WO2021176491A1 - Vibration sensor - Google Patents

Vibration sensor Download PDF

Info

Publication number
WO2021176491A1
WO2021176491A1 PCT/JP2020/008588 JP2020008588W WO2021176491A1 WO 2021176491 A1 WO2021176491 A1 WO 2021176491A1 JP 2020008588 W JP2020008588 W JP 2020008588W WO 2021176491 A1 WO2021176491 A1 WO 2021176491A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric substrate
vibration sensor
vibration
sensor according
elastic
Prior art date
Application number
PCT/JP2020/008588
Other languages
French (fr)
Japanese (ja)
Inventor
六蔵 原
友則 木村
井幡 光詞
西岡 泰弘
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/008588 priority Critical patent/WO2021176491A1/en
Publication of WO2021176491A1 publication Critical patent/WO2021176491A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices

Definitions

  • This disclosure relates to a vibration sensor.
  • the vibration sensor disclosed in Patent Document 1 has a structure that supports both ends of the piezoelectric substrate.
  • the piezoelectric substrate receives vibration from its thickness direction. Therefore, when the piezoelectric substrate vibrates, the piezoelectric substrate may be damaged because the displacement direction differs depending on the portion.
  • the present disclosure has been made in order to solve the above-mentioned problems, and an object of the present disclosure is to provide a vibration sensor capable of making the displacement direction due to vibration uniform in a piezoelectric substrate.
  • the vibration sensor according to the present disclosure is connected to a connecting portion that connects to a vibrating object, a supporting portion that is connected to the connecting portion, and supports the piezoelectric substrate over the entire support surface that supports the piezoelectric substrate, and is connected to the piezoelectric substrate. It includes an elastic portion that elastically deforms with respect to vibration of an object, and a heavy portion that is connected to the elastic portion and reflects ultrasonic waves transmitted from the piezoelectric substrate into the elastic portion at an interface between the elastic portion. It is a thing.
  • the displacement direction due to vibration can be made uniform.
  • FIG. 1 It is a vertical sectional view which shows the structure of the vibration sensor which concerns on Embodiment 1.
  • FIG. It is a vertical sectional view which shows the structure of another vibration sensor which concerns on Embodiment 1.
  • FIG. It is a vertical sectional view which shows the structure of another vibration sensor which concerns on Embodiment 2.
  • FIG. It is a vertical sectional view which shows the structure of the vibration sensor which concerns on Embodiment 3.
  • FIG. It is a vertical sectional view which shows the structure of the vibration sensor which concerns on Embodiment 4.
  • FIG. 1 shows the structure of the vibration sensor which concerns on Embodiment 1.
  • FIG. It is a vertical sectional view which shows the structure of another vibration sensor which concerns on Embodiment 1.
  • FIG. It is a vertical sectional view which shows
  • FIG. 1 is a vertical cross-sectional view showing the configuration of the vibration sensor according to the first embodiment.
  • FIG. 2 is a vertical sectional view showing the configuration of another vibration sensor according to the first embodiment.
  • the vibration sensor according to the first embodiment shown in FIG. 1 detects the vibration generated in the object 1.
  • This vibration sensor includes a connection portion 2, a support portion 3, a piezoelectric substrate 4, blind electrodes 5a and 5b, an elastic portion 6, and a weight portion 7.
  • the connecting portion 2, the supporting portion 3, the piezoelectric substrate 4, the elastic portion 6, and the weight portion 7 are laminated in this order from the upper side to the lower side.
  • connection part 2 One end of the connection part 2 is connected to the object 1, and the other end of the connection part 2 is connected to the support part 3.
  • the connecting portion 2 is a strut member that receives the vibration generated in the object 1.
  • the support portion 3 is, for example, a rigid body made of metal having high rigidity. Specifically, the support portion 3 has a rigidity that does not deform even when the vibration generated in the object 1 is transmitted.
  • One surface of the support portion 3 is connected to the other end of the connection portion 2, and the other surface of the support portion 3 supports the piezoelectric substrate 4 described later. Therefore, in the support portion 3, the vibration generated in the object 1 is transmitted from the connection portion 2, and the transmitted vibration is further transmitted to the piezoelectric substrate 4.
  • the other surface of the support portion 3 is arranged on the opposite side of the one surface.
  • the other surface is a support surface that supports the piezoelectric substrate 4 over the entire area.
  • the piezoelectric substrate 4 is supported by the entire support surface of the support portion 3. In the piezoelectric substrate 4, the vibration generated in the object 1 is transmitted from the support portion 3, and the transmitted vibration is further transmitted to the elastic portion 6.
  • the blind electrodes 5a and 5b are electrically connected to the piezoelectric substrate 4.
  • the input signal is input through the blind electrode 5b, and the output signal is output through the blind electrode 5a.
  • the blind electrode 5a is electrically connected to an amplifier (not shown) provided outside the vibration sensor.
  • the elastic portion 6 is made of, for example, an elastic resin material.
  • the elastic portion 6 is connected to the piezoelectric substrate 4. Therefore, the elastic portion 6 elastically deforms when the vibration generated in the object 1 is transmitted from the piezoelectric substrate 4. Further, as will be described in detail later, the ultrasonic waves generated in the piezoelectric substrate 4 pass through the elastic portion 6.
  • the weight part 7 is connected to the elastic part 6.
  • the vibration generated in the object 1 is transmitted from the elastic portion 6, the heavy portion 7 moves up and down according to the elastic deformation of the elastic portion 6. That is, the piezoelectric substrate 4 and the weight portion 7 are connected via the elastic portion 6. Therefore, in the vibration sensor, even if a strong impact is applied from the object 1, the elastic portion 6 is interposed between the piezoelectric substrate 4 and the weight portion 7, so that the elastic portion 6 acts as a cushioning material. do.
  • the vibration generated in the object 1 is transmitted to the support portion 3 via the connection portion 2.
  • the vibration transmitted to the support portion 3 is further transmitted to the piezoelectric substrate 4, but since the support portion 3 has high rigidity, the vibration is transmitted with almost no deformation. It is transmitted to the piezoelectric substrate 4 with such a pressure. If the pressure applied to the piezoelectric substrate 4 is uneven, the piezoelectric substrate 4 may be damaged, but the support portion 3 makes the pressure uniform to prevent the piezoelectric substrate 4 from being damaged. Then, the vibration transmitted to the piezoelectric substrate 4 is further transmitted to the weight portion 7 via the elastic portion 6.
  • the input signal is input to the piezoelectric substrate 4 via the blind electrode 5b
  • ultrasonic waves are generated on the piezoelectric substrate 4.
  • the ultrasonic waves generated in the piezoelectric substrate 4 are transmitted from the piezoelectric substrate 4 to the elastic portion 6 and reflected at the boundary surface between the elastic portion 6 and the heavy portion 7. Further, the reflected ultrasonic waves travel from the elastic portion 6 toward the piezoelectric substrate 4. Then, when the reflected ultrasonic wave returns to the piezoelectric substrate 4, the ultrasonic wave is detected and output as an electric signal by the blind electrode 5a.
  • the vibration sensor detects that the object 1 vibrates based on the change in the electric signal.
  • an insulating layer 8 is provided for the purpose of preventing the transmission of ultrasonic waves to the inside of the support portion 3.
  • the insulating layer 8 reflects ultrasonic waves.
  • the insulating layer 8 is provided between the support portion 3 and the piezoelectric substrate 4. Therefore, the vibration generated in the piezoelectric substrate 4 is not transmitted to the inside of the support portion 3.
  • the vibration sensor it is necessary to reflect the ultrasonic waves generated in the piezoelectric substrate 4 at the interface between the elastic portion 6 and the weight portion 7.
  • the vibration sensor may reflect ultrasonic waves by the adhesive by connecting the elastic portion 6 and the weight portion 7 with an adhesive.
  • the vibration sensor according to the first embodiment is connected to the connecting portion 2 connected to the vibrating object 1 and the supporting portion 2 to support the piezoelectric substrate 4 over the entire supporting surface supporting the piezoelectric substrate 4.
  • the elastic portion 6 which is connected to the portion 3 and the piezoelectric substrate 4 and elastically deforms with respect to the vibration of the object 1 and the elastic portion 6 which is connected to the elastic portion 6 to transmit ultrasonic waves from the piezoelectric substrate 4 into the elastic portion 6.
  • a weight portion 7 that reflects at the interface with the elastic portion 6 is provided. As a result, the vibration sensor can make the displacement direction due to vibration uniform on the piezoelectric substrate 4.
  • the vibration sensor is provided between the support portion 3 and the piezoelectric substrate 4, and includes an insulating layer 8 that reflects ultrasonic waves. Therefore, the vibration sensor can prevent the ultrasonic waves from being transmitted to the inside of the support portion 3. As a result, the vibration sensor can transmit the ultrasonic waves generated in the piezoelectric substrate 4 toward the inside of the elastic portion 6.
  • FIG. 3 is a vertical sectional view showing the configuration of the vibration sensor according to the second embodiment.
  • FIG. 4 is a vertical sectional view showing the configuration of another vibration sensor according to the third embodiment.
  • the vibration sensor according to the second embodiment shown in FIG. 3 has a structure in which the support portion 3 of the vibration sensor according to the first embodiment shown in FIG. 2 is changed to the sensor outer shell 3A.
  • the sensor outer shell 3A has a configuration that covers the piezoelectric substrate 4 from the outside, and protects the piezoelectric substrate 4.
