the function of the antenna 7. In other words, the antenna 7 may perform the function of the selected antenna element 3.
  • the radar calibration device 200 according to the second embodiment is the same as the radar calibration device 200 according to the first embodiment. That is, the calibration value calculation device 300 according to the second embodiment is the same as the calibration value calculation device 300 according to the first embodiment. However, in the calibration value calculation device 300 according to the second embodiment, the calibration values H and G are calculated using the calibration data collected by the calibration data collection system 100a. The method of calculating the calibration values H and G is the same as that described in the first embodiment.
  • the calibration data is transmitted by the transmitting antenna 7, then reflected by the calibration signal source 4a, and then the individual antennas. It corresponds to the calibration signal received by the element 3.
  • the calibration values H and G can be calculated using the calibration data collected by the calibration data collection system 100a including the calibration signal source 4a which does not have the function of transmitting the calibration signal.
  • FIG. 11 is a block diagram showing a main part of the calibration data collection system according to the third embodiment.
  • the calibration data collection system according to the third embodiment will be described with reference to FIG.
  • the same blocks as those shown in FIG. 10 are designated by the same reference numerals, and the description thereof will be omitted.
  • the calibration data collection system 100b includes a transmission array antenna (hereinafter referred to as “second array antenna”) 8 instead of the transmission antenna 7.
  • the second array antenna 8 includes a plurality of antennas 9.
  • the individual antennas 9 included in the second array antenna 8 transmit the calibration signal.
  • the transmitted calibration signal is reflected by the calibration signal source 4a.
  • the reflected calibration signal is received by the individual antenna elements 3 included in the individual sub-arrays 2.
  • the MIMO array antenna is composed of the second array antenna 8 and the individual sub-arrays 2. Further, as described in the first embodiment, the M sub-arrays 2 are distributed and arranged. Therefore, the second array antenna 8 and the first array antenna 1 are used for the distributed MIMO radar.
  • the calibration data collection system 100b can be realized by using the calibration signal source 4a which does not have the function of transmitting the calibration signal.
  • the second array antenna 8 may be included in the first array antenna 1. That is, the selected sub-array 2 out of the M sub-arrays 2 may function as the second array antenna 8. In other words, the second array antenna 8 may perform the function of the selected sub-array 2. In this case, the second array antenna 8 includes L antennas 9 and has the same element arrangement shape as the element arrangement shape in each sub array 2.
  • the calibration signal data stored in the storage device 6 includes an error component in the sub-array and an error component between sub-arrays.
  • the calibration signal data stored in the storage device 6 includes an error corresponding to the calibration signals transmitted by the antennas 9 different from each other (hereinafter, "" It contains a component corresponding to "error in transmission array” or "error in array”).
  • the calibration value CTx corresponding to the error in the transmission array may be referred to as a “calibration value in the transmission array” or a “third calibration value”.
  • FIG. 12 is a block diagram showing a main part of the radar calibration device according to the third embodiment.
  • FIG. 13 is a block diagram showing a main part of the calibration value calculation unit in the calibration value calculation device according to the third embodiment.
  • the radar calibration device according to the third embodiment will be described with reference to FIGS. 12 and 13, and the calibration value calculation device according to the third embodiment will be described.
  • FIG. 12 the same blocks as those shown in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted. Further, in FIG. 13, the same blocks as those shown in FIG. 4 are designated by the same reference numerals, and the description thereof will be omitted.
  • the radar calibration device 200a includes a calibration data acquisition unit 11, a calibration value calculation unit 12a, a calibration value output unit 13, a calibration processing unit 14, and a calibration data separation unit 15.
  • the calibration value calculation unit 12a includes a first calibration value calculation unit 21, a second calibration value calculation unit 22, and a third calibration value calculation unit 23.
  • the main part of the calibration value calculation device 300a is composed of the calibration data acquisition unit 11, the calibration value calculation unit 12a, the calibration value output unit 13, and the calibration data separation unit 15.
  • the third calibration value calculation unit 23 includes a position-angle data table DT, a beam formation processing unit 61, and a calibration value calculation unit 62 in the transmission array.
  • the position-angle data table DT is included in any one of the first calibration value calculation unit 21, the second calibration value calculation unit 22, and the third calibration value calculation unit 23, and the position-is such.
  • the angle data table DT may be shared by the first calibration value calculation unit 21, the second calibration value calculation unit 22, and the third calibration value calculation unit 23.
  • the calibration data acquisition unit 11 acquires the calibration data stored in the storage device 6.
  • the calibration data acquisition unit 11 outputs the acquired calibration data to the calibration data separation unit 15.
  • the calibration data separation unit 15 acquires the calibration data output by the calibration data acquisition unit 11.
  • the calibration signal data included in the acquired calibration data includes data corresponding to the calibration signals transmitted by the plurality of antennas 9. Therefore, the calibration data separation unit 15 executes MIMO demodulation processing on the calibration signal data. As a result, the calibration signal data is separated into data corresponding to the calibration signals transmitted by the individual antennas 9.
  • the separated data may be referred to as “calibration signal data after separation”. Further, the calibration signal data after separation and the corresponding signal source position data may be collectively referred to as “calibration data after separation”.
  • the calibration data separation unit 15 outputs the calibration data after separation to the calibration value calculation unit 31, the beam formation processing unit 41, and the beam formation processing unit 61 in the sub-array.
  • the same processing as that described in the first embodiment is executed using the calibration data after separation.
  • the calibration value H in the sub array is calculated.
  • the sub-array calibration value calculation unit 31 outputs the calculated sub-array calibration value H to the calibration value output unit 13, the beam formation processing unit 41, and the beam formation processing unit 61.
  • the same processing as that described in the first embodiment is executed using the calibration data after separation.
  • the calibration value G between sub-arrays is calculated.
  • the inter-sub-array calibration value calculation unit 42 outputs the calculated inter-sub-array calibration value G to the calibration value output unit 13 and the beam forming processing unit 61.
  • the beam forming processing unit 61 is subjected to the calibration data after separation output by the calibration data separation unit 15, the calibration value H in the sub-array output by the calibration value calculation unit 31 in the sub-array, and the calibration value calculation unit 42 between sub-arrays.
  • the output calibration value G between sub-arrays is acquired.
  • the beam forming processing unit 61 uses the position-angle data table DT to calculate the incident angle ⁇ corresponding to the position P indicated by the individual signal source position data included in the acquired calibration data. Further, the beam forming processing unit 61 uses the acquired calibration value H in the sub-array and the acquired calibration value G between sub-arrays for post-separation calibration included in the acquired post-separation calibration data. It corrects the signal data.
  • the beamforming processing unit 61 uses the corrected calibration signal data after separation and the calculated incident angle ⁇ to perform digital beamforming processing corresponding to the second array antenna 8 (hereinafter referred to as “second DBF processing”). .) Is executed. As a result, data corresponding to the beam output by the second array antenna 8 is generated. The beam forming processing unit 61 outputs the generated data to the calibration value calculation unit 62 in the transmission array.
  • the calibration value calculation unit 62 in the transmission array acquires the data output by the beam forming processing unit 61.
  • the calibration value calculation unit 62 in the transmission array calculates the calibration value C Tx in the transmission array using the acquired data. The method of calculating the calibration value C Tx in the transmission array will be described later.
  • the calibration value calculation unit 62 in the transmission array outputs the calculated calibration value C Tx in the transmission array to the calibration value output unit 13.
  • the calibration value output unit 13 includes a calibration value H in the sub-array output by the calibration value calculation unit 31 in the sub-array, a calibration value G in the sub-array output by the calibration value calculation unit 42 between sub-arrays, and a calibration value calculation unit 62 in the transmission array. Acquires the calibration value C Tx in the transmission array output by. The calibration value output unit 13 outputs the acquired calibration values H, G, C Tx to the calibration processing unit 14.
  • the calibration processing unit 14 acquires the calibration values H, G, C Tx output by the calibration value output unit 13.
  • the calibration processing unit 14 uses the acquired calibration values H, G, and CTx to perform calibration processing of a radar (not shown) using the second array antenna 8 and the first array antenna 1. That is, the calibration processing unit 14 executes the calibration processing of the distributed MIMO radar.
  • Various known techniques can be used for such calibration processing. Detailed description of these techniques will be omitted.
  • the main part of the radar calibration device 200a is configured.
  • the code of "F2_3” may be used for the function of the third calibration value calculation unit 23.
  • the reference numeral “F5" may be used for the function of the calibration data separation unit 15.
  • the processes executed by the third calibration value calculation unit 23 may be collectively referred to as “third calibration value calculation process”.
  • the processes executed by the calibration data separation unit 15 may be collectively referred to as “calibration data separation processing”.
  • the processes executed by the calibration value calculation device 300a may be collectively referred to as "calibration value calculation process”.
  • the hardware configuration of the main part of the radar calibration device 200a is the same as that described with reference to FIGS. 5 to 7 in the first embodiment. Therefore, detailed description thereof will be omitted.
  • the radar calibration device 200a has a plurality of functions F1, F2_1, F2_2, F2_3, F3, F4, and F5.
  • Each of the plurality of functions F1, F2_1, F2_2, F2_3, F3, F4, and F5 may be realized by the processor 51 and the memory 52, or may be realized by the processing circuit 53.
  • the processor 51 may include a dedicated processor corresponding to each function F1, F2_1, F2_2, F2_3, F3, F4, F5.
  • the memory 52 may include a dedicated memory corresponding to each function F1, F2_1, F2_2, F2_3, F3, F4, F5.
  • the processing circuit 53 may include a dedicated processing circuit corresponding to each function F1, F2_1, F2_2, F2_3, F3, F4, F5.
  • the calibration data acquisition unit 11 executes the calibration data acquisition process (step ST1). As a result, the calibration data stored in the storage device 6 is acquired.
  • the calibration data separation unit 15 executes the calibration data separation process (step ST5).
  • the calibration signal data included in the calibration data acquired in step ST1 is separated into data corresponding to the calibration signals transmitted by the individual antennas 9.
  • the first calibration value calculation unit 21 executes the first calibration value calculation process (step ST2_1). As a result, the calibration value H in the sub array is calculated. The calibration data after separation is used to calculate the calibration value H in the sub-array.
  • the second calibration value calculation unit 22 executes the second calibration value calculation process (step ST2_2). As a result, the calibration value G between sub-arrays is calculated. The calibration data after separation is used to calculate the calibration value G between sub-arrays.
  • the third calibration value calculation unit 23 executes the third calibration value calculation process (step ST2_3).
  • the calibration values C Tx is the transmission array is calculated.
  • the method of calculating the calibration value C Tx in the transmission array will be described later.
  • the calibration value output unit 13 executes the calibration value output process (step ST3).
  • the calibration value H in the sub-array calculated in step ST2_1, the calibration value G between sub-arrays calculated in step ST2_2, and the calibration value C Tx in the transmission array calculated in step ST2_3 are the calibration value calculation device 300a. It is output to the outside.
  • the calibration value calculation device 300a executes the calibration value calculation process (step ST11a). As a result, the processes of steps ST1, ST5, ST2_1, ST2_2, ST2_3, and ST3 shown in FIG. 14 are executed. That is, the calibration value H in the sub-array, the calibration value G between sub-arrays, and the calibration value C Tx in the transmission array are calculated, and the calculated calibration values H, G, C Tx are output.
  • the calibration processing unit 14 executes the radar calibration processing (step ST4).
  • the calibration values H, G, and C Tx output in step ST11a are used for the radar calibration process.
  • n (t) indicates reception noise.
  • n (t) can be ignored.
  • the description of n (t) will be omitted.
  • the calibration signal data stored in the storage device 6 includes data corresponding to the calibration signals transmitted by the antennas 9 which are different from each other. Therefore, the calibration data separation unit 15 separates the calibration signal data into data corresponding to the calibration signals transmitted by the individual antennas 9 by executing MIMO demodulation processing.
  • the separated data z MIMO ( ⁇ ) is represented by the following equation (16).
  • CRx is calculated by the same method as that described in the first embodiment or the second embodiment.
  • the calibration value calculation unit 62 in the transmission array calculates the calibration value C Tx in the transmission array as follows.
  • the calibration value calculation unit 62 in the transmission array calculates z Tx ( ⁇ ) corresponding to the received data in the second array antenna 8.
  • the nth element in z Tx ( ⁇ ) is calculated by the following equations (17) to (18).
  • the calibration value calculation unit 62 in the transmission array uses the calculated z Tx ( ⁇ ) in the transmission array by the same calculation method as the calculation method of the calibration value G between sub-arrays by the calibration value calculation unit 42 between sub-arrays. Calculate the calibration value C Tx. That is, the calibration value calculation unit 62 in the transmission array uses the data generated by the second DBF process to perform the same processing as the processing executed by the calibration value calculation unit 42 between sub-arrays, thereby performing calibration in the transmission array. Calculate the value C Tx.
  • the calibration value calculation unit 62 in the transmission array calculates the calibration value C Tx in the transmission array by the same calculation method as the calculation method of the calibration value G between sub-arrays by the calibration value calculation unit 42 between sub-arrays, instead of calculating the calibration value C Tx in the transmission array.
  • the calibration value C Tx in the transmission array may be calculated by the same calculation method as the calculation method of the calibration value H in the sub array by the internal calibration value calculation unit 31. That is, the calibration value calculation unit 62 in the transmission array may calculate the calibration value C Tx in the transmission array by executing the same processing as the processing executed by the calibration value calculation unit 31 in the sub-array. ..
  • the calibration data is transmitted by the second array antenna 8 for transmission, then reflected by the calibration signal source 4a, and then reflected by the calibration signal source 4a. It corresponds to the calibration signal received by each antenna element 3.
  • the calibration values H, G, and C Tx can be calculated using the calibration data collected by the calibration data collection system 100b including the calibration signal source 4a that does not have the function of transmitting the calibration signal. can.
  • the calibration value calculation device 300a includes a calibration data separation unit 15 that separates calibration data into data corresponding to individual antennas 9 included in the second array antenna 8, and the calibration value calculation unit 12a is after separation.
  • the first calibration value (calibration value H in the sub-array), the second calibration value (calibration value G between sub-arrays), and the third calibration value (transmission) corresponding to the error in the array in the second array antenna 8 are used.
  • the radar calibration device 200a uses the calibration value calculation device 300a and the calibration values H, G, and CTx to perform radar calibration processing using the first array antenna 1 and the second array antenna 8.
  • a calibration processing unit 14 for executing the above is provided. This makes it possible to calibrate the distributed MIMO radar. Such calibration can improve the angular resolution of such distributed MIMO radar. As a result, highly accurate angle measurement can be realized.
  • the calibration value calculation device, radar calibration device, and calibration value calculation method according to the present disclosure can be used, for example, for a distributed radar or a distributed MIMO radar.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

A calibration value calculation device (300) comprises: a calibration data acquisition unit (11) that acquires calibration data corresponding to a calibration signal received by individual antenna elements (3) included in individual sub-arrays (2) included in a first array antenna (1); a calibration value calculation unit (12) that uses the calibration data to calculate calibration values (H, G), including a first calibration value (H) that corresponds to a intra-sub-array measurement error in the individual sub-arrays (2) and a second calibration value (G) that corresponds to an inter-sub-array measurement error in the first array antenna (1); and a calibration value output unit (13) that outputs the calibration values (H, G). The calibration data corresponds to a calibration signal received by the individual antenna elements (3) in a state where a calibration signal source (4) is positioned in a prescribed area (A). The area (A) is included in a distant boundary of the individual sub-arrays (2), and is included in a nearby boundary of the first array antenna (1).

Description

校正値算出装置、レーダ校正装置及び校正値算出方法Calibration value calculation device, radar calibration device and calibration value calculation method
 本開示は、校正値算出装置、レーダ校正装置及び校正値算出方法に関する。 This disclosure relates to a calibration value calculation device, a radar calibration device, and a calibration value calculation method.
 従来、アレーアンテナを用いたレーダが開発されている。具体的には、例えば、分散アレーアンテナを用いた分散レーダが開発されている。また、例えば、MIMO(Multi Input Multi Output)アレーアンテナを用いたMIMOレーダが開発されている。また、例えば、分散MIMOレーダが開発されている。 Conventionally, radar using an array antenna has been developed. Specifically, for example, a distributed radar using a distributed array antenna has been developed. Further, for example, a MIMO radar using a MIMO (Multi Input Multi Output) array antenna has been developed. Also, for example, distributed MIMO radar has been developed.
 アレーアンテナを用いたレーダにおいては、アレーアンテナにおける素子間相互結合等による誤差が発生する。すなわち、アレーアンテナに含まれる複数個のアンテナ素子により信号が受信されたとき、当該受信された信号の振幅及び位相などにばらつきが生ずる。レーダによる角度分解能を向上する観点から、かかる誤差が補正されるようにレーダの校正をするのが好適である。非特許文献1には、かかる校正方法が開示されている。 In a radar using an array antenna, an error occurs due to mutual coupling between elements in the array antenna. That is, when a signal is received by a plurality of antenna elements included in the array antenna, the amplitude and phase of the received signal vary. From the viewpoint of improving the angular resolution of the radar, it is preferable to calibrate the radar so that such an error is corrected. Non-Patent Document 1 discloses such a calibration method.
 素子間相互結合等による誤差は、角度依存性を有するものである。したがって、かかる誤差を補正するための校正値を算出するときは、互いに異なる複数個の入射角に対応するデータを用いることが要求される。かかるデータは、例えば、以下のようにして収集される。すなわち、校正用の1個の信号源が既知の複数個の位置に順次配置される。または、校正用の複数個の信号源が当該複数個の位置にそれぞれ配置される。当該1個の信号源又は当該複数個の信号源が校正用の信号を順次送信することにより、当該複数個の位置に対応するデータ(すなわち互いに異なる複数個の入射角に対応するデータ)が収集される。 The error due to mutual coupling between elements has an angle dependence. Therefore, when calculating the calibration value for correcting such an error, it is required to use the data corresponding to a plurality of incident angles different from each other. Such data is collected, for example, as follows. That is, one signal source for calibration is sequentially arranged at a plurality of known positions. Alternatively, a plurality of signal sources for calibration are arranged at the plurality of positions. By sequentially transmitting calibration signals from the one signal source or the plurality of signal sources, data corresponding to the plurality of positions (that is, data corresponding to a plurality of incident angles different from each other) are collected. Will be done.
 ここで、かかる校正値を算出するために要求されるデータの個数は、アレーアンテナに含まれるアンテナ素子の個数に応じて異なるものである。したがって、かかるデータを収集するために要求される信号の送信回数(すなわちデータの取得回数)も、かかるアンテナ素子の個数に応じて異なるものである。アレーアンテナに含まれるアンテナ素子の個数が多いとき、かかるデータを収集するために要求される信号の送信回数(すなわちデータの取得回数)が多いという問題があった。 Here, the number of data required to calculate such a calibration value differs depending on the number of antenna elements included in the array antenna. Therefore, the number of times the signal is transmitted (that is, the number of times the data is acquired) required for collecting such data also differs depending on the number of such antenna elements. When the number of antenna elements included in the array antenna is large, there is a problem that the number of times the signal is transmitted (that is, the number of times the data is acquired) required for collecting such data is large.
 本開示は、上記のような課題を解決するためになされたものであり、より少ないデータ取得回数にて収集されたデータを用いて校正値を算出することを目的とする。 The present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to calculate a calibration value using data collected with a smaller number of data acquisitions.
 本開示に係る校正値算出装置は、第1アレーアンテナに含まれる個々のサブアレーに含まれる個々のアンテナ素子により受信された校正用信号に対応する校正用データを取得する校正用データ取得部と、校正用データを用いて、個々のサブアレーにおけるサブアレー内誤差に対応する第1校正値及び第1アレーアンテナにおけるサブアレー間誤差に対応する第2校正値を含む校正値を算出する校正値算出部と、校正値を出力する校正値出力部と、を備え、校正用データは、校正用信号源が所定の領域に配置された状態にて個々のアンテナ素子により受信された校正用信号に対応するものであり、領域は、個々のサブアレーに対する遠方界に含まれるものであり、かつ、第1アレーアンテナに対する近傍界に含まれるものである。 The calibration value calculation device according to the present disclosure includes a calibration data acquisition unit that acquires calibration data corresponding to calibration signals received by individual antenna elements included in the individual sub-arrays included in the first array antenna. Using the calibration data, a calibration value calculation unit that calculates a calibration value including a first calibration value corresponding to an error in the sub-array in each sub-array and a second calibration value corresponding to an error between sub-arrays in the first array antenna, and a calibration value calculation unit. It is equipped with a calibration value output unit that outputs calibration values, and the calibration data corresponds to the calibration signal received by each antenna element with the calibration signal source arranged in a predetermined area. Yes, the region is included in the far field for each sub-array and is included in the near field for the first array antenna.
 本開示によれば、上記のように構成したので、より少ないデータ取得回数にて収集されたデータを用いて校正値を算出することができる。 According to the present disclosure, since it is configured as described above, the calibration value can be calculated using the data collected with a smaller number of data acquisitions.
実施の形態1に係る校正用データ収集システムの要部を示すブロック図である。It is a block diagram which shows the main part of the calibration data collection system which concerns on Embodiment 1. FIG. 複数個の入射角の例を示す説明図である。It is explanatory drawing which shows the example of a plurality of incident angles. 実施の形態1に係るレーダ校正装置の要部を示すブロック図である。It is a block diagram which shows the main part of the radar calibration apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る校正値算出装置における校正値算出部の要部を示すブロック図である。It is a block diagram which shows the main part of the calibration value calculation part in the calibration value calculation apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係るレーダ校正装置の要部のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware composition of the main part of the radar calibration apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係るレーダ校正装置の要部の他のハードウェア構成を示すブロック図である。It is a block diagram which shows the other hardware configuration of the main part of the radar calibration apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係るレーダ校正装置の要部の他のハードウェア構成を示すブロック図である。It is a block diagram which shows the other hardware configuration of the main part of the radar calibration apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る校正値算出装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the calibration value calculation apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係るレーダ校正装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the radar calibration apparatus which concerns on Embodiment 1. FIG. 実施の形態2に係る校正用データ収集システムの要部を示すブロック図である。It is a block diagram which shows the main part of the calibration data collection system which concerns on Embodiment 2. 実施の形態3に係る校正用データ収集システムの要部を示すブロック図である。It is a block diagram which shows the main part of the calibration data collection system which concerns on Embodiment 3. 実施の形態3に係るレーダ校正装置の要部を示すブロック図である。It is a block diagram which shows the main part of the radar calibration apparatus which concerns on Embodiment 3. 実施の形態3に係る校正値算出装置における校正値算出部の要部を示すブロック図である。It is a block diagram which shows the main part of the calibration value calculation part in the calibration value calculation apparatus which concerns on Embodiment 3. FIG. 実施の形態3に係る校正値算出装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the calibration value calculation apparatus which concerns on Embodiment 3. 実施の形態3に係るレーダ校正装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the radar calibration apparatus which concerns on Embodiment 3.
 以下、この開示をより詳細に説明するために、この開示を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain this disclosure in more detail, a mode for carrying out this disclosure will be described with reference to the attached drawings.
実施の形態1.
 図1は、実施の形態1に係る校正用データ収集システムの要部を示すブロック図である。図1を参照して、実施の形態1に係る校正用データ収集システムについて説明する。
Embodiment 1.
FIG. 1 is a block diagram showing a main part of the calibration data collection system according to the first embodiment. The calibration data collection system according to the first embodiment will be described with reference to FIG.
 校正用データ収集システム100は、アレーアンテナ1を含むものである。アレーアンテナ1は、M個のサブアレー2を含むものである。個々のサブアレー2は、L個のアンテナ素子3を含むものである。ここで、Mは、2以上の整数である。また、Lは、2以上の整数である。以下、アレーアンテナ1を「第1アレーアンテナ」ということがある。 The calibration data collection system 100 includes an array antenna 1. The array antenna 1 includes M sub-arrays 2. Each sub-array 2 includes L antenna elements 3. Here, M is an integer of 2 or more. Further, L is an integer of 2 or more. Hereinafter, the array antenna 1 may be referred to as a "first array antenna".
 M個のサブアレー2は、分散配置されている。すなわち、アレーアンテナ1は、分散アレーアンテナにより構成されている。アレーアンテナ1は、分散レーダに用いられるものである。 M sub-arrays 2 are distributed. That is, the array antenna 1 is composed of a distributed array antenna. The array antenna 1 is used for distributed radar.
 以下、個々のサブアレー2におけるL個のアンテナ素子3の配置形状を「素子配置形状」という。M個のサブアレー2は、互いに共通する素子配置形状を有している。すなわち、M個のサブアレー2は、同一の素子配置形状を有している。 Hereinafter, the arrangement shape of the L antenna elements 3 in each sub array 2 is referred to as an “element arrangement shape”. The M sub-arrays 2 have element arrangement shapes common to each other. That is, the M sub-arrays 2 have the same element arrangement shape.
 校正用データ収集システム100は、校正用信号源4を含むものである。校正用信号源4は、所定の領域A内に配置されるものである。より具体的には、校正用信号源4は、領域A内を移動することにより、領域Aに含まれる複数個の位置Pに順次配置されるものである。個々の位置Pは既知である。 The calibration data collection system 100 includes a calibration signal source 4. The calibration signal source 4 is arranged in a predetermined area A. More specifically, the calibration signal source 4 is sequentially arranged at a plurality of positions P included in the area A by moving in the area A. The individual positions P are known.
 ここで、領域Aは、個々のサブアレー2に対する遠方界に含まれるものであり、かつ、アレーアンテナ1全体に対する近傍界に含まれるものである。すなわち、複数個の位置Pの各々は、個々のサブアレー2に対する遠方界に含まれるものであり、かつ、アレーアンテナ1全体に対する近傍界に含まれるものである。 Here, the region A is included in the far field for each sub-array 2 and is included in the near field for the entire array antenna 1. That is, each of the plurality of positions P is included in the far field with respect to the individual sub-array 2 and is included in the near field with respect to the entire array antenna 1.
 校正用信号源4は、複数個の位置Pの各々に配置された状態にて、校正用の信号(以下「校正用信号」という。)を送信するものである。すなわち、校正用信号源4は、校正用信号を複数回送信するものである。当該送信された校正用信号は、個々のサブアレー2に含まれる個々のアンテナ素子3により受信される。 The calibration signal source 4 transmits a calibration signal (hereinafter referred to as "calibration signal") in a state of being arranged at each of a plurality of positions P. That is, the calibration signal source 4 transmits the calibration signal a plurality of times. The transmitted calibration signal is received by the individual antenna elements 3 included in the individual sub-arrays 2.
 校正用データ収集システム100は、M個のアナログ-デジタル変換器(以下「A/D変換器」という。)5を含むものである。M個のA/D変換器5は、M個のサブアレー2と一対一に対応するものである。個々のA/D変換器5は、校正用信号源4が校正用信号を送信する度に、対応するサブアレー2に含まれるL個のアンテナ素子3の各々により受信された校正用信号をデジタルデータに変換するものである。個々のA/D変換器5は、当該変化されたデジタルデータを出力するものである。以下、当該変換されたデジタルデータを「校正用信号データ」という。 The calibration data collection system 100 includes M analog-to-digital converters (hereinafter referred to as "A / D converters") 5. The M A / D converters 5 have a one-to-one correspondence with the M sub-arrays 2. Each time the calibration signal source 4 transmits a calibration signal, each A / D converter 5 digitally data the calibration signal received by each of the L antenna elements 3 included in the corresponding sub-array 2. It is to be converted to. Each A / D converter 5 outputs the changed digital data. Hereinafter, the converted digital data is referred to as "calibration signal data".
 なお、個々のA/D変換器5においては、上記受信された校正用信号に対する周波数変換処理が実行されることにより、上記受信された校正用信号の周波数がベースバンド内の周波数に変換される。また、個々のA/D変換器5において、上記受信された校正用信号は、互いに同期されたタイミングにてサンプリングされる。 In each A / D converter 5, the frequency of the received calibration signal is converted into a frequency in the baseband by executing the frequency conversion process for the received calibration signal. .. Further, in each A / D converter 5, the received calibration signals are sampled at timings synchronized with each other.
 校正用データ収集システム100は、記憶装置6を含むものである。記憶装置6は、個々のA/D変換器5により出力された校正用信号データを記憶するものである。また、記憶装置6は、個々の校正用信号データに対応する位置Pを示すデータ(以下「信号源位置データ」という。)を記憶するものである。以下、校正用信号データ及び対応する信号源位置データを総称して「校正用データ」ということがある。 The calibration data collection system 100 includes a storage device 6. The storage device 6 stores calibration signal data output by each A / D converter 5. Further, the storage device 6 stores data indicating the position P corresponding to each calibration signal data (hereinafter, referred to as “signal source position data”). Hereinafter, the calibration signal data and the corresponding signal source position data may be collectively referred to as “calibration data”.
 このようにして、複数個の位置Pに対応する校正用データが収集される。また、上記のとおり、個々の位置Pは既知である。そこで、M個のサブアレー2と一対一に対応するM個の入射角θについて、個々の位置PとM個の入射角θとの対応関係を示すデータテーブル(以下「位置-角度データテーブル」という。)DTが生成される。図2は、複数個の位置Pのうちの1個の位置PとM個の入射角θ~θのうちの2個の入射角θ,θとの対応関係の例を示している。 In this way, calibration data corresponding to the plurality of positions P are collected. Also, as mentioned above, the individual positions P are known. Therefore, with respect to the M incident angles θ corresponding to the M sub-arrays 2 on a one-to-one basis, a data table showing the correspondence between the individual positions P and the M incident angles θ (hereinafter referred to as “position-angle data table””. .) DT is generated. Figure 2 shows an example of a correspondence between the two incident angle theta 1, theta M of the one position P and M of the incident angle theta 1 ~ theta M of a plurality of positions P There is.
 ここで、記憶装置6に記憶されている校正用信号データは、個々のサブアレー2における誤差(以下「サブアレー内誤差」という。)に対応する成分(以下「サブアレー内誤差成分」という。)を含むものである。すなわち、個々のサブアレー2に含まれるL個のアンテナ素子3により校正用信号が受信されたとき、当該受信された校正用信号の振幅、位相及び遅延時間などにばらつきが生ずることがある。換言すれば、L個のアンテナ素子3のうちの各2個のアンテナ素子3間にて、振幅、位相及び遅延時間などが相違することがある。これにより、校正用信号データは、サブアレー内誤差成分を含むものとなる。サブアレー内誤差は、個々のサブアレー2における素子間相互結合等によるものである。 Here, the calibration signal data stored in the storage device 6 includes a component corresponding to an error in each sub-array 2 (hereinafter referred to as “error in sub-array”) (hereinafter referred to as “error component in sub-array”). It is an error. That is, when the calibration signal is received by the L antenna elements 3 included in the individual sub-arrays 2, the amplitude, phase, delay time, and the like of the received calibration signal may vary. In other words, the amplitude, phase, delay time, and the like may differ between each of the two antenna elements 3 of the L antenna elements 3. As a result, the calibration signal data includes the error component in the sub-array. The error in the sub-array is due to mutual coupling between elements in each sub-array 2.
 また、記憶装置6に記憶されている校正用信号データは、M個のサブアレー2のうちの各2個のサブアレー2間における誤差(以下「サブアレー間誤差」という。)に対応する成分(以下「サブアレー間誤差成分」という。)を含むものである。すなわち、M個のサブアレーにより校正用信号が受信されたとき、当該受信された校正用信号の振幅、位相及び遅延時間などにばらつきが生ずることがある。換言すれば、M個のサブアレー2のうちの各2個のサブアレー2間にて、振幅、位相及び遅延時間などが相違することがある。これにより、校正用信号データは、サブアレー間誤差成分を含むものとなる。 Further, the calibration signal data stored in the storage device 6 has a component corresponding to an error between each of the two sub-arrays 2 of the M sub-arrays 2 (hereinafter referred to as “sub-array error”) (hereinafter, “sub-array error”). It is called "error component between sub-arrays"). That is, when the calibration signal is received by the M sub-arrays, the amplitude, phase, delay time, etc. of the received calibration signal may vary. In other words, the amplitude, phase, delay time, etc. may differ between each of the two sub-arrays 2 of the M sub-arrays 2. As a result, the calibration signal data includes an error component between sub-arrays.
 以下、サブアレー内誤差に対応する校正値Hを「サブアレー内校正値」又は「第1校正値」ということがある。また、サブアレー間誤差に対応する校正値Gを「サブアレー間校正値」又は「第2校正値」ということがある。 Hereinafter, the calibration value H corresponding to the error in the sub-array may be referred to as "calibration value in sub-array" or "first calibration value". Further, the calibration value G corresponding to the error between sub-arrays may be referred to as "calibration value between sub-arrays" or "second calibration value".
 上記のとおり、サブアレー内誤差は、個々のサブアレー2における素子間相互結合等によるものである。このため、サブアレー内校正値Hを算出するためには、互いに異なる複数個の入射角θに対応する校正用データを収集することが要求される。より具体的には、互いに異なる(L+1)個以上の入射角θに対応する校正用データを収集することが要求される。 As described above, the error in the sub-array is due to the mutual coupling between the elements in each sub-array 2. Therefore, in order to calculate the calibration value H in the sub-array, it is required to collect calibration data corresponding to a plurality of incident angles θ different from each other. More specifically, it is required to collect calibration data corresponding to (L + 1) or more incident angles θ different from each other.
 校正用データ収集システム100においては、上記のとおり、校正用信号源4が領域A内に配置される。領域Aは、個々のサブアレー2に対する遠方界に含まれており、かつ、アレーアンテナ1全体に対する近傍界に含まれている。このため、校正用信号源4が校正用信号を1回送信する度に(すなわち校正用信号源4が1個の位置Pにて校正用信号を送信する度に)、互いに異なる複数個の入射角θに対応する校正用データが取得される。より具体的には、互いに異なるM個の入射角θに対応する校正用データが取得される。 In the calibration data collection system 100, the calibration signal source 4 is arranged in the area A as described above. The region A is included in the far field for each sub-array 2 and is included in the near field for the entire array antenna 1. Therefore, each time the calibration signal source 4 transmits a calibration signal once (that is, each time the calibration signal source 4 transmits a calibration signal at one position P), a plurality of incidents different from each other are incident. Calibration data corresponding to the angle θ is acquired. More specifically, calibration data corresponding to M different incident angles θ are acquired.
 これにより、互いに異なる(L+1)個以上の入射角θに対応する校正用データを収集するにあたり、校正用信号源4による校正用信号の送信回数(すなわち位置Pの個数)を低減することができる。換言すれば、校正用データの取得回数を低減することができる。 As a result, the number of times the calibration signal is transmitted by the calibration signal source 4 (that is, the number of positions P) can be reduced when collecting calibration data corresponding to (L + 1) or more incident angles θ different from each other. .. In other words, the number of acquisitions of calibration data can be reduced.
 なお、サブアレー2の個数Mがアンテナ素子3の個数Lに対して十分に大きい場合(例えばMが(L+1)以上の値に設定されている場合)、校正用信号源4は、領域Aに含まれる複数個の位置Pに順次配置されるのに代えて、領域Aに含まれる1個の位置Pに配置されるものであっても良い。校正用信号源4は、当該1個の位置Pに配置された状態にて、校正用信号を送信するものであっても良い。すなわち、校正用信号源4は、校正用信号を複数回送信するのに代えて、校正用信号を1回送信するものであっても良い。以下、校正用信号源4が当該1個の位置Pに配置される場合の例を中心に説明する。 When the number M of the sub-array 2 is sufficiently larger than the number L of the antenna elements 3 (for example, when M is set to a value of (L + 1) or more), the calibration signal source 4 is included in the region A. Instead of being sequentially arranged at a plurality of positions P, it may be arranged at one position P included in the area A. The calibration signal source 4 may transmit a calibration signal in a state of being arranged at the one position P. That is, the calibration signal source 4 may transmit the calibration signal once instead of transmitting the calibration signal a plurality of times. Hereinafter, an example in which the calibration signal source 4 is arranged at the one position P will be mainly described.
 図3は、実施の形態1に係るレーダ校正装置の要部を示すブロック図である。図4は、実施の形態1に係る校正値算出装置における校正値算出部の要部を示すブロック図である。図3及び図4を参照して、実施の形態1に係るレーダ校正装置について説明するとともに、実施の形態1に係る校正値算出装置について説明する。 FIG. 3 is a block diagram showing a main part of the radar calibration device according to the first embodiment. FIG. 4 is a block diagram showing a main part of the calibration value calculation unit in the calibration value calculation device according to the first embodiment. The radar calibration device according to the first embodiment will be described with reference to FIGS. 3 and 4, and the calibration value calculation device according to the first embodiment will be described.
 図3に示す如く、レーダ校正装置200は、校正用データ取得部11、校正値算出部12、校正値出力部13及び校正処理部14を含むものである。校正値算出部12は、第1校正値算出部21及び第2校正値算出部22を含むものである。校正用データ取得部11、校正値算出部12及び校正値出力部13により、校正値算出装置300の要部が構成されている。 As shown in FIG. 3, the radar calibration device 200 includes a calibration data acquisition unit 11, a calibration value calculation unit 12, a calibration value output unit 13, and a calibration processing unit 14. The calibration value calculation unit 12 includes a first calibration value calculation unit 21 and a second calibration value calculation unit 22. The calibration data acquisition unit 11, the calibration value calculation unit 12, and the calibration value output unit 13 constitute a main part of the calibration value calculation device 300.
 図4に示す如く、第1校正値算出部21は、位置-角度データテーブルDT及びサブアレー内校正値算出部31を含むものである。第2校正値算出部22は、位置-角度データテーブルDT、ビーム形成処理部41及びサブアレー間校正値算出部42を含むものである。 As shown in FIG. 4, the first calibration value calculation unit 21 includes the position-angle data table DT and the calibration value calculation unit 31 in the sub-array. The second calibration value calculation unit 22 includes a position-angle data table DT, a beam formation processing unit 41, and a calibration value calculation unit 42 between sub-arrays.
 なお、第1校正値算出部21又は第2校正値算出部22のうちのいずれか一方に位置-角度データテーブルDTが含まれており、かつ、かかる位置-角度データテーブルDTを第1校正値算出部21及び第2校正値算出部22が共用するものであっても良い。 The position-angle data table DT is included in either the first calibration value calculation unit 21 or the second calibration value calculation unit 22, and the position-angle data table DT is used as the first calibration value. It may be shared by the calculation unit 21 and the second calibration value calculation unit 22.
 校正用データ取得部11は、記憶装置6に記憶されている校正用データを取得するものである。校正用データ取得部11は、当該取得された校正用データをサブアレー内校正値算出部31及びビーム形成処理部41に出力するものである。 The calibration data acquisition unit 11 acquires the calibration data stored in the storage device 6. The calibration data acquisition unit 11 outputs the acquired calibration data to the calibration value calculation unit 31 in the sub-array and the beam formation processing unit 41.
 サブアレー内校正値算出部31は、校正用データ取得部11により出力された校正用データを取得するものである。サブアレー内校正値算出部31は、位置-角度データテーブルDTを用いて、当該取得された校正用データに含まれる個々の信号源位置データが示す位置Pに対応する入射角θを算出するものである。 The calibration value calculation unit 31 in the sub-array acquires the calibration data output by the calibration data acquisition unit 11. The calibration value calculation unit 31 in the sub-array uses the position-angle data table DT to calculate the incident angle θ corresponding to the position P indicated by the individual signal source position data included in the acquired calibration data. be.
 サブアレー内校正値算出部31は、上記取得された校正用データに含まれる校正用信号データ及び上記算出された入射角θを用いて、サブアレー内校正値Hを算出するものである。サブアレー内校正値Hの算出方法については後述する。サブアレー内校正値算出部31は、当該算出されたサブアレー内校正値Hを校正値出力部13及びビーム形成処理部41に出力するものである。 The calibration value calculation unit 31 in the sub-array calculates the calibration value H in the sub-array using the calibration signal data included in the acquired calibration data and the calculated incident angle θ. The method of calculating the calibration value H in the sub-array will be described later. The calibration value calculation unit 31 in the sub-array outputs the calculated calibration value H in the sub-array to the calibration value output unit 13 and the beam forming processing unit 41.
 ビーム形成処理部41は、校正用データ取得部11により出力された校正用データを取得するとともに、サブアレー内校正値算出部31により出力されたサブアレー内校正値Hを取得するものである。ビーム形成処理部41は、位置-角度データテーブルDTを用いて、当該取得された校正用データに含まれる個々の信号源位置データが示す位置Pに対応する入射角θを算出するものである。また、ビーム形成処理部41は、当該取得されたたサブアレー内校正値Hを用いて、当該取得された校正用データに含まれる校正用信号データを補正するものである。 The beam forming processing unit 41 acquires the calibration data output by the calibration data acquisition unit 11, and also acquires the calibration value H in the sub-array output by the calibration value calculation unit 31 in the sub-array. The beam forming processing unit 41 uses the position-angle data table DT to calculate the incident angle θ corresponding to the position P indicated by the individual signal source position data included in the acquired calibration data. Further, the beam forming processing unit 41 uses the acquired calibration value H in the sub-array to correct the calibration signal data included in the acquired calibration data.
 ビーム形成処理部41は、上記補正された校正用信号データ及び上記算出された入射角θを用いて、個々のサブアレー2に対応するデジタルビームフォーミング処理(以下「第1DBF処理」という。)を実行するものである。これにより、個々のサブアレー2により出力されるビームに対応するデータが生成される。ビーム形成処理部41は、当該生成されたデータをサブアレー間校正値算出部42に出力するものである。 The beamforming processing unit 41 executes digital beamforming processing (hereinafter referred to as “first DBF processing”) corresponding to each sub-array 2 by using the corrected calibration signal data and the calculated incident angle θ. To do. As a result, data corresponding to the beam output by each sub-array 2 is generated. The beam forming processing unit 41 outputs the generated data to the calibration value calculation unit 42 between sub-arrays.
 サブアレー間校正値算出部42は、ビーム形成処理部41により出力されたデータを取得するものである。サブアレー間校正値算出部42は、当該取得されたデータを用いて、サブアレー間校正値Gを算出するものである。サブアレー間校正値Gの算出方法については後述する。サブアレー間校正値算出部42は、当該算出されたサブアレー間校正値Gを校正値出力部13に出力するものである。 The calibration value calculation unit 42 between sub-arrays acquires the data output by the beam formation processing unit 41. The inter-sub array calibration value calculation unit 42 calculates the inter-sub array calibration value G using the acquired data. The method of calculating the calibration value G between sub-arrays will be described later. The inter-sub array calibration value calculation unit 42 outputs the calculated inter-sub array calibration value G to the calibration value output unit 13.
 校正値出力部13は、サブアレー内校正値算出部31により出力されたサブアレー内校正値Hを取得するとともに、サブアレー間校正値算出部42により出力されたサブアレー間校正値Gを取得するものである。校正値出力部13は、当該取得された校正値H,Gを校正値算出装置300外に出力するものである。すなわち、校正値出力部13は、当該取得された校正値H,Gを校正処理部14に出力するものである。 The calibration value output unit 13 acquires the calibration value H in the sub-array output by the calibration value calculation unit 31 in the sub-array, and also acquires the calibration value G in the sub-array output by the calibration value calculation unit 42 between sub-arrays. .. The calibration value output unit 13 outputs the acquired calibration values H and G to the outside of the calibration value calculation device 300. That is, the calibration value output unit 13 outputs the acquired calibration values H and G to the calibration processing unit 14.
 校正処理部14は、校正値出力部13により出力された校正値H,Gを取得するものである。校正処理部14は、当該取得された校正値H,Gを用いて、アレーアンテナ1を用いるレーダ(不図示)の校正処理を実行するものである。すなわち、校正処理部14は、分散レーダの校正処理を実行するものである。かかる校正処理には、公知の種々の技術を用いることができる。これらの技術についての詳細な説明は省略する。 The calibration processing unit 14 acquires the calibration values H and G output by the calibration value output unit 13. The calibration processing unit 14 executes the calibration processing of the radar (not shown) using the array antenna 1 by using the acquired calibration values H and G. That is, the calibration processing unit 14 executes the calibration processing of the distributed radar. Various known techniques can be used for such calibration processing. Detailed description of these techniques will be omitted.
 このようにして、レーダ校正装置200の要部が構成されている。 In this way, the main part of the radar calibration device 200 is configured.
 以下、校正用データ取得部11が有する機能に「F1」の符号を用いることがある。また、第1校正値算出部21が有する機能に「F2_1」の符号を用いることがある。また、第2校正値算出部22が有する機能に「F2_2」の符号を用いることがある。また、校正値出力部13が有する機能に「F3」の符号を用いることがある。また、校正処理部14が有する機能に「F4」の符号を用いることがある。 Hereinafter, the code of "F1" may be used for the function of the calibration data acquisition unit 11. In addition, the code "F2_1" may be used for the function of the first calibration value calculation unit 21. In addition, the code "F2_2" may be used for the function of the second calibration value calculation unit 22. Further, the reference numeral "F3" may be used for the function of the calibration value output unit 13. Further, the reference numeral "F4" may be used for the function of the calibration processing unit 14.
 以下、校正用データ取得部11により実行される処理を総称して「校正用データ取得処理」ということがある。また、第1校正値算出部21により実行される処理を総称して「第1校正値算出処理」ということがある。また、第2校正値算出部22により実行される処理を総称して「第2校正値算出処理」ということがある。また、校正値出力部13により実行される処理を総称して「校正値出力処理」ということがある。また、校正値算出装置300により実行される処理を総称して「校正値算出処理」ということがある。また、校正処理部14により実行される処理を総称して「レーダ校正処理」ということがある。 Hereinafter, the processes executed by the calibration data acquisition unit 11 may be collectively referred to as "calibration data acquisition process". Further, the processes executed by the first calibration value calculation unit 21 may be collectively referred to as "first calibration value calculation process". Further, the processes executed by the second calibration value calculation unit 22 may be collectively referred to as "second calibration value calculation process". Further, the processes executed by the calibration value output unit 13 may be collectively referred to as "calibration value output process". Further, the processes executed by the calibration value calculation device 300 may be collectively referred to as "calibration value calculation process". Further, the processing executed by the calibration processing unit 14 may be collectively referred to as "radar calibration processing".
 次に、図5~図7を参照して、レーダ校正装置200の要部のハードウェア構成について説明する。 Next, the hardware configuration of the main part of the radar calibration device 200 will be described with reference to FIGS. 5 to 7.
 図5に示す如く、レーダ校正装置200は、プロセッサ51及びメモリ52を有している。メモリ52には、複数個の機能F1,F2_1,F2_2,F3,F4に対応するプログラムが記憶されている。プロセッサ51は、メモリ52に記憶されているプログラムを読み出して実行する。これにより、複数個の機能F1,F2_1,F2_2,F3,F4が実現される。 As shown in FIG. 5, the radar calibration device 200 has a processor 51 and a memory 52. The memory 52 stores programs corresponding to a plurality of functions F1, F2_1, F2_2, F3, and F4. The processor 51 reads and executes the program stored in the memory 52. As a result, a plurality of functions F1, F2_1, F2_2, F3, and F4 are realized.
 または、図6に示す如く、レーダ校正装置200は、処理回路53を有している。処理回路53は、複数個の機能F1,F2_1,F2_2,F3,F4に対応する処理を実行する。これにより、複数個の機能F1,F2_1,F2_2,F3,F4が実現される。 Alternatively, as shown in FIG. 6, the radar calibration device 200 has a processing circuit 53. The processing circuit 53 executes processing corresponding to a plurality of functions F1, F2_1, F2_2, F3, and F4. As a result, a plurality of functions F1, F2_1, F2_2, F3, and F4 are realized.
 または、図7に示す如く、レーダ校正装置200は、プロセッサ51、メモリ52及び処理回路53を有している。メモリ52には、複数個の機能F1,F2_1,F2_2,F3,F4のうちの一部の機能に対応するプログラムが記憶されている。プロセッサ51は、メモリ52に記憶されているプログラムを読み出して実行する。これにより、かかる一部の機能が実現される。また、処理回路53は、複数個の機能F1,F2_1,F2_2,F3,F4のうちの残余の機能に対応する処理を実行する。これにより、かかる残余の機能が実現される。 Alternatively, as shown in FIG. 7, the radar calibration device 200 includes a processor 51, a memory 52, and a processing circuit 53. The memory 52 stores programs corresponding to some of the plurality of functions F1, F2_1, F2_2, F3, and F4. The processor 51 reads and executes the program stored in the memory 52. As a result, some of these functions are realized. Further, the processing circuit 53 executes processing corresponding to the remaining functions of the plurality of functions F1, F2_1, F2_2, F3, and F4. As a result, such a residual function is realized.
 プロセッサ51は、1個以上のプロセッサにより構成されている。個々のプロセッサは、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ、マイクロコントローラ又はDSP(Digital Signal Processor)を用いたものである。 The processor 51 is composed of one or more processors. As each processor, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microcontroller, or a DSP (Digital Signal Processor) is used.
 メモリ52は、1個以上の不揮発性メモリにより構成されている。または、メモリ52は、1個以上の不揮発性メモリ及び1個以上の揮発性メモリにより構成されている。すなわち、メモリ52は、1個以上のメモリにより構成されている。個々のメモリは、例えば、半導体メモリ、磁気ディスク、光ディスク、光磁気ディスク、磁気テープ又は磁気ドラムを用いたものである。より具体的には、個々の揮発性メモリは、例えば、RAM(Random Access Memory)を用いたものである。また、個々の不揮発性メモリは、例えば、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、ソリッドステートドライブ、ハードディスクドライブ、フレキシブルディスク、コンパクトディスク、DVD(Digital Versatile Disc)、ブルーレイディスク又はミニディスクを用いたものである。 The memory 52 is composed of one or more non-volatile memories. Alternatively, the memory 52 is composed of one or more non-volatile memories and one or more volatile memories. That is, the memory 52 is composed of one or more memories. The individual memory uses, for example, a semiconductor memory, a magnetic disk, an optical disk, a magneto-optical disk, a magnetic tape, or a magnetic drum. More specifically, each volatile memory uses, for example, a RAM (Random Access Memory). In addition, individual non-volatile memories include, for example, ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmory), EEPROM (Electrically Erasable Programmory), flexible disk drive A compact disc, a DVD (Digital Versaille Disc), a Blu-ray disc, or a mini disc is used.
 処理回路53は、1個以上のデジタル回路により構成されている。または、処理回路53は、1個以上のデジタル回路及び1個以上のアナログ回路により構成されている。すなわち、処理回路53は、1個以上の処理回路により構成されている。個々の処理回路は、例えば、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)、SoC(System on a Chip)又はシステムLSI(Large Scale Integration)を用いたものである。 The processing circuit 53 is composed of one or more digital circuits. Alternatively, the processing circuit 53 is composed of one or more digital circuits and one or more analog circuits. That is, the processing circuit 53 is composed of one or more processing circuits. The individual processing circuits are, for example, ASIC (Application Special Integrated Circuit), PLD (Programmable Logic Device), FPGA (Field Programmable Gate Array), FPGA (Field Program Is.
 ここで、プロセッサ51が複数個のプロセッサにより構成されているとき、複数個の機能F1,F2_1,F2_2,F3,F4と複数個のプロセッサとの対応関係は任意である。すなわち、複数個のプロセッサの各々は、複数個の機能F1,F2_1,F2_2,F3,F4のうちの対応する1個以上の機能に対応するプログラムを読み出して実行するものであっても良い。プロセッサ51は、個々の機能F1,F2_1,F2_2,F3,F4に対応する専用のプロセッサを含むものであっても良い。 Here, when the processor 51 is composed of a plurality of processors, the correspondence between the plurality of functions F1, F2_1, F2_2, F3, F4 and the plurality of processors is arbitrary. That is, each of the plurality of processors may read and execute a program corresponding to one or more corresponding functions among the plurality of functions F1, F2_1, F2_2, F3, and F4. The processor 51 may include a dedicated processor corresponding to each function F1, F2_1, F2_2, F3, F4.
 また、メモリ52が複数個のメモリにより構成されているとき、複数個の機能F1,F2_1,F2_2,F3,F4と複数個のメモリとの対応関係は任意である。すなわち、複数個のメモリの各々は、複数個の機能F1,F2_1,F2_2,F3,F4のうちの対応する1個以上の機能に対応するプログラムを記憶するものであっても良い。メモリ52は、個々の機能F1,F2_1,F2_2,F3,F4に対応する専用のメモリを含むものであっても良い。 Further, when the memory 52 is composed of a plurality of memories, the correspondence between the plurality of functions F1, F2_1, F2_2, F3, F4 and the plurality of memories is arbitrary. That is, each of the plurality of memories may store a program corresponding to one or more of the plurality of functions F1, F2_1, F2_2, F3, and F4. The memory 52 may include a dedicated memory corresponding to each function F1, F2_1, F2_2, F3, F4.
 また、処理回路53が複数個の処理回路により構成されているとき、複数個の機能F1,F2_1,F2_2,F3,F4と複数個の処理回路との対応関係は任意である。すなわち、複数個の処理回路の各々は、複数個の機能F1,F2_1,F2_2,F3,F4のうちの対応する1個以上の機能に対応する処理を実行するものであっても良い。処理回路53は、個々の機能F1,F2_1,F2_2,F3,F4に対応する専用の処理回路を含むものであっても良い。 Further, when the processing circuit 53 is composed of a plurality of processing circuits, the correspondence between the plurality of functions F1, F2_1, F2_2, F3, F4 and the plurality of processing circuits is arbitrary. That is, each of the plurality of processing circuits may execute processing corresponding to one or more corresponding functions among the plurality of functions F1, F2_1, F2_2, F3, and F4. The processing circuit 53 may include a dedicated processing circuit corresponding to each function F1, F2_1, F2_2, F3, F4.
 次に、図8に示すフローチャートを参照して、校正値算出装置300の動作について説明する。 Next, the operation of the calibration value calculation device 300 will be described with reference to the flowchart shown in FIG.
 まず、校正用データ取得部11が校正用データ取得処理を実行する(ステップST1)。これにより、記憶装置6に記憶されている校正用データが取得される。 First, the calibration data acquisition unit 11 executes the calibration data acquisition process (step ST1). As a result, the calibration data stored in the storage device 6 is acquired.
 次いで、第1校正値算出部21が第1校正値算出処理を実行する(ステップST2_1)。これにより、サブアレー内校正値Hが算出される。サブアレー内校正値Hの算出方法については後述する。 Next, the first calibration value calculation unit 21 executes the first calibration value calculation process (step ST2_1). As a result, the calibration value H in the sub array is calculated. The method of calculating the calibration value H in the sub-array will be described later.
 次いで、第2校正値算出部22が第2校正値算出処理を実行する(ステップST2_2)。これにより、サブアレー間校正値Gが算出される。サブアレー間校正値Gの算出方法については後述する。 Next, the second calibration value calculation unit 22 executes the second calibration value calculation process (step ST2_2). As a result, the calibration value G between sub-arrays is calculated. The method of calculating the calibration value G between sub-arrays will be described later.
 次いで、校正値出力部13が校正値出力処理を実行する(ステップST3)。これにより、ステップST2_1にて算出されたサブアレー内校正値H及びステップST2_2にて算出されたサブアレー間校正値Gが校正値算出装置300外に出力される。 Next, the calibration value output unit 13 executes the calibration value output process (step ST3). As a result, the calibration value H in the sub-array calculated in step ST2_1 and the calibration value G between sub-arrays calculated in step ST2_1 are output to the outside of the calibration value calculation device 300.
 次に、図9に示すフローチャートを参照して、レーダ校正装置200の動作について説明する。 Next, the operation of the radar calibration device 200 will be described with reference to the flowchart shown in FIG.
 まず、校正値算出装置300が校正値算出処理を実行する(ステップST11)。これにより、図8に示すステップST1,ST2_1,ST2_2,ST3の処理が実行される。すなわち、サブアレー内校正値H及びサブアレー間校正値Gが算出されて、当該算出された校正値H,Gが出力される。 First, the calibration value calculation device 300 executes the calibration value calculation process (step ST11). As a result, the processes of steps ST1, ST2_1, ST2_2, and ST3 shown in FIG. 8 are executed. That is, the calibration value H in the sub-array and the calibration value G between sub-arrays are calculated, and the calculated calibration values H and G are output.
 次いで、校正処理部14がレーダ校正処理を実行する(ステップST4)。レーダ校正処理には、ステップST11にて出力された校正値H,Gが用いられる。 Next, the calibration processing unit 14 executes the radar calibration processing (step ST4). The calibration values H and G output in step ST11 are used for the radar calibration process.
 次に、サブアレー内校正値Hの算出方法について説明する。 Next, the calculation method of the calibration value H in the sub-array will be described.
 以下、任意の数式における任意の要素が文章に記載されるとき、当該数式における当該要素の書体がボールド体であるか否かにかかわらず、当該要素が非ボールド体にて記載される。また、当該数式における当該要素の書体がイタリック体であるか否かにかかわらず、当該要素が非イタリック体にて記載される。これは、主に電子出願の要請によるものであり、個々の要素の書体については数式における書体が正しいものである。 Hereinafter, when any element in an arbitrary formula is described in a sentence, the element is described in a non-bold type regardless of whether the typeface of the element in the formula is bold or not. In addition, the element is described in non-italic type regardless of whether the typeface of the element in the mathematical formula is italic. This is mainly due to the request for electronic filing, and the typeface in the mathematical formula is correct for the typeface of each element.
 いま、アレーアンテナ1における誤差が存在しているものとする。また、記憶装置6に記憶されている校正用信号データについて、対応する時間サンプル数がNsであり、かつ、対応する入射波の数がKであるものとする。このとき、校正用データ取得部11により取得される校正用データについて、L×Nsの入力データベクトルzは、以下の式(1)~式(3)により表される。 It is assumed that there is an error in the array antenna 1 now. Further, it is assumed that the corresponding time sample number is Ns and the corresponding incident wave number is K for the calibration signal data stored in the storage device 6. At this time, with respect to the calibration data acquired by the calibration data acquisition unit 11, the input data vector z of L × Ns is represented by the following equations (1) to (3).

Figure JPOXMLDOC01-appb-I000001

Figure JPOXMLDOC01-appb-I000001

Figure JPOXMLDOC01-appb-I000002

Figure JPOXMLDOC01-appb-I000002

Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000003
 ここで、ARxは、K個の受信アレーステアリングベクトルaRxを列方向に並べてなるL×Kの行列である。個々の受信アレーステアリングベクトルaRxは、到来波の方向(すなわち入射角θ)を示す情報を含むものである。Sは、K×Nsの信号行列であり、到来波の数(すなわち入射波の数k)及び時間に応じて変動する情報を含むものである。Cは、誤差行列であり、アレーアンテナ1における誤差を示すものである。 Here, ARx is a matrix of L × K in which K reception array steering vectors a Rx are arranged in the column direction. The individual received array steering vector a Rx contains information indicating the direction of the incoming wave (that is, the incident angle θ). S is a signal matrix of K × Ns, and includes information that varies depending on the number of incoming waves (that is, the number k of incident waves) and time. C is an error matrix and indicates an error in the array antenna 1.
 このように、アレーアンテナ1における誤差が存在しているとき、受信データ(すなわち校正用データ取得部11により取得される校正用データ)は、ステアリングベクトルに誤差行列が乗算された形式を有するものとなる。 As described above, when an error exists in the array antenna 1, the received data (that is, the calibration data acquired by the calibration data acquisition unit 11) has a form in which the steering vector is multiplied by the error matrix. Become.
 ここで、第一に、上記のとおり、M個のサブアレー2は、同一の素子配置形状を有している。第二に、簡単のため、入射波の数Kが1であるものとする。第三に、上記のとおり、M個のサブアレー2は、分散配置されている。すなわち、M個のサブアレー2のうちの各2個のサブアレー2間の距離は、十分に大きい値に設定されている。すると、上記式(2)は、以下の式(4)~式(6)のように書き直される。 Here, first, as described above, the M sub-arrays 2 have the same element arrangement shape. Secondly, for the sake of simplicity, it is assumed that the number K of the incident waves is 1. Third, as described above, the M sub-arrays 2 are distributed. That is, the distance between each of the two sub-arrays 2 of the M sub-arrays 2 is set to a sufficiently large value. Then, the above equation (2) is rewritten as the following equations (4) to (6).

Figure JPOXMLDOC01-appb-I000004

Figure JPOXMLDOC01-appb-I000004

Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006

Figure JPOXMLDOC01-appb-I000006
 ここで、Gは、LM×LMの行列であり、サブアレー間校正値を示している。Hは、L×Lの行列であり、サブアレー内校正値を示している。asub,m(θ)は、M個のサブアレー2のうちの第mのサブアレー2に対応するステアリングベクトルを示している。 Here, G is a matrix of LM × LM, and indicates a calibration value between sub-arrays. H is an L × L matrix and indicates a calibration value in the sub-array. a sub, m (θ) indicates a steering vector corresponding to the mth sub-array 2 of the M sub-arrays 2.
 サブアレー内校正値Hは、例えば、以下の参照文献1に記載された方法を用いて算出される。かかる方法を用いることにより、校正用信号データ及び対応する既知の位置Pを示す信号源位置データに基づき、サブアレー内校正値Hを算出することができる。 The calibration value H in the sub-array is calculated by using, for example, the method described in Reference 1 below. By using such a method, the calibration value H in the sub-array can be calculated based on the calibration signal data and the signal source position data indicating the corresponding known position P.
[参照文献1]
新井隆宏、原六蔵、山田寛喜、山口芳雄、「既知の波源を用いたスーパレゾリューションアレー校正法について」、電子情報通信学会論文誌B、Vol.J86-B、No.3、pp.527-535、2003年3月。
[Reference 1]
Takahiro Arai, Rokuzo Hara, Hiroki Yamada, Yoshio Yamaguchi, "On the Super Resolution Array Proofreading Method Using Known Wave Sources", IEICE Transactions B, Vol. J86-B, No. 3, pp. 527-535, March 2003.
 すなわち、参照文献1の記載によれば、以下の式(7)~式(10)に示す方程式を解くことにより、校正フィルタが得られる。 That is, according to the description in Reference Document 1, a calibration filter can be obtained by solving the equations shown in the following equations (7) to (10).

Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008

Figure JPOXMLDOC01-appb-I000008

Figure JPOXMLDOC01-appb-I000009

Figure JPOXMLDOC01-appb-I000009

Figure JPOXMLDOC01-appb-I000010

Figure JPOXMLDOC01-appb-I000010
 ここで、E (q)は、校正用信号データにおけるq番目のデータを用いて計算された雑音固有ベクトルを列要素とする行列である。θは、校正用信号データにおけるq番目のデータに対応する入射方向(すなわち入射角θ)を示している。E (q)Hとa(θ)間の演算子は、クロネッカ積演算子である。は、複素共役転置を示している。は、転置を示している。 Here, E N (q) is the calculated noise eigenvectors using q-th data in the calibration signal data matrix to the column element. θ q indicates the incident direction (that is, the incident angle θ) corresponding to the qth data in the calibration signal data. E N (q) H and a (θ q) operator between is a Kronecker product operator. H indicates a complex conjugate transpose. T indicates transposition.
 かかる方程式は、校正値を表す行列における第1行第1列の値を1に固定することにより、最小二乗法を用いて解くことができる。すなわち、以下の式(11)~式(12)に示すように解くことができる。 Such an equation can be solved using the method of least squares by fixing the value in the first row and first column of the matrix representing the calibration value to 1. That is, it can be solved as shown in the following equations (11) to (12).

Figure JPOXMLDOC01-appb-I000011

Figure JPOXMLDOC01-appb-I000011

Figure JPOXMLDOC01-appb-I000012

Figure JPOXMLDOC01-appb-I000012
 このようにして、サブアレー内校正値Hが算出される。すなわち、上記のとおり低減されたデータ取得回数にて収集された校正用データを用いて、サブアレー内校正値Hを算出することができる。 In this way, the calibration value H in the sub array is calculated. That is, the calibration value H in the sub-array can be calculated using the calibration data collected at the reduced number of data acquisitions as described above.
 なお、校正用信号データに複数波(すなわちK波)に対応するデータが含まれるとき、第1校正値算出部21は、当該複数波に対応するデータを各1波に対応するデータに分離するものであっても良い。第1校正値算出部21は、当該分離されたデータを用いて、上記の方法によりサブアレー内校正値Hを算出するものであっても良い。これにより、K=1である場合はもちろんのこと、K≧2である場合も上記の方法によりサブアレー内校正値Hを算出することができる。かかるデータの分離には、ドップラ周波数又は独立成分分析(Independent Component Analysis,ICA)などが用いられる。 When the calibration signal data includes data corresponding to a plurality of waves (that is, K wave), the first calibration value calculation unit 21 separates the data corresponding to the plurality of waves into the data corresponding to each one wave. It may be a thing. The first calibration value calculation unit 21 may calculate the calibration value H in the sub-array by the above method using the separated data. As a result, the calibration value H in the sub-array can be calculated by the above method not only when K = 1 but also when K ≧ 2. For the separation of such data, Doppler frequency or independent component analysis (Independent Component Analysis, ICA) or the like is used.
 また、サブアレー内校正値Hの算出方法は、上記の具体例に限定されるものではない。サブアレー内校正値Hの算出には、公知の種々の技術を用いることができる。これらの技術についての詳細な説明は省略する。 Further, the method of calculating the calibration value H in the sub-array is not limited to the above specific example. Various known techniques can be used to calculate the calibration value H in the sub-array. Detailed description of these techniques will be omitted.
 次に、サブアレー間校正値Gの算出方法について説明する。 Next, the method of calculating the calibration value G between sub-arrays will be described.
 サブアレー内校正値算出部31によりサブアレー内校正値Hが算出されると、サブアレー間校正値算出部42は、当該算出されたサブアレー内校正値Hが反映された受信データ(すなわち第1DBF処理により生成されたデータ)を用いてサブアレー間校正値Gを算出する。 When the calibration value H in the sub-array is calculated by the calibration value calculation unit 31 in the sub-array, the calibration value calculation unit 42 between sub-arrays generates the received data (that is, generated by the first DBF process) reflecting the calculated calibration value H in the sub-array. The calibration value G between sub-arrays is calculated using the obtained data).
 ここで、上記のとおり、M個のサブアレー2のうちの各2個のサブアレー2間の距離は、十分に大きい値に設定されている。このため、サブアレー間校正値Gの算出においては、素子間相互結合等を無視することができる。したがって、サブアレー間校正値Gにおける個々の校正値gを算出するにあたり、複数個の入射角θに対応する校正用データに対応するデータを用いることは不要である。個々の校正値gは、複数個の入射角θのうちの選択された入射角θに対応する校正用信号データに対応するデータを用いて、以下の式(13)により算出される。 Here, as described above, the distance between each of the two sub-arrays 2 of the M sub-arrays 2 is set to a sufficiently large value. Therefore, in the calculation of the calibration value G between sub-arrays, mutual coupling between elements can be ignored. Therefore, in calculating the individual calibration values g m in sub-array between calibration value G, it is not necessary to use the data corresponding to the calibration data corresponding to a plurality of incident angle theta. Individual calibration value g m, using the data corresponding to the calibration signal data corresponding to the selected angle of incidence the theta of a plurality of incident angle theta, is calculated by the following equation (13).

Figure JPOXMLDOC01-appb-I000013

Figure JPOXMLDOC01-appb-I000013
 ここで、z(θ)は、選択された入射角θに対応する第mのサブアレー2に対応する校正用信号データに対応するデータを示している。なお、z(θ)は、ネットワークアナライザ等の計測器を用いて取得されたものであっても良い。また、z(θ)は、対応する校正用信号データにFFT(Fast Fourier Transform)又はパルス圧縮などの積分処理を実行することにより得られたものであっても良い。 Here, z m (θ) indicates the data corresponding to the calibration signal data corresponding to the mth sub-array 2 corresponding to the selected incident angle θ. In addition, z m (θ) may be acquired by using a measuring instrument such as a network analyzer. Further, z m (θ) may be obtained by executing an integration process such as FFT (Fast Fourier Transform) or pulse compression on the corresponding calibration signal data.
 このようにして、サブアレー間校正値Gが算出される。 In this way, the calibration value G between sub-arrays is calculated.
 なお、サブアレー間校正値Gにおける個々の校正値gは、上記式(13)に代えて以下の式(14)により算出されるものであっても良い。すなわち、サブアレー間校正値算出部42は、互いに異なる入射角θに対応する複数個のgを算出して、当該算出された複数個のgを平滑化することにより個々の校正値gを算出するものであっても良い。 Incidentally, each of the calibration values g m in sub-array between calibration value G may be one that is calculated by the equation (14) below instead of the equation (13). That is, the sub-array calibration value calculation unit 42 calculates a plurality of g m corresponding to different incident angles θ, and smoothes the calculated plurality of g m to obtain individual calibration values g m. May be calculated.

Figure JPOXMLDOC01-appb-I000014

Figure JPOXMLDOC01-appb-I000014
 また、サブアレー間誤差が非独立なものである場合(すなわちサブアレー間誤差が素子間相互結合等によるものである場合)、第2校正値算出部22は、以下のようにしてサブアレー間校正値Gを算出するものであっても良い。すなわち、第2校正値算出部22は、校正用信号データに対して、近傍界と遠方界とを変換する処理を実行する。第2校正値算出部22は、かかる変換後のデータのうちの互いに異なる複数個の入射角θに対応するデータを用いて、参照文献1に記載された方法と同様の方法により(すなわちサブアレー内校正値Hの算出方法と同様の算出方法により)サブアレー間校正値Gを算出する。 Further, when the error between sub-arrays is non-independent (that is, when the error between sub-arrays is due to mutual coupling between elements or the like), the second calibration value calculation unit 22 performs the calibration value G between sub-arrays as follows. May be calculated. That is, the second calibration value calculation unit 22 executes a process of converting the near field and the far field with respect to the calibration signal data. The second calibration value calculation unit 22 uses the data corresponding to a plurality of different incident angles θ among the converted data by the same method as that described in Reference Document 1 (that is, in the sub-array). The calibration value G between sub-arrays is calculated (by the same calculation method as the calculation method of the calibration value H).
 また、校正用信号源4が領域A内を移動するものであるとき(すなわち校正用信号源4が複数個の位置Pに順次配置されるものであるとき)、第2校正値算出部22は、個々の位置Pと個々のサブアレー2との位置関係に係る誤差(以下「位置誤差」という。)を推定するものであっても良い。換言すれば、第2校正値算出部22は、各2個のサブアレー2間における位置誤差(すなわち個々のサブアレー2に対応する位置誤差)を推定するものであっても良い。第2校正値算出部22は、当該推定された位置誤差に応じて補正されたサブアレー間校正値Gを算出するものであっても良い。かかる位置誤差の推定には、例えば、以下の参照文献2に記載された技術が用いられる。 Further, when the calibration signal source 4 moves in the area A (that is, when the calibration signal source 4 is sequentially arranged at a plurality of positions P), the second calibration value calculation unit 22 , An error related to the positional relationship between each position P and each sub-array 2 (hereinafter referred to as “position error”) may be estimated. In other words, the second calibration value calculation unit 22 may estimate the position error between each of the two sub-arrays 2 (that is, the position error corresponding to each sub-array 2). The second calibration value calculation unit 22 may calculate the calibration value G between sub-arrays corrected according to the estimated position error. For the estimation of such a position error, for example, the technique described in Reference Document 2 below is used.
[参照文献2]
国際公開第2016/067321号
[Reference 2]
International Publication No. 2016/067321
 このほか、サブアレー間校正値Gの算出には、公知の種々の技術を用いることができる。これらの技術についての詳細な説明は省略する。 In addition, various known techniques can be used to calculate the calibration value G between sub-arrays. Detailed description of these techniques will be omitted.
 次に、校正用データ収集システム100の変形例について説明する。 Next, a modified example of the calibration data collection system 100 will be described.
 アレーアンテナ1は、M個のサブアレー2に加えて、1個以上の他のサブアレーを含むものであっても良い。1個以上の他のサブアレーの各々は、個々のサブアレー2における素子配置形状と異なる素子配置形状を有するものであっても良い。すなわち、アレーアンテナ1においては、全てのサブアレーが同一の素子配置形状を有するものであっても良く、又は一部のサブアレーのみが同一の素子配置形状を有するものであっても良い。 The array antenna 1 may include one or more other sub-arrays in addition to the M sub-arrays 2. Each of the one or more other sub-arrays may have an element arrangement shape different from the element arrangement shape in each sub-array 2. That is, in the array antenna 1, all the sub-arrays may have the same element arrangement shape, or only some of the sub-arrays may have the same element arrangement shape.
 以上のように、実施の形態1に係る校正値算出装置300は、第1アレーアンテナ1に含まれる個々のサブアレー2に含まれる個々のアンテナ素子3により受信された校正用信号に対応する校正用データを取得する校正用データ取得部11と、校正用データを用いて、個々のサブアレー2におけるサブアレー内誤差に対応する第1校正値(サブアレー内校正値H)及び第1アレーアンテナ1におけるサブアレー間誤差に対応する第2校正値(サブアレー間校正値G)を含む校正値H,Gを算出する校正値算出部12と、校正値H,Gを出力する校正値出力部13と、を備え、校正用データは、校正用信号源4が所定の領域Aに配置された状態にて個々のアンテナ素子3により受信された校正用信号に対応するものであり、領域Aは、個々のサブアレー2に対する遠方界に含まれるものであり、かつ、第1アレーアンテナ1に対する近傍界に含まれるものである。これにより、サブアレー2の個数Mに応じて低減されたデータ取得回数により収集された校正用データを用いて校正値H,Gを算出することができる。 As described above, the calibration value calculation device 300 according to the first embodiment is for calibration corresponding to the calibration signal received by the individual antenna elements 3 included in the individual sub-arrays 2 included in the first array antenna 1. Between the calibration data acquisition unit 11 for acquiring data and the first calibration value (calibration value H in the sub-array) corresponding to the error in the sub-array in each sub-array 2 and the sub-array in the first array antenna 1 using the calibration data. It is provided with a calibration value calculation unit 12 for calculating calibration values H and G including a second calibration value (calibration value G between sub-arrays) corresponding to an error, and a calibration value output unit 13 for outputting calibration values H and G. The calibration data corresponds to the calibration signal received by the individual antenna elements 3 with the calibration signal source 4 arranged in the predetermined area A, and the area A is for each sub-array 2. It is included in the far field and is included in the near field with respect to the first array antenna 1. Thereby, the calibration values H and G can be calculated using the calibration data collected by the number of data acquisitions reduced according to the number M of the sub-array 2.
 また、個々のサブアレー2は、互いに共通する素子配置形状を有し、個々のサブアレー2は、分散配置されている。これにより、式(4)~式(12)を参照して説明した方法を用いてサブアレー内校正値Hを算出することができる。 Further, the individual sub-arrays 2 have an element arrangement shape common to each other, and the individual sub-arrays 2 are arranged in a distributed manner. Thereby, the calibration value H in the sub-array can be calculated by using the methods described with reference to the equations (4) to (12).
 また、校正用データは、校正用信号源4により送信されて、次いで、個々のアンテナ素子3により受信された校正用信号に対応するものである。これにより、校正用信号を送信する機能を有する校正用信号源4を含む校正用データ収集システム100により収取された校正用データを用いて校正値H,Gを算出することができる。 Further, the calibration data corresponds to the calibration signal transmitted by the calibration signal source 4 and then received by the individual antenna elements 3. Thereby, the calibration values H and G can be calculated using the calibration data collected by the calibration data collection system 100 including the calibration signal source 4 having a function of transmitting the calibration signal.
 また、校正値算出部12は、校正用データに複数波(K波)に対応するデータが含まれるとき、複数波(K波)に対応するデータを各1波に対応するデータに分離する。これにより、K=1である場合はもちろんのこと、K≧2である場合も式(4)~式(12)を参照して説明した方法を用いてサブアレー内校正値Hを算出することができる。 Further, when the calibration value calculation unit 12 includes data corresponding to a plurality of waves (K waves), the calibration value calculation unit 12 separates the data corresponding to the plurality of waves (K waves) into the data corresponding to each one wave. As a result, the calibration value H in the sub-array can be calculated by using the method described with reference to the equations (4) to (12) not only when K = 1 but also when K ≧ 2. can.
 また、校正用信号源4は、領域Aに含まれる複数個の位置Pに順次配置されるものであり、校正用データは、校正用信号源4が複数個の位置Pの各々に配置された状態にて個々のアンテナ素子3により受信された校正用信号に対応するものである。これにより、領域A内を移動する校正用信号源4を含む校正用データ収集システム100により収取された校正用データを用いて校正値H,Gを算出することができる。 Further, the calibration signal source 4 is sequentially arranged at a plurality of positions P included in the area A, and the calibration data is such that the calibration signal source 4 is arranged at each of the plurality of positions P. It corresponds to the calibration signal received by each antenna element 3 in the state. Thereby, the calibration values H and G can be calculated using the calibration data collected by the calibration data collection system 100 including the calibration signal source 4 moving in the area A.
 また、実施の形態1に係るレーダ校正装置200は、校正値算出装置300と、校正値H,Gを用いて、第1アレーアンテナ1を用いるレーダの校正処理を実行する校正処理部14と、を備える。これにより、分散レーダの校正をすることができる。かかる校正により、かかる分散レーダによる角度分解能を向上することができる。この結果、高精度な測角を実現することができる。 Further, the radar calibration device 200 according to the first embodiment includes a calibration value calculation device 300, a calibration processing unit 14 that executes a radar calibration process using the first array antenna 1 using the calibration values H and G, and a calibration processing unit 14. To be equipped. This makes it possible to calibrate the distributed radar. Such calibration can improve the angular resolution of such distributed radar. As a result, highly accurate angle measurement can be realized.
 また、実施の形態1に係る校正値算出方法は、校正用データ取得部11が、第1アレーアンテナ1に含まれる個々のサブアレー2に含まれる個々のアンテナ素子3により受信された校正用信号に対応する校正用データを取得するステップST1と、校正値算出部12が、校正用データを用いて、個々のサブアレー2におけるサブアレー内誤差に対応する第1校正値(サブアレー内校正値H)及び第1アレーアンテナ1におけるサブアレー間誤差に対応する第2校正値(サブアレー間校正値G)を含む校正値H,Gを算出するステップST2_1,ST2_2と、校正値出力部13が、校正値H,Gを出力するステップST3と、を備え、校正用データは、校正用信号源4が所定の領域Aに配置された状態にて個々のアンテナ素子3により受信された校正用信号に対応するものであり、領域Aは、個々のサブアレー2に対する遠方界に含まれるものであり、かつ、第1アレーアンテナ1に対する近傍界に含まれるものである。これにより、上記のとおり低減されたデータ取得回数により収集された校正用データを用いて校正値H,Gを算出することができる。 Further, in the calibration value calculation method according to the first embodiment, the calibration data acquisition unit 11 uses the calibration signal received by the individual antenna elements 3 included in the individual sub-arrays 2 included in the first array antenna 1 as the calibration signal. Step ST1 to acquire the corresponding calibration data and the calibration value calculation unit 12 use the calibration data to obtain the first calibration value (calibration value H in the sub-array) and the first calibration value corresponding to the error in the sub-array in each sub-array 2. Steps ST2_1 and ST2_2 for calculating calibration values H and G including a second calibration value (calibration value G between sub-arrays) corresponding to an error between sub-arrays in the 1-array antenna 1, and calibration value output units 13 perform calibration values H and G. The calibration data includes the step ST3 for outputting the above, and the calibration data corresponds to the calibration signal received by the individual antenna elements 3 with the calibration signal source 4 arranged in the predetermined area A. The region A is included in the far field with respect to each sub-array 2 and is included in the near field with respect to the first array antenna 1. Thereby, the calibration values H and G can be calculated using the calibration data collected by the reduced number of data acquisitions as described above.
実施の形態2.
 図10は、実施の形態2に係る校正用データ収集システムの要部を示すブロック図である。図10を参照して、実施の形態2に係る校正用データ収集システムについて説明する。なお、図10において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。
Embodiment 2.
FIG. 10 is a block diagram showing a main part of the calibration data collection system according to the second embodiment. The calibration data collection system according to the second embodiment will be described with reference to FIG. In FIG. 10, the same blocks as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
 図10に示す如く、校正用データ収集システム100aは、校正用信号源4に代えて校正用信号源4aを含むものである。校正用信号源4aは、導体球又はリフレクタなどの反射物により構成されている。校正用信号源4aは、校正用信号を送信する機能を有しないものである。また、校正用データ収集システム100aは、送信用のアンテナ7を含むものである。 As shown in FIG. 10, the calibration data collection system 100a includes a calibration signal source 4a instead of the calibration signal source 4. The calibration signal source 4a is composed of a reflective object such as a conductor sphere or a reflector. The calibration signal source 4a does not have a function of transmitting a calibration signal. Further, the calibration data collection system 100a includes an antenna 7 for transmission.
 校正用信号源4aが1個の位置P又は複数個の位置Pの各々に配置された状態にて、アンテナ7が校正用信号を送信する。当該送信された校正用信号は、校正用信号源4aにより反射される。当該反射された校正用信号は、個々のサブアレー2に含まれる個々のアンテナ素子3により受信される。 The antenna 7 transmits the calibration signal in a state where the calibration signal source 4a is arranged at one position P or each of the plurality of positions P. The transmitted calibration signal is reflected by the calibration signal source 4a. The reflected calibration signal is received by the individual antenna elements 3 included in the individual sub-arrays 2.
 このように、送信用のアンテナ7を設けることにより、校正用信号を送信する機能を有しない校正用信号源4aを用いて校正用データ収集システム100aを実現することができる。 By providing the transmission antenna 7 in this way, the calibration data collection system 100a can be realized by using the calibration signal source 4a that does not have the function of transmitting the calibration signal.
 なお、アンテナ7は、アレーアンテナ1に含まれるものであっても良い。すなわち、アレーアンテナ1に含まれる(L×M)個のアンテナ素子3のうちの選択されたアンテナ素子3がアンテナ7の機能を果たすものであっても良い。換言すれば、アンテナ7は、当該選択されたアンテナ素子3の機能を果たすものであっても良い。 Note that the antenna 7 may be included in the array antenna 1. That is, the selected antenna element 3 among the (L × M) antenna elements 3 included in the array antenna 1 may perform the function of the antenna 7. In other words, the antenna 7 may perform the function of the selected antenna element 3.
 実施の形態2に係るレーダ校正装置200は、実施の形態1に係るレーダ校正装置200と同様のものである。すなわち、実施の形態2に係る校正値算出装置300は、実施の形態1に係る校正値算出装置300と同様のものである。ただし、実施の形態2に係る校正値算出装置300においては、校正用データ収集システム100aにより収集された校正用データを用いて校正値H,Gが算出される。校正値H,Gの算出方法は、実施の形態1にて説明したものと同様である。 The radar calibration device 200 according to the second embodiment is the same as the radar calibration device 200 according to the first embodiment. That is, the calibration value calculation device 300 according to the second embodiment is the same as the calibration value calculation device 300 according to the first embodiment. However, in the calibration value calculation device 300 according to the second embodiment, the calibration values H and G are calculated using the calibration data collected by the calibration data collection system 100a. The method of calculating the calibration values H and G is the same as that described in the first embodiment.
 以上のように、実施の形態2に係る校正値算出装置300において、校正用データは、送信用のアンテナ7により送信されて、次いで、校正用信号源4aにより反射されて、次いで、個々のアンテナ素子3により受信された校正用信号に対応するものである。これにより、校正用信号を送信する機能を有しない校正用信号源4aを含む校正用データ収集システム100aにより収取された校正用データを用いて校正値H,Gを算出することができる。 As described above, in the calibration value calculation device 300 according to the second embodiment, the calibration data is transmitted by the transmitting antenna 7, then reflected by the calibration signal source 4a, and then the individual antennas. It corresponds to the calibration signal received by the element 3. Thereby, the calibration values H and G can be calculated using the calibration data collected by the calibration data collection system 100a including the calibration signal source 4a which does not have the function of transmitting the calibration signal.
実施の形態3.
 図11は、実施の形態3に係る校正用データ収集システムの要部を示すブロック図である。図11を参照して、実施の形態3に係る校正用データ収集システムについて説明する。なお、図11において、図10に示すブロックと同様のブロックには同一符号を付して説明を省略する。
Embodiment 3.
FIG. 11 is a block diagram showing a main part of the calibration data collection system according to the third embodiment. The calibration data collection system according to the third embodiment will be described with reference to FIG. In FIG. 11, the same blocks as those shown in FIG. 10 are designated by the same reference numerals, and the description thereof will be omitted.
 図11に示す如く、校正用データ収集システム100bは、送信用のアンテナ7に代えて送信用のアレーアンテナ(以下「第2アレーアンテナ」という。)8を含むものである。第2アレーアンテナ8は、複数個のアンテナ9を含むものである。 As shown in FIG. 11, the calibration data collection system 100b includes a transmission array antenna (hereinafter referred to as “second array antenna”) 8 instead of the transmission antenna 7. The second array antenna 8 includes a plurality of antennas 9.
 校正用信号源4aが1個の位置P又は複数個の位置Pの各々に配置された状態にて、第2アレーアンテナ8に含まれる個々のアンテナ9が校正用信号を送信する。当該送信された校正用信号は、校正用信号源4aにより反射される。当該反射された校正用信号は、個々のサブアレー2に含まれる個々のアンテナ素子3により受信される。 With the calibration signal source 4a arranged at one position P or each of the plurality of positions P, the individual antennas 9 included in the second array antenna 8 transmit the calibration signal. The transmitted calibration signal is reflected by the calibration signal source 4a. The reflected calibration signal is received by the individual antenna elements 3 included in the individual sub-arrays 2.
 すなわち、第2アレーアンテナ8及び個々のサブアレー2により、MIMOアレーアンテナが構成されている。また、実施の形態1にて説明したとおり、M個のサブアレー2は、分散配置されている。したがって、第2アレーアンテナ8及び第1アレーアンテナ1は、分散MIMOレーダに用いられるものである。 That is, the MIMO array antenna is composed of the second array antenna 8 and the individual sub-arrays 2. Further, as described in the first embodiment, the M sub-arrays 2 are distributed and arranged. Therefore, the second array antenna 8 and the first array antenna 1 are used for the distributed MIMO radar.
 このように、送信用の第2アレーアンテナ8を設けることにより、校正用信号を送信する機能を有しない校正用信号源4aを用いて校正用データ収集システム100bを実現することができる。 By providing the second array antenna 8 for transmission in this way, the calibration data collection system 100b can be realized by using the calibration signal source 4a which does not have the function of transmitting the calibration signal.
 なお、第2アレーアンテナ8は、第1アレーアンテナ1に含まれるものであっても良い。すなわち、M個のサブアレー2のうちの選択されたサブアレー2が第2アレーアンテナ8の機能を果たすものであっても良い。換言すれば、第2アレーアンテナ8は、当該選択されたサブアレー2の機能を果たすものであっても良い。この場合、第2アレーアンテナ8は、L個のアンテナ9を含むものであり、かつ、個々のサブアレー2における素子配置形状と同一の素子配置形状を有するものである。 The second array antenna 8 may be included in the first array antenna 1. That is, the selected sub-array 2 out of the M sub-arrays 2 may function as the second array antenna 8. In other words, the second array antenna 8 may perform the function of the selected sub-array 2. In this case, the second array antenna 8 includes L antennas 9 and has the same element arrangement shape as the element arrangement shape in each sub array 2.
 ここで、実施の形態1にて説明したとおり、記憶装置6に記憶されている校正用信号データは、サブアレー内誤差成分及びサブアレー間誤差成分を含むものである。これに加えて、校正用データ収集システム100bにおいて、記憶装置6に記憶されている校正用信号データは、互いに異なるアンテナ9により送信された校正用信号に対応するデータを含むことによる誤差(以下「送信アレー内誤差」又は「アレー内誤差」という。)に対応する成分を含むものである。以下、送信アレー内誤差に対応する校正値CTxを「送信アレー内校正値」又は「第3校正値」ということがある。 Here, as described in the first embodiment, the calibration signal data stored in the storage device 6 includes an error component in the sub-array and an error component between sub-arrays. In addition to this, in the calibration data collection system 100b, the calibration signal data stored in the storage device 6 includes an error corresponding to the calibration signals transmitted by the antennas 9 different from each other (hereinafter, "" It contains a component corresponding to "error in transmission array" or "error in array"). Hereinafter, the calibration value CTx corresponding to the error in the transmission array may be referred to as a “calibration value in the transmission array” or a “third calibration value”.
 図12は、実施の形態3に係るレーダ校正装置の要部を示すブロック図である。図13は、実施の形態3に係る校正値算出装置における校正値算出部の要部を示すブロック図である。図12及び図13を参照して、実施の形態3に係るレーダ校正装置について説明するとともに、実施の形態3に係る校正値算出装置について説明する。 FIG. 12 is a block diagram showing a main part of the radar calibration device according to the third embodiment. FIG. 13 is a block diagram showing a main part of the calibration value calculation unit in the calibration value calculation device according to the third embodiment. The radar calibration device according to the third embodiment will be described with reference to FIGS. 12 and 13, and the calibration value calculation device according to the third embodiment will be described.
 なお、図12において、図3に示すブロックと同様のブロックには同一符号を付して説明を省略する。また、図13において、図4に示すブロックと同様のブロックには同一符号を付して説明を省略する。 Note that, in FIG. 12, the same blocks as those shown in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted. Further, in FIG. 13, the same blocks as those shown in FIG. 4 are designated by the same reference numerals, and the description thereof will be omitted.
 図12に示す如く、レーダ校正装置200aは、校正用データ取得部11、校正値算出部12a、校正値出力部13、校正処理部14及び校正用データ分離部15を含むものである。校正値算出部12aは、第1校正値算出部21、第2校正値算出部22及び第3校正値算出部23を含むものである。校正用データ取得部11、校正値算出部12a、校正値出力部13及び校正用データ分離部15により、校正値算出装置300aの要部が構成されている。 As shown in FIG. 12, the radar calibration device 200a includes a calibration data acquisition unit 11, a calibration value calculation unit 12a, a calibration value output unit 13, a calibration processing unit 14, and a calibration data separation unit 15. The calibration value calculation unit 12a includes a first calibration value calculation unit 21, a second calibration value calculation unit 22, and a third calibration value calculation unit 23. The main part of the calibration value calculation device 300a is composed of the calibration data acquisition unit 11, the calibration value calculation unit 12a, the calibration value output unit 13, and the calibration data separation unit 15.
 図13に示す如く、第3校正値算出部23は、位置-角度データテーブルDT、ビーム形成処理部61及び送信アレー内校正値算出部62を含むものである。なお、第1校正値算出部21、第2校正値算出部22又は第3校正値算出部23のうちのいずれか一つに位置-角度データテーブルDTが含まれており、かつ、かかる位置-角度データテーブルDTを第1校正値算出部21、第2校正値算出部22及び第3校正値算出部23が共用するものであっても良い。 As shown in FIG. 13, the third calibration value calculation unit 23 includes a position-angle data table DT, a beam formation processing unit 61, and a calibration value calculation unit 62 in the transmission array. The position-angle data table DT is included in any one of the first calibration value calculation unit 21, the second calibration value calculation unit 22, and the third calibration value calculation unit 23, and the position-is such. The angle data table DT may be shared by the first calibration value calculation unit 21, the second calibration value calculation unit 22, and the third calibration value calculation unit 23.
 校正用データ取得部11は、記憶装置6に記憶されている校正用データを取得する。校正用データ取得部11は、当該取得された校正用データを校正用データ分離部15に出力する。 The calibration data acquisition unit 11 acquires the calibration data stored in the storage device 6. The calibration data acquisition unit 11 outputs the acquired calibration data to the calibration data separation unit 15.
 校正用データ分離部15は、校正用データ取得部11により出力された校正用データを取得するものである。当該取得された校正用データに含まれる校正用信号データは、複数個のアンテナ9により送信された校正用信号に対応するデータを含むものである。そこで、校正用データ分離部15は、かかる校正用信号データに対するMIMO復調処理を実行するものである。これにより、かかる校正用信号データは、個々のアンテナ9により送信された校正用信号に対応するデータに分離される。 The calibration data separation unit 15 acquires the calibration data output by the calibration data acquisition unit 11. The calibration signal data included in the acquired calibration data includes data corresponding to the calibration signals transmitted by the plurality of antennas 9. Therefore, the calibration data separation unit 15 executes MIMO demodulation processing on the calibration signal data. As a result, the calibration signal data is separated into data corresponding to the calibration signals transmitted by the individual antennas 9.
 以下、当該分離されたデータを「分離後の校正用信号データ」ということがある。また、分離後の校正用信号データ及び対応する信号源位置データを総称して「分離後の校正用データ」ということがある。校正用データ分離部15は、分離後の校正用データをサブアレー内校正値算出部31、ビーム形成処理部41及びビーム形成処理部61に出力するものである。 Hereinafter, the separated data may be referred to as "calibration signal data after separation". Further, the calibration signal data after separation and the corresponding signal source position data may be collectively referred to as "calibration data after separation". The calibration data separation unit 15 outputs the calibration data after separation to the calibration value calculation unit 31, the beam formation processing unit 41, and the beam formation processing unit 61 in the sub-array.
 第1校正値算出部21においては、分離後の校正用データを用いて、実施の形態1にて説明したものと同様の処理が実行される。これにより、サブアレー内校正値Hが算出される。サブアレー内校正値算出部31は、当該算出されたサブアレー内校正値Hを校正値出力部13、ビーム形成処理部41及びビーム形成処理部61に出力する。 In the first calibration value calculation unit 21, the same processing as that described in the first embodiment is executed using the calibration data after separation. As a result, the calibration value H in the sub array is calculated. The sub-array calibration value calculation unit 31 outputs the calculated sub-array calibration value H to the calibration value output unit 13, the beam formation processing unit 41, and the beam formation processing unit 61.
 第2校正値算出部22においては、分離後の校正用データを用いて、実施の形態1にて説明したものと同様の処理が実行される。これにより、サブアレー間校正値Gが算出される。サブアレー間校正値算出部42は、当該算出されたサブアレー間校正値Gを校正値出力部13及びビーム形成処理部61に出力する。 In the second calibration value calculation unit 22, the same processing as that described in the first embodiment is executed using the calibration data after separation. As a result, the calibration value G between sub-arrays is calculated. The inter-sub-array calibration value calculation unit 42 outputs the calculated inter-sub-array calibration value G to the calibration value output unit 13 and the beam forming processing unit 61.
 ビーム形成処理部61は、校正用データ分離部15により出力された分離後の校正用データ、サブアレー内校正値算出部31により出力されたサブアレー内校正値H、及びサブアレー間校正値算出部42により出力されたサブアレー間校正値Gを取得するものである。ビーム形成処理部61は、位置-角度データテーブルDTを用いて、当該取得された校正用データに含まれる個々の信号源位置データが示す位置Pに対応する入射角θを算出するものである。また、ビーム形成処理部61は、当該取得されたサブアレー内校正値H及び当該取得されたサブアレー間校正値Gを用いて、当該取得された分離後の校正用データに含まれる分離後の校正用信号データを補正するものである。 The beam forming processing unit 61 is subjected to the calibration data after separation output by the calibration data separation unit 15, the calibration value H in the sub-array output by the calibration value calculation unit 31 in the sub-array, and the calibration value calculation unit 42 between sub-arrays. The output calibration value G between sub-arrays is acquired. The beam forming processing unit 61 uses the position-angle data table DT to calculate the incident angle θ corresponding to the position P indicated by the individual signal source position data included in the acquired calibration data. Further, the beam forming processing unit 61 uses the acquired calibration value H in the sub-array and the acquired calibration value G between sub-arrays for post-separation calibration included in the acquired post-separation calibration data. It corrects the signal data.
 ビーム形成処理部61は、上記補正された分離後の校正用信号データ及び上記算出された入射角θを用いて、第2アレーアンテナ8に対応するデジタルビームフォーミング処理(以下「第2DBF処理」という。)を実行するものである。これにより、第2アレーアンテナ8により出力されるビームに対応するデータが生成される。ビーム形成処理部61は、当該生成されたデータを送信アレー内校正値算出部62に出力するものである。 The beamforming processing unit 61 uses the corrected calibration signal data after separation and the calculated incident angle θ to perform digital beamforming processing corresponding to the second array antenna 8 (hereinafter referred to as “second DBF processing”). .) Is executed. As a result, data corresponding to the beam output by the second array antenna 8 is generated. The beam forming processing unit 61 outputs the generated data to the calibration value calculation unit 62 in the transmission array.
 送信アレー内校正値算出部62は、ビーム形成処理部61により出力されたデータを取得するものである。送信アレー内校正値算出部62は、当該取得されたデータを用いて送信アレー内校正値CTxを算出するものである。送信アレー内校正値CTxの算出方法については後述する。送信アレー内校正値算出部62は、当該算出された送信アレー内校正値CTxを校正値出力部13に出力するものである。 The calibration value calculation unit 62 in the transmission array acquires the data output by the beam forming processing unit 61. The calibration value calculation unit 62 in the transmission array calculates the calibration value C Tx in the transmission array using the acquired data. The method of calculating the calibration value C Tx in the transmission array will be described later. The calibration value calculation unit 62 in the transmission array outputs the calculated calibration value C Tx in the transmission array to the calibration value output unit 13.
 校正値出力部13は、サブアレー内校正値算出部31により出力されたサブアレー内校正値H、サブアレー間校正値算出部42により出力されたサブアレー間校正値G、及び送信アレー内校正値算出部62により出力された送信アレー内校正値CTxを取得する。校正値出力部13は、当該取得された校正値H,G,CTxを校正処理部14に出力する。 The calibration value output unit 13 includes a calibration value H in the sub-array output by the calibration value calculation unit 31 in the sub-array, a calibration value G in the sub-array output by the calibration value calculation unit 42 between sub-arrays, and a calibration value calculation unit 62 in the transmission array. Acquires the calibration value C Tx in the transmission array output by. The calibration value output unit 13 outputs the acquired calibration values H, G, C Tx to the calibration processing unit 14.
 校正処理部14は、校正値出力部13により出力された校正値H,G,CTxを取得する。校正処理部14は、当該取得された校正値H,G,CTxを用いて、第2アレーアンテナ8及び第1アレーアンテナ1を用いるレーダ(不図示)の校正処理を実行する。すなわち、校正処理部14は、分散MIMOレーダの校正処理を実行する。かかる校正処理には、公知の種々の技術を用いることができる。これらの技術についての詳細な説明は省略する。 The calibration processing unit 14 acquires the calibration values H, G, C Tx output by the calibration value output unit 13. The calibration processing unit 14 uses the acquired calibration values H, G, and CTx to perform calibration processing of a radar (not shown) using the second array antenna 8 and the first array antenna 1. That is, the calibration processing unit 14 executes the calibration processing of the distributed MIMO radar. Various known techniques can be used for such calibration processing. Detailed description of these techniques will be omitted.
 このようにして、レーダ校正装置200aの要部が構成されている。 In this way, the main part of the radar calibration device 200a is configured.
 以下、第3校正値算出部23が有する機能に「F2_3」の符号を用いることがある。また、校正用データ分離部15が有する機能に「F5」の符号を用いることがある。また、第3校正値算出部23により実行される処理を総称して「第3校正値算出処理」ということがある。また、校正用データ分離部15により実行される処理を総称して「校正用データ分離処理」ということがある。また、校正値算出装置300aにより実行される処理を総称して「校正値算出処理」ということがある。 Hereinafter, the code of "F2_3" may be used for the function of the third calibration value calculation unit 23. Further, the reference numeral "F5" may be used for the function of the calibration data separation unit 15. Further, the processes executed by the third calibration value calculation unit 23 may be collectively referred to as "third calibration value calculation process". Further, the processes executed by the calibration data separation unit 15 may be collectively referred to as "calibration data separation processing". Further, the processes executed by the calibration value calculation device 300a may be collectively referred to as "calibration value calculation process".
 レーダ校正装置200aの要部のハードウェア構成は、実施の形態1にて図5~図7を参照して説明したものと同様である。このため、詳細な説明は省略する。 The hardware configuration of the main part of the radar calibration device 200a is the same as that described with reference to FIGS. 5 to 7 in the first embodiment. Therefore, detailed description thereof will be omitted.
 すなわち、レーダ校正装置200aは、複数個の機能F1,F2_1,F2_2,F2_3,F3,F4,F5を有している。複数個の機能F1,F2_1,F2_2,F2_3,F3,F4,F5の各々は、プロセッサ51及びメモリ52により実現されるものであっても良く、又は処理回路53により実現されるものであっても良い。プロセッサ51は、個々の機能F1,F2_1,F2_2,F2_3,F3,F4,F5に対応する専用のプロセッサを含むものであっても良い。メモリ52は、個々の機能F1,F2_1,F2_2,F2_3,F3,F4,F5に対応する専用のメモリを含むものであっても良い。処理回路53は、個々の機能F1,F2_1,F2_2,F2_3,F3,F4,F5に対応する専用の処理回路を含むものであっても良い。 That is, the radar calibration device 200a has a plurality of functions F1, F2_1, F2_2, F2_3, F3, F4, and F5. Each of the plurality of functions F1, F2_1, F2_2, F2_3, F3, F4, and F5 may be realized by the processor 51 and the memory 52, or may be realized by the processing circuit 53. good. The processor 51 may include a dedicated processor corresponding to each function F1, F2_1, F2_2, F2_3, F3, F4, F5. The memory 52 may include a dedicated memory corresponding to each function F1, F2_1, F2_2, F2_3, F3, F4, F5. The processing circuit 53 may include a dedicated processing circuit corresponding to each function F1, F2_1, F2_2, F2_3, F3, F4, F5.
 次に、図14に示すフローチャートを参照して、校正値算出装置300aの動作について説明する。 Next, the operation of the calibration value calculation device 300a will be described with reference to the flowchart shown in FIG.
 まず、校正用データ取得部11が校正用データ取得処理を実行する(ステップST1)。これにより、記憶装置6に記憶されている校正用データが取得される。 First, the calibration data acquisition unit 11 executes the calibration data acquisition process (step ST1). As a result, the calibration data stored in the storage device 6 is acquired.
 次いで、校正用データ分離部15が校正用データ分離処理を実行する(ステップST5)。これにより、ステップST1にて取得された校正用データに含まれる校正用信号データが個々のアンテナ9により送信された校正用信号に対応するデータに分離される。 Next, the calibration data separation unit 15 executes the calibration data separation process (step ST5). As a result, the calibration signal data included in the calibration data acquired in step ST1 is separated into data corresponding to the calibration signals transmitted by the individual antennas 9.
 次いで、第1校正値算出部21が第1校正値算出処理を実行する(ステップST2_1)。これにより、サブアレー内校正値Hが算出される。サブアレー内校正値Hの算出には、分離後の校正用データが用いられる。 Next, the first calibration value calculation unit 21 executes the first calibration value calculation process (step ST2_1). As a result, the calibration value H in the sub array is calculated. The calibration data after separation is used to calculate the calibration value H in the sub-array.
 次いで、第2校正値算出部22が第2校正値算出処理を実行する(ステップST2_2)。これにより、サブアレー間校正値Gが算出される。サブアレー間校正値Gの算出には、分離後の校正用データが用いられる。 Next, the second calibration value calculation unit 22 executes the second calibration value calculation process (step ST2_2). As a result, the calibration value G between sub-arrays is calculated. The calibration data after separation is used to calculate the calibration value G between sub-arrays.
 次いで、第3校正値算出部23が第3校正値算出処理を実行する(ステップST2_3)。これにより、送信アレー内校正値CTxが算出される。送信アレー内校正値CTxの算出方法については後述する。 Next, the third calibration value calculation unit 23 executes the third calibration value calculation process (step ST2_3). Thus, the calibration values C Tx is the transmission array is calculated. The method of calculating the calibration value C Tx in the transmission array will be described later.
 次いで、校正値出力部13が校正値出力処理を実行する(ステップST3)。これにより、ステップST2_1にて算出されたサブアレー内校正値H、ステップST2_2にて算出されたサブアレー間校正値G、及びステップST2_3にて算出された送信アレー内校正値CTxが校正値算出装置300a外に出力される。 Next, the calibration value output unit 13 executes the calibration value output process (step ST3). As a result, the calibration value H in the sub-array calculated in step ST2_1, the calibration value G between sub-arrays calculated in step ST2_2, and the calibration value C Tx in the transmission array calculated in step ST2_3 are the calibration value calculation device 300a. It is output to the outside.
 次に、図15に示すフローチャートを参照して、レーダ校正装置200aの動作について説明する。 Next, the operation of the radar calibration device 200a will be described with reference to the flowchart shown in FIG.
 まず、校正値算出装置300aが校正値算出処理を実行する(ステップST11a)。これにより、図14に示すステップST1,ST5,ST2_1,ST2_2,ST2_3,ST3の処理が実行される。すなわち、サブアレー内校正値H、サブアレー間校正値G及び送信アレー内校正値CTxが算出されて、当該算出された校正値H,G,CTxが出力される。 First, the calibration value calculation device 300a executes the calibration value calculation process (step ST11a). As a result, the processes of steps ST1, ST5, ST2_1, ST2_2, ST2_3, and ST3 shown in FIG. 14 are executed. That is, the calibration value H in the sub-array, the calibration value G between sub-arrays, and the calibration value C Tx in the transmission array are calculated, and the calculated calibration values H, G, C Tx are output.
 次いで、校正処理部14がレーダ校正処理を実行する(ステップST4)。レーダ校正処理には、ステップST11aにて出力された校正値H,G,CTxが用いられる。 Next, the calibration processing unit 14 executes the radar calibration processing (step ST4). The calibration values H, G, and C Tx output in step ST11a are used for the radar calibration process.
 次に、送信アレー内校正値CTxの算出方法について説明する。 Next, a method of calculating the transmission array in the calibration values C Tx.
 いま、第2アレーアンテナ8における誤差が存在しており、かつ、第1アレーアンテナ1における誤差が存在しているものとする。K=1であるとき、L×Nsの入力データベクトルzは、以下の式(15)により表される。 It is assumed that an error exists in the second array antenna 8 and an error exists in the first array antenna 1. When K = 1, the input data vector z of L × Ns is represented by the following equation (15).

Figure JPOXMLDOC01-appb-I000015

Figure JPOXMLDOC01-appb-I000015
 ここで、n(t)は、受信雑音を示している。校正用信号データにおける信号対雑音比が十分に大きいとき、n(t)は無視することができる。以下、簡単のため、n(t)の記載を省略する。 Here, n (t) indicates reception noise. When the signal-to-noise ratio in the calibration signal data is large enough, n (t) can be ignored. Hereinafter, for the sake of simplicity, the description of n (t) will be omitted.
 上記のとおり、記憶装置6に記憶されている校正用信号データは、互いに異なるアンテナ9により送信された校正用信号に対応するデータが含まれている。そこで、校正用データ分離部15は、MIMO復調処理を実行することにより、かかる校正用信号データを個々のアンテナ9により送信された校正用信号に対応するデータに分離する。当該分離されたデータzMIMO(θ)は、以下の式(16)により表される。 As described above, the calibration signal data stored in the storage device 6 includes data corresponding to the calibration signals transmitted by the antennas 9 which are different from each other. Therefore, the calibration data separation unit 15 separates the calibration signal data into data corresponding to the calibration signals transmitted by the individual antennas 9 by executing MIMO demodulation processing. The separated data z MIMO (θ) is represented by the following equation (16).

Figure JPOXMLDOC01-appb-I000016

Figure JPOXMLDOC01-appb-I000016
 ここで、CRxは、実施の形態1又は実施の形態2にて説明した方法と同様の方法により算出される。送信アレー内校正値算出部62は、以下のようにして送信アレー内校正値CTxを算出する。 Here, CRx is calculated by the same method as that described in the first embodiment or the second embodiment. The calibration value calculation unit 62 in the transmission array calculates the calibration value C Tx in the transmission array as follows.
 まず、送信アレー内校正値算出部62は、第2アレーアンテナ8における受信データに対応するzTx(θ)を算出する。zTx(θ)におけるn番目の要素は、以下の式(17)~式(18)により算出される。 First, the calibration value calculation unit 62 in the transmission array calculates z Tx (θ) corresponding to the received data in the second array antenna 8. The nth element in z Tx (θ) is calculated by the following equations (17) to (18).

Figure JPOXMLDOC01-appb-I000017

Figure JPOXMLDOC01-appb-I000017

Figure JPOXMLDOC01-appb-I000018

Figure JPOXMLDOC01-appb-I000018
 次いで、送信アレー内校正値算出部62は、当該算出されたzTx(θ)を用いて、サブアレー間校正値算出部42によるサブアレー間校正値Gの算出方法と同様の算出方法により送信アレー内校正値CTxを算出する。すなわち、送信アレー内校正値算出部62は、第2DBF処理により生成されたデータを用いて、サブアレー間校正値算出部42により実行される処理と同様の処理を実行することにより、送信アレー内校正値CTxを算出する。 Next, the calibration value calculation unit 62 in the transmission array uses the calculated z Tx (θ) in the transmission array by the same calculation method as the calculation method of the calibration value G between sub-arrays by the calibration value calculation unit 42 between sub-arrays. Calculate the calibration value C Tx. That is, the calibration value calculation unit 62 in the transmission array uses the data generated by the second DBF process to perform the same processing as the processing executed by the calibration value calculation unit 42 between sub-arrays, thereby performing calibration in the transmission array. Calculate the value C Tx.
 このようにして、送信アレー内校正値CTxが算出される。 In this way, the calibration value C Tx in the transmission array is calculated.
 なお、送信アレー内校正値算出部62は、サブアレー間校正値算出部42によるサブアレー間校正値Gの算出方法と同様の算出方法により送信アレー内校正値CTxを算出するのに代えて、サブアレー内校正値算出部31によるサブアレー内校正値Hの算出方法と同様の算出方法により送信アレー内校正値CTxを算出するものであっても良い。すなわち、送信アレー内校正値算出部62は、サブアレー内校正値算出部31により実行される処理と同様の処理を実行することにより、送信アレー内校正値CTxを算出するものであっても良い。 In addition, the calibration value calculation unit 62 in the transmission array calculates the calibration value C Tx in the transmission array by the same calculation method as the calculation method of the calibration value G between sub-arrays by the calibration value calculation unit 42 between sub-arrays, instead of calculating the calibration value C Tx in the transmission array. The calibration value C Tx in the transmission array may be calculated by the same calculation method as the calculation method of the calibration value H in the sub array by the internal calibration value calculation unit 31. That is, the calibration value calculation unit 62 in the transmission array may calculate the calibration value C Tx in the transmission array by executing the same processing as the processing executed by the calibration value calculation unit 31 in the sub-array. ..
 以上のように、実施の形態3に係る校正値算出装置300aにおいて、校正用データは、送信用の第2アレーアンテナ8により送信されて、次いで、校正用信号源4aにより反射されて、次いで、個々のアンテナ素子3により受信された校正用信号に対応するものである。これにより、校正用信号を送信する機能を有しない校正用信号源4aを含む校正用データ収集システム100bにより収取された校正用データを用いて校正値H,G,CTxを算出することができる。 As described above, in the calibration value calculation device 300a according to the third embodiment, the calibration data is transmitted by the second array antenna 8 for transmission, then reflected by the calibration signal source 4a, and then reflected by the calibration signal source 4a. It corresponds to the calibration signal received by each antenna element 3. As a result, the calibration values H, G, and C Tx can be calculated using the calibration data collected by the calibration data collection system 100b including the calibration signal source 4a that does not have the function of transmitting the calibration signal. can.
 また、校正値算出装置300aは、校正用データを第2アレーアンテナ8に含まれる個々のアンテナ9に対応するデータに分離する校正用データ分離部15を備え、校正値算出部12aは、分離後の校正用データを用いて、第1校正値(サブアレー内校正値H)、第2校正値(サブアレー間校正値G)及び第2アレーアンテナ8におけるアレー内誤差に対応する第3校正値(送信アレー内校正値CTx)を含む校正値H,G,CTxを算出する。これにより、分散MIMOレーダ用の校正値H,G,CTxを算出することができる。 Further, the calibration value calculation device 300a includes a calibration data separation unit 15 that separates calibration data into data corresponding to individual antennas 9 included in the second array antenna 8, and the calibration value calculation unit 12a is after separation. The first calibration value (calibration value H in the sub-array), the second calibration value (calibration value G between sub-arrays), and the third calibration value (transmission) corresponding to the error in the array in the second array antenna 8 are used. Calculate the calibration values H, G, and C Tx including the calibration value C Tx in the array. Thereby, the calibration values H, G, C Tx for the distributed MIMO radar can be calculated.
 また、実施の形態3に係るレーダ校正装置200aは、校正値算出装置300aと、校正値H,G,CTxを用いて、第1アレーアンテナ1及び第2アレーアンテナ8を用いるレーダの校正処理を実行する校正処理部14と、を備える。これにより、分散MIMOレーダの校正をすることができる。かかる校正により、かかる分散MIMOレーダによる角度分解能を向上することができる。この結果、高精度な測角を実現することができる。 Further, the radar calibration device 200a according to the third embodiment uses the calibration value calculation device 300a and the calibration values H, G, and CTx to perform radar calibration processing using the first array antenna 1 and the second array antenna 8. A calibration processing unit 14 for executing the above is provided. This makes it possible to calibrate the distributed MIMO radar. Such calibration can improve the angular resolution of such distributed MIMO radar. As a result, highly accurate angle measurement can be realized.
 なお、本願開示はその開示の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 It should be noted that, within the scope of the disclosure of the present application, it is possible to freely combine each embodiment, modify any component of each embodiment, or omit any component in each embodiment. ..
 本開示に係る校正値算出装置、レーダ校正装置及び校正値算出方法は、例えば、分散レーダ又は分散MIMOレーダに用いることができる。 The calibration value calculation device, radar calibration device, and calibration value calculation method according to the present disclosure can be used, for example, for a distributed radar or a distributed MIMO radar.
 1 アレーアンテナ(第1アレーアンテナ)、2 サブアレー、3 アンテナ素子、4,4a 校正用信号源、5 A/D変換器、6 記憶装置、7 アンテナ、8 第2アレーアンテナ、9 アンテナ、11 校正用データ取得部、12,12a 校正値算出部、13 校正値出力部、14 校正処理部、15 校正用データ分離部、21 第1校正値算出部、22 第2校正値算出部、23 第3校正値算出部、31 サブアレー内校正値算出部、41 ビーム形成処理部、42 サブアレー間校正値算出部、51 プロセッサ、52 メモリ、53 処理回路、61 ビーム形成処理部、62 送信アレー内校正値算出部、100,100a,100b 校正用データ収集システム、200,200a レーダ校正装置、300,300a 校正値算出装置。 1 array antenna (1st array antenna), 2 sub array, 3 antenna elements, 4, 4a calibration signal source, 5 A / D converter, 6 storage device, 7 antenna, 8 second array antenna, 9 antenna, 11 calibration Data acquisition unit, 12, 12a calibration value calculation unit, 13 calibration value output unit, 14 calibration processing unit, 15 calibration data separation unit, 21 1st calibration value calculation unit, 22 2nd calibration value calculation unit, 23 3rd Calibration value calculation unit, 31 Sub-array calibration value calculation unit, 41 Beam formation processing unit, 42 Inter-sub-array calibration value calculation unit, 51 Processor, 52 Memory, 53 Processing circuit, 61 Beam formation processing unit, 62 Transmission array calibration value calculation Unit, 100, 100a, 100b Calibration data collection system, 200, 200a radar calibration device, 300, 300a calibration value calculation device.

Claims (13)

  1.  第1アレーアンテナに含まれる個々のサブアレーに含まれる個々のアンテナ素子により受信された校正用信号に対応する校正用データを取得する校正用データ取得部と、
     前記校正用データを用いて、前記個々のサブアレーにおけるサブアレー内誤差に対応する第1校正値及び前記第1アレーアンテナにおけるサブアレー間誤差に対応する第2校正値を含む校正値を算出する校正値算出部と、
     前記校正値を出力する校正値出力部と、を備え、
     前記校正用データは、校正用信号源が所定の領域に配置された状態にて前記個々のアンテナ素子により受信された前記校正用信号に対応するものであり、
     前記領域は、前記個々のサブアレーに対する遠方界に含まれるものであり、かつ、前記第1アレーアンテナに対する近傍界に含まれるものである
     ことを特徴とする校正値算出装置。
    A calibration data acquisition unit that acquires calibration data corresponding to the calibration signal received by the individual antenna elements included in the individual sub-arrays included in the first array antenna, and a calibration data acquisition unit.
    Calibration value calculation using the calibration data to calculate a calibration value including a first calibration value corresponding to an error in the sub-array in the individual sub-array and a second calibration value corresponding to an error between sub-arrays in the first array antenna. Department and
    A calibration value output unit that outputs the calibration value is provided.
    The calibration data corresponds to the calibration signal received by the individual antenna elements in a state where the calibration signal source is arranged in a predetermined region.
    A calibration value calculation device, characterized in that the region is included in the far field with respect to the individual sub-array and is included in the near field with respect to the first array antenna.
  2.  前記個々のサブアレーは、互いに共通する素子配置形状を有し、
     前記個々のサブアレーは、分散配置されている
     ことを特徴とする請求項1記載の校正値算出装置。
    The individual sub-arrays have an element arrangement shape common to each other and have an element arrangement shape.
    The calibration value calculation device according to claim 1, wherein the individual sub-arrays are arranged in a distributed manner.
  3.  前記校正用データは、前記校正用信号源により送信されて、次いで、前記個々のアンテナ素子により受信された前記校正用信号に対応するものであることを特徴とする請求項2記載の校正値算出装置。 The calibration value calculation according to claim 2, wherein the calibration data corresponds to the calibration signal transmitted by the calibration signal source and then received by the individual antenna elements. Device.
  4.  前記校正用データは、送信用のアンテナにより送信されて、次いで、前記校正用信号源により反射されて、次いで、前記個々のアンテナ素子により受信された前記校正用信号に対応するものであることを特徴とする請求項2記載の校正値算出装置。 That the calibration data corresponds to the calibration signal transmitted by the transmitting antenna, then reflected by the calibration signal source, and then received by the individual antenna elements. The calibration value calculation device according to claim 2, which is characterized.
  5.  前記校正用データは、送信用の第2アレーアンテナにより送信されて、次いで、前記校正用信号源により反射されて、次いで、前記個々のアンテナ素子により受信された前記校正用信号に対応するものであることを特徴とする請求項2記載の校正値算出装置。 The calibration data corresponds to the calibration signal transmitted by the second array antenna for transmission, then reflected by the calibration signal source, and then received by the individual antenna elements. The calibration value calculation device according to claim 2, wherein the calibration value is calculated.
  6.  前記校正用データを前記第2アレーアンテナに含まれる個々のアンテナに対応するデータに分離する校正用データ分離部を備え、
     前記校正値算出部は、分離後の前記校正用データを用いて、前記第1校正値、前記第2校正値及び前記第2アレーアンテナにおけるアレー内誤差に対応する第3校正値を含む前記校正値を算出する
     ことを特徴とする請求項5記載の校正値算出装置。
    A calibration data separation unit for separating the calibration data into data corresponding to each antenna included in the second array antenna is provided.
    The calibration value calculation unit uses the calibration data after separation to include the first calibration value, the second calibration value, and the third calibration value corresponding to the error in the array in the second array antenna. The calibration value calculation device according to claim 5, wherein the value is calculated.
  7.  前記校正値算出部は、前記校正用データに複数波に対応するデータが含まれるとき、前記複数波に対応するデータを各1波に対応するデータに分離することを特徴とする請求項2記載の校正値算出装置。 The second aspect of claim 2, wherein the calibration value calculation unit separates the data corresponding to the plurality of waves into the data corresponding to each one wave when the calibration data includes the data corresponding to the plurality of waves. Calibration value calculation device.
  8.  前記校正値算出部は、ドップラ周波数又は独立成分分析を用いて、前記複数波に対応するデータを前記各1波に対応するデータに分離することを特徴とする請求項7記載の校正値算出装置。 The calibration value calculation device according to claim 7, wherein the calibration value calculation unit separates data corresponding to the plurality of waves into data corresponding to each one wave by using Doppler frequency or independent component analysis. ..
  9.  前記校正用信号源は、前記領域に含まれる複数個の位置に順次配置されるものであり、
     前記校正用データは、前記校正用信号源が前記複数個の位置の各々に配置された状態にて前記個々のアンテナ素子により受信された前記校正用信号に対応するものである
     ことを特徴とする請求項2記載の校正値算出装置。
    The calibration signal source is sequentially arranged at a plurality of positions included in the region.
    The calibration data is characterized in that it corresponds to the calibration signal received by the individual antenna elements in a state where the calibration signal source is arranged at each of the plurality of positions. The calibration value calculation device according to claim 2.
  10.  前記校正値算出部は、前記個々のサブアレーに対応する位置誤差を推定して、前記位置誤差に応じて補正された前記第2校正値を算出することを特徴とする請求項9記載の校正値算出装置。 The calibration value according to claim 9, wherein the calibration value calculation unit estimates a position error corresponding to each of the sub-arrays and calculates the second calibration value corrected according to the position error. Calculation device.
  11.  請求項2記載の校正値算出装置と、
     前記校正値を用いて、前記第1アレーアンテナを用いるレーダの校正処理を実行する校正処理部と、
     を備えるレーダ校正装置。
    The calibration value calculation device according to claim 2 and
    A calibration processing unit that executes a radar calibration process using the first array antenna using the calibration value, and a calibration processing unit.
    Radar calibration device equipped with.
  12.  請求項6記載の校正値算出装置と、
     前記校正値を用いて、前記第1アレーアンテナ及び前記第2アレーアンテナを用いるレーダの校正処理を実行する校正処理部と、
     を備えるレーダ校正装置。
    The calibration value calculation device according to claim 6 and
    A calibration processing unit that executes calibration processing of the radar using the first array antenna and the second array antenna using the calibration value, and a calibration processing unit.
    Radar calibration device equipped with.
  13.  校正用データ取得部が、第1アレーアンテナに含まれる個々のサブアレーに含まれる個々のアンテナ素子により受信された校正用信号に対応する校正用データを取得するステップと、
     校正値算出部が、前記校正用データを用いて、前記個々のサブアレーにおけるサブアレー内誤差に対応する第1校正値及び前記第1アレーアンテナにおけるサブアレー間誤差に対応する第2校正値を含む校正値を算出するステップと、
     校正値出力部が、前記校正値を出力するステップと、を備え、
     前記校正用データは、校正用信号源が所定の領域に配置された状態にて前記個々のアンテナ素子により受信された前記校正用信号に対応するものであり、
     前記領域は、前記個々のサブアレーに対する遠方界に含まれるものであり、かつ、前記第1アレーアンテナに対する近傍界に含まれるものである
     ことを特徴とする校正値算出方法。
    A step in which the calibration data acquisition unit acquires calibration data corresponding to the calibration signal received by the individual antenna elements included in the individual sub-arrays included in the first array antenna.
    The calibration value calculation unit uses the calibration data to include a first calibration value corresponding to an error in the sub-array in each of the individual sub-arrays and a second calibration value corresponding to an error between sub-arrays in the first array antenna. And the steps to calculate
    The calibration value output unit includes a step of outputting the calibration value.
    The calibration data corresponds to the calibration signal received by the individual antenna elements in a state where the calibration signal source is arranged in a predetermined area.
    A calibration value calculation method, characterized in that the region is included in the far field with respect to the individual sub-array and is included in the near field with respect to the first array antenna.
PCT/JP2020/010695 2020-03-12 2020-03-12 Calibration value calculation device, radar calibration device, and calibration value calculation method WO2021181590A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/010695 WO2021181590A1 (en) 2020-03-12 2020-03-12 Calibration value calculation device, radar calibration device, and calibration value calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/010695 WO2021181590A1 (en) 2020-03-12 2020-03-12 Calibration value calculation device, radar calibration device, and calibration value calculation method

Publications (1)

Publication Number Publication Date
WO2021181590A1 true WO2021181590A1 (en) 2021-09-16

Family

ID=77670587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010695 WO2021181590A1 (en) 2020-03-12 2020-03-12 Calibration value calculation device, radar calibration device, and calibration value calculation method

Country Status (1)

Country Link
WO (1) WO2021181590A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023102707A1 (en) * 2021-12-07 2023-06-15 唐勇 Radar calibration method and apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02183172A (en) * 1989-01-09 1990-07-17 Mitsubishi Electric Corp Measuring method of antenna
US6084545A (en) * 1999-07-12 2000-07-04 Lockheed Martin Corporation Near-field calibration system for phase-array antennas
US20080036648A1 (en) * 2006-08-10 2008-02-14 Northrop Grumman Systems Corporation Method and System for Calibrating ESA, Distributed Waveform Generator and Receivers in Sub-Arrays
WO2015166560A1 (en) * 2014-04-30 2015-11-05 三菱電機株式会社 Measurement device and measurement method
US20160043465A1 (en) * 2014-08-11 2016-02-11 Raytheon Company Portable apparatus and associated method for phased array field calibration
WO2016067321A1 (en) * 2014-10-30 2016-05-06 三菱電機株式会社 Antenna specification estimation device and radar device
WO2020003743A1 (en) * 2018-06-28 2020-01-02 日立オートモティブシステムズ株式会社 Radar device and radar system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02183172A (en) * 1989-01-09 1990-07-17 Mitsubishi Electric Corp Measuring method of antenna
US6084545A (en) * 1999-07-12 2000-07-04 Lockheed Martin Corporation Near-field calibration system for phase-array antennas
US20080036648A1 (en) * 2006-08-10 2008-02-14 Northrop Grumman Systems Corporation Method and System for Calibrating ESA, Distributed Waveform Generator and Receivers in Sub-Arrays
WO2015166560A1 (en) * 2014-04-30 2015-11-05 三菱電機株式会社 Measurement device and measurement method
US20160043465A1 (en) * 2014-08-11 2016-02-11 Raytheon Company Portable apparatus and associated method for phased array field calibration
WO2016067321A1 (en) * 2014-10-30 2016-05-06 三菱電機株式会社 Antenna specification estimation device and radar device
WO2020003743A1 (en) * 2018-06-28 2020-01-02 日立オートモティブシステムズ株式会社 Radar device and radar system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023102707A1 (en) * 2021-12-07 2023-06-15 唐勇 Radar calibration method and apparatus

Similar Documents

Publication Publication Date Title
CN106546983B (en) Radar apparatus
CN108594233B (en) Speed ambiguity resolving method based on MIMO automobile radar
JP6755121B2 (en) Radar device
CN106019238B (en) Radar apparatus
JP5659472B2 (en) Direction of arrival estimation apparatus and method
JP6095010B2 (en) How to process a signal
JP7022916B2 (en) Radar device and arrival direction estimation device
US11454702B2 (en) Synthetic aperture radar method and synthetic aperture radar device
KR20160134436A (en) Method for estimating direction of arrival and apparatus for estimating direction of arrival using the same
KR101953697B1 (en) Method and apparatus for estimating direction of arrival using generation of virtual received signals based on uniform linear array antenna
JP2010096575A (en) Signal wave arrival angle measuring device
JP6246338B2 (en) Angle measuring device and angle measuring method
JP2001183437A (en) Incident azimuth measuring device for incoming wave
WO2021181590A1 (en) Calibration value calculation device, radar calibration device, and calibration value calculation method
US20160341815A1 (en) Bandwidth Enhancement Beamforming
CN111175727B (en) Method for estimating orientation of broadband signal based on conditional wave number spectral density
CN116348786A (en) Beamforming hardware accelerator for radar systems
JP5047002B2 (en) Wave number estimation device
JP5132338B2 (en) Radar equipment
JP2001272464A (en) Radar device
KR102099388B1 (en) Method of estimating direction of arrival of radar signal based on antenna array extrapolation and apparatus for the same
CN112711018B (en) Focusing beam forming method of near-field space net-shaped structure
ZA200603665B (en) Methods and device for the radio determination of a number of spectrally overlapping radio stations
JP2014142261A (en) Radar device
JP5501578B2 (en) Radar equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP