WO2021095294A1 - Piezoelectric vibrator and method for manufacturing same - Google Patents

Piezoelectric vibrator and method for manufacturing same Download PDF

Info

Publication number
WO2021095294A1
WO2021095294A1 PCT/JP2020/023572 JP2020023572W WO2021095294A1 WO 2021095294 A1 WO2021095294 A1 WO 2021095294A1 JP 2020023572 W JP2020023572 W JP 2020023572W WO 2021095294 A1 WO2021095294 A1 WO 2021095294A1
Authority
WO
WIPO (PCT)
Prior art keywords
lid member
base member
crystal
thickness
vibrating element
Prior art date
Application number
PCT/JP2020/023572
Other languages
French (fr)
Japanese (ja)
Inventor
洋 井原木
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2021555787A priority Critical patent/JP7389410B2/en
Publication of WO2021095294A1 publication Critical patent/WO2021095294A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details

Definitions

  • the present invention relates to a piezoelectric vibrator and a method for manufacturing the same.
  • Oscillators are used in various electronic devices such as mobile communication terminals, communication base stations, and home appliances for applications such as timing devices, sensors, and oscillators. With the increasing functionality of electronic devices, small and thin piezoelectric vibrating elements are required.
  • Patent Document 1 includes an alumina substrate, a piezoelectric vibrating element bonded and fixed to the substrate, a metal lid member covering the piezoelectric vibrating element, and a joining member for bonding and fixing the substrate and the lid member.
  • the lid member is obtained by drawing and molding a thin metal plate so that a flange portion is formed on the outer periphery of the opening, and then cutting the flange portion at a position near the outer surface of the lid member and parallel to the outer surface.
  • a piezoelectric vibrator in which the opening is adhesively sealed with respect to the substrate in a substantially linear contact state.
  • Patent Document 2 includes a base member, a piezoelectric vibrating element mounted on the base member, and a lid member joined to the base member to form an internal space for accommodating the piezoelectric vibrating element together with the base member.
  • the lid member has a top wall portion facing the base member 30 with the piezoelectric vibrating element interposed therebetween, and a side wall portion extending in a direction intersecting the main surface of the top wall portion, and the thickness of the top wall portion is increased.
  • a piezoelectric vibrator that is larger than the thickness of the side wall portion is disclosed.
  • the lid member is formed by deforming a flat metal member by a pressing method.
  • the thickness of the side wall portion of the lid member manufactured by the press method may be smaller than the thickness of the top wall portion.
  • the side wall portion of the lid member may be easily deformed. Deformation of the lid member may cause problems such as malfunction due to contact between the lid member and the piezoelectric vibrating element, and fluctuation of frequency characteristics due to airtight destruction due to damage to the base member.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a highly reliable piezoelectric vibrator and a method for manufacturing the same.
  • the piezoelectric vibrator includes a base member, a piezoelectric vibrating element mounted on a mounting surface of the base member, a lid member having a recess opened on the side of the piezoelectric vibrating element, and a base member and a lid member.
  • the lid member is provided with a joining member for joining the base member, and the lid member is connected to the top wall portion extending along the mounting surface of the base member and the outer edge of the top wall portion in the height direction intersecting the mounting surface of the base member.
  • a side wall portion extending along the side wall portion and a flange portion extending outward from the side wall portion along the mounting surface of the base member are included, and the thickness of the flange portion along the height direction is T3, along the height direction.
  • the method for manufacturing a piezoelectric vibrator includes a step of forming a lid member, a step of mounting a piezoelectric vibrating element on the base member, and a step of joining the lid member to the base member.
  • the step of forming the lid member includes a step of preparing a plate-shaped member having a pair of main surfaces and a step of deforming the plate-shaped member along a direction intersecting the pair of main surfaces by a pressing method.
  • a highly reliable piezoelectric vibrator and a method for manufacturing the same can be provided.
  • FIG. 1 is an exploded perspective view schematically showing the configuration of the crystal oscillator according to the first embodiment.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of the crystal oscillator according to the first embodiment.
  • FIG. 3 is a cross-sectional view schematically showing the configuration of the end portion of the lid member according to the first embodiment. Note that FIG. 2 is a cross-sectional view of the crystal oscillator 1 shown in FIG. 1 along the line II-II.
  • Each drawing is provided with a Cartesian coordinate system consisting of the X-axis, Y'axis and Z'axis for convenience to clarify the relationship between the drawings and to help understand the positional relationship of each member.
  • the X-axis, Y'axis and Z'axis correspond to each other in the drawings.
  • the X-axis, Y'axis, and Z'axis correspond to the crystallographic axes of the crystal piece 11 described later, respectively.
  • the X-axis corresponds to the electric axis (polar axis) of the crystal
  • the Y-axis corresponds to the mechanical axis of the crystal
  • the Z-axis corresponds to the optical axis of the crystal.
  • the Y'axis and the Z'axis are axes obtained by rotating the Y axis and the Z axis around the X axis in the direction of the Y axis to the Z axis by 35 degrees 15 minutes ⁇ 1 minute 30 seconds, respectively.
  • the direction parallel to the X axis is referred to as "X axis direction”
  • the direction parallel to the Y'axis is referred to as “Y'axis direction”
  • the direction parallel to the Z'axis is referred to as "Z'axis direction”.
  • the direction of the tip of the arrow on the X-axis, Y'axis and Z'axis is called “+ (plus)”
  • the direction opposite to the arrow is called "-(minus)”.
  • the + Y'axis direction is defined as an upward direction
  • the ⁇ Y'axis direction is defined as a downward direction, but the vertical direction of the crystal oscillator 1 is not limited.
  • the + Y'axis direction side of the crystal vibrating element 10 is the upper surface 11A
  • the ⁇ Y'axis direction side is the lower surface 11B. It may be arranged so as to be located on the side.
  • the crystal oscillator 1 includes a crystal vibrating element 10, a base member 30, a lid member 40, and a joining member 50.
  • the crystal vibrating element 10 is provided between the base member 30 and the lid member 40.
  • the base member 30 and the lid member 40 form a cage for accommodating the crystal vibrating element 10, and are overlapped along the Y'axis direction.
  • the base member 30 has a flat plate shape
  • the lid member 40 has a bottomed opening for accommodating the crystal vibration element 10 on the base member 30 side.
  • the crystal vibrating element 10 is mounted on the base member 30.
  • the shape of the base member 30 is not limited to the above as long as at least the excited portion of the crystal vibrating element 10 is housed in the cage.
  • the base member 30 may have a bottomed opening on the lid member 40 side for accommodating a part of the crystal vibrating element 10.
  • the method of holding the crystal vibrating element 10 is not limited to the above.
  • the base member 30 and the lid member 40 may sandwich the peripheral portion of the excited portion of the crystal vibrating element 10.
  • the Y'axis direction which is the direction in which the base member 30 and the lid member 40 overlap, is referred to as the "height direction".
  • the crystal vibrating element 10 is an element that vibrates a crystal by a piezoelectric effect and converts electrical energy and mechanical energy.
  • the crystal vibrating element 10 includes a flaky crystal piece 11, a first excitation electrode 14a and a second excitation electrode 14b constituting a pair of excitation electrodes, and a first extraction electrode 15a and a second extraction electrode forming a pair of extraction electrodes. It includes an electrode 15b, and a first connection electrode 16a and a second connection electrode 16b forming a pair of connection electrodes.
  • the crystal piece 11 has an upper surface 11A and a lower surface 11B facing each other.
  • the upper surface 11A is located on the side opposite to the side facing the base member 30, that is, the side facing the top wall portion 41 of the lid member 40 described later.
  • the lower surface 11B is located on the side facing the base member 30.
  • the crystal piece 11 is, for example, an AT-cut type crystal piece.
  • the AT-cut type crystal piece 11 is a plane parallel to a plane specified by the X-axis and the Z'axis in a Cartesian coordinate system consisting of an X-axis, a Y'axis, and a Z'axis that intersect each other (hereinafter, "XZ". It is called a'plane'. The same applies to a plane specified by another axis.) Is the main surface, and is formed so that the direction parallel to the Y'axis is the thickness.
  • the AT-cut type crystal piece 11 is formed by etching a crystal substrate (for example, a crystal wafer) obtained by cutting and polishing a crystal of artificial quartz (Synthetic Quartz Crystal).
  • the crystal vibrating element 10 using the AT-cut type crystal piece 11 has high frequency stability in a wide temperature range.
  • the thickness slip vibration mode Thiickness Shear Vibration Mode
  • the rotation angles of the Y'axis and the Z'axis of the AT-cut type crystal piece 11 may be tilted in the range of 35 degrees 15 minutes to ⁇ 5 degrees or more and 15 degrees or less.
  • a different cut other than the AT cut may be applied.
  • BT cut, GT cut, SC cut and the like may be applied.
  • the crystal vibrating element may be a tuning fork type crystal vibrating element using a crystal piece having a cut angle called a Z plate.
  • the AT-cut type crystal piece 11 is parallel to the long side direction in which the long side parallel to the X-axis direction extends, the short side direction in which the short side parallel to the Z'axis direction extends, and the Y'axis direction. It is a plate shape having a thickness direction in which a large thickness extends.
  • the plane shape of the crystal piece 11 is rectangular, and the crystal piece 11 is located in the center and is adjacent to the excitation unit 17 that contributes to excitation and the excitation unit 17.
  • It has peripheral portions 18 and 19.
  • the excitation portion 17 and the peripheral portions 18 and 19 are each formed in a band shape over the entire width along the Z'axis direction of the crystal piece 11.
  • the peripheral portion 18 is located on the ⁇ X-axis direction side of the excitation portion 17, and the peripheral portion 19 is located on the + X-axis direction side of the excitation portion 17.
  • the planar shape of the crystal piece 11 when the upper surface 11A is viewed in a plane is not limited to a rectangular shape.
  • the planar shape of the crystal piece 11 may be a polygonal shape, a circular shape, an elliptical shape, or a combination thereof.
  • the planar shape of the crystal piece 11 may be a tuning fork shape.
  • the crystal piece 11 may have a base and a vibrating arm extending in parallel from the base.
  • a slit may be formed in the crystal piece 11 for the purpose of suppressing vibration leakage and stress propagation.
  • the shapes of the exciting portion 17 and the peripheral portions 18 and 19 of the crystal piece 11 are not limited to the strip shape over the entire width.
  • the planar shape of the excitation portion may be an island shape adjacent to the peripheral portion in the Z'axis direction, and the planar shape of the peripheral portion may be formed in a frame shape surrounding the excitation portion.
  • the crystal piece 11 has a so-called mesa-shaped structure in which the thickness of the exciting portion 17 is larger than the thickness of the peripheral portions 18 and 19. According to the crystal piece 11 having a mesa-shaped structure, vibration leakage from the exciting portion 17 can be suppressed.
  • the crystal piece 11 has a double-sided mesa-shaped structure, and the excitation portions 17 project from the peripheral portions 18 and 19 on both sides of the upper surface 11A and the lower surface 11B.
  • the boundary between the exciting portion 17 and the peripheral portion 18 and the boundary between the exciting portion 17 and the peripheral portion 19 form a tapered shape in which the thickness changes continuously, but a staircase shape in which the change in thickness is discontinuous. May be good.
  • the boundary may have a convex shape in which the amount of change in thickness changes continuously, or a bevel shape in which the amount of change in thickness changes discontinuously.
  • the crystal piece 11 may have a single-sided mesa-shaped structure in which the exciting portion 17 projects from the peripheral portions 18 and 19 on one side of the upper surface 11A or the lower surface 11B. Further, the crystal piece 11 may have a so-called inverted mesa type structure in which the thickness of the exciting portion 17 is smaller than the thickness of the peripheral portions 18 and 19.
  • the first excitation electrode 14a and the second excitation electrode 14b are provided in the excitation unit 17.
  • the first excitation electrode 14a is provided on the upper surface 11A side of the crystal piece 11, and the second excitation electrode 14b is provided on the lower surface 11B side of the crystal piece 11.
  • the first excitation electrode 14a is provided on the main surface of the crystal piece 11 on the lid member 40 side
  • the second excitation electrode 14b is provided on the main surface of the crystal piece 11 on the base member 30 side.
  • the first excitation electrode 14a and the second excitation electrode 14b face each other with the crystal piece 11 interposed therebetween.
  • the first excitation electrode 14a and the second excitation electrode 14b each have a rectangular shape, and are arranged so that substantially the entire surface of the crystal piece 11 overlaps with each other.
  • the first excitation electrode 14a and the second excitation electrode 14b are each formed in a band shape over the entire width along the Z'axis direction of the crystal piece 11.
  • Each of the first excitation electrode 14a and the second excitation electrode 14b constituting the pair of electrodes corresponds to the electrodes facing each other with the crystal piece 11 interposed therebetween.
  • planar shapes of the first excitation electrode 14a and the second excitation electrode 14b when the upper surface 11A of the crystal piece 11 is viewed in a plan view are not limited to a rectangular shape.
  • the planar shape of the first excitation electrode 14a and the second excitation electrode 14b may be a polygonal shape, a circular shape, an elliptical shape, or a combination thereof.
  • the first extraction electrode 15a and the second extraction electrode 15b are provided on the peripheral portion 18.
  • the first extraction electrode 15a is provided on the upper surface 11A side of the crystal piece 11, and the second extraction electrode 15b is provided on the lower surface 11B side of the crystal piece 11.
  • the first extraction electrode 15a electrically connects the first excitation electrode 14a and the first connection electrode 16a.
  • the second extraction electrode 15b electrically connects the second excitation electrode 14b and the second connection electrode 16b.
  • one end of the first extraction electrode 15a is connected to the first excitation electrode 14a in the excitation portion 17, and the other end of the first extraction electrode 15a is connected to the first connection electrode 16a in the peripheral portion 18. Has been done.
  • one end of the second extraction electrode 15b is connected to the second excitation electrode 14b at the excitation portion 17, and the other end of the second extraction electrode 15b is connected to the second connection electrode 16b at the peripheral portion 18.
  • the first extraction electrode 15a and the second extraction electrode 15b are separated from each other when the upper surface 11A of the crystal piece 11 is viewed in a plan view.
  • the first extraction electrode 15a is provided in the + Z'axis direction when viewed from the second extraction electrode 15b.
  • the first connection electrode 16a and the second connection electrode 16b are electrodes for electrically connecting the first excitation electrode 14a and the second excitation electrode 14b to the base member 30, respectively, and the peripheral portion 18 of the crystal piece 11 It is provided on the lower surface 11B side.
  • the first connection electrode 16a is provided at a corner formed by an end portion of the crystal piece 11 on the ⁇ X axis direction side and an end portion on the + Z ′ axis direction side
  • the second connection electrode 16b is the crystal piece 11 of the crystal piece 11. It is provided at a corner formed by an end portion on the -X-axis direction side and an end portion on the -Z'axis direction side.
  • One electrode group including the first excitation electrode 14a, the first extraction electrode 15a, and the first connection electrode 16a is formed continuously with each other, for example, integrally with each other.
  • the other electrode group including the second excitation electrode 14b, the second extraction electrode 15b, and the second connection electrode 16b is also formed continuously with each other, for example, integrally with each other.
  • the crystal vibrating element 10 is provided with a pair of electrodes.
  • the pair of electrodes of the crystal vibrating element 10 has, for example, a multi-layer structure, and the base layer and the outermost layer are laminated in this order.
  • the base layer is a layer that comes into contact with the crystal piece 11, and is provided with a material having good adhesion to the crystal piece 11.
  • the outermost layer is a layer located on the outermost surface of the pair of electrodes, and is provided with a material having good chemical stability. According to this, peeling and oxidation of a pair of electrodes can be suppressed, and a highly reliable crystal vibrating element 10 can be provided.
  • the base layer contains, for example, chromium (Cr), and the outermost layer contains, for example, gold (Au).
  • the materials constituting the pair of electrodes of the crystal vibrating element 10 are not limited to Cr and Au, and are, for example, titanium (Ti), molybdenum (Mo), aluminum (Al), nickel (Ni), and indium (In). , Palladium (Pd), silver (Ag), copper (Cu), tin (Sn), iron (Fe) and other metallic materials may be contained.
  • the pair of electrodes may contain a conductive ceramic, a conductive resin, a semiconductor, or the like.
  • the base member 30 holds the crystal vibrating element 10 in an excitable manner.
  • the base member 30 includes a substrate 31 having an upper surface 31A and a lower surface 31B facing each other.
  • the upper surface 31A and the lower surface 31B correspond to a pair of main surfaces of the substrate 31.
  • the upper surface 31A is located on the side facing the crystal vibrating element 10 and the lid member 40, and corresponds to a mounting surface on which the crystal vibrating element 10 is mounted.
  • the lower surface 31B is located on the side facing the circuit board when the crystal oscillator 1 is mounted on an external circuit board, and corresponds to a mounting surface to which the circuit board is connected.
  • the substrate 31 is a sintered material such as an insulating ceramic (alumina).
  • the substrate 31 is preferably made of a heat-resistant material.
  • the substrate 31 may be provided by a material having a coefficient of thermal expansion close to that of the crystal piece 11, or may be provided by, for example, quartz. Further, from the viewpoint of suppressing damage to the substrate 31 due to thermal stress, the substrate 31 may be provided with a material having a coefficient of thermal expansion close to that of the lid member 40.
  • the base member 30 includes a first electrode pad 33a and a second electrode pad 33b that form a pair of electrode pads.
  • the first electrode pad 33a and the second electrode pad 33b are provided on the upper surface 31A of the substrate 31.
  • the first electrode pad 33a and the second electrode pad 33b are terminals for electrically connecting the crystal vibrating element 10 to the base member 30.
  • the first electrode pad 33a and the second electrode pad 33b may have a laminated structure having a base layer for improving adhesion to the substrate 31 and an outermost surface containing gold and suppressing oxidation.
  • the base member 30 includes a first external electrode 35a, a second external electrode 35b, a third external electrode 35c, and a fourth external electrode 35d.
  • the first external electrode 35a to the fourth external electrode 35d are provided on the lower surface 31B of the substrate 31.
  • the first external electrode 35a and the second external electrode 35b are terminals for electrically connecting an external circuit board (not shown) and the crystal oscillator 1.
  • the third external electrode 35c and the fourth external electrode 35d are, for example, dummy electrodes to which an electric signal or the like is not input / output, but even if the lid member 40 is grounded to improve the electromagnetic shielding function of the lid member 20. Good.
  • the third external electrode 35c and the fourth external electrode 35d may be omitted.
  • the first electrode pad 33a and the second electrode pad 33b are aligned along the Z'axis direction at the end of the base member 30 on the ⁇ X axis direction side.
  • the first external electrode 35a and the second external electrode 35b are aligned along the Z'axis direction at the end of the base member 30 on the ⁇ X axis direction side.
  • the third external electrode 35c and the fourth external electrode 35d are aligned along the Z'axis direction at the end of the base member 30 on the + X axis direction.
  • the first electrode pad 33a is electrically connected to the first external electrode 35a via the first through electrode 34a that penetrates the substrate 31 along the Y'axis direction.
  • the second electrode pad 33b is electrically connected to the second external electrode 35b via the second through electrode 34b that penetrates the substrate 31 along the Y'axis direction.
  • the first electrode pad 33a and the second electrode pad 33b are electrically connected to the first external electrode 35a and the second external electrode 35b via the side electrodes provided on the side surfaces connecting the upper surface 31A and the lower surface 31B of the substrate 31, respectively. May be connected.
  • the first external electrode 35a to the fourth external electrode 35d may be a casting electrode provided in a concave shape on the side surface of the substrate 31.
  • the base member 30 includes a first conductive holding member 36a and a second conductive holding member 36b that form a pair of conductive holding members.
  • the first conductive holding member 36a and the second conductive holding member 36b hold the crystal vibrating element 10 at intervals from the base member 30 and the lid member 40 so that the exciting portion 17 can be excited.
  • the crystal vibrating element 10 is held so that the exciting portion 17 does not come into contact with the base member 30 and the lid member 40.
  • the first conductive holding member 36a and the second conductive holding member 36b electrically connect the crystal vibrating element 10 and the base member 30.
  • the first conductive holding member 36a electrically connects the first electrode pad 33a and the first connecting electrode 16a
  • the second conductive holding member 36b electrically connects the second electrode pad 33b and the second connecting electrode. It is electrically connected to 16b.
  • the first conductive holding member 36a and the second conductive holding member 36b are cured products of a conductive adhesive containing a thermosetting resin, a photocurable resin, and the like, and the first conductive holding member 36a and the second conductive.
  • the main component of the property-retaining member 36b is, for example, a silicone resin.
  • the first conductive holding member 36a and the second conductive holding member 36b contain conductive particles, and as the conductive particles, for example, metal particles containing silver (Ag) are used.
  • the first conductive holding member 36a adheres the first electrode pad 33a and the first connecting electrode 16a
  • the second conductive holding member 36b adheres the second electrode pad 33b and the second connecting electrode 16b.
  • the main components of the first conductive holding member 36a and the second conductive holding member 36b are not limited to silicone resin as long as they are curable resins, and may be, for example, epoxy resin or acrylic resin. Further, the imparting of conductivity to the first conductive holding member 36a and the second conductive holding member 36b is not limited to that by silver particles, and other metals, conductive ceramics, conductive organic materials, etc. It may be due to.
  • the main components of the first conductive holding member 36a and the second conductive holding member 36b may be a conductive polymer.
  • any additive may be contained in the resin composition of the first conductive holding member 36a and the second conductive holding member 36b.
  • the additive is, for example, a tackifier, a filler, a thickener, a sensitizer, an antiaging agent, an antifoaming agent, etc. for the purpose of improving the workability and storage stability of the conductive adhesive.
  • a filler may be added for the purpose of increasing the strength of the cured product or for maintaining the distance between the base member 30 and the crystal vibrating element 10.
  • the lid member 40 is joined to the base member 30.
  • the lid member 40 forms an internal space for accommodating the crystal vibrating element 10 with the base member 30.
  • the lid member 40 has a recess 49 that opens on the side of the base member 30, and the internal space in the present embodiment corresponds to the space inside the recess 49.
  • the recess 49 is sealed in a vacuum state, for example, but may be sealed in a state filled with an inert gas such as nitrogen or a rare gas.
  • the material of the lid member 40 is preferably a conductive material, and more preferably a highly airtight metal material.
  • the lid member 40 is made of a conductive material, the lid member 40 is provided with an electromagnetic shield function that reduces the ingress and egress of electromagnetic waves into the internal space.
  • the material of the lid member 40 is preferably a material having a coefficient of thermal expansion close to that of the substrate 31, for example, the coefficient of thermal expansion near room temperature is in a wide temperature range of glass or ceramic. It is a matching Fe—Ni—Co based alloy.
  • the material of the lid member 40 may be the same as that of the substrate 31, and may include ceramic, crystal, resin, and the like.
  • the elastic modulus of the lid member 40 is preferably smaller than the elastic modulus of the substrate 31. According to this, the lid member 40 absorbs the impact from the outside.
  • the lid member 40 when a small external stress is applied to the lid member 40, the lid member 40 is elastically deformed, and when a relatively large external stress is applied to the lid member 40, the lid member 40 is plastically deformed. By deforming the lid member 40 in this way, damage to the base member 30 due to external stress is suppressed.
  • the lid member 40 has a flat top wall portion 41 and a side wall portion 42 connected to the outer edge of the top wall portion 41 and extending along the height direction.
  • the recess 49 of the lid member 40 is formed by the top wall portion 41 and the side wall portion 42.
  • the top wall portion 41 extends along the upper surface 31A of the substrate 31 and faces the base member 30 with the crystal vibrating element 10 interposed therebetween in the height direction.
  • the side wall portion 42 extends from the top wall portion 41 toward the base member 30, and surrounds the crystal vibrating element 10 in a direction parallel to the upper surface 31A of the base 31.
  • the lid member 40 further has a flange portion 43 that is connected to the tip end portion of the side wall portion 42 on the base member 30 side and extends outward along the upper surface 31A of the substrate 31.
  • the top wall portion 41 connected to the upper end portion of the side wall portion 42 and the flange portion 43 connected to the lower end portion of the side wall portion 42 extend in opposite directions.
  • the flange portion 43 extends in a frame shape so as to surround the crystal vibrating element 10.
  • the top wall portion 41 has a top wall lower surface 41B located on the side of the base member 30, and a top wall upper surface 41A located on the side opposite to the top wall lower surface 41B.
  • the flange portion 43 has a flange lower surface 43B located on the side of the base member 30, and a flange upper surface 43A located on the side opposite to the flange lower surface 43B.
  • the side wall portion 42 includes a side wall inner surface 42B that connects the top wall lower surface 41B and the flange lower surface 43B on the side of the recess 49, and a side wall outer surface 42A that connects the top wall upper surface 41A and the flange upper surface 43A on the side opposite to the side wall inner surface 42B.
  • the contact surface of the lid member 40 in contact with the joining member 50 is composed of a flange lower surface 43B of the flange portion 43 and a facing surface of the side wall portion 42 facing the base member 30. Therefore, the contact surface is enlarged as compared with the configuration without the flange portion 43, and the joint strength between the base member 30 and the lid member 40 is improved.
  • the lower surface of the flange 43B of the flange portion 43 and the facing surface of the side wall portion 42 are continuous.
  • the corner portion connecting the lower surface 41B of the top wall and the inner surface 42B of the side wall has an R shape.
  • the corner portion connecting the inner surface surface 42B of the side wall and the lower surface 43B of the flange, the corner portion connecting the upper surface 41A of the top wall and the outer surface 42A of the side wall, and the corner portion connecting the outer surface 42A of the side wall and the upper surface 43A of the flange also have an R shape.
  • the curvature of the corner portion connecting the top wall lower surface 41B and the side wall inner surface 42B is larger than the curvature of the corner portion connecting the top wall upper surface 41A and the side wall outer surface 42A.
  • the curvature of the corner portion connecting the inner surface surface 42B of the side wall and the lower surface 43B of the flange is larger than the curvature of the corner portion connecting the outer surface 42A of the side wall and the upper surface 43A of the flange.
  • the top wall portion 41 has a thickness T1 along the height direction (hereinafter, referred to as “top wall thickness T1").
  • the top wall thickness T1 corresponds to the shortest distance from the top wall lower surface 41B to the top wall top surface 41A.
  • the side wall portion 42 has a thickness T2 (hereinafter, referred to as “side wall thickness T2”) along the upper surface 31A of the substrate 31.
  • the side wall thickness T2 is a thickness along a direction orthogonal to the height direction, and corresponds to the shortest distance from the virtual inner surface extending from the side wall inner surface 42B to the side wall outer surface 42A.
  • the flange portion 43 has a thickness T3 (hereinafter, referred to as “flange thickness T3”) along the height direction.
  • the flange thickness T3 corresponds to the shortest distance from the flange lower surface 43B to the flange upper surface 43A.
  • the magnitude relationship between the top wall thickness T1, the side wall thickness T2, and the flange thickness T3 is not limited to the above.
  • the top wall thickness T1 may be larger than the flange thickness T3 (T3 ⁇ T1) and may be smaller than the flange thickness T3 (T1 ⁇ T3).
  • the minimum value of the top wall thickness T1 is smaller than at least one of the side wall thickness T2 and the flange thickness T3. It may be (T1min ⁇ T2 and / or T1min ⁇ T3), and the maximum value of the top wall thickness T1 may be larger than at least one of the side wall thickness T2 and the flange thickness T3 (T2 ⁇ T1max and / or T3 ⁇ T1max).
  • the minimum value of the side wall thickness T2 may be smaller than at least one of the top wall thickness T1 and the flange thickness T3 (T2min ⁇ T1 and / or T2min). ⁇ T3), the maximum value of the side wall thickness T2 may be larger than at least one of the top wall thickness T1 and the flange thickness T3 (T1 ⁇ T2max and / or T3 ⁇ T2max).
  • the minimum value of the flange thickness T3 may be smaller than at least one of the top wall thickness T1 and the side wall thickness T2 (T3min ⁇ T1 and / or T3min). ⁇ T2), the maximum value of the flange thickness T3 may be larger than at least one of the top wall thickness T1 and the side wall thickness T2 (T1 ⁇ T3max and / or T2 ⁇ T3max).
  • the recess 49 has a height H9 along the height direction (hereinafter, referred to as “inner dimension height H9").
  • the inner dimension height H9 corresponds to the shortest distance from the virtual bottom surface extended from the flange lower surface 43B to the top wall lower surface 41B.
  • the lid member 40 has a height H1 (hereinafter, referred to as “total height H1”) along the height direction.
  • the total height H1 corresponds to the shortest distance from the virtual bottom surface extended from the flange lower surface 43B to the top wall upper surface 41A.
  • the flange portion 43 has a width W3 (hereinafter, referred to as “flange width W3”) along the upper surface 31A of the substrate 31.
  • the flange width W3 corresponds to the shortest distance from the virtual outer surface extended from the side wall outer surface 42A to the tip of the flange portion 43. Therefore, the width of the joint surface of the lid member 40 in contact with the joint member 50 is the sum of the side wall thickness T2 and the flange width W3.
  • the flange thickness T3 is smaller than the total height H1 (T3 ⁇ H1). Further, the flange thickness T3 is larger than the inner dimension height H9 (H9 ⁇ T3), and is preferably larger than the inner dimension height H9 (H9 ⁇ T3).
  • the flange upper surface 43A is located on the same plane as the top wall lower surface 41B, or the virtual extension surface extended from the flange upper surface 43A is located between the top wall upper surface 41A and the top wall lower surface 41B. According to this, since the flange portion 43 guarantees the mechanical strength of the lid member 40 against an impact from the outside, the deformation of the lid member 40 can be suppressed.
  • the top wall thickness T1 When the top wall portion 41 and the flange portion 43 are not flat, in other words, when the top wall thickness T1, the flange thickness T3, the inner dimension height H9 and the total height H1 are different depending on the position and do not become constant values, the top wall thickness T1
  • the magnitude relation of the flange thickness T3, the inner dimension height H9, and the total height H1 is not limited to the above.
  • the maximum value of the flange thickness T3 is T3max
  • the minimum value is T3min
  • the maximum value of the inner dimension height H9 is H9max
  • the minimum value is H9min
  • T3min ⁇ H9min may be satisfied, but preferably H9min ⁇ T3min, and more preferably H9min ⁇ T3min. Further, when H9 ⁇ T3 is satisfied, it is desirable that H9max ⁇ T3max, and more preferably H9max ⁇ T3max. Similarly, when H9 ⁇ T3 is satisfied, it is desirable that H9max ⁇ T3min, and more preferably H9max ⁇ T3min.
  • the sum of the flange width W3 and the side wall thickness T2 is as large as, for example, the inner dimension height H9 (H9 ⁇ W3 + T2). ), Desirably, the sum of the flange width W3 and the side wall thickness T2 is larger than the inner dimension height H9 (H9 ⁇ W3 + T2). Further, more preferably, the sum of the flange width W3 and the side wall thickness T2 is equal to or larger than the flange thickness T3 (T3 ⁇ W3 + T2), and more preferably, the sum of the flange width W3 and the side wall thickness T2 is the flange thickness T3.
  • the sum of the flange width W3 and the side wall thickness T2 is equal to or larger than the total height H1 (H1 ⁇ W3 + T2), and more preferably, the sum of the flange width W3 and the side wall thickness T2 is larger than the total height H1. Large (H1 ⁇ W3 + T2).
  • the flange width W3 is equal to or larger than the side wall thickness T2 (T2 ⁇ W3), and more preferably the flange width W3 is equivalent to the inner dimension height H9. It has the above size (H9 ⁇ W3), and more preferably, the flange width W3 is equal to or larger than the flange thickness T3 (T3 ⁇ W3).
  • T3 ⁇ W3 + T2 (W3 + T2) min ⁇ T3max may be set, but preferably T3max ⁇ (W3 + T2) min.
  • T3 ⁇ W3 + T2 when T3 ⁇ W3 + T2 is satisfied, T3max ⁇ (W3 + T2) max may be satisfied, and T3max ⁇ (W3 + T2) min is desirable.
  • the maximum value of the total height H1 is H1max and the minimum value is H1min
  • H1max ⁇ (W3 + T2) max it can be said that H1 ⁇ W3 + T2 is satisfied. Therefore, when H1 ⁇ W3 + T2, (W3 + T2) min ⁇ H1max may be satisfied, but H1max ⁇ (W3 + T2) min is desirable.
  • the magnitude relationship between the flange width W3 and the side wall thickness T2 is not limited to the above.
  • the maximum value of the flange width W3 is W3max
  • the minimum value is W3min
  • the maximum value of the side wall thickness T2 is T2max
  • the minimum value is T2min
  • T2 ⁇ W3 it can be said that T2 ⁇ W3 is satisfied if T2min ⁇ W3max. Therefore, when T2 ⁇ W3, W3min ⁇ T2min may be satisfied, but T2min ⁇ W3min is desirable.
  • T2 ⁇ W3 it is desirable that T2max ⁇ W3max, and W3min ⁇ T2max may be satisfied, but more preferably T2max ⁇ W3min.
  • the magnitude relationship between the flange width W3 and the inner dimension height H9 is not limited to the above.
  • the maximum value of the flange width W3 is W3max
  • the minimum value is W3min
  • the maximum value of the inner dimension height H9 is H9max
  • the minimum value is H9min
  • H9 ⁇ W3 it can be said that H9 ⁇ W3 is satisfied if H9min ⁇ W3max. Therefore, when H9 ⁇ W3, W3min ⁇ H9min may be satisfied, but H9min ⁇ W3min is desirable.
  • H9 ⁇ W3 it is desirable that H9max ⁇ W3max, and W3min ⁇ H9max may be satisfied, but more preferably H9max ⁇ W3min.
  • the magnitude relationship between the flange width W3 and the flange thickness T3 is not limited to the above.
  • the maximum value of the flange width W3 is W3max
  • the minimum value is W3min
  • the maximum value of the flange thickness T3 is T3max
  • the minimum value is T3min
  • T3 ⁇ W3 it can be said that T3 ⁇ W3 is satisfied if T3min ⁇ W3max. Therefore, when T3 ⁇ W3, W3min ⁇ T3min may be satisfied, but T3min ⁇ W3min is desirable.
  • T3 ⁇ W3 it is desirable that T3max ⁇ W3max, and W3min ⁇ T3max may be satisfied, but more preferably T3max ⁇ W3min.
  • the planar shape of the lid member 40 when viewed in a plane from the normal direction of the main surface is, for example, a rectangular shape.
  • the planar shape of the lid member 40 is not limited to the above, and may be a polygonal shape, a circular shape, an elliptical shape, or a combination thereof.
  • the joining member 50 is provided over the entire circumference of each of the base member 30 and the lid member 40, and has a rectangular frame shape.
  • the first electrode pad 33a and the second electrode pad 33b are arranged inside the joining member 50, and the joining member 50 is provided so as to surround the crystal vibrating element 10. ing.
  • the joining member 50 joins the base member 30 and the lid member 40, and seals the recess 49 corresponding to the internal space. Specifically, the joining member 50 joins the base 31 and the flange portion 43.
  • the material of the joining member 50 has low moisture permeability, and more preferably low gas permeability. Further, in order to electrically connect the lid member 40 to the ground potential via the joining member 50, it is desirable that the joining member 50 has conductivity. From these viewpoints, the material of the joining member 50 is preferably metal.
  • the joining member 50 is a combination of a metallized layer made of molybdenum (Mo) provided on the upper surface 31A of the substrate 31 and a gold tin (Au—Sn) system provided between the metallized layer and the flange portion 43. It is provided by a metal solder layer made of a crystal alloy.
  • the joining member 50 may be provided with an inorganic adhesive such as a silicon-based adhesive containing water glass or the like or a calcium-based adhesive containing cement or the like.
  • the material of the joining member 50 may be provided by an epoxy-based, vinyl-based, acrylic-based, urethane-based, or silicone-based organic adhesive.
  • a coating having a lower gas permeability than the adhesive may be provided on the outside of the joining member 50 in order to reduce the gas permeability.
  • the base member 30 and the lid member 40 may be joined by seam welding.
  • FIG. 4 is a flowchart schematically showing a method for manufacturing a crystal oscillator according to the first embodiment.
  • FIG. 5 is a cross-sectional view schematically showing a step of holding an end portion of a metal plate.
  • FIG. 6 is a cross-sectional view schematically showing a process of pressing the central portion of the metal plate.
  • a metal plate is prepared (S10).
  • the metal plate 140 to be prepared is made of an Fe—Ni—Co alloy.
  • the metal plate 140 is a plate-like member having a pair of main surfaces composed of a first main surface 140A and a second main surface 140B facing each other.
  • the metal plate 140 is a flat plate having a uniform thickness (the shortest distance between the first main surface 140A and the second main surface 140B), and the thickness of the metal plate 140 is T3.
  • the metal plate 140 is deformed by a pressing method to form a top wall portion 41, a side wall portion 42, and a flange portion 43.
  • the metal plate 140 is sandwiched between the die AP1 and the holder AP2.
  • the die AP1 supports the metal plate 140 from the first main surface 140A side.
  • the holder AP2 presses the metal plate 140 against the die AP1 from the first main surface 140A side.
  • the holder AP2 suppresses fluctuations in the processing position of the metal plate 140, and also suppresses the occurrence of wrinkles in the metal plate 140 during deformation due to press processing.
  • the punch AP3 is set on the second main surface 140B side of the metal plate 140.
  • the clearance between the die AP1 and the punch AP3 when the second main surface 140B of the metal plate 140 is viewed in a plan view is set to T2.
  • the punch AP3 is pushed into the metal plate 140 to deform the metal plate 140.
  • the second main surface 140B side of the metal plate 140 is deformed in a concave shape, and the first main surface 140A side is deformed in a convex shape.
  • the space surrounded by the metal plate 140 formed by pushing the punch AP3 becomes the recess 49.
  • the depth at which the metal plate 140 is pushed in the direction in which the punch AP3 intersects the pair of main surfaces (first main surface 140A and second main surface 140B) of the metal plate 140 is defined as H9.
  • the depth H9 is formed on the first main surface 140A side of the metal plate 140 and the depth based on the second main surface 140B of the recess formed on the second main surface 140B side of the metal plate 140. It corresponds to the height when the first main surface 140A of the convex portion is used as a reference.
  • the depth H9 is set to a size equal to or less than the thickness T3 (T3 ⁇ H9). That is, the metal plate 140 is drawn by a pressing method to a depth equal to or less than its thickness.
  • the portion where the tip of the punch AP3 faces is the top wall portion 41, and the portion located at the clearance between the die AP1 and the punch AP3 becomes the side wall portion 42, and the die AP1 and the holder AP2 The portion sandwiched between the two becomes the flange portion 43.
  • the substrate 31 is formed by sintering a green sheet of alumina.
  • a metal film is provided on the green sheet before sintering, and the metal film sintered together with the green sheet forms a metallized layer of the joining member 50, electrode pads 33a and 33b, and external electrodes 35a to 35d.
  • metal films for example, various printing methods (screen printing, inkjet printing, gravure printing, flexographic printing, etc.), various coating methods (cast, dispense, etc.), and various wet plating methods (electroless plating, hot-dip plating, etc.) It is formed by a wet process such as electroplating).
  • the substrate 31 may be formed of a wafer cut out from an ingot.
  • the metal film may be formed by a dry process using various vapor deposition methods such as PVD (Physical Vapor Deposition) and CVD (Chemical Vapor Deposition) as an example.
  • PVD Physical Vapor Deposition
  • CVD Chemical Vapor Deposition
  • At least a part of each of the metallized layer of the joining member 50, the electrode pads 33a and 33b, and the external electrodes 35a to 35d may be formed after sintering the green sheet.
  • a crystal vibrating element is prepared (S40).
  • a crystal of crystal is sliced to form a crystal wafer.
  • the crystal wafer may be subjected to appropriate necessary treatments such as flattening treatment such as chemical mechanical polishing and cleaning treatment with a rinsing liquid.
  • a part of the crystal wafer is removed and processed to form contours of a plurality of crystal pieces connected to each other.
  • a part of each of the plurality of crystal pieces is removed, and each of the plurality of crystal pieces is processed into a mesa-shaped structure.
  • the removal process is performed by, for example, etching using photolithography, but may be performed by another processing method such as plasma CVM (Chemical Vaporization Machining).
  • a metal film is provided on the surface of each of the plurality of crystal pieces, and a part of the metal film is removed by etching using photolithography to form an electrode from the metal film.
  • the method of forming the electrode is not limited to etching, and the electrode may be formed by lift-off.
  • the crystal vibrating element is individualized. A thin-walled portion thinner than the surroundings is formed in the portion connecting the plurality of crystal pieces, and the thin-walled portion becomes the starting point of cracks by applying bending stress, and the portion connecting the plurality of crystal pieces is cut.
  • the thin-walled portion is formed by utilizing, for example, etching in a step of forming contours of a plurality of quartz pieces or a step of processing each of the plurality of quartz pieces into a mesa-shaped structure.
  • the thin portion may be formed by a scribe tool.
  • the crystal vibrating element may be individualized by cutting with a laser cutter, a dicing saw, or the like.
  • a crystal vibrating element is mounted (S50). Increasingly, a conductive adhesive paste containing a composition of thermosetting resin is prepared. Next, the base member 30 is placed on a hot plate that has not been heated. Next, the conductive adhesive paste is applied onto each of the first electrode pad 33a and the second electrode pad 33b of the base member 30. Next, the crystal vibrating element 10 is placed on the conductive adhesive paste so that the tip of the crystal vibrating element 10 does not come into contact with the base member 30. Next, the conductive adhesive paste is heated and cured on a hot plate to cure the first electrode pad 33a and the second electrode pad 33b of the base member 30, respectively, and the first connection electrodes 16a and the second of the crystal vibration element 10. Each of the connection electrodes 16b is joined.
  • the resin composition of the conductive adhesive paste is not limited to the composition of the thermosetting resin, and may include the composition of the light (UV) curable resin.
  • the step S40 may include a step of irradiating the conductive adhesive paste with light (UV).
  • the base member and the lid member are joined (S60).
  • the lid member 40 is put into the storage tray.
  • the storage tray is provided with a bottomed opening in which the lid member 40 can be stored with almost no gap.
  • the lid member is housed in the opening with the top surface 41A of the top wall 41 facing the bottom of the opening.
  • metal solder is provided on the lower surface 43B of the flange of the flange portion 43.
  • the metal solder is a gold-tin (Au—Sn) -based eutectic alloy.
  • the metal solder may be provided on the metallized layer provided on the base member 30.
  • the base member is placed in the storage tray.
  • the base member 30 on which the crystal vibrating element 10 is mounted is housed in the opening with the crystal vibrating element 10 facing the lid member 40 side.
  • the metallized layer of the base member 30 overlaps the metal solder of the lid member 40.
  • the metal solder is heated to soften it, and the softened metal solder is cooled to solidify.
  • the solidified metal solder forms a joining member 50 together with the metallized layer of the base member 30, and joins the base member 30 and the lid member 40 to seal the recess 49 corresponding to the internal space.
  • the crystal oscillator 1 is taken out from the storage tray.
  • the order of the steps S10 and S20 for forming the lid member 40 from the metal plate 140, the step S30 for preparing the base member 30, and the step S40 for preparing the crystal oscillator 10 is not limited to the above. ..
  • the steps S10 and S20 for forming the lid member 40 from the metal plate 140 may be carried out after the step S30 for preparing the base member 30, or may be carried out after the step S40 for preparing the crystal vibration element 10.
  • the step S30 for preparing the base member 30 may be performed after the step S40 for preparing the crystal vibration element 10.
  • FIG. 7 is a table showing the free fall test conditions.
  • FIG. 8 is a table showing the test results of the free fall test.
  • the configuration of the first embodiment shall conform to the crystal oscillator 1 shown in FIGS. 1 to 3, and configurations other than those already described will be described below.
  • the external dimensions are expressed as "length along the X axis x length along the Z'axis x length along the Y'axis".
  • the frequency of the crystal vibrating element is 37.4 Hz, and the ESR is 30 ⁇ .
  • the base of the base member is made of alumina and has external dimensions of 1.0 mm ⁇ 0.8 mm ⁇ 0.12 mm.
  • the joining member includes a gold-tin alloy having a thickness of 15 ⁇ m and a width of 60 ⁇ m.
  • the lid member is made of a Fe—Ni—Co alloy and has external dimensions of 1.0 mm ⁇ 0.8 mm ⁇ 0.16 mm.
  • Top wall thickness T1 is 0.06 mm
  • side wall thickness T2 is 55 ⁇ m
  • flange thickness T3 is 0.1 mm
  • flange width W3 is 85 ⁇ m
  • internal height H9 is 0.1 mm
  • the configuration of the second embodiment is the same as that of the first embodiment except that the flange thickness T3 is 0.16 mm. That is, in the second embodiment, the flange thickness T3 is larger than the inner dimension height H9 (T3> H9).
  • the configuration of the comparative example is the same as that of the first embodiment except that the flange thickness T3 is 0.06 mm. That is, in the comparative example, the flange thickness T3 is smaller than the inner dimension height H9 (T3 ⁇ H9).
  • a free fall test in accordance with JIS C 60068-2-31 (2013) was performed as shown in FIG. 7, and fluctuations in frequency or ESR were measured.
  • the crystal oscillators according to the comparative examples, the first embodiment and the second embodiment are naturally dropped toward a flat floor surface in a normal posture during transportation.
  • the floor material is concrete, and in test 1, it is naturally dropped twice from a height of 750 mm from the floor surface, and the frequency fluctuation before and after the test is ⁇ 10 ppm or more with respect to the frequency before the test, or the ESR fluctuation before and after the test.
  • the frequency fluctuation before and after the test is ⁇ 10 ppm or more with respect to the frequency before the test, or the ESR fluctuation before and after the test.
  • Test 2 defects were determined by spontaneously dropping from a height of 1000 mm from the floor surface twice, and in Test 3, defects were determined by spontaneously dropping twice from a height of 1500 mm from the floor surface. Evaluation was performed on 22 samples in each of Tests 1 to 3.
  • the number of defects in Test 1 was 0, but in Test 2, 2 defects occurred, and in Test 3, 7 defects occurred.
  • the number of defects occurred was 0 in any of the tests 1 to 3.
  • the difference between the example and the comparative example was only the size of the flange thickness T3, the defect that occurred in the comparative example did not occur in the example.
  • the difference between the comparative example and the embodiment is, more specifically, the mechanical strength of the lid member, which is determined by the configuration of the flange portion. Therefore, it is considered that the occurrence of defects in this evaluation test was caused by the deformation of the lid member.
  • the vibration when the lid member is plastically deformed, the vibration may be hindered by the contact between the lid member and the crystal vibration element.
  • the deformation of the lid member causes distortion in the joint member and the base member, so that the internal space becomes airtight due to damage to the substrate and interfacial peeling of the joint member. It may be destroyed.
  • the flange thickness T3 was smaller than the inner dimension height H9, the drop caused inhibition of vibration and destruction of airtightness.
  • the flange thickness T3 is the same size as the inner dimension height H9 and the second embodiment in which the flange thickness T3 is larger than the inner dimension height H9, vibration is hindered and airtightness is destroyed by dropping. Did not occur. From this, it can be seen that if the flange thickness T3 has a size equal to or higher than the inner dimension height H9, the defect of the crystal oscillator due to the mechanical strength of the lid member does not occur.
  • the total height H1 of the lid member 40, the internal dimension height H9, and the flange thickness T3 satisfy H1> T3 ⁇ H9. Further, the total height H1 of the lid member 40, the top wall thickness T1 and the flange thickness T3 satisfy H1 ⁇ T1 + T3. According to this, the mechanical strength of the lid member 40 is improved, and the physical durability of the crystal oscillator 1 is improved. Specifically, deformation of the lid member 40 due to an impact such as dropping can be suppressed. Therefore, it is possible to suppress fluctuations in vibration characteristics due to contact between the crystal vibration element 10 and the lid member 40 due to deformation of the lid member 40.
  • the side wall thickness T2, the flange thickness T3, and the flange width W3 of the lid member 40 satisfy T3 ⁇ W3 + T2. According to this, the flange portion 43 can sufficiently improve the mechanical strength of the lid member 40.
  • the base member 30 has a base 31 to which the lid member 40 and the crystal vibrating element 10 are joined. Further, the elastic modulus of the lid member 40 is smaller than the elastic modulus of the substrate 31. Even if the lid member 40 is easily deformed and stress is easily concentrated on the substrate 31, the reliability of the crystal oscillator 1 is improved according to the present embodiment.
  • the material of the lid member 40 is metal. According to this, even if the lid member 40 is made of a ductile material, the lid member 40 having the shape according to the present embodiment can be easily formed by drawing processing by a pressing method or the like.
  • the material of the substrate 31 is ceramic. According to this, even if the substrate 31 is provided with the ceramic which is a brittle material which is easily damaged such as cracks, the reliability of the crystal oscillator 1 can be improved according to the present embodiment.
  • the substrate 31 has a flat plate shape. According to this, the manufacturing process can be simplified and the manufacturing cost can be reduced as compared with, for example, a crystal unit having a substrate having a concave portion formed therein.
  • the step of forming the lid member 40 includes a step of deforming the metal plate 140 by the press method, and when the thickness of the metal plate 140 is T3 and the depth of deformation by the press method is H9. Satisfy T3 ⁇ H9. According to this, the highly reliable crystal oscillator 1 can be manufactured at low cost.
  • FIG. 9 is a cross-sectional view schematically showing the configuration of the crystal oscillator according to the second embodiment.
  • the base 31 is formed with a bottomed recess 39 that opens on the upper surface 31A side.
  • the recess 39 overlaps at least the exciting portion 17.
  • the recess 39 overlaps at least the first excitation electrode 14a and the second excitation electrode 14b.
  • the recess 39 preferably overlaps at least a part of each of the peripheral portion 18 and the peripheral portion 19, and more preferably overlaps with the entire peripheral portion 19.
  • the crystal vibrating element 10 may be tilted so that its tip (peripheral portion 19) is closer to the base member 30 than its root (peripheral portion 18).
  • the internal space in which the crystal vibrating element 10 is housed is formed by the recess 49 and the recess 39. Therefore, even if the crystal oscillator 1 is miniaturized, a sufficient space for the crystal vibrating element 10 to vibrate can be secured, and the amplitude of the crystal vibrating element 10 is not limited. In other words, the crystal unit 1 can be miniaturized. Further, when the crystal vibrating element 10 is mounted on the base member 30, contact between the tip of the crystal vibrating element 10 and the base member 30 can be suppressed even when the crystal vibrating element 10 is tilted by its own weight.
  • the base member, the crystal vibrating element mounted on the mounting surface of the base member, the lid member having a recess opened on the side of the crystal vibrating element, and the base member and the lid member are joined.
  • the lid member extends along the height direction of the top wall portion extending along the mounting surface of the base member and the lid member connected to the outer edge of the top wall portion and intersecting the mounting surface of the base member.
  • the thickness of the flange portion along the height direction is T3
  • the thickness of the lid member along the height direction is T3, including the existing side wall portion and the flange portion extending outward from the side wall portion along the mounting surface of the base member.
  • a crystal oscillator satisfying T3 ⁇ H9 is provided.
  • the mechanical strength of the lid member is improved, and the physical durability of the crystal unit is improved.
  • deformation of the lid member due to an impact such as dropping can be suppressed. Therefore, it is possible to suppress fluctuations in vibration characteristics due to contact between the crystal vibration element and the lid member due to deformation of the lid member. Further, it is possible to suppress the destruction of airtightness due to damage to the substrate and the joining member due to the deformation of the lid member, and to suppress the fluctuation of the vibration characteristics due to the oxidation of the electrode of the crystal vibration element. From the above, a highly reliable crystal unit can be provided.
  • the flange portion can sufficiently improve the mechanical strength of the lid member.
  • the base member has a substrate to which the lid member is joined and an electrode pad provided on the side of the substrate facing the lid member and to which the crystal vibration element is electrically connected.
  • the elastic modulus of the lid member is smaller than the elastic modulus of the substrate. According to this embodiment, the reliability of the crystal unit is improved even if the lid member is easily deformed and stress is easily concentrated on the substrate.
  • the material of the lid member is metal. According to this, even if the lid member is made of a ductile material, the lid member having the shape according to the present embodiment can be easily formed by drawing processing by a pressing method or the like.
  • the material of the substrate is ceramic. According to this, even if the substrate is provided with ceramic, which is a brittle material that is easily damaged such as cracks, the reliability of the crystal unit can be improved according to the present embodiment.
  • the substrate is flat. According to this, the manufacturing process can be simplified and the manufacturing cost can be reduced as compared with, for example, a crystal unit having a substrate having a concave portion formed therein.
  • a recess is formed on the side of the substrate facing the crystal vibrating element, and when the substrate is viewed in a plan view from the side of the crystal vibrating element, the recess overlaps at least the excitation electrode of the crystal vibrating element.
  • the internal space for accommodating the crystal vibrating element is formed by the recess on the base member side and the recess on the lid member side. Therefore, even if the crystal oscillator is miniaturized, the vibration space of the crystal vibrating element can be sufficiently secured, and the amplitude of the crystal vibrating element is not limited. In other words, the crystal unit can be miniaturized. Further, when the crystal vibrating element is mounted on the base member, contact between the tip of the crystal vibrating element and the base member can be suppressed even when the crystal vibrating element is tilted due to its own weight.
  • a step of forming the lid member there is a step of forming the lid member, a step of mounting the crystal vibrating element on the base member, and a step of joining the lid member to the base member, and forming the lid member.
  • T3 ⁇ H9 is satisfied. According to this, a highly reliable crystal unit can be manufactured at low cost.
  • the embodiment according to the present invention is not limited to the crystal unit, and can be applied to the piezoelectric unit.
  • An example of a piezoelectric vibrator is a crystal oscillator (Quartz Crystal Resnotor Unit) provided with a crystal vibrating element (Quartz Crystal Resonator).
  • the crystal vibrating element uses a crystal piece (Quartz Crystal Element) as the piezoelectric piece excited by the piezoelectric effect, and the piezoelectric piece is an arbitrary such as a piezoelectric single crystal, a piezoelectric ceramic, a piezoelectric thin film, or a piezoelectric polymer film. It may be formed by the piezoelectric material of.
  • the piezoelectric single crystal can include lithium niobate (LiNbO 3 ).
  • the piezoelectric ceramic is barium titanate (BaTiO 3), lead titanate (PbTiO 3), lead zirconate titanate (Pb (Zr x Ti 1- x) O3; PZT), aluminum nitride (AlN), niobium Lithium acid (LiNbO 3 ), lithium metaniobate (LiNb 2 O 6 ), bismuth titanate (Bi 4 Ti 3 O 12 ), lithium tantalate (LiTaO 3 ), lithium tetraborate (Li 2 B 4 O 7 ), Langasite (La 3 Ga 5 SiO 14 ), tantalate pentoxide (Ta 2 O 5 ), and the like can be mentioned.
  • Examples of the piezoelectric thin film include those obtained by forming the above-mentioned piezoelectric ceramic on a substrate such as quartz or sapphire by a sputtering method or the like.
  • Examples of the piezoelectric polymer film include polylactic acid (PLA), polyvinylidene fluoride (PVDF), and vinylidene fluoride / ethylene trifluoride (VDF / TrFE) copolymer.
  • PVA polylactic acid
  • PVDF polyvinylidene fluoride
  • VDF / TrFE vinylidene fluoride / ethylene trifluoride copolymer.
  • the above-mentioned various piezoelectric materials may be used by being laminated with each other, or may be laminated with another member.
  • the embodiment according to the present invention can be appropriately applied without particular limitation as long as it is a device that converts electromechanical energy by a piezoelectric effect, such as a timing device, a sounding device, an oscillator, and a load sensor.
  • a highly reliable piezoelectric vibrator and a method for manufacturing the same can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

A piezoelectric vibrator (1) is provided with a base member (30), a piezoelectric vibration element (10), a lid member (40) having a recess opening toward the piezoelectric vibration element (10), and a bonding member (50). The lid member (40) includes a top wall portion (41), a side wall portion (42), and a flange portion (43), and satisfies T3 ≧ H9, where T3 is the thickness of the flange portion (43) along a height direction, and H9 is the height of the recess of the lid member (40) along the height direction.

Description

圧電振動子及びその製造方法Piezoelectric oscillator and its manufacturing method
 本発明は、圧電振動子及びその製造方法に関する。 The present invention relates to a piezoelectric vibrator and a method for manufacturing the same.
 振動子は、移動通信端末、通信基地局、家電などの各種電子機器において、タイミングデバイス、センサ、発振器などの用途に用いられている。電子機器の高機能化に伴い、小型且つ薄型な圧電振動素子が求められている。 Oscillators are used in various electronic devices such as mobile communication terminals, communication base stations, and home appliances for applications such as timing devices, sensors, and oscillators. With the increasing functionality of electronic devices, small and thin piezoelectric vibrating elements are required.
 特許文献1には、アルミナ製の基体と、基体に接着固定された圧電振動素子と、圧電振動素子を覆う金属製の蓋部材と、基体と蓋部材とを接着固定する接合部材とを備え、蓋部材は、その開口部の外周にフランジ部が形成されるように薄肉金属板を絞り成形した後、フランジ部を蓋部材の外側面の近傍位置でかつ外側面と平行にカットしたものであり、開口部は基体に対してほぼ線接触状態で接着封止される、圧電振動子が開示されている。 Patent Document 1 includes an alumina substrate, a piezoelectric vibrating element bonded and fixed to the substrate, a metal lid member covering the piezoelectric vibrating element, and a joining member for bonding and fixing the substrate and the lid member. The lid member is obtained by drawing and molding a thin metal plate so that a flange portion is formed on the outer periphery of the opening, and then cutting the flange portion at a position near the outer surface of the lid member and parallel to the outer surface. Disclosed is a piezoelectric vibrator in which the opening is adhesively sealed with respect to the substrate in a substantially linear contact state.
 特許文献2には、ベース部材と、ベース部材の上に搭載された圧電振動素子と、ベース部材に接合され、圧電振動素子を収容する内部空間をベース部材と共に形成する蓋部材と、を備え、蓋部材は、圧電振動素子を挟んでベース部材30と対向する天壁部と、天壁部の主面と交差する方向に延在する側壁部と、を有し、天壁部の厚みが、側壁部の厚みよりも大きい、圧電振動子が開示されている。蓋部材は、平板状の金属部材をプレス工法によって変形させて形成している。 Patent Document 2 includes a base member, a piezoelectric vibrating element mounted on the base member, and a lid member joined to the base member to form an internal space for accommodating the piezoelectric vibrating element together with the base member. The lid member has a top wall portion facing the base member 30 with the piezoelectric vibrating element interposed therebetween, and a side wall portion extending in a direction intersecting the main surface of the top wall portion, and the thickness of the top wall portion is increased. A piezoelectric vibrator that is larger than the thickness of the side wall portion is disclosed. The lid member is formed by deforming a flat metal member by a pressing method.
特開平8-111627号公報Japanese Unexamined Patent Publication No. 8-111627 特開2018-98599号公報JP-A-2018-98599
 特許文献1や特許文献2に記載されているようにプレス工法によって製造された蓋部材は、側壁部の厚みが天壁部の厚みよりも小さくなることがある。このような蓋部材を用いた圧電振動子は蓋部材の側壁部が変形し易い場合がある。蓋部材の変形は、蓋部材と圧電振動素子との接触による動作不良や、ベース部材の損傷による気密破壊による周波数特性の変動などの不具合を引き起こす場合があった。 As described in Patent Document 1 and Patent Document 2, the thickness of the side wall portion of the lid member manufactured by the press method may be smaller than the thickness of the top wall portion. In a piezoelectric vibrator using such a lid member, the side wall portion of the lid member may be easily deformed. Deformation of the lid member may cause problems such as malfunction due to contact between the lid member and the piezoelectric vibrating element, and fluctuation of frequency characteristics due to airtight destruction due to damage to the base member.
 本発明はこのような事情に鑑みてなされたものであり、本発明の目的は、信頼性が高い圧電振動子及びその製造方法の提供である。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a highly reliable piezoelectric vibrator and a method for manufacturing the same.
 本発明の一態様に係る圧電振動子は、ベース部材と、ベース部材の搭載面に搭載された圧電振動素子と、圧電振動素子の側に開口する凹部を有する蓋部材と、ベース部材と蓋部材とを接合する接合部材とを備え、蓋部材は、ベース部材の搭載面に沿って延在する天壁部と、天壁部の外縁に接続されベース部材の搭載面と交差する高さ方向に沿って延在する側壁部と、側壁部からベース部材の搭載面に沿って外側に延在するフランジ部とを含み、高さ方向に沿ったフランジ部の厚みをT3、高さ方向に沿った蓋部材の凹部の高さをH9としたとき、T3≧H9を満たす。 The piezoelectric vibrator according to one aspect of the present invention includes a base member, a piezoelectric vibrating element mounted on a mounting surface of the base member, a lid member having a recess opened on the side of the piezoelectric vibrating element, and a base member and a lid member. The lid member is provided with a joining member for joining the base member, and the lid member is connected to the top wall portion extending along the mounting surface of the base member and the outer edge of the top wall portion in the height direction intersecting the mounting surface of the base member. A side wall portion extending along the side wall portion and a flange portion extending outward from the side wall portion along the mounting surface of the base member are included, and the thickness of the flange portion along the height direction is T3, along the height direction. When the height of the recess of the lid member is H9, T3 ≧ H9 is satisfied.
 本発明の他の一態様に係る圧電振動子の製造方法は、蓋部材を形成する工程と、ベース部材に圧電振動素子を搭載する工程と、ベース部材に蓋部材を接合する工程とを備え、蓋部材を形成する工程は、一対の主面を有する板状部材を準備する工程と、プレス工法によって一対の主面と交差する方向に沿って板状部材を変形させる工程とを有し、一対の主面と交差する方向において、板状部材の厚みをT3、プレス工法による変形の深さをH9としたとき、T3≧H9を満たす。 The method for manufacturing a piezoelectric vibrator according to another aspect of the present invention includes a step of forming a lid member, a step of mounting a piezoelectric vibrating element on the base member, and a step of joining the lid member to the base member. The step of forming the lid member includes a step of preparing a plate-shaped member having a pair of main surfaces and a step of deforming the plate-shaped member along a direction intersecting the pair of main surfaces by a pressing method. When the thickness of the plate-shaped member is T3 and the depth of deformation by the pressing method is H9 in the direction intersecting the main surface of the above, T3 ≧ H9 is satisfied.
 本発明によれば、信頼性が高い圧電振動子及びその製造方法が提供できる。 According to the present invention, a highly reliable piezoelectric vibrator and a method for manufacturing the same can be provided.
第1実施形態に係る水晶振動子の構成を概略的に示す分解斜視図である。It is an exploded perspective view which shows schematic structure of the crystal oscillator which concerns on 1st Embodiment. 第1実施形態に係る水晶振動子の構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the crystal oscillator which concerns on 1st Embodiment. 第1実施形態に係る蓋部材の端部の構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the end part of the lid member which concerns on 1st Embodiment. 第1実施形態に係る水晶振動子の製造方法を概略的に示すフローチャートである。It is a flowchart which shows roughly the manufacturing method of the crystal oscillator which concerns on 1st Embodiment. 金属板の端部を保持する工程を概略的に示す断面図である。It is sectional drawing which shows schematicly the process of holding an end portion of a metal plate. 金属板の中央部をプレスする工程を概略的に示す断面図である。It is sectional drawing which shows typically the process of pressing the central part of a metal plate. 自然落下試験条件を示す表である。It is a table which shows the free fall test condition. 自然落下試験の試験結果を示す表である。It is a table which shows the test result of the free fall test. 第2実施形態に係る水晶振動子の構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the crystal oscillator which concerns on 2nd Embodiment.
 以下、図面を参照しながら本発明の実施形態について説明する。各実施形態の図面は例示であり、各部の寸法や形状は模式的なものであり、本願発明の技術的範囲を当該実施形態に限定して解するべきではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The drawings of each embodiment are examples, and the dimensions and shapes of each part are schematic, and the technical scope of the present invention should not be limited to the embodiment.
 <第1実施形態>
 図1~図3を参照しつつ、本発明の第1実施形態に係る水晶振動子1の構成について説明する。図1は、第1実施形態に係る水晶振動子の構成を概略的に示す分解斜視図である。図2は、第1実施形態に係る水晶振動子の構成を概略的に示す断面図である。図3は、第1実施形態に係る蓋部材の端部の構成を概略的に示す断面図である。なお、図2は、図1に示した水晶振動子1のII-II線に沿った断面図である。
<First Embodiment>
The configuration of the crystal oscillator 1 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is an exploded perspective view schematically showing the configuration of the crystal oscillator according to the first embodiment. FIG. 2 is a cross-sectional view schematically showing the configuration of the crystal oscillator according to the first embodiment. FIG. 3 is a cross-sectional view schematically showing the configuration of the end portion of the lid member according to the first embodiment. Note that FIG. 2 is a cross-sectional view of the crystal oscillator 1 shown in FIG. 1 along the line II-II.
 各々の図面には、各々の図面相互の関係を明確にし、各部材の位置関係を理解する助けとするために、便宜的にX軸、Y´軸及びZ´軸からなる直交座標系を付すことがある。X軸、Y´軸及びZ´軸は各図面において互いに対応している。X軸、Y´軸及びZ´軸は、それぞれ、後述の水晶片11の結晶軸(Crystallographic Axes)に対応している。X軸が水晶の電気軸(極性軸)、Y軸が水晶の機械軸、Z軸が水晶の光学軸に相当する。Y´軸及びZ´軸は、それぞれ、Y軸及びZ軸をX軸の周りにY軸からZ軸の方向に35度15分±1分30秒回転させた軸である。 Each drawing is provided with a Cartesian coordinate system consisting of the X-axis, Y'axis and Z'axis for convenience to clarify the relationship between the drawings and to help understand the positional relationship of each member. Sometimes. The X-axis, Y'axis and Z'axis correspond to each other in the drawings. The X-axis, Y'axis, and Z'axis correspond to the crystallographic axes of the crystal piece 11 described later, respectively. The X-axis corresponds to the electric axis (polar axis) of the crystal, the Y-axis corresponds to the mechanical axis of the crystal, and the Z-axis corresponds to the optical axis of the crystal. The Y'axis and the Z'axis are axes obtained by rotating the Y axis and the Z axis around the X axis in the direction of the Y axis to the Z axis by 35 degrees 15 minutes ± 1 minute 30 seconds, respectively.
 以下の説明において、X軸に平行な方向を「X軸方向」、Y´軸に平行な方向を「Y´軸方向」、Z´軸に平行な方向を「Z´軸方向」という。また、X軸、Y´軸及びZ´軸の矢印の先端方向を「+(プラス)」、矢印とは反対の方向を「-(マイナス)」という。なお、便宜的に、+Y´軸方向を上方向、-Y´軸方向を下方向として説明するが、水晶振動子1の上下の向きは限定されるものではない。例えば、以下の説明において、水晶振動素子10における+Y´軸方向の側を上面11Aとし、-Y´軸方向の側を下面11Bとするが、水晶片11は、上面11Aが下面11Bの鉛直下側に位置するように配置されてもよい。 In the following description, the direction parallel to the X axis is referred to as "X axis direction", the direction parallel to the Y'axis is referred to as "Y'axis direction", and the direction parallel to the Z'axis is referred to as "Z'axis direction". Further, the direction of the tip of the arrow on the X-axis, Y'axis and Z'axis is called "+ (plus)", and the direction opposite to the arrow is called "-(minus)". For convenience, the + Y'axis direction is defined as an upward direction, and the −Y'axis direction is defined as a downward direction, but the vertical direction of the crystal oscillator 1 is not limited. For example, in the following description, the + Y'axis direction side of the crystal vibrating element 10 is the upper surface 11A, and the −Y'axis direction side is the lower surface 11B. It may be arranged so as to be located on the side.
 水晶振動子1は、水晶振動素子10と、ベース部材30と、蓋部材40と、接合部材50とを備えている。水晶振動素子10は、ベース部材30と蓋部材40との間に設けられている。ベース部材30及び蓋部材40は、水晶振動素子10を収容するための保持器を構成しており、Y´軸方向に沿って重なっている。図1及び図2に示した例では、ベース部材30は平板状をなしており、蓋部材40はベース部材30側に水晶振動素子10を収容する有底の開口部を有する。水晶振動素子10は、ベース部材30に搭載されている。なお、水晶振動素子10のうち少なくとも励振される部分が保持器に収容されれば、ベース部材30の形状は上記に限定されるものではない。例えば、ベース部材30が蓋部材40側に水晶振動素子10の一部を収容する有底の開口部を有してもよい。また、水晶振動素子10の保持方法も上記に限定されるものではない。例えば、ベース部材30及び蓋部材40が、水晶振動素子10のうち励振される部分の周辺部を挟持してもよい。なお、以下の説明において、ベース部材30と蓋部材40とが重なる方向であるY´軸方向を、「高さ方向」とする。 The crystal oscillator 1 includes a crystal vibrating element 10, a base member 30, a lid member 40, and a joining member 50. The crystal vibrating element 10 is provided between the base member 30 and the lid member 40. The base member 30 and the lid member 40 form a cage for accommodating the crystal vibrating element 10, and are overlapped along the Y'axis direction. In the examples shown in FIGS. 1 and 2, the base member 30 has a flat plate shape, and the lid member 40 has a bottomed opening for accommodating the crystal vibration element 10 on the base member 30 side. The crystal vibrating element 10 is mounted on the base member 30. The shape of the base member 30 is not limited to the above as long as at least the excited portion of the crystal vibrating element 10 is housed in the cage. For example, the base member 30 may have a bottomed opening on the lid member 40 side for accommodating a part of the crystal vibrating element 10. Further, the method of holding the crystal vibrating element 10 is not limited to the above. For example, the base member 30 and the lid member 40 may sandwich the peripheral portion of the excited portion of the crystal vibrating element 10. In the following description, the Y'axis direction, which is the direction in which the base member 30 and the lid member 40 overlap, is referred to as the "height direction".
 まず、水晶振動素子10について説明する。
 水晶振動素子10は、圧電効果により水晶を振動させ、電気エネルギーと機械エネルギーとを変換する素子である。水晶振動素子10は、薄片状の水晶片11と、一対の励振電極を構成する第1励振電極14a及び第2励振電極14bと、一対の引出電極を構成する第1引出電極15a及び第2引出電極15bと、一対の接続電極を構成する第1接続電極16a及び第2接続電極16bとを備えている。
First, the crystal vibrating element 10 will be described.
The crystal vibrating element 10 is an element that vibrates a crystal by a piezoelectric effect and converts electrical energy and mechanical energy. The crystal vibrating element 10 includes a flaky crystal piece 11, a first excitation electrode 14a and a second excitation electrode 14b constituting a pair of excitation electrodes, and a first extraction electrode 15a and a second extraction electrode forming a pair of extraction electrodes. It includes an electrode 15b, and a first connection electrode 16a and a second connection electrode 16b forming a pair of connection electrodes.
 水晶片11は、互いに対向する上面11A及び下面11Bを有している。上面11Aは、ベース部材30に対向する側とは反対側、すなわち後述する蓋部材40の天壁部41に対向する側に位置している。下面11Bは、ベース部材30に対向する側に位置している。 The crystal piece 11 has an upper surface 11A and a lower surface 11B facing each other. The upper surface 11A is located on the side opposite to the side facing the base member 30, that is, the side facing the top wall portion 41 of the lid member 40 described later. The lower surface 11B is located on the side facing the base member 30.
 水晶片11は、例えば、ATカット型の水晶片である。ATカット型の水晶片11は、互いに交差するX軸、Y´軸、及びZ´軸からなる直交座標系において、X軸及びZ´軸によって特定される面と平行な面(以下、「XZ´面」と呼ぶ。他の軸によって特定される面についても同様である。)が主面となり、Y´軸と平行な方向が厚さとなるように形成される。例えば、ATカット型の水晶片11は、人工水晶(Synthetic Quartz Crystal)の結晶体を切断及び研磨加工して得られる水晶基板(例えば、水晶ウェハ)をエッチング加工することで形成される。 The crystal piece 11 is, for example, an AT-cut type crystal piece. The AT-cut type crystal piece 11 is a plane parallel to a plane specified by the X-axis and the Z'axis in a Cartesian coordinate system consisting of an X-axis, a Y'axis, and a Z'axis that intersect each other (hereinafter, "XZ". It is called a'plane'. The same applies to a plane specified by another axis.) Is the main surface, and is formed so that the direction parallel to the Y'axis is the thickness. For example, the AT-cut type crystal piece 11 is formed by etching a crystal substrate (for example, a crystal wafer) obtained by cutting and polishing a crystal of artificial quartz (Synthetic Quartz Crystal).
 ATカット型の水晶片11を用いた水晶振動素子10は、広い温度範囲で高い周波数安定性を有する。ATカット型の水晶振動素子10では、厚みすべり振動モード(Thickness Shear Vibration Mode)が主要振動として用いられる。なお、ATカット型の水晶片11におけるY´軸及びZ´軸の回転角度は、35度15分から-5度以上15度以下の範囲で傾いてもよい。水晶片11のカット角度は、ATカット以外の異なるカットを適用してもよい。例えばBTカット、GTカット、SCカットなどを適用してよい。また、水晶振動素子は、Z板と呼ばれるカット角の水晶片を用いた音叉型水晶振動素子であってもよい。 The crystal vibrating element 10 using the AT-cut type crystal piece 11 has high frequency stability in a wide temperature range. In the AT-cut type crystal vibration element 10, the thickness slip vibration mode (Thickness Shear Vibration Mode) is used as the main vibration. The rotation angles of the Y'axis and the Z'axis of the AT-cut type crystal piece 11 may be tilted in the range of 35 degrees 15 minutes to −5 degrees or more and 15 degrees or less. As the cut angle of the crystal piece 11, a different cut other than the AT cut may be applied. For example, BT cut, GT cut, SC cut and the like may be applied. Further, the crystal vibrating element may be a tuning fork type crystal vibrating element using a crystal piece having a cut angle called a Z plate.
 ATカット型の水晶片11は、X軸方向に平行な長辺が延在する長辺方向と、Z´軸方向に平行な短辺が延在する短辺方向と、Y´軸方向に平行な厚さが延在する厚さ方向を有する板状である。水晶片11の上面11Aを平面視したとき、水晶片11の平面形状は矩形状をなしており、水晶片11は、中央に位置し励振に寄与する励振部17と、励振部17に隣接する周辺部18,19とを有している。励振部17及び周辺部18,19は、それぞれ、水晶片11のZ´軸方向に沿った全幅に亘って帯状に形成されている。周辺部18は励振部17の-X軸方向側に位置し、周辺部19は励振部17の+X軸方向側に位置している。 The AT-cut type crystal piece 11 is parallel to the long side direction in which the long side parallel to the X-axis direction extends, the short side direction in which the short side parallel to the Z'axis direction extends, and the Y'axis direction. It is a plate shape having a thickness direction in which a large thickness extends. When the upper surface 11A of the crystal piece 11 is viewed in a plan view, the plane shape of the crystal piece 11 is rectangular, and the crystal piece 11 is located in the center and is adjacent to the excitation unit 17 that contributes to excitation and the excitation unit 17. It has peripheral portions 18 and 19. The excitation portion 17 and the peripheral portions 18 and 19 are each formed in a band shape over the entire width along the Z'axis direction of the crystal piece 11. The peripheral portion 18 is located on the −X-axis direction side of the excitation portion 17, and the peripheral portion 19 is located on the + X-axis direction side of the excitation portion 17.
 なお、上面11Aを平面視したときの水晶片11の平面形状は矩形状に限定されるものではない。水晶片11の平面形状は、多角形状、円形状、楕円形状又はこれらの組合せであってもよい。水晶片11の平面形状は音叉形状であってもよい。言い換えると、水晶片11が、基部と、基部から並行に延出する振動腕部とを有してもよい。水晶片11には、振動漏れや応力伝搬を抑制する目的でスリットが形成されてもよい。水晶片11の励振部17及び周辺部18,19の形状も全幅に亘る帯状に限定されるものではない。例えば、励振部の平面形状は、Z´軸方向においても周辺部と隣接する島状であってもよく、周辺部の平面形状は、励振部を囲む枠状に形成されてもよい。 The planar shape of the crystal piece 11 when the upper surface 11A is viewed in a plane is not limited to a rectangular shape. The planar shape of the crystal piece 11 may be a polygonal shape, a circular shape, an elliptical shape, or a combination thereof. The planar shape of the crystal piece 11 may be a tuning fork shape. In other words, the crystal piece 11 may have a base and a vibrating arm extending in parallel from the base. A slit may be formed in the crystal piece 11 for the purpose of suppressing vibration leakage and stress propagation. The shapes of the exciting portion 17 and the peripheral portions 18 and 19 of the crystal piece 11 are not limited to the strip shape over the entire width. For example, the planar shape of the excitation portion may be an island shape adjacent to the peripheral portion in the Z'axis direction, and the planar shape of the peripheral portion may be formed in a frame shape surrounding the excitation portion.
 水晶片11は、励振部17の厚さが周辺部18,19の厚さよりも大きい、いわゆるメサ型構造である。メサ型構造の水晶片11によれば、励振部17からの振動漏れが抑制できる。水晶片11は両面メサ型構造であり、上面11A及び下面11Bの両側において、励振部17が周辺部18,19から突出している。励振部17と周辺部18との境界、及び、励振部17と周辺部19との境界は、厚みが連続的に変化するテーパ形状をなすが、厚みの変化が不連続な階段形状をなしてもよい。当該境界は、厚みの変化量が連続的に変化するコンベックス形状、又は厚みの変化量が不連続に変化するベベル形状であってもよい。なお、水晶片11は、上面11A又は下面11Bの片側において励振部17が周辺部18,19から突出する片面メサ型構造であってもよい。また、水晶片11は、励振部17の厚さが周辺部18,19の厚さよりも小さい、いわゆる逆メサ型構造であってもよい。 The crystal piece 11 has a so-called mesa-shaped structure in which the thickness of the exciting portion 17 is larger than the thickness of the peripheral portions 18 and 19. According to the crystal piece 11 having a mesa-shaped structure, vibration leakage from the exciting portion 17 can be suppressed. The crystal piece 11 has a double-sided mesa-shaped structure, and the excitation portions 17 project from the peripheral portions 18 and 19 on both sides of the upper surface 11A and the lower surface 11B. The boundary between the exciting portion 17 and the peripheral portion 18 and the boundary between the exciting portion 17 and the peripheral portion 19 form a tapered shape in which the thickness changes continuously, but a staircase shape in which the change in thickness is discontinuous. May be good. The boundary may have a convex shape in which the amount of change in thickness changes continuously, or a bevel shape in which the amount of change in thickness changes discontinuously. The crystal piece 11 may have a single-sided mesa-shaped structure in which the exciting portion 17 projects from the peripheral portions 18 and 19 on one side of the upper surface 11A or the lower surface 11B. Further, the crystal piece 11 may have a so-called inverted mesa type structure in which the thickness of the exciting portion 17 is smaller than the thickness of the peripheral portions 18 and 19.
 第1励振電極14a及び第2励振電極14bは、励振部17に設けられている。第1励振電極14aは水晶片11の上面11A側に設けられ、第2励振電極14bは水晶片11の下面11B側に設けられている。言い換えると、第1励振電極14aは水晶片11の蓋部材40側の主面に設けられ、第2励振電極14bは水晶片11のベース部材30側の主面に設けられている。第1励振電極14a及び第2励振電極14bは、水晶片11を挟んで互いに対向している。水晶片11の上面11Aを平面視したとき、第1励振電極14a及び第2励振電極14bは、それぞれ矩形状をなしており、互いの略全体が重なり合うように配置されている。第1励振電極14a及び第2励振電極14bは、それぞれ、水晶片11のZ´軸方向に沿った全幅に亘って帯状に形成されている。一対の電極を構成する第1励振電極14a及び第2励振電極14bのそれぞれは、水晶片11を挟んで互いに対向する各電極に相当する。 The first excitation electrode 14a and the second excitation electrode 14b are provided in the excitation unit 17. The first excitation electrode 14a is provided on the upper surface 11A side of the crystal piece 11, and the second excitation electrode 14b is provided on the lower surface 11B side of the crystal piece 11. In other words, the first excitation electrode 14a is provided on the main surface of the crystal piece 11 on the lid member 40 side, and the second excitation electrode 14b is provided on the main surface of the crystal piece 11 on the base member 30 side. The first excitation electrode 14a and the second excitation electrode 14b face each other with the crystal piece 11 interposed therebetween. When the upper surface 11A of the crystal piece 11 is viewed in a plan view, the first excitation electrode 14a and the second excitation electrode 14b each have a rectangular shape, and are arranged so that substantially the entire surface of the crystal piece 11 overlaps with each other. The first excitation electrode 14a and the second excitation electrode 14b are each formed in a band shape over the entire width along the Z'axis direction of the crystal piece 11. Each of the first excitation electrode 14a and the second excitation electrode 14b constituting the pair of electrodes corresponds to the electrodes facing each other with the crystal piece 11 interposed therebetween.
 なお、水晶片11の上面11Aを平面視したときの第1励振電極14a及び第2励振電極14bの平面形状は矩形状に限定されるものではない。第1励振電極14a及び第2励振電極14bの平面形状は、多角形状、円形状、楕円形状又はこれらの組合せであってもよい。 The planar shapes of the first excitation electrode 14a and the second excitation electrode 14b when the upper surface 11A of the crystal piece 11 is viewed in a plan view are not limited to a rectangular shape. The planar shape of the first excitation electrode 14a and the second excitation electrode 14b may be a polygonal shape, a circular shape, an elliptical shape, or a combination thereof.
 第1引出電極15a及び第2引出電極15bは、周辺部18に設けられている。第1引出電極15aは水晶片11の上面11A側に設けられ、第2引出電極15bは水晶片11の下面11B側に設けられている。第1引出電極15aは、第1励振電極14aと第1接続電極16aとを電気的に接続している。第2引出電極15bは、第2励振電極14bと第2接続電極16bとを電気的に接続している。例えば、図1に示すように、第1引出電極15aの一端が励振部17において第1励振電極14aに接続され、第1引出電極15aの他端が周辺部18において第1接続電極16aに接続されている。また、第2引出電極15bの一端が励振部17において第2励振電極14bに接続され、第2引出電極15bの他端が周辺部18において第2接続電極16bに接続されている。浮遊容量の低減を目的として、第1引出電極15a及び第2引出電極15bは、水晶片11の上面11Aを平面視したときに互いに離れていることが望ましい。例えば、第1引出電極15aは、第2引出電極15bから視て+Z´軸方向に設けられている。 The first extraction electrode 15a and the second extraction electrode 15b are provided on the peripheral portion 18. The first extraction electrode 15a is provided on the upper surface 11A side of the crystal piece 11, and the second extraction electrode 15b is provided on the lower surface 11B side of the crystal piece 11. The first extraction electrode 15a electrically connects the first excitation electrode 14a and the first connection electrode 16a. The second extraction electrode 15b electrically connects the second excitation electrode 14b and the second connection electrode 16b. For example, as shown in FIG. 1, one end of the first extraction electrode 15a is connected to the first excitation electrode 14a in the excitation portion 17, and the other end of the first extraction electrode 15a is connected to the first connection electrode 16a in the peripheral portion 18. Has been done. Further, one end of the second extraction electrode 15b is connected to the second excitation electrode 14b at the excitation portion 17, and the other end of the second extraction electrode 15b is connected to the second connection electrode 16b at the peripheral portion 18. For the purpose of reducing stray capacitance, it is desirable that the first extraction electrode 15a and the second extraction electrode 15b are separated from each other when the upper surface 11A of the crystal piece 11 is viewed in a plan view. For example, the first extraction electrode 15a is provided in the + Z'axis direction when viewed from the second extraction electrode 15b.
 第1接続電極16a及び第2接続電極16bは、それぞれ、第1励振電極14a及び第2励振電極14bをベース部材30に電気的に接続するための電極であり、周辺部18において水晶片11の下面11B側に設けられている。第1接続電極16aは、水晶片11の-X軸方向側の端部と+Z´軸方向側の端部とによって形成される角部に設けられ、第2接続電極16bは、水晶片11の-X軸方向側の端部と-Z´軸方向側の端部とによって形成される角部に設けられている。 The first connection electrode 16a and the second connection electrode 16b are electrodes for electrically connecting the first excitation electrode 14a and the second excitation electrode 14b to the base member 30, respectively, and the peripheral portion 18 of the crystal piece 11 It is provided on the lower surface 11B side. The first connection electrode 16a is provided at a corner formed by an end portion of the crystal piece 11 on the −X axis direction side and an end portion on the + Z ′ axis direction side, and the second connection electrode 16b is the crystal piece 11 of the crystal piece 11. It is provided at a corner formed by an end portion on the -X-axis direction side and an end portion on the -Z'axis direction side.
 第1励振電極14a、第1引出電極15a及び第1接続電極16aからなる一方の電極群は、互いに連続的に形成されており、例えば互いに一体的に形成されている。第2励振電極14b、第2引出電極15b及び第2接続電極16bからなる他方の電極群も同様に、互いに連続的に形成されており、例えば互いに一体的に形成されている。このように、水晶振動素子10には一対の電極群が設けられている。水晶振動素子10の一対の電極群は、例えば多層構造であり、下地層と最表層とをこの順に積層して設けられている。下地層は、水晶片11に接触する層であり、水晶片11との密着性が良好な材料で設けられる。最表層は、一対の電極群の最表面に位置する層であり、化学的安定性が良好な材料で設けられる。これによれば、一対の電極群の剥離や酸化が抑制でき、信頼性の高い水晶振動素子10が提供できる。下地層は例えばクロム(Cr)を含有し、最表層は例えば金(Au)を含有する。 One electrode group including the first excitation electrode 14a, the first extraction electrode 15a, and the first connection electrode 16a is formed continuously with each other, for example, integrally with each other. Similarly, the other electrode group including the second excitation electrode 14b, the second extraction electrode 15b, and the second connection electrode 16b is also formed continuously with each other, for example, integrally with each other. As described above, the crystal vibrating element 10 is provided with a pair of electrodes. The pair of electrodes of the crystal vibrating element 10 has, for example, a multi-layer structure, and the base layer and the outermost layer are laminated in this order. The base layer is a layer that comes into contact with the crystal piece 11, and is provided with a material having good adhesion to the crystal piece 11. The outermost layer is a layer located on the outermost surface of the pair of electrodes, and is provided with a material having good chemical stability. According to this, peeling and oxidation of a pair of electrodes can be suppressed, and a highly reliable crystal vibrating element 10 can be provided. The base layer contains, for example, chromium (Cr), and the outermost layer contains, for example, gold (Au).
 水晶振動素子10の一対の電極群を構成する材料はCr及びAuに限定されるものではなく、例えばチタン(Ti)、モリブデン(Mo)、アルミニウム(Al)、ニッケル(Ni)、インジウム(In)、パラジウム(Pd)、銀(Ag)、銅(Cu)、錫(Sn)、鉄(Fe)などの金属材料を含有してもよい。一対の電極群は、導電性セラミック、導電性樹脂、半導体などを含有してもよい。 The materials constituting the pair of electrodes of the crystal vibrating element 10 are not limited to Cr and Au, and are, for example, titanium (Ti), molybdenum (Mo), aluminum (Al), nickel (Ni), and indium (In). , Palladium (Pd), silver (Ag), copper (Cu), tin (Sn), iron (Fe) and other metallic materials may be contained. The pair of electrodes may contain a conductive ceramic, a conductive resin, a semiconductor, or the like.
 次に、ベース部材30について説明する。
 ベース部材30は、水晶振動素子10を励振可能に保持するものである。ベース部材30は、互いに対向する上面31A及び下面31Bを有する基体31を備えている。上面31A及び下面31Bは、基体31の一対の主面に相当する。上面31Aは、水晶振動素子10及び蓋部材40に対向する側に位置し、水晶振動素子10が搭載される搭載面に相当する。下面31Bは、例えば、水晶振動子1を外部の回路基板に実装する際に、当該回路基板に対向する側に位置し、当該回路基板が接続される実装面に相当する。基体31は、例えば絶縁性セラミック(アルミナ)などの焼結材である。熱応力の発生を抑制する観点から、基体31は耐熱性材料から構成されることが好ましい。熱履歴によって水晶振動素子10にかかる応力を抑制する観点から、基体31は、水晶片11に近い熱膨張率を有する材料によって設けられてもよく、例えば水晶によって設けられてもよい。また、熱応力による基体31の損傷を抑制する観点から、基体31は、蓋部材40に近い熱膨張率を有する材料によって設けられてもよい。
Next, the base member 30 will be described.
The base member 30 holds the crystal vibrating element 10 in an excitable manner. The base member 30 includes a substrate 31 having an upper surface 31A and a lower surface 31B facing each other. The upper surface 31A and the lower surface 31B correspond to a pair of main surfaces of the substrate 31. The upper surface 31A is located on the side facing the crystal vibrating element 10 and the lid member 40, and corresponds to a mounting surface on which the crystal vibrating element 10 is mounted. The lower surface 31B is located on the side facing the circuit board when the crystal oscillator 1 is mounted on an external circuit board, and corresponds to a mounting surface to which the circuit board is connected. The substrate 31 is a sintered material such as an insulating ceramic (alumina). From the viewpoint of suppressing the generation of thermal stress, the substrate 31 is preferably made of a heat-resistant material. From the viewpoint of suppressing the stress applied to the crystal vibrating element 10 by the thermal history, the substrate 31 may be provided by a material having a coefficient of thermal expansion close to that of the crystal piece 11, or may be provided by, for example, quartz. Further, from the viewpoint of suppressing damage to the substrate 31 due to thermal stress, the substrate 31 may be provided with a material having a coefficient of thermal expansion close to that of the lid member 40.
 ベース部材30は、一対の電極パッドを構成する第1電極パッド33a及び第2電極パッド33bを備えている。第1電極パッド33a及び第2電極パッド33bは、基体31の上面31Aに設けられている。第1電極パッド33a及び第2電極パッド33bは、ベース部材30に水晶振動素子10を電気的に接続するための端子である。酸化による信頼性の低下を抑制する観点から、第1電極パッド33a及び第2電極パッド33bのそれぞれの最表面は金を含有するのが望ましく、ほぼ金のみからなるのがさらに望ましい。例えば、第1電極パッド33a及び第2電極パッド33bは、基体31との密着性を向上させる下地層と、金を含み酸化を抑制する最表面とを有する積層構造であってもよい。 The base member 30 includes a first electrode pad 33a and a second electrode pad 33b that form a pair of electrode pads. The first electrode pad 33a and the second electrode pad 33b are provided on the upper surface 31A of the substrate 31. The first electrode pad 33a and the second electrode pad 33b are terminals for electrically connecting the crystal vibrating element 10 to the base member 30. From the viewpoint of suppressing a decrease in reliability due to oxidation, it is desirable that the outermost surfaces of the first electrode pad 33a and the second electrode pad 33b each contain gold, and it is more desirable that the outermost surfaces thereof are composed of almost only gold. For example, the first electrode pad 33a and the second electrode pad 33b may have a laminated structure having a base layer for improving adhesion to the substrate 31 and an outermost surface containing gold and suppressing oxidation.
 ベース部材30は、第1外部電極35a、第2外部電極35b、第3外部電極35c及び第4外部電極35dを備えている。第1外部電極35a~第4外部電極35dは、基体31の下面31Bに設けられている。第1外部電極35a及び第2外部電極35bは、図示しない外部の回路基板と水晶振動子1とを電気的に接続するための端子である。第3外部電極35c及び第4外部電極35dは、例えば電気信号等が入出力されないダミー電極であるが、蓋部材40を接地させて蓋部材20の電磁シールド機能を向上させる接地電極であってもよい。なお、第3外部電極35c及び第4外部電極35dは、省略されてもよい。 The base member 30 includes a first external electrode 35a, a second external electrode 35b, a third external electrode 35c, and a fourth external electrode 35d. The first external electrode 35a to the fourth external electrode 35d are provided on the lower surface 31B of the substrate 31. The first external electrode 35a and the second external electrode 35b are terminals for electrically connecting an external circuit board (not shown) and the crystal oscillator 1. The third external electrode 35c and the fourth external electrode 35d are, for example, dummy electrodes to which an electric signal or the like is not input / output, but even if the lid member 40 is grounded to improve the electromagnetic shielding function of the lid member 20. Good. The third external electrode 35c and the fourth external electrode 35d may be omitted.
 第1電極パッド33a及び第2電極パッド33bは、ベース部材30の-X軸方向の側の端部において、Z´軸方向に沿って並んでいる。第1外部電極35a及び第2外部電極35bは、ベース部材30の-X軸方向の側の端部において、Z´軸方向に沿って並んでいる。第3外部電極35c及び第4外部電極35dは、ベース部材30の+X軸方向の側の端部において、Z´軸方向に沿って並んでいる。第1電極パッド33aは、基体31をY´軸方向に沿って貫通する第1貫通電極34aを介して、第1外部電極35aに電気的に接続されている。第2電極パッド33bは、基体31をY´軸方向に沿って貫通する第2貫通電極34bを介して、第2外部電極35bに電気的に接続されている。 The first electrode pad 33a and the second electrode pad 33b are aligned along the Z'axis direction at the end of the base member 30 on the −X axis direction side. The first external electrode 35a and the second external electrode 35b are aligned along the Z'axis direction at the end of the base member 30 on the −X axis direction side. The third external electrode 35c and the fourth external electrode 35d are aligned along the Z'axis direction at the end of the base member 30 on the + X axis direction. The first electrode pad 33a is electrically connected to the first external electrode 35a via the first through electrode 34a that penetrates the substrate 31 along the Y'axis direction. The second electrode pad 33b is electrically connected to the second external electrode 35b via the second through electrode 34b that penetrates the substrate 31 along the Y'axis direction.
 第1電極パッド33a及び第2電極パッド33bは、それぞれ、基体31の上面31Aと下面31Bとを繋ぐ側面に設けられた側面電極を介して、第1外部電極35a及び第2外部電極35bに電気的に接続されてもよい。第1外部電極35a~第4外部電極35dは、基体31の側面に凹状に設けられたキャスタレーション電極でもよい。 The first electrode pad 33a and the second electrode pad 33b are electrically connected to the first external electrode 35a and the second external electrode 35b via the side electrodes provided on the side surfaces connecting the upper surface 31A and the lower surface 31B of the substrate 31, respectively. May be connected. The first external electrode 35a to the fourth external electrode 35d may be a casting electrode provided in a concave shape on the side surface of the substrate 31.
 ベース部材30は、一対の導電性保持部材を構成する第1導電性保持部材36a及び第2導電性保持部材36bを備えている。第1導電性保持部材36a及び第2導電性保持部材36bは、励振部17が励振可能となるように、ベース部材30及び蓋部材40から間隔を空けて水晶振動素子10を保持している。励振部17がベース部材30及び蓋部材40に接触しないように、水晶振動素子10を保持している。第1導電性保持部材36a及び第2導電性保持部材36bは、水晶振動素子10とベース部材30とを電気的に接続する。具体的には、第1導電性保持部材36aが第1電極パッド33aと第1接続電極16aとを電気的に接続し、第2導電性保持部材36bが第2電極パッド33bと第2接続電極16bとを電気的に接続している。 The base member 30 includes a first conductive holding member 36a and a second conductive holding member 36b that form a pair of conductive holding members. The first conductive holding member 36a and the second conductive holding member 36b hold the crystal vibrating element 10 at intervals from the base member 30 and the lid member 40 so that the exciting portion 17 can be excited. The crystal vibrating element 10 is held so that the exciting portion 17 does not come into contact with the base member 30 and the lid member 40. The first conductive holding member 36a and the second conductive holding member 36b electrically connect the crystal vibrating element 10 and the base member 30. Specifically, the first conductive holding member 36a electrically connects the first electrode pad 33a and the first connecting electrode 16a, and the second conductive holding member 36b electrically connects the second electrode pad 33b and the second connecting electrode. It is electrically connected to 16b.
 第1導電性保持部材36a及び第2導電性保持部材36bは、熱硬化性樹脂や光硬化性樹脂等を含む導電性接着剤の硬化物であり、第1導電性保持部材36a及び第2導電性保持部材36bの主成分は、例えばシリコーン樹脂である。第1導電性保持部材36a及び第2導電性保持部材36bは導電性粒子を含んでおり、当該導電性粒子としては例えば銀(Ag)を含む金属粒子が用いられる。第1導電性保持部材36aは第1電極パッド33aと第1接続電極16aとを接着し、第2導電性保持部材36bは第2電極パッド33bと第2接続電極16bとを接着している。 The first conductive holding member 36a and the second conductive holding member 36b are cured products of a conductive adhesive containing a thermosetting resin, a photocurable resin, and the like, and the first conductive holding member 36a and the second conductive. The main component of the property-retaining member 36b is, for example, a silicone resin. The first conductive holding member 36a and the second conductive holding member 36b contain conductive particles, and as the conductive particles, for example, metal particles containing silver (Ag) are used. The first conductive holding member 36a adheres the first electrode pad 33a and the first connecting electrode 16a, and the second conductive holding member 36b adheres the second electrode pad 33b and the second connecting electrode 16b.
 第1導電性保持部材36a及び第2導電性保持部材36bの主成分は、硬化性樹脂であればシリコーン樹脂に限定されるものではなく、例えばエポキシ樹脂やアクリル樹脂などであってもよい。また、第1導電性保持部材36a及び第2導電性保持部材36bへの導電性の付与は、銀粒子によるものに限定されるものではなく、その他の金属、導電性セラミック、導電性有機材料などによるものでもよい。第1導電性保持部材36a及び第2導電性保持部材36bの主成分が導電性高分子であってもよい。 The main components of the first conductive holding member 36a and the second conductive holding member 36b are not limited to silicone resin as long as they are curable resins, and may be, for example, epoxy resin or acrylic resin. Further, the imparting of conductivity to the first conductive holding member 36a and the second conductive holding member 36b is not limited to that by silver particles, and other metals, conductive ceramics, conductive organic materials, etc. It may be due to. The main components of the first conductive holding member 36a and the second conductive holding member 36b may be a conductive polymer.
 第1導電性保持部材36a及び第2導電性保持部材36bの樹脂組成物には、任意の添加剤を含有してもよい。添加剤は、例えば、導電性接着剤の作業性や保存性の向上などを目的とする粘着付与剤、充填剤、増粘剤、増感剤、老化防止剤、消泡剤などである。また、硬化物の強度を増加させる目的、あるいはベース部材30と水晶振動素子10との間隔を保つ目的のフィラーが添加されてもよい。 Any additive may be contained in the resin composition of the first conductive holding member 36a and the second conductive holding member 36b. The additive is, for example, a tackifier, a filler, a thickener, a sensitizer, an antiaging agent, an antifoaming agent, etc. for the purpose of improving the workability and storage stability of the conductive adhesive. Further, a filler may be added for the purpose of increasing the strength of the cured product or for maintaining the distance between the base member 30 and the crystal vibrating element 10.
 次に、蓋部材40について説明する。
 蓋部材40は、ベース部材30に接合されている。蓋部材40は、ベース部材30との間に水晶振動素子10を収容する内部空間を形成する。蓋部材40はベース部材30の側に開口する凹部49を有しており、本実施形態における内部空間は、凹部49の内側の空間に相当する。凹部49は、例えば真空状態で封止されているが、窒素や希ガスなどの不活性ガスが充填された状態で封止されてもよい。蓋部材40の材質は、望ましくは導電材料であり、さらに望ましくは気密性の高い金属材料である。蓋部材40が導電材料で構成されることによって、内部空間への電磁波の出入りを低減する電磁シールド機能が蓋部材40に付与される。熱応力の発生を抑制する観点から、蓋部材40の材質は、基体31に近い熱膨張率を有する材料であることが望ましく、例えば常温付近での熱膨張率がガラスやセラミックと広い温度範囲で一致するFe-Ni-Co系合金である。なお、蓋部材40の材質は、基体31の材質と同じであってもよく、セラミック、水晶、樹脂などを含んでもよい。但し、蓋部材40の弾性率は、望ましくは基体31の弾性率よりも小さい。これによれば、外部からの衝撃を蓋部材40が吸収する。具体的には、蓋部材40へ小さな外部応力が作用したときは蓋部材40が弾性変形し、蓋部材40へ比較的大きな外部応力が作用したときは、蓋部材40が塑性変形する。このように蓋部材40が変形することによって、外部応力に起因したベース部材30の損傷が抑制される。
Next, the lid member 40 will be described.
The lid member 40 is joined to the base member 30. The lid member 40 forms an internal space for accommodating the crystal vibrating element 10 with the base member 30. The lid member 40 has a recess 49 that opens on the side of the base member 30, and the internal space in the present embodiment corresponds to the space inside the recess 49. The recess 49 is sealed in a vacuum state, for example, but may be sealed in a state filled with an inert gas such as nitrogen or a rare gas. The material of the lid member 40 is preferably a conductive material, and more preferably a highly airtight metal material. Since the lid member 40 is made of a conductive material, the lid member 40 is provided with an electromagnetic shield function that reduces the ingress and egress of electromagnetic waves into the internal space. From the viewpoint of suppressing the generation of thermal stress, the material of the lid member 40 is preferably a material having a coefficient of thermal expansion close to that of the substrate 31, for example, the coefficient of thermal expansion near room temperature is in a wide temperature range of glass or ceramic. It is a matching Fe—Ni—Co based alloy. The material of the lid member 40 may be the same as that of the substrate 31, and may include ceramic, crystal, resin, and the like. However, the elastic modulus of the lid member 40 is preferably smaller than the elastic modulus of the substrate 31. According to this, the lid member 40 absorbs the impact from the outside. Specifically, when a small external stress is applied to the lid member 40, the lid member 40 is elastically deformed, and when a relatively large external stress is applied to the lid member 40, the lid member 40 is plastically deformed. By deforming the lid member 40 in this way, damage to the base member 30 due to external stress is suppressed.
 蓋部材40は、平板状の天壁部41と、天壁部41の外縁に接続されており且つ高さ方向に沿って延在する側壁部42とを有している。蓋部材40の凹部49は、天壁部41と側壁部42とによって形成されている。具体的には、天壁部41は、基体31の上面31Aに沿って延在し、高さ方向において水晶振動素子10を挟んでベース部材30と対向している。また、側壁部42は、天壁部41からベース部材30に向かって延在しており、基体31の上面31Aと平行な方向において水晶振動素子10を囲んでいる。蓋部材40はさらに、側壁部42のベース部材30側の先端部に接続されており且つ基体31の上面31Aに沿って外側に延在するフランジ部43を有している。言い換えると、側壁部42の上端部に接続された天壁部41と、側壁部42の下端部に接続されたフランジ部43とが、互いに反対方向へ延在している。基体31の上面31Aを平面視したとき、フランジ部43は、水晶振動素子10を囲むように枠状に延在している。 The lid member 40 has a flat top wall portion 41 and a side wall portion 42 connected to the outer edge of the top wall portion 41 and extending along the height direction. The recess 49 of the lid member 40 is formed by the top wall portion 41 and the side wall portion 42. Specifically, the top wall portion 41 extends along the upper surface 31A of the substrate 31 and faces the base member 30 with the crystal vibrating element 10 interposed therebetween in the height direction. Further, the side wall portion 42 extends from the top wall portion 41 toward the base member 30, and surrounds the crystal vibrating element 10 in a direction parallel to the upper surface 31A of the base 31. The lid member 40 further has a flange portion 43 that is connected to the tip end portion of the side wall portion 42 on the base member 30 side and extends outward along the upper surface 31A of the substrate 31. In other words, the top wall portion 41 connected to the upper end portion of the side wall portion 42 and the flange portion 43 connected to the lower end portion of the side wall portion 42 extend in opposite directions. When the upper surface 31A of the substrate 31 is viewed in a plan view, the flange portion 43 extends in a frame shape so as to surround the crystal vibrating element 10.
 図3に示すように、天壁部41は、ベース部材30の側に位置する天壁下面41Bと、天壁下面41Bとは反対側に位置する天壁上面41Aとを有している。フランジ部43は、ベース部材30の側に位置するフランジ下面43Bと、フランジ下面43Bとは反対側に位置するフランジ上面43Aとを有している。側壁部42は、凹部49の側において天壁下面41Bとフランジ下面43Bとをつなぐ側壁内面42Bと、側壁内面42Bとは反対側において天壁上面41Aとフランジ上面43Aとをつなぐ側壁外面42Aとを有している。蓋部材40の接合部材50に接触する接触面は、フランジ部43のフランジ下面43Bと、側壁部42のベース部材30に対向する対向面とによって構成されている。このため、フランジ部43を備えていない構成に比べて接触面が拡大し、ベース部材30と蓋部材40との接合強度が向上している。なお、フランジ部43のフランジ下面43Bと側壁部42の対向面とは、連続している。 As shown in FIG. 3, the top wall portion 41 has a top wall lower surface 41B located on the side of the base member 30, and a top wall upper surface 41A located on the side opposite to the top wall lower surface 41B. The flange portion 43 has a flange lower surface 43B located on the side of the base member 30, and a flange upper surface 43A located on the side opposite to the flange lower surface 43B. The side wall portion 42 includes a side wall inner surface 42B that connects the top wall lower surface 41B and the flange lower surface 43B on the side of the recess 49, and a side wall outer surface 42A that connects the top wall upper surface 41A and the flange upper surface 43A on the side opposite to the side wall inner surface 42B. Have. The contact surface of the lid member 40 in contact with the joining member 50 is composed of a flange lower surface 43B of the flange portion 43 and a facing surface of the side wall portion 42 facing the base member 30. Therefore, the contact surface is enlarged as compared with the configuration without the flange portion 43, and the joint strength between the base member 30 and the lid member 40 is improved. The lower surface of the flange 43B of the flange portion 43 and the facing surface of the side wall portion 42 are continuous.
 天壁下面41Bと側壁内面42Bとを繋ぐ角部は、R形状となっている。同様に、側壁内面42Bとフランジ下面43Bとを繋ぐ角部、天壁上面41Aと側壁外面42Aとを繋ぐ角部、及び、側壁外面42Aとフランジ上面43Aとを繋ぐ角部も、R形状となっている。例えば、天壁下面41Bと側壁内面42Bとを繋ぐ角部の曲率は、天壁上面41Aと側壁外面42Aとを繋ぐ角部の曲率よりも大きい。また、側壁内面42Bとフランジ下面43Bとを繋ぐ角部の曲率は、側壁外面42Aとフランジ上面43Aとを繋ぐ角部の曲率よりも大きい。 The corner portion connecting the lower surface 41B of the top wall and the inner surface 42B of the side wall has an R shape. Similarly, the corner portion connecting the inner surface surface 42B of the side wall and the lower surface 43B of the flange, the corner portion connecting the upper surface 41A of the top wall and the outer surface 42A of the side wall, and the corner portion connecting the outer surface 42A of the side wall and the upper surface 43A of the flange also have an R shape. ing. For example, the curvature of the corner portion connecting the top wall lower surface 41B and the side wall inner surface 42B is larger than the curvature of the corner portion connecting the top wall upper surface 41A and the side wall outer surface 42A. Further, the curvature of the corner portion connecting the inner surface surface 42B of the side wall and the lower surface 43B of the flange is larger than the curvature of the corner portion connecting the outer surface 42A of the side wall and the upper surface 43A of the flange.
 天壁部41は、高さ方向に沿った厚みT1(以下、「天壁厚T1」とする。)を有している。天壁厚T1は、天壁下面41Bから天壁上面41Aまでの最短距離に相当する。側壁部42は、基体31の上面31Aに沿った厚みT2(以下、「側壁厚T2」とする。)を有している。側壁厚T2は、高さ方向と直交する方向に沿った厚みであり、側壁内面42Bから延長された仮想内側面から、側壁外面42Aまでの最短距離に相当する。フランジ部43は、高さ方向に沿った厚みT3(以下、「フランジ厚T3」とする。)を有している。フランジ厚T3は、フランジ下面43Bからフランジ上面43Aまでの最短距離に相当する。例えば、天壁厚T1とフランジ厚T3とはほぼ同じ大きさであり、側壁厚T2は天壁厚T1又はフランジ厚T3よりも小さい(T2<T1=T3)。 The top wall portion 41 has a thickness T1 along the height direction (hereinafter, referred to as "top wall thickness T1"). The top wall thickness T1 corresponds to the shortest distance from the top wall lower surface 41B to the top wall top surface 41A. The side wall portion 42 has a thickness T2 (hereinafter, referred to as “side wall thickness T2”) along the upper surface 31A of the substrate 31. The side wall thickness T2 is a thickness along a direction orthogonal to the height direction, and corresponds to the shortest distance from the virtual inner surface extending from the side wall inner surface 42B to the side wall outer surface 42A. The flange portion 43 has a thickness T3 (hereinafter, referred to as “flange thickness T3”) along the height direction. The flange thickness T3 corresponds to the shortest distance from the flange lower surface 43B to the flange upper surface 43A. For example, the top wall thickness T1 and the flange thickness T3 are substantially the same size, and the side wall thickness T2 is smaller than the top wall thickness T1 or the flange thickness T3 (T2 <T1 = T3).
 なお、天壁厚T1、側壁厚T2及びフランジ厚T3の大小関係は上記に限定されるものではない。天壁厚T1は、フランジ厚T3よりも大きくてもよく(T3<T1)、フランジ厚T3よりも小さくてもよい(T1<T3)。側壁厚T2は、天壁厚T1及びフランジ厚T3の少なくとも一方とほぼ同じ大きさであってもよく(T1=T2及び/又はT3=T2)、天壁厚T1又はフランジ厚T3の少なくとも一方よりも大きくてもよい(T1≦T2及び/又はT3≦T2)。また、天壁部41が平板状でない、すなわち天壁厚T1が位置によって異なり一定の値とはならない場合、天壁厚T1の最小値が側壁厚T2及びフランジ厚T3の少なくとも一方よりも小さくてもよく(T1min<T2及び/又はT1min<T3)、天壁厚T1の最大値が側壁厚T2及びフランジ厚T3の少なくとも一方よりも大きくてもよい(T2<T1max及び/又はT3<T1max)。同様に、側壁厚T2が位置によって異なり一定の値とはならない場合、側壁厚T2の最小値が天壁厚T1及びフランジ厚T3の少なくとも一方よりも小さくてもよく(T2min<T1及び/又はT2min<T3)、側壁厚T2の最大値が天壁厚T1及びフランジ厚T3の少なくとも一方よりも大きくてもよい(T1<T2max及び/又はT3<T2max)。同様に、フランジ厚T3が位置によって異なり一定の値とはならない場合、フランジ厚T3の最小値が天壁厚T1及び側壁厚T2の少なくとも一方よりも小さくてもよく(T3min<T1及び/又はT3min<T2)、フランジ厚T3の最大値が天壁厚T1及び側壁厚T2の少なくとも一方よりも大きくてもよい(T1<T3max及び/又はT2<T3max)。 The magnitude relationship between the top wall thickness T1, the side wall thickness T2, and the flange thickness T3 is not limited to the above. The top wall thickness T1 may be larger than the flange thickness T3 (T3 <T1) and may be smaller than the flange thickness T3 (T1 <T3). The side wall thickness T2 may be substantially the same size as at least one of the top wall thickness T1 and the flange thickness T3 (T1 = T2 and / or T3 = T2), and is larger than at least one of the top wall thickness T1 or the flange thickness T3. May also be large (T1 ≦ T2 and / or T3 ≦ T2). Further, when the top wall portion 41 is not flat, that is, the top wall thickness T1 differs depending on the position and does not become a constant value, the minimum value of the top wall thickness T1 is smaller than at least one of the side wall thickness T2 and the flange thickness T3. It may be (T1min <T2 and / or T1min <T3), and the maximum value of the top wall thickness T1 may be larger than at least one of the side wall thickness T2 and the flange thickness T3 (T2 <T1max and / or T3 <T1max). Similarly, if the side wall thickness T2 differs depending on the position and does not become a constant value, the minimum value of the side wall thickness T2 may be smaller than at least one of the top wall thickness T1 and the flange thickness T3 (T2min <T1 and / or T2min). <T3), the maximum value of the side wall thickness T2 may be larger than at least one of the top wall thickness T1 and the flange thickness T3 (T1 <T2max and / or T3 <T2max). Similarly, if the flange thickness T3 differs depending on the position and does not become a constant value, the minimum value of the flange thickness T3 may be smaller than at least one of the top wall thickness T1 and the side wall thickness T2 (T3min <T1 and / or T3min). <T2), the maximum value of the flange thickness T3 may be larger than at least one of the top wall thickness T1 and the side wall thickness T2 (T1 <T3max and / or T2 <T3max).
 凹部49は、高さ方向に沿った高さH9(以下、「内寸高H9」とする。)を有している。内寸高H9は、フランジ下面43Bから延長された仮想底面から、天壁下面41Bまでの最短距離に相当する。蓋部材40は、高さ方向に沿った高さH1(以下、「全高H1」とする。)を有している。全高H1は、フランジ下面43Bから延長された仮想底面から、天壁上面41Aまでの最短距離に相当する。フランジ部43は、基体31の上面31Aに沿った幅W3(以下、「フランジ幅W3」とする。)を有している。フランジ幅W3は、側壁外面42Aから延長された仮想外側面から、フランジ部43の先端までの最短距離に相当する。したがって、蓋部材40の接合部材50と接触する接合面の幅は、側壁厚T2とフランジ幅W3との和となる。 The recess 49 has a height H9 along the height direction (hereinafter, referred to as "inner dimension height H9"). The inner dimension height H9 corresponds to the shortest distance from the virtual bottom surface extended from the flange lower surface 43B to the top wall lower surface 41B. The lid member 40 has a height H1 (hereinafter, referred to as “total height H1”) along the height direction. The total height H1 corresponds to the shortest distance from the virtual bottom surface extended from the flange lower surface 43B to the top wall upper surface 41A. The flange portion 43 has a width W3 (hereinafter, referred to as “flange width W3”) along the upper surface 31A of the substrate 31. The flange width W3 corresponds to the shortest distance from the virtual outer surface extended from the side wall outer surface 42A to the tip of the flange portion 43. Therefore, the width of the joint surface of the lid member 40 in contact with the joint member 50 is the sum of the side wall thickness T2 and the flange width W3.
 フランジ厚T3は、全高H1よりも小さい(T3<H1)。また、フランジ厚T3は、内寸高H9と同等以上の大きさであり(H9≦T3)、望ましくは内寸高H9よりも大きい(H9<T3)。言い換えると、フランジ上面43Aが天壁下面41Bと同一平面上に位置するか、若しくはフランジ上面43Aから延長した仮想延長面が天壁上面41Aと天壁下面41Bとの間に位置する。これによれば、外部からの衝撃に対する蓋部材40の機械的強度をフランジ部43が担保するため、蓋部材40の変形が抑制できる。全高H1は、内寸高H9と天壁厚T1との和である(H1=H9+T1)。蓋部材40の機械的強度を向上させる観点から、全高H1は、天壁厚T1とフランジ厚T3との和と同等以下の大きさであり(H1≦T1+T3)、望ましくは天壁厚T1とフランジ厚T3との和よりも小さい(H1<T1+T3)。 The flange thickness T3 is smaller than the total height H1 (T3 <H1). Further, the flange thickness T3 is larger than the inner dimension height H9 (H9 ≦ T3), and is preferably larger than the inner dimension height H9 (H9 <T3). In other words, the flange upper surface 43A is located on the same plane as the top wall lower surface 41B, or the virtual extension surface extended from the flange upper surface 43A is located between the top wall upper surface 41A and the top wall lower surface 41B. According to this, since the flange portion 43 guarantees the mechanical strength of the lid member 40 against an impact from the outside, the deformation of the lid member 40 can be suppressed. The total height H1 is the sum of the inner dimension height H9 and the top wall thickness T1 (H1 = H9 + T1). From the viewpoint of improving the mechanical strength of the lid member 40, the total height H1 is equal to or less than the sum of the top wall thickness T1 and the flange thickness T3 (H1 ≦ T1 + T3), and preferably the top wall thickness T1 and the flange. It is smaller than the sum with the thickness T3 (H1 <T1 + T3).
 天壁部41及びフランジ部43が平板状でない場合、言い換えると天壁厚T1、フランジ厚T3、内寸高H9及び全高H1のそれぞれが位置によって異なり一定の値とはならない場合、天壁厚T1、フランジ厚T3、内寸高H9及び全高H1の大小関係は上記に限定されるものではない。フランジ厚T3の最大値をT3max、最小値をT3min、内寸高H9の最大値をH9max、最小値をH9minとしたとき、H9min≦T3maxであればH9≦T3を満たしているといえる。したがって、H9≦T3を満たすとき、T3min<H9minであってもよいが、望ましくはH9min≦T3minであり、さらに望ましくはH9min<T3minである。また、H9≦T3を満たすとき、望ましくはH9max≦T3maxであり、さらに望ましくはH9max<T3maxである。同様に、H9≦T3を満たすとき、望ましくはH9max≦T3minであり、さらに望ましくはH9max<T3minである。 When the top wall portion 41 and the flange portion 43 are not flat, in other words, when the top wall thickness T1, the flange thickness T3, the inner dimension height H9 and the total height H1 are different depending on the position and do not become constant values, the top wall thickness T1 The magnitude relation of the flange thickness T3, the inner dimension height H9, and the total height H1 is not limited to the above. When the maximum value of the flange thickness T3 is T3max, the minimum value is T3min, the maximum value of the inner dimension height H9 is H9max, and the minimum value is H9min, it can be said that H9≤T3 is satisfied if H9min≤T3max. Therefore, when H9 ≦ T3 is satisfied, T3min <H9min may be satisfied, but preferably H9min ≦ T3min, and more preferably H9min <T3min. Further, when H9 ≦ T3 is satisfied, it is desirable that H9max ≦ T3max, and more preferably H9max <T3max. Similarly, when H9 ≦ T3 is satisfied, it is desirable that H9max ≦ T3min, and more preferably H9max <T3min.
 フランジ部43が横方向からの衝撃に対する機械的強度を充分に担保するためには、フランジ幅W3と側壁厚T2との和が例えば内寸高H9と同等以上の大きさであり(H9≦W3+T2)、望ましくはフランジ幅W3と側壁厚T2との和が内寸高H9よりも大きい(H9<W3+T2)。また、さらに望ましくはフランジ幅W3と側壁厚T2との和がフランジ厚T3と同等以上の大きさであり(T3≦W3+T2)、さらに望ましくはフランジ幅W3と側壁厚T2との和がフランジ厚T3よりも大きい(T3<W3+T2)。また、さらに望ましくはフランジ幅W3と側壁厚T2との和が全高H1と同等以上の大きさであり(H1≦W3+T2)、さらに望ましくはフランジ幅W3と側壁厚T2との和が全高H1よりも大きい(H1<W3+T2)。同様に機械的強度を充分に担保するためには、望ましくはフランジ幅W3が側壁厚T2と同等以上の大きさであり(T2≦W3)、さらに望ましくはフランジ幅W3が内寸高H9と同等以上の大きさであり(H9≦W3)、さらに望ましくはフランジ幅W3がフランジ厚T3と同等以上の大きさである(T3≦W3)。 In order for the flange portion 43 to sufficiently secure the mechanical strength against impact from the lateral direction, the sum of the flange width W3 and the side wall thickness T2 is as large as, for example, the inner dimension height H9 (H9 ≦ W3 + T2). ), Desirably, the sum of the flange width W3 and the side wall thickness T2 is larger than the inner dimension height H9 (H9 <W3 + T2). Further, more preferably, the sum of the flange width W3 and the side wall thickness T2 is equal to or larger than the flange thickness T3 (T3 ≦ W3 + T2), and more preferably, the sum of the flange width W3 and the side wall thickness T2 is the flange thickness T3. Greater than (T3 <W3 + T2). Further, more preferably, the sum of the flange width W3 and the side wall thickness T2 is equal to or larger than the total height H1 (H1 ≦ W3 + T2), and more preferably, the sum of the flange width W3 and the side wall thickness T2 is larger than the total height H1. Large (H1 <W3 + T2). Similarly, in order to sufficiently secure the mechanical strength, it is desirable that the flange width W3 is equal to or larger than the side wall thickness T2 (T2 ≦ W3), and more preferably the flange width W3 is equivalent to the inner dimension height H9. It has the above size (H9 ≦ W3), and more preferably, the flange width W3 is equal to or larger than the flange thickness T3 (T3 ≦ W3).
 側壁厚T2、フランジ幅W3、内寸高H9及び全高H1のそれぞれが位置によって異なり一定の値とはならない場合、側壁厚T2、フランジ幅W3、内寸高H9及び全高H1の大小関係は上記に限定されるものではない。内寸高H9の最大値をH9max、側壁厚T2とフランジ幅W3との和の最大値を(W3+T2)max、最小値を(W3+T2)minとしたとき、H9max≦(W3+T2)maxであればH9≦W3+T2を満たしているといえる。したがって、H9≦W3+T2のとき、(W3+T2)min<H9maxであってもよいが、望ましくはH9max≦(W3+T2)minである。同様に、H9<(W3+T2)を満たすとき、H9max<(W3+T2)maxであればよく、望ましくはH9max<(W3+T2)minである。また、フランジ厚T3の最大値をT3max、最小値をT3minとしたとき、T3max≦(W3+T2)maxであればT3≦W3+T2を満たしているといえる。したがって、T3≦W3+T2のとき、(W3+T2)min<T3maxであってもよいが、望ましくはT3max≦(W3+T2)minである。同様に、T3<W3+T2を満たすとき、T3max<(W3+T2)maxであればよく、望ましくはT3max<(W3+T2)minである。また、全高H1の最大値をH1max、最小値をH1minとしたとき、H1max≦(W3+T2)maxであればH1≦W3+T2を満たしているといえる。したがって、H1≦W3+T2のとき、(W3+T2)min<H1maxであってもよいが、望ましくはH1max≦(W3+T2)minである。 When each of the side wall thickness T2, the flange width W3, the inner dimension height H9 and the total height H1 differs depending on the position and does not become a constant value, the magnitude relationship of the side wall thickness T2, the flange width W3, the inner dimension height H9 and the total height H1 is described above. It is not limited. When the maximum value of the inner dimension height H9 is H9max, the maximum value of the sum of the side wall thickness T2 and the flange width W3 is (W3 + T2) max, and the minimum value is (W3 + T2) min, then H9max≤ (W3 + T2) max is H9. It can be said that ≦ W3 + T2 is satisfied. Therefore, when H9 ≦ W3 + T2, (W3 + T2) min <H9max may be satisfied, but H9max ≦ (W3 + T2) min is desirable. Similarly, when H9 <(W3 + T2) is satisfied, H9max <(W3 + T2) max may be satisfied, and H9max <(W3 + T2) min is desirable. Further, when the maximum value of the flange thickness T3 is T3max and the minimum value is T3min, if T3max ≦ (W3 + T2) max, it can be said that T3 ≦ W3 + T2 is satisfied. Therefore, when T3 ≦ W3 + T2, (W3 + T2) min <T3max may be set, but preferably T3max ≦ (W3 + T2) min. Similarly, when T3 <W3 + T2 is satisfied, T3max <(W3 + T2) max may be satisfied, and T3max <(W3 + T2) min is desirable. Further, when the maximum value of the total height H1 is H1max and the minimum value is H1min, if H1max ≦ (W3 + T2) max, it can be said that H1 ≦ W3 + T2 is satisfied. Therefore, when H1 ≦ W3 + T2, (W3 + T2) min <H1max may be satisfied, but H1max ≦ (W3 + T2) min is desirable.
 同様に、フランジ幅W3及び側壁厚T2の大小関係も上記に限定されるものではない。フランジ幅W3の最大値をW3max、最小値をW3min、側壁厚T2の最大値をT2max、最小値をT2minとしたとき、T2min≦W3maxであればT2≦W3を満たしているといえる。したがって、T2≦W3のとき、W3min<T2minであってもよいが、望ましくはT2min≦W3minである。T2≦W3のとき、望ましくはT2max≦W3maxであり、W3min<T2maxであってもよいが、さらに望ましくはT2max≦W3minである。 Similarly, the magnitude relationship between the flange width W3 and the side wall thickness T2 is not limited to the above. When the maximum value of the flange width W3 is W3max, the minimum value is W3min, the maximum value of the side wall thickness T2 is T2max, and the minimum value is T2min, it can be said that T2≤W3 is satisfied if T2min≤W3max. Therefore, when T2 ≦ W3, W3min <T2min may be satisfied, but T2min ≦ W3min is desirable. When T2 ≦ W3, it is desirable that T2max ≦ W3max, and W3min <T2max may be satisfied, but more preferably T2max ≦ W3min.
 同様に、フランジ幅W3及び内寸高H9の大小関係も上記に限定されるものではない。フランジ幅W3の最大値をW3max、最小値をW3min、内寸高H9の最大値をH9max、最小値をH9minとしたとき、H9min≦W3maxであればH9≦W3を満たしているといえる。したがって、H9≦W3のとき、W3min<H9minであってもよいが、望ましくはH9min<W3minである。H9≦W3のとき、望ましくはH9max≦W3maxであり、W3min<H9maxであってもよいが、さらに望ましくはH9max≦W3minである。 Similarly, the magnitude relationship between the flange width W3 and the inner dimension height H9 is not limited to the above. When the maximum value of the flange width W3 is W3max, the minimum value is W3min, the maximum value of the inner dimension height H9 is H9max, and the minimum value is H9min, it can be said that H9≤W3 is satisfied if H9min≤W3max. Therefore, when H9 ≦ W3, W3min <H9min may be satisfied, but H9min <W3min is desirable. When H9 ≦ W3, it is desirable that H9max ≦ W3max, and W3min <H9max may be satisfied, but more preferably H9max ≦ W3min.
 同様に、フランジ幅W3及びフランジ厚T3の大小関係も上記に限定されるものではない。フランジ幅W3の最大値をW3max、最小値をW3min、フランジ厚T3の最大値をT3max、最小値をT3minとしたとき、T3min≦W3maxであればT3≦W3を満たしているといえる。したがって、T3≦W3のとき、W3min<T3minであってもよいが、望ましくはT3min<W3minである。T3≦W3のとき、望ましくはT3max≦W3maxであり、W3min<T3maxであってもよいが、さらに望ましくはT3max≦W3minである。 Similarly, the magnitude relationship between the flange width W3 and the flange thickness T3 is not limited to the above. When the maximum value of the flange width W3 is W3max, the minimum value is W3min, the maximum value of the flange thickness T3 is T3max, and the minimum value is T3min, it can be said that T3≤W3 is satisfied if T3min≤W3max. Therefore, when T3 ≦ W3, W3min <T3min may be satisfied, but T3min <W3min is desirable. When T3 ≦ W3, it is desirable that T3max ≦ W3max, and W3min <T3max may be satisfied, but more preferably T3max ≦ W3min.
 主面の法線方向から平面視したときの蓋部材40の平面形状は、例えば矩形状である。蓋部材40の平面形状は上記に限定されるものではなく、多角形状、円形状、楕円形状及びこれらの組合せでもよい。 The planar shape of the lid member 40 when viewed in a plane from the normal direction of the main surface is, for example, a rectangular shape. The planar shape of the lid member 40 is not limited to the above, and may be a polygonal shape, a circular shape, an elliptical shape, or a combination thereof.
 次に、接合部材50について説明する。
 接合部材50は、ベース部材30及び蓋部材40の各全周に亘って設けられ、矩形の枠状をなしている。ベース部材30の上面31Aを平面視したとき、第1電極パッド33a及び第2電極パッド33bは、接合部材50の内側に配置されており、接合部材50は水晶振動素子10を囲むように設けられている。接合部材50は、ベース部材30と蓋部材40とを接合し、内部空間に相当する凹部49を封止している。具体的には、接合部材50は、基体31とフランジ部43とを接合している。水晶振動素子10の周波数特性の変動を抑制する観点から、接合部材50の材質は、透湿性が低いことが望ましく、ガス透過性が低いことがさらに望ましい。また、接合部材50を介して蓋部材40を接地電位に電気的に接続するためには、接合部材50が導電性を有することが望ましい。これらの観点から、接合部材50の材質は金属が望ましい。一例として、接合部材50は、基体31の上面31Aに設けられたモリブデン(Mo)からなるメタライズ層と、メタライズ層とフランジ部43との間に設けられた金錫(Au-Sn)系の共晶合金からなる金属半田層とによって設けられている。
Next, the joining member 50 will be described.
The joining member 50 is provided over the entire circumference of each of the base member 30 and the lid member 40, and has a rectangular frame shape. When the upper surface 31A of the base member 30 is viewed in a plan view, the first electrode pad 33a and the second electrode pad 33b are arranged inside the joining member 50, and the joining member 50 is provided so as to surround the crystal vibrating element 10. ing. The joining member 50 joins the base member 30 and the lid member 40, and seals the recess 49 corresponding to the internal space. Specifically, the joining member 50 joins the base 31 and the flange portion 43. From the viewpoint of suppressing fluctuations in the frequency characteristics of the crystal vibrating element 10, it is desirable that the material of the joining member 50 has low moisture permeability, and more preferably low gas permeability. Further, in order to electrically connect the lid member 40 to the ground potential via the joining member 50, it is desirable that the joining member 50 has conductivity. From these viewpoints, the material of the joining member 50 is preferably metal. As an example, the joining member 50 is a combination of a metallized layer made of molybdenum (Mo) provided on the upper surface 31A of the substrate 31 and a gold tin (Au—Sn) system provided between the metallized layer and the flange portion 43. It is provided by a metal solder layer made of a crystal alloy.
 なお、接合部材50は、水ガラスなどを含むケイ素系接着剤や、セメントなどを含むカルシウム系接着剤などの無機系接着剤によって設けられてもよい。接合部材50の材質は、エポキシ系、ビニル系、アクリル系、ウレタン系又はシリコーン系の有機系接着剤によって設けられてもよい。接合部材50が無機系又は有機系接着剤によって設けられる場合、ガス透過性を下げるために、接合部材50の外側に当該接着剤よりもガス透過性が低いコーティングが設けられてもよい。ベース部材30と蓋部材40とは、シーム溶接によって接合されてもよい。 The joining member 50 may be provided with an inorganic adhesive such as a silicon-based adhesive containing water glass or the like or a calcium-based adhesive containing cement or the like. The material of the joining member 50 may be provided by an epoxy-based, vinyl-based, acrylic-based, urethane-based, or silicone-based organic adhesive. When the joining member 50 is provided with an inorganic or organic adhesive, a coating having a lower gas permeability than the adhesive may be provided on the outside of the joining member 50 in order to reduce the gas permeability. The base member 30 and the lid member 40 may be joined by seam welding.
 次に、図4~図6を参照しつつ、水晶振動子1の製造方法について説明する。図4は、第1実施形態に係る水晶振動子の製造方法を概略的に示すフローチャートである。図5は、金属板の端部を保持する工程を概略的に示す断面図である。図6は、金属板の中央部をプレスする工程を概略的に示す断面図である。 Next, a method for manufacturing the crystal oscillator 1 will be described with reference to FIGS. 4 to 6. FIG. 4 is a flowchart schematically showing a method for manufacturing a crystal oscillator according to the first embodiment. FIG. 5 is a cross-sectional view schematically showing a step of holding an end portion of a metal plate. FIG. 6 is a cross-sectional view schematically showing a process of pressing the central portion of the metal plate.
 まず、金属板を準備する(S10)。
 準備する金属板140は、Fe-Ni-Co系合金からなる。金属板140は、互いに対向する第1主面140A及び第2主面140Bからなる一対の主面を有する板状部材である。金属板140は、厚み(第1主面140Aと第2主面140Bとの間の最短距離)が一様な平板であり、金属板140の厚みはT3である。
First, a metal plate is prepared (S10).
The metal plate 140 to be prepared is made of an Fe—Ni—Co alloy. The metal plate 140 is a plate-like member having a pair of main surfaces composed of a first main surface 140A and a second main surface 140B facing each other. The metal plate 140 is a flat plate having a uniform thickness (the shortest distance between the first main surface 140A and the second main surface 140B), and the thickness of the metal plate 140 is T3.
 次に、金属板を絞り加工する(S20)。
 金属板140をプレス工法によって変形させ、天壁部41、側壁部42及びフランジ部43を形成する。
Next, the metal plate is drawn (S20).
The metal plate 140 is deformed by a pressing method to form a top wall portion 41, a side wall portion 42, and a flange portion 43.
 まずは、図5に示すように、ダイAP1とホルダAP2とで金属板140を挟持する。ダイAP1は、金属板140を第1主面140A側から支持する。ホルダAP2は、金属板140を第1主面140A側からダイAP1に押さえ付ける。ホルダAP2は、金属板140の加工位置の変動を抑制するとともに、プレス加工による変形時に金属板140のシワの発生を抑制する。パンチAP3は、金属板140の第2主面140B側にセットされる。金属板140の第2主面140Bを平面視したときのダイAP1とパンチAP3との間のクリアランスをT2に設定する。 First, as shown in FIG. 5, the metal plate 140 is sandwiched between the die AP1 and the holder AP2. The die AP1 supports the metal plate 140 from the first main surface 140A side. The holder AP2 presses the metal plate 140 against the die AP1 from the first main surface 140A side. The holder AP2 suppresses fluctuations in the processing position of the metal plate 140, and also suppresses the occurrence of wrinkles in the metal plate 140 during deformation due to press processing. The punch AP3 is set on the second main surface 140B side of the metal plate 140. The clearance between the die AP1 and the punch AP3 when the second main surface 140B of the metal plate 140 is viewed in a plan view is set to T2.
 次に、図6に示すように、パンチAP3を金属板140に押し込んで、金属板140を変形させる。金属板140の第2主面140B側は凹状に変形し、第1主面140A側は凸状に変形する。パンチAP3が押し込まれて形成された金属板140に囲まれる空間が、凹部49となる。このとき、パンチAP3が金属板140の一対の主面(第1主面140A及び第2主面140B)と交差する方向に金属板140を押し込む深さをH9とする。深さH9は、金属板140の第2主面140B側に形成される凹部の第2主面140Bを基準としたときの深さ、及び、金属板140の第1主面140A側に形成される凸部の第1主面140Aを基準としたときの高さに相当する。深さH9は厚みT3以下の大きさに設定する(T3≧H9)。つまり、金属板140は、プレス工法によって、その厚みと同等以下の深さでの絞り加工が施される。これによって、金属板140のうち、パンチAP3の先端が対向する部分が天壁部41となり、ダイAP1とパンチAP3との間のクリアランスに位置する部分が側壁部42となり、ダイAP1とホルダAP2とに挟まれた部分がフランジ部43となる。 Next, as shown in FIG. 6, the punch AP3 is pushed into the metal plate 140 to deform the metal plate 140. The second main surface 140B side of the metal plate 140 is deformed in a concave shape, and the first main surface 140A side is deformed in a convex shape. The space surrounded by the metal plate 140 formed by pushing the punch AP3 becomes the recess 49. At this time, the depth at which the metal plate 140 is pushed in the direction in which the punch AP3 intersects the pair of main surfaces (first main surface 140A and second main surface 140B) of the metal plate 140 is defined as H9. The depth H9 is formed on the first main surface 140A side of the metal plate 140 and the depth based on the second main surface 140B of the recess formed on the second main surface 140B side of the metal plate 140. It corresponds to the height when the first main surface 140A of the convex portion is used as a reference. The depth H9 is set to a size equal to or less than the thickness T3 (T3 ≧ H9). That is, the metal plate 140 is drawn by a pressing method to a depth equal to or less than its thickness. As a result, in the metal plate 140, the portion where the tip of the punch AP3 faces is the top wall portion 41, and the portion located at the clearance between the die AP1 and the punch AP3 becomes the side wall portion 42, and the die AP1 and the holder AP2 The portion sandwiched between the two becomes the flange portion 43.
 次に、ベース部材を準備する(S30)。
 基体31は、アルミナのグリーンシートを焼結させて形成される。焼結前のグリーンシートには金属膜が設けられ、グリーンシートとともに焼結された金属膜は、接合部材50のメタライズ層、電極パッド33a,33b及び外部電極35a~35dを形成する。金属膜は、例えば、各種の印刷法(スクリーン印刷、インクジェット印刷、グラビア印刷、フレキソ印刷など)、各種の塗布法(キャスト、ディスペンスなど)、及び各種の湿式メッキ法(無電解メッキ、溶融メッキ、電気メッキなど)などのウェットプロセスによって形成される。
Next, the base member is prepared (S30).
The substrate 31 is formed by sintering a green sheet of alumina. A metal film is provided on the green sheet before sintering, and the metal film sintered together with the green sheet forms a metallized layer of the joining member 50, electrode pads 33a and 33b, and external electrodes 35a to 35d. For metal films, for example, various printing methods (screen printing, inkjet printing, gravure printing, flexographic printing, etc.), various coating methods (cast, dispense, etc.), and various wet plating methods (electroless plating, hot-dip plating, etc.) It is formed by a wet process such as electroplating).
 基体31は、インゴットから切り出したウェハによって形成されてもよい。金属膜は、PVD(Physical Vapor Deposition)やCVD(Chemical Vapor Depositon)などの各種の気相成長法を一例とするドライプロセスによって形成されてもよい。接合部材50のメタライズ層、電極パッド33a,33b及び外部電極35a~35dのそれぞれの少なくとも一部は、グリーンシートの焼結後に形成されてもよい。 The substrate 31 may be formed of a wafer cut out from an ingot. The metal film may be formed by a dry process using various vapor deposition methods such as PVD (Physical Vapor Deposition) and CVD (Chemical Vapor Deposition) as an example. At least a part of each of the metallized layer of the joining member 50, the electrode pads 33a and 33b, and the external electrodes 35a to 35d may be formed after sintering the green sheet.
 次に、水晶振動素子を準備する(S40)。
 まず、水晶の結晶体をスライスして水晶ウェハを形成する。水晶ウェハには、化学機械研磨などの平坦化処理や、リンス液による洗浄処理など、適宜必要な処理が実施されてもよい。
 次に、水晶ウェハの一部を除去加工し、互いに連結した複数の水晶片の輪郭を形成する。次に、複数の水晶片のそれぞれの一部を除去加工し、複数の水晶片のそれぞれをメサ型構造に加工する。除去加工は、例えばフォトリソグラフィを利用したエッチングによって行われるが、プラズマCVM(Chemical Vaporization Machining)などの他の処理方法によって実施されてもよい。
 次に、複数の水晶片のそれぞれの表面に金属膜を設け、フォトリソグラフィを利用したエッチングによって金属膜の一部を除去加工し、金属膜から電極を形成する。なお、電極の形成方法はエッチングに限定されるものではなく、電極はリフトオフによって形成されてもよい。
 最後に、水晶振動素子を個片化する。複数の水晶片を連結する部分には、周囲よりも厚みの薄い薄肉部分が形成されており、曲げ応力を加えることで薄肉部分が亀裂の起点となり、複数の水晶片を連結する部分が割断される。薄肉部分は、例えば、複数の水晶片の輪郭を形成する工程や、複数の水晶片のそれぞれをメサ型構造に加工する工程におけるエッチングを利用して形成される。薄肉部分は、スクライブツールによって形成されてもよい。なお、水晶振動素子は、レーザーカッターやダイシングソーなどによる切断によって個片化されてもよい。
Next, a crystal vibrating element is prepared (S40).
First, a crystal of crystal is sliced to form a crystal wafer. The crystal wafer may be subjected to appropriate necessary treatments such as flattening treatment such as chemical mechanical polishing and cleaning treatment with a rinsing liquid.
Next, a part of the crystal wafer is removed and processed to form contours of a plurality of crystal pieces connected to each other. Next, a part of each of the plurality of crystal pieces is removed, and each of the plurality of crystal pieces is processed into a mesa-shaped structure. The removal process is performed by, for example, etching using photolithography, but may be performed by another processing method such as plasma CVM (Chemical Vaporization Machining).
Next, a metal film is provided on the surface of each of the plurality of crystal pieces, and a part of the metal film is removed by etching using photolithography to form an electrode from the metal film. The method of forming the electrode is not limited to etching, and the electrode may be formed by lift-off.
Finally, the crystal vibrating element is individualized. A thin-walled portion thinner than the surroundings is formed in the portion connecting the plurality of crystal pieces, and the thin-walled portion becomes the starting point of cracks by applying bending stress, and the portion connecting the plurality of crystal pieces is cut. To. The thin-walled portion is formed by utilizing, for example, etching in a step of forming contours of a plurality of quartz pieces or a step of processing each of the plurality of quartz pieces into a mesa-shaped structure. The thin portion may be formed by a scribe tool. The crystal vibrating element may be individualized by cutting with a laser cutter, a dicing saw, or the like.
 次に、水晶振動素子を搭載する(S50)。
 ます、熱硬化性樹脂の組成物を含む導電性接着剤ペーストを準備する。次に、昇温していないホットプレートの上にベース部材30を載置する。次に、ベース部材30の第1電極パッド33a及び第2電極パッド33bのそれぞれの上に導電性接着剤ペーストを塗布する。次に、水晶振動素子10の先端がベース部材30に接触しないように、導電性接着剤ペーストの上に水晶振動素子10を載置する。次に、ホットプレートで導電性接着剤ペーストを加熱して硬化させ、ベース部材30の第1電極パッド33a及び第2電極パッド33bのそれぞれと、水晶振動素子10の第1接続電極16a及び第2接続電極16bのそれぞれとを接合する。
Next, a crystal vibrating element is mounted (S50).
Increasingly, a conductive adhesive paste containing a composition of thermosetting resin is prepared. Next, the base member 30 is placed on a hot plate that has not been heated. Next, the conductive adhesive paste is applied onto each of the first electrode pad 33a and the second electrode pad 33b of the base member 30. Next, the crystal vibrating element 10 is placed on the conductive adhesive paste so that the tip of the crystal vibrating element 10 does not come into contact with the base member 30. Next, the conductive adhesive paste is heated and cured on a hot plate to cure the first electrode pad 33a and the second electrode pad 33b of the base member 30, respectively, and the first connection electrodes 16a and the second of the crystal vibration element 10. Each of the connection electrodes 16b is joined.
 なお、導電性接着剤ペーストの上に水晶振動素子10を載置する前に、導電性接着剤ペーストの粘度を調整するための予備加熱を行ってもよい。また、導電性接着剤ペーストの樹脂組成物は、熱硬化性樹脂の組成物に限定されず、光(UV)硬化性樹脂の組成物を含んでもよい。この場合、本工程S40では、導電性接着剤ペーストに光(UV)を照射する工程を含んでもよい。 Before placing the crystal vibration element 10 on the conductive adhesive paste, preheating may be performed to adjust the viscosity of the conductive adhesive paste. Further, the resin composition of the conductive adhesive paste is not limited to the composition of the thermosetting resin, and may include the composition of the light (UV) curable resin. In this case, the step S40 may include a step of irradiating the conductive adhesive paste with light (UV).
 次に、ベース部材と蓋部材とを接合する(S60)。
 まず、蓋部材40を収納トレイに入れる。収納トレイには、蓋部材40がほぼ隙間なく収納可能な有底の開口部が設けられている。天壁部41の天壁上面41Aを開口部の底に向けて、蓋部材を開口部に収納する。
 次に、フランジ部43のフランジ下面43Bの上に、金属半田を設ける。金属半田は、金錫(Au-Sn)系の共晶合金である。なお、金属半田は、ベース部材30に設けられたメタライズ層の上に設けられていてもよい。
 次に、ベース部材を収納トレイに入れる。水晶振動素子10を蓋部材40側に向けて、水晶振動素子10が搭載されたベース部材30を開口部に収納する。このとき、蓋部材40の金属半田に、ベース部材30のメタライズ層が重なる。
 次に、金属半田を加熱して軟化させ、軟化した金属半田を冷却して固化させる。固化した金属半田はベース部材30のメタライズ層とともに接合部材50を形成し、ベース部材30と蓋部材40とを接合して内部空間に相当する凹部49を封止する。
 最後に、水晶振動子1を収納トレイから取り出す。
Next, the base member and the lid member are joined (S60).
First, the lid member 40 is put into the storage tray. The storage tray is provided with a bottomed opening in which the lid member 40 can be stored with almost no gap. The lid member is housed in the opening with the top surface 41A of the top wall 41 facing the bottom of the opening.
Next, metal solder is provided on the lower surface 43B of the flange of the flange portion 43. The metal solder is a gold-tin (Au—Sn) -based eutectic alloy. The metal solder may be provided on the metallized layer provided on the base member 30.
Next, the base member is placed in the storage tray. The base member 30 on which the crystal vibrating element 10 is mounted is housed in the opening with the crystal vibrating element 10 facing the lid member 40 side. At this time, the metallized layer of the base member 30 overlaps the metal solder of the lid member 40.
Next, the metal solder is heated to soften it, and the softened metal solder is cooled to solidify. The solidified metal solder forms a joining member 50 together with the metallized layer of the base member 30, and joins the base member 30 and the lid member 40 to seal the recess 49 corresponding to the internal space.
Finally, the crystal oscillator 1 is taken out from the storage tray.
 なお、金属板140から蓋部材40を形成する工程S10及びS20と、ベース部材30を準備する工程S30と、水晶振動素子10を準備する工程S40との順番は、上記に限定されるものではない。金属板140から蓋部材40を形成する工程S10及びS20は、ベース部材30を準備する工程S30の後に実施されてもよく、水晶振動素子10を準備する工程S40の後に実施されてもよい。ベース部材30を準備する工程S30は、水晶振動素子10を準備する工程S40の後に実施されてもよい。 The order of the steps S10 and S20 for forming the lid member 40 from the metal plate 140, the step S30 for preparing the base member 30, and the step S40 for preparing the crystal oscillator 10 is not limited to the above. .. The steps S10 and S20 for forming the lid member 40 from the metal plate 140 may be carried out after the step S30 for preparing the base member 30, or may be carried out after the step S40 for preparing the crystal vibration element 10. The step S30 for preparing the base member 30 may be performed after the step S40 for preparing the crystal vibration element 10.
 (耐久性評価)
 次に、図7及び図8を参照しつつ、耐久性に関する評価試験の結果について説明する。図7は、自然落下試験条件を示す表である。図8は、自然落下試験の試験結果を示す表である。
(Durability evaluation)
Next, the results of the evaluation test regarding durability will be described with reference to FIGS. 7 and 8. FIG. 7 is a table showing the free fall test conditions. FIG. 8 is a table showing the test results of the free fall test.
 第1実施例の構成は、図1~図3に示した水晶振動子1に準ずるものとし、既に説明した部分以外の構成について以下に説明する。なお、外形寸法は「X軸に沿った長さ×Z´軸に沿った長さ×Y´軸に沿った長さ」と表現する。
 水晶振動素子の周波数は37.4Hz、ESRは30Ωである。
 ベース部材の基体はアルミナからなり、外形寸法は1.0mm×0.8mm×0.12mmである。
 接合部材は、厚み15μm且つ幅60μmの金錫合金を備えている。
 蓋部材はFe-Ni-Co系合金からなり、外形寸法は1.0mm×0.8mm×0.16mmである。天壁厚T1は0.06mm、側壁厚T2は55μm、フランジ厚T3は0.1mm、フランジ幅W3は85μm、内寸高H9は0.1mm、全高H1は外形寸法のY´軸方向に沿った長さに相当する0.16mmである。すなわち、第1実施例において、フランジ厚T3は、内寸高H9と同等の大きさである(T3=H9)。
The configuration of the first embodiment shall conform to the crystal oscillator 1 shown in FIGS. 1 to 3, and configurations other than those already described will be described below. The external dimensions are expressed as "length along the X axis x length along the Z'axis x length along the Y'axis".
The frequency of the crystal vibrating element is 37.4 Hz, and the ESR is 30 Ω.
The base of the base member is made of alumina and has external dimensions of 1.0 mm × 0.8 mm × 0.12 mm.
The joining member includes a gold-tin alloy having a thickness of 15 μm and a width of 60 μm.
The lid member is made of a Fe—Ni—Co alloy and has external dimensions of 1.0 mm × 0.8 mm × 0.16 mm. Top wall thickness T1 is 0.06 mm, side wall thickness T2 is 55 μm, flange thickness T3 is 0.1 mm, flange width W3 is 85 μm, internal height H9 is 0.1 mm, and total height H1 is along the Y'axis direction of external dimensions. It is 0.16 mm, which corresponds to the length of the flange. That is, in the first embodiment, the flange thickness T3 is the same size as the internal dimension height H9 (T3 = H9).
 第2実施例の構成は、フランジ厚T3が0.16mmである以外は第1実施例の構成と同様である。すなわち、第2実施例において、フランジ厚T3は、内寸高H9よりも大きい(T3>H9)。 The configuration of the second embodiment is the same as that of the first embodiment except that the flange thickness T3 is 0.16 mm. That is, in the second embodiment, the flange thickness T3 is larger than the inner dimension height H9 (T3> H9).
 比較例の構成は、フランジ厚T3が0.06mmである以外は第1実施例の構成と同様である。すなわち、比較例において、フランジ厚T3は内寸高H9よりも小さい(T3<H9)。 The configuration of the comparative example is the same as that of the first embodiment except that the flange thickness T3 is 0.06 mm. That is, in the comparative example, the flange thickness T3 is smaller than the inner dimension height H9 (T3 <H9).
 蓋部材の変形に起因した不良の発生を評価すべく、図7に示すようにJIS C 60068-2-31(2013)に準拠した自然落下試験を行い、周波数又はESRの変動を測定した。具体的には、比較例、第1実施例及び第2実施例に係る水晶振動子を、運搬中の正常な姿勢で、平坦な床面に向けて自然落下させる。床材はコンクリートとし、試験1では床面から750mmの高さから2回自然落下させ、試験前後での周波数の変動が試験前の周波数に対して±10ppm以上、又は試験前後でのESRの変動が試験前のESRに対して±10オーム以上であった場合を不良と判定した。同様に、試験2では床面から1000mmの高さから2回自然落下させて不良を判定し、試験3では床面から1500mmの高さから2回自然落下させて不良を判定した。試験1~3のそれぞれにおいて、22個のサンプルで評価を行った。 In order to evaluate the occurrence of defects due to the deformation of the lid member, a free fall test in accordance with JIS C 60068-2-31 (2013) was performed as shown in FIG. 7, and fluctuations in frequency or ESR were measured. Specifically, the crystal oscillators according to the comparative examples, the first embodiment and the second embodiment are naturally dropped toward a flat floor surface in a normal posture during transportation. The floor material is concrete, and in test 1, it is naturally dropped twice from a height of 750 mm from the floor surface, and the frequency fluctuation before and after the test is ± 10 ppm or more with respect to the frequency before the test, or the ESR fluctuation before and after the test. Was ± 10 ohms or more with respect to the ESR before the test, and was judged to be defective. Similarly, in Test 2, defects were determined by spontaneously dropping from a height of 1000 mm from the floor surface twice, and in Test 3, defects were determined by spontaneously dropping twice from a height of 1500 mm from the floor surface. Evaluation was performed on 22 samples in each of Tests 1 to 3.
 図8に示すように、比較例では試験1における不良の発生数は0だが、試験2においては2個の不良が発生し、試験3では7個の不良が発生した。対して、第1実施例及び第2実施例では、試験1~3のいずれにおいても不良の発生数は0であった。実施例と比較例との相違はフランジ厚T3の大小のみであるにも関わらず、比較例では発生した不良が実施例では発生しなかった。比較例と実施例との相違は、より具体的には、フランジ部の構成によって決定される、蓋部材の機械的強度である。したがって、本評価試験における不良の発生は、蓋部材の変形によって引き起こされたと考えられる。例えば、蓋部材が塑性変形した場合、蓋部材と水晶振動素子との接触によって振動が阻害されることがある。また、蓋部材の変形が塑性変形及び弾性変形のいずれであろうと、蓋部材の変形によって接合部材やベース部材には歪が生じるため、基体の損傷や接合部材の界面剥離によって内部空間の気密が破壊されることがある。フランジ厚T3が内寸高H9よりも小さい比較例においては、落下によって、振動の阻害や気密の破壊が生じていた。しかし、フランジ厚T3が内寸高H9と同等の大きさである第1実施例や、フランジ厚T3が内寸高H9よりも大きい第2実施例では、落下によって、振動の阻害や気密の破壊が生じなかった。ここから、フランジ厚T3が内寸高H9と同等以上の大きさであれば、蓋部材の機械的強度に起因した水晶振動子の不良が発生しないことがわかる。 As shown in FIG. 8, in the comparative example, the number of defects in Test 1 was 0, but in Test 2, 2 defects occurred, and in Test 3, 7 defects occurred. On the other hand, in the first example and the second example, the number of defects occurred was 0 in any of the tests 1 to 3. Although the difference between the example and the comparative example was only the size of the flange thickness T3, the defect that occurred in the comparative example did not occur in the example. The difference between the comparative example and the embodiment is, more specifically, the mechanical strength of the lid member, which is determined by the configuration of the flange portion. Therefore, it is considered that the occurrence of defects in this evaluation test was caused by the deformation of the lid member. For example, when the lid member is plastically deformed, the vibration may be hindered by the contact between the lid member and the crystal vibration element. In addition, regardless of whether the lid member is deformed plastically or elastically, the deformation of the lid member causes distortion in the joint member and the base member, so that the internal space becomes airtight due to damage to the substrate and interfacial peeling of the joint member. It may be destroyed. In the comparative example in which the flange thickness T3 was smaller than the inner dimension height H9, the drop caused inhibition of vibration and destruction of airtightness. However, in the first embodiment in which the flange thickness T3 is the same size as the inner dimension height H9 and the second embodiment in which the flange thickness T3 is larger than the inner dimension height H9, vibration is hindered and airtightness is destroyed by dropping. Did not occur. From this, it can be seen that if the flange thickness T3 has a size equal to or higher than the inner dimension height H9, the defect of the crystal oscillator due to the mechanical strength of the lid member does not occur.
 以上のように、第1実施形態では、蓋部材40の全高H1、内寸高H9及びフランジ厚T3が、H1>T3≧H9を満たす。また、蓋部材40の全高H1、天壁厚T1及びフランジ厚T3が、H1≦T1+T3を満たす。
 これによれば、蓋部材40の機械的強度が向上し、水晶振動子1の物理的な耐久性が向上する。具体的には、落下等の衝撃による蓋部材40の変形が抑制できる。したがって、蓋部材40の変形に起因した水晶振動素子10と蓋部材40との接触による振動特性の変動が抑制できる。また、蓋部材40の変形に起因した基体31や接合部材50の損傷による気密の破壊が抑制でき、水晶振動素子10の電極の酸化による振動特性の変動が抑制できる。以上のことから、信頼性が高い水晶振動子1が提供できる。
As described above, in the first embodiment, the total height H1 of the lid member 40, the internal dimension height H9, and the flange thickness T3 satisfy H1> T3 ≧ H9. Further, the total height H1 of the lid member 40, the top wall thickness T1 and the flange thickness T3 satisfy H1 ≦ T1 + T3.
According to this, the mechanical strength of the lid member 40 is improved, and the physical durability of the crystal oscillator 1 is improved. Specifically, deformation of the lid member 40 due to an impact such as dropping can be suppressed. Therefore, it is possible to suppress fluctuations in vibration characteristics due to contact between the crystal vibration element 10 and the lid member 40 due to deformation of the lid member 40. Further, it is possible to suppress the destruction of airtightness due to damage to the base 31 and the joining member 50 due to the deformation of the lid member 40, and to suppress the fluctuation of the vibration characteristics due to the oxidation of the electrode of the crystal vibration element 10. From the above, a highly reliable crystal oscillator 1 can be provided.
 蓋部材40の側壁厚T2、フランジ厚T3及びフランジ幅W3が、T3<W3+T2を満たす。
 これによれば、フランジ部43が蓋部材40の機械的強度を充分に向上させることができる。
The side wall thickness T2, the flange thickness T3, and the flange width W3 of the lid member 40 satisfy T3 <W3 + T2.
According to this, the flange portion 43 can sufficiently improve the mechanical strength of the lid member 40.
 ベース部材30は、蓋部材40及び水晶振動素子10が接合された基体31を有する。また、蓋部材40の弾性率は、基体31の弾性率よりも小さい。
 このように蓋部材40が変形しやすく基体31に応力が集中しやすい構成であっても、本実施形態によれば水晶振動子1の信頼性が向上する。
The base member 30 has a base 31 to which the lid member 40 and the crystal vibrating element 10 are joined. Further, the elastic modulus of the lid member 40 is smaller than the elastic modulus of the substrate 31.
Even if the lid member 40 is easily deformed and stress is easily concentrated on the substrate 31, the reliability of the crystal oscillator 1 is improved according to the present embodiment.
 蓋部材40の材質は、金属である。
 これによれば、延展性を有する材料からなる蓋部材40であれは、プレス工法による絞り加工等によって容易に、本実施形態に係る形状の蓋部材40を形成できる。
The material of the lid member 40 is metal.
According to this, even if the lid member 40 is made of a ductile material, the lid member 40 having the shape according to the present embodiment can be easily formed by drawing processing by a pressing method or the like.
 基体31の材質はセラミックである。
 これによれば、亀裂等の損傷が生じ易い脆性材料であるセラミックによって基体31を設けたとしても、本実施形態によれば水晶振動子1の信頼性が改善できる。
The material of the substrate 31 is ceramic.
According to this, even if the substrate 31 is provided with the ceramic which is a brittle material which is easily damaged such as cracks, the reliability of the crystal oscillator 1 can be improved according to the present embodiment.
 基体31は平板状である。
 これによれば、例えば凹部が形成された基体を備える水晶振動子に比べて、製造工程が簡略化でき、製造コストを低減できる。
The substrate 31 has a flat plate shape.
According to this, the manufacturing process can be simplified and the manufacturing cost can be reduced as compared with, for example, a crystal unit having a substrate having a concave portion formed therein.
 第1実施形態では、蓋部材40を形成する工程は、プレス工法によって金属板140を変形させる工程を有し、金属板140の厚みをT3、プレス工法による変形の深さをH9としたとき、T3≧H9を満たす。
 これによれば、信頼性が高い水晶振動子1を低コストで製造できる。
In the first embodiment, the step of forming the lid member 40 includes a step of deforming the metal plate 140 by the press method, and when the thickness of the metal plate 140 is T3 and the depth of deformation by the press method is H9. Satisfy T3 ≧ H9.
According to this, the highly reliable crystal oscillator 1 can be manufactured at low cost.
 以下に、本発明の他の実施形態に係る水晶振動子1の構成について説明する。なお、下記の実施形態では、上記の第1実施形態と共通の事柄については記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については逐次言及しない。 The configuration of the crystal oscillator 1 according to another embodiment of the present invention will be described below. In the following embodiment, the matters common to the above-mentioned first embodiment will be omitted, and only the differences will be described. In particular, the same effects of the same configuration will not be mentioned sequentially.
 <第2実施形態>
 次に、図9を参照しつつ、第2実施形態に係る水晶振動子2の外縁部及びその近傍の構成について説明する。図9は、第2実施形態に係る水晶振動子の構成を概略的に示す断面図である。
<Second Embodiment>
Next, with reference to FIG. 9, the configuration of the outer edge portion of the crystal oscillator 2 and its vicinity according to the second embodiment will be described. FIG. 9 is a cross-sectional view schematically showing the configuration of the crystal oscillator according to the second embodiment.
 基体31には、上面31A側に開口する有底の凹部39が形成されている。基体31を水晶振動素子10の側から平面視したとき、凹部39は、少なくとも励振部17と重なっている。言い換えると、凹部39は、少なくとも第1励振電極14a及び第2励振電極14bに重なっている。また、凹部39は、望ましくは周辺部18及び周辺部19のそれぞれの少なくとも一部と重なっており、さらに望ましくは周辺部19の全部と重なっている。水晶振動素子10は、その先端(周辺部19)が根本(周辺部18)に比べてベース部材30に近づくように傾いてもよい。 The base 31 is formed with a bottomed recess 39 that opens on the upper surface 31A side. When the substrate 31 is viewed in a plan view from the side of the crystal vibrating element 10, the recess 39 overlaps at least the exciting portion 17. In other words, the recess 39 overlaps at least the first excitation electrode 14a and the second excitation electrode 14b. Further, the recess 39 preferably overlaps at least a part of each of the peripheral portion 18 and the peripheral portion 19, and more preferably overlaps with the entire peripheral portion 19. The crystal vibrating element 10 may be tilted so that its tip (peripheral portion 19) is closer to the base member 30 than its root (peripheral portion 18).
 これによれば、水晶振動素子10が収容される内部空間が、凹部49と凹部39とによって形成される。このため、水晶振動子1を小型化したとしても、水晶振動素子10が振動するための空間を充分に確保でき、水晶振動素子10の振幅が制限されない。言い換えると、水晶振動子1が小型化できる。また、水晶振動素子10をベース部材30に搭載するとき、水晶振動素子10が自重によって傾いた場合であっても、水晶振動素子10の先端とベース部材30との接触が抑制できる。 According to this, the internal space in which the crystal vibrating element 10 is housed is formed by the recess 49 and the recess 39. Therefore, even if the crystal oscillator 1 is miniaturized, a sufficient space for the crystal vibrating element 10 to vibrate can be secured, and the amplitude of the crystal vibrating element 10 is not limited. In other words, the crystal unit 1 can be miniaturized. Further, when the crystal vibrating element 10 is mounted on the base member 30, contact between the tip of the crystal vibrating element 10 and the base member 30 can be suppressed even when the crystal vibrating element 10 is tilted by its own weight.
 以下に、本発明の実施形態の一部又は全部を付記し、その効果について説明する。なお、本発明は以下の付記に限定されるものではない。 Hereinafter, a part or all of the embodiments of the present invention will be added, and the effects thereof will be described. The present invention is not limited to the following appendices.
 本発明の一態様によれば、ベース部材と、ベース部材の搭載面に搭載された水晶振動素子と、水晶振動素子の側に開口する凹部を有する蓋部材と、ベース部材と蓋部材とを接合する接合部材とを備え、蓋部材は、ベース部材の搭載面に沿って延在する天壁部と、天壁部の外縁に接続されベース部材の搭載面と交差する高さ方向に沿って延在する側壁部と、側壁部からベース部材の搭載面に沿って外側に延在するフランジ部とを含み、高さ方向に沿ったフランジ部の厚みをT3、高さ方向に沿った蓋部材の凹部の高さをH9としたとき、T3≧H9を満たす水晶振動子が提供される。
 これによれば、蓋部材の機械的強度が向上し、水晶振動子の物理的な耐久性が向上する。具体的には、落下等の衝撃による蓋部材の変形が抑制できる。したがって、蓋部材の変形に起因した水晶振動素子と蓋部材との接触による振動特性の変動が抑制できる。また、蓋部材の変形に起因した基体や接合部材の損傷による気密の破壊が抑制でき、水晶振動素子の電極の酸化による振動特性の変動が抑制できる。以上のことから、信頼性が高い水晶振動子が提供できる。
According to one aspect of the present invention, the base member, the crystal vibrating element mounted on the mounting surface of the base member, the lid member having a recess opened on the side of the crystal vibrating element, and the base member and the lid member are joined. The lid member extends along the height direction of the top wall portion extending along the mounting surface of the base member and the lid member connected to the outer edge of the top wall portion and intersecting the mounting surface of the base member. The thickness of the flange portion along the height direction is T3, and the thickness of the lid member along the height direction is T3, including the existing side wall portion and the flange portion extending outward from the side wall portion along the mounting surface of the base member. When the height of the recess is H9, a crystal oscillator satisfying T3 ≧ H9 is provided.
According to this, the mechanical strength of the lid member is improved, and the physical durability of the crystal unit is improved. Specifically, deformation of the lid member due to an impact such as dropping can be suppressed. Therefore, it is possible to suppress fluctuations in vibration characteristics due to contact between the crystal vibration element and the lid member due to deformation of the lid member. Further, it is possible to suppress the destruction of airtightness due to damage to the substrate and the joining member due to the deformation of the lid member, and to suppress the fluctuation of the vibration characteristics due to the oxidation of the electrode of the crystal vibration element. From the above, a highly reliable crystal unit can be provided.
 一態様として、ベース部材の搭載面に沿った側壁部の厚さをT2、ベース部材の搭載面に沿ったフランジ部の幅をW3としたとき、T3<W3+T2を満たす。
 これによれば、フランジ部が蓋部材の機械的強度を充分に向上させることができる。
As one aspect, when the thickness of the side wall portion along the mounting surface of the base member is T2 and the width of the flange portion along the mounting surface of the base member is W3, T3 <W3 + T2 is satisfied.
According to this, the flange portion can sufficiently improve the mechanical strength of the lid member.
 一態様として、ベース部材は、蓋部材が接合された基体と、基体の蓋部材に対向する側に設けられ水晶振動素子が電気的に接続される電極パッドとを有する。 As one aspect, the base member has a substrate to which the lid member is joined and an electrode pad provided on the side of the substrate facing the lid member and to which the crystal vibration element is electrically connected.
 一態様として、蓋部材の弾性率は、基体の弾性率よりも小さい。
 このように蓋部材が変形しやすく基体に応力が集中しやすい構成であっても、本実施形態によれば水晶振動子の信頼性が向上する。
In one aspect, the elastic modulus of the lid member is smaller than the elastic modulus of the substrate.
According to this embodiment, the reliability of the crystal unit is improved even if the lid member is easily deformed and stress is easily concentrated on the substrate.
 一態様として、蓋部材の材質は、金属である。
 これによれば、延展性を有する材料からなる蓋部材であれは、プレス工法による絞り加工等によって容易に、本実施形態に係る形状の蓋部材を形成できる。
In one aspect, the material of the lid member is metal.
According to this, even if the lid member is made of a ductile material, the lid member having the shape according to the present embodiment can be easily formed by drawing processing by a pressing method or the like.
 一態様として、基体の材質は、セラミックである。
 これによれば、亀裂等の損傷が生じ易い脆性材料であるセラミックによって基体を設けたとしても、本実施形態によれば水晶振動子の信頼性が改善できる。
In one aspect, the material of the substrate is ceramic.
According to this, even if the substrate is provided with ceramic, which is a brittle material that is easily damaged such as cracks, the reliability of the crystal unit can be improved according to the present embodiment.
 一態様として、基体は平板状である。
 これによれば、例えば凹部が形成された基体を備える水晶振動子に比べて、製造工程が簡略化でき、製造コストを低減できる。
In one aspect, the substrate is flat.
According to this, the manufacturing process can be simplified and the manufacturing cost can be reduced as compared with, for example, a crystal unit having a substrate having a concave portion formed therein.
 一態様として、基体の水晶振動素子に対向する側には凹部が形成されており、基体を水晶振動素子の側から平面視したとき、凹部は、少なくとも水晶振動素子の励振電極と重なる。
 これによれば、水晶振動素子を収容する内部空間が、ベース部材側の凹部と蓋部材側の凹部とによって形成される。このため、水晶振動子を小型化したとしても、水晶振動素子の振動空間を充分に確保でき、水晶振動素子の振幅が制限されない。言い換えると、水晶振動子が小型化できる。また、水晶振動素子をベース部材に搭載するとき、水晶振動素子が自重によって傾いた場合であっても、水晶振動素子の先端とベース部材との接触が抑制できる。
As one aspect, a recess is formed on the side of the substrate facing the crystal vibrating element, and when the substrate is viewed in a plan view from the side of the crystal vibrating element, the recess overlaps at least the excitation electrode of the crystal vibrating element.
According to this, the internal space for accommodating the crystal vibrating element is formed by the recess on the base member side and the recess on the lid member side. Therefore, even if the crystal oscillator is miniaturized, the vibration space of the crystal vibrating element can be sufficiently secured, and the amplitude of the crystal vibrating element is not limited. In other words, the crystal unit can be miniaturized. Further, when the crystal vibrating element is mounted on the base member, contact between the tip of the crystal vibrating element and the base member can be suppressed even when the crystal vibrating element is tilted due to its own weight.
 本発明の他の一態様によれば、蓋部材を形成する工程と、ベース部材に水晶振動素子を搭載する工程と、ベース部材に蓋部材を接合する工程とを備え、蓋部材を形成する工程は、一対の主面を有する板状部材を準備する工程と、プレス工法によって一対の主面と交差する方向に沿って板状部材を変形させる工程とを有し、一対の主面と交差する方向において、板状部材の厚みをT3、プレス工法による変形の深さをH9としたとき、T3≧H9を満たす。
 これによれば、信頼性が高い水晶振動子を低コストで製造できる。
According to another aspect of the present invention, there is a step of forming the lid member, a step of mounting the crystal vibrating element on the base member, and a step of joining the lid member to the base member, and forming the lid member. Has a step of preparing a plate-shaped member having a pair of main surfaces and a step of deforming the plate-shaped member along a direction intersecting the pair of main surfaces by a pressing method, and intersects the pair of main surfaces. In the direction, when the thickness of the plate-shaped member is T3 and the depth of deformation by the pressing method is H9, T3 ≧ H9 is satisfied.
According to this, a highly reliable crystal unit can be manufactured at low cost.
 本発明に係る実施形態は、水晶振動子に限定されるものではなく、圧電振動子にも適用可能である。圧電振動子(Piezoelectric Resonator Unit)の一例が、水晶振動素子(Quartz Crystal Resonator)を備えた水晶振動子(Quartz Crystal Resonator Unit)である。水晶振動素子は、圧電効果によって励振される圧電片として、水晶片(Quartz Crystal Element)を利用するが、圧電片は、圧電単結晶、圧電セラミック、圧電薄膜、又は、圧電高分子膜などの任意の圧電材料によって形成されてもよい。一例として、圧電単結晶は、ニオブ酸リチウム(LiNbO)を挙げることができる。同様に、圧電セラミックは、チタン酸バリウム(BaTiO)、チタン酸鉛(PbTiO)、チタン酸ジルコン酸鉛(Pb(ZrTi1-x)O3;PZT)、窒化アルミニウム(AlN)、ニオブ酸リチウム(LiNbO)、メタニオブ酸リチウム(LiNb)、チタン酸ビスマス(BiTi12)、タンタル酸リチウム(LiTaO)、四ホウ酸リチウム(Li)、ランガサイト(LaGaSiO14)、又は、五酸化タンタル(Ta)などを挙げることができる。圧電薄膜は、石英、又は、サファイアなどの基板上に上記の圧電セラミックをスパッタリング工法などによって成膜したものを挙げることができる。圧電高分子膜は、ポリ乳酸(PLA)、ポリフッ化ビニリデン(PVDF)、又は、フッ化ビニリデン/三フッ化エチレン(VDF/TrFE)共重合体などを挙げることができる。上記の各種圧電材料は、互いに積層して用いられてもよく、他の部材に積層されてもよい。 The embodiment according to the present invention is not limited to the crystal unit, and can be applied to the piezoelectric unit. An example of a piezoelectric vibrator (Piezoelectric Resonator Unit) is a crystal oscillator (Quartz Crystal Resnotor Unit) provided with a crystal vibrating element (Quartz Crystal Resonator). The crystal vibrating element uses a crystal piece (Quartz Crystal Element) as the piezoelectric piece excited by the piezoelectric effect, and the piezoelectric piece is an arbitrary such as a piezoelectric single crystal, a piezoelectric ceramic, a piezoelectric thin film, or a piezoelectric polymer film. It may be formed by the piezoelectric material of. As an example, the piezoelectric single crystal can include lithium niobate (LiNbO 3 ). Similarly, the piezoelectric ceramic is barium titanate (BaTiO 3), lead titanate (PbTiO 3), lead zirconate titanate (Pb (Zr x Ti 1- x) O3; PZT), aluminum nitride (AlN), niobium Lithium acid (LiNbO 3 ), lithium metaniobate (LiNb 2 O 6 ), bismuth titanate (Bi 4 Ti 3 O 12 ), lithium tantalate (LiTaO 3 ), lithium tetraborate (Li 2 B 4 O 7 ), Langasite (La 3 Ga 5 SiO 14 ), tantalate pentoxide (Ta 2 O 5 ), and the like can be mentioned. Examples of the piezoelectric thin film include those obtained by forming the above-mentioned piezoelectric ceramic on a substrate such as quartz or sapphire by a sputtering method or the like. Examples of the piezoelectric polymer film include polylactic acid (PLA), polyvinylidene fluoride (PVDF), and vinylidene fluoride / ethylene trifluoride (VDF / TrFE) copolymer. The above-mentioned various piezoelectric materials may be used by being laminated with each other, or may be laminated with another member.
 本発明に係る実施形態は、タイミングデバイス、発音器、発振器、荷重センサなど、圧電効果により電気機械エネルギー変換を行うデバイスであれば、特に限定されることなく適宜適用可能である。 The embodiment according to the present invention can be appropriately applied without particular limitation as long as it is a device that converts electromechanical energy by a piezoelectric effect, such as a timing device, a sounding device, an oscillator, and a load sensor.
 以上説明したように、本発明の一態様によれば、信頼性が高い圧電振動子及びその製造方法が提供できる。 As described above, according to one aspect of the present invention, a highly reliable piezoelectric vibrator and a method for manufacturing the same can be provided.
 なお、以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るとともに、本発明にはその等価物も含まれる。即ち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、各実施形態が備える各要素及びその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。例えば、本発明の振動素子および振動子は、タイミングデバイスまたは荷重センサに用いることができる。また、各実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。 It should be noted that the embodiments described above are for facilitating the understanding of the present invention, and are not for limiting and interpreting the present invention. The present invention can be modified / improved without departing from the spirit thereof, and the present invention also includes an equivalent thereof. That is, those skilled in the art with appropriate design changes to each embodiment are also included in the scope of the present invention as long as they have the features of the present invention. For example, each element included in each embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those exemplified, and can be changed as appropriate. For example, the vibrating element and oscillator of the present invention can be used in a timing device or a load sensor. In addition, the elements included in each embodiment can be combined as much as technically possible, and the combination thereof is also included in the scope of the present invention as long as the features of the present invention are included.
 1…水晶振動子、
 10…水晶振動素子、
 11…水晶片、
 30…ベース部材、
 31…基体、
 40…蓋部材、
 41…天壁部、
 42…側壁部、
 43…フランジ部、
 50…接合部材、
 T1…天壁厚、
 T2…側壁厚、
 T3…フランジ厚、
 W3…フランジ幅、
 H1…全高、
 H9…内寸高
1 ... Crystal oscillator,
10 ... Crystal oscillator,
11 ... Crystal piece,
30 ... Base member,
31 ... Hypokeimenon,
40 ... Lid member,
41 ... Top wall,
42 ... Side wall,
43 ... Flange part,
50 ... Joining member,
T1 ... Top wall thickness,
T2 ... Side wall thickness,
T3 ... Flange thickness,
W3 ... Flange width,
H1 ... Overall height,
H9 ... Inner dimension height

Claims (9)

  1.  ベース部材と、
     前記ベース部材の搭載面に搭載された圧電振動素子と、
     前記圧電振動素子の側に開口する凹部を有する蓋部材と、
     前記ベース部材と前記蓋部材とを接合する接合部材と
    を備え、
     前記蓋部材は、
     前記ベース部材の前記搭載面に沿って延在する天壁部と、
     前記天壁部の外縁に接続され前記ベース部材の前記搭載面と交差する高さ方向に沿って延在する側壁部と、
     前記側壁部から前記ベース部材の前記搭載面に沿って外側に延在するフランジ部と
    を含み、
     前記高さ方向に沿った前記フランジ部の厚みをT3、前記高さ方向に沿った前記蓋部材の前記凹部の高さをH9としたとき、
     T3≧H9
     を満たす、圧電振動子。
    With the base member
    Piezoelectric vibrating elements mounted on the mounting surface of the base member,
    A lid member having a recess that opens on the side of the piezoelectric vibrating element,
    A joining member for joining the base member and the lid member is provided.
    The lid member is
    A top wall portion extending along the mounting surface of the base member,
    A side wall portion connected to the outer edge of the top wall portion and extending along the height direction intersecting the mounting surface of the base member, and a side wall portion.
    Including a flange portion extending outward from the side wall portion along the mounting surface of the base member.
    When the thickness of the flange portion along the height direction is T3 and the height of the recess of the lid member along the height direction is H9.
    T3 ≧ H9
    Piezoelectric oscillator that meets the requirements.
  2.  前記ベース部材の前記搭載面に沿った前記側壁部の厚さをT2、前記ベース部材の前記搭載面に沿った前記フランジ部の幅をW3としたとき、
     T3<W3+T2
     を満たす、
     請求項1に記載の圧電振動子。
    When the thickness of the side wall portion along the mounting surface of the base member is T2 and the width of the flange portion along the mounting surface of the base member is W3.
    T3 <W3 + T2
    Meet,
    The piezoelectric vibrator according to claim 1.
  3.  前記ベース部材は、
     前記蓋部材が接合される基体と、
     前記基体の前記蓋部材に対向する側に設けられ前記圧電振動素子が電気的に接続される電極パッドと
    を有する、
     請求項1又は2に記載の圧電振動子。
    The base member is
    The substrate to which the lid member is bonded and
    It has an electrode pad provided on the side of the substrate facing the lid member and to which the piezoelectric vibrating element is electrically connected.
    The piezoelectric vibrator according to claim 1 or 2.
  4.  前記蓋部材の弾性率は、前記基体の弾性率よりも小さい、
     請求項3に記載の圧電振動子。
    The elastic modulus of the lid member is smaller than the elastic modulus of the substrate.
    The piezoelectric vibrator according to claim 3.
  5.  前記蓋部材の材質は、金属である、
     請求項3又は4に記載の圧電振動子。
    The material of the lid member is metal.
    The piezoelectric vibrator according to claim 3 or 4.
  6.  前記基体の材質は、セラミックである、
     請求項3から5のいずれか1項に記載の圧電振動子。
    The material of the substrate is ceramic.
    The piezoelectric vibrator according to any one of claims 3 to 5.
  7.  前記基体は平板状である、
     請求項3から6のいずれか1項に記載の圧電振動子。
    The substrate is flat,
    The piezoelectric vibrator according to any one of claims 3 to 6.
  8.  前記基体の前記圧電振動素子に対向する側には凹部が形成されており、
     前記基体を前記圧電振動素子の側から平面視したとき、前記凹部は、少なくとも前記圧電振動素子の励振電極と重なる、
     請求項3から6のいずれか1項に記載の圧電振動子。
    A recess is formed on the side of the substrate facing the piezoelectric vibrating element.
    When the substrate is viewed in a plan view from the side of the piezoelectric vibrating element, the recess overlaps with at least the excitation electrode of the piezoelectric vibrating element.
    The piezoelectric vibrator according to any one of claims 3 to 6.
  9.  蓋部材を形成する工程と、
     ベース部材に圧電振動素子を搭載する工程と、
     前記ベース部材に前記蓋部材を接合する工程と
    を備え、
     前記蓋部材を形成する工程は、
     一対の主面を有する板状部材を準備する工程と、
     プレス工法によって前記一対の主面と交差する方向に沿って前記板状部材を変形させる工程と
    を有し、
     前記一対の主面と交差する方向において、前記板状部材の厚みをT3、前記プレス工法による変形の深さをH9としたとき、
     T3≧H9
     を満たす、圧電振動子の製造方法。
    The process of forming the lid member and
    The process of mounting the piezoelectric vibration element on the base member and
    A step of joining the lid member to the base member is provided.
    The step of forming the lid member is
    The process of preparing a plate-shaped member having a pair of main surfaces, and
    It has a step of deforming the plate-shaped member along a direction intersecting with the pair of main surfaces by a pressing method.
    When the thickness of the plate-shaped member is T3 and the depth of deformation by the press method is H9 in the direction intersecting the pair of main surfaces.
    T3 ≧ H9
    A method for manufacturing a piezoelectric vibrator that satisfies the above conditions.
PCT/JP2020/023572 2019-11-14 2020-06-16 Piezoelectric vibrator and method for manufacturing same WO2021095294A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021555787A JP7389410B2 (en) 2019-11-14 2020-06-16 Piezoelectric vibrator and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019206450 2019-11-14
JP2019-206450 2019-11-14

Publications (1)

Publication Number Publication Date
WO2021095294A1 true WO2021095294A1 (en) 2021-05-20

Family

ID=75911377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023572 WO2021095294A1 (en) 2019-11-14 2020-06-16 Piezoelectric vibrator and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP7389410B2 (en)
WO (1) WO2021095294A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203669A (en) * 2004-01-19 2005-07-28 Kyocera Corp Package for housing electronic component, and electronic device
JP2007173975A (en) * 2005-12-19 2007-07-05 Nippon Dempa Kogyo Co Ltd Crystal device
JP2008016471A (en) * 2006-07-03 2008-01-24 Sony Corp Function element, module and electronic equipment equipped therewith, and electronic device
JP2012074937A (en) * 2010-09-29 2012-04-12 Seiko Epson Corp Piezoelectric device and manufacturing method of the same
WO2013172441A1 (en) * 2012-05-18 2013-11-21 株式会社村田製作所 Crystal oscillator
WO2015060120A1 (en) * 2013-10-23 2015-04-30 株式会社村田製作所 Crystal oscillation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203669A (en) * 2004-01-19 2005-07-28 Kyocera Corp Package for housing electronic component, and electronic device
JP2007173975A (en) * 2005-12-19 2007-07-05 Nippon Dempa Kogyo Co Ltd Crystal device
JP2008016471A (en) * 2006-07-03 2008-01-24 Sony Corp Function element, module and electronic equipment equipped therewith, and electronic device
JP2012074937A (en) * 2010-09-29 2012-04-12 Seiko Epson Corp Piezoelectric device and manufacturing method of the same
WO2013172441A1 (en) * 2012-05-18 2013-11-21 株式会社村田製作所 Crystal oscillator
WO2015060120A1 (en) * 2013-10-23 2015-04-30 株式会社村田製作所 Crystal oscillation device

Also Published As

Publication number Publication date
JP7389410B2 (en) 2023-11-30
JPWO2021095294A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
US8664837B2 (en) Piezoelectric device and method for fabricating the same
EP2219291A2 (en) Method for manufacturing piezoelectric vibrator, piezoelectric vibrator, and oscillator
US20150015119A1 (en) Piezoelectric vibrating piece, method for fabricating piezoelectric vibrating piece, piezoelectric device, and method for fabricating piezoelectric device
US8319404B2 (en) Surface-mountable quartz-crystal devices and methods for manufacturing same
JP2014150333A (en) Piezoelectric component
WO2014104110A1 (en) Piezoelectric component
JP5991452B2 (en) Quartz crystal vibration device and manufacturing method thereof
US20130278114A1 (en) Piezoelectric device and method for fabricating the same
WO2021095294A1 (en) Piezoelectric vibrator and method for manufacturing same
US11689177B2 (en) Electronic device and manufacturing method therefor
WO2021059576A1 (en) Piezoelectric oscillator
JP2007324852A (en) Crystal resonator and its manufacturing method
WO2021210214A1 (en) Piezoelectric vibrator and method for manufacturing same
WO2015115388A1 (en) Piezoelectric device package and piezoelectric device
JP6327327B2 (en) Vibrator, electronic device, mobile object, and oscillator
JP3879923B2 (en) Manufacturing method of lid for electronic parts
JP7462882B2 (en) Piezoelectric vibrator and its manufacturing method
JP2021175139A (en) Piezoelectric vibrator and manufacturing method thereof
WO2021131121A1 (en) Piezoelectric vibration element, piezoelectric vibrator, and electronic device
WO2021215040A1 (en) Piezoelectric oscillator
US20180159501A1 (en) Electronic component and method of manufacturing the same
JP2007067788A (en) Piezoelectric device
JP2007184810A (en) Method for manufacturing piezoelectric vibrator
WO2021220542A1 (en) Piezoelectric vibrator
JP7416248B2 (en) piezoelectric vibrator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886391

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021555787

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886391

Country of ref document: EP

Kind code of ref document: A1