WO2020100810A1 - Harvester and route setting system - Google Patents

Harvester and route setting system Download PDF

Info

Publication number
WO2020100810A1
WO2020100810A1 PCT/JP2019/044133 JP2019044133W WO2020100810A1 WO 2020100810 A1 WO2020100810 A1 WO 2020100810A1 JP 2019044133 W JP2019044133 W JP 2019044133W WO 2020100810 A1 WO2020100810 A1 WO 2020100810A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
traveling
travel
unworked
pattern
Prior art date
Application number
PCT/JP2019/044133
Other languages
French (fr)
Japanese (ja)
Inventor
中林隆志
佐野友彦
吉田脩
川畑翔太郎
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018214874A external-priority patent/JP2020080656A/en
Priority claimed from JP2018221153A external-priority patent/JP7039444B2/en
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to KR1020217013002A priority Critical patent/KR20210089652A/en
Priority to CN201980073779.0A priority patent/CN112996378B/en
Publication of WO2020100810A1 publication Critical patent/WO2020100810A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • A01D41/1278Control or measuring arrangements specially adapted for combines for automatic steering
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • A01B69/008Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F12/00Parts or details of threshing apparatus
    • A01F12/60Grain tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/20Off-Road Vehicles
    • B60Y2200/22Agricultural vehicles
    • B60Y2200/222Harvesters

Definitions

  • the present invention relates to an automatic traveling harvester equipped with a harvest tank for temporarily storing harvests, and a route setting system for setting a target route of this harvester.
  • Patent Document 1 As a combine, for example, the one described in Patent Document 1 is already known.
  • This combine is capable of performing harvesting traveling in which a harvesting device (“mowing device” in Patent Document 1) is used to harvest crops in the field while traveling by the traveling device.
  • the combine also includes a grain tank (“Glen tank” in Patent Document 1) that stores the harvested product obtained by the harvesting device.
  • the combine travel route management system disclosed in Patent Document 2 includes an area setting unit and a parking position setting unit.
  • the area setting unit sets an area in which the work vehicle has traveled along the boundary of the work area as an outer peripheral area, and sets an inner side of the outer peripheral area as a work target area.
  • the parking position setting unit sets the parking position of the work vehicle in the outer peripheral area.
  • the parking position is a place where the work vehicle parks when receiving support from a work assistance vehicle for harvesting crops and refueling.
  • automatic traveling in a counterclockwise spiral traveling pattern is performed until a sufficient work area for the U-turn route in the U-turn traveling pattern is secured in consideration of the parking position. After that, automatic traveling in the U-turn traveling pattern is performed.
  • the combine is configured to automatically travel based on a signal received from a GPS satellite, and a yield sensor (patent reference) for detecting the amount of grains in a grain tank.
  • a yield sensor for detecting the amount of grains in a grain tank.
  • grain amount detecting means may be provided. Then, when the value detected by the yield sensor becomes equal to or higher than the set value, this combine automatically suspends the harvesting work and moves to the vicinity of the transport vehicle (discharge point) in order to discharge the grain from the grain tank. ..
  • the harvester After discharging the harvested material, the harvester does not return to the detached point and restarts the harvesting operation in order to avoid wasteful traveling, but from a nearby work traveling route in a counterclockwise spiral traveling pattern. Resume harvesting work. This is because traveling in the spiral traveling pattern was restricted in the counterclockwise direction. No matter how many times such a spiral traveling less than one round is repeated, the distance between a part of the side of the unworked area and the boundary of the field (such as the shore) does not increase. Will be unevenly distributed. This causes a disadvantage that the U-turn traveling pattern cannot be traveled to the unworked area forever. In order to avoid such an inconvenience, the conventional combine is forced to perform inefficient peripheral work traveling.
  • automatic driving including movement for discharging the grain may not be efficient depending on the position at which the amount of the grain should be discharged. For example, if the amount of grains to be discharged reaches a position away from the end of the field, the combine moves back to the discharge point after retreating to the turning area (unworked area) of the field where harvesting has already been completed. It was necessary to carry out inefficient automatic driving.
  • the present invention aims to perform efficient work traveling.
  • a harvester which is equipped with a harvest tank that temporarily stores harvests and is capable of automatic travel, is an automatic travel control unit that automatically travels based on a target travel route and a vehicle position. And, based on the shape of the outer peripheral area that is the already-worked area formed along the inner side of the boundary line of the field by the surrounding work traveling, an unworked map creation unit that creates unworked map data indicating the unworked area, On the basis of the unworked map data, from a working travel route that is parallel to each side of a polygon showing the outer shape of the unworked region and a turning travel route that connects the two work travel routes with the direction change of the airframe.
  • the first travel pattern for sequentially performing work travel in the clockwise direction the second travel pattern for sequentially performing work travel in the counterclockwise direction, or both the first travel pattern and the second travel pattern
  • a target travel route setting unit that is set by using.
  • the route setting system is capable of automatic traveling, and automatically travels based on the harvested product tank that temporarily stores the harvested product, the target traveling route, and the vehicle position.
  • a route setting system for a harvester having a control unit, based on the shape of an outer peripheral region which is a worked region formed along the inside of the boundary line of the field by the work traveling around the harvester,
  • An unworked map creation unit that creates unworked map data indicating an unworked area, and a work traveling route and a body that are parallel to each side of a polygon that indicates the outer shape of the unworked area based on the unworked map data.
  • a target travel route setting unit that sets using a second travel pattern or both the first travel pattern and the second travel pattern.
  • the spiral traveling around the outer periphery of the unworked area in the spiral manner uses the first traveling pattern, the second traveling pattern, or both the first traveling pattern and the second traveling pattern. Can be done by For this reason, the harvester combines harvesting work in the unworked area without uneven distribution of the unworked area in one corner of the field by combining clockwise and counterclockwise swirl travel by automatic driving. It is possible to proceed and efficient work traveling can be performed.
  • the harvester When the parking position for refueling and checking the harvest status is the starting point, and it is necessary to check the refueling and harvest status in a spiral run for less than one lap, the harvester will work during the work of one lap. It will return to the starting point. After that, when the spiral traveling is performed again in the same direction, as described above, the unworked area is left in a biased form, and the distance from the border line of the field to the unworked area does not reach the predetermined value. The area arises. This makes it difficult to carry out work traveling in the U-turn traveling pattern performed thereafter, and inefficient spiral traveling is required to avoid such a state.
  • the target travel route setting unit sets the target travel route using at least the other of the first travel pattern and the second travel pattern. .. As a result, it is possible to perform efficient work traveling while suppressing uneven distribution of the unprocessed area.
  • the harvester leaves the work traveling route, It is necessary to drive to the designated harvest discharge location. If the unworked area has a large outer shape, it may be necessary to discharge the harvested product from the harvested product tank in a spiral run of less than one turn. In such a case, in order to minimize wasteful idle travel (running without harvesting work), work traveling is restarted from the vicinity of the discharge place of the harvested products, and as a result, spiral traveling less than one lap is repeated. Be done.
  • the target travel route setting unit sets at least the first for the work traveling after the harvested product is discharged.
  • the target travel route is set using the other of the travel pattern and the second travel pattern.
  • the work is separated for discharging the harvest, and after discharging the harvest at the harvest discharging place, Work traveling is performed in the first traveling pattern (clockwise spiral traveling). This enables efficient spiral traveling, and the distance between the boundary line of the field and the unworked area increases over the entire circumference of the unworked area.
  • the first traveling pattern and the second traveling pattern are alternately used every time the harvested product is discharged.
  • the swirl traveling in the first traveling pattern and the swirling traveling in the second traveling pattern are switched at the timing of discharging the harvested matter, so that the traveling loci of the field scene are dispersed and the unworked areas are unevenly distributed. The problem that the farm scene in a specific area is rough is suppressed.
  • the harvested product is provided at the end of the work traveling route on the turning traveling route side that is connected to the turning traveling route closest to the discharge position of the harvested product. Work running after discharge is started.
  • the target travel path setting unit sets linear work travel paths parallel to each other in the already-worked area.
  • the target traveling route is set in a U-turn traveling pattern that connects with the U-turn traveling route in the unworked area, and the target traveling route setting unit secures a space required for the U-turn traveling route. Up to setting the target travel route using the first travel pattern, the second travel pattern, or both the first travel pattern and the second travel pattern, and then using the U-turn travel pattern
  • the target travel route is set.
  • a harvesting machine for harvesting a crop comprising: a harvest tank for storing the harvest, a sensor for detecting the yield of the harvest stored in the harvest tank, and a discharge route for discharging the harvest And a travel route generation unit that generates the travel route, wherein the travel route generation unit is configured to determine whether the yield of the harvested product detected by the sensor in the middle of the unworked area is an emission yield, When the route element adjacent to the route element has already traveled, a traveling route that travels on the adjacent route element and leaves the unworked site is generated.
  • the route setting system automatically travels back and forth on a traveling route generated by selecting one or a plurality of route elements from a plurality of route elements provided in advance in an unworked place.
  • a routing system for a harvester that performs harvesting of a crop while storing a harvested product and a sensor that detects the yield of the harvested product stored in the harvested product tank.
  • a traveling route generation unit that generates the traveling route that includes a discharge route for discharging is provided, and the traveling route generation unit is a yield of the harvested product detected by the sensor in the middle of the unworked area is the emission yield.
  • the advancing route is not moved away from the unworked site by traveling along the adjacent route element that has already been traveled, and the vehicle is not moved forward. Since the vehicle can be separated from the work site, efficient automatic traveling can be performed.
  • efficient automatic traveling can be performed.
  • there is an adjacent route element that has already traveled from the current position to the end of the unworked area it may cross the adjacent route element that has already traveled and leave the unworked area. It is possible, and depending on the position of the discharge point, the work traveling can be efficiently performed by moving forward and leaving the unworked place.
  • the traveling route to leave includes a route that moves to the adjacent route element while moving forward, and when moving to the adjacent route element, the crop route may be moved while harvesting the crop.
  • the leaving traveling route may include a route that moves backward and moves to the adjacent route element.
  • the traveling route to be separated may include a route in which the traveling route element is moved backward and then moved forward to move to the adjacent route element.
  • the traveling route to be departed may include a route that moves backward to move between the traveling route element and the adjacent route element, and then moves forward to move to the adjacent route element.
  • the traveling route generation unit generates a temporary route element between the traveling route element and the adjacent route element, and the traveling route that leaves is moved backward to move to the temporary route element.
  • a path that moves forward to move to the adjacent path element may be included.
  • a typical combine harvester will be taken up and explained as an example of the harvester capable of automatic traveling according to the present invention.
  • “front” (direction of arrow F shown in FIG. 1) means forward with respect to the longitudinal direction (running direction) of the fuselage, and “rear” (arrow B shown in FIG. 1).
  • the direction of means the rear with respect to the longitudinal direction of the machine body (traveling direction).
  • the left-right direction or the lateral direction means a machine body transverse direction (machine body width direction) orthogonal to the machine body front-rear direction.
  • “Upper” (direction of arrow U shown in FIG. 1) and “lower” (direction of arrow D shown in FIG. 1) are positional relations in the vertical direction (vertical direction) of the airframe 10 and relations at the ground height. Indicates.
  • this combine has an airframe 10, a crawler type traveling device 11, a driving unit 12, a threshing device 13, a grain tank 14 as a harvest tank, a harvesting unit 15, a conveying device 16, and a grain discharge.
  • the device 18 and the own vehicle position detection unit 80 are provided.
  • the traveling device 11 is provided at the bottom of the machine body 10.
  • the combine is configured to be self-propelled by the traveling device 11.
  • the operating unit 12, the threshing device 13, and the grain tank 14 are provided on the upper side of the traveling device 11 and constitute the upper part of the machine body 10.
  • a driver who drives the combine and an observer who monitors the operation of the combine can be boarded on the drive unit 12.
  • the supervisor may monitor the combine work from outside the combine.
  • the grain discharging device 18 is connected to the grain tank 14.
  • the own vehicle position detection unit 80 is attached to the upper surface of the driving unit 12.
  • the harvesting section 15 is provided in the front part of the combine.
  • the transport device 16 is provided behind the harvesting unit 15.
  • the combine can carry out work traveling in which the traveling device 11 travels while harvesting grain in the field by the harvesting unit 15.
  • the cut culm cut by the harvesting unit 15 is transferred to the threshing device 13 by the transfer device 16.
  • the cut culm is threshed.
  • the grain obtained by the threshing process is stored in the grain tank 14.
  • the grain tank 14 is provided with a yield sensor 19 (corresponding to “sensor”) that measures the yield of the grain stored in the grain tank 14.
  • the grain tank 14 is equipped with a full sensor 21 (corresponding to “sensor” in FIG. 4).
  • the full sensor 21 is provided in the grain tank 14 and is a sensor that detects that the grain stored in the grain tank 14 is stored in an amount suitable for discharging such as a full state. is there.
  • the grain stored in the grain tank 14 is discharged to the outside of the machine by the grain discharging device 18 as necessary (eg, full).
  • a general-purpose terminal (communication terminal) 4 is arranged in the operating unit 12.
  • the general-purpose terminal 4 is fixed to the driving unit 12.
  • the present invention is not limited to this, and the general-purpose terminal 4 may be configured to be attachable / detachable to / from the driving unit 12, or the general-purpose terminal 4 may be taken out of the combine machine. ..
  • the vehicle position detection unit 80 includes a satellite positioning module 81 and an inertial measurement module 82.
  • the satellite positioning module 81 receives a GNSS (global navigation satellite system) signal (including a GPS signal), which is position information transmitted from the artificial satellite GS, and outputs positioning data for calculating the own vehicle position.
  • the inertial measurement module 82 incorporates a gyro acceleration sensor and a magnetic direction sensor, and outputs a signal indicating an instantaneous traveling direction.
  • the inertial measurement module 82 is used to complement the own vehicle position calculation by the satellite positioning module 81.
  • the inertial measurement module 82 may be arranged in a place different from the satellite positioning module 81.
  • the driver / monitor operates the combine and, as shown in FIG. 2, in the outer peripheral portion in the field, harvesting traveling (hereinafter, “surrounding work traveling”, so as to circulate along the boundary of the field). Perform "surround cutting” or simply “surround cutting”).
  • the area that has become the already-cut area (the already-worked area) due to the peripheral cutting is set as the outer peripheral area (the already-worked area) SA.
  • the internal area left inside the outer peripheral area SA as the uncut area (unworked area) is set as the unworked area (work target area) CA.
  • the peripheral cutting is performed by manual driving, but the peripheral cutting at this time may be the driving in which the driver rides on the combine and operates the combine, but the observer or the like drives the combine by remote control. May be. Further, in this embodiment, the peripheral cutting traveling is performed so that the unworked area CA becomes a quadrangle. Of course, a triangular or pentagonal unworked area CA may be adopted.
  • the outer peripheral area SA is used as a space for the combine to turn when harvesting is performed in the unworked area CA that is the work target area. Further, the outer peripheral area SA is also used as a moving space when the harvesting run is finished and the grain is moved to a grain discharge place or a fuel supply place. Therefore, in order to secure the width of the outer peripheral area SA to some extent, the driver performs the cutting operation around the circumference for 2 to 3 rounds.
  • the carrier CV shown in FIG. 2 collects the grains discharged from the grain discharging device 18 by the combine and transports them to a drying facility or the like. At the time of grain discharge, the combine moves through the outer peripheral area SA to the vicinity of the carrier CV, and then the grain discharge device 18 discharges the grain to the carrier CV, and suspends the work through the outer peripheral area SA. Return to the work start point, which is the position where you did.
  • the unworked map data showing the shape of the unworked area CA is created based on the inner circumference shape of the outer circumference area SA which is the already worked area. Based on this unworked map data, in order to work in the unworked area CA by automatic operation, a linear (straight or curved) work travel route is set in the unworked area CA, and one work travel route is set. The turning traveling route for shifting to the next working traveling route is set in the already-worked area. The unworked map data is updated as the work on the unworked area CA progresses.
  • the traveling patterns used when the work traveling (harvest traveling) is performed in the unworked area CA include a reciprocating traveling pattern shown in FIG. 3 and a spiral traveling pattern shown in FIG.
  • the reciprocating traveling pattern the combine travels while connecting two traveling routes (work traveling routes) parallel to one side of the polygon showing the outer shape of the unworked area CA with the U-turn turning route (non-work traveling route).
  • the spiral traveling pattern the combine is a turning traveling that connects the two traveling routes with the traveling route (work traveling route) that is parallel to each side of the polygon showing the outer shape of the unworked area CA and the direction change of the body 10.
  • a spiral target traveling route including a route is sequentially driven in a clockwise direction (same direction as clockwise direction) or sequentially in a counterclockwise direction (direction opposite to clockwise direction).
  • a turning travel route required in each corner area a turning travel route in which an alpha turn traveling is performed using a straight traveling route, a backward traveling route and a forward traveling route is adopted.
  • the revolving traveling route is set to the already-worked area regardless of whether it is a reciprocating traveling pattern or a spiral traveling pattern.
  • the second running pattern that goes around the outer circumference of the unworked area CA in the counterclockwise direction as shown in Fig. 5 has been conventionally used.
  • the first travel pattern that turns around the outer periphery of the unworked area CA in the clockwise direction as shown in FIG. 6 is also used.
  • Fig. 7 shows an example of standard harvesting work in a relatively small field.
  • the peripheral cutting SA is performed by manual steering, and the outer peripheral area SA that is the already-worked area is formed on the outer periphery of the field (#b).
  • the spiral travel in the second travel pattern is performed on the unworked area CA (#c). This spiral traveling is performed until the unworked area CA becomes large enough to allow the U-turn turning traveling in the U-turn traveling pattern, which is a kind of reciprocating traveling pattern (#d).
  • a travel route that covers the unworked area CA in the U-turn travel pattern is set (#e). The vehicle travels in the U-turn travel pattern along the set target travel route (#f).
  • the work process shown in FIG. 7 is a standard process, and such a work process is impossible in some fields.
  • the field is very large, it is required to discharge the grain (harvest product) from the grain tank 14 (see FIG. 1) in about half a turn in the swirling traveling in step #c because of fullness. ..
  • the timing of this discharge request is as follows. Grain storage amount per unit traveling distance in the work traveling up to and including the surrounding cutting traveling, storage amount of grain in the grain tank 14, capacity of the grain tank 14, transport vehicle CV ( The vehicle CV will be determined based on the capacity of the vehicle CV (see FIG. 2).
  • the combine temporarily suspends the work and moves to the discharge position where the transport vehicle CV is parked.
  • the position where the work is restarted is not the position where the work was interrupted. Near the first starting point is where work will resume. Therefore, when the spiral traveling in the second traveling pattern is repeated for the specific half circumferential area, the already-worked area is not expanded in the half circumferential area facing the specific half circumferential area. That is, the U-turn travel route cannot be set in a part of the existing work area, and the work travel according to the reciprocating travel pattern becomes impossible. In order to avoid this problem, in the present embodiment, as illustrated in FIG. 8, the target travel route is set by combining the first travel pattern and the second travel pattern.
  • the carrier CV is parked near the entrance to the farm field from the farm road, and the combine enters the farm field through the entrance from the farm road.
  • This approach position becomes the start position SP of the harvesting work (#A).
  • the surrounding cutting operation is manually performed from the start position SP. If the grain tank 14 becomes full in the middle of cutting the surrounding area, the grain tank 14 is temporarily stopped and the combine moves backward to return to the position of the carrier CV, or the carrier CV moves to the combine stop position to discharge the grain. Is done.
  • the outer peripheral area SA which is the already-worked area is formed on the outer periphery of the field (#B).
  • the resumption position RP for resuming the harvesting work has a principle that the traveling distance in the non-working should be as short as possible, so that an end portion of the traveling route close to the ejection position near the ejection position is selected. Therefore, in this example, the previous start position SP is adopted as the restart position RP.
  • the combine automatic traveling was limited to the spiral traveling in the second traveling pattern, so that the target traveling route for spiral traveling in the second traveling pattern is set from the restart position RP, and the harvesting work is performed. It is restarted (#D).
  • the already-worked area increases in the upper side area and the left-side area of the field, but the already-worked area does not increase in the lower side area and the right-side area of the field. Space for the route cannot be secured, and it becomes difficult to carry out work traveling according to the U-turn traveling pattern.
  • the target travel route in which the vehicle travels spirally in the first travel pattern from the restart position RP is set as shown in step #E without performing the travel as in step #D.
  • the spiral traveling along the traveling route is performed.
  • the spiral traveling may be performed so as to directly connect the first traveling pattern and the second traveling pattern until the grain discharge from the grain tank 14 is required.
  • Fig. 9 shows the combine control system.
  • This control system includes a control unit 5 including one or more electronic control units called ECUs, and various input / output devices that perform signal communication (data communication) with the control unit 5 through a wiring network such as an in-vehicle LAN. It is configured.
  • the control unit 5 is the core element of this control system, and is shown as an aggregate of a plurality of ECUs.
  • the signal from the vehicle position detection unit 80 is input to the control unit 5 through the vehicle-mounted LAN.
  • the one or more functional units constructed by the ECU configuring the control unit 5 can also be constructed by a program installed in the general-purpose terminal 4.
  • the control unit 5 includes a notification unit 501, an input processing unit 502, and an output processing unit 503 as an input / output interface.
  • the notification unit 501 generates notification data based on a command from each functional unit of the control unit 5 and gives the notification data to the notification device 62.
  • the notification device 62 is a device for notifying the driver of the work traveling state and various warnings, and is a buzzer, a lamp, a speaker, a display, or the like.
  • the input processing unit 502 is connected with a traveling state sensor group 63, a work state sensor group 64, a traveling operation unit 90, and the like.
  • the work state sensor group 64 includes sensors that detect the amount of stored grains in the grain tank 14.
  • the traveling operation unit 90 is a general term for operating tools that are manually operated by a driver and an operation signal thereof is input to the control unit 5.
  • the output processing unit 503 is connected to various operating devices 70 via the device driver 65.
  • the operating devices 70 there are a traveling device group 71 that is a traveling-related device and a working device group 72 that is a work-related device.
  • the traveling device group 71 includes steering devices that steer the machine body 10. This steering device is a device that changes the speed of the left and right crawlers when the crawler type traveling device 11 is adopted as in the present embodiment.
  • the steering device is a device that changes the steering angle of the steered wheels.
  • the control unit 5 includes a vehicle position calculation unit 50, a travel control unit 51, a work control unit 52, a travel mode management unit 53, a travel locus calculation unit 54, a work area determination unit 55, an unworked map creation unit 56, a travel route.
  • a calculator 57 is provided.
  • the vehicle position calculation unit 50 calculates the vehicle position based on the positioning data sequentially transmitted from the vehicle position detection unit 80 (satellite positioning module 81 or inertial measurement module 82) in the form of map coordinates (or field coordinates). Calculate with. At that time, the position of a specific portion of the machine body 10 (for example, the center of the machine body or the end of the harvesting section 15) can be set as the vehicle position.
  • the traveling locus calculation unit 54 calculates the traveling locus by plotting the vehicle position calculated by the vehicle position calculation unit 50 over time. Further, the traveling direction of the machine body 10 is calculated from the traveling locus (instantaneous traveling locus) in a predetermined time. Further, the traveling direction can be calculated based on the direction data included in the output data from the inertial measurement module 82.
  • the work area deciding unit 55 decides an already-worked area, an unworked area CA to be a work target area, and the like from the harvesting work performed with a predetermined work width.
  • the unworked map creating unit 56 includes a member on the ridge side of the machine body (a lateral outer end of the harvesting unit 15) obtained when the combine travels along the boundary line between the farm scene and the ridge (border line of the field). Part) traveling locus data (outer traveling locus data) and traveling locus data (inner traveling locus data) of a member (horizontal inner end portion of the harvesting section 15) on the side opposite to the ridges of the machine body 10 are input.
  • the non-working map creation unit 56 creates boundary line data indicating the map position of the boundary line of the field based on the outside travel locus data.
  • the unworked map creation unit 56 creates work boundary line data indicating the map position of the boundary line on the inner circumference side of the outer circumference area SA, that is, the boundary line between the already worked area and the unworked area CA, based on the inner running trajectory data. To generate.
  • the unworked map creation unit 56 also creates unworked map data indicating the unworked area CA from this work boundary line data.
  • the travel route calculation unit 57 calculates a travel route which is a target travel route for automatic travel covering the unworked area CA by the registered route calculation algorithm. As shown in FIG. 3 and FIG. 4, this travel route is parallel to each side in the polygon showing the outer shape of the unworked area CA, and two work travel routes with the direction change of the machine body 10. And a turning route connecting the two.
  • the traveling control unit 51 has an engine control function, a steering control function, a vehicle speed control function, and the like, and gives a traveling control signal to the traveling device group 71.
  • the work control unit 52 gives a work control signal to the work equipment group 72 in order to control the movement of the harvesting work device (the harvesting unit 15, the threshing device 13, the transport device 16, the grain discharging device 18, etc.). Further, the work control unit 52 also has a function of outputting a discharge request for discharging the grain from the grain tank 14.
  • the traveling control unit 51 includes a manual traveling control unit 511, an automatic traveling control unit 512, and a target traveling route setting unit 513.
  • the automatic travel mode is set, the automatic travel is performed, and when the manual travel mode is set, the manual travel is performed.
  • the switching of the driving modes is managed by the driving mode management unit 53.
  • the manual traveling control unit 511 When the manual traveling mode is selected, the manual traveling control unit 511 generates a control signal based on the operation by the driver to control the traveling device group 71, thereby realizing the manual driving.
  • the automatic traveling control unit 512 When the automatic traveling mode is set, the automatic traveling control unit 512 generates a control signal for changing the vehicle speed including automatic steering and stopping, and controls the traveling device group 71.
  • the control signal relating to the automatic steering eliminates the azimuth deviation and the positional deviation between the target traveling route set by the target traveling route setting unit 513 and the own vehicle position calculated by the own vehicle position calculating unit 50. Is generated as.
  • the target travel route setting unit 513 sets the target travel route using the work travel route and the turning travel route calculated by the travel route calculation unit 57. At that time, a first traveling pattern in which the work traveling is performed in the clockwise direction and a second traveling pattern in which the work traveling is performed in the counterclockwise direction are used.
  • the target travel route setting unit 513 can set the target travel route in various forms according to the field conditions, the harvest conditions, and the like. Further, the driver or the administrator can instruct the setting of the target travel route in a specific form. Below, the example of a form of target travel route setting is shown. (1) The spiral traveling using either one of the first traveling pattern and the second traveling pattern and the temporary disengagement traveling returning to the work starting point after discharging the grains from the grain tank 14 are repeatedly performed. Nevertheless, if there is a portion of the already-worked area in which the distance from the field boundary line to the unworked area CA does not reach the predetermined value, the target travel route is determined using the other of the first travel pattern and the second travel pattern. Is set.
  • the grain discharge from the grain tank 14 is required during the work traveling for less than one lap, and the grain discharge is performed.
  • the other traveling pattern is used for the spiral traveling after the grain discharge.
  • the first traveling pattern and the second traveling pattern are alternately used for the spiral traveling after the grain discharge from the grain tank 14 is requested and the grain discharge is executed.
  • the target travel route is set so that the work travel after the grain discharge is started from the end of the work travel route connected to the swivel travel route closest to the position where the grain is discharged, on the turn travel route side. Is set.
  • a target travel route for spiral travel which is a combination of the first travel pattern and the second travel pattern, is set until the space required for the U-turn travel route is secured, and then the U-turn travel pattern is set. The target travel route in is set.
  • the combine management / control system includes a control unit 5 including a large number of electronic control units called ECUs, and various input / outputs for performing signal communication (data communication) with the control unit 5 through a wiring network such as an in-vehicle LAN. It is composed of equipment.
  • the communication unit 66 is used by the combine management / control system for exchanging data with the general-purpose terminal 4 or with a management computer installed in a remote place.
  • the general-purpose terminal 4 also includes a tablet computer operated by an observer standing in the field, or a driver and an observer boarding the combine, a computer installed at home or in a management office, and the like.
  • the control unit 5 is a core element of this control system, and is shown as an assembly of a plurality of ECUs.
  • the signal from the vehicle position detection unit 80 is input to the control unit 5 through the vehicle-mounted LAN. Note that some of the components of the control unit 5 may be arranged in the general-purpose terminal 4.
  • the control unit 5 includes an input processing unit 502, a vehicle position calculation unit 50, a vehicle body direction calculation unit 58, a field management unit 83, a yield management unit 30, and a travel route generation unit 59. Further, although not shown, the control unit 5 can include an output processing unit, a traveling control unit that controls the traveling device group, a work control unit that controls the harvesting work device, and the like.
  • the output processing unit includes a steering device, an engine device, a transmission device, a braking device, a harvesting unit 15 (see FIG. 1), a threshing device 13 (see FIG. 1), a transport device 16 (see FIG. 1), and a grain discharging device 18 ( (See FIG. 1) and the like.
  • the vehicle position detection unit 80, the yield output unit 20, the traveling state sensor group 63, the work state sensor group 64, a traveling operation unit (not shown), etc. are connected to the input processing unit 502.
  • the input processing unit 502 receives information from these and provides the information to various functional units in the control unit 5.
  • the traveling state sensor group 63 includes an engine speed sensor, an overheat detection sensor, a brake pedal position detection sensor, a shift position detection sensor, a steering position detection sensor, and the like.
  • the working state sensor group 64 includes a harvesting working device (harvesting unit 15 (see FIG. 1)), a threshing device 13 (see FIG. 1), a transport device 16 (see FIG. 1), and a grain discharging device 18 (see FIG. 1). It includes a sensor for detecting the driving state of, a sensor for detecting the state of grain culms and grains, and the like.
  • the own vehicle position calculation unit 50 determines the map coordinates (or the field coordinates) of the specific location of the preset airframe 10 (see FIG. 1) based on the positioning data sequentially sent from the own vehicle position detection unit 80. Calculate the vehicle position and the positions of both ends of the harvest width.
  • the vehicle body heading calculation unit 58 obtains a traveling locus in a minute time from the own vehicle position sequentially calculated by the own vehicle position calculation unit 50 and obtains a vehicle body heading indicating the direction of the body 10 (see FIG. 1) in the traveling direction. decide. Further, the vehicle body azimuth calculation unit 58 can also determine the vehicle body azimuth based on the azimuth data included in the output data from the inertial measurement module 82.
  • the field management unit 83 based on the vehicle position calculated by the vehicle position calculation unit 50, the outer shape of the field, the outer shape of the work target area (unworked area) CA, the area of the field, and the area of the work target area CA. Etc. are calculated.
  • the farm field management unit 83 includes an area calculation unit 84, a shape calculation unit 85, and the like.
  • the shape calculation unit 85 calculates the outer shape of the field and the outer shape of the work target area CA.
  • the area calculation unit 84 calculates the area of the field and the area of the work target area CA.
  • the farm field management unit 83 may include a discharge point setting unit 86 that sets a discharge point (discharge position) for discharging the grains to the transport vehicle CV.
  • the yield management unit 30 manages the yield used for determining the travel route for automatic travel. Therefore, the yield management unit 30 estimates the yield rate, which is the yield for harvesting the crop per unit area of the field, the total yield that can be harvested in the work target area CA, and the like. In addition, the yield management unit 30 calculates the minimum number of discharges of the stored grain and the yield of the grain at the time of discharge, which is the minimum required when harvesting the crop in the work target area CA. Specifically, the yield management unit 30 can include a yield rate calculation unit 31, a total yield calculation unit 32 (corresponding to a total yield estimation unit), a discharge number calculation unit 33, a discharge reference yield calculation unit 34, and the like. The yield management unit 30 may be provided with all of them, or may be provided with some of them in combination.
  • the yield rate calculation unit 31 calculates the yield rate, which is the yield per unit area, from the yield of grains harvested in the outer peripheral area SA and the area of the outer peripheral area SA in the surrounding cutting. Specifically, the yield rate is obtained by dividing the yield of grains harvested in the outer peripheral area SA by the area of the outer peripheral area SA. The yield of the grains harvested in the outer peripheral area SA is obtained from the increase amount of the grains stored in the grain tank 14 from the start to the end of the peripheral cutting by the manual traveling. In addition, when the grain is discharged during the surrounding cutting, the amount of increase in the grain before and after that is integrated. Further, the yield of the grain harvested in the outer peripheral area SA may be calculated by the yield rate calculation unit 31, but may be calculated by another functional unit such as another functional unit in the yield management unit 30. The area of the outer peripheral area SA is obtained by the area calculation unit 84 by subtracting the area of the work target area CA from the area of the field.
  • the total yield calculation unit 32 estimates the total yield of grains expected to be harvested in the entire work target area CA from the area of the work target area CA and the yield rate. Specifically, the total yield is obtained by multiplying the area of the work target area CA by the yield rate. This makes it possible to efficiently generate a travel route of automatic travel in the work target area CA while taking into consideration the discharge of grains with reference to the total yield.
  • the discharge number calculation unit 33 is a minimum required for automatic traveling in the work target area CA from the discharge yield that is the yield stored in the grain tank 14 when discharging the grain and the total yield of the work target area CA.
  • the number of discharges is calculated. Specifically, the number of discharges is obtained by dividing the total yield by the discharge yield and raising it to an integer value.
  • the discharge yield may be the full yield of the grain tank 14 or a predetermined ratio or a smaller amount than the full yield, the discharge yield required from the outside, the yield corresponding to the loading capacity of the carrier, or the yield at the time of discharge in advance.
  • the yield can be defined as Further, when the grain is discharged during the surrounding cutting, the yield at the time of discharging may be the discharge yield.
  • the discharge standard yield calculation unit 34 calculates the discharge standard yield from the total yield of the work target area CA and the discharge count calculated by the discharge count calculation unit 33.
  • the discharge standard yield is the yield of the grain stored in the grain tank 14, which is a standard for discharging the grain during the automatic traveling.
  • the emission standard yield is obtained by dividing the total yield by the number of emissions.
  • the traveling route generation unit 59 generates an automatic traveling route in the work target area CA based on the outer shape of the field, the outer shape of the work target area CA, and the like.
  • the traveling route used in the automatic traveling can be generated by the traveling route generation unit 59 by a route calculation algorithm, or a downloaded one generated by the general-purpose terminal 4 or a management computer at a remote place can be used. It is possible.
  • the traveling route calculated by the traveling route generation unit 59 can be used for guidance purposes for the combine to travel along the traveling route even in manual operation.
  • this combine can be driven by both automatic operation for performing harvesting work by automatic traveling and manual operation for performing harvesting work by manual traveling.
  • the automatic driving mode is set, and in order to perform manual driving, the manual driving mode is set.
  • the switching of the driving mode is managed by a driving mode management unit (not shown) or the like.
  • the travel route generation unit 59 when generating the travel route of automatic travel, selects one of the total yield of the work target area CA, the number of discharges calculated by the discharge count calculation unit 33, and the discharge reference yield, or these. It is also possible to consider it in an appropriate combination. Further, the travel route generation unit 59 can also generate the travel route in consideration of the discharge points set by the discharge point setting unit 86.
  • the travel route including the discharge travel that moves to the discharge point can be efficiently performed while referring to the emission yield. Can be generated. It is also possible to calculate the remaining yield from the yield of grains harvested during the automatic traveling, and to change the remaining yield of the work target area CA to an efficient traveling route as the automatic traveling progresses.
  • the timing of reaching the discharge yield is estimated, and the timing of reaching the discharge yield is taken into consideration in consideration of the route to reach the discharge point. It is desirable to generate the CA at a timing to cut through the CA.
  • the combine during automatic traveling travels so as to traverse the work target area CA at a certain position, then turns and traverses the work target area CA at another position, and reciprocates like this.
  • the combine shown as the fuselage 10 in the figure
  • the combine was set in the vicinity of the carrier CV to discharge the stored grains when the yield of the grains stored in the grain tank 14 reached the discharge yield.
  • the discharge yield is, for example, the full yield and can be determined from the measurement value of the yield sensor 19 (see FIG. 1).
  • the discharge yield can be detected by the full sensor 21 (see FIG. 10) provided in the grain tank 14 (see FIG. 1) when the stored grain has reached the discharge yield.
  • the driver may be notified that the discharge yield has been reached.
  • the combine Assuming that the combine is traveling at a position inside the work target area CA (for example, position PF1) when the discharge yield is reached, the combine moves backward in the already harvested travel route and turns in the outer peripheral area SA.
  • the vehicle travels on the discharge travel route LO1 toward the discharge point PO.
  • the discharge travel route LO1 becomes long due to the discharge, and the efficiency of automatic travel deteriorates.
  • the stability and safety of traveling may deteriorate.
  • the traveling route that automatically travels in the work target area CA in consideration of the emission standard yield, the emission standard yield does not exceed the full yield (emission yield) as the yield when the grain is discharged. It suffices if the yield with a range is taken into consideration. Therefore, the travel route can be easily generated so that the timing of moving to the discharge point is the timing of cutting through the work target area CA. For example, as shown in FIG. 11, if the yield reaches a width that is equal to or higher than the discharge reference yield and equal to or less than the full yield at the position PF2 at the end of the work target area CA, then proceed forward and follow the discharge travel route LO2. You can go through to the discharge point PO. As a result, an efficient travel route can be easily generated.
  • the work target area CA is full.
  • the yield (discharging yield)
  • it does not newly enter the work target area CA.
  • the discharge yield has been reached in the middle of the work target area CA, and it may move to the discharge point.
  • the discharge yield occurs at an unexpected position, and the combine moves to the discharge point.
  • the full sensor 21 see FIG.
  • the combine will move to the emission point even if the emission yield is not actually reached.
  • the combine When the discharge yield is reached in the middle of the work target area CA, as described above, the combine needs to retreat the travel route that has already been harvested, travel along the discharge travel route LO1, and move to the discharge point PO. .. Then, as described above, efficient automatic traveling cannot be performed.
  • the work target area CA is separated by utilizing the adjacent harvested area, so that the backward traveling is suppressed as much as possible and the work target area CA is separated by the forward movement. Can be moved to the discharge point. As a result, efficient automatic traveling can be performed.
  • the route element is a candidate for a travel route.
  • the route elements are set at intervals smaller than the combine cutting width, and are basically set parallel to one side of the work target area CA.
  • the path element is usually a straight line that extends vertically through the work target area CA and is provided in parallel with each other. However, depending on the state of the field and the shape of the work target area CA, there may be a bent portion, or a part or the whole. May be curved.
  • a travel route in automatic travel is generated by selecting a plurality of route elements and adding a U turning route (turning traveling route) connecting the selected route elements (working traveling route). At this time, it is preferable to generate the traveling route in consideration of the emission standard yield and the like.
  • the combine travels forward from the route element LT1 to the route element LT2, travels forward through the route element LT2, and leaves the work target area CA.
  • uncut mowing planted culms remain in the traveling direction of the route element LT1, and if they move forward as they are, they will step over the uncut mowing planted culms. Therefore, when traveling forward from the route element LT1 to the route element LT2, the combine (machine body 10) performs harvesting traveling at least while traveling in the uncut area.
  • the harvested traveling route element LT2 is moved forward to perform work.
  • the target area CA it is not necessary to retract the path element LT1 to leave the work target area CA, and it is possible to efficiently move to the discharge point PO.
  • the vehicle since the vehicle does not travel backward, it is possible to maintain stability and safety of traveling. As a result, efficient automatic traveling can be performed.
  • the distance from the outer periphery of the work target area CA in the backward direction to the discharge point PO is greater than the distance from the outer circumference of the work target area CA to the discharge point PO in the forward direction from the point where the discharge yield is reached.
  • the discharge traveling route LO3 may be a route traveling in the second traveling pattern, but may be a route traveling in the first traveling pattern as shown in the first embodiment.
  • the combine when the combine (airframe 10) reaches the discharge yield in the middle of the work target area CA, it may be separated from the work target area CA via the route element LT2 by the manual travel, but the route is automatically traveled. It may be separated from the work target area CA via the element LT2.
  • the driver In the case of manual driving, when the full sensor 21 (see FIG. 10) or the yield sensor 19 (see FIG. 10) detects that the emission yield has been reached, the driver is notified that the emission yield has been reached. After that, the driver manually travels in response to the notification to leave the work target area CA via the above-described route element LT2.
  • the combine (airframe 10) is stopped at the time when the discharge yield is reached in the middle of the work target area CA by the control of the control unit 5 (see FIG. 10), and the route element LT2 has already been harvested. Whether or not the vehicle is traveling is checked, and when the route element LT2 has already been harvested and traveled, the traveling route generation unit 59 (see FIG. 10) determines a traveling route that leaves the work target area CA via the route element LT2. By generating it, automatic traveling is performed.
  • the combine when the discharge yield is reached in the middle of the work target area CA, the combine (airframe 10) travels backward on the backward route L3 and then on the forward route L4. The vehicle travels forward and moves from the route element LT1 to the route element LT2. As a result, the combine (airframe 10) moves to the route element LT2 without stepping on the uncut crop culm on the route element LT1, advances the route element LT2, and efficiently leaves the work target area CA. be able to.
  • the combine moves to the route element LT2 without stepping on the uncut planting culm on the route element LT1, advances the route element LT2, and efficiently leaves the work target area CA. can do. Further, it is possible to easily move from the route element LT1 to the route element LT2 without paying attention to the uncut mowing planted culm that remains in front of the position on the route element LT1 where the discharge yield has been reached.
  • the adjacent route element LT3 on the opposite side of the route element LT2 of the route element LT1 is not traveling for harvesting.
  • the route element LT4 adjacent to the route element LT2 on the opposite side of the route element LT1 may not be harvested. If the route element LT3 is not traveling for harvesting, there is a case where the uncut grass culm remaining on the route element LT3 is stepped on during backward traveling on the backward route L3 in the other embodiment 1. Further, when the route element LT4 is not traveling for harvesting, when the vehicle travels backward on the backward route L5 according to the second embodiment, an uncut planted grain culm remaining on the route element LT4 may be stepped on.
  • the route element LT1 or the route element LT1 or the route element LT2 is placed between the route element LT1 and the route element LT2.
  • a temporary path element LTP parallel to LT2 is set.
  • the combine (machine 10) moves from the route element LT1 to the temporary route element LTP by backward traveling (reverse route L7).
  • the combine (machine 10) moves from the temporary route element LTP to the route element LT2 by forward traveling (forward route L8).
  • the combine (machine 10) travels forward on the route element LT2 and leaves the work target area CA.
  • the combine (machine 10) may move between the route element LT1 and the route element LT2 by backward traveling (reverse route L7) without setting the provisional route element LTP.
  • the temporary route element LTP when the discharge yield is reached in the middle of the work target area CA, the temporary route element LTP is set, and the combine (machine 10) uses the backward route L7 as the temporary route. After traveling backward to the element LTP, the vehicle travels forward on the forward route L8 and moves to the route element LT2. As a result, it is possible to efficiently leave the work target area CA while suppressing the stepping on the uncut mowing planted culm remaining on the route elements LT3 and LT4.
  • the substantial harvesting work is performed by traveling using the straight work traveling route of the combine.
  • the straight work traveling route is not limited to one straight line.
  • the straight work traveling route may be a bent route, a curved route having a large radius of curvature, or a meandering line route.
  • the shape of the unworked area CA is a quadrangle, but it may be another polygon such as a triangle or a pentagon.
  • At least a part of the configuration in each of the above embodiments can be realized by using a program.
  • the program is stored in the storage device 92 provided in the control unit 5, and is executed by the control unit 91 including a processor such as a CPU and an ECU.
  • the storage device 92 and the control unit 91 may be provided in the control unit 5, but may be provided in another place.
  • a part or all of the travel route (target travel route) for the harvester to automatically travel is not limited to being set by the control unit 5 mounted on the harvester, but may be externally It may be configured to be generated by the above and acquired by the harvester.
  • the configuration for setting a part or all of the traveling route (target traveling route) is a route setting system, which includes a harvester or is configured separately from the harvester.
  • the traveling route (target traveling route) is a traveling route for swirling, or a route L1, a route L2, a backward route L3, a forward route L4, a backward route L5, a forward route L6, a backward route for moving to the discharge point PO. L7, forward path L8 and the like are included.
  • the route setting system has a configuration in which at least some of the components of the control unit 5 are provided outside the machine body 10 and information and signals can be transmitted and received between these and the machine body 10.
  • the target travel route setting unit 513 and the travel route generation unit 59 are provided outside the machine body 10, acquire information on a field from the machine body 10, and provide the machine body 10 with a travel route (target travel route) and the like.
  • the unworked map creation unit 56 and the farm field management unit 83 may be provided outside the machine body 10. Further, only the unworked map creation unit 56 and the farm field management unit 83 may be provided outside the machine body 10. Further, the yield management unit 30 may be provided outside, and which configuration of the control unit 5 is provided inside or outside the machine body 10 is arbitrary.
  • the present invention can be used not only for ordinary combine harvesters, but also for self-removing combine harvesters, and further for various harvesters such as corn harvesters and sugar cane harvesters.
  • Airframe 14 Grain tank (harvest tank) 19: Yield sensor (sensor) 21: Full sensor (sensor) 54: travel route generation unit 56: unworked map creation unit 513: target travel route setting unit CA: unworked area (unworked site) L3: Route L4: Route L7: Route L8: Route LT1: Route element LT2: Route element LTP: Temporary route element SA: Peripheral area (work area)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Guiding Agricultural Machines (AREA)

Abstract

This harvester is provided with: an unworked map generation unit which generates unworked map data indicating an unworked area; and a target travel route setting unit which sets a spiral target travel route on the basis of the unworked map data using a first travel pattern in which clockwise work travel is sequentially performed, a second travel pattern in which counterclockwise work travel is sequentially performed, or both the first travel pattern and the second travel pattern, the target travel route comprising work travel routes which are parallel to the sides of a polygonal shape which indicates the outer shape of the unworked area (CA) and turning travel routes on which a vehicle turns and which connect two work travel routes.

Description

収穫機および経路設定システムHarvester and routing system
 本発明は、収穫物を一時的に貯留する収穫物タンクを備えた自動走行可能な収穫機、およびこの収穫機の目標経路を設定する経路設定システムに関する。 The present invention relates to an automatic traveling harvester equipped with a harvest tank for temporarily storing harvests, and a route setting system for setting a target route of this harvester.
 コンバインとして、例えば、特許文献1に記載のものが既に知られている。このコンバインは、走行装置によって走行しながら、収穫装置(特許文献1では「刈取装置」)によって圃場の作物を収穫する収穫走行が可能である。また、このコンバインは、収穫装置によって収穫された収穫物を貯留する穀粒タンク(特許文献1では「グレンタンク」)を備えている。 As a combine, for example, the one described in Patent Document 1 is already known. This combine is capable of performing harvesting traveling in which a harvesting device (“mowing device” in Patent Document 1) is used to harvest crops in the field while traveling by the traveling device. The combine also includes a grain tank (“Glen tank” in Patent Document 1) that stores the harvested product obtained by the harvesting device.
 このようなコンバインでは、例えば、圃場での収穫機を用いた収穫作業の最初の段階では、周囲作業走行を通じて、圃場の境界線の内側に沿った既作業領域が形成され、この既作業領域である外周領域の形状に基づいて、未作業領域を示す未作業マップデータが作成される。未作業マップデータに基づいて、自動走行のための目標走行経路が設定され、自動走行が開始される。自動走行では、渦巻き走行(周回走行)パターンとUターン走行(往復走行)パターンとが用いられる。 In such a combine, for example, in the first stage of the harvesting work using the harvester in the field, through the peripheral work traveling, the already-worked area along the inside of the boundary line of the field is formed, and in this already-worked area. Based on the shape of a certain outer peripheral area, unworked map data indicating an unworked area is created. A target travel route for automatic travel is set based on the unworked map data, and automatic travel is started. In automatic traveling, a spiral traveling (circling traveling) pattern and a U-turn traveling (reciprocating traveling) pattern are used.
 特許文献2に開示されたコンバインの走行経路管理システムには、領域設定部と駐車位置設定部とが備えられている。領域設定部は、作業車が前記作業地の境界線に沿って作業走行した領域を外周領域として設定すると共に、この外周領域の内側を作業対象領域として設定する。駐車位置設定部は、外周領域に作業車の駐車位置を設定する。駐車位置は、収穫物回収や燃料補給のための作業支援車によって支援を受ける際に作業車が駐車する場所である。この走行経路管理システムでは、駐車位置も考慮して、Uターン走行パターンにおけるUターン経路のための十分な既作業領域が確保されるまで、反時計方向の渦巻き走行パターンでの自動走行が行われ、その後、Uターン走行パターンでの自動走行が行われる。 The combine travel route management system disclosed in Patent Document 2 includes an area setting unit and a parking position setting unit. The area setting unit sets an area in which the work vehicle has traveled along the boundary of the work area as an outer peripheral area, and sets an inner side of the outer peripheral area as a work target area. The parking position setting unit sets the parking position of the work vehicle in the outer peripheral area. The parking position is a place where the work vehicle parks when receiving support from a work assistance vehicle for harvesting crops and refueling. In this traveling route management system, automatic traveling in a counterclockwise spiral traveling pattern is performed until a sufficient work area for the U-turn route in the U-turn traveling pattern is secured in consideration of the parking position. After that, automatic traveling in the U-turn traveling pattern is performed.
 また、特許文献3に開示されるように、コンバインは、GPS衛星から受信した信号に基づいて自動走行するように構成されていると共に、穀粒タンク内の穀粒量を検出する収量センサ(特許文献3では「穀粒量検出手段」)を備える場合もある。そして、このコンバインは、収量センサによる検出値が設定値以上になると、穀粒タンクから穀粒を排出するために、収穫作業を中断して運搬車の近傍(排出ポイント)へ自動的に移動する。 Further, as disclosed in Patent Document 3, the combine is configured to automatically travel based on a signal received from a GPS satellite, and a yield sensor (patent reference) for detecting the amount of grains in a grain tank. In Document 3, "grain amount detecting means") may be provided. Then, when the value detected by the yield sensor becomes equal to or higher than the set value, this combine automatically suspends the harvesting work and moves to the vicinity of the transport vehicle (discharge point) in order to discharge the grain from the grain tank. ..
日本国特開2001-69836号公報Japanese Patent Laid-Open No. 2001-69836 日本国特開2018-101410号公報Japanese Unexamined Patent Publication No. 2018-101410 日本国特開2018-68284号公報Japanese Patent Laid-Open No. 2018-68284
 特許文献2による走行経路管理システムでは、反時計方向の渦巻き走行パターンでの走行が何周か繰り返されることよって、Uターン経路のための十分な既作業領域が確保できることが前提となっている。しかしながら、多角形状の未作業領域が大きい場合、未作業領域の1周未満の渦巻き走行が行われるだけで、つまり、最初のいくつかの辺に沿った渦巻き走行が行われるだけで、収穫物タンクが満杯になってしまう。そのような場合には、その渦巻き走行の途中で、収穫機は作業走行経路から離脱して、収穫物排出場所に向かい、収穫物タンクから収穫物を排出する。そして、収穫物を排出した後は、収穫機は無駄な走行を避けるために、離脱箇所に戻って収穫作業を再開するのではなく、近くの作業走行経路から、反時計方向の渦巻き走行パターンで収穫作業を再開する。これは、渦巻き走行パターンでの走行が反時計方向に制限されていたことによる。このような1周に満たない渦巻き走行は何度繰り返しても、未作業領域の一部の辺の領域と圃場の境界(畔など)との距離は増大しないので、未作業領域が圃場の片隅に偏在してしまう。このことは、未作業領域に対して、いつまでたってもUターン走行パターンでの走行ができないという不都合をもたらす。このような不都合を回避するため、従来のコンバインでは、非効率的な周囲作業走行を余儀なくされている。 In the travel route management system according to Patent Document 2, it is premised that a sufficient already-worked area for the U-turn route can be secured by the traveling in the counterclockwise spiral traveling pattern being repeated several times. However, if the polygonal unworked area is large, only less than one revolution of the unworked area will be swirled, that is, swirled along some of the first few sides, and the harvest tank will Will be full. In such a case, in the middle of the spiral traveling, the harvester leaves the work traveling route, goes to the harvest discharge location, and discharges the harvest from the harvest tank. After discharging the harvested material, the harvester does not return to the detached point and restarts the harvesting operation in order to avoid wasteful traveling, but from a nearby work traveling route in a counterclockwise spiral traveling pattern. Resume harvesting work. This is because traveling in the spiral traveling pattern was restricted in the counterclockwise direction. No matter how many times such a spiral traveling less than one round is repeated, the distance between a part of the side of the unworked area and the boundary of the field (such as the shore) does not increase. Will be unevenly distributed. This causes a disadvantage that the U-turn traveling pattern cannot be traveled to the unworked area forever. In order to avoid such an inconvenience, the conventional combine is forced to perform inefficient peripheral work traveling.
 また、従来のコンバインの自動走行では、穀粒を排出すべき穀粒量に到達した位置によっては、穀粒を排出するための移動を含めた自動走行が効率的でない場合があった。例えば、圃場の端部から離れた位置で穀粒を排出すべき穀粒量に到達した場合、コンバインはすでに収穫を終えた圃場の旋回領域(未作業地)まで後退した後、排出ポイントに移動する必要があり、非効率的な自動走行を行う必要があった。 In addition, in the conventional automatic driving of combine harvesters, automatic driving including movement for discharging the grain may not be efficient depending on the position at which the amount of the grain should be discharged. For example, if the amount of grains to be discharged reaches a position away from the end of the field, the combine moves back to the discharge point after retreating to the turning area (unworked area) of the field where harvesting has already been completed. It was necessary to carry out inefficient automatic driving.
 以上のような問題点を解決するために、本発明は、効率的な作業走行を行うことを目的とする。 In order to solve the above problems, the present invention aims to perform efficient work traveling.
 収穫物を一時的に貯留する収穫物タンクを備えた自動走行可能な、本発明の一実施形態に係る収穫機は、目標走行経路と自車位置とに基づいて自動走行を行う自動走行制御部と、周囲作業走行によって圃場の境界線の内側に沿って形成された既作業領域である外周領域の形状に基づいて、未作業領域を示す未作業マップデータを作成する未作業マップ作成部と、前記未作業マップデータに基づいて、前記未作業領域の外形を示す多角形における各辺に平行となる作業走行経路と機体の方向転換を伴って2つの前記作業走行経路をつなぐ旋回走行経路とからなる渦巻き状の前記目標走行経路を、順次時計方向に作業走行する第1走行パターン、または順次反時計方向に作業走行する第2走行パターン、あるいは前記第1走行パターンおよび前記第2走行パターンの両方を用いて設定する目標走行経路設定部とを備える。 A harvester according to an embodiment of the present invention, which is equipped with a harvest tank that temporarily stores harvests and is capable of automatic travel, is an automatic travel control unit that automatically travels based on a target travel route and a vehicle position. And, based on the shape of the outer peripheral area that is the already-worked area formed along the inner side of the boundary line of the field by the surrounding work traveling, an unworked map creation unit that creates unworked map data indicating the unworked area, On the basis of the unworked map data, from a working travel route that is parallel to each side of a polygon showing the outer shape of the unworked region and a turning travel route that connects the two work travel routes with the direction change of the airframe. In the spiral target travel route, the first travel pattern for sequentially performing work travel in the clockwise direction, the second travel pattern for sequentially performing work travel in the counterclockwise direction, or both the first travel pattern and the second travel pattern And a target travel route setting unit that is set by using.
 さらに、本発明の一実施形態に係る経路設定システムは、自動走行可能であり、収穫物を一時的に貯留する収穫物タンクと目標走行経路と自車位置とに基づいて自動走行を行う自動走行制御部とを有する収穫機のための経路設定システムであって、前記収穫機の周囲作業走行によって圃場の境界線の内側に沿って形成された既作業領域である外周領域の形状に基づいて、未作業領域を示す未作業マップデータを作成する未作業マップ作成部と、前記未作業マップデータに基づいて、前記未作業領域の外形を示す多角形における各辺に平行となる作業走行経路と機体の方向転換を伴って2つの前記作業走行経路をつなぐ旋回走行経路とからなる渦巻き状の前記目標走行経路を、順次時計方向に作業走行する第1走行パターン、または順次反時計方向に作業走行する第2走行パターン、あるいは前記第1走行パターンおよび前記第2走行パターンの両方を用いて設定する目標走行経路設定部と、を備える。 Further, the route setting system according to the embodiment of the present invention is capable of automatic traveling, and automatically travels based on the harvested product tank that temporarily stores the harvested product, the target traveling route, and the vehicle position. A route setting system for a harvester having a control unit, based on the shape of an outer peripheral region which is a worked region formed along the inside of the boundary line of the field by the work traveling around the harvester, An unworked map creation unit that creates unworked map data indicating an unworked area, and a work traveling route and a body that are parallel to each side of a polygon that indicates the outer shape of the unworked area based on the unworked map data. The first traveling pattern in which the work travel is sequentially performed in the clockwise direction, or the work travel is performed in the counterclockwise direction sequentially, on the spiral target travel path that is composed of the turning travel path that connects the two work travel paths with the change of the direction. A target travel route setting unit that sets using a second travel pattern or both the first travel pattern and the second travel pattern.
 以上のように構成により、収穫機では、未作業領域の外周を渦巻き状に回る渦巻き走行が、第1走行パターン、または第2走行パターン、あるいは第1走行パターンおよび第2走行パターンの両方を用いて行うことができる。このため、収穫機は、自動走行による時計方向の渦巻き走行と反時計方向の渦巻き走行とを組み合わせることで、未作業領域が圃場の片隅に偏在することなしに、未作業領域での収穫作業を進めていくことができ、効率的な作業走行を行うことができる。 With the configuration as described above, in the harvester, the spiral traveling around the outer periphery of the unworked area in the spiral manner uses the first traveling pattern, the second traveling pattern, or both the first traveling pattern and the second traveling pattern. Can be done by For this reason, the harvester combines harvesting work in the unworked area without uneven distribution of the unworked area in one corner of the field by combining clockwise and counterclockwise swirl travel by automatic driving. It is possible to proceed and efficient work traveling can be performed.
 給油や収穫状態のチェックなどのための駐車位置が作業開始点であり、かつ、1周未満の渦巻き走行で給油や収穫状態のチェックなどが必要となる場合、収穫機が一周の作業途中で作業開始点まで戻ることになる。その後に、再び同じ方向での渦巻き走行が行われると、上述したように、未作業領域が偏った形で残され、前記圃場の境界線から前記未作業領域までの距離が所定値に達しない区域が生じる。これは、その後に行われるUターン走行パターンでの作業走行を困難にし、このような状態を回避するためには非効率な渦巻き走行が必要になる。この問題を避けるために、本発明の好適な実施形態の1つでは、前記第1走行パターンおよび前記第2走行パターンの一方を用いた作業走行を繰り返して実施したにもかかわらず、前記圃場の境界線から前記未作業領域までの距離が所定値に達しない場合、前記目標走行経路設定部は、少なくとも前記第1走行パターンおよび前記第2走行パターンの他方を用いて前記目標走行経路を設定する。これにより、未材業領域の偏在が抑制されながら、効率的な作業走行を行うことが可能となる。 When the parking position for refueling and checking the harvest status is the starting point, and it is necessary to check the refueling and harvest status in a spiral run for less than one lap, the harvester will work during the work of one lap. It will return to the starting point. After that, when the spiral traveling is performed again in the same direction, as described above, the unworked area is left in a biased form, and the distance from the border line of the field to the unworked area does not reach the predetermined value. The area arises. This makes it difficult to carry out work traveling in the U-turn traveling pattern performed thereafter, and inefficient spiral traveling is required to avoid such a state. In order to avoid this problem, in one of the preferred embodiments of the present invention, although the work traveling using one of the first traveling pattern and the second traveling pattern is repeatedly performed, When the distance from the boundary line to the unworked area does not reach a predetermined value, the target travel route setting unit sets the target travel route using at least the other of the first travel pattern and the second travel pattern. .. As a result, it is possible to perform efficient work traveling while suppressing uneven distribution of the unprocessed area.
 第2走行パターン(反時計方向の渦巻き走行)で開始した渦巻き走行の途中で、収穫物タンクに貯留した収穫物の排出が必要となった場合には、収穫機は作業走行経路を離脱し、所定の収穫物排出場所まで走行する必要がある。未作業領域の外形が大きいと、1周未満の渦巻き走行で収穫物タンクからの収穫物の排出が要求される可能性がでてくる。このような場合、無駄な空走行(収穫作業を行わない走行)をできるだけ少なくするために、収穫物排出場所の近くから作業走行を再開するので、結果的に1周に満たない渦巻き走行が繰り返される。これにより、未作業領域の一部の辺の領域と圃場の境界(畔など)との距離が増大しないので、未作業領域が偏った形で残され、Uターン走行パターンでの作業走行が困難となる。このような問題を避けるため、本発明の好適な実施形態の1つでは、前記第1走行パターンおよび前記第2走行パターンとの一方を用いて前記未作業領域を自動走行した際に、1周未満の作業走行の途中で、前記収穫物タンクからの前記収穫物の排出要求が発生した場合、前記目標走行経路設定部は、前記収穫物の排出後の作業走行のために、少なくとも前記第1走行パターンおよび前記第2走行パターンの他方を用いて前記目標走行経路を設定する。この構成では、例えば、第2走行パターン(反時計方向の渦巻き走行)を用いた1周未満の作業走行で収穫物排出のために離脱し、収穫物排出場所で収穫物を排出した後は、第1走行パターン(時計方向の渦巻き走行)で、作業走行が行われる。
これにより、効率的な渦巻き走行が可能となり、未作業領域の全周にわたって、圃場の境界線と未作業領域との間の距離が大きくなっていく。
If the harvested product stored in the harvested tank needs to be discharged during the swirl traveling started in the second traveling pattern (counterclockwise swirl traveling), the harvester leaves the work traveling route, It is necessary to drive to the designated harvest discharge location. If the unworked area has a large outer shape, it may be necessary to discharge the harvested product from the harvested product tank in a spiral run of less than one turn. In such a case, in order to minimize wasteful idle travel (running without harvesting work), work traveling is restarted from the vicinity of the discharge place of the harvested products, and as a result, spiral traveling less than one lap is repeated. Be done. As a result, the distance between a part of the side of the unworked area and the boundary of the field (such as the shore) does not increase, so the unworked area is left in a biased form, making it difficult to carry out work travel in the U-turn travel pattern. Becomes In order to avoid such a problem, in one of the preferred embodiments of the present invention, when one of the first traveling pattern and the second traveling pattern is used to automatically travel in the unworked area, one revolution is made. When a request for discharging the harvested product from the harvested product tank is generated in the middle of the work traveling of less than, the target travel route setting unit sets at least the first for the work traveling after the harvested product is discharged. The target travel route is set using the other of the travel pattern and the second travel pattern. In this configuration, for example, after the work traveling for less than one lap using the second traveling pattern (counterclockwise spiral traveling), the work is separated for discharging the harvest, and after discharging the harvest at the harvest discharging place, Work traveling is performed in the first traveling pattern (clockwise spiral traveling).
This enables efficient spiral traveling, and the distance between the boundary line of the field and the unworked area increases over the entire circumference of the unworked area.
 本発明の好適な実施形態の1つでは、前記収穫物の排出毎に、前記第1走行パターンと前記第2走行パターンとが、交互に用いられる。この構成では、収穫物排出のタイミングで、第1走行パターンでの渦巻き走行と第2走行パターンでの渦巻き走行とが切り替えられるので、圃場面の走行軌跡が分散され、未作業領域が偏在するという問題、特定の区域の圃場面が荒れるという問題が抑制される。 In a preferred embodiment of the present invention, the first traveling pattern and the second traveling pattern are alternately used every time the harvested product is discharged. In this configuration, the swirl traveling in the first traveling pattern and the swirling traveling in the second traveling pattern are switched at the timing of discharging the harvested matter, so that the traveling loci of the field scene are dispersed and the unworked areas are unevenly distributed. The problem that the farm scene in a specific area is rough is suppressed.
 収穫物を排出した後に作業走行に戻る場合、収穫物排出場所の近くで作業走行を再開したほうが、空走行が少なくなり、作業効率が向上する。このことから、本発明の好適な実施形態の1つでは、前記収穫物の排出位置から最も近い位置の前記旋回走行経路につながる前記作業走行経路における当該旋回走行経路側の端部で、収穫物排出後の作業走行が開始される。 When returning to work after discharging crops, restarting work near the place where the crops are discharged will reduce idle running and improve work efficiency. From this, in one of the preferred embodiments of the present invention, the harvested product is provided at the end of the work traveling route on the turning traveling route side that is connected to the turning traveling route closest to the discharge position of the harvested product. Work running after discharge is started.
 稲、麦、大豆などの収穫作業では、周囲刈り走行によって作り出された未作業領域は、最初は未作業領域を渦巻き走行パターンで収穫作業が行われ、その後に、Uターン走行パターンが採用されている。このような作業走行の形態を自動走行で実現するために、本発明の好適な実施形態の1つでは、前記目標走行経路設定部は、前記既作業領域における互いに平行な直線状作業走行経路を、前記未作業領域におけるUターン旋回経路でつないでいくUターン走行パターンで前記目標走行経路を設定し、前記目標走行経路設定部は、前記Uターン旋回経路のために必要なスペースが確保されるまで、前記第1走行パターン、または前記第2走行パターン、あるいは前記第1走行パターンおよび前記第2走行パターンの両方を用いて前記目標走行経路を設定し、その後に前記Uターン走行パターンを用いて前記目標走行経路を設定する。 When harvesting rice, wheat, soybeans, etc., the unworked area created by the surrounding cutting run is first harvested in a spiral running pattern in the unworked area, and then the U-turn running pattern is adopted. There is. In order to realize such a mode of work travel by automatic travel, in one of the preferred embodiments of the present invention, the target travel path setting unit sets linear work travel paths parallel to each other in the already-worked area. The target traveling route is set in a U-turn traveling pattern that connects with the U-turn traveling route in the unworked area, and the target traveling route setting unit secures a space required for the U-turn traveling route. Up to setting the target travel route using the first travel pattern, the second travel pattern, or both the first travel pattern and the second travel pattern, and then using the U-turn travel pattern The target travel route is set.
 さらに、本発明の一実施形態に係る収穫機は、未作業地にあらかじめ設けられた複数の経路要素から1または複数の経路要素を選択して生成された走行経路を自動走行で往復走行しながら作物の収穫を行う収穫機であって、収穫物を貯留する収穫物タンクと、前記収穫物タンクに貯留された収穫物の収量を検出するセンサと、収穫物を排出するための排出経路を含む前記走行経路を生成する走行経路生成部とを備え、前記走行経路生成部は、前記未作業地の途中で前記センサにより検出される収穫物の収量が排出収量となった際に、走行中の経路要素に隣接する経路要素が既に走行済みである場合には、前記隣接する経路要素上を走行して前記未作業地から離脱する走行経路を生成する。 Further, the harvester according to the embodiment of the present invention automatically travels back and forth along a travel route generated by selecting one or more route elements from a plurality of route elements provided in advance in an unworked area. A harvesting machine for harvesting a crop, comprising: a harvest tank for storing the harvest, a sensor for detecting the yield of the harvest stored in the harvest tank, and a discharge route for discharging the harvest And a travel route generation unit that generates the travel route, wherein the travel route generation unit is configured to determine whether the yield of the harvested product detected by the sensor in the middle of the unworked area is an emission yield, When the route element adjacent to the route element has already traveled, a traveling route that travels on the adjacent route element and leaves the unworked site is generated.
 また、本発明の一実施形態に係る経路設定システムは、未作業地にあらかじめ設けられた複数の経路要素から1または複数の経路要素を選択して生成された走行経路を自動走行で往復走行しながら作物の収穫を行い、収穫物を貯留する収穫物タンクと前記収穫物タンクに貯留された収穫物の収量を検出するセンサとを有する収穫機のための経路設定システムであって、収穫物を排出するための排出経路を含む前記走行経路を生成する走行経路生成部を備え、前記走行経路生成部は、前記未作業地の途中で前記センサにより検出される収穫物の収量が排出収量となった際に、走行中の経路要素に隣接する経路要素が既に走行済みである場合には、前記隣接する経路要素上を走行して前記未作業地から離脱する走行経路を生成する。 In addition, the route setting system according to the embodiment of the present invention automatically travels back and forth on a traveling route generated by selecting one or a plurality of route elements from a plurality of route elements provided in advance in an unworked place. A routing system for a harvester that performs harvesting of a crop while storing a harvested product and a sensor that detects the yield of the harvested product stored in the harvested product tank. A traveling route generation unit that generates the traveling route that includes a discharge route for discharging is provided, and the traveling route generation unit is a yield of the harvested product detected by the sensor in the middle of the unworked area is the emission yield. At this time, if the route element adjacent to the route element that is currently traveling has already traveled, a traveling route that travels on the adjacent route element and leaves the unworked site is generated.
 以上のような構成により、未作業地の途中で排出収量になったとしても、隣接する走行済みの経路要素を走行することにより、後退して未作業地から離脱することなく、前進して未作業地から離脱することができるため、効率的な自動走行を行うことができる。また、現在位置から側方に未作業地の端部まで隣接する走行済みの経路要素が続いている場合には、この隣接する走行済みの経路要素を横断して未作業地を離脱することが可能であり、排出ポイントの位置によっては、前進して未作業地を離脱することにより効率的に作業走行を行うことができる。 With the above configuration, even if the emission yield is reached in the middle of the unworked site, the advancing route is not moved away from the unworked site by traveling along the adjacent route element that has already been traveled, and the vehicle is not moved forward. Since the vehicle can be separated from the work site, efficient automatic traveling can be performed. In addition, if there is an adjacent route element that has already traveled from the current position to the end of the unworked area, it may cross the adjacent route element that has already traveled and leave the unworked area. It is possible, and depending on the position of the discharge point, the work traveling can be efficiently performed by moving forward and leaving the unworked place.
 また、前記離脱する走行経路は、前進しながら前記隣接する経路要素に移動する経路を含み、前記隣接する経路要素に移動する際には、前記作物を収穫しながら移動しても良い。 The traveling route to leave includes a route that moves to the adjacent route element while moving forward, and when moving to the adjacent route element, the crop route may be moved while harvesting the crop.
 このように、収穫しながら前進走行することにより、未収穫の作物を踏み越えることなく、前進のみで未作業地から離脱することができるため、効率的な自動走行を行うことができる。 In this way, by moving forward while harvesting, it is possible to leave the unworked area only by moving forward without stepping over unharvested crops, so efficient automatic driving can be performed.
 また、前記離脱する走行経路は、後退して前記隣接する経路要素に移動する経路を含んでも良い。 Further, the leaving traveling route may include a route that moves backward and moves to the adjacent route element.
 また、前記離脱する走行経路は、前記走行中の経路要素を後退した後、前進して前記隣接する経路要素に移動する経路を含んでも良い。 Further, the traveling route to be separated may include a route in which the traveling route element is moved backward and then moved forward to move to the adjacent route element.
 また、前記離脱する走行経路は、後退して前記走行中の経路要素と前記隣接する経路要素との間に移動した後、前進して前記隣接する経路要素に移動する経路を含んでも良い。 The traveling route to be departed may include a route that moves backward to move between the traveling route element and the adjacent route element, and then moves forward to move to the adjacent route element.
 これらのように、いったん後退してから隣接する走行済みの経路要素を前進して未作業地から離脱することによっても、前進しながら未作業地から離脱することができるため、効率的な自動走行を行うことができる。 As described above, even if the route elements that have already traveled are moved backwards and then moved forward to leave the unworked ground, it is possible to leave the unworked ground while moving forward. It can be performed.
 また、前記走行経路生成部は、前記走行中の経路要素と前記隣接する経路要素との間に仮経路要素を生成し、前記離脱する走行経路は、後退して前記仮経路要素に移動した後、前進して前記隣接する経路要素に移動する経路を含んでも良い。 In addition, the traveling route generation unit generates a temporary route element between the traveling route element and the adjacent route element, and the traveling route that leaves is moved backward to move to the temporary route element. , A path that moves forward to move to the adjacent path element may be included.
 後退や隣接する走行済みの経路要素に移動する際に、隣接する未作業地にはみ出す場合がある。これに対して、仮走行要素に後退し、前進しながら隣接する走行済みの経路要素に移動することにより、走行中の経路要素や隣接する経路要素の周囲の未作業地にはみ出すことを抑制することができる。 When moving backward or moving to an adjacent route element that has already run, there is a case where it protrudes into an adjacent unworked site. On the other hand, by retreating to the provisional traveling element and moving forward to move to the adjacent traveling route element, it is possible to prevent the traveling route element or the neighboring route element from protruding to an unworked site around the traveling route element. be able to.
コンバインの左側面図である。It is a left side view of a combine. コンバインの自動走行の概要を示す図である。It is a figure which shows the outline | summary of the automatic drive of a combine. Uターンでつながれた往復走行を繰り返すUターン走行パターンを示す説明図である。It is explanatory drawing which shows the U-turn driving pattern which repeats the round-trip running connected by the U-turn. アルファターン走行を用いた渦巻き走行のための走行パターンを示す説明図である。It is explanatory drawing which shows the traveling pattern for spiral traveling using alpha turn traveling. 第2走行パターンでの渦巻き走行を示す模式図である。It is a schematic diagram which shows the spiral running in a 2nd running pattern. 第1走行パターンでの渦巻き走行を示す模式図である。It is a schematic diagram which shows the spiral running in a 1st running pattern. 第2走行パターンとUターン走行パターンとを用いて行われる収穫作業の流れを説明する説明図である。It is explanatory drawing explaining the flow of the harvesting operation performed using a 2nd traveling pattern and a U-turn traveling pattern. 第2走行パターンと、第1走行パターンと、Uターン走行パターンとを用いて行われる収穫作業の流れを説明する説明図である。It is explanatory drawing explaining the flow of the harvesting operation performed using a 2nd traveling pattern, a 1st traveling pattern, and a U-turn traveling pattern. 第1実施形態に係るコンバインの制御系の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the control system of the combine which concerns on 1st Embodiment. 第2実施形態に係るコンバインの管理・制御系の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the management / control system of the combine which concerns on 2nd Embodiment. 収穫走行中に行う穀粒の排出を説明する図である。It is a figure explaining discharge of a grain performed during a harvesting run. 第2実施形態における隣接既刈領域を用いて離脱する構成を説明する図である。It is a figure explaining the structure which separates using the adjacent mown area | region in 2nd Embodiment. 第2実施形態の別実施形態1における隣接既刈領域を用いて離脱する構成を説明する図である。It is a figure explaining the structure which separates using the adjacent mown area | region in another Embodiment 1 of 2nd Embodiment. 第2実施形態の別実施形態2における隣接既刈領域を用いて離脱する構成を説明する図である。It is a figure explaining the structure which uses the adjacent mown area | region in 2nd Embodiment of 2nd Embodiment, and separates. 第2実施形態の別実施形態3における隣接既刈領域を用いて離脱する構成を説明する図である。It is a figure explaining the structure which separates using the adjacent mowing area | region in another Embodiment 3 of 2nd Embodiment.
 本発明による自動走行可能な収穫機の一例として、普通型のコンバインが取り上げられ、説明される。なお、本明細書では、特に断りがない限り、「前」(図1に示す矢印Fの方向)は機体前後方向(走行方向)に関して前方を意味し、「後」(図1に示す矢印Bの方向)は機体前後方向(走行方向)に関して後方を意味する。また、左右方向または横方向は、機体前後方向に直交する機体横断方向(機体幅方向)を意味する。「上」(図1に示す矢印Uの方向)および「下」(図1に示す矢印Dの方向)は、機体10の鉛直方向(垂直方向)での位置関係であり、地上高さにおける関係を示す。 A typical combine harvester will be taken up and explained as an example of the harvester capable of automatic traveling according to the present invention. In the present specification, unless otherwise specified, “front” (direction of arrow F shown in FIG. 1) means forward with respect to the longitudinal direction (running direction) of the fuselage, and “rear” (arrow B shown in FIG. 1). The direction of means the rear with respect to the longitudinal direction of the machine body (traveling direction). Further, the left-right direction or the lateral direction means a machine body transverse direction (machine body width direction) orthogonal to the machine body front-rear direction. “Upper” (direction of arrow U shown in FIG. 1) and “lower” (direction of arrow D shown in FIG. 1) are positional relations in the vertical direction (vertical direction) of the airframe 10 and relations at the ground height. Indicates.
 〔コンバインの全体構成〕
 図1に示すように、このコンバインは、機体10、クローラ式の走行装置11、運転部12、脱穀装置13、収穫物タンクとしての穀粒タンク14、収穫部15、搬送装置16、穀粒排出装置18、自車位置検出ユニット80を備えている。
[Overall structure of combine]
As shown in FIG. 1, this combine has an airframe 10, a crawler type traveling device 11, a driving unit 12, a threshing device 13, a grain tank 14 as a harvest tank, a harvesting unit 15, a conveying device 16, and a grain discharge. The device 18 and the own vehicle position detection unit 80 are provided.
 走行装置11は、機体10の下部に備えられている。コンバインは、走行装置11によって自走可能に構成されている。運転部12、脱穀装置13、穀粒タンク14は、走行装置11の上側に備えられ、機体10の上部を構成している。運転部12には、コンバインを運転する運転者およびコンバインの作業を監視する監視者が搭乗可能である。なお、監視者は、コンバインの機外からコンバインの作業を監視しても良い。 The traveling device 11 is provided at the bottom of the machine body 10. The combine is configured to be self-propelled by the traveling device 11. The operating unit 12, the threshing device 13, and the grain tank 14 are provided on the upper side of the traveling device 11 and constitute the upper part of the machine body 10. A driver who drives the combine and an observer who monitors the operation of the combine can be boarded on the drive unit 12. The supervisor may monitor the combine work from outside the combine.
 穀粒排出装置18は、穀粒タンク14に連結されている。また、自車位置検出ユニット80は、運転部12の上方面に取り付けられている。 The grain discharging device 18 is connected to the grain tank 14. The own vehicle position detection unit 80 is attached to the upper surface of the driving unit 12.
 収穫部15は、コンバインにおける前部に備えられている。そして、搬送装置16は、収穫部15の後方に設けられている。コンバインは、収穫部15によって圃場の穀物を収穫しながら走行装置11によって走行する作業走行が可能である。 The harvesting section 15 is provided in the front part of the combine. The transport device 16 is provided behind the harvesting unit 15. The combine can carry out work traveling in which the traveling device 11 travels while harvesting grain in the field by the harvesting unit 15.
 収穫部15で刈り取られた刈取穀稈は、搬送装置16によって脱穀装置13へ搬送される。脱穀装置13において、刈取穀稈は脱穀処理される。脱穀処理により得られた穀粒は、穀粒タンク14に貯留される。穀粒タンク14には、穀粒タンク14に貯留された穀粒の収量を測定する収量センサ19(「センサ」に相当)が設けられる。また、穀粒タンク14は満杯センサ21(図4参照 「センサ」に相当)を備える。満杯センサ21は穀粒タンク14内に設けられ、穀粒タンク14に貯留された穀粒が、満杯となった状態等の排出することに適した量だけ貯留されていることを検知するセンサである。穀粒タンク14に貯留された穀粒は、必要に応じて(満杯など)、穀粒排出装置18によって機外に排出される。 The cut culm cut by the harvesting unit 15 is transferred to the threshing device 13 by the transfer device 16. In the threshing device 13, the cut culm is threshed. The grain obtained by the threshing process is stored in the grain tank 14. The grain tank 14 is provided with a yield sensor 19 (corresponding to “sensor”) that measures the yield of the grain stored in the grain tank 14. Further, the grain tank 14 is equipped with a full sensor 21 (corresponding to “sensor” in FIG. 4). The full sensor 21 is provided in the grain tank 14 and is a sensor that detects that the grain stored in the grain tank 14 is stored in an amount suitable for discharging such as a full state. is there. The grain stored in the grain tank 14 is discharged to the outside of the machine by the grain discharging device 18 as necessary (eg, full).
 また、運転部12には、汎用端末(通信端末)4が配置されている。本実施形態において、汎用端末4は、運転部12に固定されている。しかしながら、本発明はこれに限定されず、汎用端末4は、運転部12に対して着脱可能に構成されていても良いし、汎用端末4は、コンバインの機外に持ち出し可能であっても良い。 A general-purpose terminal (communication terminal) 4 is arranged in the operating unit 12. In the present embodiment, the general-purpose terminal 4 is fixed to the driving unit 12. However, the present invention is not limited to this, and the general-purpose terminal 4 may be configured to be attachable / detachable to / from the driving unit 12, or the general-purpose terminal 4 may be taken out of the combine machine. ..
 〔自動走行に関する構成〕
 図2に示すように、このコンバインは、圃場において設定された走行経路に沿って自動走行する。そのため、コンバインは、自車位置を認識することが必要である。自車位置検出ユニット80には、衛星測位モジュール81と慣性計測モジュール82とが含まれている。衛星測位モジュール81は、人工衛星GSから送信される位置情報であるGNSS(global navigation satellite system)信号(GPS信号を含む)を受信して、自車位置を算出するための測位データを出力する。慣性計測モジュール82は、ジャイロ加速度センサおよび磁気方位センサを組み込んでおり、瞬時の走行方向を示す信号を出力する。慣性計測モジュール82は、衛星測位モジュール81による自車位置算出を補完するために用いられる。慣性計測モジュール82は、衛星測位モジュール81とは別の場所に配置されても良い。
[Configuration related to automated driving]
As shown in FIG. 2, this combine automatically travels along the travel route set in the field. Therefore, the combine needs to recognize the position of the own vehicle. The vehicle position detection unit 80 includes a satellite positioning module 81 and an inertial measurement module 82. The satellite positioning module 81 receives a GNSS (global navigation satellite system) signal (including a GPS signal), which is position information transmitted from the artificial satellite GS, and outputs positioning data for calculating the own vehicle position. The inertial measurement module 82 incorporates a gyro acceleration sensor and a magnetic direction sensor, and outputs a signal indicating an instantaneous traveling direction. The inertial measurement module 82 is used to complement the own vehicle position calculation by the satellite positioning module 81. The inertial measurement module 82 may be arranged in a place different from the satellite positioning module 81.
 このコンバインによって圃場での収穫作業を行う場合の手順は、以下に説明する。まず、運転者兼監視者は、コンバインを操作し、図2に示すように、圃場内の外周部分において、圃場の境界線に沿って周回するように収穫走行(以下、「周囲作業走行」、「周囲刈り走行」、または単に「周囲刈り」とも称す)を行う。周囲刈りにより既刈領域(既作業地)となった領域は、外周領域(既作業領域)SAとして設定される。そして、外周領域SAの内側に未刈地(未作業地)のまま残された内部領域は未作業領域(作業対象領域)CAとして設定される。なお、周囲刈りは手動走行により行われるが、この際の周囲刈りは、運転者がコンバインに搭乗してコンバインを操縦する走行であっても良いが、遠隔操作により監視者等がコンバインを走行させても良い。また、この実施形態では、未作業領域CAが四角形となるように、周囲刈り走行が行われる。もちろん、三角形や五角形の未作業領域CAが採用されても良い。 The procedure for harvesting work in the field with this combine is explained below. First, the driver / monitor operates the combine and, as shown in FIG. 2, in the outer peripheral portion in the field, harvesting traveling (hereinafter, “surrounding work traveling”, so as to circulate along the boundary of the field). Perform "surround cutting" or simply "surround cutting"). The area that has become the already-cut area (the already-worked area) due to the peripheral cutting is set as the outer peripheral area (the already-worked area) SA. Then, the internal area left inside the outer peripheral area SA as the uncut area (unworked area) is set as the unworked area (work target area) CA. In addition, the peripheral cutting is performed by manual driving, but the peripheral cutting at this time may be the driving in which the driver rides on the combine and operates the combine, but the observer or the like drives the combine by remote control. May be. Further, in this embodiment, the peripheral cutting traveling is performed so that the unworked area CA becomes a quadrangle. Of course, a triangular or pentagonal unworked area CA may be adopted.
 外周領域SAは、作業対象領域である未作業領域CAにおいて収穫走行を行うときに、コンバインが方向転換するためのスペースとして利用される。また、外周領域SAは、収穫走行を一旦終えて、穀粒の排出場所へ移動する際や、燃料の補給場所へ移動する際等の移動用のスペースとしても利用される。このため、外周領域SAの幅をある程度広く確保するために、運転者は、2~3周の周囲刈り走行を行う。 The outer peripheral area SA is used as a space for the combine to turn when harvesting is performed in the unworked area CA that is the work target area. Further, the outer peripheral area SA is also used as a moving space when the harvesting run is finished and the grain is moved to a grain discharge place or a fuel supply place. Therefore, in order to secure the width of the outer peripheral area SA to some extent, the driver performs the cutting operation around the circumference for 2 to 3 rounds.
 なお、図2に示す運搬車CVは、コンバインが穀粒排出装置18から排出した穀粒を収集し、乾燥施設等へ運搬する。穀粒排出の際、コンバインは、外周領域SAを通って運搬車CVの近傍へ移動した後、穀粒排出装置18によって穀粒を運搬車CVへ排出し、外周領域SAを通って作業を中断した位置である作業開始点に戻る。 The carrier CV shown in FIG. 2 collects the grains discharged from the grain discharging device 18 by the combine and transports them to a drying facility or the like. At the time of grain discharge, the combine moves through the outer peripheral area SA to the vicinity of the carrier CV, and then the grain discharge device 18 discharges the grain to the carrier CV, and suspends the work through the outer peripheral area SA. Return to the work start point, which is the position where you did.
 未作業領域CAの形状を示す未作業マップデータが、既作業領域である外周領域SAの内周形状に基づいて作成される。この未作業マップデータに基づいて、未作業領域CAを自動運転で作業するために、線状(直線または曲線)の作業用走行経路が未作業領域CAに設定され、1つの作業用走行経路から次の作業用走行経路に移行するための旋回用走行経路が既作業領域に設定される。未作業マップデータは、未作業領域CAに対する作業の進行に伴って更新される。 The unworked map data showing the shape of the unworked area CA is created based on the inner circumference shape of the outer circumference area SA which is the already worked area. Based on this unworked map data, in order to work in the unworked area CA by automatic operation, a linear (straight or curved) work travel route is set in the unworked area CA, and one work travel route is set. The turning traveling route for shifting to the next working traveling route is set in the already-worked area. The unworked map data is updated as the work on the unworked area CA progresses.
 未作業領域CAを作業走行(収穫走行)する際に用いられる走行パターンとして、図3に示す往復走行パターンと、図4に示す渦巻き走行パターンとがある。往復走行パターンでは、コンバインは、未作業領域CAの外形を示す多角形の一辺に平行な2つの走行経路(作業走行経路)をUターン旋回経路(非作業走行経路)でつなぎながら走行する。渦巻き走行パターンでは、コンバインは、未作業領域CAの外形を示す多角形における各辺に平行となる走行経路(作業走行経路)と機体10の方向転換を伴って2つの当該走行経路をつなぐ旋回走行経路(非作業走行経路)とからなる渦巻き状の目標走行経路を、順次時計方向(時計回りと同じ方向)または順次反時計方向(時計回りと逆の方向)に走行する。その際、各コーナ領域で必要な旋回走行経路として、直進経路と後進旋回経路と前進旋回経路とを用いた、アルファターン走行が行われる旋回走行経路が採用される。往復走行パターンであっても、渦巻き走行パターンであっても、その旋回走行経路は、いずれも、原則として、既作業領域に設定される。 The traveling patterns used when the work traveling (harvest traveling) is performed in the unworked area CA include a reciprocating traveling pattern shown in FIG. 3 and a spiral traveling pattern shown in FIG. In the reciprocating traveling pattern, the combine travels while connecting two traveling routes (work traveling routes) parallel to one side of the polygon showing the outer shape of the unworked area CA with the U-turn turning route (non-work traveling route). In the spiral traveling pattern, the combine is a turning traveling that connects the two traveling routes with the traveling route (work traveling route) that is parallel to each side of the polygon showing the outer shape of the unworked area CA and the direction change of the body 10. A spiral target traveling route including a route (non-working traveling route) is sequentially driven in a clockwise direction (same direction as clockwise direction) or sequentially in a counterclockwise direction (direction opposite to clockwise direction). At that time, as a turning travel route required in each corner area, a turning travel route in which an alpha turn traveling is performed using a straight traveling route, a backward traveling route and a forward traveling route is adopted. In principle, the revolving traveling route is set to the already-worked area regardless of whether it is a reciprocating traveling pattern or a spiral traveling pattern.
 渦巻き走行では、従来から、図5に示すような反時計方向に未作業領域CAの外周を回る第2走行パターンが用いられている。本発明では、第2走行パターンだけを用いた場合に生じる不都合を解消するために、図6に示すような時計方向に未作業領域CAの外周を回る第1走行パターンも用いられる。 ▽ In the spiral running, the second running pattern that goes around the outer circumference of the unworked area CA in the counterclockwise direction as shown in Fig. 5 has been conventionally used. In the present invention, in order to eliminate the inconvenience that occurs when only the second travel pattern is used, the first travel pattern that turns around the outer periphery of the unworked area CA in the clockwise direction as shown in FIG. 6 is also used.
 図7には、比較的小さな圃場における標準的な収穫作業の一例が示されている。ここでは、コンバインが圃場に入ると(#a)、手動操舵で周囲刈り走行が行われ、圃場の外周に既作業領域である外周領域SAが形成される(#b)。この周囲刈り走行で形成される外周領域SAがコンバインのアルファターン走行が可能となる大きさになれば、未作業領域CAに対して第2走行パターンでの渦巻き走行が行われる(#c)。この渦巻き走行は、未作業領域CAが、往復走行パターンの一種であるUターン走行パターンにおけるUターン旋回走行が可能となる大きさになるまで行われる(#d)。次に、未作業領域CAに対して、Uターン走行パターンで未作業領域CAを網羅するような走行経路が設定される(#e)。設定された目標走行経路に沿ってUターン走行パターンでの走行が行われる(#f)。 Fig. 7 shows an example of standard harvesting work in a relatively small field. In this case, when the combine enters the field (#a), the peripheral cutting SA is performed by manual steering, and the outer peripheral area SA that is the already-worked area is formed on the outer periphery of the field (#b). If the outer peripheral area SA formed by this peripheral cutting travel has a size that enables the alpha-turn travel of the combine, the spiral travel in the second travel pattern is performed on the unworked area CA (#c). This spiral traveling is performed until the unworked area CA becomes large enough to allow the U-turn turning traveling in the U-turn traveling pattern, which is a kind of reciprocating traveling pattern (#d). Next, with respect to the unworked area CA, a travel route that covers the unworked area CA in the U-turn travel pattern is set (#e). The vehicle travels in the U-turn travel pattern along the set target travel route (#f).
〔第1実施形態〕
 図7で示された作業プロセスは標準的なものであり、圃場によってはこのような作業プロセスは不可能となる。例えば、圃場が非常に大きな場合、ステップ#cの渦巻き走行において、半周程度で、満杯等の理由で、穀粒タンク14(図1参照)からの穀粒(収穫物)の排出が要求される。この排出要求のタイミングは、周囲刈り走行を含むそれまでの作業走行における単位走行距離当たりの穀粒貯留量、穀粒タンク14における穀粒の貯留量、穀粒タンク14の容量、運搬車CV(以下運搬車CVに関しては図2参照のこと)の容量などから決定される。排出要求が生じると、コンバインは、一旦作業を中断して、運搬車CVが駐車している排出位置に向かう。穀粒排出後の収穫作業は、できるだけ排出位置の近くから再開するのが効率的であるので、多くの場合、作業を再開する位置は、作業を中断した位置とはならない。最初の出発点の近くが、作業を再開する位置となる。そのため、第2走行パターンでの渦巻き走行が特定の半周領域に対して繰り返されると、特定の半周領域に向かい合う半周領域では、既作業領域が拡張されなくなる。つまり、一部の既作業領域において、Uターン走行経路が設定できず、往復走行パターンによる作業走行が不可能となる。この問題を回避するために、本実施形態では、図8で例示するように、第1走行パターンと第2走行パターンとを組み合わせて目標走行経路が設定される。
[First Embodiment]
The work process shown in FIG. 7 is a standard process, and such a work process is impossible in some fields. For example, when the field is very large, it is required to discharge the grain (harvest product) from the grain tank 14 (see FIG. 1) in about half a turn in the swirling traveling in step #c because of fullness. .. The timing of this discharge request is as follows. Grain storage amount per unit traveling distance in the work traveling up to and including the surrounding cutting traveling, storage amount of grain in the grain tank 14, capacity of the grain tank 14, transport vehicle CV ( The vehicle CV will be determined based on the capacity of the vehicle CV (see FIG. 2). When the discharge request occurs, the combine temporarily suspends the work and moves to the discharge position where the transport vehicle CV is parked. Since it is efficient to restart the harvesting work after the grain discharge as close to the discharge position as possible, in many cases, the position where the work is restarted is not the position where the work was interrupted. Near the first starting point is where work will resume. Therefore, when the spiral traveling in the second traveling pattern is repeated for the specific half circumferential area, the already-worked area is not expanded in the half circumferential area facing the specific half circumferential area. That is, the U-turn travel route cannot be set in a part of the existing work area, and the work travel according to the reciprocating travel pattern becomes impossible. In order to avoid this problem, in the present embodiment, as illustrated in FIG. 8, the target travel route is set by combining the first travel pattern and the second travel pattern.
 以下、図8に示された作業プロセスを説明する。通常の手順として、農道から圃場への入口近くに運搬車CVが駐車され、コンバインは農道から入口を通じて圃場に進入する。
この進入位置が収穫作業の開始位置SPとなる(#A)。開始位置SPから手動で周囲刈り走行が行われる。周囲刈りの途中で穀粒タンク14が満杯になれば、一旦停車し、コンバインが後進で運搬車CVの位置に戻るか、あるいは、運搬車CVがコンバインの停車位置まで移動して、穀粒排出が行われる。一点鎖線で示されている周囲刈り走行を1周以上行うことにより、圃場の外周に既作業領域である外周領域SAが形成される(#B)。
The work process shown in FIG. 8 will be described below. As a normal procedure, the carrier CV is parked near the entrance to the farm field from the farm road, and the combine enters the farm field through the entrance from the farm road.
This approach position becomes the start position SP of the harvesting work (#A). The surrounding cutting operation is manually performed from the start position SP. If the grain tank 14 becomes full in the middle of cutting the surrounding area, the grain tank 14 is temporarily stopped and the combine moves backward to return to the position of the carrier CV, or the carrier CV moves to the combine stop position to discharge the grain. Is done. By performing the perimeter cutting operation indicated by the alternate long and short dash line for one or more rounds, the outer peripheral area SA which is the already-worked area is formed on the outer periphery of the field (#B).
 既作業領域がコンバインのアルファターン走行が可能となる大きさになれば、自動走行が開始される。まず、未作業領域CAに対して第2走行パターンでの渦巻き走行が行われる(#C)。図8の例では、半周分の渦巻き走行が終了した時に、穀粒タンク14の穀粒貯留量が穀粒排出のレベルに達したため、この渦巻き走行が中断される。この中断位置IPで機体10の方向転換が行われ、コンバインは、点線で示された復帰経路で、運搬車CVが駐車している排出位置まで走行する。または、コンバインは、中断位置IPからここまで来た経路に沿って後進し、排出位置に戻る。 Automatic driving will start when the existing work area becomes large enough to allow the combined alpha-turn driving. First, the spiral traveling in the second traveling pattern is performed on the unworked area CA (#C). In the example of FIG. 8, since the grain storage amount of the grain tank 14 has reached the level of grain discharge when the spiral traveling for half a round is completed, the spiral traveling is interrupted. At this interruption position IP, the aircraft 10 is turned, and the combine travels along the return route indicated by the dotted line to the discharge position where the transport vehicle CV is parked. Alternatively, the combine moves backward along the route from the interruption position IP to the return position to the discharge position.
 運搬車CVへの穀粒搬出が終了すると、渦巻き走行での収穫作業が再開される。収穫作業を再開する再開位置RPは、非作業で走行する距離をできるだけ短くするという原則があるので、排出位置に近接する走行経路の排出位置に近い端部が選択される。したがって、この例では、先の開始位置SPが再開位置RPとして採用される。 When the transportation of the grains to the carrier CV is completed, the swirling and harvesting work is restarted. The resumption position RP for resuming the harvesting work has a principle that the traveling distance in the non-working should be as short as possible, so that an end portion of the traveling route close to the ejection position near the ejection position is selected. Therefore, in this example, the previous start position SP is adopted as the restart position RP.
 この段階で、従来では、コンバインの自動走行は、第2走行パターンでの渦巻き走行に限定されていたので、再開位置RPから第2走行パターンで渦巻き走行する目標走行経路が設定され、収穫作業が再開される(#D)。しかしながら、このような半周の渦巻き走行を繰り返すと、圃場の上辺領域および左辺領域では、既作業領域が増大するが、圃場の下辺領域および右辺領域では、既作業領域が増大しないので、Uターン旋回経路のためのスペースが確保されず、Uターン走行パターンによる作業走行が困難となる。 At this stage, conventionally, the combine automatic traveling was limited to the spiral traveling in the second traveling pattern, so that the target traveling route for spiral traveling in the second traveling pattern is set from the restart position RP, and the harvesting work is performed. It is restarted (#D). However, if such a half-circle spiraling is repeated, the already-worked area increases in the upper side area and the left-side area of the field, but the already-worked area does not increase in the lower side area and the right-side area of the field. Space for the route cannot be secured, and it becomes difficult to carry out work traveling according to the U-turn traveling pattern.
 このため、本実施形態では、ステップ#Dのような走行は行わずに、ステップ#Eで示されるように、再開位置RPから第1走行パターンで渦巻き走行する目標走行経路が設定され、この目標走行経路に沿う渦巻き走行が行われる。このような、第1走行パターンと第2走行パターンとを組み合わせた渦巻き走行を繰り返して行うことで、既作業領域のどの場所でもUターン走行経路のためのスペースが効率的に確保される。Uターン走行経路のためのスペースが確保されると、往復走行パターンによる作業走行が開始される(#F)。 For this reason, in the present embodiment, the target travel route in which the vehicle travels spirally in the first travel pattern from the restart position RP is set as shown in step #E without performing the travel as in step #D. The spiral traveling along the traveling route is performed. By repeatedly performing the spiral traveling in which the first traveling pattern and the second traveling pattern are combined, the space for the U-turn traveling route can be efficiently secured at any place in the existing work area. When the space for the U-turn travel route is secured, work travel according to the reciprocating travel pattern is started (#F).
 なお、周囲刈りにおいて、穀粒タンク14からの穀粒排出が要求されるまで、第1走行パターンと第2走行パターンとを直接つなぐような渦巻き走行が行われても良い。 Note that, in the surrounding cutting, the spiral traveling may be performed so as to directly connect the first traveling pattern and the second traveling pattern until the grain discharge from the grain tank 14 is required.
 図9に、コンバインの制御系が示されている。この制御系は、1つ以上のECUと呼ばれる電子制御ユニットからなる制御ユニット5、およびこの制御ユニット5との間で車載LANなどの配線網を通じて信号通信(データ通信)を行う各種入出力機器から構成されている。 Fig. 9 shows the combine control system. This control system includes a control unit 5 including one or more electronic control units called ECUs, and various input / output devices that perform signal communication (data communication) with the control unit 5 through a wiring network such as an in-vehicle LAN. It is configured.
 制御ユニット5は、この制御系の中核要素であり、複数のECUの集合体として示されている。自車位置検出ユニット80からの信号は、車載LANを通じて制御ユニット5に入力される。制御ユニット5を構成しているECUによって構築される1つ以上の機能部は、汎用端末4にインストールされるプログラムによって構築することも可能である。 The control unit 5 is the core element of this control system, and is shown as an aggregate of a plurality of ECUs. The signal from the vehicle position detection unit 80 is input to the control unit 5 through the vehicle-mounted LAN. The one or more functional units constructed by the ECU configuring the control unit 5 can also be constructed by a program installed in the general-purpose terminal 4.
 制御ユニット5は、入出力インタフェースとして、報知部501と入力処理部502と出力処理部503とを備えている。 The control unit 5 includes a notification unit 501, an input processing unit 502, and an output processing unit 503 as an input / output interface.
 報知部501は、制御ユニット5の各機能部からの指令等に基づいて報知データを生成し、報知デバイス62に与える。報知デバイス62は、運転者等に作業走行状態や種々の警告を報知するためのデバイスであり、ブザー、ランプ、スピーカ、ディスプレイなどである。 The notification unit 501 generates notification data based on a command from each functional unit of the control unit 5 and gives the notification data to the notification device 62. The notification device 62 is a device for notifying the driver of the work traveling state and various warnings, and is a buzzer, a lamp, a speaker, a display, or the like.
 入力処理部502には、走行状態センサ群63、作業状態センサ群64、走行操作ユニット90、などが接続されている。作業状態センサ群64には、穀粒タンク14内の穀粒貯留量を検出するセンサが含まれている。走行操作ユニット90は、運転者によって手動操作され、その操作信号が制御ユニット5に入力される操作具の総称である。 The input processing unit 502 is connected with a traveling state sensor group 63, a work state sensor group 64, a traveling operation unit 90, and the like. The work state sensor group 64 includes sensors that detect the amount of stored grains in the grain tank 14. The traveling operation unit 90 is a general term for operating tools that are manually operated by a driver and an operation signal thereof is input to the control unit 5.
 出力処理部503は、機器ドライバ65を介して種々の動作機器70と接続している。
動作機器70として、走行関係の機器である走行機器群71と作業関係の機器である作業機器群72とがある。走行機器群71には、機体10を操舵する操舵機器が含まれている。この操舵機器は、本実施形態のようにクローラ式の走行装置11が採用されている場合には、左右のクローラの速度を変更する機器である。操舵輪方式の走行装置11が採用されている場合には、操舵機器は、操舵輪の操舵角を変更する機器である。
The output processing unit 503 is connected to various operating devices 70 via the device driver 65.
As the operating devices 70, there are a traveling device group 71 that is a traveling-related device and a working device group 72 that is a work-related device. The traveling device group 71 includes steering devices that steer the machine body 10. This steering device is a device that changes the speed of the left and right crawlers when the crawler type traveling device 11 is adopted as in the present embodiment. When the steered wheel type traveling device 11 is adopted, the steering device is a device that changes the steering angle of the steered wheels.
 制御ユニット5には、自車位置算出部50、走行制御部51、作業制御部52、走行モード管理部53、走行軌跡算出部54、作業領域決定部55、未作業マップ作成部56、走行経路算出部57が備えられている。 The control unit 5 includes a vehicle position calculation unit 50, a travel control unit 51, a work control unit 52, a travel mode management unit 53, a travel locus calculation unit 54, a work area determination unit 55, an unworked map creation unit 56, a travel route. A calculator 57 is provided.
 自車位置算出部50は、自車位置検出ユニット80(衛星測位モジュール81または慣性計測モジュール82)から逐次送られてくる測位データに基づいて、自車位置を地図座標(または圃場座標)の形式で算出する。その際、自車位置として、機体10の特定箇所(例えば機体中心や収穫部15の端部など)の位置を設定することができる。 The vehicle position calculation unit 50 calculates the vehicle position based on the positioning data sequentially transmitted from the vehicle position detection unit 80 (satellite positioning module 81 or inertial measurement module 82) in the form of map coordinates (or field coordinates). Calculate with. At that time, the position of a specific portion of the machine body 10 (for example, the center of the machine body or the end of the harvesting section 15) can be set as the vehicle position.
 走行軌跡算出部54は、自車位置算出部50によって算出された自車位置を経時的にプロットすることで走行軌跡を算出する。さらに、所定時間での走行軌跡(瞬間走行軌跡)から機体10の走行方位が算出される。また、走行方位は、慣性計測モジュール82からの出力データに含まれている方位データに基づいて走行方位を算出することも可能である。 The traveling locus calculation unit 54 calculates the traveling locus by plotting the vehicle position calculated by the vehicle position calculation unit 50 over time. Further, the traveling direction of the machine body 10 is calculated from the traveling locus (instantaneous traveling locus) in a predetermined time. Further, the traveling direction can be calculated based on the direction data included in the output data from the inertial measurement module 82.
 作業領域決定部55は、所定の作業幅で行われた収穫作業から、既作業領域、作業対象領域となる未作業領域CAなどを決定する。 The work area deciding unit 55 decides an already-worked area, an unworked area CA to be a work target area, and the like from the harvesting work performed with a predetermined work width.
 未作業マップ作成部56には、コンバインが圃場面と畦との境界線(圃場の境界線)に沿って走行する際に得られる、機体10の畦側の部材(収穫部15の横外側端部)の走行軌跡データ(外側走行軌跡データ)、および機体10の畦とは反対側の部材(収穫部15の横内側端部)の走行軌跡データ(内側走行軌跡データ)が入力される。未作業マップ作成部56は、外側走行軌跡データに基づいて圃場の境界線の地図位置を示す境界線データを生成する。さらに、未作業マップ作成部56は、内側走行軌跡データに基づいて外周領域SAの内周側境界線、つまり既作業領域と未作業領域CAとの境界線の地図位置を示す作業境界線データを生成する。未作業マップ作成部56は、この作業境界線データから、未作業領域CAを示す未作業マップデータも作成する。 The unworked map creating unit 56 includes a member on the ridge side of the machine body (a lateral outer end of the harvesting unit 15) obtained when the combine travels along the boundary line between the farm scene and the ridge (border line of the field). Part) traveling locus data (outer traveling locus data) and traveling locus data (inner traveling locus data) of a member (horizontal inner end portion of the harvesting section 15) on the side opposite to the ridges of the machine body 10 are input. The non-working map creation unit 56 creates boundary line data indicating the map position of the boundary line of the field based on the outside travel locus data. Furthermore, the unworked map creation unit 56 creates work boundary line data indicating the map position of the boundary line on the inner circumference side of the outer circumference area SA, that is, the boundary line between the already worked area and the unworked area CA, based on the inner running trajectory data. To generate. The unworked map creation unit 56 also creates unworked map data indicating the unworked area CA from this work boundary line data.
 走行経路算出部57は、登録されている経路算出アルゴリズムによって、未作業領域CAを網羅する自動走行のための目標走行経路となる走行経路を算出する。この走行経路は、図3と図4とで示すように、未作業領域CAの外形を示す多角形における各辺に平行となる作業走行経路と機体10の方向転換を伴って2つの作業走行経路をつなぐ旋回走行経路とからなる。 The travel route calculation unit 57 calculates a travel route which is a target travel route for automatic travel covering the unworked area CA by the registered route calculation algorithm. As shown in FIG. 3 and FIG. 4, this travel route is parallel to each side in the polygon showing the outer shape of the unworked area CA, and two work travel routes with the direction change of the machine body 10. And a turning route connecting the two.
 走行制御部51は、エンジン制御機能、操舵制御機能、車速制御機能などを有し、走行機器群71に走行制御信号を与える。作業制御部52は、収穫作業装置(収穫部15、脱穀装置13、搬送装置16、穀粒排出装置18など)の動きを制御するために、作業機器群72に作業制御信号を与える。さらに、作業制御部52は、穀粒タンク14から穀粒を排出する排出要求を出力する機能も有する。 The traveling control unit 51 has an engine control function, a steering control function, a vehicle speed control function, and the like, and gives a traveling control signal to the traveling device group 71. The work control unit 52 gives a work control signal to the work equipment group 72 in order to control the movement of the harvesting work device (the harvesting unit 15, the threshing device 13, the transport device 16, the grain discharging device 18, etc.). Further, the work control unit 52 also has a function of outputting a discharge request for discharging the grain from the grain tank 14.
 走行制御部51には、手動走行制御部511と自動走行制御部512と目標走行経路設定部513とが含まれている。自動走行モードが設定されると自動走行となり、手動走行モードが設定されると手動走行となる。このような走行モードの切り替えは、走行モード管理部53によって管理される。 The traveling control unit 51 includes a manual traveling control unit 511, an automatic traveling control unit 512, and a target traveling route setting unit 513. When the automatic travel mode is set, the automatic travel is performed, and when the manual travel mode is set, the manual travel is performed. The switching of the driving modes is managed by the driving mode management unit 53.
 手動走行モードが選択されている場合、運転者による操作に基づいて、手動走行制御部511が制御信号を生成し、走行機器群71を制御することで、手動運転が実現する。 When the manual traveling mode is selected, the manual traveling control unit 511 generates a control signal based on the operation by the driver to control the traveling device group 71, thereby realizing the manual driving.
 自動走行モードが設定されている場合、自動走行制御部512は、自動操舵および停止を含む車速変更の制御信号を生成して、走行機器群71を制御する。自動操舵に関する制御信号は、目標走行経路設定部513によって設定された目標となる走行経路と、自車位置算出部50によって算出された自車位置との間の方位ずれおよび位置ずれが解消されるように生成される。 When the automatic traveling mode is set, the automatic traveling control unit 512 generates a control signal for changing the vehicle speed including automatic steering and stopping, and controls the traveling device group 71. The control signal relating to the automatic steering eliminates the azimuth deviation and the positional deviation between the target traveling route set by the target traveling route setting unit 513 and the own vehicle position calculated by the own vehicle position calculating unit 50. Is generated as.
 目標走行経路設定部513は、走行経路算出部57によって算出された作業走行経路と旋回走行経路とを用いて、目標走行経路を設定する。その際、時計方向に作業走行する第1走行パターンと反時計方向に作業走行する第2走行パターンとが用いられる。 The target travel route setting unit 513 sets the target travel route using the work travel route and the turning travel route calculated by the travel route calculation unit 57. At that time, a first traveling pattern in which the work traveling is performed in the clockwise direction and a second traveling pattern in which the work traveling is performed in the counterclockwise direction are used.
 目標走行経路設定部513は、圃場条件や収穫物条件などに応じて、種々の形態の目標走行経路を設定することができる。また、運転者または管理者が特定の形態の目標走行経路設定を指令することができる。以下に、目標走行経路設定の形態例が示される。
(1)第1走行パターンと第2走行パターンとのどちらか一方を用いた渦巻き走行と、穀粒タンク14から穀粒を排出した後に作業開始点に戻る一時離脱走行とを繰り返して実施したにもかかわらず、圃場の境界線から未作業領域CAまでの距離が所定値に達しない既作業領域の部分がある場合、第1走行パターンと第2走行パターンとの他方を用いて前記目標走行経路が設定される。
(2)第1走行パターンと第2走行パターンとのどちらか一方を用いた渦巻き走行において、1周未満の作業走行の途中で、穀粒タンク14からの穀粒排出が要求され、穀粒排出が実行された場合、穀粒排出後の渦巻き走行には他方の走行パターンが用いられる。
(3)穀粒タンク14からの穀粒排出が要求され、穀粒排出が実行された後の渦巻き走行には、第1走行パターンと第2走行パターンとが交互に用いられる。
(4)穀粒の排出位置から最も近い位置の旋回走行経路につながる作業走行経路における当該旋回走行経路側の端部から、穀粒排出後の作業走行が開始されるように、目標走行経路が設定される。
(5)Uターン旋回経路のために必要なスペースが確保されるまで、第1走行パターンと第2走行パターンとを組み合わせた渦巻き走行のための目標走行経路が設定され、その後にUターン走行パターンでの目標走行経路が設定される。
The target travel route setting unit 513 can set the target travel route in various forms according to the field conditions, the harvest conditions, and the like. Further, the driver or the administrator can instruct the setting of the target travel route in a specific form. Below, the example of a form of target travel route setting is shown.
(1) The spiral traveling using either one of the first traveling pattern and the second traveling pattern and the temporary disengagement traveling returning to the work starting point after discharging the grains from the grain tank 14 are repeatedly performed. Nevertheless, if there is a portion of the already-worked area in which the distance from the field boundary line to the unworked area CA does not reach the predetermined value, the target travel route is determined using the other of the first travel pattern and the second travel pattern. Is set.
(2) In the spiral traveling using one of the first traveling pattern and the second traveling pattern, the grain discharge from the grain tank 14 is required during the work traveling for less than one lap, and the grain discharge is performed. When is executed, the other traveling pattern is used for the spiral traveling after the grain discharge.
(3) The first traveling pattern and the second traveling pattern are alternately used for the spiral traveling after the grain discharge from the grain tank 14 is requested and the grain discharge is executed.
(4) The target travel route is set so that the work travel after the grain discharge is started from the end of the work travel route connected to the swivel travel route closest to the position where the grain is discharged, on the turn travel route side. Is set.
(5) A target travel route for spiral travel, which is a combination of the first travel pattern and the second travel pattern, is set until the space required for the U-turn travel route is secured, and then the U-turn travel pattern is set. The target travel route in is set.
〔第2実施形態〕
〔自動走行に係る管理・制御について〕
 以下、図10~図11を用いて自動走行に係る管理・制御を行う構成について説明する。本実施形態に係る自動走行の制御は、第2実施形態に係る自動走行と共に、あるいは第2実施形態に係る自動走行とは別に実施可能である。
[Second Embodiment]
[Management and control related to automated driving]
Hereinafter, a configuration for performing management / control related to automatic traveling will be described with reference to FIGS. 10 to 11. The control of the automatic travel according to the present embodiment can be performed together with the automatic travel according to the second embodiment or separately from the automatic travel according to the second embodiment.
 コンバインの管理・制御系は、多数のECUと呼ばれる電子制御ユニットからなる制御ユニット5、および、この制御ユニット5との間で車載LANなどの配線網を通じて信号通信(データ通信)を行う各種入出力機器から構成されている。 The combine management / control system includes a control unit 5 including a large number of electronic control units called ECUs, and various input / outputs for performing signal communication (data communication) with the control unit 5 through a wiring network such as an in-vehicle LAN. It is composed of equipment.
 通信部66は、このコンバインの管理・制御系が、汎用端末4との間で、あるいは、遠隔地に設置されている管理コンピュータとの間でデータ交換するために用いられる。汎用端末4には、圃場に立っている監視者、またはコンバインに乗り込んでいる運転者兼監視者が操作するタブレットコンピュータ、自宅や管理事務所に設置されているコンピュータなども含まれる。制御ユニット5は、この制御系の中核要素であり、複数のECUの集合体として示されている。自車位置検出ユニット80からの信号は、車載LANを通じて制御ユニット5に入力される。なお、制御ユニット5の構成要素の一部は、汎用端末4に配置されても良い。 The communication unit 66 is used by the combine management / control system for exchanging data with the general-purpose terminal 4 or with a management computer installed in a remote place. The general-purpose terminal 4 also includes a tablet computer operated by an observer standing in the field, or a driver and an observer boarding the combine, a computer installed at home or in a management office, and the like. The control unit 5 is a core element of this control system, and is shown as an assembly of a plurality of ECUs. The signal from the vehicle position detection unit 80 is input to the control unit 5 through the vehicle-mounted LAN. Note that some of the components of the control unit 5 may be arranged in the general-purpose terminal 4.
 制御ユニット5は、入力処理部502、自車位置算出部50、車体方位算出部58、圃場管理部83、収量管理部30、走行経路生成部59を含む。さらに制御ユニット5は、図示しないが、出力処理部、走行機器群を制御する走行制御部、収穫作業装置を制御する作業制御部等を含めることができる。出力処理部は、操舵機器、エンジン機器、変速機器、制動機器、収穫部15(図1参照)、脱穀装置13(図1参照)、搬送装置16(図1参照)、穀粒排出装置18(図1参照)等と接続される。 The control unit 5 includes an input processing unit 502, a vehicle position calculation unit 50, a vehicle body direction calculation unit 58, a field management unit 83, a yield management unit 30, and a travel route generation unit 59. Further, although not shown, the control unit 5 can include an output processing unit, a traveling control unit that controls the traveling device group, a work control unit that controls the harvesting work device, and the like. The output processing unit includes a steering device, an engine device, a transmission device, a braking device, a harvesting unit 15 (see FIG. 1), a threshing device 13 (see FIG. 1), a transport device 16 (see FIG. 1), and a grain discharging device 18 ( (See FIG. 1) and the like.
 入力処理部502には、自車位置検出ユニット80、収量出力部20、走行状態センサ群63、作業状態センサ群64、走行操作ユニット(図示せず)等が接続されている。入力処理部502は、これらから情報を受信し、制御ユニット5内の各種機能部に情報を提供する。走行状態センサ群63には、エンジン回転数センサ、オーバーヒート検出センサ、ブレーキペダル位置検出センサ、変速位置検出センサ、操舵位置検出センサ等が含まれている。作業状態センサ群64には、収穫作業装置(収穫部15(図1参照))、脱穀装置13(図1参照)、搬送装置16(図1参照)、穀粒排出装置18(図1参照)の駆動状態を検出するセンサ、穀稈や穀粒の状態を検出するセンサなどが含まれている。 The vehicle position detection unit 80, the yield output unit 20, the traveling state sensor group 63, the work state sensor group 64, a traveling operation unit (not shown), etc. are connected to the input processing unit 502. The input processing unit 502 receives information from these and provides the information to various functional units in the control unit 5. The traveling state sensor group 63 includes an engine speed sensor, an overheat detection sensor, a brake pedal position detection sensor, a shift position detection sensor, a steering position detection sensor, and the like. The working state sensor group 64 includes a harvesting working device (harvesting unit 15 (see FIG. 1)), a threshing device 13 (see FIG. 1), a transport device 16 (see FIG. 1), and a grain discharging device 18 (see FIG. 1). It includes a sensor for detecting the driving state of, a sensor for detecting the state of grain culms and grains, and the like.
 自車位置算出部50は、自車位置検出ユニット80から逐次送られてくる測位データに基づいて、予め設定されている機体10(図1参照)の特定箇所の地図座標(または圃場座標)として自車位置や収穫幅の両端部の位置を算出する。車体方位算出部58は、自車位置算出部50で逐次算出される自車位置から、微小時間での走行軌跡を求めて機体10(図1参照)の走行方向での向きを示す車体方位を決定する。また、車体方位算出部58は、慣性計測モジュール82からの出力データに含まれている方位データに基づいて車体方位を決定することも可能である。 The own vehicle position calculation unit 50 determines the map coordinates (or the field coordinates) of the specific location of the preset airframe 10 (see FIG. 1) based on the positioning data sequentially sent from the own vehicle position detection unit 80. Calculate the vehicle position and the positions of both ends of the harvest width. The vehicle body heading calculation unit 58 obtains a traveling locus in a minute time from the own vehicle position sequentially calculated by the own vehicle position calculation unit 50 and obtains a vehicle body heading indicating the direction of the body 10 (see FIG. 1) in the traveling direction. decide. Further, the vehicle body azimuth calculation unit 58 can also determine the vehicle body azimuth based on the azimuth data included in the output data from the inertial measurement module 82.
 圃場管理部83は、自車位置算出部50が算出した自車位置に基づいて、圃場の外形形状や作業対象領域(未作業領域)CAの外形形状、圃場の面積や作業対象領域CAの面積等を算出する。例えば、圃場管理部83は、面積算出部84、形状算出部85等を備える。形状算出部85は、圃場の外形形状や作業対象領域CAの外形形状を算出する。面積算出部84は、圃場の面積や作業対象領域CAの面積を算出する。なお、圃場管理部83は、運搬車CVに穀粒を排出する排出ポイント(排出位置)を設定する排出ポイント設定部86を備えても良い。 The field management unit 83, based on the vehicle position calculated by the vehicle position calculation unit 50, the outer shape of the field, the outer shape of the work target area (unworked area) CA, the area of the field, and the area of the work target area CA. Etc. are calculated. For example, the farm field management unit 83 includes an area calculation unit 84, a shape calculation unit 85, and the like. The shape calculation unit 85 calculates the outer shape of the field and the outer shape of the work target area CA. The area calculation unit 84 calculates the area of the field and the area of the work target area CA. The farm field management unit 83 may include a discharge point setting unit 86 that sets a discharge point (discharge position) for discharging the grains to the transport vehicle CV.
 収量管理部30は、自動走行の走行経路の決定等を行うために用いる収量を管理する。そのため、収量管理部30は、圃場の単位面積当たりに作物を収穫する収量である収量率や、作業対象領域CAで収穫できる総収量等を推定する。また、収量管理部30は、作業対象領域CAの作物を収穫する際に最低限必要となる、貯留された穀粒の排出回数や、排出すべき際の穀粒の収量を算出する。具体的には、収量管理部30は、収量率算出部31、総収量算出部32(総収量推定部に相当)、排出回数算出部33、排出基準収量算出部34等を備えることができる。なお、収量管理部30は、これらの全てを備えることができ、あるいはこれらの一部を組み合わせて備えることもできる。 The yield management unit 30 manages the yield used for determining the travel route for automatic travel. Therefore, the yield management unit 30 estimates the yield rate, which is the yield for harvesting the crop per unit area of the field, the total yield that can be harvested in the work target area CA, and the like. In addition, the yield management unit 30 calculates the minimum number of discharges of the stored grain and the yield of the grain at the time of discharge, which is the minimum required when harvesting the crop in the work target area CA. Specifically, the yield management unit 30 can include a yield rate calculation unit 31, a total yield calculation unit 32 (corresponding to a total yield estimation unit), a discharge number calculation unit 33, a discharge reference yield calculation unit 34, and the like. The yield management unit 30 may be provided with all of them, or may be provided with some of them in combination.
 収量率算出部31は、周囲刈りにおいて、外周領域SAで収穫された穀粒の収量と、外周領域SAの面積とから、単位面積当たりの収量である収量率を算出する。具体的には、収量率は、外周領域SAで収穫された穀粒の収量を外周領域SAの面積で除算することにより求められる。外周領域SAで収穫された穀粒の収量は、手動走行による周囲刈りを開始してから終了するまでに穀粒タンク14に貯留された穀粒の増加量から求められる。なお、周囲刈り中に穀粒の排出を行った場合には、その前後における穀粒の増加量が積算される。また、外周領域SAで収穫された穀粒の収量は収量率算出部31が算出しても良いが、収量管理部30における他の機能部等の、その他の機能部が算出しても良い。外周領域SAの面積は、面積算出部84が、圃場の面積から作業対象領域CAの面積を減算することにより求められる。 The yield rate calculation unit 31 calculates the yield rate, which is the yield per unit area, from the yield of grains harvested in the outer peripheral area SA and the area of the outer peripheral area SA in the surrounding cutting. Specifically, the yield rate is obtained by dividing the yield of grains harvested in the outer peripheral area SA by the area of the outer peripheral area SA. The yield of the grains harvested in the outer peripheral area SA is obtained from the increase amount of the grains stored in the grain tank 14 from the start to the end of the peripheral cutting by the manual traveling. In addition, when the grain is discharged during the surrounding cutting, the amount of increase in the grain before and after that is integrated. Further, the yield of the grain harvested in the outer peripheral area SA may be calculated by the yield rate calculation unit 31, but may be calculated by another functional unit such as another functional unit in the yield management unit 30. The area of the outer peripheral area SA is obtained by the area calculation unit 84 by subtracting the area of the work target area CA from the area of the field.
 総収量算出部32は、作業対象領域CAの面積と収量率とから、作業対象領域CA全体で収穫されると予想される穀粒の総収量を推定する。具体的には、総収量は、作業対象領域CAの面積と収量率とを乗算することにより求められる。これにより、総収量を参考に、穀粒の排出を考慮しながら、作業対象領域CAにおける自動走行の走行経路を効率的に生成することが可能となる。 The total yield calculation unit 32 estimates the total yield of grains expected to be harvested in the entire work target area CA from the area of the work target area CA and the yield rate. Specifically, the total yield is obtained by multiplying the area of the work target area CA by the yield rate. This makes it possible to efficiently generate a travel route of automatic travel in the work target area CA while taking into consideration the discharge of grains with reference to the total yield.
 排出回数算出部33は、穀粒を排出する際に穀粒タンク14に貯留された収量である排出収量と、作業対象領域CAの総収量とから、作業対象領域CAにおける自動走行時に最低限必要となる排出回数を算出する。具体的には、排出回数は、総収量を排出収量で除算して、整数値に繰り上げることにより求められる。排出収量は、穀粒タンク14の満杯収量や満杯収量に対して所定の割合または所定量少ない収量、外部から要求される排出収量、運搬車の積載容量に対応した収量、あるいはあらかじめ排出時の収量として規定された収量とすることができる。また、周囲刈り中に穀粒の排出を行った場合、排出時の収量が排出収量とされても良い。このように排出回数を算出することにより、後段で例示するように、排出回数を考慮して効率的な排出タイミングを設定しながら、作業対象領域CAでの自動走行において、効率的な走行経路を生成することが可能となる。 The discharge number calculation unit 33 is a minimum required for automatic traveling in the work target area CA from the discharge yield that is the yield stored in the grain tank 14 when discharging the grain and the total yield of the work target area CA. The number of discharges is calculated. Specifically, the number of discharges is obtained by dividing the total yield by the discharge yield and raising it to an integer value. The discharge yield may be the full yield of the grain tank 14 or a predetermined ratio or a smaller amount than the full yield, the discharge yield required from the outside, the yield corresponding to the loading capacity of the carrier, or the yield at the time of discharge in advance. The yield can be defined as Further, when the grain is discharged during the surrounding cutting, the yield at the time of discharging may be the discharge yield. By calculating the number of discharges in this way, an efficient traveling route is set in automatic traveling in the work target area CA while setting an efficient discharge timing in consideration of the number of discharges, as will be exemplified later. It becomes possible to generate.
 排出基準収量算出部34は、作業対象領域CAの総収量と排出回数算出部33で算出された排出回数とから、排出基準収量を算出する。排出基準収量は、自動走行中に穀粒を排出する目安とする、穀粒タンク14に貯留された穀粒の収量である。具体的には、排出基準収量は、総収量を排出回数で除算することにより求められる。このように排出基準収量を算出することにより、後段で例示するように、排出基準収量を目安として効率的な排出タイミングを設定しながら、作業対象領域CAにおける自動走行の走行経路を効率的に生成することが可能となる。 The discharge standard yield calculation unit 34 calculates the discharge standard yield from the total yield of the work target area CA and the discharge count calculated by the discharge count calculation unit 33. The discharge standard yield is the yield of the grain stored in the grain tank 14, which is a standard for discharging the grain during the automatic traveling. Specifically, the emission standard yield is obtained by dividing the total yield by the number of emissions. By calculating the emission standard yield in this way, as will be exemplified in the latter part, while efficiently setting the emission timing using the emission standard yield as a guide, the travel route for automatic travel in the work target area CA is efficiently generated. It becomes possible to do.
 走行経路生成部59は、圃場の外形形状や作業対象領域CAの外形形状等に基づいて、作業対象領域CAにおける自動走行の走行経路を生成する。自動走行で用いられる走行経路は、走行経路生成部59が経路算出アルゴリズムによって自ら生成することもできるが、汎用端末4や遠隔地の管理コンピュータ等で生成されたものをダウンロードしたものを用いることも可能である。なお、走行経路生成部59によって算出された走行経路は、手動運転であっても、コンバインが当該走行経路に沿って走行するためのガイダンス目的で利用することができる。 The traveling route generation unit 59 generates an automatic traveling route in the work target area CA based on the outer shape of the field, the outer shape of the work target area CA, and the like. The traveling route used in the automatic traveling can be generated by the traveling route generation unit 59 by a route calculation algorithm, or a downloaded one generated by the general-purpose terminal 4 or a management computer at a remote place can be used. It is possible. The traveling route calculated by the traveling route generation unit 59 can be used for guidance purposes for the combine to travel along the traveling route even in manual operation.
 また、このコンバインは自動走行で収穫作業を行う自動運転と手動走行で収穫作業を行う手動運転との両方で走行可能である。自動運転を行う際には、自動走行モードが設定され、手動運転を行うためには手動走行モードが設定される。走行モードの切り替えは、走行モード管理部(図示せず)等によって管理される。 Also, this combine can be driven by both automatic operation for performing harvesting work by automatic traveling and manual operation for performing harvesting work by manual traveling. When performing automatic driving, the automatic driving mode is set, and in order to perform manual driving, the manual driving mode is set. The switching of the driving mode is managed by a driving mode management unit (not shown) or the like.
 なお、走行経路生成部59は、自動走行の走行経路を生成するに際し、作業対象領域CAの総収量、排出回数算出部33で算出される排出回数、および排出基準収量のいずれか、またはこれらを適宜組み合わせて考慮することもできる。また、走行経路生成部59は、排出ポイント設定部86で設定された排出ポイントを考慮して、走行経路を生成することもできる。 Note that the travel route generation unit 59, when generating the travel route of automatic travel, selects one of the total yield of the work target area CA, the number of discharges calculated by the discharge count calculation unit 33, and the discharge reference yield, or these. It is also possible to consider it in an appropriate combination. Further, the travel route generation unit 59 can also generate the travel route in consideration of the discharge points set by the discharge point setting unit 86.
 作業対象領域CAの総収量を考慮して作業対象領域CAを自動走行する走行経路を生成することにより、排出収量を参照しながら、排出ポイントに移動する排出走行を含めた走行経路を効率的に生成することができる。また、自動走行中に収穫した穀粒の収量から残りの収量を算出し、自動走行が進むにつれて、作業対象領域CAの残りの収量から随時効率的な走行経路に変更することも可能である。 By generating the travel route that automatically travels in the work target area CA in consideration of the total yield of the work target area CA, the travel route including the discharge travel that moves to the discharge point can be efficiently performed while referring to the emission yield. Can be generated. It is also possible to calculate the remaining yield from the yield of grains harvested during the automatic traveling, and to change the remaining yield of the work target area CA to an efficient traveling route as the automatic traveling progresses.
 また、排出回数を考慮して作業対象領域CAを自動走行する走行経路を生成することにより、排出回数に応じて、穀粒を排出してから次に穀粒を排出するまでに行う自動走行による収穫走行の距離を均等にする等して、容易に最適な走行経路を効率的に生成することができる。 In addition, by generating a travel route that automatically travels in the work target area CA in consideration of the number of discharges, the automatic travel performed from the discharge of the grain to the next discharge of the grain according to the number of discharges. It is possible to easily and efficiently generate the optimum traveling route by making the distance of the harvesting traveling uniform.
 また、走行経路は、排出収量に到達する等の穀粒を排出する必要が生じる状態となるタイミングを推定し、排出ポイントへ移動する経路を考慮して、排出収量に到達するタイミングが作業対象領域CAを刈り抜けるタイミングとなるように生成することが望ましい。 For the travel route, the timing of reaching the discharge yield is estimated, and the timing of reaching the discharge yield is taken into consideration in consideration of the route to reach the discharge point. It is desirable to generate the CA at a timing to cut through the CA.
 例えば、図11に示すように、自動走行中のコンバインは、ある位置で作業対象領域CAを縦断するように走行した後旋回して別の位置で作業対象領域CAを縦断し、このような往復走行を繰り返す。コンバイン(図では機体10として図示する)は、穀粒タンク14に貯留された穀粒の収量が排出収量に到達すると、貯留された穀粒を排出するために運搬車CVの近傍に設定された排出ポイントPOに移動する。排出収量は、例えば、満杯収量であり、収量センサ19(図1参照)の測定値より判断できる。あるいは、排出収量は、穀粒タンク14(図1参照)に設けられた満杯センサ21(図10参照)で、貯留された穀粒が排出収量に到達したことを検知することもできる。なお、貯留された穀粒が排出収量に到達した場合、排出収量に到達したことを運転者に報知する構成としても良い。排出収量に到達した際、コンバインが作業対象領域CAの内部の位置(例えば位置PF1)を走行していたとすると、コンバインは、すでに収穫を行った走行経路を後退し、外周領域SAで旋回して排出ポイントPOに向かう排出走行経路LO1を走行する。しかし、このように走行経路を後退し、排出ポイントPOに向かうと排出に伴う排出走行経路LO1が長くなり、自動走行の効率が悪くなる。また、後退する距離が長くなると、走行の安定性や安全性が悪化する場合がある。 For example, as shown in FIG. 11, the combine during automatic traveling travels so as to traverse the work target area CA at a certain position, then turns and traverses the work target area CA at another position, and reciprocates like this. Repeat running. The combine (shown as the fuselage 10 in the figure) was set in the vicinity of the carrier CV to discharge the stored grains when the yield of the grains stored in the grain tank 14 reached the discharge yield. Move to the discharge point PO. The discharge yield is, for example, the full yield and can be determined from the measurement value of the yield sensor 19 (see FIG. 1). Alternatively, the discharge yield can be detected by the full sensor 21 (see FIG. 10) provided in the grain tank 14 (see FIG. 1) when the stored grain has reached the discharge yield. When the stored grain reaches the discharge yield, the driver may be notified that the discharge yield has been reached. Assuming that the combine is traveling at a position inside the work target area CA (for example, position PF1) when the discharge yield is reached, the combine moves backward in the already harvested travel route and turns in the outer peripheral area SA. The vehicle travels on the discharge travel route LO1 toward the discharge point PO. However, when the vehicle travels backward in this way and goes toward the discharge point PO, the discharge travel route LO1 becomes long due to the discharge, and the efficiency of automatic travel deteriorates. In addition, if the distance to move backward increases, the stability and safety of traveling may deteriorate.
 これに対して、排出基準収量を考慮して作業対象領域CAを自動走行する走行経路を生成することにより、穀粒を排出する際の収量として排出基準収量から満杯収量(排出収量)を超えない範囲で幅を持たせた収量が考慮されれば良い。そのため、排出ポイントに移動するタイミングが作業対象領域CAを刈り抜けるタイミングとなるように走行経路を容易に生成することができる。例えば、図11に示すように、作業対象領域CAの端部の位置PF2で排出基準収量以上で満杯収量以下の幅を持たせた収量に到達したとすると、そのまま前進して排出走行経路LO2を通って排出ポイントPOに向かうことができる。その結果、効率的な走行経路を容易に生成することができる。 On the other hand, by generating the traveling route that automatically travels in the work target area CA in consideration of the emission standard yield, the emission standard yield does not exceed the full yield (emission yield) as the yield when the grain is discharged. It suffices if the yield with a range is taken into consideration. Therefore, the travel route can be easily generated so that the timing of moving to the discharge point is the timing of cutting through the work target area CA. For example, as shown in FIG. 11, if the yield reaches a width that is equal to or higher than the discharge reference yield and equal to or less than the full yield at the position PF2 at the end of the work target area CA, then proceed forward and follow the discharge travel route LO2. You can go through to the discharge point PO. As a result, an efficient travel route can be easily generated.
 このように、排出基準収量等を考慮して、排出ポイントに移動するタイミングが作業対象領域CAを刈り抜けるタイミングとなるように走行経路を生成した場合、原則として、作業対象領域CAの内部で満杯収量(排出収量)となる場合は、新たに作業対象領域CAに侵入することはない。しかしながら、このような走行経路を生成したとしても、作業対象領域CAの途中で排出収量に到達したと認識し、排出ポイントに移動する場合がある。例えば、圃場の状況や作物の育成状況が圃場内で一定でない場合、予期しない位置で排出収量となり、コンバインは排出ポイントに移動することになる。また、穀粒タンク内の穀粒の貯留状態がばらついている場合には、満杯センサ21(図10参照)が排出収量に到達していなくても排出収量に到達したと誤検知する場合がある。また、収量センサ19(図1参照)に誤差がある場合等にも、作業対象領域CAの途中で排出収量に到達したと誤認される場合がある。このような場合、実際には排出収量に到達していないとしても、コンバインは排出ポイントに移動することになる。 In this way, in consideration of the emission standard yield and the like, when the travel route is generated so that the timing of moving to the discharge point is the timing of cutting through the work target area CA, as a general rule, the work target area CA is full. In the case of the yield (discharging yield), it does not newly enter the work target area CA. However, even if such a travel route is generated, it may be recognized that the discharge yield has been reached in the middle of the work target area CA, and it may move to the discharge point. For example, when the situation of the field and the growing situation of the crop are not constant in the field, the discharge yield occurs at an unexpected position, and the combine moves to the discharge point. Further, when the storage state of the grains in the grain tank varies, the full sensor 21 (see FIG. 10) may erroneously detect that the discharge yield has been reached even if the discharge yield has not been reached. .. Further, even when the yield sensor 19 (see FIG. 1) has an error, it may be erroneously recognized that the discharge yield has been reached in the middle of the work target area CA. In such a case, the combine will move to the emission point even if the emission yield is not actually reached.
 作業対象領域CAの途中で排出収量に到達した場合、上述のように、コンバインは、すでに収穫を行った走行経路を後退し、排出走行経路LO1を走行して排出ポイントPOに移動する必要がある。そうすると、上述のように、効率的な自動走行が行えない。 When the discharge yield is reached in the middle of the work target area CA, as described above, the combine needs to retreat the travel route that has already been harvested, travel along the discharge travel route LO1, and move to the discharge point PO. .. Then, as described above, efficient automatic traveling cannot be performed.
 そのため、本発明の第2実施形態では、作業対象領域CAの途中で排出収量に到達した際に、隣接してすでに収穫(走行)を行った領域がある場合には、この領域を走行して排出ポイントPOに移動する。 Therefore, according to the second embodiment of the present invention, when the discharge yield is reached in the middle of the work target area CA, if there is an adjacent area that has already been harvested (run), the area is run. Move to the discharge point PO.
 このように、隣接してすでに収穫を行った領域を利用して作業対象領域CAを離脱することにより、効率的な経路で、後退する走行を極力抑制し、前進により作業対象領域CAを離脱して排出ポイントに移動することができる。その結果、効率的な自動走行を行うことができる。 In this way, the work target area CA is separated by utilizing the adjacent harvested area, so that the backward traveling is suppressed as much as possible and the work target area CA is separated by the forward movement. Can be moved to the discharge point. As a result, efficient automatic traveling can be performed.
 このような構成について、図12を用いて詳細に説明する。
 すでに収穫を行った領域を走行して排出ポイントPOに移動する構成を説明する前に、走行経路を生成する構成について詳細に説明する。
Such a configuration will be described in detail with reference to FIG.
Before describing the configuration of traveling in the already harvested area and moving to the discharge point PO, the configuration of generating the travel route will be described in detail.
 走行経路を生成する際には、まず、作業対象領域CA全体を網羅する複数の経路要素が設定される。経路要素は走行経路の候補である。経路要素はコンバインの刈幅より小さい間隔で設定され、基本的には、作業対象領域CAの一辺に平行に設定される。経路要素は、通常、作業対象領域CAを縦断する直線であり、互いに平行に設けられるが、圃場の状態や作業対象領域CAの形状に応じて、屈曲部があっても良く、一部または全体が曲線状であっても良い。自動走行における走行経路は、複数の経路要素が選択され、選択された経路要素(作業走行経路)をつなぐU旋回経路(旋回走行経路)が付加されて生成される。この際、排出基準収量等を考慮して、走行経路を生成することが好ましい。 When generating a travel route, first, a plurality of route elements covering the entire work target area CA are set. The route element is a candidate for a travel route. The route elements are set at intervals smaller than the combine cutting width, and are basically set parallel to one side of the work target area CA. The path element is usually a straight line that extends vertically through the work target area CA and is provided in parallel with each other. However, depending on the state of the field and the shape of the work target area CA, there may be a bent portion, or a part or the whole. May be curved. A travel route in automatic travel is generated by selecting a plurality of route elements and adding a U turning route (turning traveling route) connecting the selected route elements (working traveling route). At this time, it is preferable to generate the traveling route in consideration of the emission standard yield and the like.
 次に、図12を用いて、すでに収穫を行った領域を走行して排出ポイントPOに移動する構成を説明する。
 上述のように、排出ポイントに移動するタイミングが作業対象領域CAを刈り抜けるタイミングとなるように走行経路を生成したとしても、作業対象領域CAの途中で排出収量に到達する場合がある。この場合、排出収量に到達した経路要素LT1(経路L1)に隣り合う経路要素LT2が既に収穫走行されているか否かを確認する。経路要素LT2が既に収穫走行されている場合、コンバイン(機体10)は、経路要素LT1を後退して作業対象領域CAから離脱するのではなく、経路要素LT2(経路L2)を利用して作業対象領域CAから離脱する。
Next, with reference to FIG. 12, a configuration in which the vehicle travels in an already harvested area and moves to the discharge point PO will be described.
As described above, even if the travel route is generated such that the timing of moving to the discharge point is the timing of cutting through the work target area CA, the discharge yield may be reached in the middle of the work target area CA. In this case, it is confirmed whether or not the route element LT2 adjacent to the route element LT1 (route L1) that has reached the discharge yield has already been harvested. When the route element LT2 has already been harvested, the combine (airframe 10) does not retract the route element LT1 and leave the work target area CA, but uses the route element LT2 (route L2) to perform the work target. Leave the area CA.
 例えば、コンバイン(機体10)は、経路要素LT1から経路要素LT2に前進走行し、経路要素LT2を前進走行して作業対象領域CAから離脱する。この際、経路要素LT1の進行方向には、未刈りの植立穀稈が残っており、そのまま前進すると未刈りの植立穀稈を踏み越えることとなる。そのため、経路要素LT1から経路要素LT2に前進走行する際には、少なくとも未刈り領域を走行する間は、コンバイン(機体10)は収穫走行を行う。 For example, the combine (airframe 10) travels forward from the route element LT1 to the route element LT2, travels forward through the route element LT2, and leaves the work target area CA. At this time, uncut mowing planted culms remain in the traveling direction of the route element LT1, and if they move forward as they are, they will step over the uncut mowing planted culms. Therefore, when traveling forward from the route element LT1 to the route element LT2, the combine (machine body 10) performs harvesting traveling at least while traveling in the uncut area.
 このように、排出収量に到達した際に走行していた経路要素LT1と隣り合う、収穫走行済みの経路要素LT2に収穫走行しながら移動し、収穫走行済みの経路要素LT2を前進走行して作業対象領域CAから離脱することにより、経路要素LT1を後退して作業対象領域CAから離脱する必要がなくなり、効率的に排出ポイントPOに移動することができる。特に、後退走行を行わないので、走行の安定性や安全性を維持することができる。その結果、効率的な自動走行を行うことができる。特に、排出収量に到達した地点から前進する方向の、作業対象領域CAの外周辺から排出ポイントPOまでの距離より、後退する方向の作業対象領域CAの外周辺から排出ポイントPOまでの距離の方が長い場合がある。経路要素LT1を後退して作業対象領域CAから離脱すると、離脱地点から排出ポイントPOに至る排出走行経路LO3が長くなる。この場合、経路要素LT2を前進して作業対象領域CAから離脱すると、排出走行経路LO3が短くなりより効果的である。また、排出走行経路LO3は、第2走行パターンで走行する経路としても良いが、第1実施形態で示したように、第1走行パターンで走行する経路としても良い。 In this way, while traveling while harvesting traveling to the harvested traveling route element LT2 adjacent to the traveling route element LT1 that was traveling when reaching the emission yield, the harvested traveling route element LT2 is moved forward to perform work. By leaving the target area CA, it is not necessary to retract the path element LT1 to leave the work target area CA, and it is possible to efficiently move to the discharge point PO. In particular, since the vehicle does not travel backward, it is possible to maintain stability and safety of traveling. As a result, efficient automatic traveling can be performed. In particular, the distance from the outer periphery of the work target area CA in the backward direction to the discharge point PO is greater than the distance from the outer circumference of the work target area CA to the discharge point PO in the forward direction from the point where the discharge yield is reached. May be long. When the route element LT1 is moved backward to leave the work target area CA, the discharge travel route LO3 from the departure point to the discharge point PO becomes longer. In this case, when the route element LT2 is moved forward to leave the work target area CA, the discharge travel route LO3 becomes shorter, which is more effective. Further, the discharge traveling route LO3 may be a route traveling in the second traveling pattern, but may be a route traveling in the first traveling pattern as shown in the first embodiment.
 なお、コンバイン(機体10)は、作業対象領域CAの途中で排出収量に到達した際には、手動走行で経路要素LT2を介して作業対象領域CAから離脱しても良いが、自動走行により経路要素LT2を介して作業対象領域CAから離脱しても良い。手動走行の場合には、満杯センサ21(図10参照)または収量センサ19(図10参照)で排出収量に到達したことを検知した場合に運転者に排出収量に到達したことを報知する構成としておき、運転者は、この報知に応じて手動走行により、上記のような経路要素LT2を介して作業対象領域CAから離脱する走行を行う。また、自動走行の場合は、制御ユニット5(図10参照)の制御により、作業対象領域CAの途中で排出収量に到達したで時点でコンバイン(機体10)を停止させ、経路要素LT2が既に収穫走行されているか否かを確認し、経路要素LT2が既に収穫走行されている場合には経路要素LT2を介して作業対象領域CAから離脱する走行経路を走行経路生成部59(図10参照)が生成することにより、自動走行を行う。 Note that, when the combine (airframe 10) reaches the discharge yield in the middle of the work target area CA, it may be separated from the work target area CA via the route element LT2 by the manual travel, but the route is automatically traveled. It may be separated from the work target area CA via the element LT2. In the case of manual driving, when the full sensor 21 (see FIG. 10) or the yield sensor 19 (see FIG. 10) detects that the emission yield has been reached, the driver is notified that the emission yield has been reached. After that, the driver manually travels in response to the notification to leave the work target area CA via the above-described route element LT2. Further, in the case of automatic traveling, the combine (airframe 10) is stopped at the time when the discharge yield is reached in the middle of the work target area CA by the control of the control unit 5 (see FIG. 10), and the route element LT2 has already been harvested. Whether or not the vehicle is traveling is checked, and when the route element LT2 has already been harvested and traveled, the traveling route generation unit 59 (see FIG. 10) determines a traveling route that leaves the work target area CA via the route element LT2. By generating it, automatic traveling is performed.
〔第2実施形態の別実施形態1〕
 第2実施形態の別実施形態1として、図13を用いて、経路要素LT1から経路要素LT2に移動する走行の別構成を説明する。
 別実施形態1に係る構成においては、作業対象領域CAの途中で排出収量に到達した際には、まず、コンバイン(機体10)は、経路要素LT1に沿って所定の距離だけ後退する(後退経路L3)。次に、コンバイン(機体10)は、経路要素LT1から経路要素LT2に前進走行により移動する(前進経路L4)。そして、コンバイン(機体10)は、経路要素LT2上を前進走行して作業対象領域CAから離脱する。なお、後退経路L3の後退走行における所定の距離は、前進経路L4の前進走行において、経路要素LT1上の未刈の植立穀稈を踏まない距離である。
[Another embodiment 1 of the second embodiment]
As another embodiment 1 of the second embodiment, another configuration of traveling traveling from the route element LT1 to the route element LT2 will be described with reference to FIG.
In the configuration according to the first embodiment, when the discharge yield is reached in the middle of the work target area CA, first, the combine (machine 10) is retracted by a predetermined distance along the route element LT1 (reverse route). L3). Next, the combine (machine 10) moves from the route element LT1 to the route element LT2 by forward traveling (forward route L4). Then, the combine (machine 10) travels forward on the route element LT2 and leaves the work target area CA. It should be noted that the predetermined distance in the backward traveling of the backward route L3 is a distance in which the uncut grass culm on the route element LT1 is not stepped during the forward traveling of the forward route L4.
 このように、別実施形態1に係る構成においては、作業対象領域CAの途中で排出収量に到達した際に、コンバイン(機体10)は、後退経路L3を後退走行してから、前進経路L4を前進走行して経路要素LT1から経路要素LT2に移動する。これにより、コンバイン(機体10)は、経路要素LT1上の未刈の植立穀稈を踏むことなく経路要素LT2に移動し、経路要素LT2を前進して効率的に作業対象領域CAから離脱することができる。 As described above, in the configuration according to the first embodiment, when the discharge yield is reached in the middle of the work target area CA, the combine (airframe 10) travels backward on the backward route L3 and then on the forward route L4. The vehicle travels forward and moves from the route element LT1 to the route element LT2. As a result, the combine (airframe 10) moves to the route element LT2 without stepping on the uncut crop culm on the route element LT1, advances the route element LT2, and efficiently leaves the work target area CA. be able to.
〔第2実施形態の別実施形態2〕
 第2実施形態の別実施形態2として、図14を用いて、経路要素LT1から経路要素LT2に移動する走行の別構成を説明する。
 別実施形態2に係る構成においては、作業対象領域CAの途中で排出収量に到達した際には、まず、コンバイン(機体10)は、経路要素LT1から経路要素LT2に後退走行により移動する(後退経路L5)。そして、コンバイン(機体10)は、経路要素LT2上を前進走行して作業対象領域CAから離脱する(前進経路L6)。
[Another embodiment 2 of the second embodiment]
As another embodiment 2 of the second embodiment, another configuration of traveling traveling from the route element LT1 to the route element LT2 will be described with reference to FIG.
In the configuration according to the second embodiment, when the discharge yield is reached in the middle of the work target area CA, first, the combine (machine body 10) moves from the route element LT1 to the route element LT2 by backward traveling (backward). Route L5). Then, the combine (machine 10) travels forward on the route element LT2 and leaves the work target area CA (forward route L6).
 これにより、コンバイン(機体10)は、経路要素LT1上の未刈の植立穀稈を踏むもとなく経路要素LT2に移動し、経路要素LT2を前進して効率的に作業対象領域CAから離脱することができる。また、経路要素LT1上の排出収量に到達した位置の前方に残る未刈の植立穀稈に留意することなく、容易に経路要素LT1から経路要素LT2に移動することができる。 Thereby, the combine (airframe 10) moves to the route element LT2 without stepping on the uncut planting culm on the route element LT1, advances the route element LT2, and efficiently leaves the work target area CA. can do. Further, it is possible to easily move from the route element LT1 to the route element LT2 without paying attention to the uncut mowing planted culm that remains in front of the position on the route element LT1 where the discharge yield has been reached.
〔第2実施形態の別実施形態3〕
 第2実施形態の別実施形態3として、図15を用いて、経路要素LT1から経路要素LT2に移動する走行の別構成を説明する。
[Another embodiment 3 of the second embodiment]
As another embodiment 3 of the second embodiment, another configuration of traveling traveling from the route element LT1 to the route element LT2 will be described with reference to FIG.
 ここで、経路要素LT1の経路要素LT2の逆側に隣り合う経路要素LT3が収穫走行されていない場合がある。また、経路要素LT2の経路要素LT1の逆側に隣り合う経路要素LT4が収穫走行されていない場合がある。経路要素LT3が収穫走行されていないと、別実施形態1における後退経路L3での後退走行の際等に、経路要素LT3上に残る未刈の植立穀稈を踏む場合がある。また、経路要素LT4が収穫走行されていないと、別実施形態2における後退経路L5での後退走行の際等に、経路要素LT4上に残る未刈の植立穀稈を踏む場合がある。 Here, there is a case where the adjacent route element LT3 on the opposite side of the route element LT2 of the route element LT1 is not traveling for harvesting. Further, the route element LT4 adjacent to the route element LT2 on the opposite side of the route element LT1 may not be harvested. If the route element LT3 is not traveling for harvesting, there is a case where the uncut grass culm remaining on the route element LT3 is stepped on during backward traveling on the backward route L3 in the other embodiment 1. Further, when the route element LT4 is not traveling for harvesting, when the vehicle travels backward on the backward route L5 according to the second embodiment, an uncut planted grain culm remaining on the route element LT4 may be stepped on.
 別実施形態3に係る構成においては、作業対象領域CAの途中で排出収量に到達した際には、まず、経路要素LT1と経路要素LT2との間、好ましくは中間に、経路要素LT1または経路要素LT2と平行な仮経路要素LTPが設定される。次に、コンバイン(機体10)は、経路要素LT1から仮経路要素LTPに後退走行により移動する(後退経路L7)。次に、コンバイン(機体10)は、仮経路要素LTPから経路要素LT2に前進走行により移動する(前進経路L8)。そして、コンバイン(機体10)は、経路要素LT2上を前進走行して作業対象領域CAから離脱する。なお、仮経路要素LTPを設定することなく、コンバイン(機体10)は、経路要素LT1と経路要素LT2との間に後退走行(後退経路L7)により移動しても良い。 In the configuration according to the third embodiment, when the discharge yield is reached in the middle of the work target area CA, first, the route element LT1 or the route element LT1 or the route element LT2 is placed between the route element LT1 and the route element LT2. A temporary path element LTP parallel to LT2 is set. Next, the combine (machine 10) moves from the route element LT1 to the temporary route element LTP by backward traveling (reverse route L7). Next, the combine (machine 10) moves from the temporary route element LTP to the route element LT2 by forward traveling (forward route L8). Then, the combine (machine 10) travels forward on the route element LT2 and leaves the work target area CA. The combine (machine 10) may move between the route element LT1 and the route element LT2 by backward traveling (reverse route L7) without setting the provisional route element LTP.
 このように、別実施形態3に係る構成においては、作業対象領域CAの途中で排出収量に到達した際に、仮経路要素LTPが設定され、コンバイン(機体10)は、後退経路L7を仮経路要素LTPまで後退走行してから、前進経路L8を前進走行して経路要素LT2に移動する。これにより、経路要素LT3および経路要素LT4上に残る未刈の植立穀稈を踏むことを抑制しながら、効率的に作業対象領域CAから離脱することができる。 As described above, in the configuration according to the third embodiment, when the discharge yield is reached in the middle of the work target area CA, the temporary route element LTP is set, and the combine (machine 10) uses the backward route L7 as the temporary route. After traveling backward to the element LTP, the vehicle travels forward on the forward route L8 and moves to the route element LT2. As a result, it is possible to efficiently leave the work target area CA while suppressing the stepping on the uncut mowing planted culm remaining on the route elements LT3 and LT4.
〔その他の別実施形態〕
(1)上述した実施形態では、実質的な収穫作業は、コンバインの直線状作業走行経路を用いた走行によって行われている。この直線状作業走行経路は、1本の直線に限定されない。直線状作業走行経路は、折れ曲がった経路でも良いし、曲率半径の大きな湾曲した経路でも良いし、蛇行線状の経路でも良い。
[Other Embodiments]
(1) In the above-described embodiment, the substantial harvesting work is performed by traveling using the straight work traveling route of the combine. The straight work traveling route is not limited to one straight line. The straight work traveling route may be a bent route, a curved route having a large radius of curvature, or a meandering line route.
(2)上述した実施形態では、未作業領域CAの形状は四角形であったが、これが三角形や五角形などの他の多角形であっても良い。 (2) In the above-described embodiment, the shape of the unworked area CA is a quadrangle, but it may be another polygon such as a triangle or a pentagon.
(3)上記各実施形態における構成の少なくとも一部を、プログラムを用いて実現することができる。例えば、プログラムは制御ユニット5に設けられる記憶装置92に格納され、CPUやECU等のプロセッサからなる制御部91によって実行される。また、記憶装置92および制御部91は、制御ユニット5に設けられても良いが、別の個所に設けられても良い。 (3) At least a part of the configuration in each of the above embodiments can be realized by using a program. For example, the program is stored in the storage device 92 provided in the control unit 5, and is executed by the control unit 91 including a processor such as a CPU and an ECU. Further, the storage device 92 and the control unit 91 may be provided in the control unit 5, but may be provided in another place.
(4)上記各実施形態において、収穫機が自動走行するための走行経路(目標走行経路)の一部または全部は、収穫機に搭載される制御ユニット5で設定される場合に限らず、外部で生成されて収穫機が取得する構成であっても良い。走行経路(目標走行経路)の一部または全部を設定する構成は経路設定システムであり、収穫機を含んで、あるいは収穫機と別に構成される。走行経路(目標走行経路)は、渦巻き走行のための走行経路や、排出ポイントPOに移動するための経路L1,経路L2,後退経路L3,前進経路L4,後退経路L5,前進経路L6,後退経路L7,前進経路L8等を含む。 (4) In each of the above embodiments, a part or all of the travel route (target travel route) for the harvester to automatically travel is not limited to being set by the control unit 5 mounted on the harvester, but may be externally It may be configured to be generated by the above and acquired by the harvester. The configuration for setting a part or all of the traveling route (target traveling route) is a route setting system, which includes a harvester or is configured separately from the harvester. The traveling route (target traveling route) is a traveling route for swirling, or a route L1, a route L2, a backward route L3, a forward route L4, a backward route L5, a forward route L6, a backward route for moving to the discharge point PO. L7, forward path L8 and the like are included.
 経路設定システムは、機体10の外部に制御ユニット5の構成要素の少なくとも一部が設けられ、これらと機体10との間で情報や信号を送受信できる構成である。例えば、目標走行経路設定部513や走行経路生成部59は、機体10の外部に設けられ、機体10から圃場の情報等を取得し、機体10に走行経路(目標走行経路)等を提供する。また、目標走行経路設定部513や走行経路生成部59と共に、未作業マップ作成部56や圃場管理部83が機体10の外部に設けられても良い。さらに、未作業マップ作成部56や圃場管理部83のみが機体10の外部に設けられても良い。また、収量管理部30が外部に設けられても良く、制御ユニット5のいずれの構成が機体10の内外のいずれに設けられるかは任意である。 The route setting system has a configuration in which at least some of the components of the control unit 5 are provided outside the machine body 10 and information and signals can be transmitted and received between these and the machine body 10. For example, the target travel route setting unit 513 and the travel route generation unit 59 are provided outside the machine body 10, acquire information on a field from the machine body 10, and provide the machine body 10 with a travel route (target travel route) and the like. In addition to the target travel route setting unit 513 and the travel route generation unit 59, the unworked map creation unit 56 and the farm field management unit 83 may be provided outside the machine body 10. Further, only the unworked map creation unit 56 and the farm field management unit 83 may be provided outside the machine body 10. Further, the yield management unit 30 may be provided outside, and which configuration of the control unit 5 is provided inside or outside the machine body 10 is arbitrary.
(5)上述の実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 (5) The configurations disclosed in the above-described embodiments (including other embodiments, the same applies below) can be applied in combination with the configurations disclosed in other embodiments, as long as no contradiction occurs. Further, the embodiments disclosed in the present specification are exemplifications, and the embodiments of the present invention are not limited thereto, and can be appropriately modified within a range not departing from the object of the present invention.
 本発明は、普通型のコンバインだけでなく、自脱型のコンバインにも利用可能であり、さらには、トウモロコシ収穫機やサトウキビ収穫機等の種々の収穫機にも利用できる。 The present invention can be used not only for ordinary combine harvesters, but also for self-removing combine harvesters, and further for various harvesters such as corn harvesters and sugar cane harvesters.
10  :機体
14  :穀粒タンク(収穫物タンク)
19  :収量センサ(センサ)
21  :満杯センサ(センサ)
54  :走行経路生成部
56  :未作業マップ作成部
513 :目標走行経路設定部
CA  :未作業領域(未作業地)
L3  :経路
L4  :経路
L7  :経路
L8  :経路
LT1 :経路要素
LT2 :経路要素
LTP :仮経路要素
SA  :外周領域(既作業領域)
 
10: Airframe 14: Grain tank (harvest tank)
19: Yield sensor (sensor)
21: Full sensor (sensor)
54: travel route generation unit 56: unworked map creation unit 513: target travel route setting unit CA: unworked area (unworked site)
L3: Route L4: Route L7: Route L8: Route LT1: Route element LT2: Route element LTP: Temporary route element SA: Peripheral area (work area)

Claims (14)

  1.  収穫物を一時的に貯留する収穫物タンクを備えた自動走行可能な収穫機であって、
     目標走行経路と自車位置とに基づいて自動走行を行う自動走行制御部と、
     周囲作業走行によって圃場の境界線の内側に沿って形成された既作業領域である外周領域の形状に基づいて、未作業領域を示す未作業マップデータを作成する未作業マップ作成部と、
     前記未作業マップデータに基づいて、前記未作業領域の外形を示す多角形における各辺に平行となる作業走行経路と機体の方向転換を伴って2つの前記作業走行経路をつなぐ旋回走行経路とからなる渦巻き状の前記目標走行経路を、順次時計方向に作業走行する第1走行パターン、または順次反時計方向に作業走行する第2走行パターン、あるいは前記第1走行パターンおよび前記第2走行パターンの両方を用いて設定する目標走行経路設定部と、を備えた収穫機。
    An automatic traveling harvester equipped with a harvest tank for temporarily storing harvest,
    An automatic traveling control unit that performs automatic traveling based on the target traveling route and the vehicle position,
    An unworked map creation unit that creates unworked map data indicating an unworked area based on the shape of the outer peripheral area that is the already worked area formed along the inside of the boundary line of the field by the surrounding work running,
    On the basis of the unworked map data, from a working travel route that is parallel to each side of a polygon showing the outer shape of the unworked region and a turning travel route that connects the two work travel routes with the direction change of the airframe. In the spiral target travel route, the first travel pattern for sequentially performing work travel in the clockwise direction, the second travel pattern for sequentially performing work travel in the counterclockwise direction, or both the first travel pattern and the second travel pattern A harvester equipped with a target traveling route setting unit that is set by using.
  2.  前記第1走行パターンおよび前記第2走行パターンの一方を用いた作業走行を繰り返して実施したにもかかわらず、前記圃場の境界線から前記未作業領域までの距離が所定値に達しない場合、前記目標走行経路設定部は、少なくとも前記第1走行パターンおよび前記第2走行パターンの他方を用いて前記目標走行経路を設定する請求項1に記載の収穫機。 If the distance from the border line of the field to the unworked area does not reach a predetermined value even though the work traveling using one of the first traveling pattern and the second traveling pattern is repeatedly performed, The harvester according to claim 1, wherein the target traveling route setting unit sets the target traveling route using at least the other of the first traveling pattern and the second traveling pattern.
  3.  前記第1走行パターンおよび前記第2走行パターンとの一方を用いて前記未作業領域を自動走行した際に、1周未満の作業走行の途中で、前記収穫物タンクからの前記収穫物の排出要求が発生した場合、前記目標走行経路設定部は、前記収穫物の排出後の作業走行のために、少なくとも前記第1走行パターンおよび前記第2走行パターンの他方を用いて前記目標走行経路を設定する請求項1または2に記載の収穫機。 When automatically traveling in the unworked area using one of the first traveling pattern and the second traveling pattern, a request for discharging the harvested product from the harvested product tank during the work traveling less than one lap. When the above occurs, the target travel route setting unit sets the target travel route using at least the other one of the first travel pattern and the second travel pattern for the work travel after discharging the harvested product. The harvesting machine according to claim 1 or 2.
  4.  前記収穫物の排出毎に、前記第1走行パターンと前記第2走行パターンとが、交互に用いられる請求項1または2に記載の収穫機。 The harvesting machine according to claim 1 or 2, wherein the first traveling pattern and the second traveling pattern are alternately used each time the harvested product is discharged.
  5.  前記収穫物の排出位置から最も近い位置の前記旋回走行経路につながる前記作業走行経路における当該旋回走行経路側の端部で、収穫物排出後の作業走行が開始される請求項1から4のいずれか一項に記載の収穫機。 5. The work traveling after the harvest is discharged is started at an end portion on the turning traveling route side of the work traveling route that is connected to the turning traveling route closest to the harvested product discharge position. The harvesting machine according to 1 above.
  6.  前記目標走行経路設定部は、前記既作業領域における互いに平行な直線状作業走行経路を、前記未作業領域におけるUターン旋回経路でつないでいくUターン走行パターンで前記目標走行経路を設定し、
     前記目標走行経路設定部は、前記Uターン旋回経路のために必要なスペースが確保されるまで、前記第1走行パターン、または前記第2走行パターン、あるいは前記第1走行パターンおよび前記第2走行パターンの両方を用いて前記目標走行経路を設定し、その後に前記Uターン走行パターンを用いて前記目標走行経路を設定する請求項1から5のいずれか一項に記載の収穫機。
    The target travel route setting unit sets the target travel route in a U-turn travel pattern in which linear work travel routes parallel to each other in the already-worked region are connected by a U-turn turning route in the unworked region,
    The target travel route setting unit continues the first travel pattern, the second travel pattern, or the first travel pattern and the second travel pattern until a space required for the U-turn turning path is secured. The harvester according to any one of claims 1 to 5, wherein the target traveling route is set by using both of them, and then the target traveling route is set by using the U-turn traveling pattern.
  7.  未作業地にあらかじめ設けられた複数の経路要素から1または複数の経路要素を選択して生成された走行経路を自動走行で往復走行しながら作物の収穫を行う収穫機であって、
     収穫物を貯留する収穫物タンクと、
     前記収穫物タンクに貯留された収穫物の収量を検出するセンサと、
     収穫物を排出するための排出経路を含む前記走行経路を生成する走行経路生成部と
    を備え、
     前記走行経路生成部は、前記未作業地の途中で前記センサにより検出される収穫物の収量が排出収量となった際に、走行中の経路要素に隣接する経路要素が既に走行済みである場合には、前記隣接する経路要素上を走行して前記未作業地から離脱する走行経路を生成する収穫機。
    A harvester for harvesting a crop while automatically traveling back and forth along a travel route generated by selecting one or more route elements from a plurality of route elements provided in advance on an unworked site,
    A harvest tank for storing the harvest,
    A sensor for detecting the yield of the harvested product stored in the harvest tank,
    A travel route generation unit that generates the travel route including a discharge route for discharging a harvested product,
    When the yield of the harvest detected by the sensor in the midway of the unworked land becomes the discharge yield, the travel route generation unit has already traveled a route element adjacent to the route element being traveled. And a harvesting machine that generates a travel route that runs on the adjacent route element and leaves the unworked site.
  8.  前記離脱する走行経路は、前進しながら前記隣接する経路要素に移動する経路を含み、前記隣接する経路要素に移動する際には、前記作物を収穫しながら移動する請求項7に記載の収穫機。 The harvester according to claim 7, wherein the traveling route to be separated includes a route that moves to the adjacent route element while moving forward, and moves to the adjacent route element while harvesting the crop. ..
  9.  前記離脱する走行経路は、後退して前記隣接する経路要素に移動する経路を含む請求項7に記載の収穫機。 The harvesting machine according to claim 7, wherein the leaving traveling route includes a route that moves backward and moves to the adjacent route element.
  10.  前記離脱する走行経路は、前記走行中の経路要素を後退した後、前進して前記隣接する経路要素に移動する経路を含む請求項7に記載の収穫機。 The harvesting machine according to claim 7, wherein the traveling route to be separated includes a route in which the traveling route element retreats and then moves forward to move to the adjacent route element.
  11.  前記離脱する走行経路は、後退して前記走行中の経路要素と前記隣接する経路要素との間に移動した後、前進して前記隣接する経路要素に移動する経路を含む請求項7に記載の収穫機。 8. The traveling route to be separated includes a route that moves backward to move between the traveling route element and the adjacent route element, and then moves forward to move to the adjacent route element. Harvester.
  12.  前記走行経路生成部は、前記走行中の経路要素と前記隣接する経路要素との間に仮経路要素を生成し、
     前記離脱する走行経路は、後退して前記仮経路要素に移動した後、前進して前記隣接する経路要素に移動する経路を含む請求項7に記載の収穫機。
    The travel route generation unit generates a temporary route element between the traveling route element and the adjacent route element,
    The harvesting machine according to claim 7, wherein the traveling route to be separated includes a route that moves backward to move to the temporary route element, and then moves forward to move to the adjacent route element.
  13.  自動走行可能であり、収穫物を一時的に貯留する収穫物タンクと目標走行経路と自車位置とに基づいて自動走行を行う自動走行制御部とを有する収穫機のための経路設定システムであって、
     前記収穫機の周囲作業走行によって圃場の境界線の内側に沿って形成された既作業領域である外周領域の形状に基づいて、未作業領域を示す未作業マップデータを作成する未作業マップ作成部と、
     前記未作業マップデータに基づいて、前記未作業領域の外形を示す多角形における各辺に平行となる作業走行経路と機体の方向転換を伴って2つの前記作業走行経路をつなぐ旋回走行経路とからなる渦巻き状の前記目標走行経路を、順次時計方向に作業走行する第1走行パターン、または順次反時計方向に作業走行する第2走行パターン、あるいは前記第1走行パターンおよび前記第2走行パターンの両方を用いて設定する目標走行経路設定部と、を備えた経路設定システム。
    A route setting system for a harvester that is capable of automatic traveling and has a harvest tank for temporarily storing harvested products, an automatic traveling control unit that performs automatic traveling based on a target traveling route, and a vehicle position. hand,
    An unworked map creation unit that creates unworked map data indicating an unworked area based on the shape of the outer peripheral area, which is the already worked area formed along the inner side of the boundary line of the field by the work operation around the harvester. When,
    On the basis of the unworked map data, from a working travel route that is parallel to each side of a polygon showing the outer shape of the unworked region and a turning travel route that connects the two work travel routes with the direction change of the airframe. In the spiral target travel route, the first travel pattern for sequentially performing work travel in the clockwise direction, the second travel pattern for sequentially performing work travel in the counterclockwise direction, or both the first travel pattern and the second travel pattern A route setting system including a target traveling route setting unit that is set by using the.
  14.  未作業地にあらかじめ設けられた複数の経路要素から1または複数の経路要素を選択して生成された走行経路を自動走行で往復走行しながら作物の収穫を行い、収穫物を貯留する収穫物タンクと前記収穫物タンクに貯留された収穫物の収量を検出するセンサとを有する収穫機のための経路設定システムであって、
     収穫物を排出するための排出経路を含む前記走行経路を生成する走行経路生成部を備え、
     前記走行経路生成部は、前記未作業地の途中で前記センサにより検出される収穫物の収量が排出収量となった際に、走行中の経路要素に隣接する経路要素が既に走行済みである場合には、前記隣接する経路要素上を走行して前記未作業地から離脱する走行経路を生成する経路設定システム。
     
    A harvest tank that stores crops while harvesting crops while automatically reciprocating the travel route generated by selecting one or more route elements from a plurality of route elements provided in advance in unworked areas A routing system for a harvester comprising: and a sensor for detecting the yield of the harvest stored in the harvest tank,
    A travel route generation unit that generates the travel route including a discharge route for discharging a harvested product,
    When the yield of the harvest detected by the sensor in the midway of the unworked land becomes the discharge yield, the travel route generation unit has already traveled a route element adjacent to the route element being traveled. In the route setting system, a traveling route that travels on the adjacent route element and leaves the unworked place is generated.
PCT/JP2019/044133 2018-11-15 2019-11-11 Harvester and route setting system WO2020100810A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217013002A KR20210089652A (en) 2018-11-15 2019-11-11 Harvester and routing system
CN201980073779.0A CN112996378B (en) 2018-11-15 2019-11-11 Harvester and route setting system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-214874 2018-11-15
JP2018214874A JP2020080656A (en) 2018-11-15 2018-11-15 Harvester
JP2018221153A JP7039444B2 (en) 2018-11-27 2018-11-27 Harvester
JP2018-221153 2018-11-27

Publications (1)

Publication Number Publication Date
WO2020100810A1 true WO2020100810A1 (en) 2020-05-22

Family

ID=70731858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044133 WO2020100810A1 (en) 2018-11-15 2019-11-11 Harvester and route setting system

Country Status (3)

Country Link
KR (1) KR20210089652A (en)
CN (1) CN112996378B (en)
WO (1) WO2020100810A1 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
FR3132002A1 (en) * 2022-01-25 2023-07-28 Kuhn Sas Method and installation for working a plot with at least one refueled agricultural robot
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113804212B (en) * 2021-08-23 2022-07-26 上海联适导航技术股份有限公司 Path planning method and device for harrowing operation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6216071B1 (en) * 1998-12-16 2001-04-10 Caterpillar Inc. Apparatus and method for monitoring and coordinating the harvesting and transporting operations of an agricultural crop by multiple agricultural machines on a field
JP2017055673A (en) * 2015-09-14 2017-03-23 株式会社クボタ Work vehicle supporting system
JP2018068284A (en) * 2016-10-26 2018-05-10 株式会社クボタ Travel route determination device
JP2018101410A (en) * 2016-12-19 2018-06-28 株式会社クボタ Travel route management system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069836A (en) * 1999-09-02 2001-03-21 Iseki & Co Ltd Automatic traveling apparatus for combine
JP6351030B2 (en) * 2014-03-07 2018-07-04 ヤンマー株式会社 Crop harvesting equipment
JP6673786B2 (en) * 2016-09-05 2020-03-25 株式会社クボタ Work vehicle automatic traveling system and traveling route management device
CN109964192B (en) * 2016-12-19 2022-11-01 株式会社久保田 Automatic traveling system of working vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6216071B1 (en) * 1998-12-16 2001-04-10 Caterpillar Inc. Apparatus and method for monitoring and coordinating the harvesting and transporting operations of an agricultural crop by multiple agricultural machines on a field
JP2017055673A (en) * 2015-09-14 2017-03-23 株式会社クボタ Work vehicle supporting system
JP2018068284A (en) * 2016-10-26 2018-05-10 株式会社クボタ Travel route determination device
JP2018101410A (en) * 2016-12-19 2018-06-28 株式会社クボタ Travel route management system

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11829112B2 (en) 2019-04-10 2023-11-28 Deere & Company Machine control using real-time model
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11650553B2 (en) 2019-04-10 2023-05-16 Deere & Company Machine control using real-time model
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11871697B2 (en) 2020-10-09 2024-01-16 Deere & Company Crop moisture map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
WO2023144119A1 (en) * 2022-01-25 2023-08-03 Kuhn Sas Method and installation for working a plot of land with at least one replenished agricultural robot
FR3132002A1 (en) * 2022-01-25 2023-07-28 Kuhn Sas Method and installation for working a plot with at least one refueled agricultural robot

Also Published As

Publication number Publication date
CN112996378A (en) 2021-06-18
KR20210089652A (en) 2021-07-16
CN112996378B (en) 2023-04-18

Similar Documents

Publication Publication Date Title
WO2020100810A1 (en) Harvester and route setting system
WO2020026578A1 (en) Travel route generation system, travel route generation method, travel route generation program, storage medium storing travel route generation program, operation management system, operation management method, operation management program, storage medium storing operation management program, harvester, travel pattern generation system, travel pattern generation program, storage medium storing travel pattern generation program, and travel pattern generation method
WO2020031473A1 (en) External shape calculation system, external shape calculation method, external shape calculation program, storage medium having external shape calculation program stored therein, farm field map generation system, farm field map generation program, storage medium having farm field map generation program stored therein, and farm field map generation method
CN111343854B (en) Work vehicle, travel route selection system for work vehicle, and travel route calculation system
WO2020044726A1 (en) Automated steering system, harvesting machine, automated steering method, automated steering program, and recording medium
JP7014687B2 (en) Harvester
JP7357444B2 (en) harvester
JP7039444B2 (en) Harvester
JP6983734B2 (en) Harvester
CN112533474B (en) Travel route generation system, method and recording medium
JP6745784B2 (en) Work vehicle
JP6884092B2 (en) Travel route selection system for work vehicles and work vehicles
JP2019106983A (en) Agricultural work vehicle
JP7401618B2 (en) Work management system and work management method
JP7068961B2 (en) External shape calculation system and external shape calculation method
JP7117985B2 (en) automatic driving control system
WO2020111102A1 (en) Automatic travel control system, automatic travel control program, recording medium having automatic travel control program recorded thereon, automatic travel control method, control device, control program, recording medium having control program recorded thereon, and control method
JP2022180405A5 (en)
JP7224151B2 (en) Driving route generation system and driving route generation method
JP6991058B2 (en) Automatic steering system
JP6978388B2 (en) Automatic steering system for field work vehicles
JP7030662B2 (en) Harvester
JP7334281B2 (en) harvester
JP2020080656A (en) Harvester
JP6952597B2 (en) Work platform

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19884262

Country of ref document: EP

Kind code of ref document: A1