  • the sensor outer shell 3A has a rigidity equivalent to that of the support portion 3.
  • the sensor outer shell 3A has a hollow shape.
  • the outer surface of the sensor outer shell 3A is connected to the other end of the connecting portion 2.
  • the sensor outer shell 3A houses a piezoelectric substrate 4, blind electrodes 5a and 5b, an elastic portion 6, a weight portion 7, and an insulating layer 8 therein.
  • the insulating layer 8, the piezoelectric substrate 4, the elastic portion 6, and the weight portion 7 are laminated in this order from the upper side to the lower side.
  • the insulating layer 8 is supported on the top surface of the sensor outer shell 3A.
  • the vibration generated in the object 1 is transmitted to the sensor outer shell 3A via the connecting portion 2.
  • the vibration transmitted to the sensor outer shell 3A is further transmitted to the piezoelectric substrate 4 via the insulating layer 8, but the sensor outer shell 3A is almost deformed because it has high rigidity.
  • the vibration is transmitted to the piezoelectric substrate 4 with a uniform pressure.
  • the sensor outer shell 3A prevents the piezoelectric substrate 4 from being damaged by making the pressure due to vibration uniform.
  • the vibration transmitted to the piezoelectric substrate 4 is further transmitted to the weight portion 7 via the elastic portion 6.
  • the sensor outer shell 3A may be provided between the connection portion 2 and the support portion 3 in the vibration sensor according to the first embodiment shown in FIG.
  • the vibration sensor according to the third embodiment shown in FIG. 4 has a structure in which the weight portion 7 of the vibration sensor according to the first embodiment shown in FIG. 2 is changed to the sensor outer shell 7A.
  • the sensor outer shell 7A has a configuration that covers the piezoelectric substrate 4 from the outside, and protects the piezoelectric substrate 4.
  • the sensor outer shell 7A moves up and down according to the elastic deformation of the elastic portion 6, similarly to the weight portion 7.
  • the sensor outer shell 7A has a hollow shape.
  • the sensor outer shell 7A houses a support portion 3, a piezoelectric substrate 4, blind electrodes 5a and 5b, an elastic portion 6, and an insulating layer 8 inside the sensor outer shell 7A.
  • the support portion 3, the insulating layer 8, the piezoelectric substrate 4, and the elastic portion 6 are laminated in this order from top to bottom.
  • the elastic portion 6 is connected to the bottom surface of the sensor outer shell 7A.
  • the connecting portion 2 penetrates the sensor outer shell 7A, and one end thereof is connected to the supporting portion 3.
  • the vibration generated in the object 1 is transmitted to the support portion 3 via the connection portion 2.
  • the vibration transmitted to the support portion 3 is further transmitted to the piezoelectric substrate 4 via the insulating layer 8, but the support portion 3 is almost deformed because it has high rigidity.
  • the vibration is transmitted to the piezoelectric substrate 4 with a uniform pressure.
  • the support portion 3 prevents damage to the piezoelectric substrate 4 by making the pressure due to vibration uniform.
  • the vibration transmitted to the piezoelectric substrate 4 is further transmitted to the sensor outer shell 7A via the elastic portion 6.
  • the vibration sensor according to the second embodiment includes the sensor outer shell 3A, and the sensor outer shell 3A has a configuration that covers the piezoelectric substrate 4 from the outside. Therefore, the vibration sensor can protect the piezoelectric substrate 4 by providing the sensor outer shell 3A.
  • the vibration sensor according to the second embodiment includes a sensor outer shell 7A, and the sensor outer shell 7A is configured to cover the piezoelectric substrate 4 from the outside. Therefore, the vibration sensor can protect the piezoelectric substrate 4 by including the sensor outer shell 7A.
  • FIG. 5 is a vertical sectional view showing the configuration of the vibration sensor according to the third embodiment.
  • FIG. 6 is a vertical sectional view showing a wiring state of the vibration sensor according to the third embodiment.
  • the vibration sensor according to the third embodiment shown in FIGS. 5 and 6 has a structure in which a pedestal 9 is added to the vibration sensor according to the second embodiment shown in FIG.
  • the pedestal 9 is used to strengthen the connection between the object 1 and the connecting portion 2.
  • the pedestal 9 may be provided between the object 1 and the connecting portion 2, and may have a magnet at least on the contact surface with the object 1.
  • the pedestal 9 may be entirely a magnet.
  • the pedestal 9 is connected to the object 1 by the attractive force of the magnet, and is connected to one end of the connecting portion 2 by using an adhesive or mechanical fastening.
  • the vibration sensor when the vibration sensor includes a pedestal 9, the vibration sensor may use the pedestal 9 as a fixing jig for the signal lines 10a and 10b.
  • the signal lines 10a and 10b are for transmitting and receiving electric signals to and from the piezoelectric substrate 4.
  • the signal lines 10a and 10b are connected between the blind electrodes 5a and 5b and a signal input / output device (not shown) installed outside the vibration sensor. Further, the signal lines 10a and 10b are routed between the blind electrodes 5a and 5b and the signal input / output device, and the insides of the insulating layer 8, the support portion 3, the connection portion 2 and the pedestal 9 are respectively connected. Of which, it is fixed inside the pedestal 9. At this time, the vibration sensor may further fix the signal lines 10a and 10b to the fixed position of the pedestal 9 on the object 1.
  • the vibration sensor detects vibration by passing the signal lines 10a and 10b through at least the inside of the connection portion 2 among the insides of the insulating layer 8, the support portion 3, the connection portion 2, and the pedestal 9. Occasionally, the fluctuation of the signal lines 10a and 10b can be suppressed. As a result, since the weights of the signal lines 10a and 10b do not act on the piezoelectric substrate 4, the vibration sensor can prevent the detection accuracy from being lowered.
  • the vibration sensor according to the third embodiment includes the blind electrodes 5a and 5b electrically connected to the piezoelectric substrate 4, and the signal lines 10a and 10b electrically connected to these blind electrodes 5a and 5b are provided. , Passes through the inside of the connection part 2. Therefore, since the weights of the signal lines 10a and 10b do not act on the piezoelectric substrate 4, the vibration sensor can prevent the detection accuracy from being lowered.
  • FIG. 7 is a vertical sectional view showing the configuration of the vibration sensor according to the fourth embodiment.
  • the vibration sensor according to the fourth embodiment shown in FIG. 7 has a structure in which an amplifier 11 is added to the vibration sensor according to the third embodiment shown in FIG.
  • the vibration sensor according to the fourth embodiment includes an amplifier 11.
  • the amplifier 11 amplifies the electric signal output from the piezoelectric substrate 4 through the blind electrode 5a.
  • the amplifier 11 is provided inside, for example, the insulating layer 8.
  • FIG. 7 shows an example in which the amplifier 11 is provided inside the insulating layer 8, but the vibration sensor uses the amplifier 11 inside the connection portion 2, the inside of the support portion 3, and the inside of the pedestal 9. Of these, it may be provided inside any one of them.
  • the vibration sensor When the vibration sensor includes the amplifier 11, the vibration sensor has the signal lines 10a and 10b, the power line 12a, and the signal line 12b.
  • the signal line 10a is connected between the amplifier 11 and the blind electrode 5a.
  • the signal line 10b connects the amplifier 11 and the blind electrode 5b.
  • the signal lines 10a and 10b are provided inside the insulating layer 8.
  • the power line 12a supplies drive power to the amplifier 11.
  • the power line 12a connects the amplifier 11 and a power source (not shown) installed outside the vibration sensor.
  • the signal line 12b outputs an electric signal from the blind electrode 5a via the amplifier 11 to the outside of the vibration sensor.
  • the signal line 12b connects the amplifier 11 and a signal input / output device installed outside the vibration sensor.
  • the power line 12a and the signal line 12b pass through the insides of the insulating layer 8, the support portion 3, the connection portion 2, and the pedestal 9.
  • the vibration sensor vibrates by passing the power line 12a and the signal line 12b through at least the inside of the connection portion 2 among the insides of the insulating layer 8, the support portion 3, the connection portion 2, and the pedestal 9. At the time of detection, the vibration of the power line 12a and the signal line 12b can be suppressed. As a result, since the weights of the power line 12a and the signal line 12b do not act on the piezoelectric substrate 4, the vibration sensor can prevent the detection accuracy from being lowered.
  • the vibration sensor according to the fourth embodiment includes the blind electrodes 5a and 5b that are electrically connected to the piezoelectric substrate 4, and the signal lines 12b that are electrically connected to these blind electrodes 5a and 5b are connected. It passes through the inside of the part 2. Therefore, since the weight of the signal line 12b does not act on the piezoelectric substrate 4, the vibration sensor can prevent the detection accuracy from being lowered.
  • the vibration sensor according to the fourth embodiment includes an amplifier 11 that amplifies the electric signal output from the blind electrodes 5a and 5b, and the power line 12a that supplies the driving power to the amplifier 11 is inside the connection portion 2. pass. Therefore, since the weight of the power line 12a does not act on the piezoelectric substrate 4, the vibration sensor can prevent the detection accuracy from being lowered.
  • any combination of the embodiments, modification of any component in each embodiment, or omission of any component in each embodiment can be omitted. It is possible.
  • the vibration sensor according to the present disclosure is suitable for use in a vibration sensor or the like because the piezoelectric substrate is provided with a support portion that supports the piezoelectric substrate so that the displacement direction due to vibration can be made uniform.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

This vibration sensor comprises: a connection part (2) which is connected to a vibrating object (1); a supporting part (3) which is connected to the connection part (2) and which supports a piezoelectric substrate (4) across the entire area of a supporting surface for supporting said piezoelectric substrate (4); an elastic part (6) which is connected to the piezoelectric substrate (4) and which is elastically deformed upon receiving vibration from the object (1); and a weight part 7 which is connected to the elastic part (6) and which reflects ultrasonic waves transmitted inside the elastic part (6) from the piezoelectric substrate (4) at an interface with the elastic part (6).

Description

振動センサVibration sensor
 本開示は、振動センサに関する。 This disclosure relates to a vibration sensor.
 従来、対象物において発生する振動を検出する振動センサが提供されている。このような、従来の振動センサは、例えば、特許文献1に開示されている。 Conventionally, a vibration sensor that detects vibration generated in an object has been provided. Such a conventional vibration sensor is disclosed in Patent Document 1, for example.
特開2013-57627号公報Japanese Unexamined Patent Publication No. 2013-57627
 特許文献1に開示される振動センサは、圧電基板の両端を支持する構造となっている。圧電基板は、その板厚方向から振動を受ける。このため、圧電基板が振動する場合、当該圧電基板は、部位によって変位方向が異なるため、破損するおそれがあった。 The vibration sensor disclosed in Patent Document 1 has a structure that supports both ends of the piezoelectric substrate. The piezoelectric substrate receives vibration from its thickness direction. Therefore, when the piezoelectric substrate vibrates, the piezoelectric substrate may be damaged because the displacement direction differs depending on the portion.
 本開示は、上記のような課題を解決するためになされたもので、圧電基板において、振動による変位方向を一様にすることができる振動センサを提供することを目的とする。 The present disclosure has been made in order to solve the above-mentioned problems, and an object of the present disclosure is to provide a vibration sensor capable of making the displacement direction due to vibration uniform in a piezoelectric substrate.
 本開示に係る振動センサは、振動する対象物と接続する接続部と、接続部と接続し、圧電基板を支持する支持面全域で当該圧電基板を支持する支持部と、圧電基板と接続し、対象物の振動に対して弾性変形する弾性部と、弾性部と接続し、圧電基板から弾性部内に伝達された超音波を、当該弾性部との間の境界面で反射する重量部とを備えるものである。 The vibration sensor according to the present disclosure is connected to a connecting portion that connects to a vibrating object, a supporting portion that is connected to the connecting portion, and supports the piezoelectric substrate over the entire support surface that supports the piezoelectric substrate, and is connected to the piezoelectric substrate. It includes an elastic portion that elastically deforms with respect to vibration of an object, and a heavy portion that is connected to the elastic portion and reflects ultrasonic waves transmitted from the piezoelectric substrate into the elastic portion at an interface between the elastic portion. It is a thing.
 本開示によれば、圧電基板において、振動による変位方向を一様にすることができる。 According to the present disclosure, in the piezoelectric substrate, the displacement direction due to vibration can be made uniform.
実施の形態1に係る振動センサの構成を示す縦断面図である。It is a vertical sectional view which shows the structure of the vibration sensor which concerns on Embodiment 1. FIG. 実施の形態1に係る他の振動センサの構成を示す縦断面図である。It is a vertical sectional view which shows the structure of another vibration sensor which concerns on Embodiment 1. FIG. 実施の形態2に係る振動センサの構成を示す縦断面図である。It is a vertical sectional view which shows the structure of the vibration sensor which concerns on Embodiment 2. FIG. 実施の形態2に係る他の振動センサの構成を示す縦断面図である。It is a vertical sectional view which shows the structure of another vibration sensor which concerns on Embodiment 2. FIG. 実施の形態3に係る振動センサの構成を示す縦断面図である。It is a vertical sectional view which shows the structure of the vibration sensor which concerns on Embodiment 3. 実施の形態3に係る振動センサの配線状態を示す縦断面図である。It is a vertical sectional view which shows the wiring state of the vibration sensor which concerns on Embodiment 3. FIG. 実施の形態4に係る振動センサの構成を示す縦断面図である。It is a vertical sectional view which shows the structure of the vibration sensor which concerns on Embodiment 4. FIG.
 以下、本開示をより詳細に説明するために、本開示を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present disclosure in more detail, a mode for carrying out the present disclosure will be described with reference to the attached drawings.
実施の形態1.
 実施の形態1に係る振動センサについて、図1及び図2を用いて説明する。図1は、実施の形態1に係る振動センサの構成を示す縦断面図である。図2は、実施の形態1に係る他の振動センサの構成を示す縦断面図である。
Embodiment 1.
The vibration sensor according to the first embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a vertical cross-sectional view showing the configuration of the vibration sensor according to the first embodiment. FIG. 2 is a vertical sectional view showing the configuration of another vibration sensor according to the first embodiment.
 図1に示した実施の形態1に係る振動センサは、対象物1において発生する振動を検出するものである。この振動センサは、接続部2、支持部3、圧電基板4、すだれ状電極5a,5b、弾性部6、及び、重量部7を備えている。接続部2、支持部3、圧電基板4、弾性部6、及び、重量部7は、上方から下方に向けて順に積層されている。 The vibration sensor according to the first embodiment shown in FIG. 1 detects the vibration generated in the object 1. This vibration sensor includes a connection portion 2, a support portion 3, a piezoelectric substrate 4, blind electrodes 5a and 5b, an elastic portion 6, and a weight portion 7. The connecting portion 2, the supporting portion 3, the piezoelectric substrate 4, the elastic portion 6, and the weight portion 7 are laminated in this order from the upper side to the lower side.
 接続部2の一端は、対象物1と接続し、接続部2の他端は、支持部3と接続している。接続部2は、対象物1において発生した振動を受ける支柱部材である。 One end of the connection part 2 is connected to the object 1, and the other end of the connection part 2 is connected to the support part 3. The connecting portion 2 is a strut member that receives the vibration generated in the object 1.
 支持部3は、例えば、高い剛性を有する金属製の剛体である。具体的には、支持部3は、対象物1において発生した振動が伝達された場合であっても、変形しない程度の剛性を有している。支持部3の一方の面は、接続部2の他端と接続しており、支持部3の他方の面は、後述する圧電基板4を支持している。このため、支持部3は、対象物1において発生した振動が接続部2から伝達され、この伝達された振動を更に圧電基板4に伝達する。ここで、支持部3の他方の面は、その一方の面の反対側に配置されている。この他方の面は、圧電基板4をその全域で支持する支持面である。 The support portion 3 is, for example, a rigid body made of metal having high rigidity. Specifically, the support portion 3 has a rigidity that does not deform even when the vibration generated in the object 1 is transmitted. One surface of the support portion 3 is connected to the other end of the connection portion 2, and the other surface of the support portion 3 supports the piezoelectric substrate 4 described later. Therefore, in the support portion 3, the vibration generated in the object 1 is transmitted from the connection portion 2, and the transmitted vibration is further transmitted to the piezoelectric substrate 4. Here, the other surface of the support portion 3 is arranged on the opposite side of the one surface. The other surface is a support surface that supports the piezoelectric substrate 4 over the entire area.
 圧電基板4は、支持部3の支持面全域によって支持されている。この圧電基板4は、対象物1において発生した振動が支持部3から伝達され、この伝達された振動を更に弾性部6に伝達する。 The piezoelectric substrate 4 is supported by the entire support surface of the support portion 3. In the piezoelectric substrate 4, the vibration generated in the object 1 is transmitted from the support portion 3, and the transmitted vibration is further transmitted to the elastic portion 6.
 すだれ状電極5a,5bは、圧電基板4と電気的に接続している。例えば、圧電基板4は、入力信号がすだれ状電極5bを通じて入力され、出力信号をすだれ状電極5aを通じて出力する。このとき、すだれ状電極5aは、振動センサの外部に設けられた増幅器(図示省略)と電気的に接続している。 The blind electrodes 5a and 5b are electrically connected to the piezoelectric substrate 4. For example, in the piezoelectric substrate 4, the input signal is input through the blind electrode 5b, and the output signal is output through the blind electrode 5a. At this time, the blind electrode 5a is electrically connected to an amplifier (not shown) provided outside the vibration sensor.
 弾性部6は、例えば、弾性樹脂材で形成されている。弾性部6は、圧電基板4と接続している。このため、弾性部6は、対象物1において発生した振動が圧電基板4から伝達されると、弾性変形する。また、詳細については後述するが、弾性部6には、圧電基板4において発生された超音波が通過する。 The elastic portion 6 is made of, for example, an elastic resin material. The elastic portion 6 is connected to the piezoelectric substrate 4. Therefore, the elastic portion 6 elastically deforms when the vibration generated in the object 1 is transmitted from the piezoelectric substrate 4. Further, as will be described in detail later, the ultrasonic waves generated in the piezoelectric substrate 4 pass through the elastic portion 6.
 重量部7は、弾性部6と接続している。この重量部7は、対象物1において発生した振動が弾性部6から伝達されると、当該弾性部6の弾性変形に応じて上下動する。即ち、圧電基板4と重量部7とは、弾性部6を介して接続されている。このため、振動センサにおいては、対象物1から強い衝撃が加えられても、圧電基板4と重量部7との間に弾性部6が介在されているため、当該弾性部6が緩衝材として作用する。 The weight part 7 is connected to the elastic part 6. When the vibration generated in the object 1 is transmitted from the elastic portion 6, the heavy portion 7 moves up and down according to the elastic deformation of the elastic portion 6. That is, the piezoelectric substrate 4 and the weight portion 7 are connected via the elastic portion 6. Therefore, in the vibration sensor, even if a strong impact is applied from the object 1, the elastic portion 6 is interposed between the piezoelectric substrate 4 and the weight portion 7, so that the elastic portion 6 acts as a cushioning material. do.
 従って、対象物1において発生した振動は、接続部2を介して、支持部3に伝達される。次いで、支持部3に伝達された振動は、圧電基板4に更に伝達されることになるが、当該支持部3は、高い剛性を有しているため、殆ど変形することなく、その振動を一様な圧力で圧電基板4に伝達する。圧電基板4に加わる圧力に偏りがあると、圧電基板4が破損するおそれがあるが、支持部3が、その圧力を一様とすることで、圧電基板4の破損は、防止される。そして、圧電基板4に伝達された振動は、弾性部6を介して、重量部7に更に伝達される。 Therefore, the vibration generated in the object 1 is transmitted to the support portion 3 via the connection portion 2. Next, the vibration transmitted to the support portion 3 is further transmitted to the piezoelectric substrate 4, but since the support portion 3 has high rigidity, the vibration is transmitted with almost no deformation. It is transmitted to the piezoelectric substrate 4 with such a pressure. If the pressure applied to the piezoelectric substrate 4 is uneven, the piezoelectric substrate 4 may be damaged, but the support portion 3 makes the pressure uniform to prevent the piezoelectric substrate 4 from being damaged. Then, the vibration transmitted to the piezoelectric substrate 4 is further transmitted to the weight portion 7 via the elastic portion 6.
 また、入力信号がすだれ状電極5bを介して圧電基板4に入力されると、圧電基板4には、超音波が発生する。この圧電基板4において発生した超音波は、当該圧電基板4から弾性部6に伝達され、弾性部6と重量部7との間の境界面で反射する。更に、その反射した超音波は、弾性部6から圧電基板4に向けて進む。そして、反射した超音波が圧電基板4に戻ると、その超音波は、すだれ状電極5aによって、電気信号として検出されて出力される。 Further, when the input signal is input to the piezoelectric substrate 4 via the blind electrode 5b, ultrasonic waves are generated on the piezoelectric substrate 4. The ultrasonic waves generated in the piezoelectric substrate 4 are transmitted from the piezoelectric substrate 4 to the elastic portion 6 and reflected at the boundary surface between the elastic portion 6 and the heavy portion 7. Further, the reflected ultrasonic waves travel from the elastic portion 6 toward the piezoelectric substrate 4. Then, when the reflected ultrasonic wave returns to the piezoelectric substrate 4, the ultrasonic wave is detected and output as an electric signal by the blind electrode 5a.
 このとき、弾性部6に対象物1の振動が伝達されると、当該弾性部6は、その振動の圧力によって弾性変形する。これに伴って、超音波が弾性部6の内部を通過するときの経路長が変化すため、すだれ状電極5aから出力される電気信号も変化する。振動センサは、その電気信号の変化に基づいて、対象物1が振動したことを検出する。 At this time, when the vibration of the object 1 is transmitted to the elastic portion 6, the elastic portion 6 is elastically deformed by the pressure of the vibration. Along with this, the path length when the ultrasonic wave passes through the inside of the elastic portion 6 changes, so that the electric signal output from the blind electrode 5a also changes. The vibration sensor detects that the object 1 vibrates based on the change in the electric signal.
 よって、圧電基板4において発生した超音波は、振動センサの検出精度を向上させるためには、弾性部6の内部のみに伝達されることが望ましい。そこで、図2に示した振動センサにおいては、超音波の支持部3の内部への伝達を防止することを目的として、絶縁層8が設けられている。この絶縁層8は、超音波を反射するものである。絶縁層8は、支持部3と圧電基板4との間に設けられている。このため、圧電基板4において発生した振動は、支持部3の内部に伝達されることはない。 Therefore, it is desirable that the ultrasonic waves generated on the piezoelectric substrate 4 are transmitted only to the inside of the elastic portion 6 in order to improve the detection accuracy of the vibration sensor. Therefore, in the vibration sensor shown in FIG. 2, an insulating layer 8 is provided for the purpose of preventing the transmission of ultrasonic waves to the inside of the support portion 3. The insulating layer 8 reflects ultrasonic waves. The insulating layer 8 is provided between the support portion 3 and the piezoelectric substrate 4. Therefore, the vibration generated in the piezoelectric substrate 4 is not transmitted to the inside of the support portion 3.
 また、上述したように、振動センサにおいては、圧電基板4において発生した超音波を、弾性部6と重量部7との間の境界面で、反射させる必要がある。しかしながら、弾性部6の材質と重量部7の材質とによっては、超音波がそれらの境界面で反射し難い場合がある。このような場合、振動センサは、弾性部6と重量部7とを接着剤で接続することにより、その接着剤によって、超音波を反射させても構わない。 Further, as described above, in the vibration sensor, it is necessary to reflect the ultrasonic waves generated in the piezoelectric substrate 4 at the interface between the elastic portion 6 and the weight portion 7. However, depending on the material of the elastic portion 6 and the material of the heavy portion 7, it may be difficult for ultrasonic waves to be reflected at their interface. In such a case, the vibration sensor may reflect ultrasonic waves by the adhesive by connecting the elastic portion 6 and the weight portion 7 with an adhesive.
 以上、実施の形態1に係る振動センサは、振動する対象物1と接続する接続部2と、接続部2と接続し、圧電基板4を支持する支持面全域で当該圧電基板4を支持する支持部3と、圧電基板4と接続し、対象物1の振動に対して弾性変形する弾性部6と、弾性部6と接続し、圧電基板4から弾性部6内に伝達された超音波を、当該弾性部6との間の境界面で反射する重量部7とを備える。これにより、振動センサは、圧電基板4において、振動による変位方向を一様にすることができる。 As described above, the vibration sensor according to the first embodiment is connected to the connecting portion 2 connected to the vibrating object 1 and the supporting portion 2 to support the piezoelectric substrate 4 over the entire supporting surface supporting the piezoelectric substrate 4. The elastic portion 6 which is connected to the portion 3 and the piezoelectric substrate 4 and elastically deforms with respect to the vibration of the object 1 and the elastic portion 6 which is connected to the elastic portion 6 to transmit ultrasonic waves from the piezoelectric substrate 4 into the elastic portion 6. A weight portion 7 that reflects at the interface with the elastic portion 6 is provided. As a result, the vibration sensor can make the displacement direction due to vibration uniform on the piezoelectric substrate 4.
 また、振動センサは、支持部3と圧電基板4との間に設けられ、超音波を反射する絶縁層8を備える。このため、振動センサは、超音波の支持部3の内部への伝達を防止することができる。この結果、振動センサは、圧電基板4において発生した超音波を、弾性部6の内部に向けて伝達させることができる。 Further, the vibration sensor is provided between the support portion 3 and the piezoelectric substrate 4, and includes an insulating layer 8 that reflects ultrasonic waves. Therefore, the vibration sensor can prevent the ultrasonic waves from being transmitted to the inside of the support portion 3. As a result, the vibration sensor can transmit the ultrasonic waves generated in the piezoelectric substrate 4 toward the inside of the elastic portion 6.
実施の形態2.
 実施の形態2に係る振動センサについて、図3及び図4を用いて説明する。図3は、実施の形態2に係る振動センサの構成を示す縦断面図である。図4は、実施の形態3に係る他の振動センサの構成を示す縦断面図である。
Embodiment 2.
The vibration sensor according to the second embodiment will be described with reference to FIGS. 3 and 4. FIG. 3 is a vertical sectional view showing the configuration of the vibration sensor according to the second embodiment. FIG. 4 is a vertical sectional view showing the configuration of another vibration sensor according to the third embodiment.
 図3に示した実施の形態2に係る振動センサは、図2に示した実施の形態1に係る振動センサの支持部3を、センサ外郭3Aに変更した構造となっている。センサ外郭3Aは、圧電基板4を外側から覆う構成となっており、当該圧電基板4を保護するものである。このセンサ外郭3Aは、支持部3の剛性と同等の剛性を有している。 The vibration sensor according to the second embodiment shown in FIG. 3 has a structure in which the support portion 3 of the vibration sensor according to the first embodiment shown in FIG. 2 is changed to the sensor outer shell 3A. The sensor outer shell 3A has a configuration that covers the piezoelectric substrate 4 from the outside, and protects the piezoelectric substrate 4. The sensor outer shell 3A has a rigidity equivalent to that of the support portion 3.
 具体的には、センサ外郭3Aは、中空状をなしている。センサ外郭3Aの外面は、接続部2の他端と接続している。センサ外郭3Aは、その内部に、圧電基板4、すだれ状電極5a,5b、弾性部6、重量部7、及び、絶縁層8を収納している。このとき、絶縁層8、圧電基板4、弾性部6、及び、重量部7は、上方から下方に向けて順に積層されている。絶縁層8は、センサ外郭3Aの天面に支持されている。 Specifically, the sensor outer shell 3A has a hollow shape. The outer surface of the sensor outer shell 3A is connected to the other end of the connecting portion 2. The sensor outer shell 3A houses a piezoelectric substrate 4, blind electrodes 5a and 5b, an elastic portion 6, a weight portion 7, and an insulating layer 8 therein. At this time, the insulating layer 8, the piezoelectric substrate 4, the elastic portion 6, and the weight portion 7 are laminated in this order from the upper side to the lower side. The insulating layer 8 is supported on the top surface of the sensor outer shell 3A.
 従って、対象物1において発生した振動は、接続部2を介して、センサ外郭3Aに伝達される。次いで、センサ外郭3Aに伝達された振動は、絶縁層8を介して、圧電基板4に更に伝達されることになるが、当該センサ外郭3Aは、高い剛性を有しているため、殆ど変形することなく、その振動を一様な圧力で圧電基板4に伝達する。センサ外郭3Aは、振動による圧力を一様とすることで、圧電基板4の破損を防止する。そして、圧電基板4に伝達された振動は、弾性部6を介して、重量部7に更に伝達される。 Therefore, the vibration generated in the object 1 is transmitted to the sensor outer shell 3A via the connecting portion 2. Next, the vibration transmitted to the sensor outer shell 3A is further transmitted to the piezoelectric substrate 4 via the insulating layer 8, but the sensor outer shell 3A is almost deformed because it has high rigidity. The vibration is transmitted to the piezoelectric substrate 4 with a uniform pressure. The sensor outer shell 3A prevents the piezoelectric substrate 4 from being damaged by making the pressure due to vibration uniform. Then, the vibration transmitted to the piezoelectric substrate 4 is further transmitted to the weight portion 7 via the elastic portion 6.
 なお、センサ外郭3Aは、図1に示した実施の形態1に係る振動センサにおいて、接続部2と支持部3との間に設けられても良い。 The sensor outer shell 3A may be provided between the connection portion 2 and the support portion 3 in the vibration sensor according to the first embodiment shown in FIG.
 また、図4に示した実施の形態3に係る振動センサは、図2に示した実施の形態1に係る振動センサの重量部7を、センサ外郭7Aに変更した構造となっている。センサ外郭7Aは、圧電基板4を外側から覆う構成となっており、当該圧電基板4を保護するものである。このセンサ外郭7Aは、重量部7と同様に、弾性部6の弾性変形に応じて上下動する。 Further, the vibration sensor according to the third embodiment shown in FIG. 4 has a structure in which the weight portion 7 of the vibration sensor according to the first embodiment shown in FIG. 2 is changed to the sensor outer shell 7A. The sensor outer shell 7A has a configuration that covers the piezoelectric substrate 4 from the outside, and protects the piezoelectric substrate 4. The sensor outer shell 7A moves up and down according to the elastic deformation of the elastic portion 6, similarly to the weight portion 7.
 具体的には、センサ外郭7Aは、中空状をなしている。センサ外郭7Aは、その内部に、支持部3、圧電基板4、すだれ状電極5a,5b、弾性部6、及び、絶縁層8を収納している。このとき、支持部3、絶縁層8、圧電基板4、及び、弾性部6は、上方から下方に順に積層されている。また、弾性部6は、センサ外郭7Aの底面に接続している。更に、接続部2は、センサ外郭7Aを貫通し、その一端は、支持部3に接続している。 Specifically, the sensor outer shell 7A has a hollow shape. The sensor outer shell 7A houses a support portion 3, a piezoelectric substrate 4, blind electrodes 5a and 5b, an elastic portion 6, and an insulating layer 8 inside the sensor outer shell 7A. At this time, the support portion 3, the insulating layer 8, the piezoelectric substrate 4, and the elastic portion 6 are laminated in this order from top to bottom. Further, the elastic portion 6 is connected to the bottom surface of the sensor outer shell 7A. Further, the connecting portion 2 penetrates the sensor outer shell 7A, and one end thereof is connected to the supporting portion 3.
 従って、対象物1において発生した振動は、接続部2を介して、支持部3に伝達される。次いで、支持部3に伝達された振動は、絶縁層8を介して、圧電基板4に更に伝達されることになるが、当該支持部3は、高い剛性を有しているため、殆ど変形することなく、その振動を一様な圧力で圧電基板4に伝達する。支持部3は、振動による圧力を一様とすることで、圧電基板4の破損を防止する。そして、圧電基板4に伝達された振動は、弾性部6を介して、センサ外郭7Aに更に伝達される。 Therefore, the vibration generated in the object 1 is transmitted to the support portion 3 via the connection portion 2. Next, the vibration transmitted to the support portion 3 is further transmitted to the piezoelectric substrate 4 via the insulating layer 8, but the support portion 3 is almost deformed because it has high rigidity. The vibration is transmitted to the piezoelectric substrate 4 with a uniform pressure. The support portion 3 prevents damage to the piezoelectric substrate 4 by making the pressure due to vibration uniform. Then, the vibration transmitted to the piezoelectric substrate 4 is further transmitted to the sensor outer shell 7A via the elastic portion 6.
 以上、実施の形態2に係る振動センサは、センサ外郭3Aを備えており、このセンサ外郭3Aは、圧電基板4を外側から覆う構成となっている。このため、振動センサは、センサ外郭3Aを備えることにより、圧電基板4を保護することができる。 As described above, the vibration sensor according to the second embodiment includes the sensor outer shell 3A, and the sensor outer shell 3A has a configuration that covers the piezoelectric substrate 4 from the outside. Therefore, the vibration sensor can protect the piezoelectric substrate 4 by providing the sensor outer shell 3A.
 また、実施の形態2に係る振動センサは、センサ外郭7Aを備えており、このセンサ外郭7Aは、圧電基板4を外側から覆う構成となっている。このため、振動センサは、センサ外郭7Aを備えることにより、圧電基板4を保護することができる。 Further, the vibration sensor according to the second embodiment includes a sensor outer shell 7A, and the sensor outer shell 7A is configured to cover the piezoelectric substrate 4 from the outside. Therefore, the vibration sensor can protect the piezoelectric substrate 4 by including the sensor outer shell 7A.
実施の形態3.
 実施の形態3に係る振動センサについて、図5及び図6を用いて説明する。図5は、実施の形態3に係る振動センサの構成を示す縦断面図である。図6は、実施の形態3に係る振動センサの配線状態を示す縦断面図である。
Embodiment 3.
The vibration sensor according to the third embodiment will be described with reference to FIGS. 5 and 6. FIG. 5 is a vertical sectional view showing the configuration of the vibration sensor according to the third embodiment. FIG. 6 is a vertical sectional view showing a wiring state of the vibration sensor according to the third embodiment.
 図5及び図6に示した実施の形態3に係る振動センサは、図4に示した実施の形態2に係る振動センサに対して、台座9を追加した構造となっている。 The vibration sensor according to the third embodiment shown in FIGS. 5 and 6 has a structure in which a pedestal 9 is added to the vibration sensor according to the second embodiment shown in FIG.
 図5に示すように、台座9は、例えば、対象物1が磁性体から成る金属製となる場合、当該対象物1と接続部2との間の接続を強固にする際に使用される。この場合、台座9は、対象物1と接続部2との間に設けられ、少なくとも、対象物1との接触面に磁石を有していれば良い。なお、台座9は、全体が磁石であっても良い。台座9は、磁石の吸引力によって、対象物1と接続すると共に、接続部2の一端との間で、接着剤又は機械的締結を利用して接続する。 As shown in FIG. 5, for example, when the object 1 is made of a metal made of a magnetic material, the pedestal 9 is used to strengthen the connection between the object 1 and the connecting portion 2. In this case, the pedestal 9 may be provided between the object 1 and the connecting portion 2, and may have a magnet at least on the contact surface with the object 1. The pedestal 9 may be entirely a magnet. The pedestal 9 is connected to the object 1 by the attractive force of the magnet, and is connected to one end of the connecting portion 2 by using an adhesive or mechanical fastening.
 また、図6に示すように、振動センサが台座9を備える場合、振動センサは、その台座9を信号線10a,10bの固定治具として使用しても構わない。この信号線10a,10bは、圧電基板4に対して、電気信号の授受を行うためのものである。 Further, as shown in FIG. 6, when the vibration sensor includes a pedestal 9, the vibration sensor may use the pedestal 9 as a fixing jig for the signal lines 10a and 10b. The signal lines 10a and 10b are for transmitting and receiving electric signals to and from the piezoelectric substrate 4.
 信号線10a,10bは、すだれ状電極5a,5bと、振動センサの外部に設置された信号入出力装置(図示省略)との間を、接続している。また、信号線10a,10bは、すだれ状電極5a,5bと信号入出力装置との間で引き回される過程において、絶縁層8、支持部3、接続部2、及び、台座9の各内部を通過し、そのうち、台座9の内部で固定されている。このとき、振動センサは、台座9の対象物1への固定位置に対して、信号線10a,10bを更に固定しても構わない。 The signal lines 10a and 10b are connected between the blind electrodes 5a and 5b and a signal input / output device (not shown) installed outside the vibration sensor. Further, the signal lines 10a and 10b are routed between the blind electrodes 5a and 5b and the signal input / output device, and the insides of the insulating layer 8, the support portion 3, the connection portion 2 and the pedestal 9 are respectively connected. Of which, it is fixed inside the pedestal 9. At this time, the vibration sensor may further fix the signal lines 10a and 10b to the fixed position of the pedestal 9 on the object 1.
 従って、振動センサは、絶縁層8、支持部3、接続部2、及び、台座9の各内部のうち、少なくとも、接続部2の内部に、信号線10a,10bを通過させることにより、振動検出時に、信号線10a,10bの揺れを抑えることができる。この結果、信号線10a,10bの重量は、圧電基板4に作用しないため、振動センサは、検出精度の低下を防止することができる。 Therefore, the vibration sensor detects vibration by passing the signal lines 10a and 10b through at least the inside of the connection portion 2 among the insides of the insulating layer 8, the support portion 3, the connection portion 2, and the pedestal 9. Occasionally, the fluctuation of the signal lines 10a and 10b can be suppressed. As a result, since the weights of the signal lines 10a and 10b do not act on the piezoelectric substrate 4, the vibration sensor can prevent the detection accuracy from being lowered.
 以上、実施の形態3に係る振動センサは、圧電基板4と電気的に接続するすだれ状電極5a,5bを備え、これらのすだれ状電極5a,5bと電気的に接続する信号線10a,10bは、接続部2の内部を通過する。このため、信号線10a,10bの重量は、圧電基板4に作用しないため、振動センサは、検出精度の低下を防止することができる。 As described above, the vibration sensor according to the third embodiment includes the blind electrodes 5a and 5b electrically connected to the piezoelectric substrate 4, and the signal lines 10a and 10b electrically connected to these blind electrodes 5a and 5b are provided. , Passes through the inside of the connection part 2. Therefore, since the weights of the signal lines 10a and 10b do not act on the piezoelectric substrate 4, the vibration sensor can prevent the detection accuracy from being lowered.
実施の形態4.
 実施の形態4に係る振動センサについて、図7を用いて説明する。図7は、実施の形態4に係る振動センサの構成を示す縦断面図である。
Embodiment 4.
The vibration sensor according to the fourth embodiment will be described with reference to FIG. 7. FIG. 7 is a vertical sectional view showing the configuration of the vibration sensor according to the fourth embodiment.
 図7に示した実施の形態4に係る振動センサは、図6に示した実施の形態3に係る振動センサに対して、増幅器11を追加した構造となっている。 The vibration sensor according to the fourth embodiment shown in FIG. 7 has a structure in which an amplifier 11 is added to the vibration sensor according to the third embodiment shown in FIG.
 図7に示すように、実施の形態4に係る振動センサは、増幅器11を備えている。この増幅器11は、圧電基板4からすだれ状電極5aを通じて出力された電気信号を増幅するものである。 As shown in FIG. 7, the vibration sensor according to the fourth embodiment includes an amplifier 11. The amplifier 11 amplifies the electric signal output from the piezoelectric substrate 4 through the blind electrode 5a.
 増幅器11は、例えば、絶縁層8の内部に設けられている。図7は、増幅器11が絶縁層8の内部に設けられる例を示しているが、振動センサは、増幅器11を、その他、接続部2の内部、支持部3の内部、及び、台座9の内部のうち、いずれか1つの内部に設けても良い。 The amplifier 11 is provided inside, for example, the insulating layer 8. FIG. 7 shows an example in which the amplifier 11 is provided inside the insulating layer 8, but the vibration sensor uses the amplifier 11 inside the connection portion 2, the inside of the support portion 3, and the inside of the pedestal 9. Of these, it may be provided inside any one of them.
 振動センサが増幅器11を備える場合、振動センサは、上記信号線10a,10b、電力線12a、及び、信号線12bを有する。 When the vibration sensor includes the amplifier 11, the vibration sensor has the signal lines 10a and 10b, the power line 12a, and the signal line 12b.
 信号線10aは、増幅器11とすだれ状電極5aとの間を接続している。信号線10bは、増幅器11とすだれ状電極5bとの間を接続している。信号線10a,10bは、絶縁層8の内部に設けられている。 The signal line 10a is connected between the amplifier 11 and the blind electrode 5a. The signal line 10b connects the amplifier 11 and the blind electrode 5b. The signal lines 10a and 10b are provided inside the insulating layer 8.
 電力線12aは、増幅器11に駆動電力を供給するものである。この電力線12aは、増幅器11と、振動センサの外部に設置された電源(図示省略)との間を接続している。信号線12bは、すだれ状電極5aから増幅器11を経由した電気信号を、振動センサの外部に出力するものである。この信号線12bは、増幅器11と、振動センサの外部に設置された信号入出力装置との間を接続している。電力線12a及び信号線12bは、絶縁層8、支持部3、接続部2、及び、台座9の各内部を通過している。 The power line 12a supplies drive power to the amplifier 11. The power line 12a connects the amplifier 11 and a power source (not shown) installed outside the vibration sensor. The signal line 12b outputs an electric signal from the blind electrode 5a via the amplifier 11 to the outside of the vibration sensor. The signal line 12b connects the amplifier 11 and a signal input / output device installed outside the vibration sensor. The power line 12a and the signal line 12b pass through the insides of the insulating layer 8, the support portion 3, the connection portion 2, and the pedestal 9.
 従って、振動センサは、絶縁層8、支持部3、接続部2、及び、台座9の各内部のうち、少なくとも、接続部2の内部に、電力線12a及び信号線12bを通過させることにより、振動検出時に、電力線12a及び信号線12bの揺れを抑えることができる。この結果、電力線12a及び信号線12bの重量は、圧電基板4に作用しないため、振動センサは、検出精度の低下を防止することができる。 Therefore, the vibration sensor vibrates by passing the power line 12a and the signal line 12b through at least the inside of the connection portion 2 among the insides of the insulating layer 8, the support portion 3, the connection portion 2, and the pedestal 9. At the time of detection, the vibration of the power line 12a and the signal line 12b can be suppressed. As a result, since the weights of the power line 12a and the signal line 12b do not act on the piezoelectric substrate 4, the vibration sensor can prevent the detection accuracy from being lowered.
 以上、実施の形態4に係る振動センサは、圧電基板4と電気的に接続するすだれ状電極5a,5bを備え、これらのすだれ状電極5a,5bと電気的に接続する信号線12bは、接続部2の内部を通過する。このため、信号線12bの重量は、圧電基板4に作用しないため、振動センサは、検出精度の低下を防止することができる。 As described above, the vibration sensor according to the fourth embodiment includes the blind electrodes 5a and 5b that are electrically connected to the piezoelectric substrate 4, and the signal lines 12b that are electrically connected to these blind electrodes 5a and 5b are connected. It passes through the inside of the part 2. Therefore, since the weight of the signal line 12b does not act on the piezoelectric substrate 4, the vibration sensor can prevent the detection accuracy from being lowered.
 また、実施の形態4に係る振動センサは、すだれ状電極5a,5bから出力された電気信号を増幅する増幅器11を備え、増幅器11に駆動電力を供給する電力線12aは、接続部2の内部を通過する。このため、電力線12aの重量は、圧電基板4に作用しないため、振動センサは、検出精度の低下を防止することができる。 Further, the vibration sensor according to the fourth embodiment includes an amplifier 11 that amplifies the electric signal output from the blind electrodes 5a and 5b, and the power line 12a that supplies the driving power to the amplifier 11 is inside the connection portion 2. pass. Therefore, since the weight of the power line 12a does not act on the piezoelectric substrate 4, the vibration sensor can prevent the detection accuracy from being lowered.
 なお、本開示は、その開示の範囲内において、各実施の形態の自由な組み合わせ、あるいは、各実施の形態における任意の構成要素の変形、もしくは、各実施の形態における任意の構成要素の省略が可能である。 In the present disclosure, within the scope of the disclosure, any combination of the embodiments, modification of any component in each embodiment, or omission of any component in each embodiment can be omitted. It is possible.
 本開示に係る振動センサは、圧電基板を支持する支持部を備えることで、圧電基板において、振動による変位方向を一様にすることができ、振動センサ等に用いるのに適している。 The vibration sensor according to the present disclosure is suitable for use in a vibration sensor or the like because the piezoelectric substrate is provided with a support portion that supports the piezoelectric substrate so that the displacement direction due to vibration can be made uniform.
 1 対象物、2 接続部、3 支持部、3A センサ外郭、4 圧電基板、5a,5b すだれ状電極、6 弾性部、7 重量部、7A センサ外郭、8 絶縁層、9 台座、10a,10b 信号線、11 増幅器、12a 電力線、12b 信号線。 1 object, 2 connection part, 3 support part, 3A sensor outer shell, 4 piezoelectric substrate, 5a, 5b blind electrode, 6 elastic part, 7 weight part, 7A sensor outer shell, 8 insulation layer, 9 pedestal, 10a, 10b signal Line, 11 amplifier, 12a power line, 12b signal line.

Claims (6)

  1.  振動する対象物と接続する接続部と、
     前記接続部と接続し、圧電基板を支持する支持面全域で当該圧電基板を支持する支持部と、
     前記圧電基板と接続し、前記対象物の振動に対して弾性変形する弾性部と、
     前記弾性部と接続し、前記圧電基板から前記弾性部内に伝達された超音波を、当該弾性部との間の境界面で反射する重量部とを備える
     ことを特徴とする振動センサ。
    The connection part that connects to the vibrating object,
    A support portion that is connected to the connection portion and supports the piezoelectric substrate over the entire support surface that supports the piezoelectric substrate, and a support portion that supports the piezoelectric substrate.
    An elastic part that is connected to the piezoelectric substrate and elastically deforms with respect to the vibration of the object.
    A vibration sensor including a weight portion that is connected to the elastic portion and reflects ultrasonic waves transmitted from the piezoelectric substrate into the elastic portion at a boundary surface between the elastic portion and the elastic portion.
  2.  前記圧電基板と前記支持部との間に設けられ、超音波を反射する絶縁層を備える
     ことを特徴とする請求項1記載の振動センサ。
    The vibration sensor according to claim 1, further comprising an insulating layer that is provided between the piezoelectric substrate and the support portion and reflects ultrasonic waves.
  3.  前記支持部は、
     前記圧電基板を外側から覆うセンサ外郭である
     ことを特徴とする請求項1記載の振動センサ。
    The support portion
    The vibration sensor according to claim 1, further comprising a sensor outer shell that covers the piezoelectric substrate from the outside.
  4.  前記重量部は、
     前記圧電基板を外側から覆うセンサ外郭である。
     ことを特徴とする請求項1記載の振動センサ。
    The weight part is
    It is a sensor outer shell that covers the piezoelectric substrate from the outside.
    The vibration sensor according to claim 1.
  5.  前記圧電基板と電気的に接続する電極を備え、
     前記電極と電気的に接続する信号線は、前記接続部の内部を通過する
     ことを特徴とする請求項1記載の振動センサ。
    It is provided with an electrode that is electrically connected to the piezoelectric substrate.
    The vibration sensor according to claim 1, wherein the signal line electrically connected to the electrode passes through the inside of the connection portion.
  6.  前記電極から出力された電気信号を増幅する増幅器を備え、
     前記増幅器に駆動電力を供給する電力線は、前記接続部の内部を通過する
     ことを特徴とする請求項5記載の振動センサ。
    It is provided with an amplifier that amplifies the electric signal output from the electrode.
    The vibration sensor according to claim 5, wherein the power line for supplying the driving power to the amplifier passes through the inside of the connection portion.
PCT/JP2020/008588 2020-03-02 2020-03-02 Vibration sensor WO2021176491A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/008588 WO2021176491A1 (en) 2020-03-02 2020-03-02 Vibration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/008588 WO2021176491A1 (en) 2020-03-02 2020-03-02 Vibration sensor

Publications (1)

Publication Number Publication Date
WO2021176491A1 true WO2021176491A1 (en) 2021-09-10

Family

ID=77612936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008588 WO2021176491A1 (en) 2020-03-02 2020-03-02 Vibration sensor

Country Status (1)

Country Link
WO (1) WO2021176491A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5014541Y1 (en) * 1969-10-31 1975-05-07
JPS6291825A (en) * 1985-10-17 1987-04-27 Mitsubishi Heavy Ind Ltd Seismic type vibration measuring instrument
JPH0473825U (en) * 1990-11-05 1992-06-29
JP2009517129A (en) * 2005-11-23 2009-04-30 スリーエム イノベイティブ プロパティズ カンパニー Weighted bioacoustic sensor and manufacturing method thereof
JP2014178162A (en) * 2013-03-14 2014-09-25 Sekisui Chem Co Ltd Leakage detector
WO2018068097A1 (en) * 2016-10-13 2018-04-19 South East Water Corporation Water meter and systems and networks comprising the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5014541Y1 (en) * 1969-10-31 1975-05-07
JPS6291825A (en) * 1985-10-17 1987-04-27 Mitsubishi Heavy Ind Ltd Seismic type vibration measuring instrument
JPH0473825U (en) * 1990-11-05 1992-06-29
JP2009517129A (en) * 2005-11-23 2009-04-30 スリーエム イノベイティブ プロパティズ カンパニー Weighted bioacoustic sensor and manufacturing method thereof
JP2014178162A (en) * 2013-03-14 2014-09-25 Sekisui Chem Co Ltd Leakage detector
WO2018068097A1 (en) * 2016-10-13 2018-04-19 South East Water Corporation Water meter and systems and networks comprising the same

Similar Documents

Publication Publication Date Title
US7902968B2 (en) Obstacle detection device
JP4458172B2 (en) Ultrasonic sensor mounting structure
US7737609B2 (en) Ultrasonic sensor
US7612485B2 (en) Ultrasonic sensor
JP4946272B2 (en) Electroacoustic transducer and transmitter for sonar equipped with the electroacoustic transducer
EP2541972A1 (en) Piezoelectric acoustic transducer
US8406438B2 (en) Device and method for the excitation and/or damping and/or detection or structural oscillations of a plate-shaped device using a piezoelectric strip device
CN111796291A (en) Ultrasonic sensor
US11181627B2 (en) Ultrasonic sensor
JP4820407B2 (en) Vibration isolator
JP4544285B2 (en) Ultrasonic sensor
JP2007155675A (en) Ultrasonic sensor
WO2021176491A1 (en) Vibration sensor
US20060232165A1 (en) Ultrasonic transmitter-receiver
CN109348386A (en) Driving device and electronic building brick
JP2006135573A (en) Ultrasonic wave transmitting and receiving device
JP7088099B2 (en) Ultrasonic sensor
JP2019114953A (en) Ultrasonic transducer
JP7439728B2 (en) ultrasonic sensor
JP6945765B2 (en) Vibration sensor
US20210264888A1 (en) Flexural Ultrasonic Transducer
JP2021016036A (en) Ultrasonic sensor
WO2023203879A1 (en) Ultrasonic transducer and method for producing same
JP2020182038A (en) Ultrasonic sensor
JP3909768B2 (en) Piezoelectric device for generating acoustic signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP