JP2007184810A - Method for manufacturing piezoelectric vibrator - Google Patents

Method for manufacturing piezoelectric vibrator Download PDF

Info

Publication number
JP2007184810A
JP2007184810A JP2006002116A JP2006002116A JP2007184810A JP 2007184810 A JP2007184810 A JP 2007184810A JP 2006002116 A JP2006002116 A JP 2006002116A JP 2006002116 A JP2006002116 A JP 2006002116A JP 2007184810 A JP2007184810 A JP 2007184810A
Authority
JP
Japan
Prior art keywords
substrate wafer
manufacturing
forming
piezoelectric vibrator
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006002116A
Other languages
Japanese (ja)
Inventor
Takahiro Kuroda
貴大 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2006002116A priority Critical patent/JP2007184810A/en
Publication of JP2007184810A publication Critical patent/JP2007184810A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a crystal vibration chip from being damaged due to discharge during anode bonding and to improve the reliability of the bonding. <P>SOLUTION: A method for manufacturing a crystal vibrator 10 includes steps of: forming a crystal substrate wafer 20 where a plurality of crystal vibrating chips 21 each having vibrating arms 22 and 23 and a frame portion 25 united are arranged; forming an upper substrate wafer 30 having a plurality of upper substrates arranged and being made of glass; forming a lower substrate wafer 40 having a plurality of lower substrates 41 arranged and being made of glass; forming a laminate 1 by anode-bonding the upper substrate wafer 30, crystal substrate ware 20, and lower substrate wafer 40; and cutting the laminate 1 into pieces along cutting lines 2. The step of forming the lower substrate wafer 40 includes a step of forming recesses 50 at intersections of the cutting lines 2 and further includes a step of boring through holes 44 in the recesses 50 in the state where the laminate 1 is formed and a step of forming connection electrodes 47 connected to lower conductive films 26a on internal surfaces of the through holes 44. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、圧電振動子の製造方法に関する。詳しくは、圧電振動片と上基板と下基板とを陽極接合して構成する圧電振動子の製造方法に関する。   The present invention relates to a method for manufacturing a piezoelectric vibrator. Specifically, the present invention relates to a method for manufacturing a piezoelectric vibrator configured by anodically bonding a piezoelectric vibrating piece, an upper substrate, and a lower substrate.

従来、電子機器の小型化、薄型化に伴い、圧電振動子はより一層の小型化、薄型化が要求され、一般に表面実装型の圧電振動子は、圧電振動片を絶縁材料で形成したパッケージに封止する構造が広く採用されている。薄型化、小型化を実現する方法としてパッケージの製造方法として圧電振動片と上下の蓋体とを陽極接合する方法が提案されているが、陽極接合工程において、高電圧を印加することにより放電し、圧電振動片や電極等に損傷を与えるという課題を有する。   Conventionally, along with the downsizing and thinning of electronic equipment, piezoelectric vibrators are required to be further downsized and thinned. In general, surface mount type piezoelectric vibrators are packaged with a piezoelectric vibrating piece formed of an insulating material. A sealing structure is widely adopted. As a method for realizing thinning and miniaturization, a method of anodic bonding of the piezoelectric vibrating piece and the upper and lower lids has been proposed as a package manufacturing method. In the anodic bonding process, discharge is caused by applying a high voltage. There is a problem of damaging the piezoelectric vibrating piece and the electrode.

このような、陽極接合工程における放電の発生を防止する製造方法を半導体センサの製造方法に応用した例が提案されている。この製造方法は、貫通孔を有するガラス台座と、このガラス台座上に接合され、貫通孔に対向する検出部を有するシリコン基板と、を備えた半導体センサの製造方法であって、ガラス台座の貫通孔を封鎖した状態(凹部の状態)で、シリコンウエハとガラス台座とを陽極接合する第1の工程と、第1の工程による陽極接合工程後に、貫通孔の封鎖部(凹部の底部)を除去する第2の工程を有するという製造方法である(例えば、特許文献1参照)。   There has been proposed an example in which such a manufacturing method for preventing the occurrence of discharge in the anodic bonding process is applied to a semiconductor sensor manufacturing method. This manufacturing method is a method for manufacturing a semiconductor sensor comprising a glass pedestal having a through-hole and a silicon substrate having a detection part that is bonded to the glass pedestal and faces the through-hole. After the first step of anodically bonding the silicon wafer and the glass pedestal with the hole sealed (in the state of the recess), and after the anodic bonding step in the first step, the through-hole blocking portion (the bottom of the recess) is removed. It is a manufacturing method of having the 2nd process to perform (for example, refer to patent documents 1).

特開平9−101218号公報(第3頁、図3〜図6)JP-A-9-101218 (page 3, FIGS. 3 to 6)

このような特許文献1では、陽極接合工程における放電対策として、本来貫通孔となるべき圧力導入孔を封鎖した状態で陽極接合を行い、陽極接合の後、封鎖部を研磨加工等の加工手段で除去して圧力導入孔を開設している。このような封鎖状態で電圧を印加した場合には、貫通孔において発生する放電を防止することができる。   In Patent Document 1, as a countermeasure against discharge in the anodic bonding process, anodic bonding is performed in a state where the pressure introduction hole that should originally be a through hole is sealed, and after the anodic bonding, the sealed portion is processed by a processing means such as polishing. Removed and opened a pressure introduction hole. When a voltage is applied in such a sealed state, it is possible to prevent discharge generated in the through hole.

しかしながら、封鎖部を研磨加工により除去し貫通孔を形成する方法では、ガラス台座の破損が発生し易いということが予測される。   However, it is predicted that the glass pedestal is likely to be damaged by the method of removing the blocking portion by polishing and forming the through hole.

また、ガラス台座及び立体的な上部電極を表面に有するシリコンウエハを接合した後に研磨を行うため、ガラス台座の裏面を安定的に水平に保持することが困難であり、ガラス台座の厚み寸法にばらつきがでてしまうというような課題がある。   In addition, since polishing is performed after bonding a glass wafer and a silicon wafer having a three-dimensional upper electrode on the surface, it is difficult to stably hold the back surface of the glass base horizontally, and the thickness of the glass base varies. There is a problem such as going out.

さらに、凹部の開口部が、ガラス台座とシリコンウエハとの接合面にあるため、接合面積が小さく、接合面の配置バランスが悪くなることもあるため、接合品質が安定しないことが考えられる。   Furthermore, since the opening of the recess is on the bonding surface between the glass pedestal and the silicon wafer, the bonding area is small, and the arrangement balance of the bonding surface may be deteriorated, so that the bonding quality may not be stable.

本発明の目的は、前述した課題を解決することを要旨とし、陽極接合時における放電による圧電振動片の損傷を防止し、且つ、接合の信頼性を高めることができる圧電振動子の製造方法を提供することである。   An object of the present invention is to solve the above-described problems, and to provide a method for manufacturing a piezoelectric vibrator that can prevent damage to the piezoelectric vibrating piece due to discharge during anodic bonding and can increase the reliability of the bonding. Is to provide.

本発明の圧電振動子の製造方法は、振動腕と該振動腕の周囲の枠部とを一体にした圧電振動片を複数配設し、前記振動腕に設けられる第1励振電極と該第1励振電極と連続し前記枠部の下面に形成される下側導電膜と、第2励振電極と該第2励振電極と連続し前記枠部の上面に形成される上側導電膜と、該上側導電膜と連続する前記枠部の下面に形成される引出し電極と、を有する圧電基板ウエハを形成する工程と、前記枠部の上面に対応して設けられる接合面を有する上基板を複数配設するガラスからなる上基板ウエハを形成する工程と、前記枠部の下面に対応して設けられる接合面を有する下基板を複数配設するガラスからなる下基板ウエハを形成する工程と、前記上基板ウエハの接合面と前記圧電基板ウエハの枠部と前記下基板ウエハの接合面とを陽極接合し積層体を形成する工程と、前記積層体を縦及び横の切断線に沿って切断して圧電振動子を個片化する工程と、を有し、前記下基板ウエハを形成する工程には、前記切断線の交差部の表面に凹部を形成する工程を含み、前記積層体を形成した状態において、前記凹部に貫通孔を開設する工程と、前記貫通孔の内面に前記上側導電膜または前記引出し電極に接続する接続電極を形成する工程と、をさらに含むことを特徴とする。
ここで、圧電振動片としては、例えば、水晶振動片を採用することができる。
In the method for manufacturing a piezoelectric vibrator according to the present invention, a plurality of piezoelectric vibrating pieces in which a vibrating arm and a frame portion around the vibrating arm are integrated are arranged, and the first excitation electrode provided on the vibrating arm and the first A lower conductive film that is continuous with the excitation electrode and formed on the lower surface of the frame; a second excitation electrode; an upper conductive film that is continuous with the second excitation electrode and formed on the upper surface of the frame; and the upper conductive film A step of forming a piezoelectric substrate wafer having a lead electrode formed on the lower surface of the frame portion that is continuous with the film, and a plurality of upper substrates having bonding surfaces provided corresponding to the upper surface of the frame portion are disposed. A step of forming an upper substrate wafer made of glass, a step of forming a lower substrate wafer made of glass in which a plurality of lower substrates having a bonding surface provided corresponding to the lower surface of the frame portion are provided, and the upper substrate wafer Bonding surface, frame portion of the piezoelectric substrate wafer, and lower substrate wafer A step of forming a laminated body by anodically bonding the bonding surface, and a step of cutting the laminated body along vertical and horizontal cutting lines to separate the piezoelectric vibrator into pieces, and the lower substrate wafer Forming a recess in the surface of the intersection of the cutting lines, and in the state where the laminate is formed, a step of opening a through hole in the recess, and an inner surface of the through hole Forming a connection electrode connected to the upper conductive film or the extraction electrode.
Here, as the piezoelectric vibrating piece, for example, a quartz vibrating piece can be adopted.

この発明によれば、圧電振動片に設けられる第1、第2の励振電極を下基板に開設される貫通孔から外部に取り出す圧電振動子の構造において、この貫通孔を陽極接合が終了するまで貫通しない状態(凹部の状態)とし、陽極接合後に貫通孔を開設するため、陽極接合時において、貫通孔内で発生する放電を抑制することができ、放電による圧電振動片や電極等の損傷を防止することができる。   According to the present invention, in the structure of the piezoelectric vibrator in which the first and second excitation electrodes provided on the piezoelectric vibrating piece are taken out from the through holes provided in the lower substrate, the through holes are subjected to anodic bonding. Since the through hole is opened after anodic bonding with no penetration (recessed state), discharge generated in the through hole during anodic bonding can be suppressed, and damage to the piezoelectric vibrating piece, electrode, etc. due to discharge can be suppressed. Can be prevented.

また、本発明では、前記下基板ウエハの下面側に前記凹部を形成することが好ましい。   In the present invention, it is preferable that the concave portion is formed on the lower surface side of the lower substrate wafer.

このようにすれば、下基板ウエハと圧電基板ウエハとの接合面には、凹部の開口部がないため、接合面の状態が平滑な一様な面であるため、接合品質を確保しやすいというような効果がある。   In this way, the bonding surface between the lower substrate wafer and the piezoelectric substrate wafer does not have a concave opening, and the bonding surface is a smooth and uniform surface, so that it is easy to ensure bonding quality. There is an effect like this.

また、前記凹部を前記下基板ウエハの下面側の開口部を底部よりも広いテーパ状に形成することがより好ましい。   More preferably, the recess is formed in a tapered shape in which the opening on the lower surface side of the lower substrate wafer is wider than the bottom.

前述したように、凹部には陽極接合後に貫通孔を開設し、接続電極を形成する。詳しくは実施の形態で後述するが、接続電極は、下基板ウエハの下面側からスパッタ等の手段で形成する。従って、下面側の開口部が底部よりも広いテーパ状に形成されていることから、下基板ウエハの下面から下基板ウエハの上面方向にある下側導電膜または引出し電極の深さに至るまで接続電極を形成することができる。   As described above, through holes are formed in the recesses after anodic bonding, and connection electrodes are formed. As will be described later in detail in the embodiment, the connection electrode is formed by means such as sputtering from the lower surface side of the lower substrate wafer. Therefore, since the opening on the lower surface side is formed in a taper shape wider than the bottom portion, the connection is made from the lower surface of the lower substrate wafer to the depth of the lower conductive film or the extraction electrode in the upper surface direction of the lower substrate wafer. An electrode can be formed.

また、前記凹部を、サンドブラスト工程により穿設することがより好ましい。   Moreover, it is more preferable that the concave portion is formed by a sandblasting process.

テーパ状の凹部を穿設する方法としては多種存在するが、サンドブラストによれば、研磨材の材質、粒度、吹き付け速度、時間等の調整により所望のテーパ形状を容易に形成することが可能であり、さらに、複数の凹部も同時に短時間で形成することができることから生産効率を高めることができる。   There are many methods for drilling a tapered recess, but sand blasting makes it possible to easily form a desired taper shape by adjusting the abrasive material, particle size, spraying speed, time, etc. Furthermore, since a plurality of recesses can be formed simultaneously in a short time, the production efficiency can be increased.

また、本発明では、前記下基板ウエハの上面側に前記凹部を形成することが望ましい。   In the present invention, it is desirable to form the concave portion on the upper surface side of the lower substrate wafer.

このように、下基板ウエハの上面方向に前記凹部を形成しても、陽極接合が終了するまで貫通孔を開設しない状態(凹部の状態)とし、陽極接合後に貫通孔を開設するため、陽極接合時において、貫通孔内で発生する放電を防止することができる。   Thus, even if the concave portion is formed in the upper surface direction of the lower substrate wafer, the through hole is not opened until the anodic bonding is completed (the concave portion state), and the anodic bonding is performed to open the through hole after the anodic bonding. Sometimes, it is possible to prevent the electric discharge generated in the through hole.

また、本発明では、前記凹部をエッチング工程により穿設することがより望ましい。   In the present invention, it is more desirable to form the recess by an etching process.

詳しくは、後述する実施の形態で説明するが、下基板ウエハの上面には、圧電振動片を収納するキャビティーとなる空間がエッチング工程により形成されるが、この空間をエッチング工程で形成するようにすれば、凹部と空間とを同じエッチング工程で形成することができ、生産性を高めることができる。   Although details will be described in an embodiment described later, a space serving as a cavity for accommodating the piezoelectric vibrating piece is formed on the upper surface of the lower substrate wafer by an etching process. This space is formed by the etching process. If it makes it, a recessed part and a space can be formed in the same etching process, and productivity can be improved.

また、この凹部は、サンドブラスト等でも形成可能であるが、サンドブラストにより形成される凹部はテーパ形状となる。この凹部を下基板ウエハの下面からみると逆テーパとなり、接続電極を下面側からスパッタ形成する場合、下基板ウエハの下面から下基板ウエハの上面側にある下側導電膜または引出し電極まで達しないことが考えられる。しかし、エッチングによれば、凹部内の側面は下基板ウエハの下面に対してほぼ垂直に形成できることから、接続電極を下側導電膜または引出し電極に至るまで形成することを可能にする。   Moreover, although this recessed part can also be formed by sandblasting etc., the recessed part formed by sandblasting becomes a taper shape. When the concave portion is viewed from the lower surface of the lower substrate wafer, it becomes a reverse taper, and when the connection electrode is formed by sputtering from the lower surface side, it does not reach the lower conductive film or the extraction electrode on the upper surface side of the lower substrate wafer from the lower surface of the lower substrate wafer. It is possible. However, according to the etching, the side surface in the recess can be formed substantially perpendicular to the lower surface of the lower substrate wafer, so that the connection electrode can be formed up to the lower conductive film or the extraction electrode.

また、前述した貫通孔を開設する工程が、エッチング工程であることが好ましい。   Moreover, it is preferable that the process of opening the through-hole mentioned above is an etching process.

このようにすれば、前述した従来技術のような貫通孔の開設が研磨による方法に比べ、凹部の底部をエッチングにより除去すればよいので、下基板ウエハの損傷や、厚さのばらつきは発生しない。   In this case, the bottom of the concave portion only needs to be removed by etching as compared with the polishing method in which the opening of the through hole as in the prior art described above is used, so that the lower substrate wafer is not damaged and the thickness does not vary. .

また、本発明では、前記接続電極を形成する工程の後に、前記接続電極の内面に導電性部材を充填する工程を含むことがより望ましい。   In the present invention, it is more desirable to include a step of filling the inner surface of the connection electrode with a conductive member after the step of forming the connection electrode.

接続電極は、上述した貫通孔内にスパッタ等で形成するが、貫通孔が深い(下基板ウエハが厚い)場合には、下側導電膜または引出し電極の深さまで均一に形成されないことがまれにあることが考えられるが、導電部材を充填することにより、下側導電膜または上側導電膜と接続電極との接続をより確実に行うことができる。   The connection electrode is formed in the above-described through hole by sputtering or the like. However, when the through hole is deep (the lower substrate wafer is thick), it is rarely formed uniformly to the depth of the lower conductive film or the extraction electrode. Although it is conceivable, the lower conductive film or the upper conductive film and the connection electrode can be more reliably connected by filling the conductive member.

以下、本発明の実施の形態を図面に基づいて説明する。
図1〜図4は本発明の実施形態1に係る圧電振動子の構造を示し、図5〜図8は、実施形態1に係る圧電振動子の製造方法、図9、図10は実施形態2に係る圧電振動子の製造方法、図11は、実施形態3に係る圧電振動子の製造方法の一部を示している。なお、本発明では、圧電振動子として水晶を用いる水晶振動子を例示して説明する。
(実施形態1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 4 show the structure of the piezoelectric vibrator according to the first embodiment of the present invention, FIGS. 5 to 8 show the method of manufacturing the piezoelectric vibrator according to the first embodiment, and FIGS. 9 and 10 show the second embodiment. FIG. 11 shows a part of the method for manufacturing a piezoelectric vibrator according to the third embodiment. In the present invention, a crystal resonator using a crystal as a piezoelectric resonator will be described as an example.
(Embodiment 1)

図1は、実施形態1に係る水晶振動子の概略構造を示す平面図、図2は、図1のA―A切断面を示す断面図である。なお、図1は、上基板31を透視した状態を示している。図1、図2において、水晶振動子10は、水晶振動片21の上面及び下面それぞれに上基板31と下基板41とを一体に積層して構成されている。本実施形態では、上基板31と下基板41とは、水晶振動片21の平面方向において近似な熱膨張係数を有するソーダガラスを用いるのが好適である。これら上基板31と水晶振動片21と下基板41とは、それぞれ大判のウエハの状態で陽極接合されて積層体1を形成した後、切断線2に沿って切断、個片化されて、水晶振動子10が形成されている。   FIG. 1 is a plan view showing a schematic structure of the crystal resonator according to the first embodiment, and FIG. 2 is a cross-sectional view showing the AA section of FIG. FIG. 1 shows a state in which the upper substrate 31 is seen through. 1 and 2, the crystal resonator 10 is configured by integrally laminating an upper substrate 31 and a lower substrate 41 on each of an upper surface and a lower surface of a crystal vibrating piece 21. In the present embodiment, the upper substrate 31 and the lower substrate 41 are preferably made of soda glass having an approximate thermal expansion coefficient in the plane direction of the crystal vibrating piece 21. The upper substrate 31, the crystal vibrating piece 21, and the lower substrate 41 are each anodically bonded in the state of a large-sized wafer to form the laminate 1, and then cut and separated along the cutting line 2, A vibrator 10 is formed.

図1に示すように、水晶振動片21は、振動腕22,23が基部24から延在された音叉型振動片であって、基部24と振動腕22,23の周囲を囲む枠部25とが一体で形成されている。電極の構成の詳細は、図3,4に示すが、振動腕22,23及び枠部25の表裏両面には、第1励振電極26と第2励振電極27と、これらの電極それぞれに連続する下側導電膜26a、上側導電膜27aが形成されている。
上側導電膜27aは、ビアホール(コンタクトホール)28を連通して下面側に設けられる引出し電極27bに接続されている。
As shown in FIG. 1, the quartz crystal vibrating piece 21 is a tuning fork type vibrating piece in which vibrating arms 22 and 23 extend from a base 24, and includes a frame portion 25 surrounding the base 24 and the vibrating arms 22 and 23. Are integrally formed. The details of the electrode configuration are shown in FIGS. 3 and 4, and the first and second excitation electrodes 26 and 27 are continuous on the front and back surfaces of the vibrating arms 22 and 23 and the frame portion 25, respectively. A lower conductive film 26a and an upper conductive film 27a are formed.
The upper conductive film 27a communicates with a via hole (contact hole) 28 and is connected to an extraction electrode 27b provided on the lower surface side.

上基板31は、振動腕22,23が可振できるように凹部32が穿設され、凹部32の周縁部は、水晶振動片21の枠部25と大略同じ形状に形成された接合面33である(図1のドット表示領域)。   The upper substrate 31 is formed with a recess 32 so that the vibrating arms 22 and 23 can be vibrated, and the peripheral portion of the recess 32 is a joint surface 33 formed in substantially the same shape as the frame portion 25 of the crystal vibrating piece 21. Yes (dot display area in FIG. 1).

下基板41は、上基板31と同様に振動腕22,23が可振できるように凹部42が穿設され、凹部42の周縁部は、水晶振動片21の枠部25と大略同じ形状に形成された接合面43である(図1において、ドットにて表示する領域)。また、下基板41の外周角部には、切欠き部44aが設けられており、この切欠き部44aの内面(側面)には、引出し電極27bに接続する接続電極48と、下側導電膜26aに接続する接続電極47とが形成されている。接続電極47,48は、図示の左右にそれぞれ2箇所ずつ設けられている。さらに、接続電極47,48は、下基板41の下面に設けられる外部電極45,46に接続している。   The lower substrate 41 is provided with a recess 42 so that the vibrating arms 22 and 23 can vibrate in the same manner as the upper substrate 31, and the peripheral portion of the recess 42 is formed in substantially the same shape as the frame portion 25 of the crystal vibrating piece 21. This is the bonded surface 43 (in FIG. 1, a region indicated by dots). In addition, a notch 44a is provided at the outer peripheral corner of the lower substrate 41. On the inner surface (side surface) of the notch 44a, a connection electrode 48 connected to the extraction electrode 27b and a lower conductive film are provided. A connection electrode 47 connected to 26a is formed. The connection electrodes 47 and 48 are provided at two places on the left and right in the drawing, respectively. Further, the connection electrodes 47 and 48 are connected to external electrodes 45 and 46 provided on the lower surface of the lower substrate 41.

なお、水晶振動片21は水晶基板ウエハ20、上基板31は上基板ウエハ30、下基板41は下基板ウエハ40に、それぞれ複数配列して形成した後、積層接合されて積層体1を形成した後、切断線2に沿って切断され、水晶振動子10に個片化される。従って、下基板41の外周角部に設けられた貫通孔44を切断することにより上述した切欠き部44aが形成される。   A plurality of crystal vibrating pieces 21 are formed on the crystal substrate wafer 20, an upper substrate 31 is formed on the upper substrate wafer 30, and a plurality of lower substrates 41 are formed on the lower substrate wafer 40. After that, it is cut along the cutting line 2 and separated into crystal units 10. Therefore, the above-described cutout portion 44 a is formed by cutting the through hole 44 provided in the outer peripheral corner portion of the lower substrate 41.

このように構成された水晶振動子10は、振動腕22,23が、上基板31の凹部32と下基板41の凹部42それぞれの空間とによって形成されたキャビティー内に振動可能に収容されて、第1励振電極26、第2励振電極27とが、それぞれ外部電極45,46まで接続され、外部電極45,46から励振信号を入力すると共に、共振信号を出力することが可能な構成である。   In the crystal resonator 10 configured as described above, the vibrating arms 22 and 23 are housed in a cavity formed by the recesses 32 of the upper substrate 31 and the recesses 42 of the lower substrate 41 so as to vibrate. The first excitation electrode 26 and the second excitation electrode 27 are connected to the external electrodes 45 and 46, respectively, so that an excitation signal can be input from the external electrodes 45 and 46 and a resonance signal can be output. .

続いて、水晶振動片21に形成される各電極構成について図面を参照して説明する。
図3は、水晶振動片の上面側を表し、図4は下面側を表している。図3,4において、振動腕22の上面側先端部には第1励振電極26が設けられ、振動腕22の外周面から基部24の上面及び振動腕23の上面の中央部にまで延在されている。さらに、振動腕22の側面から下面側に延在され、枠部25の下面における下側導電膜26aが形成されている。
Next, each electrode configuration formed on the crystal vibrating piece 21 will be described with reference to the drawings.
3 shows the upper surface side of the quartz crystal vibrating piece, and FIG. 4 shows the lower surface side. 3 and 4, a first excitation electrode 26 is provided at the top end of the upper surface of the vibrating arm 22 and extends from the outer peripheral surface of the vibrating arm 22 to the upper surface of the base 24 and the center of the upper surface of the vibrating arm 23. ing. Further, a lower conductive film 26 a is formed on the lower surface of the frame portion 25 so as to extend from the side surface of the vibrating arm 22 to the lower surface side.

振動腕23の上面先端部には第2励振電極27が設けられ、振動腕23の外周面から基部24の上面及び振動腕22の上面の中央部にまで延在されている。さらに、振動腕23の側面から上面側に延在され、枠部25の上面における上側導電膜27aが形成されている。   A second excitation electrode 27 is provided at the top end of the upper surface of the vibrating arm 23, and extends from the outer peripheral surface of the vibrating arm 23 to the upper surface of the base 24 and the center of the upper surface of the vibrating arm 22. Furthermore, an upper conductive film 27 a is formed on the upper surface of the frame portion 25 so as to extend from the side surface of the vibrating arm 23 to the upper surface side.

第1励振電極26と第2励振電極27とは、振動腕22,23の上面に対して表裏において面対称となるよう形成される。また、上側導電膜27aは、枠部25の端部(図中、右側端部)において、枠部25に開設される2個のビアホール28によって下面側に延在され、引出し電極27bに接続されている。従って、第1励振電極26と第2励振電極27とは、それぞれ水晶振動片21の下面側に延在されて、下側導電膜26aと引出し電極27bに接続されている。   The first excitation electrode 26 and the second excitation electrode 27 are formed so as to be plane symmetric with respect to the upper surfaces of the vibrating arms 22 and 23. The upper conductive film 27a extends to the lower surface side by two via holes 28 formed in the frame portion 25 at the end portion (right end portion in the drawing) of the frame portion 25, and is connected to the extraction electrode 27b. ing. Accordingly, the first excitation electrode 26 and the second excitation electrode 27 extend to the lower surface side of the crystal vibrating piece 21 and are connected to the lower conductive film 26a and the extraction electrode 27b.

このような各電極の形成は、水晶基板ウエハ20の状態で、まず、振動腕22,23及びビアホール28(貫通孔の状態)をエッチング工程により形成した後、フォトリソグラフィ技術を用いて形成される。   Each electrode is formed in the state of the quartz substrate wafer 20 by first forming the vibrating arms 22 and 23 and the via hole 28 (through hole state) by an etching process and then using a photolithography technique. .

なお、上述した第1励振電極26、第2励振電極27、下側導電膜26a、上側導電膜27a及び引出し電極27bはAlもしくはAl合金で形成されるが、Cr、Ti、Auなどの材料のうちから選択した1種以上の薄膜でもよく、接続電極47,48及び外部電極45,46は、Au/Cr、Ni、Tiなどを蒸着、スパッタ、メッキ法にて使用することができる。   The first excitation electrode 26, the second excitation electrode 27, the lower conductive film 26a, the upper conductive film 27a, and the extraction electrode 27b described above are formed of Al or an Al alloy, but are made of a material such as Cr, Ti, or Au. One or more kinds of thin films selected from the above may be used, and the connection electrodes 47 and 48 and the external electrodes 45 and 46 can be used by vapor deposition, sputtering or plating of Au / Cr, Ni, Ti or the like.

続いて、本実施形態に係る水晶振動子の製造方法について図面を参照して説明する。まず、下基板ウエハ40の製造方法について説明する。
図5は、本実施形態に係る下基板ウエハ40の製造工程を示し、(a)は、下面40a側を示す斜視図、(b)は、(a)のB―B切断面を示す断面図である。図5(a)、(b)において、上面40b側にハーフエッチングによりキャビティーを形成するための空間としての凹部42を形成する。凹部42の周縁部が接合面43(図2、参照)である。そして、下面40a側に凹部50を形成する。
Next, a method for manufacturing a crystal resonator according to this embodiment will be described with reference to the drawings. First, a method for manufacturing the lower substrate wafer 40 will be described.
5A and 5B show the manufacturing process of the lower substrate wafer 40 according to the present embodiment, where FIG. 5A is a perspective view showing the lower surface 40a side, and FIG. 5B is a cross-sectional view showing the BB cut surface of FIG. It is. 5A and 5B, a recess 42 is formed as a space for forming a cavity by half-etching on the upper surface 40b side. The peripheral part of the recessed part 42 is the joint surface 43 (refer FIG. 2). And the recessed part 50 is formed in the lower surface 40a side.

凹部50は、下基板ウエハ40を切断線2の各交点にサンドブラストにより形成する。サンドブラスト工程では、所定の大きさの開口部を備えるマスクを用いて所定の深さまで凹部50を穿設する。ここで、本実施形態では、残り厚さを30μm程度とし、下面40a側の開口部の直径を200μm、底部の直径を100μmとするテーパ形状とする。サンドブラストにおける研磨材の材質、粒度、吹き付け速度、加工時間等は、所望の凹部50の深さ、テーパ形状に合わせて適宜選択する。   The recess 50 is formed by sandblasting the lower substrate wafer 40 at each intersection of the cutting lines 2. In the sandblasting process, the recess 50 is drilled to a predetermined depth using a mask having an opening of a predetermined size. In this embodiment, the remaining thickness is about 30 μm, the diameter of the opening on the lower surface 40a side is 200 μm, and the diameter of the bottom is 100 μm. The material, particle size, spraying speed, processing time, etc. of the abrasive in sandblasting are appropriately selected according to the desired depth of the recess 50 and the tapered shape.

次いで、上基板ウエハ30の製造方法について図6を参照して説明する。
図6は、上基板ウエハ30、水晶基板ウエハ20、下基板ウエハ40の接合前の状態を示す説明図である。図6の最上層に上基板ウエハ30を示す。上基板ウエハ30は、裏面側(図中、下側)にキャビティーを構成するための空間となる凹部32をハーフエッチングにより形成する。この凹部32は、上述した下基板ウエハ40の凹部42に対応した位置、大きさで形成され、凹部32の周縁部が接合面33(図2、参照)である。
Next, a method for manufacturing the upper substrate wafer 30 will be described with reference to FIG.
FIG. 6 is an explanatory view showing a state before the upper substrate wafer 30, the quartz substrate wafer 20 and the lower substrate wafer 40 are bonded. The upper substrate wafer 30 is shown in the uppermost layer of FIG. The upper substrate wafer 30 has a recess 32 formed as a space for forming a cavity on the back surface side (lower side in the drawing) by half etching. The concave portion 32 is formed at a position and size corresponding to the concave portion 42 of the lower substrate wafer 40 described above, and the peripheral portion of the concave portion 32 is a bonding surface 33 (see FIG. 2).

水晶基板ウエハ20の製造方法については、図3,4を参照して説明しているので省略するが、枠部25から基部24と振動腕22,23とが延在された音叉と、上述した各電極が形成された状態で水晶振動片21を複数配列して水晶基板ウエハ20を形成する。このように形成された上基板ウエハ30と水晶基板ウエハ20と下基板ウエハ40とを正確に位置決めして積層し、接合する。   The method for manufacturing the quartz substrate wafer 20 has been described with reference to FIGS. 3 and 4 and will be omitted. However, the tuning fork in which the base 24 and the vibrating arms 22 and 23 are extended from the frame 25 and the above-described tuning fork are described. In the state where each electrode is formed, a plurality of crystal vibrating pieces 21 are arranged to form a crystal substrate wafer 20. The upper substrate wafer 30, the crystal substrate wafer 20 and the lower substrate wafer 40 thus formed are accurately positioned, stacked, and bonded.

図7は、接合工程〜接続電極形成工程までを示す断面図である。図7(a)は、接合工程を示す。接合工程では、水晶基板ウエハ20の上面に上基板ウエハ30、下面に下基板ウエハ40を積層し、この状態で、上下基板ウエハおよび水晶基板ウエハは図示しないホットプレートにより加熱加圧保持され、水晶基板ウエハ20に直流電源90の正極を、上基板ウエハ30と下基板ウエハ40には負極を接続して電圧を印加して陽極接合を行う。本実施形態による陽極接合の条件は、140〜160℃の環境下において、加圧しながら0.5〜1.4kVの電圧を5分間印加することで、所定の接合強度、密閉性が得られた。
なお、接合の性質上、加圧がなくてもよい。また接合雰囲気は大気中、N2中もしくは10-4Pa以下の真空中でも可能である。
FIG. 7 is a cross-sectional view illustrating the bonding process to the connection electrode forming process. FIG. 7A shows the joining process. In the bonding process, the upper substrate wafer 30 is laminated on the upper surface of the quartz substrate wafer 20 and the lower substrate wafer 40 is laminated on the lower surface. In this state, the upper and lower substrate wafers and the quartz substrate wafer are heated and pressed and held by a hot plate (not shown). A positive electrode of a DC power supply 90 is connected to the substrate wafer 20, and a negative electrode is connected to the upper substrate wafer 30 and the lower substrate wafer 40, and voltage is applied to perform anodic bonding. The conditions of anodic bonding according to the present embodiment were that a predetermined bonding strength and hermeticity were obtained by applying a voltage of 0.5 to 1.4 kV for 5 minutes while applying pressure in an environment of 140 to 160 ° C. .
Note that there is no need to apply pressure due to the nature of the bonding. The bonding atmosphere can be performed in the air, in N 2 or in a vacuum of 10 −4 Pa or less.

下基板ウエハ40には、複数の凹部50が形成されているが、これら凹部は、貫通していないため、陽極接合の際の放電の発生を抑制する。   A plurality of recesses 50 are formed in the lower substrate wafer 40. Since these recesses do not penetrate, the occurrence of discharge during anodic bonding is suppressed.

続いて、陽極接合工程後における第1励振電極26及び第2励振電極27を外部電極に取り出すための接続電極の形成工程について説明する。
なお、第1励振電極26は、下側導電膜26aに接続されており、第2励振電極27は、上側導電膜27aとビアホール28を介して引出し電極27bに接続されている(図3,4、参照)が、下側導電膜26a及び引出し電極27bそれぞれに接続する接続電極45,46の構造は同じであるため、下側導電膜26a側を例示して説明する。
Subsequently, a process of forming a connection electrode for taking out the first excitation electrode 26 and the second excitation electrode 27 after the anodic bonding process to an external electrode will be described.
The first excitation electrode 26 is connected to the lower conductive film 26a, and the second excitation electrode 27 is connected to the extraction electrode 27b through the upper conductive film 27a and the via hole 28 (FIGS. 3 and 4). However, since the structures of the connection electrodes 45 and 46 connected to the lower conductive film 26a and the extraction electrode 27b are the same, the lower conductive film 26a side will be described as an example.

図7(b)に示すように、陽極接合後、積層体1の状態において、下基板ウエハ40の下面40a側に耐食膜60を形成する。耐食膜60は、基板側からCr、Au、レジスト膜の順で構成される3層構造である。CrとAuは、ガラスとレジストの密着性を高めるために形成される。また、上基板ウエハ30の上面にも耐食膜61を形成する。耐食膜61の構成も上述した耐食膜60と同様な3層構造とし、後述するエッチング工程時に、上基板ウエハ30の表面を保護するために設けられる。   As shown in FIG. 7B, after the anodic bonding, a corrosion-resistant film 60 is formed on the lower surface 40 a side of the lower substrate wafer 40 in the state of the laminated body 1. The corrosion resistant film 60 has a three-layer structure including Cr, Au, and a resist film in this order from the substrate side. Cr and Au are formed to increase the adhesion between the glass and the resist. Further, a corrosion resistant film 61 is also formed on the upper surface of the upper substrate wafer 30. The structure of the corrosion resistant film 61 has a three-layer structure similar to that of the corrosion resistant film 60 described above, and is provided to protect the surface of the upper substrate wafer 30 during an etching process described later.

次に、凹部50の内側表面の耐食膜を露光、現像により除去する。図7(c)に示すように耐食膜60は、凹部50部分が開口される。   Next, the corrosion resistant film on the inner surface of the recess 50 is removed by exposure and development. As shown in FIG. 7C, the corrosion-resistant film 60 is opened at the recess 50 portion.

次に、図7(d)に示すように、エッチング工程により凹部50の底部を除去し貫通孔44を形成する。エッチャントとしては、HFまたはH22+NH4HF2を用いて液温25〜30℃程度で、下側導電膜26aの表面が露出するまで加工する。そして、耐食膜60,61を剥離し、貫通孔44の内面を含めて洗浄する(図示せず)。 Next, as shown in FIG. 7D, the bottom of the recess 50 is removed by an etching process to form a through hole 44. The etchant is processed using HF or H 2 O 2 + NH 4 HF 2 at a liquid temperature of about 25 to 30 ° C. until the surface of the lower conductive film 26a is exposed. Then, the corrosion resistant films 60 and 61 are peeled off and cleaned including the inner surface of the through hole 44 (not shown).

続いて、図7(e)に示すように、下基板ウエハ40の下面40aに耐食膜62を形成し、露光、現像工程により、貫通孔44及び貫通孔44の周辺部に開口部62aを開口する。この開口部62aは、外部電極45,46を形成する領域である。   Subsequently, as shown in FIG. 7E, a corrosion-resistant film 62 is formed on the lower surface 40a of the lower substrate wafer 40, and openings 62a are opened around the through-holes 44 and the through-holes 44 by exposure and development processes. To do. The opening 62a is a region where the external electrodes 45 and 46 are formed.

次に、図7(f)に示すようにスパッタ等の手段で接続電極47と外部電極45,46)を形成する。外部電極45は下側導電膜26a(つまり、第1励振電極26)と接続し、外部電極46は引出し電極27b(つまり、第2励振電極)と接続する。貫通孔44は、凹部50の形成時においてテーパ形状としているため、下面側からのスパッタによって、内側の側面及び下側導電膜26a(または引出し電極27b)まで一様に接続電極47を形成することを可能にしている。   Next, as shown in FIG. 7F, connection electrodes 47 and external electrodes 45 and 46) are formed by means such as sputtering. The external electrode 45 is connected to the lower conductive film 26a (that is, the first excitation electrode 26), and the external electrode 46 is connected to the extraction electrode 27b (that is, the second excitation electrode). Since the through hole 44 has a tapered shape when the recess 50 is formed, the connection electrode 47 is uniformly formed up to the inner side surface and the lower conductive film 26a (or the extraction electrode 27b) by sputtering from the lower surface side. Is possible.

接続電極47、外部電極45,46を形成後、耐食膜62を剥離し、洗浄して積層体1が形成される(図示せず)。   After the connection electrode 47 and the external electrodes 45 and 46 are formed, the corrosion-resistant film 62 is peeled off and washed to form the laminate 1 (not shown).

なお、図7(b)〜図7(f)において示した工程は、本実施形態の好適な例を示したもので、他の工順を用いることが可能である。
例えば、貫通孔44を開設後(図7(d)、参照)に洗浄し、続いてスパッタ工程により接続電極47を形成する工順としてもよい。それから、耐食膜形成、露光、現像、外部電極45,46の形成を行ってもよい。また、メタルマスクを用いてスパッタ法、蒸着法にて端子形成することも可能であり、この場合耐食膜形成等の工程も不要となる。
また、貫通孔44を開設する前に、外部電極45,46を予め形成しておくことも可能である。
In addition, the process shown in FIG.7 (b)-FIG.7 (f) showed the suitable example of this embodiment, and it is possible to use another routing.
For example, it is possible to clean the through hole 44 (see FIG. 7D) and subsequently form the connection electrode 47 by a sputtering process. Then, corrosion-resistant film formation, exposure, development, and formation of external electrodes 45 and 46 may be performed. Further, it is possible to form a terminal by sputtering or vapor deposition using a metal mask, and in this case, a process such as formation of a corrosion-resistant film is not necessary.
In addition, the external electrodes 45 and 46 can be formed in advance before the through hole 44 is opened.

さらには、外部電極45,46を省略することも可能である。このような場合、切欠き部44a(図1、参照)を利用して、第1励振電極26、第2励振電極27それぞれに対応した接続電極47を、図示しない回路基板に直接、接続する構造としてもよい。   Furthermore, the external electrodes 45 and 46 can be omitted. In such a case, a structure in which the connection electrode 47 corresponding to each of the first excitation electrode 26 and the second excitation electrode 27 is directly connected to a circuit board (not shown) using the notch 44a (see FIG. 1). It is good.

続いて、上述したように形成した積層体1を切断し、個片化する。
図8は、積層体1を切断する工程を模式的に示す説明図である。積層体1を、切断線2に沿って縦、横に切断し、個片化して、図1,2に示すような水晶振動子10を形成する。
Subsequently, the laminated body 1 formed as described above is cut into pieces.
FIG. 8 is an explanatory view schematically showing a step of cutting the laminate 1. The laminate 1 is cut vertically and horizontally along the cutting line 2 and separated into individual pieces to form a crystal resonator 10 as shown in FIGS.

従って、前述した実施形態1によれば、水晶振動片21に設けられる第1励振電極26、第2励振電極27を下基板ウエハ40に開設される貫通孔44(個片では切欠き部44a)から外部に取り出す水晶振動子10の構造において、この貫通孔44を陽極接合が終了するまで貫通しない状態(凹部50の状態)とし、陽極接合後に貫通孔44を開設するため、陽極接合時において、貫通孔44内で放電が発生することを排除しているので、水晶振動片21及び前述した各電極を損傷することを防止することができる。   Therefore, according to the first embodiment described above, the first excitation electrode 26 and the second excitation electrode 27 provided on the crystal vibrating piece 21 are provided in the through hole 44 provided in the lower substrate wafer 40 (in the individual piece, a notch 44a). In the structure of the crystal resonator 10 taken out from the outside, the through hole 44 is not penetrated until the anodic bonding is completed (the state of the recess 50), and the through hole 44 is opened after the anodic bonding. Since the occurrence of discharge in the through-hole 44 is excluded, it is possible to prevent the quartz crystal resonator element 21 and each of the electrodes described above from being damaged.

また、下基板ウエハ40の下面40a方向に凹部50を形成しているために、下基板ウエハ40と水晶基板ウエハ20との接合面43には開口部がないため、接合面43の状態が平滑な一様な面であるため、接合品質を確保しやすいというような効果がある。   Further, since the recess 50 is formed in the direction of the lower surface 40a of the lower substrate wafer 40, there is no opening in the bonding surface 43 between the lower substrate wafer 40 and the quartz substrate wafer 20, so that the state of the bonding surface 43 is smooth. Because of this uniform surface, there is an effect that it is easy to ensure the bonding quality.

また、凹部50を下基板ウエハ40の下面40a方向の開口部が底部よりも広いテーパ状に形成していることから、スパッタによる接続電極47の形成時において、下基板ウエハ40の下面40a側から上面40b側にある下側導電膜26aまたは引出し電極27bの深さに至るまで好適に連続した接続電極を形成することができる。   Moreover, since the opening in the direction of the lower surface 40a of the lower substrate wafer 40 is tapered so that the recess 50 is wider than the bottom, the connection electrode 47 is formed by sputtering from the lower surface 40a side of the lower substrate wafer 40. A continuous connection electrode can be suitably formed up to the depth of the lower conductive film 26a or the extraction electrode 27b on the upper surface 40b side.

また、このテーパ状の凹部50を、サンドブラストにより穿設することにより、研磨材の材質、粒度、吹き付け速度、時間等の調整により所望のテーパ形状を形成することが容易であり、さらに、複数の凹部50も同時に短時間で形成することができることから生産効率を高めることができる。   Further, by drilling this tapered recess 50 by sandblasting, it is easy to form a desired tapered shape by adjusting the material, particle size, spraying speed, time, etc. of the abrasive, and a plurality of Since the recess 50 can be formed at the same time in a short time, the production efficiency can be increased.

さらに、凹部50の底部をエッチングにより除去しているため、前述した従来技術のような貫通孔の開設が研磨による方法に比べ、下基板ウエハ40の損傷や、厚さのばらつきが発生しないというような効果がある。
(実施形態2)
Furthermore, since the bottom of the recess 50 is removed by etching, the opening of the through hole as in the prior art described above does not cause damage to the lower substrate wafer 40 and variations in thickness compared to the polishing method. There is a great effect.
(Embodiment 2)

次に、本発明の実施形態2に係る水晶振動子の製造方法について図面を参照して説明する。実施形態2は、下基板ウエハ40の上面40bに凹部を形成していることに特徴を有し、凹部の形成から貫通孔形成までの工程以外は、前述した実施形態1と共通であるため、説明を省略し、共通部分には同じ符号を付して説明する。
図9は、本実施形態に係る下基板ウエハ40の製造工程を示し、(a)は、上面40b側を示す斜視図、(b)は、(a)のC−C切断面を示す断面図である。図9(a)、(b)において、上面40b側にハーフエッチングによりキャビティーを形成するための空間となる凹部42と、凹部51と、を形成する。
Next, a method for manufacturing a crystal resonator according to Embodiment 2 of the present invention will be described with reference to the drawings. The second embodiment is characterized in that a concave portion is formed on the upper surface 40b of the lower substrate wafer 40, and is the same as the first embodiment except for the steps from the concave portion formation to the through hole formation. Explanation is omitted, and common portions are denoted by the same reference numerals.
9A and 9B show a manufacturing process of the lower substrate wafer 40 according to the present embodiment, where FIG. 9A is a perspective view showing the upper surface 40b side, and FIG. 9B is a cross-sectional view showing a CC cut surface of FIG. It is. 9A and 9B, a concave portion 42 and a concave portion 51, which are spaces for forming a cavity by half etching, are formed on the upper surface 40b side.

凹部51は、下基板ウエハ40の切断線2の各交点を中心に、やはりハーフエッチングにより形成する。凹部51の形成手段としては、実施形態1で説明したサンドブラストにより穿設してもよいが、本実施形態においては、エッチングにより内側側面を上面40bに対して垂直に形成することが望ましい。凹部51の残り厚さは30μm程度とする。
このように形成された下基板ウエハ40と水晶基板ウエハ20とを重ねあわせて積層する(図6、参照)。
そして、陽極接合により積層体1を形成する。
The recess 51 is also formed by half etching around each intersection of the cutting lines 2 of the lower substrate wafer 40. As a means for forming the recess 51, the sand blast described in the first embodiment may be used, but in this embodiment, it is desirable to form the inner side surface perpendicular to the upper surface 40b by etching. The remaining thickness of the recess 51 is about 30 μm.
The lower substrate wafer 40 and the quartz substrate wafer 20 formed in this way are overlaid and stacked (see FIG. 6).
And the laminated body 1 is formed by anodic bonding.

図10は、陽極接合工程以降、接続電極形成工程を示す部分断面図である。なお、下側導電膜26a側を例示して説明する。   FIG. 10 is a partial cross-sectional view showing the connection electrode forming step after the anodic bonding step. The lower conductive film 26a side will be described as an example.

図10(a)は、陽極接合工程を示している。接合工程では、水晶基板ウエハ20の上面に上基板ウエハ30、下面に下基板ウエハ40を積層し、この状態で、上下基板ウエハ及び水晶基板ウエハは図示しないホットプレートにより加熱加圧され、水晶基板ウエハ20に直流電源90の正極を、上基板ウエハ30と下基板ウエハ40には負極を接続して電圧を印加して陽極接合を行う。陽極接合の条件は、前述した実施形態1(図7も参照)と同じとする。   FIG. 10A shows an anodic bonding process. In the bonding process, the upper substrate wafer 30 is laminated on the upper surface of the quartz substrate wafer 20, and the lower substrate wafer 40 is laminated on the lower surface. In this state, the upper and lower substrate wafers and the quartz substrate wafer are heated and pressed by a hot plate (not shown). A positive electrode of a DC power supply 90 is connected to the wafer 20, and a negative electrode is connected to the upper substrate wafer 30 and the lower substrate wafer 40, and voltage is applied to perform anodic bonding. The conditions for anodic bonding are the same as those in the first embodiment (see also FIG. 7).

下基板ウエハ40には、複数の凹部51が開口部を水晶基板ウエハ20の方向に有して形成されているが、これら凹部は、貫通していないため、陽極接合の際、貫通孔内に発生するような放電の発生を抑制している。   The lower substrate wafer 40 is formed with a plurality of recesses 51 having openings in the direction of the quartz substrate wafer 20, but these recesses are not penetrating, so that in anodic bonding, The occurrence of discharge that occurs is suppressed.

次に、図10(b)に示すように、陽極接合後、積層体1の状態において、下基板ウエハ40の下面40a側に耐食膜60を形成する。耐食膜60の構成も実施形態1と同様に基板側からCr、Au、レジスト膜で構成される3層構造である。また、上基板ウエハ30の上面にも耐食膜61を形成する。   Next, as shown in FIG. 10B, after anodic bonding, a corrosion-resistant film 60 is formed on the lower surface 40 a side of the lower substrate wafer 40 in the state of the stacked body 1. Similarly to the first embodiment, the corrosion-resistant film 60 has a three-layer structure composed of Cr, Au, and a resist film from the substrate side. Further, a corrosion resistant film 61 is also formed on the upper surface of the upper substrate wafer 30.

続いて、図10(c)に示すように、耐食膜を露光、現像により不要部分を除去し、凹部51に相当する形状の開口部60aを形成する。   Subsequently, as shown in FIG. 10C, unnecessary portions of the corrosion-resistant film are removed by exposure and development, and an opening 60 a having a shape corresponding to the recess 51 is formed.

次に、図10(d)に示すように、エッチング工程により凹部51の底部を除去し貫通孔44を形成する。エッチャントとしては、HFまたはH22+NH4HF2を用いて、下側導電膜26aの表面が露出するまで加工する。そして、耐食膜60,61を剥離し、貫通孔44の内面を含めて洗浄する(図示せず)。 Next, as shown in FIG. 10D, the bottom of the recess 51 is removed by an etching process to form a through hole 44. The etchant is processed using HF or H 2 O 2 + NH 4 HF 2 until the surface of the lower conductive film 26a is exposed. Then, the corrosion resistant films 60 and 61 are peeled off and cleaned including the inner surface of the through hole 44 (not shown).

続いて、図10(e)に示すように、下基板ウエハ40の下面40aに耐食膜62を形成し、露光、現像工程により、貫通孔44及び貫通孔44の周辺部に開口部62aを開口する。この開口部62aは、接続電極及び外部電極を形成する領域である。   Subsequently, as shown in FIG. 10E, a corrosion-resistant film 62 is formed on the lower surface 40a of the lower substrate wafer 40, and openings 62a are opened around the through holes 44 and the peripheral portions of the through holes 44 by exposure and development processes. To do. The opening 62a is a region where a connection electrode and an external electrode are formed.

次に、図10(f)に示すようにスパッタ等の手段で接続電極47と外部電極45,46)を形成する。外部電極45は下側導電膜26a(つまり、第1励振電極26)と接続し、外部電極46は引出し電極27b(つまり、第2励振電極27)と接続する。本実施形態では、貫通孔44は、凹部51の形成時において上面40bに対して略垂直に形成しているため、下面40a方向からのスパッタによって、内側側面及び下側導電膜26a(または引出し電極27b)まで一様に連続した接続電極47を形成することを可能にしている。
接続電極47、外部電極45,46を形成後、耐食膜62を剥離し、洗浄して積層体1を形成する。そして、切断(図8、参照)、個片化され、図1,2に示すような水晶振動子10を形成する。
Next, as shown in FIG. 10F, a connection electrode 47 and external electrodes 45 and 46) are formed by means such as sputtering. The external electrode 45 is connected to the lower conductive film 26a (that is, the first excitation electrode 26), and the external electrode 46 is connected to the extraction electrode 27b (that is, the second excitation electrode 27). In the present embodiment, since the through hole 44 is formed substantially perpendicular to the upper surface 40b when the recess 51 is formed, the inner side surface and the lower conductive film 26a (or the extraction electrode) are formed by sputtering from the direction of the lower surface 40a. 27b), it is possible to form the connection electrode 47 that is continuously continuous.
After the connection electrode 47 and the external electrodes 45 and 46 are formed, the corrosion-resistant film 62 is peeled off and washed to form the laminate 1. And it cut | disconnects (refer FIG. 8) and singulated, and forms the crystal oscillator 10 as shown in FIG.

なお、本実施形態においても、貫通孔44を開設後(図10(d)に示す)に洗浄し、続いてスパッタ工程により接続電極47を形成する工順としてもよい。それから、耐食膜形成、露光、現像、外部電極45,46の形成を行う工順としてもよい。
また、貫通孔44を開設する前に、外部電極45,46を予め形成しておくことも可能である。
In this embodiment as well, the process may be performed in which the through-hole 44 is cleaned after opening (shown in FIG. 10D), and then the connection electrode 47 is formed by a sputtering process. Then, the order of forming the corrosion-resistant film, exposing, developing, and forming the external electrodes 45 and 46 may be adopted.
In addition, the external electrodes 45 and 46 can be formed in advance before the through hole 44 is opened.

さらには、外部電極45,46を省略することも可能である。このような場合、切欠き部44a(図1、参照)を利用して、第1励振電極26、第2励振電極27それぞれに対応した接続電極47を、図示しない回路基板に直接、接続する構造としてもよい。   Furthermore, the external electrodes 45 and 46 can be omitted. In such a case, a structure in which the connection electrode 47 corresponding to each of the first excitation electrode 26 and the second excitation electrode 27 is directly connected to a circuit board (not shown) using the notch 44a (see FIG. 1). It is good.

従って、前述した実施形態2によれば、下基板ウエハ40の上面40b方向に凹部51を形成しても、貫通孔44を陽極接合が終了するまで貫通しない状態(凹部51が形成された状態)とし、陽極接合後に貫通孔44を開設するため、陽極接合時において、放電が発生することを防止することができる。   Therefore, according to the second embodiment described above, even when the recess 51 is formed in the direction of the upper surface 40b of the lower substrate wafer 40, the through hole 44 is not penetrated until the anodic bonding is completed (the recess 51 is formed). In addition, since the through hole 44 is opened after the anodic bonding, it is possible to prevent discharge from occurring during the anodic bonding.

また、本実施形態では、凹部51をエッチング工程により穿設しているが、下基板ウエハ40の上面40bには、水晶振動片を収納するキャビティーを形成する凹部42をエッチング工程により形成しているので、凹部42と凹部51とを同じ工程で形成することができ、生産性を高めることができる。   In this embodiment, the recess 51 is formed by an etching process. However, the upper surface 40b of the lower substrate wafer 40 is formed with a recess 42 that forms a cavity for housing a crystal vibrating piece by an etching process. Therefore, the recessed part 42 and the recessed part 51 can be formed in the same process, and productivity can be improved.

また、凹部51は、サンドブラスト等でも形成可能であるが、サンドブラストにより形成される凹部はテーパ形状となる。この凹部を下基板ウエハ40の下面40a側からみると逆テーパとなり、接続電極47を下面40a側からスパッタ形成する場合、下基板ウエハ40の下面40aから上面40b方向にある下側導電膜26aまたは引出し電極27bの深さに達しないことが考えられる。しかし、エッチングによれば、凹部51内の側面は下基板ウエハの下面40aに対してほぼ垂直に形成できることから接続電極47を貫通孔44の内部全体に形成することを可能にする。
(実施形態3)
Moreover, although the recessed part 51 can be formed also by sandblasting etc., the recessed part formed by sandblasting becomes a taper shape. When this concave portion is viewed from the lower surface 40a side of the lower substrate wafer 40, it becomes a reverse taper. When the connection electrode 47 is formed by sputtering from the lower surface 40a side, the lower conductive film 26a in the direction from the lower surface 40a of the lower substrate wafer 40 to the upper surface 40b It is conceivable that the depth of the extraction electrode 27b is not reached. However, according to the etching, the side surface in the recess 51 can be formed substantially perpendicular to the lower surface 40 a of the lower substrate wafer, so that the connection electrode 47 can be formed in the entire inside of the through hole 44.
(Embodiment 3)

続いて、本発明の実施形態3に係る水晶振動子の製造方法について説明する。実施形態3は、接続電極47(外部電極45,46を含む)形成までは、前述した実施形態1または実施形態2による方法で形成した後、接続電極47によって形成される窪みの内部に導電性物質を埋め込んでいることに特徴を有している。実施形態1、実施形態2と異なる部分のみを説明する。   Next, a method for manufacturing a crystal resonator according to Embodiment 3 of the present invention will be described. In the third embodiment, until the connection electrode 47 (including the external electrodes 45 and 46) is formed, it is formed by the method according to the first embodiment or the second embodiment described above, and then conductive inside the recess formed by the connection electrode 47. It is characterized by embedding substances. Only portions different from the first and second embodiments will be described.

図11は、実施形態3に係る積層体1の一部を示す断面図である。接続電極47は、貫通孔44の内面に沿って形成されているので、中心部に窪みができる。この窪みを埋めるように導電性部材70を形成する。導電性部材としては、穴埋めメッキや、半田、導電性接着剤等でも良い。   FIG. 11 is a cross-sectional view illustrating a part of the laminate 1 according to the third embodiment. Since the connection electrode 47 is formed along the inner surface of the through hole 44, a recess is formed in the center. The conductive member 70 is formed so as to fill the recess. The conductive member may be hole filling plating, solder, conductive adhesive, or the like.

導電性部材として、穴埋めメッキや半田を用いる場合には、接続電極47の代わりに貫通孔44の内面に下地メッキを形成する工程としてもよい。   When hole-filling plating or solder is used as the conductive member, a base plating may be formed on the inner surface of the through hole 44 instead of the connection electrode 47.

実施形態3によれば、接続電極47は、上述した貫通孔44内にスパッタ等で形成するが、貫通孔44が深い(下基板ウエハ40が厚い)場合には、下側導電膜26aまたは引出し電極27bの深さまで均一に形成されないことが稀に発生することが考えられるが、導電性部材70を充填することにより、下側導電膜26aまたは引出し電極27bと接続電極47との接続をより確実に行うことができる。   According to the third embodiment, the connection electrode 47 is formed in the above-described through hole 44 by sputtering or the like. However, when the through hole 44 is deep (the lower substrate wafer 40 is thick), the lower conductive film 26a or the lead-out electrode is formed. Although it may occur rarely that the electrode 27b is not uniformly formed to the depth of the electrode 27b, by filling the conductive member 70, the lower conductive film 26a or the extraction electrode 27b and the connection electrode 47 are more reliably connected. Can be done.

なお、図11では、実施形態2による製造方法で形成された凹部形状を例示しているが、実施形態1によるテーパ状の凹部を形成する場合にも応用可能であり、より信頼性を高めることができる。   In addition, in FIG. 11, although the recessed part shape formed with the manufacturing method by Embodiment 2 is illustrated, it is applicable also when forming the taper-shaped recessed part by Embodiment 1, and improves reliability more. Can do.

なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
すなわち、本発明は、主に特定の実施形態に関して特に図示され、且つ、説明しているが、本発明の技術的思想及び目的の範囲に逸脱することなく、以上説明した実施形態に対し、形状、材質、組み合わせ、その他の詳細な構成、及び製造工程間の加工方法において、当業者が様々な変形を加えることができるものである。
It should be noted that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
That is, although the present invention has been illustrated and described with particular reference to particular embodiments, it is not intended to depart from the technical spirit and scope of the invention. Various modifications can be made by those skilled in the art in terms of materials, combinations, other detailed configurations, and processing methods between manufacturing processes.

従って、上記に開示した形状、材質、製造工程などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものでないから、それらの形状、材質、組み合わせなどの限定の一部もしくは全部の限定をはずした部材の名称での記載は、本発明に含まれるものである。   Therefore, the description limited to the shape, material, manufacturing process and the like disclosed above is an example for easy understanding of the present invention, and does not limit the present invention. Descriptions of the names of members from which some or all of the limitations such as materials and combinations are removed are included in the present invention.

例えば、前述の実施形態1〜実施形態3では、水晶振動子を例示して説明したが、ガラスと異種材料との陽極接合において、ガラスに貫通孔を形成する必要がある場合において、陽極接合時では、貫通孔とせず、陽極接合後にエッチングで貫通孔を開設することにより、貫通孔内における放電を抑制することができる。また当然、3層ではなく2層の陽極接合時にも用いることができる。   For example, in the first to third embodiments described above, the crystal resonator has been described as an example. However, in the case of anodic bonding between glass and a different material, when it is necessary to form a through hole in the glass, the anodic bonding is performed. Then, the discharge in the through hole can be suppressed by opening the through hole by etching after anodic bonding instead of forming the through hole. Of course, it can be used for anodic bonding of two layers instead of three layers.

従って、前述の実施形態1〜実施形態3によれば、陽極接合時における放電による水晶振動片の損傷を防止し、且つ、接合の信頼性を高めることができる水晶振動子の製造方法を提供することができる。   Therefore, according to the above-described first to third embodiments, there is provided a method for manufacturing a crystal resonator that can prevent the crystal resonator element from being damaged by discharge during anodic bonding and can enhance the reliability of the bonding. be able to.

本発明の実施形態1に係る水晶振動子の概略構造を示す平面図。1 is a plan view showing a schematic structure of a crystal resonator according to a first embodiment of the invention. 図1のA―A切断面を示す断面図。Sectional drawing which shows the AA cut surface of FIG. 本発明の実施形態1に係る水晶振動片の上面側の電極構成を示す平面図。FIG. 3 is a plan view showing an electrode configuration on the upper surface side of the crystal resonator element according to the first embodiment of the invention. 本発明の実施形態1に係る水晶振動片の下面側の電極構成を示す平面図。FIG. 3 is a plan view showing an electrode configuration on the lower surface side of the crystal resonator element according to the first embodiment of the invention. 本発明の実施形態1に係る下基板ウエハの製造工程を示し、(a)は、裏面側を示す斜視図、(b)は、(a)のB―B切断面を示す断面図。5A and 5B show a manufacturing process of a lower substrate wafer according to the first embodiment of the present invention, where FIG. 5A is a perspective view showing a back surface side, and FIG. 本発明の実施形態1に係る上基板ウエハ、水晶基板ウエハ、下基板ウエハの接合前の状態を示す説明図。Explanatory drawing which shows the state before joining of the upper substrate wafer which concerns on Embodiment 1 of this invention, a crystal substrate wafer, and a lower substrate wafer. 本発明の実施形態1に係る接合工程〜接続電極形成工程までを示す断面図。Sectional drawing which shows from the joining process which concerns on Embodiment 1 of this invention to a connection electrode formation process. 本発明の実施形態1に係る積層体を切断する工程を模式的に示す説明図。Explanatory drawing which shows typically the process of cut | disconnecting the laminated body which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る下基板ウエハの製造工程を示し、(a)は、表面側を示す斜視図、(b)は、(a)のC−C切断面を示す断面図。The manufacturing process of the lower substrate wafer concerning Embodiment 2 of this invention is shown, (a) is a perspective view which shows the surface side, (b) is sectional drawing which shows the CC cut surface of (a). 本発明の実施形態2に係る陽極接合工程〜接続電極形成工程を示す部分断面図。The fragmentary sectional view which shows the anodic bonding process-connection electrode formation process which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る積層体の一部を示す断面図。Sectional drawing which shows a part of laminated body which concerns on Embodiment 3 of this invention.

符号の説明Explanation of symbols

1…積層体、2…切断線、10…水晶振動子、20…水晶基板ウエハ、21…水晶振動片、22,23…振動腕、25…枠部、26a…下側導電膜、30…上基板ウエハ、31…上基板、40…下基板ウエハ、41…下基板、44…貫通孔、47…接続電極、50…凹部。
DESCRIPTION OF SYMBOLS 1 ... Laminated body, 2 ... Cutting line, 10 ... Quartz crystal oscillator, 20 ... Quartz substrate wafer, 21 ... Quartz vibrating piece, 22, 23 ... Vibrating arm, 25 ... Frame part, 26a ... Lower conductive film, 30 ... Top Substrate wafer, 31 ... upper substrate, 40 ... lower substrate wafer, 41 ... lower substrate, 44 ... through hole, 47 ... connection electrode, 50 ... recess.

Claims (8)

振動腕と該振動腕の周囲の枠部とを一体にした圧電振動片を複数配設し、前記振動腕に設けられる第1励振電極と該第1励振電極と連続し前記枠部の下面に形成される下側導電膜と、第2励振電極と該第2励振電極と連続し前記枠部の上面に形成される上側導電膜と、該上側導電膜と連続する前記枠部の下面に形成される引出し電極と、を有する圧電基板ウエハを形成する工程と、
前記枠部の上面に対応して設けられる接合面を有する上基板を複数配設するガラスからなる上基板ウエハを形成する工程と、
前記枠部の下面に対応して設けられる接合面を有する下基板を複数配設するガラスからなる下基板ウエハを形成する工程と、
前記上基板ウエハの接合面と前記圧電基板ウエハの枠部と前記下基板ウエハの接合面とを陽極接合し積層体を形成する工程と、
前記積層体を縦及び横の切断線に沿って切断して圧電振動子を個片化する工程と、を有し、
前記下基板ウエハを形成する工程には、前記切断線の交差部の表面に凹部を形成する工程を含み、
前記積層体を形成した状態において、前記凹部に貫通孔を開設する工程と、前記貫通孔の内面に前記下側導電膜または前記引出し電極に接続する接続電極を形成する工程と、をさらに含むことを特徴とする圧電振動子の製造方法。
A plurality of piezoelectric vibrating pieces in which a vibrating arm and a frame portion around the vibrating arm are integrated are provided, and a first excitation electrode provided on the vibrating arm and the first excitation electrode are connected to a lower surface of the frame portion. A lower conductive film to be formed; a second excitation electrode; an upper conductive film formed on the upper surface of the frame portion and continuous with the second excitation electrode; and formed on a lower surface of the frame portion continuous with the upper conductive film. Forming a piezoelectric substrate wafer having a lead electrode,
Forming an upper substrate wafer made of glass in which a plurality of upper substrates having a bonding surface provided corresponding to the upper surface of the frame portion are disposed;
Forming a lower substrate wafer made of glass in which a plurality of lower substrates having a bonding surface provided corresponding to the lower surface of the frame portion are disposed;
Forming a laminate by anodically bonding the bonding surface of the upper substrate wafer, the frame portion of the piezoelectric substrate wafer, and the bonding surface of the lower substrate wafer;
Cutting the laminate along vertical and horizontal cutting lines to singulate the piezoelectric vibrator,
The step of forming the lower substrate wafer includes a step of forming a recess on the surface of the intersection of the cutting lines,
In the state in which the laminate is formed, the method further includes the step of opening a through hole in the recess, and the step of forming a connection electrode connected to the lower conductive film or the extraction electrode on the inner surface of the through hole. A method for manufacturing a piezoelectric vibrator characterized by the above.
請求項1に記載の圧電振動子の製造方法において、
前記下基板ウエハの下面側に前記凹部を形成することを特徴とする圧電振動子の製造方法。
In the manufacturing method of the piezoelectric vibrator according to claim 1,
A method of manufacturing a piezoelectric vibrator, comprising forming the concave portion on a lower surface side of the lower substrate wafer.
請求項1または請求項2に記載の圧電振動子の製造方法において、
前記凹部を前記下基板ウエハの下面側の開口部を底部よりも広いテーパ状に形成することを特徴とする圧電振動子の製造方法。
In the manufacturing method of the piezoelectric vibrator according to claim 1 or 2,
A method of manufacturing a piezoelectric vibrator, wherein the recess is formed in a tapered shape in which the opening on the lower surface side of the lower substrate wafer is wider than the bottom.
請求項3に記載の圧電振動子の製造方法において、
前記凹部を、サンドブラスト工程により穿設することを特徴とする圧電振動子の製造方法。
In the manufacturing method of the piezoelectric vibrator according to claim 3,
A method for manufacturing a piezoelectric vibrator, wherein the recess is formed by a sandblasting process.
請求項1に記載の圧電振動子の製造方法において、
前記下基板ウエハの上面側に前記凹部を形成することを特徴とする圧電振動子の製造方法。
In the manufacturing method of the piezoelectric vibrator according to claim 1,
A method of manufacturing a piezoelectric vibrator, comprising forming the concave portion on an upper surface side of the lower substrate wafer.
請求項5に記載の圧電振動子の製造方法において、
前記凹部を、エッチング工程により穿設することを特徴とする圧電振動子の製造方法。
In the manufacturing method of the piezoelectric vibrator according to claim 5,
A method of manufacturing a piezoelectric vibrator, wherein the recess is formed by an etching process.
請求項1に記載の圧電振動子の製造方法において、
前記貫通孔を開設する工程が、エッチング工程であることを特徴とする圧電振動子の製造方法。
In the manufacturing method of the piezoelectric vibrator according to claim 1,
A method of manufacturing a piezoelectric vibrator, wherein the step of opening the through hole is an etching step.
請求項1に記載の圧電振動子の製造方法において、
前記接続電極を形成する工程の後に、前記接続電極の内面に導電性部材を充填する工程を含むことを特徴とする圧電振動子の製造方法。
In the manufacturing method of the piezoelectric vibrator according to claim 1,
A method of manufacturing a piezoelectric vibrator, comprising a step of filling an inner surface of the connection electrode with a conductive member after the step of forming the connection electrode.
JP2006002116A 2006-01-10 2006-01-10 Method for manufacturing piezoelectric vibrator Withdrawn JP2007184810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006002116A JP2007184810A (en) 2006-01-10 2006-01-10 Method for manufacturing piezoelectric vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006002116A JP2007184810A (en) 2006-01-10 2006-01-10 Method for manufacturing piezoelectric vibrator

Publications (1)

Publication Number Publication Date
JP2007184810A true JP2007184810A (en) 2007-07-19

Family

ID=38340500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006002116A Withdrawn JP2007184810A (en) 2006-01-10 2006-01-10 Method for manufacturing piezoelectric vibrator

Country Status (1)

Country Link
JP (1) JP2007184810A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009201018A (en) * 2008-02-25 2009-09-03 Kyocera Kinseki Corp Crystal oscillator and method of manufacturing the same
JP2011041069A (en) * 2009-08-12 2011-02-24 Seiko Instruments Inc Method for manufacturing package, method for manufacturing piezoelectric vibrator, piezoelectric vibrator, oscillator, electronic equipment, and radio-controlled timepiece
US8063545B2 (en) 2008-02-14 2011-11-22 Seiko Instruments Inc. Wafer, wafer polishing apparatus, wafer polishing method, method of fabricating piezoelectric vibrator, piezoelectric vibrator, oscillator, electronic apparatus and radiowave timepiece

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8063545B2 (en) 2008-02-14 2011-11-22 Seiko Instruments Inc. Wafer, wafer polishing apparatus, wafer polishing method, method of fabricating piezoelectric vibrator, piezoelectric vibrator, oscillator, electronic apparatus and radiowave timepiece
JP2009201018A (en) * 2008-02-25 2009-09-03 Kyocera Kinseki Corp Crystal oscillator and method of manufacturing the same
JP2011041069A (en) * 2009-08-12 2011-02-24 Seiko Instruments Inc Method for manufacturing package, method for manufacturing piezoelectric vibrator, piezoelectric vibrator, oscillator, electronic equipment, and radio-controlled timepiece

Similar Documents

Publication Publication Date Title
US7615406B2 (en) Electronic device package manufacturing method and electronic device package
JP4809410B2 (en) Piezoelectric device and manufacturing method thereof
JP6247006B2 (en) Electronic device, oscillator, and method of manufacturing electronic device
JP2007081867A (en) Method for forming conduction hole, process for fabricating piezoelectric device, and piezoelectric device
JP2011147054A (en) Electronic apparatus, and method of manufacturing the same
JP6342643B2 (en) Electronic devices
JP5278044B2 (en) Package member, method for manufacturing the package member, and piezoelectric vibration device using the package member
JP5171210B2 (en) Method for manufacturing piezoelectric vibrator
TWI640161B (en) Electronic device and method of manufacturing electronic device
JP2007184810A (en) Method for manufacturing piezoelectric vibrator
JP6383138B2 (en) Electronic devices
JP2012028454A (en) Partially plating method, metallic lid member and electronic component
JP5220539B2 (en) Method for manufacturing piezoelectric vibrator
WO2021095294A1 (en) Piezoelectric vibrator and method for manufacturing same
JP5166015B2 (en) Frequency adjustment device
JP2008118241A (en) Electronic device and manufacturing method thereof
JP6004957B2 (en) Quartz crystal resonator and manufacturing method thereof
WO2021059576A1 (en) Piezoelectric oscillator
JP5407903B2 (en) Electronic device and method of manufacturing electronic device
JP2009118143A (en) Crystal device and manufacturing method thereof
JP2010177984A (en) Piezoelectric vibrator and piezoelectric device
JP2009111931A (en) Piezoelectric vibrator and method for manufacturing piezoelectric vibrator
JP5220538B2 (en) Method for manufacturing piezoelectric vibrator
JP2015088987A (en) Method for manufacturing package and package
JP2009135749A (en) Piezoelectric vibrator and piezoelectric oscillator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070404

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090407