WO2020217305A1 - Method for producing biomass fuel and biomass fuel - Google Patents

Method for producing biomass fuel and biomass fuel Download PDF

Info

Publication number
WO2020217305A1
WO2020217305A1 PCT/JP2019/017190 JP2019017190W WO2020217305A1 WO 2020217305 A1 WO2020217305 A1 WO 2020217305A1 JP 2019017190 W JP2019017190 W JP 2019017190W WO 2020217305 A1 WO2020217305 A1 WO 2020217305A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
raw material
biomass
biomass raw
biomass fuel
Prior art date
Application number
PCT/JP2019/017190
Other languages
French (fr)
Japanese (ja)
Inventor
淳 奥田
Original Assignee
岩谷産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岩谷産業株式会社 filed Critical 岩谷産業株式会社
Priority to PCT/JP2019/017190 priority Critical patent/WO2020217305A1/en
Publication of WO2020217305A1 publication Critical patent/WO2020217305A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a method for producing a biomass fuel and a biomass fuel.
  • Plant-derived biomass raw materials such as mesocarp fiber (MF), which is contained in the pericarp of EFB and oil palm and is a residue during oil extraction, may be used as fuel.
  • MF mesocarp fiber
  • Such plant-derived biomass raw materials are generally burned and used in a heating device of a combustion facility.
  • a plant-derived biomass raw material is used as a fuel, if a large amount of potassium or chlorine is contained, various problems occur.
  • one of the purposes is to provide a method for producing biomass fuel, which can efficiently produce biomass fuel that can be effectively used as fuel.
  • one of the purposes is to provide biomass fuel that can be efficiently produced and effectively used as fuel.
  • the method for producing biomass fuel includes a step of preparing a plant-derived biomass raw material and a cleaning solution which is an aqueous solution of one or more compounds selected from the group consisting of citric acid, malic acid and tartaric acid. It includes a step of cleaning the biomass raw material by contacting it with the biomass raw material.
  • the biomass fuel according to another aspect of the present application is a biomass fuel containing a plant-derived biomass raw material, and when the biomass raw material is Abra palm sky fruit bunch, the L * value, a * value and the L * value, a * value measured by the color difference meter
  • the biomass raw material is Abra palm sky fruit bunch
  • the L * value, a * value and the L * value a * value measured by the color difference meter
  • the biomass raw material is mesocarp fiber
  • L * measured with a color difference meter When the values, a * value and b * value satisfy the relationship of L * ⁇ 32.2, a * ⁇ 7.3 and b * ⁇ 15.6, respectively, and the biomass raw material is sugar cane, the color difference meter is used.
  • the biomass fuel according to still another aspect of the present application is a biomass fuel containing a plant-derived biomass raw material, and when the biomass raw material is Abra palm sky fruit bunch, L * value and a * value measured by a color difference meter.
  • B * value and color difference (hereinafter referred to as untreated product) for unwashed biomass raw material (hereinafter referred to as untreated product) which is an aqueous solution of one or more compounds selected from the group consisting of citric acid, malic acid and tartaric acid.
  • ⁇ E satisfy the relationship of L * ⁇ 47.7, a * ⁇ 9.5, b * ⁇ 22.2 and ⁇ E ⁇ 3.1, respectively, and the biomass raw material is mesocarp fiber.
  • L * value, a * value, b * value, and ⁇ E measured by the color difference meter is L * ⁇ 37.5, a * ⁇ 8.0, b * ⁇ 18.2, and ⁇ E ⁇ 6.5, respectively.
  • the L * value, a * value, b * value and ⁇ E measured by the color difference meter are L * ⁇ 44.4, a * ⁇ 5.6 and b *, respectively.
  • the L * value, a * value, b * value and ⁇ E measured by the color difference meter are L * ⁇ , respectively.
  • the relationship of 55.9, a * ⁇ 7.3, b * ⁇ 24.5 and ⁇ E ⁇ 2.3 is satisfied.
  • biomass fuel production method it is possible to efficiently produce a biomass fuel that can be effectively used as a fuel.
  • FIG. It is a figure which shows the appearance of the biomass raw material used for the treatment in Embodiment 1.
  • FIG. It is a flowchart which shows the typical structure of the manufacturing method of the biomass fuel in Embodiment 1.
  • It is a flowchart which shows the typical structure of the manufacturing method of the biomass fuel in Embodiment 2.
  • a step of preparing a plant-derived biomass raw material and a cleaning liquid which is an aqueous solution of one or more compounds selected from the group consisting of citric acid, malic acid and tartaric acid are brought into contact with the biomass raw material.
  • a step of cleaning the biomass material includes a step of cleaning the biomass material.
  • the inventor of the present application has studied the treatment of plant-derived biomass fuel with inorganic acids such as hydrochloric acid (HCl), sulfuric acid (H 2 SO 4 ), and nitric acid (HNO 3 ).
  • inorganic acids such as hydrochloric acid (HCl), sulfuric acid (H 2 SO 4 ), and nitric acid (HNO 3 ).
  • HCl hydrochloric acid
  • SO 4 sulfuric acid
  • HNO 3 nitric acid
  • citric acid (CH 2 COOH 2 COOH)
  • malic acid HOOC-CH (OH) -CH 2- COOH
  • tartaric acid (CH (OH)
  • COOH Includes a step of cleaning the biomass raw material by bringing a cleaning liquid, which is an aqueous solution of one or more compounds selected from the group consisting of 2 ), into contact with the biomass raw material. Since such a cleaning solution is a relatively strong acid, when the plant-derived biomass raw material is brought into contact with the cleaning solution, it is possible to easily elute the substance inside the cells constituting the plant-derived biomass raw material.
  • potassium and chlorine which are substances inside the cells, can be washed away to reduce the concentration of potassium and chlorine contained in the plant-derived biomass raw material after washing.
  • a biomass fuel it is possible to reduce the concentration of potassium and chlorine in the residue after combustion. Therefore, it is possible to reduce the possibility that the above-mentioned various problems will occur. That is, it is possible to suppress the corrosion of the combustion equipment, suppress the decrease in thermal efficiency due to the low melting point ash, and suppress the decrease in the fluidity of the fuel to improve the maintainability.
  • citric acid, malic acid, and tartaric acid constituting the above-mentioned cleaning liquid can be obtained at a relatively low cost, which is effective from the viewpoint of cost. Furthermore, since citric acid, malic acid and tartaric acid are composed of carbon, hydrogen and oxygen and do not contain chlorine, sulfur or nitrogen, deterioration of the heating device and environmental pollution due to the residual elements such as sulfur and nitrogen in the residue. Can be prevented. As a result, according to such a method for producing biomass fuel, it is possible to produce biomass fuel that can be effectively used as fuel.
  • Citric acid, malic acid and tartaric acid are all polyvalent carboxylic acids having 4 carbon atoms.
  • the concentration of the cleaning liquid may be 0.1% by mass or more. By doing so, it becomes easy to reduce the concentration of potassium contained in the biomass fuel.
  • the biomass fuel thus obtained can be used more effectively as a fuel.
  • the concentration of the cleaning liquid may be 0.5% by mass or more. By doing so, it becomes easy to further reduce the concentration of potassium contained in the biomass fuel.
  • the biomass fuel thus obtained can be used more effectively as a fuel.
  • the concentration of the cleaning liquid may be 2.0% by mass or less. By doing so, it is possible to suppress the concentration of the cleaning liquid from becoming excessively high, and to efficiently produce a biomass fuel that can be effectively used as a fuel at a lower cost.
  • the biomass raw material in the step of bringing the cleaning liquid into contact with the biomass raw material to clean the biomass raw material, the biomass raw material may be agitated in the cleaning liquid prepared to a predetermined concentration. By doing so, the cleaning liquid and the biomass raw material can be brought into contact with each other for cleaning over the details of the biomass raw material during stirring. Therefore, it is possible to efficiently and evenly produce a biomass fuel having a reduced potassium content.
  • a step of crushing the biomass raw material may be included before the step of bringing the cleaning liquid into contact with the biomass raw material to clean the biomass raw material.
  • the surface area of the biomass raw material to be contacted with the cleaning liquid can be increased. Therefore, when cleaning the biomass raw material, the contact area with the cleaning liquid can be increased to efficiently produce a biomass fuel that can be effectively used as a fuel.
  • the method for producing biomass fuel may further include a step of washing the biomass fuel with water while the biomass fuel is wet, after the step of bringing the cleaning liquid into contact with the biomass raw material to wash the biomass raw material.
  • the components of the cleaning liquid can be washed away with water, and potassium and chlorine can be further eluted in water to reduce the amount. Therefore, it is possible to produce a biomass fuel that can be used more effectively as a fuel.
  • the plant-derived biomass raw material may contain at least one of oil palm empty fruit bunch, mesocarp fiber, sugar cane and Erianthus.
  • oil palm empty fruit bunch refers to a woody fiber portion constituting the fruit bunch portion from which the flesh and seeds have been removed from the oil palm.
  • the biomass fuel obtained after cleaning can be efficiently used as biomass fuel if it is dried after cleaning, that is, in a state where water is removed as much as possible.
  • the biomass fuel according to another aspect of the present application is a biomass fuel containing a plant-derived biomass raw material, and when the biomass raw material is Abra palm sky fruit bunch, the L * value, a * value and the L * value, a * value measured by the color difference meter
  • the biomass raw material is Abra palm sky fruit bunch
  • the L * value, a * value and the L * value a * value measured by the color difference meter
  • the biomass raw material is mesocarp fiber
  • L * measured with a color difference meter When the values, a * value and b * value satisfy the relationship of L * ⁇ 32.2, a * ⁇ 7.3 and b * ⁇ 15.6, respectively, and the biomass raw material is sugar cane, the color difference meter is used.
  • the biomass fuel according to the present application in which the relationship between the biomass raw material and L * , a * , and b * has the above relationship, can be efficiently produced and effectively used as fuel.
  • the biomass fuel according to still another aspect of the present application is a biomass fuel containing a plant-derived biomass raw material, and when the biomass raw material is Abra palm sky fruit bunch, L * value and a * value measured by a color difference meter.
  • B * values and ⁇ E satisfy the relationships of L * ⁇ 47.7, a * ⁇ 9.5, b * ⁇ 22.2 and ⁇ E ⁇ 3.1, respectively, and the biomass raw material is mesocarp fiber.
  • L * value, a * value, b * value and ⁇ E measured by the color difference meter are L * ⁇ 37.5, a * ⁇ 8.0, b * ⁇ 18.2 and ⁇ E ⁇ 6.5, respectively.
  • the L * value, a * value, b * value and ⁇ E measured by the color difference meter are L * ⁇ 44.4, a * ⁇ 5.6, b, respectively.
  • the L * value, a * value, b * value and ⁇ E measured by the color difference meter are L *, respectively .
  • the relationship of ⁇ 55.9, a * ⁇ 7.3, b * ⁇ 24.5 and ⁇ E ⁇ 2.3 is satisfied.
  • the biomass fuel according to the present application in which the relationship between the biomass raw material and L * , a * , b * , and ⁇ E has the above relationship, can be more effectively used as fuel.
  • FIG. 1 is a diagram showing the appearance of the biomass raw material used for the treatment in the first embodiment.
  • EFB Extra Fruit Buchets
  • EFB11 is discharged as a residue after the fruit is removed from the oil palm.
  • EFB11 is composed of a plurality of intricately intertwined fibrous substances.
  • FIG. 2 is a flowchart showing a typical configuration of the method for producing biomass fuel in the first embodiment.
  • EFB11 is prepared as a plant-derived biomass raw material (S11 in FIG. 2).
  • the EFB 11 shown in FIG. 1 is prepared.
  • the method for producing biomass fuel in the first embodiment includes a step of crushing the biomass raw material before the step of bringing the cleaning liquid described later into contact with the biomass raw material to clean the biomass raw material (S12). Specifically, for example, after tearing it to a certain size by hand or the like, it is cut to a length of about 1 cm using scissors or the like.
  • FIG. 3 is a diagram showing the appearance of the EFB 11 in a state of being torn by hand.
  • FIG. 4 is a schematic view showing the appearance of the pulverized product 12 of EFB 11 cut using scissors.
  • the biomass raw material is washed by contacting the cleaning liquid, which is an aqueous solution of one or more compounds selected from the group consisting of citric acid, malic acid, and tartaric acid, with the biomass raw material (S13).
  • an aqueous citric acid solution is prepared as a cleaning solution.
  • Citric acid (C (OH) (CH 2 COOH 2 COOH)) consists of carbon, hydrogen and oxygen.
  • the citric acid aqueous solution is prepared, for example, by dissolving citric acid in water so that the citric acid aqueous solution has a predetermined concentration. Specifically, for example, the concentration of the citric acid aqueous solution is 0.1% by mass or more.
  • the concentration of the citric acid aqueous solution is 0.5% by mass or more. Further, the concentration of the citric acid aqueous solution is set to 2.0% by mass or less. Specifically, the concentration of the citric acid aqueous solution is 1.0% by mass.
  • FIG. 5 is a schematic view showing a part of the appearance of the shaker 13 used for washing.
  • the citric acid aqueous solution is brought into contact with the EFB 11 to wash the EFB 11.
  • Cleaning is performed as follows.
  • the citric acid aqueous solution prepared to a predetermined concentration is placed in a sealable container 14 which is later set in the shaker 13, and the EFB 11 is further charged into the container 14.
  • the amount of EFB11 to be added is 2.5 g with respect to 250 ml of the citric acid aqueous solution.
  • the temperature of the citric acid aqueous solution may be room temperature or may be heated to around 100 ° C.
  • an aqueous citric acid solution heated to about 60 ° C. is prepared, and EFB11 cut into a length of about 1 cm is charged. After that, the container 14 is covered and sealed.
  • the stirring is performed by repeatedly shaking in the vertical direction using the shaker 13. Specifically, the stirring by the shaker 13 is performed for 10 minutes with the shaker set value set to 290 rpm. After stirring, EFB11 is taken out from the citric acid aqueous solution to obtain biomass fuel.
  • the obtained biomass fuel should be dried as needed.
  • drying natural drying may be performed, or EFB11 taken out from the citric acid aqueous solution may be dried by applying heat.
  • the citric acid aqueous solution may be reused for cleaning the separately prepared EFB11.
  • the citric acid aqueous solution as a cleaning liquid is a relatively strong acid
  • the substance in the cells constituting the EFB 11 is eluted. It can be made easier.
  • potassium and chlorine which are substances inside the cells, can be washed away to reduce the concentration of potassium and chlorine contained in EFB11 after washing.
  • the content concentration of potassium and chlorine in the residue after combustion can be lowered. Therefore, it is possible to reduce the possibility that the above-mentioned various problems will occur.
  • citric acid can be obtained at a relatively low cost, which is effective from the viewpoint of cost. Furthermore, since citric acid is composed of carbon, hydrogen and oxygen and does not contain chlorine, sulfur or nitrogen, it is possible to prevent deterioration of the heating device and environmental pollution due to the residual elements such as sulfur and nitrogen in the residue. As a result, according to such a method for producing biomass fuel, it is possible to produce biomass fuel that can be effectively used as fuel.
  • the concentration of the citric acid aqueous solution is 0.1% by mass or more. Specifically, the concentration of the citric acid aqueous solution is 0.5% by mass or more and 2.0% by mass or less.
  • concentration of the citric acid aqueous solution is 0.1% by mass or more, it becomes easy to reduce the concentration of potassium contained in the biomass fuel after cleaning.
  • concentration of the citric acid aqueous solution is 0.5% by mass or more, it becomes easy to further reduce the concentration of potassium contained in the biomass fuel after cleaning.
  • the biomass fuel thus obtained can be used more effectively as a fuel.
  • the concentration of the citric acid aqueous solution is set to 2.0% by mass or less, it is possible to suppress the concentration of the citric acid aqueous solution from becoming excessively high, and to obtain a biomass fuel that can be effectively used as a fuel at a lower cost. It can be manufactured efficiently.
  • the step of pulverizing the EFB 11 is included before the step of bringing the citric acid aqueous solution into contact with the EFB 11 to wash the EFB 11, the surface area of the EFB 11 to be the object of contact with the citric acid aqueous solution is increased. can do. Therefore, it is possible to efficiently produce a biomass fuel that can be effectively used as a fuel by increasing the contact area with the citric acid aqueous solution when cleaning the EFB 11.
  • citric acid is dissolved in water to obtain an aqueous citric acid solution
  • the present invention is not limited to this, and another citric acid compound is dissolved in water to obtain an aqueous citric acid solution. You may get it.
  • FIG. 6 is a flowchart showing a typical configuration of the method for producing biomass fuel according to the second embodiment.
  • S11 to S13 are the same as the steps in the first embodiment, their description will be omitted.
  • S13 that is, after the step of bringing the cleaning liquid into contact with the biomass raw material to wash the biomass raw material, the biomass fuel is washed with water while the biomass fuel is wet.
  • the biomass fuel is taken out from the cleaning liquid, and the biomass fuel is put into water stored in a predetermined container in a wet state and washed with water by stirring.
  • the biomass fuel taken out from the cleaning liquid may be washed with running water by exposing it to running water.
  • the step of washing with water may be performed a plurality of times as needed.
  • the water after washing with water contains a small amount of citric acid when the washing liquid is an aqueous solution of citric acid.
  • this citric acid can be collected as a compound such as calcium citrate and effectively used as a fertilizer or the like.
  • the citric acid aqueous solution is used as the cleaning liquid for washing the EFB11 as the plant-derived biomass raw material, but the present invention is not limited to this, and the malic acid aqueous solution is used as the cleaning liquid in the third embodiment. It may be that. Malic acid is also a relatively strong acid. It can also be obtained at low cost. Therefore, by using the malic acid aqueous solution as a cleaning liquid for cleaning plant-derived biomass raw materials, it is possible to efficiently produce a biomass fuel that can be effectively used as a fuel.
  • the citric acid aqueous solution is used as the cleaning liquid for cleaning the EFB11 as the plant-derived biomass raw material, but the present invention is not limited to this, and the tartaric acid aqueous solution is used as the cleaning liquid in the fourth embodiment. May be.
  • Tartaric acid is also a relatively strong acid. It can also be obtained at low cost. Therefore, by using the tartaric acid aqueous solution as a cleaning liquid for cleaning plant-derived biomass raw materials, it is possible to efficiently produce a biomass fuel that can be effectively used as a fuel.
  • the biomass raw material is put into the cleaning liquid and stirred, but the present invention is not limited to this, for example.
  • the biomass raw material may be washed by contacting the biomass raw material with the cleaning liquid by spraying the cleaning liquid on the surface.
  • EFB11 is used as the plant-derived biomass raw material, but it can also be applied to other plant-derived biomass raw materials. That is, for example, mesocarp fiber using palm palm as a starting material may be applied as a plant-derived biomass raw material, sugar cane may be applied, or Erianthus may be applied. That is, the plant-derived biomass material may contain at least one of palm palm empty fruit bunch (EFB), mesocarp fiber (MF), sugar cane and Erianthus.
  • EFB palm palm empty fruit bunch
  • MF mesocarp fiber
  • sugar cane and Erianthus.
  • Such biomass fuels are inexpensive and available in large quantities. Therefore, according to such a method for producing biomass fuel, it is possible to inexpensively produce biomass fuel that can be effectively used as fuel.
  • the MF, sugar cane and Erianthus may also be crushed to a predetermined size, if necessary.
  • other plant-derived biomass raw materials may be used.
  • a surfactant may be added to the cleaning liquid as needed. Further, the step of crushing may not be particularly performed if it can be omitted.
  • the cleaning liquid to be used citric acid, malic acid, and tartaric acid are used alone in the above-described embodiment, but the present invention is not limited to this, and a mixture of citric acid and malic acid and a mixture of citric acid and tartaric acid.
  • a mixture of malic acid and tartaric acid, and an aqueous solution of a mixture of citric acid, malic acid and tartaric acid may be used as a cleaning solution. That is, the cleaning solution in the present application may be an aqueous solution of one or more compounds selected from the group consisting of citric acid, malic acid and tartaric acid.
  • the biomass fuel according to the present application has the following constitution. That is, the biomass fuel includes plant-derived biomass fuel.
  • the biomass raw material is Abra palm empty fruit bunch
  • the L * value, a * value and b * value measured by the color difference meter are L * ⁇ 45.1, a * ⁇ 8.5 and b * ⁇ 21, respectively.
  • the L * value, a * value and b * value measured by the color difference meter are L * ⁇ 32.2 and a * ⁇ 7, respectively.
  • the L * value, a * value and b * value measured by the color difference meter are L * ⁇ 44.3 and a, respectively.
  • the L * value, a * value and b * value measured by the color difference meter are L * ⁇ , respectively.
  • the relationship of 54.4, a * ⁇ 6.9 and b * ⁇ 23.2 is satisfied.
  • a biomass fuel in which the relationship between the biomass raw material and the color values L * , a * , and b * has the above relationship can be efficiently produced and effectively used as a fuel.
  • the biomass fuel according to the present application has the following constitution. That is, the biomass fuel contains a plant-derived biomass raw material.
  • the biomass raw material is Abra palm empty fruit bunch
  • the L * value, a * value, b * value and ⁇ E measured by the color difference meter are L * ⁇ 47.7, a * ⁇ 9.5, b *, respectively.
  • the L * value, a * value, b * value and ⁇ E measured by the color difference meter are L *, respectively .
  • a biomass fuel having the above-mentioned relationship between the biomass raw material and the color values L * , a * , b * and the color difference ⁇ E can be more effectively used as fuel.
  • a sample of the biomass fuel produced by the above-mentioned method for producing the biomass fuel of the present application was prepared, and an evaluation was performed to confirm the effect of reducing potassium and chlorine.
  • the evaluation procedure is as follows.
  • EFB was prepared as a plant-derived biomass raw material and cut using scissors so that the fiber length was about 1 cm.
  • 250 ml of an aqueous citric acid solution was prepared as a cleaning solution with respect to 2.5 g of EFB.
  • the concentration of the citric acid aqueous solution was 0.1% by mass.
  • EFB was put into an aqueous citric acid solution, and the mixture was stirred for 10 minutes with the set value of the shaker set to 290 rpm. Then, the EFB was taken out from the citric acid aqueous solution to obtain the biomass fuel according to Example 1.
  • the obtained biomass fuel was dried at 107 ° C., and then the potassium concentration and the chlorine concentration were measured.
  • the potassium concentration was quantitatively analyzed by inductively coupled plasma emission spectroscopy.
  • the chlorine concentration was quantitatively analyzed by ion chromatograph analysis. The results are shown in Table 1.
  • the potassium concentration and chlorine concentration were measured in the same manner in the following Examples and Comparative Examples, and the results are shown in Table 1.
  • Example 2 In the method for producing a biomass fuel in Example 1, the biomass fuel according to Example 2 was obtained in the same process as in Example 1 except that the concentration of the citric acid aqueous solution was set to 0.5% by mass.
  • Example 3 In the method for producing biomass fuel in Example 1, the biomass fuel according to Example 3 was obtained in the same process as in Example 1 except that the concentration of the citric acid aqueous solution was 1.0% by mass.
  • Example 4 In the method for producing biomass fuel in Example 1, the biomass fuel according to Example 4 was obtained in the same process as in Example 1 except that the concentration of the citric acid aqueous solution was set to 2.0% by mass.
  • Example 5 In the method for producing biomass fuel in Example 2, the biomass fuel according to Example 5 was obtained in the same process as in Example 2 except that the citric acid aqueous solution was used as the malic acid aqueous solution.
  • Example 6 In the method for producing biomass fuel in Example 2, the biomass fuel according to Example 6 was obtained in the same process as in Example 2 except that the citric acid aqueous solution was used as a tartaric acid aqueous solution.
  • Example 7 In the method for producing biomass fuel in Example 2, the biomass fuel according to Example 7 was obtained in the same process as in Example 2 except that EFB as a biomass raw material was used as mesocarp fiber (MF).
  • EFB mesocarp fiber
  • Example 8 In the method for producing biomass fuel in Example 2, the biomass fuel according to Example 8 was obtained in the same process as in Example 2 except that EFB, which is a biomass raw material, was used as sugar cane.
  • Example 9 In the method for producing biomass fuel in Example 2, the biomass fuel according to Example 9 was obtained in the same process as in Example 2 except that EFB, which is a biomass raw material, was used as Erianthus.
  • Comparative Example 1 In the method for producing biomass fuel in Example 1, a step similar to that in Example 1 was applied to Comparative Example 1 except that an aqueous citric acid solution was not used, that is, water was used instead of the aqueous citric acid solution and washing with water was performed. The biomass fuel was obtained.
  • Comparative Example 2 In the method for producing a biomass fuel in Example 2, the biomass fuel according to Comparative Example 2 was obtained in the same process as in Example 2 except that hexane was used instead of the aqueous citric acid solution.
  • Comparative Example 3 In the method for producing biomass fuel in Example 7, the same process as in Example 7 was carried out in Comparative Example 3 except that the citric acid aqueous solution was not used, that is, water was used instead of the citric acid aqueous solution and washing with water was performed. The biomass fuel was obtained.
  • Comparative Example 4 In the method for producing biomass fuel in Example 8, the same process as in Example 8 was carried out in Comparative Example 4 except that an aqueous citric acid solution was not used, that is, water was used instead of the aqueous citric acid solution and washing with water was performed. The biomass fuel was obtained.
  • Comparative Example 5 In the method for producing biomass fuel in Example 9, the same process as in Example 9 was carried out in Comparative Example 5 except that an aqueous citric acid solution was not used, that is, water was used instead of the aqueous citric acid solution and washing with water was performed. The biomass fuel was obtained.
  • Example 1 and Comparative Example 2 in Table 1 when the EFB was washed with an aqueous citric acid solution, the maximum potassium concentration was 0.245 mass of Example 1. %.
  • Example 2 Example 3 and Example 4 in which the concentrations of the citric acid aqueous solution were 0.5% by mass, 1.0% by mass and 2.0% by mass, the potassium concentration was less than 0.200% by mass, respectively. ing.
  • Example 3 in which the concentration of the citric acid aqueous solution is 1.0% by mass, the concentration of potassium is the lowest, 0.140% by mass, which is less than 0.150% by mass.
  • the chlorine concentration was 0.046 to 0.053% by mass in all the examples, which was sufficiently low for use as a biomass fuel. Therefore, it is preferable that the concentration of the citric acid aqueous solution is 0.5% by mass or more and 2.0% by mass or less.
  • the concentration of potassium was 0.880% by mass, and the residual concentration of potassium was large.
  • the concentration of potassium was 0.650% by mass, and the residual concentration of potassium was still sufficiently high. In such a biomass fuel, for example, since the amount of potassium contained in the ash after combustion is large, various problems may occur.
  • Example 5 using the malic acid aqueous solution
  • the potassium concentration was less than 0.300% by mass, specifically 0.269% by mass
  • the case of Comparative Example 1 washed with water only and the case of washing with hexane. It is significantly lower than that of Comparative Example 2.
  • the concentration of potassium was less than 0.300% by mass, specifically 0.260% by mass, and the case of Comparative Example 1 washed with water only and the case of washing with hexane. It is significantly lower than that of Comparative Example 2.
  • Example 7 In the case of Example 7 in which mesocarp fiber (MF) was used instead of EFB as a plant-derived biomass raw material, the potassium concentration was drastically reduced from 0.626% by mass before washing to 0.043% by mass. On the other hand, in the case of Comparative Example 3 in which the MF was washed with water only, the concentration of potassium was 0.093% by mass, and the residual concentration of potassium was still sufficiently higher than in the case of Example 7.
  • MF mesocarp fiber
  • Example 8 In the case of Example 8 in which sugar cane was used instead of EFB as a plant-derived biomass raw material, the potassium concentration was drastically reduced from 0.346% by mass before washing to 0.109% by mass. On the other hand, in the case of Comparative Example 4 in which sugarcane was washed with water only, the concentration of potassium was 0.168% by mass, and the residual concentration of potassium was still sufficiently higher than in the case of Example 8.
  • Example 9 In the case of Example 9 in which Erianthus was used instead of EFB as a plant-derived biomass raw material, the potassium concentration was drastically reduced from 1.850% by mass before washing to 0.065% by mass. On the other hand, in the case of Comparative Example 5 in which the Erianthus was washed with water only, the potassium concentration was 0.239% by mass, and the residual concentration of potassium was still sufficiently higher than in the case of Example 9.
  • Example 1 Example 2, Example 3, Example 7, Example 8, Example 9, Example 10, Example 11, Example 12, Example 13, Example 14, Example 15,
  • the color values and color differences of the biomass fuels according to Example 16, Comparative Example 6, Comparative Example 7, Comparative Example 8 and Comparative Example 9 were measured using a colorimetric color difference meter.
  • Examples 10 to 16 are within the scope of the present invention.
  • the colorimetric color difference meter the measurement was performed using a colorimetric color difference meter (manufactured by Nippon Denshoku Industries Co., Ltd .: ZE-2000).
  • ZE-2000 colorimetric color difference meter
  • 2.5 g of a sample was immersed in a treatment liquid heated to 60 ° C., treated by shaking for 10 minutes, and then filtered through a 2 mm mesh.
  • Example 10 In the method for producing biomass fuel in Example 1, the biomass fuel according to Example 10 was obtained in the same process as in Example 1 except that the concentration of the citric acid aqueous solution was set to 0.3% by mass.
  • Example 11 In the method for producing biomass fuel in Example 7, the biomass fuel according to Example 11 was obtained in the same process as in Example 7 except that the concentration of the citric acid aqueous solution was set to 0.3% by mass.
  • Example 12 In the method for producing biomass fuel in Example 7, the biomass fuel according to Example 12 was obtained in the same process as in Example 7 except that the concentration of the citric acid aqueous solution was set to 1.0% by mass.
  • Example 13 In the method for producing biomass fuel in Example 8, the biomass fuel according to Example 13 was obtained in the same process as in Example 8 except that the concentration of the citric acid aqueous solution was set to 0.3% by mass.
  • Example 14 In the method for producing biomass fuel in Example 8, the biomass fuel according to Example 14 was obtained in the same process as in Example 8 except that the concentration of the citric acid aqueous solution was set to 1.0% by mass.
  • Example 15 In the method for producing biomass fuel in Example 9, the biomass fuel according to Example 15 was obtained in the same process as in Example 9 except that the concentration of the citric acid aqueous solution was set to 0.3% by mass.
  • Example 16 In the method for producing biomass fuel in Example 9, the biomass fuel according to Example 16 was obtained in the same process as in Example 9 except that the concentration of the citric acid aqueous solution was 1.0% by mass.
  • the L * value, a * value and b * value measured by the colorimetric color difference meter are L * ⁇ 45.1 and a * , respectively .
  • the relationship of ⁇ 8.5 and b * ⁇ 21.6 is satisfied.
  • the biomass raw material is mesocarp fiber
  • the L * value, a * value, and b * value measured by the colorimetric color difference meter are L * ⁇ 32.2 and a * ⁇ 7.3, respectively.
  • b * ⁇ 15.6 is satisfied.
  • the L * value, a * value, and b * value measured by the colorimetric color difference meter are L * ⁇ 44.3, a * ⁇ 4.4, and b *, respectively.
  • the relationship of ⁇ 15.7 is satisfied.
  • the biomass raw material is Erianthus
  • the L * value, a * value, and b * value measured by the colorimetric color difference meter are L * ⁇ 54.4, a * ⁇ 6.9, and b, respectively.
  • * Satisfy the relationship of ⁇ 23.2 Such biomass fuel can be efficiently produced and effectively used as fuel.
  • none of the comparative examples satisfy the above relationship.
  • ⁇ E measured by the color difference meter satisfies the relationship of ⁇ E ⁇ 3.1 in all the examples
  • the example is In each case, when ⁇ E measured by the color difference meter satisfies the relationship of ⁇ E ⁇ 6.5 and the biomass raw material is sugar cane, in each of the examples, ⁇ E measured by the color difference meter has a relationship of ⁇ E ⁇ 2.4.
  • ⁇ E measured by the color difference meter satisfies the relationship of ⁇ E ⁇ 2.3 in all the examples.
  • the L * value, a * value, b * value and ⁇ E measured by the color difference meter are L * ⁇ 47.7 and a * ⁇ 9, respectively.
  • the L * value, a * value, b * value and ⁇ E measured by the color difference meter are used.
  • the L * value, a * value, b * value and ⁇ E measured by the color difference meter are L * ⁇ 55.9, a * ⁇ 7.3, b * ⁇ 24.5 and ⁇ E, respectively. It is configured to satisfy the relationship of ⁇ 2.3.
  • the biomass fuel according to the present application in which the relationship between the biomass raw material and L * , a * , b * , and ⁇ E has the above relationship, can be more effectively used as fuel.
  • the method for producing biomass fuel and the biomass fuel of the present application are particularly advantageously applied when efficient production of biomass fuel that can be effectively used as fuel is required.

Abstract

This method for producing a biomass fuel includes: a step (S11) for preparing a plant-derived biomass feedstock; and a step (S13) for washing the biomass feedstock by bringing a washing liquid, which is an aqueous solution of at least one compound selected from the group consisting of a citric acid, a malic acid, and a tartaric acid, into contact with the biomass feedstock.

Description

バイオマス燃料の製造方法およびバイオマス燃料Biomass fuel manufacturing method and biomass fuel
 本発明は、バイオマス燃料の製造方法およびバイオマス燃料に関するものである。 The present invention relates to a method for producing a biomass fuel and a biomass fuel.
 アブラヤシ(パーム椰子)については、果実が分離されて利用される。果実に含まれる果肉については、パーム油が搾取される。果実に含まれる種については、パーム核油が搾取される。アブラヤシから果実が取り除かれた後、アブラヤシ空果房(Empty Fruit Bumches)が残渣として排出される。大量に発生するアブラヤシ空果房の有効な利用が求められている。(例えば、特許文献1参照。) For oil palm (palm palm), the fruits are separated and used. Palm oil is exploited for the pulp contained in the fruit. For the seeds contained in the fruit, palm kernel oil is exploited. After the fruit is removed from the oil palm, the oil palm fruit bunches (Empty Fruit Bumches) are discharged as a residue. Effective use of a large amount of oil palm sky fruit bunches is required. (See, for example, Patent Document 1.)
特開2018-65963号公報JP-A-2018-65963
 EFBやアブラヤシの中果皮に含まれ、搾油時の残渣物であるメソカープファイバー(MF)といった植物由来のバイオマス原料は、燃料として用いられる場合がある。このような植物由来のバイオマス原料は、一般的には燃焼設備の加熱装置内で燃焼され使用される。ここで、植物由来のバイオマス原料を燃料として用いる際に、カリウムや塩素が多く含まれていると、種々の問題が生ずる。 Plant-derived biomass raw materials such as mesocarp fiber (MF), which is contained in the pericarp of EFB and oil palm and is a residue during oil extraction, may be used as fuel. Such plant-derived biomass raw materials are generally burned and used in a heating device of a combustion facility. Here, when a plant-derived biomass raw material is used as a fuel, if a large amount of potassium or chlorine is contained, various problems occur.
 例えばEFBを燃焼させると灰が生ずるが、この灰の中にカリウムや塩素が含まれることとなる。ここで、塩素の含有濃度が高い灰が燃焼時において加熱装置の壁面等に付着すると、結果として燃焼設備の腐食の促進を招くおそれがある。また、カリウムの含有濃度が高いと、カリウムの炭酸塩やカリウムの酸化物が多く発生することになる。このような炭酸塩や酸化物は比較的融点が低いため、燃焼時に加熱装置に備えられる過熱器に付着してしまい、結果として熱効率が低下してしまうこととなる。さらに、低融点のカリウムの炭酸塩や酸化物は燃焼時における燃料の流動性を低下させる要因ともなり、燃焼時に利用する流動砂の増加を招いてしまうこととなる。その結果、灰等を取り除く清掃やメンテナンスの頻度が多くなってしまい、作業性の観点から好ましくない。さらには、新たな流動砂の購入といったコスト悪化も引き起こすこととなる。すなわち、植物由来のバイオマス原料を燃料として用いる際に、カリウムおよび塩素を多く含む状態では、燃料として有効利用することができない。 For example, when EFB is burned, ash is generated, and potassium and chlorine are contained in this ash. Here, if ash having a high chlorine content adheres to the wall surface of the heating device during combustion, as a result, corrosion of the combustion equipment may be promoted. In addition, if the potassium content is high, a large amount of potassium carbonate and potassium oxide will be generated. Since such carbonates and oxides have a relatively low melting point, they adhere to a superheater provided in the heating device at the time of combustion, and as a result, the thermal efficiency is lowered. Further, low melting point potassium carbonates and oxides also cause a decrease in fuel fluidity during combustion, which leads to an increase in the amount of fluid sand used during combustion. As a result, the frequency of cleaning and maintenance for removing ash and the like increases, which is not preferable from the viewpoint of workability. Furthermore, it will cause cost deterioration such as purchase of new liquid sand. That is, when a plant-derived biomass raw material is used as a fuel, it cannot be effectively used as a fuel in a state containing a large amount of potassium and chlorine.
 そこで、燃料として有効利用することができるバイオマス燃料を効率的に製造することができるバイオマス燃料の製造方法を提供することを目的の1つとする。 Therefore, one of the purposes is to provide a method for producing biomass fuel, which can efficiently produce biomass fuel that can be effectively used as fuel.
 また、効率的に製造することができ、燃料として有効利用することができるバイオマス燃料を提供することを目的の1つとする。 In addition, one of the purposes is to provide biomass fuel that can be efficiently produced and effectively used as fuel.
 本願の一の局面に係るバイオマス燃料の製造方法は、植物由来のバイオマス原料を準備する工程と、クエン酸、リンゴ酸および酒石酸からなる群から選択された1種以上の化合物の水溶液である洗浄液をバイオマス原料に接触させてバイオマス原料を洗浄する工程と、を含む。 The method for producing biomass fuel according to one aspect of the present application includes a step of preparing a plant-derived biomass raw material and a cleaning solution which is an aqueous solution of one or more compounds selected from the group consisting of citric acid, malic acid and tartaric acid. It includes a step of cleaning the biomass raw material by contacting it with the biomass raw material.
 本願の他の局面に係るバイオマス燃料は、植物由来のバイオマス原料を含むバイオマス燃料であって、バイオマス原料がアブラヤシ空果房である場合、測色色差計で測定したL値、a値およびb値がそれぞれ、L≧45.1、a≧8.5かつb≧21.6の関係を満たし、バイオマス原料がメソカープファイバーである場合、測色色差計で測定したL値、a値およびb値がそれぞれ、L≧32.2、a≧7.3かつb≧15.6の関係を満たし、バイオマス原料がサトウキビである場合、測色色差計で測定したL値、a値およびb値がそれぞれ、L≧44.3、a≧4.4かつb≧15.7の関係を満たし、バイオマス原料がエリアンサスである場合、測色色差計で測定したL値、a値およびb値がそれぞれ、L≧54.4、a≧6.9かつb≧23.2の関係を満たす。 The biomass fuel according to another aspect of the present application is a biomass fuel containing a plant-derived biomass raw material, and when the biomass raw material is Abra palm sky fruit bunch, the L * value, a * value and the L * value, a * value measured by the color difference meter When the b * values satisfy the relationships of L * ≧ 45.1, a * ≧ 8.5 and b * ≧ 21.6, respectively, and the biomass raw material is mesocarp fiber, L * measured with a color difference meter . When the values, a * value and b * value satisfy the relationship of L * ≧ 32.2, a * ≧ 7.3 and b * ≧ 15.6, respectively, and the biomass raw material is sugar cane, the color difference meter is used. When the measured L * value, a * value and b * value satisfy the relationships of L * ≧ 44.3, a * ≧ 4.4 and b * ≧ 15.7, respectively, and the biomass raw material is Erianthus. The L * value, a * value, and b * value measured by the color difference meter satisfy the relationships of L * ≧ 54.4, a * ≧ 6.9, and b * ≧ 23.2, respectively.
 本願のさらに他の局面に係るバイオマス燃料は、植物由来のバイオマス原料を含むバイオマス燃料であって、バイオマス原料がアブラヤシ空果房である場合、測色色差計で測定したL値、a値、b値およびクエン酸、リンゴ酸および酒石酸からなる群から選択された1種以上の化合物の水溶液である洗浄液による洗浄を行っていないバイオマス原料(以下、未処理品と言う)に対する色差(以下、ΔEと言う)がそれぞれ、L≧47.7、a≧9.5、b≧22.2かつΔE≧3.1の関係を満たし、バイオマス原料がメソカープファイバーである場合、測色色差計で測定したL値、a値、b値およびΔEがそれぞれ、L≧37.5、a≧8.0、b≧18.2かつΔE≧6.5の関係を満たし、バイオマス原料がサトウキビである場合、測色色差計で測定したL値、a値、b値およびΔEがそれぞれ、L≧44.4、a≧5.6、b≧17.6かつΔE≧2.4の関係を満たし、バイオマス原料がエリアンサスである場合、測色色差計で測定したL値、a値、b値およびΔEがそれぞれ、L≧55.9、a≧7.3、b≧24.5かつΔE≧2.3の関係を満たす。 The biomass fuel according to still another aspect of the present application is a biomass fuel containing a plant-derived biomass raw material, and when the biomass raw material is Abra palm sky fruit bunch, L * value and a * value measured by a color difference meter. , B * value and color difference (hereinafter referred to as untreated product) for unwashed biomass raw material (hereinafter referred to as untreated product) which is an aqueous solution of one or more compounds selected from the group consisting of citric acid, malic acid and tartaric acid. , ΔE) satisfy the relationship of L * ≧ 47.7, a * ≧ 9.5, b * ≧ 22.2 and ΔE ≧ 3.1, respectively, and the biomass raw material is mesocarp fiber. The relationship between L * value, a * value, b * value, and ΔE measured by the color difference meter is L * ≧ 37.5, a * ≧ 8.0, b * ≧ 18.2, and ΔE ≧ 6.5, respectively. When the above conditions are satisfied and the biomass raw material is sugar cane, the L * value, a * value, b * value and ΔE measured by the color difference meter are L * ≧ 44.4, a * ≧ 5.6 and b *, respectively. When the relationship of ≧ 17.6 and ΔE ≧ 2.4 is satisfied and the biomass raw material is Erianthus, the L * value, a * value, b * value and ΔE measured by the color difference meter are L * ≧, respectively. The relationship of 55.9, a * ≧ 7.3, b * ≧ 24.5 and ΔE ≧ 2.3 is satisfied.
 上記バイオマス燃料の製造方法によれば、燃料として有効利用することができるバイオマス燃料を効率的に製造することができる。 According to the above-mentioned biomass fuel production method, it is possible to efficiently produce a biomass fuel that can be effectively used as a fuel.
 上記バイオマス燃料によれば、効率的に製造することができ、燃料として有効利用することができる。 According to the above biomass fuel, it can be efficiently produced and effectively used as fuel.
実施の形態1において処理に用いられるバイオマス原料の外観を示す図である。It is a figure which shows the appearance of the biomass raw material used for the treatment in Embodiment 1. FIG. 実施の形態1におけるバイオマス燃料の製造方法の代表的な構成を示すフローチャートである。It is a flowchart which shows the typical structure of the manufacturing method of the biomass fuel in Embodiment 1. 手で引きちぎった状態のEFBの外観を示す図である。It is a figure which shows the appearance of the EFB in the state of being torn by hand. 鋏を用いて裁断されたEFBの粉砕物の外観を示す概略図である。It is a schematic diagram which shows the appearance of the pulverized product of EFB cut by using scissors. 洗浄に用いる振盪器の外観の一部を示す概略図である。It is the schematic which shows a part of the appearance of the shaker used for washing. 実施の形態2におけるバイオマス燃料の製造方法の代表的な構成を示すフローチャートである。It is a flowchart which shows the typical structure of the manufacturing method of the biomass fuel in Embodiment 2.
 [本願発明の実施形態の説明]
 最初に本願発明の実施態様を列記して説明する。本願のバイオマス燃料の製造方法は、植物由来のバイオマス原料を準備する工程と、クエン酸、リンゴ酸および酒石酸からなる群から選択された1種以上の化合物の水溶液である洗浄液をバイオマス原料に接触させてバイオマス原料を洗浄する工程と、を含む。
[Explanation of Embodiments of the Invention]
First, embodiments of the present invention will be listed and described. In the method for producing biomass fuel of the present application, a step of preparing a plant-derived biomass raw material and a cleaning liquid which is an aqueous solution of one or more compounds selected from the group consisting of citric acid, malic acid and tartaric acid are brought into contact with the biomass raw material. Includes a step of cleaning the biomass material.
 本願発明者は、植物由来のバイオマス燃料について、塩酸(HCl)や硫酸(HSO)、硝酸(HNO)といった無機酸を用いて処理を行うことを検討した。しかし、化合物内に低減を図るべき塩素が含まれていることや、加熱装置の劣化および環境の汚染を引き起こす要因となり得る硫黄や窒素といった元素が残渣物に残留することを回避しなければならない点に着目した。そして、これらの化合物を用いずにカリウムおよび塩素の低減を図るべく鋭意検討し、本願発明を構成するに至った。 The inventor of the present application has studied the treatment of plant-derived biomass fuel with inorganic acids such as hydrochloric acid (HCl), sulfuric acid (H 2 SO 4 ), and nitric acid (HNO 3 ). However, it must be avoided that the compound contains chlorine to be reduced and that elements such as sulfur and nitrogen, which can cause deterioration of the heating device and pollution of the environment, remain in the residue. I paid attention to. Then, diligent studies were made to reduce potassium and chlorine without using these compounds, and the present invention was constructed.
 すなわち、本願のバイオマス燃料の製造方法では、クエン酸(C(OH)(CHCOOHCOOH))、リンゴ酸(HOOC-CH(OH)-CH-COOH)および酒石酸((CH(OH)COOH))からなる群から選択された1種以上の化合物の水溶液である洗浄液をバイオマス原料に接触させてバイオマス原料を洗浄する工程を含む。このような洗浄液は比較的強酸であるため、植物由来のバイオマス原料と上記洗浄液を接触させた際に、植物由来のバイオマス原料を構成する細胞内にある物質を溶出させやすくすることができる。そして、上記洗浄液による洗浄により細胞内にある物質であるカリウムおよび塩素を流して、洗浄後の植物由来のバイオマス原料に含まれるカリウムおよび塩素の濃度を低くすることができる。このようなバイオマス燃料であると、燃焼後の残渣物についてカリウムおよび塩素の含有濃度を低くすることができる。したがって、上記した種々の問題が生ずるおそれを低減することができる。すなわち、燃焼設備の腐食を抑制し、低融点の灰に起因する熱効率の低下を抑制すると共に、燃料の流動性の低下を抑制して、メンテナンス性の向上を図ることができる。また、清掃回数の低減に加え、上記した洗浄液を構成するクエン酸、リンゴ酸、酒石酸はいずれも比較的安価に入手することができるため、コストの観点からも有効である。さらにクエン酸、リンゴ酸および酒石酸はいずれも炭素、水素および酸素からなり塩素、硫黄や窒素を含まないため、硫黄や窒素といった元素が残渣物に残留することに伴う加熱装置の劣化や環境の汚染を防止することができる。その結果、このようなバイオマス燃料の製造方法によると、燃料として有効利用することができるバイオマス燃料を製造することができる。なお、クエン酸、リンゴ酸および酒石酸はいずれも炭素数が4である多価カルボン酸である。 That is, in the method for producing a biomass fuel of the present application, citric acid (C (OH) (CH 2 COOH 2 COOH)), malic acid (HOOC-CH (OH) -CH 2- COOH) and tartaric acid ((CH (OH)). COOH) Includes a step of cleaning the biomass raw material by bringing a cleaning liquid, which is an aqueous solution of one or more compounds selected from the group consisting of 2 ), into contact with the biomass raw material. Since such a cleaning solution is a relatively strong acid, when the plant-derived biomass raw material is brought into contact with the cleaning solution, it is possible to easily elute the substance inside the cells constituting the plant-derived biomass raw material. Then, by washing with the washing liquid, potassium and chlorine, which are substances inside the cells, can be washed away to reduce the concentration of potassium and chlorine contained in the plant-derived biomass raw material after washing. With such a biomass fuel, it is possible to reduce the concentration of potassium and chlorine in the residue after combustion. Therefore, it is possible to reduce the possibility that the above-mentioned various problems will occur. That is, it is possible to suppress the corrosion of the combustion equipment, suppress the decrease in thermal efficiency due to the low melting point ash, and suppress the decrease in the fluidity of the fuel to improve the maintainability. Further, in addition to reducing the number of cleanings, citric acid, malic acid, and tartaric acid constituting the above-mentioned cleaning liquid can be obtained at a relatively low cost, which is effective from the viewpoint of cost. Furthermore, since citric acid, malic acid and tartaric acid are composed of carbon, hydrogen and oxygen and do not contain chlorine, sulfur or nitrogen, deterioration of the heating device and environmental pollution due to the residual elements such as sulfur and nitrogen in the residue. Can be prevented. As a result, according to such a method for producing biomass fuel, it is possible to produce biomass fuel that can be effectively used as fuel. Citric acid, malic acid and tartaric acid are all polyvalent carboxylic acids having 4 carbon atoms.
 上記バイオマス燃料の製造方法において、上記洗浄液の濃度は、0.1質量%以上であってもよい。このようにすることにより、バイオマス燃料に含まれるカリウムの含有濃度を低くすることが容易となる。このようにして得られるバイオマス燃料は、燃料としてより有効利用することができる。 In the method for producing biomass fuel, the concentration of the cleaning liquid may be 0.1% by mass or more. By doing so, it becomes easy to reduce the concentration of potassium contained in the biomass fuel. The biomass fuel thus obtained can be used more effectively as a fuel.
 上記バイオマス燃料の製造方法において、上記洗浄液の濃度は、0.5質量%以上であってもよい。このようにすることにより、バイオマス燃料に含まれるカリウムの含有濃度をさらに低くすることが容易となる。このようにして得られるバイオマス燃料は、燃料としてより有効利用することができる。 In the method for producing biomass fuel, the concentration of the cleaning liquid may be 0.5% by mass or more. By doing so, it becomes easy to further reduce the concentration of potassium contained in the biomass fuel. The biomass fuel thus obtained can be used more effectively as a fuel.
 上記バイオマス燃料の製造方法において、上記洗浄液の濃度は、2.0質量%以下であってもよい。このようにすることにより、上記洗浄液の濃度が過剰に高くなるのを抑制して、より安価に、燃料として有効利用することができるバイオマス燃料を効率的に製造することができる。 In the method for producing biomass fuel, the concentration of the cleaning liquid may be 2.0% by mass or less. By doing so, it is possible to suppress the concentration of the cleaning liquid from becoming excessively high, and to efficiently produce a biomass fuel that can be effectively used as a fuel at a lower cost.
 上記バイオマス燃料の製造方法において、上記洗浄液をバイオマス原料に接触させてバイオマス原料を洗浄する工程では、所定の濃度に調製された上記洗浄液中でバイオマス原料を撹拌してもよい。このようにすることにより、撹拌時においてバイオマス原料の細部に亘って上記洗浄液とバイオマス原料とを接触させて洗浄することができる。したがって、カリウムの含有濃度が低下したバイオマス燃料をムラなく効率的に製造することができる。 In the method for producing biomass fuel, in the step of bringing the cleaning liquid into contact with the biomass raw material to clean the biomass raw material, the biomass raw material may be agitated in the cleaning liquid prepared to a predetermined concentration. By doing so, the cleaning liquid and the biomass raw material can be brought into contact with each other for cleaning over the details of the biomass raw material during stirring. Therefore, it is possible to efficiently and evenly produce a biomass fuel having a reduced potassium content.
 上記バイオマス燃料の製造方法において、上記洗浄液をバイオマス原料に接触させてバイオマス原料を洗浄する工程の前に、バイオマス原料を粉砕する工程を含んでもよい。バイオマス原料を粉砕すると、上記洗浄液の接触の対象物となるバイオマス原料の表面積を多くすることができる。したがって、バイオマス原料の洗浄の際上記洗浄液との接触面積を多くして、燃料として有効利用することができるバイオマス燃料を効率的に製造することができる。 In the above-mentioned method for producing biomass fuel, a step of crushing the biomass raw material may be included before the step of bringing the cleaning liquid into contact with the biomass raw material to clean the biomass raw material. When the biomass raw material is crushed, the surface area of the biomass raw material to be contacted with the cleaning liquid can be increased. Therefore, when cleaning the biomass raw material, the contact area with the cleaning liquid can be increased to efficiently produce a biomass fuel that can be effectively used as a fuel.
 上記バイオマス燃料の製造方法において、上記洗浄液をバイオマス原料に接触させてバイオマス原料を洗浄する工程の後に、バイオマス燃料が濡れた状態でバイオマス燃料を水洗する工程をさらに含んでもよい。このようにすることにより、洗浄液の成分を水によって洗い流すことができると共に、さらにカリウムおよび塩素を水に溶出させて低減させることができる。したがって、より燃料として有効利用することができるバイオマス燃料を製造することができる。 The method for producing biomass fuel may further include a step of washing the biomass fuel with water while the biomass fuel is wet, after the step of bringing the cleaning liquid into contact with the biomass raw material to wash the biomass raw material. By doing so, the components of the cleaning liquid can be washed away with water, and potassium and chlorine can be further eluted in water to reduce the amount. Therefore, it is possible to produce a biomass fuel that can be used more effectively as a fuel.
 上記バイオマス燃料の製造方法において、植物由来のバイオマス原料は、アブラヤシ空果房、メソカープファイバー、サトウキビおよびエリアンサスのうちの少なくともいずれか1つを含んでもよい。このようなバイオマス燃料は、安価で多量に入手することができる。したがって、このようなバイオマス燃料の製造方法によると、燃料として有効利用することができるバイオマス燃料を安価に製造することができる。ここで、アブラヤシ空果房(EFB)とは、アブラヤシから果肉および種が取り除かれた、果房部分を構成する木質の繊維部分をいう。なお、洗浄後に得られるバイオマス燃料は、洗浄後に乾燥させて、すなわち、水分をできるだけ除去した状態とすると、効率的にバイオマス燃料として利用することができる。 In the above method for producing a biomass fuel, the plant-derived biomass raw material may contain at least one of oil palm empty fruit bunch, mesocarp fiber, sugar cane and Erianthus. Such biomass fuels are inexpensive and available in large quantities. Therefore, according to such a method for producing biomass fuel, it is possible to inexpensively produce biomass fuel that can be effectively used as fuel. Here, the oil palm empty fruit bunch (EFB) refers to a woody fiber portion constituting the fruit bunch portion from which the flesh and seeds have been removed from the oil palm. The biomass fuel obtained after cleaning can be efficiently used as biomass fuel if it is dried after cleaning, that is, in a state where water is removed as much as possible.
 本願の他の局面に係るバイオマス燃料は、植物由来のバイオマス原料を含むバイオマス燃料であって、バイオマス原料がアブラヤシ空果房である場合、測色色差計で測定したL値、a値およびb値がそれぞれ、L≧45.1、a≧8.5かつb≧21.6の関係を満たし、バイオマス原料がメソカープファイバーである場合、測色色差計で測定したL値、a値およびb値がそれぞれ、L≧32.2、a≧7.3かつb≧15.6の関係を満たし、バイオマス原料がサトウキビである場合、測色色差計で測定したL値、a値およびb値がそれぞれ、L≧44.3、a≧4.4かつb≧15.7の関係を満たし、バイオマス原料がエリアンサスである場合、測色色差計で測定したL値、a値およびb値がそれぞれ、L≧54.4、a≧6.9かつb≧23.2の関係を満たす。 The biomass fuel according to another aspect of the present application is a biomass fuel containing a plant-derived biomass raw material, and when the biomass raw material is Abra palm sky fruit bunch, the L * value, a * value and the L * value, a * value measured by the color difference meter When the b * values satisfy the relationships of L * ≧ 45.1, a * ≧ 8.5 and b * ≧ 21.6, respectively, and the biomass raw material is mesocarp fiber, L * measured with a color difference meter . When the values, a * value and b * value satisfy the relationship of L * ≧ 32.2, a * ≧ 7.3 and b * ≧ 15.6, respectively, and the biomass raw material is sugar cane, the color difference meter is used. When the measured L * value, a * value and b * value satisfy the relationships of L * ≧ 44.3, a * ≧ 4.4 and b * ≧ 15.7, respectively, and the biomass raw material is Erianthus. The L * value, a * value, and b * value measured by the color difference meter satisfy the relationships of L * ≧ 54.4, a * ≧ 6.9, and b * ≧ 23.2, respectively.
 バイオマス原料とL、a、bとの関係が上記関係を具備する本願に係るバイオマス燃料は、効率的に製造することができ、燃料として有効利用することができる。 The biomass fuel according to the present application, in which the relationship between the biomass raw material and L * , a * , and b * has the above relationship, can be efficiently produced and effectively used as fuel.
 本願のさらに他の局面に係るバイオマス燃料は、植物由来のバイオマス原料を含むバイオマス燃料であって、バイオマス原料がアブラヤシ空果房である場合、測色色差計で測定したL値、a値、b値およびΔEがそれぞれ、L≧47.7、a≧9.5、b≧22.2かつΔE≧3.1の関係を満たし、バイオマス原料がメソカープファイバーである場合、測色色差計で測定したL値、a値、b値およびΔEがそれぞれ、L≧37.5、a≧8.0、b≧18.2かつΔE≧6.5の関係を満たし、バイオマス原料がサトウキビである場合、測色色差計で測定したL値、a値、b値およびΔEがそれぞれ、L≧44.4、a≧5.6、b≧17.6かつΔE≧2.4の関係を満たし、バイオマス原料がエリアンサスである場合、測色色差計で測定したL値、a値、b値およびΔEがそれぞれ、L≧55.9、a≧7.3、b≧24.5かつΔE≧2.3の関係を満たす。 The biomass fuel according to still another aspect of the present application is a biomass fuel containing a plant-derived biomass raw material, and when the biomass raw material is Abra palm sky fruit bunch, L * value and a * value measured by a color difference meter. , B * values and ΔE satisfy the relationships of L * ≧ 47.7, a * ≧ 9.5, b * ≧ 22.2 and ΔE ≧ 3.1, respectively, and the biomass raw material is mesocarp fiber. L * value, a * value, b * value and ΔE measured by the color difference meter are L * ≧ 37.5, a * ≧ 8.0, b * ≧ 18.2 and ΔE ≧ 6.5, respectively. When the relationship is satisfied and the biomass raw material is sugar cane, the L * value, a * value, b * value and ΔE measured by the color difference meter are L * ≧ 44.4, a * ≧ 5.6, b, respectively. When the relationship of * ≧ 17.6 and ΔE ≧ 2.4 is satisfied and the biomass raw material is Erianthus, the L * value, a * value, b * value and ΔE measured by the color difference meter are L *, respectively . The relationship of ≧ 55.9, a * ≧ 7.3, b * ≧ 24.5 and ΔE ≧ 2.3 is satisfied.
 バイオマス原料とL、a、b、ΔEとの関係が上記関係を具備する本願に係るバイオマス燃料は、より燃料として有効利用することができる。 The biomass fuel according to the present application, in which the relationship between the biomass raw material and L * , a * , b * , and ΔE has the above relationship, can be more effectively used as fuel.
 [本願発明の実施形態の詳細]
 次に、本願のバイオマス燃料の製造方法およびバイオマス燃料の一実施形態を、図面を参照しつつ説明する。以下の図面において同一または相当する部分には同一の参照符号を付しその説明は繰り返さない。
[Details of Embodiments of the present invention]
Next, a method for producing the biomass fuel of the present application and an embodiment of the biomass fuel will be described with reference to the drawings. In the following drawings, the same or corresponding parts are designated by the same reference numerals, and the description thereof will not be repeated.
 (実施の形態1)
 図1は、実施の形態1において処理に用いられるバイオマス原料の外観を示す図である。図1を参照して、実施の形態1における植物由来のバイオマス原料として、EFB(Empty Fruit Bumches)11が用いられる。EFB11は、アブラヤシから果実が取り除かれた後、残渣として排出されるものである。EFB11は、複雑に絡み合った複数の繊維状の物質から構成される。
(Embodiment 1)
FIG. 1 is a diagram showing the appearance of the biomass raw material used for the treatment in the first embodiment. With reference to FIG. 1, EFB (Empty Fruit Buchets) 11 is used as the plant-derived biomass raw material in the first embodiment. EFB11 is discharged as a residue after the fruit is removed from the oil palm. EFB11 is composed of a plurality of intricately intertwined fibrous substances.
 図2は、実施の形態1におけるバイオマス燃料の製造方法の代表的な構成を示すフローチャートである。図2を参照して、まず、植物由来のバイオマス原料としてEFB11を準備する(図2において、S11)。ここでは、図1に示すEFB11が準備される。 FIG. 2 is a flowchart showing a typical configuration of the method for producing biomass fuel in the first embodiment. With reference to FIG. 2, first, EFB11 is prepared as a plant-derived biomass raw material (S11 in FIG. 2). Here, the EFB 11 shown in FIG. 1 is prepared.
 EFB11は、洗浄前に粉砕される。すなわち、実施の形態1におけるバイオマス燃料の製造方法は、後述する洗浄液をバイオマス原料に接触させてバイオマス原料を洗浄する工程の前に、バイオマス原料を粉砕する工程を含む(S12)。具体的には例えば、ある程度の大きさまで手等で引きちぎった後、鋏等を用い約1cmの長さとなるよう裁断する。図3は、手で引きちぎった状態のEFB11の外観を示す図である。図4は、鋏を用いて裁断されたEFB11の粉砕物12の外観を示す概略図である。 EFB11 is crushed before cleaning. That is, the method for producing biomass fuel in the first embodiment includes a step of crushing the biomass raw material before the step of bringing the cleaning liquid described later into contact with the biomass raw material to clean the biomass raw material (S12). Specifically, for example, after tearing it to a certain size by hand or the like, it is cut to a length of about 1 cm using scissors or the like. FIG. 3 is a diagram showing the appearance of the EFB 11 in a state of being torn by hand. FIG. 4 is a schematic view showing the appearance of the pulverized product 12 of EFB 11 cut using scissors.
 次に、クエン酸、リンゴ酸および酒石酸からなる群から選択された1種以上の化合物の水溶液である洗浄液をバイオマス原料に接触させてバイオマス原料を洗浄する(S13)。本実施形態においては洗浄液として、クエン酸水溶液を準備する。クエン酸(C(OH)(CHCOOHCOOH))は炭素、水素および酸素からなる。クエン酸水溶液は、例えばクエン酸を水に溶解させてクエン酸水溶液が所定の濃度となるようにして準備する。具体的には、例えば、クエン酸水溶液の濃度を0.1質量%以上とする。さらに好適には、クエン酸水溶液の濃度を0.5質量%以上とする。また、クエン酸水溶液の濃度を2.0質量%以下とする。具体的には、クエン酸水溶液の濃度を1.0質量%とする。 Next, the biomass raw material is washed by contacting the cleaning liquid, which is an aqueous solution of one or more compounds selected from the group consisting of citric acid, malic acid, and tartaric acid, with the biomass raw material (S13). In the present embodiment, an aqueous citric acid solution is prepared as a cleaning solution. Citric acid (C (OH) (CH 2 COOH 2 COOH)) consists of carbon, hydrogen and oxygen. The citric acid aqueous solution is prepared, for example, by dissolving citric acid in water so that the citric acid aqueous solution has a predetermined concentration. Specifically, for example, the concentration of the citric acid aqueous solution is 0.1% by mass or more. More preferably, the concentration of the citric acid aqueous solution is 0.5% by mass or more. Further, the concentration of the citric acid aqueous solution is set to 2.0% by mass or less. Specifically, the concentration of the citric acid aqueous solution is 1.0% by mass.
 このようにして準備した所定の大きさに粉砕されたEFB11およびクエン酸水溶液を用い、EFB11の洗浄を行う。図5は、洗浄に用いる振盪器13の外観の一部を示す概略図である。図5を参照して、実施の形態1におけるバイオマス燃料の製造方法は、クエン酸水溶液をEFB11に接触させてEFB11を洗浄する。洗浄については、以下のように行う。所定の濃度に調製したクエン酸水溶液を後に振盪器13にセットされる密封可能な容器14内に入れ、EFB11をさらに容器14内に投入する。投入するEFB11の量としては、クエン酸水溶液250mlに対し、EFB11を2.5gとする。ここで、クエン酸水溶液の温度としては、常温でもよいし、100℃前後に加熱してもよい。具体的には例えば、60℃程度に加熱されたクエン酸水溶液が準備され、約1cmの長さに裁断されたEFB11が投入される。その後、容器14は蓋をして密封される。 The EFB11 is washed using the EFB11 and the citric acid aqueous solution pulverized to a predetermined size prepared in this manner. FIG. 5 is a schematic view showing a part of the appearance of the shaker 13 used for washing. With reference to FIG. 5, in the method for producing biomass fuel in the first embodiment, the citric acid aqueous solution is brought into contact with the EFB 11 to wash the EFB 11. Cleaning is performed as follows. The citric acid aqueous solution prepared to a predetermined concentration is placed in a sealable container 14 which is later set in the shaker 13, and the EFB 11 is further charged into the container 14. The amount of EFB11 to be added is 2.5 g with respect to 250 ml of the citric acid aqueous solution. Here, the temperature of the citric acid aqueous solution may be room temperature or may be heated to around 100 ° C. Specifically, for example, an aqueous citric acid solution heated to about 60 ° C. is prepared, and EFB11 cut into a length of about 1 cm is charged. After that, the container 14 is covered and sealed.
 次に、容器14を振り動かして、所定の時間撹拌する。撹拌について、振盪器13を用いて上下方向に繰り返し振盪することにより撹拌する。具体的には、振盪器13による撹拌は、振盪器設定値を290rpmとして10分間行う。撹拌後、クエン酸水溶液中からEFB11を取り出し、バイオマス燃料を得る。 Next, shake the container 14 to stir for a predetermined time. The stirring is performed by repeatedly shaking in the vertical direction using the shaker 13. Specifically, the stirring by the shaker 13 is performed for 10 minutes with the shaker set value set to 290 rpm. After stirring, EFB11 is taken out from the citric acid aqueous solution to obtain biomass fuel.
 なお、得られたバイオマス燃料については、必要に応じて乾燥するとよい。乾燥については、自然乾燥でもよいし、クエン酸水溶液中から取り出したEFB11に熱を加えて乾燥することにしてもよい。なお、クエン酸水溶液については、別途準備されたEFB11の洗浄に再度利用することにしてもよい。 The obtained biomass fuel should be dried as needed. As for drying, natural drying may be performed, or EFB11 taken out from the citric acid aqueous solution may be dried by applying heat. The citric acid aqueous solution may be reused for cleaning the separately prepared EFB11.
 実施の形態1におけるバイオマス燃料の製造方法において、洗浄液としてのクエン酸水溶液は比較的強酸であるため、EFB11とクエン酸水溶液とを接触させた際に、EFB11を構成する細胞内にある物質を溶出させやすくすることができる。そして、クエン酸水溶液による洗浄により細胞内にある物質であるカリウムおよび塩素を流して、洗浄後のEFB11に含まれるカリウムおよび塩素の濃度を低くすることができる。このようなEFB11であると、燃焼後の残渣物についてカリウムおよび塩素の含有濃度を低くすることができる。したがって、上記した種々の問題が生ずるおそれを低減することができる。すなわち、燃焼設備の腐食を抑制し、低融点の灰に起因する熱効率の低下を抑制すると共に、燃料の流動性の低下を抑制して、メンテナンス性の向上を図ることができる。また、清掃回数の低減に加え、クエン酸は比較的安価に入手することができるため、コストの観点からも有効である。さらにクエン酸は炭素、水素および酸素からなり塩素、硫黄や窒素を含まないため、硫黄や窒素といった元素が残渣物に残留することに伴う加熱装置の劣化や環境の汚染を防止することができる。その結果、このようなバイオマス燃料の製造方法によると、燃料として有効利用することができるバイオマス燃料を製造することができる。 In the method for producing biomass fuel according to the first embodiment, since the citric acid aqueous solution as a cleaning liquid is a relatively strong acid, when the EFB 11 and the citric acid aqueous solution are brought into contact with each other, the substance in the cells constituting the EFB 11 is eluted. It can be made easier. Then, by washing with an aqueous citric acid solution, potassium and chlorine, which are substances inside the cells, can be washed away to reduce the concentration of potassium and chlorine contained in EFB11 after washing. With such EFB11, the content concentration of potassium and chlorine in the residue after combustion can be lowered. Therefore, it is possible to reduce the possibility that the above-mentioned various problems will occur. That is, it is possible to suppress the corrosion of the combustion equipment, suppress the decrease in thermal efficiency due to the low melting point ash, and suppress the decrease in the fluidity of the fuel to improve the maintainability. In addition to reducing the number of cleanings, citric acid can be obtained at a relatively low cost, which is effective from the viewpoint of cost. Furthermore, since citric acid is composed of carbon, hydrogen and oxygen and does not contain chlorine, sulfur or nitrogen, it is possible to prevent deterioration of the heating device and environmental pollution due to the residual elements such as sulfur and nitrogen in the residue. As a result, according to such a method for producing biomass fuel, it is possible to produce biomass fuel that can be effectively used as fuel.
 本実施形態においては、クエン酸水溶液の濃度を0.1質量%以上としている。具体的には、クエン酸水溶液の濃度を0.5質量%以上とし、2.0質量%以下としている。クエン酸水溶液の濃度を0.1質量%以上とすることにより、洗浄後のバイオマス燃料に含まれるカリウムの含有濃度を低くすることが容易となる。クエン酸水溶液の濃度を0.5質量%以上とすることにより、洗浄後のバイオマス燃料に含まれるカリウムの含有濃度をさらに低くすることが容易となる。このようにして得られるバイオマス燃料は、燃料としてより有効利用することができる。また、クエン酸水溶液の濃度を2.0質量%以下とすることにより、クエン酸水溶液の濃度が過剰に高くなるのを抑制して、より安価に、燃料として有効利用することができるバイオマス燃料を効率的に製造することができる。 In this embodiment, the concentration of the citric acid aqueous solution is 0.1% by mass or more. Specifically, the concentration of the citric acid aqueous solution is 0.5% by mass or more and 2.0% by mass or less. By setting the concentration of the citric acid aqueous solution to 0.1% by mass or more, it becomes easy to reduce the concentration of potassium contained in the biomass fuel after cleaning. By setting the concentration of the citric acid aqueous solution to 0.5% by mass or more, it becomes easy to further reduce the concentration of potassium contained in the biomass fuel after cleaning. The biomass fuel thus obtained can be used more effectively as a fuel. Further, by setting the concentration of the citric acid aqueous solution to 2.0% by mass or less, it is possible to suppress the concentration of the citric acid aqueous solution from becoming excessively high, and to obtain a biomass fuel that can be effectively used as a fuel at a lower cost. It can be manufactured efficiently.
 本実施形態においては、クエン酸水溶液をEFB11に接触させてEFB11を洗浄する工程の前に、EFB11を粉砕する工程を含んでいるため、クエン酸水溶液の接触の対象物となるEFB11の表面積を多くすることができる。したがって、EFB11の洗浄の際にクエン酸水溶液との接触面積を多くして、燃料として有効利用することができるバイオマス燃料を効率的に製造することができる。 In the present embodiment, since the step of pulverizing the EFB 11 is included before the step of bringing the citric acid aqueous solution into contact with the EFB 11 to wash the EFB 11, the surface area of the EFB 11 to be the object of contact with the citric acid aqueous solution is increased. can do. Therefore, it is possible to efficiently produce a biomass fuel that can be effectively used as a fuel by increasing the contact area with the citric acid aqueous solution when cleaning the EFB 11.
 なお、本実施形態においては、クエン酸水溶液を得るために、クエン酸を水に溶解させて得ることとしたが、これに限らず、他のクエン酸化合物を水に溶解させてクエン酸水溶液を得ることとしてもよい。 In the present embodiment, citric acid is dissolved in water to obtain an aqueous citric acid solution, but the present invention is not limited to this, and another citric acid compound is dissolved in water to obtain an aqueous citric acid solution. You may get it.
 (実施の形態2)
 本願のバイオマス燃料の製造方法において、洗浄液をバイオマス原料に接触させてバイオマス原料を洗浄する工程の後に、バイオマス燃料が濡れた状態でバイオマス燃料を水洗する工程をさらに含んでもよい。図6は、実施の形態2におけるバイオマス燃料の製造方法の代表的な構成を示すフローチャートである。図2を参照して、S11からS13までは、実施の形態1における工程と同様であるため、それらの説明を省略する。S13の後、すなわち、洗浄液をバイオマス原料に接触させてバイオマス原料を洗浄する工程の後に、バイオマス燃料が濡れた状態でバイオマス燃料を水洗する。具体的には、たとえば、洗浄した後にバイオマス燃料を洗浄液の中から取り出し、濡れたままの状態で所定の容器内に溜められた水中にバイオマス燃料を入れ、撹拌することにより水洗する。洗浄液の中から取り出したバイオマス燃料を流水に曝すことにより水洗してもよい。このようにすることにより、洗浄液の成分を水によって洗い流すことができると共に、さらにカリウムおよび塩素を水に溶出させて低減させることができる。したがって、より燃料として有効利用することができるバイオマス燃料を製造することができる。なお、水洗する工程については、必要に応じて複数回行ってもよい。また、水洗した後の水については、洗浄液をクエン酸水溶液とした場合、クエン酸が若干含まれている。例えば、このクエン酸をクエン酸カルシウムといった化合物として捕集して、肥料等として有効活用を図ることもできる。
(Embodiment 2)
In the method for producing biomass fuel of the present application, after the step of contacting the cleaning liquid with the biomass raw material to wash the biomass raw material, a step of washing the biomass fuel with water while the biomass fuel is wet may be further included. FIG. 6 is a flowchart showing a typical configuration of the method for producing biomass fuel according to the second embodiment. With reference to FIG. 2, since S11 to S13 are the same as the steps in the first embodiment, their description will be omitted. After S13, that is, after the step of bringing the cleaning liquid into contact with the biomass raw material to wash the biomass raw material, the biomass fuel is washed with water while the biomass fuel is wet. Specifically, for example, after cleaning, the biomass fuel is taken out from the cleaning liquid, and the biomass fuel is put into water stored in a predetermined container in a wet state and washed with water by stirring. The biomass fuel taken out from the cleaning liquid may be washed with running water by exposing it to running water. By doing so, the components of the cleaning liquid can be washed away with water, and potassium and chlorine can be further eluted in water to reduce the amount. Therefore, it is possible to produce a biomass fuel that can be used more effectively as a fuel. The step of washing with water may be performed a plurality of times as needed. Further, the water after washing with water contains a small amount of citric acid when the washing liquid is an aqueous solution of citric acid. For example, this citric acid can be collected as a compound such as calcium citrate and effectively used as a fertilizer or the like.
 (実施の形態3)
 上記の実施の形態1においては、植物由来のバイオマス原料としてのEFB11を洗浄する洗浄液としてクエン酸水溶液を用いることとしたが、これに限らず、実施の形態3において、洗浄液としてリンゴ酸水溶液を用いることとしてもよい。リンゴ酸についても、比較的強酸である。また、安価に入手することができる。したがって、リンゴ酸水溶液を植物由来のバイオマス原料を洗浄する洗浄液として用いることによっても、燃料として有効利用することができるバイオマス燃料を効率的に製造することができる。
(Embodiment 3)
In the above-described first embodiment, the citric acid aqueous solution is used as the cleaning liquid for washing the EFB11 as the plant-derived biomass raw material, but the present invention is not limited to this, and the malic acid aqueous solution is used as the cleaning liquid in the third embodiment. It may be that. Malic acid is also a relatively strong acid. It can also be obtained at low cost. Therefore, by using the malic acid aqueous solution as a cleaning liquid for cleaning plant-derived biomass raw materials, it is possible to efficiently produce a biomass fuel that can be effectively used as a fuel.
 (実施の形態4)
 上記の実施の形態1においては、植物由来のバイオマス原料としてのEFB11を洗浄する洗浄液としてクエン酸水溶液を用いることとしたが、これに限らず、実施の形態4において、洗浄液として酒石酸水溶液を用いることとしてもよい。酒石酸についても、比較的強酸である。また、安価に入手することができる。したがって、酒石酸水溶液を植物由来のバイオマス原料を洗浄する洗浄液として用いることによっても、燃料として有効利用することができるバイオマス燃料を効率的に製造することができる。
(Embodiment 4)
In the above-described first embodiment, the citric acid aqueous solution is used as the cleaning liquid for cleaning the EFB11 as the plant-derived biomass raw material, but the present invention is not limited to this, and the tartaric acid aqueous solution is used as the cleaning liquid in the fourth embodiment. May be. Tartaric acid is also a relatively strong acid. It can also be obtained at low cost. Therefore, by using the tartaric acid aqueous solution as a cleaning liquid for cleaning plant-derived biomass raw materials, it is possible to efficiently produce a biomass fuel that can be effectively used as a fuel.
 (他の実施の形態)
 なお、上記の実施の形態においては、洗浄液をバイオマス原料に接触させてバイオマス原料を洗浄する工程として洗浄液中にバイオマス原料を投入して撹拌することとしたが、これに限らず、例えば、バイオマス原料に対して洗浄液を吹き付けるようにしてバイオマス原料と洗浄液とを接触させてバイオマス原料を洗浄することにしてもよい。
(Other embodiments)
In the above embodiment, as a step of contacting the cleaning liquid with the biomass raw material to clean the biomass raw material, the biomass raw material is put into the cleaning liquid and stirred, but the present invention is not limited to this, for example. The biomass raw material may be washed by contacting the biomass raw material with the cleaning liquid by spraying the cleaning liquid on the surface.
 また、上記の実施の形態においては、植物由来のバイオマス原料としてEFB11を用いることとしたが、他の植物由来のバイオマス原料についても適用できる。すなわち、例えば、植物由来のバイオマス原料としてパームヤシを出発原料とするメソカープファイバーを適用してもよいし、サトウキビを適用してもよいし、エリアンサスを適用してもよい。すなわち、植物由来のバイオマス原料は、パームヤシ空果房(EFB)、メソカープファイバー(MF)、サトウキビおよびエリアンサスのうちの少なくともいずれか1つを含んでもよい。このようなバイオマス燃料は、安価で多量に入手することができる。したがって、このようなバイオマス燃料の製造方法によると、燃料として有効利用することができるバイオマス燃料を安価に製造することができる。なお、MF、サトウキビおよびエリアンサスについても、必要に応じて所定の大きさとなるまで粉砕することにしてもよい。もちろんさらに他の植物由来のバイオマス原料を用いることにしてもよい。 Further, in the above embodiment, EFB11 is used as the plant-derived biomass raw material, but it can also be applied to other plant-derived biomass raw materials. That is, for example, mesocarp fiber using palm palm as a starting material may be applied as a plant-derived biomass raw material, sugar cane may be applied, or Erianthus may be applied. That is, the plant-derived biomass material may contain at least one of palm palm empty fruit bunch (EFB), mesocarp fiber (MF), sugar cane and Erianthus. Such biomass fuels are inexpensive and available in large quantities. Therefore, according to such a method for producing biomass fuel, it is possible to inexpensively produce biomass fuel that can be effectively used as fuel. The MF, sugar cane and Erianthus may also be crushed to a predetermined size, if necessary. Of course, other plant-derived biomass raw materials may be used.
 なお、上記の実施の形態において、洗浄液中に、必要に応じて界面活性剤を加えることにしてもよい。また、粉砕する工程については、省略可能であれば特に行わなくともよい。 In the above embodiment, a surfactant may be added to the cleaning liquid as needed. Further, the step of crushing may not be particularly performed if it can be omitted.
 また、用いる洗浄液として、上記の実施の形態においては、クエン酸、リンゴ酸、酒石酸をそれぞれ単独で用いることとしたが、これに限らず、クエン酸とリンゴ酸の混合物、クエン酸と酒石酸の混合物、リンゴ酸と酒石酸の混合物、クエン酸とリンゴ酸と酒石酸の混合物のそれぞれの水溶液を洗浄液として用いることとしてもよい。すなわち、本願における洗浄液は、クエン酸、リンゴ酸および酒石酸からなる群から選択された1種以上の化合物の水溶液であってもよい。 Further, as the cleaning liquid to be used, citric acid, malic acid, and tartaric acid are used alone in the above-described embodiment, but the present invention is not limited to this, and a mixture of citric acid and malic acid and a mixture of citric acid and tartaric acid. , A mixture of malic acid and tartaric acid, and an aqueous solution of a mixture of citric acid, malic acid and tartaric acid may be used as a cleaning solution. That is, the cleaning solution in the present application may be an aqueous solution of one or more compounds selected from the group consisting of citric acid, malic acid and tartaric acid.
 なお、本願に係るバイオマス燃料は、以下の構成を有する。すなわち、バイオマス燃料は、植物由来のバイオマス燃料を含む。バイオマス原料がアブラヤシ空果房である場合、測色色差計で測定したL値、a値およびb値がそれぞれ、L≧45.1、a≧8.5かつb≧21.6の関係を満たし、バイオマス原料がメソカープファイバーである場合、測色色差計で測定したL値、a値およびb値がそれぞれ、L≧32.2、a≧7.3かつb≧15.6の関係を満たし、バイオマス原料がサトウキビである場合、測色色差計で測定したL値、a値およびb値がそれぞれ、L≧44.3、a≧4.4かつb≧15.7の関係を満たし、バイオマス原料がエリアンサスである場合、測色色差計で測定したL値、a値およびb値がそれぞれ、L≧54.4、a≧6.9かつb≧23.2の関係を満たす。 The biomass fuel according to the present application has the following constitution. That is, the biomass fuel includes plant-derived biomass fuel. When the biomass raw material is Abra palm empty fruit bunch, the L * value, a * value and b * value measured by the color difference meter are L * ≧ 45.1, a * ≧ 8.5 and b * ≧ 21, respectively. When the relationship of .6 is satisfied and the biomass raw material is mesocarp fiber, the L * value, a * value and b * value measured by the color difference meter are L * ≧ 32.2 and a * ≧ 7, respectively. When the relationship of 3 and b * ≧ 15.6 is satisfied and the biomass raw material is sugar cane, the L * value, a * value and b * value measured by the color difference meter are L * ≧ 44.3 and a, respectively. When the relationship of * ≧ 4.4 and b * ≧ 15.7 is satisfied and the biomass raw material is Erianthus, the L * value, a * value and b * value measured by the color difference meter are L * ≧, respectively. The relationship of 54.4, a * ≧ 6.9 and b * ≧ 23.2 is satisfied.
 バイオマス原料と色彩値であるL、a、bとの関係が上記関係を具備するバイオマス燃料は、効率的に製造することができ、燃料として有効利用することができる。 A biomass fuel in which the relationship between the biomass raw material and the color values L * , a * , and b * has the above relationship can be efficiently produced and effectively used as a fuel.
 また、本願に係るバイオマス燃料は、以下の構成を有する。すなわち、バイオマス燃料は、植物由来のバイオマス原料を含む。バイオマス原料がアブラヤシ空果房である場合、測色色差計で測定したL値、a値、b値およびΔEがそれぞれ、L≧47.7、a≧9.5、b≧22.2かつΔE≧3.1の関係を満たし、バイオマス原料がメソカープファイバーである場合、測色色差計で測定したL値、a値、b値およびΔEがそれぞれ、L≧37.5、a≧8.0、b≧18.2かつΔE≧6.5の関係を満たし、バイオマス原料がサトウキビである場合、測色色差計で測定したL値、a値、b値およびΔEがそれぞれ、L≧44.4、a≧5.6、b≧17.6かつΔE≧2.4の関係を満たし、バイオマス原料がエリアンサスである場合、測色色差計で測定したL値、a値、b値およびΔEがそれぞれ、L≧55.9、a≧7.3、b≧24.5かつΔE≧2.3の関係を満たす。 In addition, the biomass fuel according to the present application has the following constitution. That is, the biomass fuel contains a plant-derived biomass raw material. When the biomass raw material is Abra palm empty fruit bunch, the L * value, a * value, b * value and ΔE measured by the color difference meter are L * ≧ 47.7, a * ≧ 9.5, b *, respectively. When the relationship of ≧ 22.2 and ΔE ≧ 3.1 is satisfied and the biomass raw material is mesocarp fiber, the L * value, a * value, b * value and ΔE measured by the color difference meter are L *, respectively . When the relationship of ≧ 37.5, a * ≧ 8.0, b * ≧ 18.2 and ΔE ≧ 6.5 is satisfied and the biomass raw material is sugar cane, the L * value measured by the color difference meter, a *. When the values, b * values and ΔE satisfy the relationships of L * ≧ 44.4, a * ≧ 5.6, b * ≧ 17.6 and ΔE ≧ 2.4, respectively, and the biomass raw material is Erianthus. L * value, a * value, b * value and ΔE measured by the color difference meter are L * ≧ 55.9, a * ≧ 7.3, b * ≧ 24.5 and ΔE ≧ 2.3, respectively. Meet the relationship.
 バイオマス原料と色彩値であるL、a、bおよび色差であるΔEとの関係が上記関係を具備するバイオマス燃料は、より燃料として有効利用することができる。 A biomass fuel having the above-mentioned relationship between the biomass raw material and the color values L * , a * , b * and the color difference ΔE can be more effectively used as fuel.
 上記本願のバイオマス燃料の製造方法により製造されたバイオマス燃料のサンプルを作製し、カリウムおよび塩素を低減する効果を確認する評価を行った。評価の手順は以下の通りである。 A sample of the biomass fuel produced by the above-mentioned method for producing the biomass fuel of the present application was prepared, and an evaluation was performed to confirm the effect of reducing potassium and chlorine. The evaluation procedure is as follows.
 (実施例1)
 植物由来のバイオマス原料としてEFBを準備し、繊維の長さが約1cmとなるよう鋏を用いて裁断した。EFB2.5gに対し、洗浄液としてクエン酸水溶液を250ml準備した。クエン酸水溶液の濃度は、0.1質量%であった。クエン酸水溶液中にEFBを投入し、振盪器の設定値を290rpmとして10分間撹拌した。その後、クエン酸水溶液からEFBを取り出し、実施例1に係るバイオマス燃料を得た。得られたバイオマス燃料について107℃で乾燥させた後、カリウム濃度および塩素濃度を測定した。カリウム濃度については、誘導結合プラズマ発光分光分析による定量分析を行った。塩素濃度については、イオンクロマトグラフ分析による定量分析を行った。結果を表1に示した。以下の実施例、比較例についても同様にカリウム濃度および塩素濃度を測定し、結果を表1に示した。
(Example 1)
EFB was prepared as a plant-derived biomass raw material and cut using scissors so that the fiber length was about 1 cm. 250 ml of an aqueous citric acid solution was prepared as a cleaning solution with respect to 2.5 g of EFB. The concentration of the citric acid aqueous solution was 0.1% by mass. EFB was put into an aqueous citric acid solution, and the mixture was stirred for 10 minutes with the set value of the shaker set to 290 rpm. Then, the EFB was taken out from the citric acid aqueous solution to obtain the biomass fuel according to Example 1. The obtained biomass fuel was dried at 107 ° C., and then the potassium concentration and the chlorine concentration were measured. The potassium concentration was quantitatively analyzed by inductively coupled plasma emission spectroscopy. The chlorine concentration was quantitatively analyzed by ion chromatograph analysis. The results are shown in Table 1. The potassium concentration and chlorine concentration were measured in the same manner in the following Examples and Comparative Examples, and the results are shown in Table 1.
 (実施例2)
 実施例1におけるバイオマス燃料の製造方法において、クエン酸水溶液の濃度を0.5質量%とした以外は実施例1と同様の工程で実施例2に係るバイオマス燃料を得た。
(Example 2)
In the method for producing a biomass fuel in Example 1, the biomass fuel according to Example 2 was obtained in the same process as in Example 1 except that the concentration of the citric acid aqueous solution was set to 0.5% by mass.
 (実施例3)
 実施例1におけるバイオマス燃料の製造方法において、クエン酸水溶液の濃度を1.0質量%とした以外は実施例1と同様の工程で実施例3に係るバイオマス燃料を得た。
(Example 3)
In the method for producing biomass fuel in Example 1, the biomass fuel according to Example 3 was obtained in the same process as in Example 1 except that the concentration of the citric acid aqueous solution was 1.0% by mass.
 (実施例4)
 実施例1におけるバイオマス燃料の製造方法において、クエン酸水溶液の濃度を2.0質量%とした以外は実施例1と同様の工程で実施例4に係るバイオマス燃料を得た。
(Example 4)
In the method for producing biomass fuel in Example 1, the biomass fuel according to Example 4 was obtained in the same process as in Example 1 except that the concentration of the citric acid aqueous solution was set to 2.0% by mass.
 (実施例5)
 実施例2におけるバイオマス燃料の製造方法において、クエン酸水溶液をリンゴ酸水溶液とした以外は実施例2と同様の工程で実施例5に係るバイオマス燃料を得た。
(Example 5)
In the method for producing biomass fuel in Example 2, the biomass fuel according to Example 5 was obtained in the same process as in Example 2 except that the citric acid aqueous solution was used as the malic acid aqueous solution.
 (実施例6)
 実施例2におけるバイオマス燃料の製造方法において、クエン酸水溶液を酒石酸水溶液とした以外は実施例2と同様の工程で実施例6に係るバイオマス燃料を得た。
(Example 6)
In the method for producing biomass fuel in Example 2, the biomass fuel according to Example 6 was obtained in the same process as in Example 2 except that the citric acid aqueous solution was used as a tartaric acid aqueous solution.
 (実施例7)
 実施例2におけるバイオマス燃料の製造方法において、バイオマス原料であるEFBをメソカープファイバー(MF)とした以外は実施例2と同様の工程で実施例7に係るバイオマス燃料を得た。
(Example 7)
In the method for producing biomass fuel in Example 2, the biomass fuel according to Example 7 was obtained in the same process as in Example 2 except that EFB as a biomass raw material was used as mesocarp fiber (MF).
 (実施例8)
 実施例2におけるバイオマス燃料の製造方法において、バイオマス原料であるEFBをサトウキビとした以外は実施例2と同様の工程で実施例8に係るバイオマス燃料を得た。
(Example 8)
In the method for producing biomass fuel in Example 2, the biomass fuel according to Example 8 was obtained in the same process as in Example 2 except that EFB, which is a biomass raw material, was used as sugar cane.
 (実施例9)
 実施例2におけるバイオマス燃料の製造方法において、バイオマス原料であるEFBをエリアンサスとした以外は実施例2と同様の工程で実施例9に係るバイオマス燃料を得た。
(Example 9)
In the method for producing biomass fuel in Example 2, the biomass fuel according to Example 9 was obtained in the same process as in Example 2 except that EFB, which is a biomass raw material, was used as Erianthus.
 (比較例1)
 実施例1におけるバイオマス燃料の製造方法において、クエン酸水溶液を用いず、すなわち、クエン酸水溶液の代わりに水を用い、水による洗浄を行った以外は実施例1と同様の工程で比較例1に係るバイオマス燃料を得た。
(Comparative Example 1)
In the method for producing biomass fuel in Example 1, a step similar to that in Example 1 was applied to Comparative Example 1 except that an aqueous citric acid solution was not used, that is, water was used instead of the aqueous citric acid solution and washing with water was performed. The biomass fuel was obtained.
 (比較例2)
 実施例2におけるバイオマス燃料の製造方法において、クエン酸水溶液の代わりにヘキサンを用いた以外は実施例2と同様の工程で比較例2に係るバイオマス燃料を得た。
(Comparative Example 2)
In the method for producing a biomass fuel in Example 2, the biomass fuel according to Comparative Example 2 was obtained in the same process as in Example 2 except that hexane was used instead of the aqueous citric acid solution.
 (比較例3)
 実施例7におけるバイオマス燃料の製造方法において、クエン酸水溶液を用いず、すなわち、クエン酸水溶液の代わりに水を用い、水による洗浄を行った以外は実施例7と同様の工程で比較例3に係るバイオマス燃料を得た。
(Comparative Example 3)
In the method for producing biomass fuel in Example 7, the same process as in Example 7 was carried out in Comparative Example 3 except that the citric acid aqueous solution was not used, that is, water was used instead of the citric acid aqueous solution and washing with water was performed. The biomass fuel was obtained.
 (比較例4)
 実施例8におけるバイオマス燃料の製造方法において、クエン酸水溶液を用いず、すなわち、クエン酸水溶液の代わりに水を用い、水による洗浄を行った以外は実施例8と同様の工程で比較例4に係るバイオマス燃料を得た。
(Comparative Example 4)
In the method for producing biomass fuel in Example 8, the same process as in Example 8 was carried out in Comparative Example 4 except that an aqueous citric acid solution was not used, that is, water was used instead of the aqueous citric acid solution and washing with water was performed. The biomass fuel was obtained.
 (比較例5)
 実施例9におけるバイオマス燃料の製造方法において、クエン酸水溶液を用いず、すなわち、クエン酸水溶液の代わりに水を用い、水による洗浄を行った以外は実施例9と同様の工程で比較例5に係るバイオマス燃料を得た。
(Comparative Example 5)
In the method for producing biomass fuel in Example 9, the same process as in Example 9 was carried out in Comparative Example 5 except that an aqueous citric acid solution was not used, that is, water was used instead of the aqueous citric acid solution and washing with water was performed. The biomass fuel was obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の実施例1~実施例4、比較例1、比較例2を参照すると、クエン酸水溶液を用いてEFBを洗浄した際には、カリウムの濃度が最大でも実施例1の0.245質量%である。特にクエン酸水溶液の濃度が0.5質量%、1.0質量%および2.0質量%の実施例2、実施例3および実施例4は、それぞれカリウム濃度が0.200質量%未満となっている。特に、クエン酸水溶液の濃度が1.0質量%の実施例3は、カリウムの濃度が最も低く0.140質量%であり、0.150質量%未満となっている。また、塩素濃度もいずれの実施例も0.046~0.053質量%であり、バイオマス燃料として用いるには十分に低い値を示している。このため、クエン酸水溶液の濃度を0.5質量%以上2.0質量%以下とするのが好適である。これに対し、水を用いた比較例1の場合、カリウムの濃度は0.880質量%であり、カリウムの残留濃度が多い。また、ヘキサンを用いた比較例2の場合、カリウムの濃度は0.650質量%であり、カリウムの残留濃度がまだ十分に多い。このようなバイオマス燃料では、例えば燃焼後の灰に含まれるカリウムの量が多いため、種々の問題が生ずるおそれがある。 With reference to Examples 1 to 4, Comparative Example 1 and Comparative Example 2 in Table 1, when the EFB was washed with an aqueous citric acid solution, the maximum potassium concentration was 0.245 mass of Example 1. %. In particular, in Example 2, Example 3 and Example 4 in which the concentrations of the citric acid aqueous solution were 0.5% by mass, 1.0% by mass and 2.0% by mass, the potassium concentration was less than 0.200% by mass, respectively. ing. In particular, in Example 3 in which the concentration of the citric acid aqueous solution is 1.0% by mass, the concentration of potassium is the lowest, 0.140% by mass, which is less than 0.150% by mass. In addition, the chlorine concentration was 0.046 to 0.053% by mass in all the examples, which was sufficiently low for use as a biomass fuel. Therefore, it is preferable that the concentration of the citric acid aqueous solution is 0.5% by mass or more and 2.0% by mass or less. On the other hand, in the case of Comparative Example 1 using water, the concentration of potassium was 0.880% by mass, and the residual concentration of potassium was large. Further, in the case of Comparative Example 2 using hexane, the concentration of potassium was 0.650% by mass, and the residual concentration of potassium was still sufficiently high. In such a biomass fuel, for example, since the amount of potassium contained in the ash after combustion is large, various problems may occur.
 リンゴ酸水溶液を用いた実施例5の場合も、カリウムの濃度が0.300質量%未満、具体的には、0.269質量%となり、水のみで洗浄した比較例1の場合およびヘキサンで洗浄した比較例2の場合と比較して大幅に低くなっている。酒石酸水溶液を用いた実施例6の場合も、カリウムの濃度が0.300質量%未満、具体的には、0.260質量%となり、水のみで洗浄した比較例1の場合およびヘキサンで洗浄した比較例2の場合と比較して大幅に低くなっている。 Also in the case of Example 5 using the malic acid aqueous solution, the potassium concentration was less than 0.300% by mass, specifically 0.269% by mass, and the case of Comparative Example 1 washed with water only and the case of washing with hexane. It is significantly lower than that of Comparative Example 2. Also in the case of Example 6 using the tartaric acid aqueous solution, the concentration of potassium was less than 0.300% by mass, specifically 0.260% by mass, and the case of Comparative Example 1 washed with water only and the case of washing with hexane. It is significantly lower than that of Comparative Example 2.
 植物由来のバイオマス原料としてEFBの代わりにメソカープファイバー(MF)を用いた実施例7の場合、カリウムの濃度が洗浄前の0.626質量%から0.043質量%に激減している。これに対し、MFを水のみで洗浄した比較例3の場合、カリウムの濃度は0.093質量%であり、実施例7の場合と比べてカリウムの残留濃度がまだ十分に多い。 In the case of Example 7 in which mesocarp fiber (MF) was used instead of EFB as a plant-derived biomass raw material, the potassium concentration was drastically reduced from 0.626% by mass before washing to 0.043% by mass. On the other hand, in the case of Comparative Example 3 in which the MF was washed with water only, the concentration of potassium was 0.093% by mass, and the residual concentration of potassium was still sufficiently higher than in the case of Example 7.
 植物由来のバイオマス原料としてEFBの代わりにサトウキビを用いた実施例8の場合、カリウムの濃度が洗浄前の0.346質量%から0.109質量%に激減している。これに対し、サトウキビを水のみで洗浄した比較例4の場合、カリウムの濃度は0.168質量%であり、実施例8の場合と比べてカリウムの残留濃度がまだ十分に多い。 In the case of Example 8 in which sugar cane was used instead of EFB as a plant-derived biomass raw material, the potassium concentration was drastically reduced from 0.346% by mass before washing to 0.109% by mass. On the other hand, in the case of Comparative Example 4 in which sugarcane was washed with water only, the concentration of potassium was 0.168% by mass, and the residual concentration of potassium was still sufficiently higher than in the case of Example 8.
 植物由来のバイオマス原料としてEFBの代わりにエリアンサスを用いた実施例9の場合、カリウムの濃度が洗浄前の1.850質量%から0.065質量%に激減している。これに対し、エリアンサスを水のみで洗浄した比較例5の場合、カリウムの濃度は0.239質量%であり、実施例9の場合と比べてカリウムの残留濃度がまだ十分に多い。 In the case of Example 9 in which Erianthus was used instead of EFB as a plant-derived biomass raw material, the potassium concentration was drastically reduced from 1.850% by mass before washing to 0.065% by mass. On the other hand, in the case of Comparative Example 5 in which the Erianthus was washed with water only, the potassium concentration was 0.239% by mass, and the residual concentration of potassium was still sufficiently higher than in the case of Example 9.
 このように、本願のバイオマス燃料の製造方法によれば、燃料として有効利用することができるバイオマス燃料を効率的に製造することができる。 As described above, according to the method for producing biomass fuel of the present application, it is possible to efficiently produce biomass fuel that can be effectively used as fuel.
 なお、実施例1、実施例2、実施例3、実施例7、実施例8、実施例9、実施例10、実施例11、実施例12、実施例13、実施例14、実施例15、実施例16、比較例6、比較例7、比較例8および比較例9に係るバイオマス燃料について、測色色差計を用いて色彩値および色差を計測した。実施例10~実施例16は、本願発明の範囲内のものである。測色色差計としては、測色色差計(日本電色工業株式会社製:ZE-2000)を用いて測定を行った。測定対象物として、実施例1~実施例16については、試料2.5gに対し、60℃に加温した処理液に浸漬し、10分間振盪による処理を行った後、2mmメッシュで濾過し、メッシュ上に残留したものを用いた。比較例6~比較例9については、未処理品、すなわち、水等における処理を行っていないものを用いた。比較例6~比較例9については、0.5~2cm程度に切断したサンプルを測定対象物として用いた。測定条件としては、各測定対象物に対して、107℃の環境下で16時間乾燥した後に粉砕し、篩分けを行った。1mmメッシュを通過した試料に対し、色差計による色彩値と色差の測定を行った。結果を表2に示す。なお、実施例10~実施例16の内容については、以下の通りである。比較例6~比較例9については、処理を行っておらず、各バイオマス原料について測定したものである。測定については、各サンプルについて3回行い、平均値を導出した。 In addition, Example 1, Example 2, Example 3, Example 7, Example 8, Example 9, Example 10, Example 11, Example 12, Example 13, Example 14, Example 15, The color values and color differences of the biomass fuels according to Example 16, Comparative Example 6, Comparative Example 7, Comparative Example 8 and Comparative Example 9 were measured using a colorimetric color difference meter. Examples 10 to 16 are within the scope of the present invention. As the colorimetric color difference meter, the measurement was performed using a colorimetric color difference meter (manufactured by Nippon Denshoku Industries Co., Ltd .: ZE-2000). As an object to be measured, for Examples 1 to 16, 2.5 g of a sample was immersed in a treatment liquid heated to 60 ° C., treated by shaking for 10 minutes, and then filtered through a 2 mm mesh. The one remaining on the mesh was used. For Comparative Examples 6 to 9, untreated products, that is, products that had not been treated with water or the like were used. For Comparative Examples 6 to 9, a sample cut to about 0.5 to 2 cm was used as a measurement object. As the measurement conditions, each object to be measured was dried in an environment of 107 ° C. for 16 hours, pulverized, and sieved. For the sample that passed through the 1 mm mesh, the color value and the color difference were measured by a color difference meter. The results are shown in Table 2. The contents of Examples 10 to 16 are as follows. Comparative Examples 6 to 9 were not treated and were measured for each biomass raw material. The measurement was performed three times for each sample, and the average value was derived.
 (実施例10)
 実施例1におけるバイオマス燃料の製造方法において、クエン酸水溶液の濃度を0.3質量%とした以外は実施例1と同様の工程で実施例10に係るバイオマス燃料を得た。
(Example 10)
In the method for producing biomass fuel in Example 1, the biomass fuel according to Example 10 was obtained in the same process as in Example 1 except that the concentration of the citric acid aqueous solution was set to 0.3% by mass.
 (実施例11)
 実施例7におけるバイオマス燃料の製造方法において、クエン酸水溶液の濃度を0.3質量%とした以外は実施例7と同様の工程で実施例11に係るバイオマス燃料を得た。
(Example 11)
In the method for producing biomass fuel in Example 7, the biomass fuel according to Example 11 was obtained in the same process as in Example 7 except that the concentration of the citric acid aqueous solution was set to 0.3% by mass.
 (実施例12)
 実施例7におけるバイオマス燃料の製造方法において、クエン酸水溶液の濃度を1.0質量%とした以外は実施例7と同様の工程で実施例12に係るバイオマス燃料を得た。
(Example 12)
In the method for producing biomass fuel in Example 7, the biomass fuel according to Example 12 was obtained in the same process as in Example 7 except that the concentration of the citric acid aqueous solution was set to 1.0% by mass.
 (実施例13)
 実施例8におけるバイオマス燃料の製造方法において、クエン酸水溶液の濃度を0.3質量%とした以外は実施例8と同様の工程で実施例13に係るバイオマス燃料を得た。
(Example 13)
In the method for producing biomass fuel in Example 8, the biomass fuel according to Example 13 was obtained in the same process as in Example 8 except that the concentration of the citric acid aqueous solution was set to 0.3% by mass.
 (実施例14)
 実施例8におけるバイオマス燃料の製造方法において、クエン酸水溶液の濃度を1.0質量%とした以外は実施例8と同様の工程で実施例14に係るバイオマス燃料を得た。
(Example 14)
In the method for producing biomass fuel in Example 8, the biomass fuel according to Example 14 was obtained in the same process as in Example 8 except that the concentration of the citric acid aqueous solution was set to 1.0% by mass.
 (実施例15)
 実施例9におけるバイオマス燃料の製造方法において、クエン酸水溶液の濃度を0.3質量%とした以外は実施例9と同様の工程で実施例15に係るバイオマス燃料を得た。
(Example 15)
In the method for producing biomass fuel in Example 9, the biomass fuel according to Example 15 was obtained in the same process as in Example 9 except that the concentration of the citric acid aqueous solution was set to 0.3% by mass.
 (実施例16)
 実施例9におけるバイオマス燃料の製造方法において、クエン酸水溶液の濃度を1.0質量%とした以外は実施例9と同様の工程で実施例16に係るバイオマス燃料を得た。
(Example 16)
In the method for producing biomass fuel in Example 9, the biomass fuel according to Example 16 was obtained in the same process as in Example 9 except that the concentration of the citric acid aqueous solution was 1.0% by mass.
Figure JPOXMLDOC01-appb-T000002
 表2を参照して、バイオマス原料がEFBである場合、実施例はいずれも測色色差計で測定したL値、a値およびb値がそれぞれ、L≧45.1、a≧8.5かつb≧21.6の関係を満たす。バイオマス原料がメソカープファイバーである場合、実施例はいずれも測色色差計で測定したL値、a値およびb値がそれぞれ、L≧32.2、a≧7.3かつb≧15.6の関係を満たす。バイオマス原料がサトウキビである場合、実施例はいずれも測色色差計で測定したL値、a値およびb値がそれぞれ、L≧44.3、a≧4.4かつb≧15.7の関係を満たす。バイオマス原料がエリアンサスである場合、実施例はいずれも測色色差計で測定したL値、a値およびb値がそれぞれ、L≧54.4、a≧6.9かつb≧23.2の関係を満たす。このようなバイオマス燃料は、効率的に製造することができ、燃料として有効利用することができる。一方、比較例はいずれも、上記関係を満たさない。
Figure JPOXMLDOC01-appb-T000002
With reference to Table 2, when the biomass raw material is EFB, the L * value, a * value and b * value measured by the colorimetric color difference meter are L * ≧ 45.1 and a * , respectively . The relationship of ≧ 8.5 and b * ≧ 21.6 is satisfied. When the biomass raw material is mesocarp fiber, the L * value, a * value, and b * value measured by the colorimetric color difference meter are L * ≧ 32.2 and a * ≧ 7.3, respectively. b * ≧ 15.6 is satisfied. When the biomass raw material is sugar cane, the L * value, a * value, and b * value measured by the colorimetric color difference meter are L * ≧ 44.3, a * ≧ 4.4, and b *, respectively. The relationship of ≧ 15.7 is satisfied. When the biomass raw material is Erianthus, the L * value, a * value, and b * value measured by the colorimetric color difference meter are L * ≧ 54.4, a * ≧ 6.9, and b, respectively. * Satisfy the relationship of ≧ 23.2. Such biomass fuel can be efficiently produced and effectively used as fuel. On the other hand, none of the comparative examples satisfy the above relationship.
 なお、バイオマス原料がアブラヤシ空果房である場合、実施例はいずれも測色色差計で測定したΔEがΔE≧3.1の関係を満たし、バイオマス原料がメソカープファイバーである場合、実施例はいずれも測色色差計で測定したΔEがΔE≧6.5の関係を満たし、バイオマス原料がサトウキビである場合、実施例はいずれも測色色差計で測定したΔEがΔE≧2.4の関係を満たし、バイオマス原料がエリアンサスである場合、実施例はいずれも測色色差計で測定したΔEがΔE≧2.3の関係を満たす。 In addition, when the biomass raw material is Abra palm empty fruit bunch, ΔE measured by the color difference meter satisfies the relationship of ΔE ≧ 3.1 in all the examples, and when the biomass raw material is mesocarp fiber, the example is In each case, when ΔE measured by the color difference meter satisfies the relationship of ΔE ≧ 6.5 and the biomass raw material is sugar cane, in each of the examples, ΔE measured by the color difference meter has a relationship of ΔE ≧ 2.4. When the above is satisfied and the biomass raw material is Erianthus, ΔE measured by the color difference meter satisfies the relationship of ΔE ≧ 2.3 in all the examples.
 また、好ましくは、バイオマス原料がアブラヤシ空果房である場合、測色色差計で測定したL値、a値、b値およびΔEがそれぞれ、L≧47.7、a≧9.5、b≧22.2かつΔE≧3.1の関係を満たし、バイオマス原料がメソカープファイバーである場合、測色色差計で測定したL値、a値、b値およびΔEがそれぞれ、L≧37.5、a≧8.0、b≧18.2かつΔE≧6.5の関係を満たし、バイオマス原料がサトウキビである場合、測色色差計で測定したL値、a値、b値およびΔEがそれぞれ、L≧44.4、a≧5.6、b≧17.6かつΔE≧2.4の関係を満たし、バイオマス原料がエリアンサスである場合、測色色差計で測定したL値、a値、b値およびΔEがそれぞれ、L≧55.9、a≧7.3、b≧24.5かつΔE≧2.3の関係を満たすよう構成される。 Further, preferably, when the biomass raw material is Abra palm empty fruit bunch, the L * value, a * value, b * value and ΔE measured by the color difference meter are L * ≧ 47.7 and a * ≧ 9, respectively. When the relationship of .5, b * ≧ 22.2 and ΔE ≧ 3.1 is satisfied and the biomass raw material is mesocarp fiber, the L * value, a * value, b * value and ΔE measured by the color difference meter are used. L * ≧ 37.5, a * ≧ 8.0, b * ≧ 18.2 and ΔE ≧ 6.5, respectively, and when the biomass raw material is sugar cane, L measured with a color difference meter * Value, a * value, b * value and ΔE satisfy the relationship of L * ≧ 44.4, a * ≧ 5.6, b * ≧ 17.6 and ΔE ≧ 2.4, respectively, and the biomass raw material is the area. In the case of NASUS, the L * value, a * value, b * value and ΔE measured by the color difference meter are L * ≧ 55.9, a * ≧ 7.3, b * ≧ 24.5 and ΔE, respectively. It is configured to satisfy the relationship of ≧ 2.3.
 バイオマス原料とL、a、b、ΔEとの関係が上記関係を具備する本願に係るバイオマス燃料は、より燃料として有効利用することができる。 The biomass fuel according to the present application, in which the relationship between the biomass raw material and L * , a * , b * , and ΔE has the above relationship, can be more effectively used as fuel.
 今回開示された実施の形態はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments disclosed this time are examples in all respects and are not restrictive in any respect. The scope of the present invention is not defined as described above, but is indicated by the claims, and is intended to include all modifications within the meaning and scope equivalent to the claims.
 本願のバイオマス燃料の製造方法およびバイオマス燃料は、燃料として有効利用することができるバイオマス燃料の効率的な製造が求められる場合において特に有利に適用される。 The method for producing biomass fuel and the biomass fuel of the present application are particularly advantageously applied when efficient production of biomass fuel that can be effectively used as fuel is required.
11 EFB、12 粉砕物、13 振盪器、14 容器。 11 EFB, 12 crushed material, 13 shaker, 14 container.

Claims (10)

  1.  植物由来のバイオマス原料を準備する工程と、
     クエン酸、リンゴ酸および酒石酸からなる群から選択された1種以上の化合物の水溶液である洗浄液を前記バイオマス原料に接触させて前記バイオマス原料を洗浄する工程と、を含む、バイオマス燃料の製造方法。
    The process of preparing plant-derived biomass raw materials and
    A method for producing a biomass fuel, which comprises a step of contacting a cleaning liquid which is an aqueous solution of one or more compounds selected from the group consisting of citric acid, malic acid and tartaric acid with the biomass raw material to wash the biomass raw material.
  2.  前記洗浄液の濃度は、0.1質量%以上である、請求項1に記載のバイオマス燃料の製造方法。 The method for producing a biomass fuel according to claim 1, wherein the concentration of the cleaning liquid is 0.1% by mass or more.
  3.  前記洗浄液の濃度は、0.5質量%以上である、請求項1または請求項2に記載のバイオマス燃料の製造方法。 The method for producing a biomass fuel according to claim 1 or 2, wherein the concentration of the cleaning liquid is 0.5% by mass or more.
  4.  前記洗浄液の濃度は、2.0質量%以下である、請求項1から請求項3のいずれか1項に記載のバイオマス燃料の製造方法。 The method for producing a biomass fuel according to any one of claims 1 to 3, wherein the concentration of the cleaning liquid is 2.0% by mass or less.
  5.  前記洗浄液を前記バイオマス原料に接触させて前記バイオマス原料を洗浄する工程では、所定の濃度に調製された前記洗浄液中で前記バイオマス原料を撹拌する、請求項1から請求項4のいずれか1項に記載のバイオマス燃料の製造方法。 The step of bringing the cleaning liquid into contact with the biomass raw material to wash the biomass raw material, wherein the biomass raw material is agitated in the cleaning liquid prepared to a predetermined concentration, according to any one of claims 1 to 4. The method for producing a biomass fuel according to the above.
  6.  前記洗浄液を前記バイオマス原料に接触させて前記バイオマス原料を洗浄する工程の前に、前記バイオマス原料を粉砕する工程をさらに含む、請求項1から請求項5のいずれか1項に記載のバイオマス燃料の製造方法。 The biomass fuel according to any one of claims 1 to 5, further comprising a step of crushing the biomass raw material before the step of bringing the cleaning liquid into contact with the biomass raw material to wash the biomass raw material. Production method.
  7.  前記洗浄液を前記バイオマス原料に接触させて前記バイオマス原料を洗浄する工程の後に、前記バイオマス燃料が濡れた状態で前記バイオマス燃料を水洗する工程をさらに含む、請求項1から請求項6のいずれか1項に記載のバイオマス燃料の製造方法。 Any one of claims 1 to 6, further comprising a step of bringing the cleaning liquid into contact with the biomass raw material to wash the biomass raw material and then washing the biomass fuel with water while the biomass fuel is wet. The method for producing biomass fuel according to the section.
  8.  前記バイオマス原料は、アブラヤシ空果房、メソカープファイバー、サトウキビおよびエリアンサスのうちの少なくともいずれか1つを含む、請求項1から請求項7のいずれか1項に記載のバイオマス燃料の製造方法。 The method for producing a biomass fuel according to any one of claims 1 to 7, wherein the biomass raw material contains at least one of oil palm empty fruit bunch, mesocarp fiber, sugar cane and Erianthus.
  9.  植物由来のバイオマス原料を含むバイオマス燃料であって、
     前記バイオマス原料がアブラヤシ空果房である場合、測色色差計で測定したL値、a値およびb値がそれぞれ、L≧45.1、a≧8.5かつb≧21.6の関係を満たし、
     前記バイオマス原料がメソカープファイバーである場合、測色色差計で測定したL値、a値およびb値がそれぞれ、L≧32.2、a≧7.3かつb≧15.6の関係を満たし、
     前記バイオマス原料がサトウキビである場合、測色色差計で測定したL値、a値およびb値がそれぞれ、L≧44.3、a≧4.4かつb≧15.7の関係を満たし、
     前記バイオマス原料がエリアンサスである場合、測色色差計で測定したL値、a値およびb値がそれぞれ、L≧54.4、a≧6.9かつb≧23.2の関係を満たす、バイオマス燃料。
    Biomass fuel containing plant-derived biomass raw materials
    When the biomass raw material is oil palm empty fruit bunch, the L * value, a * value and b * value measured by the colorimetric color difference meter are L * ≧ 45.1, a * ≧ 8.5 and b * ≧, respectively. Satisfy the relationship of 21.6,
    When the biomass raw material is mesocarp fiber, the L * value, a * value and b * value measured by the colorimetric color difference meter are L * ≧ 32.2, a * ≧ 7.3 and b * ≧ 15, respectively. Satisfy the relationship of .6,
    When the biomass raw material is sugar cane, the L * value, a * value and b * value measured by the colorimetric color difference meter are L * ≧ 44.3, a * ≧ 4.4 and b * ≧ 15.7, respectively. Meet the relationship,
    When the biomass raw material is Erianthus, the L * value, a * value and b * value measured by the colorimetric color difference meter are L * ≧ 54.4, a * ≧ 6.9 and b * ≧ 23, respectively. Biomass fuel that satisfies the relationship of 2.
  10.  植物由来のバイオマス原料を含むバイオマス燃料であって、
     前記バイオマス原料がアブラヤシ空果房である場合、測色色差計で測定したL値、a値、b値および未処理品に対する色差であるΔEがそれぞれ、L≧47.7、a≧9.5、b≧22.2かつΔE≧3.1の関係を満たし、
     前記バイオマス原料がメソカープファイバーである場合、測色色差計で測定したL値、a値、b値およびΔEがそれぞれ、L≧37.5、a≧8.0、b≧18.2かつΔE≧6.5の関係を満たし、
     前記バイオマス原料がサトウキビである場合、測色色差計で測定したL値、a値、b値およびΔEがそれぞれ、L≧44.4、a≧5.6、b≧17.6かつΔE≧2.4の関係を満たし、
     前記バイオマス原料がエリアンサスである場合、測色色差計で測定したL値、a値、b値およびΔEがそれぞれ、L≧55.9、a≧7.3、b≧24.5かつΔE≧2.3の関係を満たす、バイオマス燃料。
     
    Biomass fuel containing plant-derived biomass raw materials
    When the biomass raw material is oil palm empty fruit bunch, the L * value, a * value, b * value measured by the color difference meter and ΔE, which is the color difference with respect to the untreated product, are L * ≧ 47.7 and a, respectively. The relationship of * ≧ 9.5, b * ≧ 22.2 and ΔE ≧ 3.1 is satisfied.
    When the biomass raw material is mesocarp fiber, the L * value, a * value, b * value and ΔE measured by the color difference meter are L * ≧ 37.5, a * ≧ 8.0 and b *, respectively. Satisfying the relationship of ≧ 18.2 and ΔE ≧ 6.5,
    When the biomass raw material is sugar cane, the L * value, a * value, b * value and ΔE measured by the color difference meter are L * ≧ 44.4, a * ≧ 5.6, and b * ≧ 17, respectively. Satisfy the relationship of 0.6 and ΔE ≧ 2.4,
    When the biomass raw material is Erianthus, the L * value, a * value, b * value, and ΔE measured by the color difference meter are L * ≧ 55.9, a * ≧ 7.3, and b * ≧, respectively. A biomass fuel that satisfies the relationship of 24.5 and ΔE ≧ 2.3.
PCT/JP2019/017190 2019-04-23 2019-04-23 Method for producing biomass fuel and biomass fuel WO2020217305A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/017190 WO2020217305A1 (en) 2019-04-23 2019-04-23 Method for producing biomass fuel and biomass fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/017190 WO2020217305A1 (en) 2019-04-23 2019-04-23 Method for producing biomass fuel and biomass fuel

Publications (1)

Publication Number Publication Date
WO2020217305A1 true WO2020217305A1 (en) 2020-10-29

Family

ID=72940629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017190 WO2020217305A1 (en) 2019-04-23 2019-04-23 Method for producing biomass fuel and biomass fuel

Country Status (1)

Country Link
WO (1) WO2020217305A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039601A (en) * 2007-08-06 2009-02-26 Katsuyoshi Kondo Method for removing heavy metal element in biomass and method for decontaminating heavy metal-contaminated soil
WO2010123141A1 (en) * 2009-04-22 2010-10-28 Jfeスチール株式会社 Method for washing biomass, method for producing biomass charcoal and method for operating vertical furnace
WO2017014028A1 (en) * 2015-07-23 2017-01-26 太平洋セメント株式会社 Method for producing biomass fuel
JP2018039964A (en) * 2016-09-09 2018-03-15 出光興産株式会社 Lignin-containing biomass solid fuel
JP2018111090A (en) * 2017-01-11 2018-07-19 大中物産株式会社 Cleaning method of biomass and method of manufacturing solid fuel
JP2018138912A (en) * 2017-02-24 2018-09-06 一般財団法人電力中央研究所 Method for grasping chlorine state of solid fuel
WO2018207229A1 (en) * 2017-05-08 2018-11-15 株式会社Ihi Fuel production apparatus and fuel production method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039601A (en) * 2007-08-06 2009-02-26 Katsuyoshi Kondo Method for removing heavy metal element in biomass and method for decontaminating heavy metal-contaminated soil
WO2010123141A1 (en) * 2009-04-22 2010-10-28 Jfeスチール株式会社 Method for washing biomass, method for producing biomass charcoal and method for operating vertical furnace
WO2017014028A1 (en) * 2015-07-23 2017-01-26 太平洋セメント株式会社 Method for producing biomass fuel
JP2018039964A (en) * 2016-09-09 2018-03-15 出光興産株式会社 Lignin-containing biomass solid fuel
JP2018111090A (en) * 2017-01-11 2018-07-19 大中物産株式会社 Cleaning method of biomass and method of manufacturing solid fuel
JP2018138912A (en) * 2017-02-24 2018-09-06 一般財団法人電力中央研究所 Method for grasping chlorine state of solid fuel
WO2018207229A1 (en) * 2017-05-08 2018-11-15 株式会社Ihi Fuel production apparatus and fuel production method

Similar Documents

Publication Publication Date Title
Rowland et al. Lignin and cellulose fractionation in decomposition studies using acid‐detergent fibre methods
CN1025545C (en) Tobacco processing
WO2008053711A1 (en) Amorphous silica and process for production thereof
DE10341878A1 (en) Method for separating and recycling aluminum plastic (paper) composite packaging material - comprises using an acid solution containing nitric acid to soak an aluminum plastic (paper) composite packaging material; etc.
WO2011007505A1 (en) Treatment method for waste material generated through crude palm oil production process
WO2020217305A1 (en) Method for producing biomass fuel and biomass fuel
JP2009039601A (en) Method for removing heavy metal element in biomass and method for decontaminating heavy metal-contaminated soil
WO2018020726A1 (en) Method for pretreating biomass, and method for producing biomass fuel
CN109748475A (en) A kind of method of bio oil deacidification upgrading
JP2009084503A (en) Purification method of oil or fat
JP2009215437A (en) Method for producing rice bran oil
JP2018111090A (en) Cleaning method of biomass and method of manufacturing solid fuel
CN109293225A (en) A kind of production method of thick-walled quartz glass tubes
EP1015118B1 (en) Method and apparatus for extracting plant resins
JP6698658B2 (en) Carbon precursor derived from plant material
JP6289789B1 (en) Oil palm stalk and leaf pretreatment method, biomass fuel production method
CN107628644A (en) The recovery method of denitrating catalyst waste material
KR20190018180A (en) Pretreatment method and apparatus for palm by-product EFB to manufacture high quality pellet and the high quality palm EFB pellet manufactured by the pretreatment method
KR20190018404A (en) Pretreatment apparatus for palm by-product EFB to manufacture high quality pellet
CN101444272B (en) Novel process for deodorizing garlic oil
KR20190018403A (en) Pretreatment method for palm by-product EFB to manufacture high quality pellet and the high quality palm EFB pellet manufactured by the pretreatment method
Noviyanto et al. The Influence of Variation in Time and HCl Concentration to the Glucose Produced from Kepok Banana
JP5610498B2 (en) Oil separation method, oil / water separation agent and oil separation apparatus used in the method
CN1026990C (en) Method for extracting high purity shahao gum
CN115651695B (en) Double regeneration treatment method for basalt fiber and waste oil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP