WO2020026578A1 - Travel route generation system, travel route generation method, travel route generation program, storage medium storing travel route generation program, operation management system, operation management method, operation management program, storage medium storing operation management program, harvester, travel pattern generation system, travel pattern generation program, storage medium storing travel pattern generation program, and travel pattern generation method - Google Patents

Travel route generation system, travel route generation method, travel route generation program, storage medium storing travel route generation program, operation management system, operation management method, operation management program, storage medium storing operation management program, harvester, travel pattern generation system, travel pattern generation program, storage medium storing travel pattern generation program, and travel pattern generation method Download PDF

Info

Publication number
WO2020026578A1
WO2020026578A1 PCT/JP2019/021600 JP2019021600W WO2020026578A1 WO 2020026578 A1 WO2020026578 A1 WO 2020026578A1 JP 2019021600 W JP2019021600 W JP 2019021600W WO 2020026578 A1 WO2020026578 A1 WO 2020026578A1
Authority
WO
WIPO (PCT)
Prior art keywords
traveling
yield
route
travel
work
Prior art date
Application number
PCT/JP2019/021600
Other languages
French (fr)
Japanese (ja)
Inventor
阪口和央
佐野友彦
吉田脩
中林隆志
川畑翔太郎
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018144479A external-priority patent/JP7136623B2/en
Priority claimed from JP2018167810A external-priority patent/JP7030662B2/en
Priority claimed from JP2018214873A external-priority patent/JP7224151B2/en
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to CN201980049840.8A priority Critical patent/CN112533474B/en
Priority to KR1020217005563A priority patent/KR20210038613A/en
Publication of WO2020026578A1 publication Critical patent/WO2020026578A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F12/00Parts or details of threshing apparatus
    • A01F12/60Grain tanks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications

Definitions

  • the present invention relates to a technique for managing and controlling the operation of a combine for harvesting crops in a field.
  • the present invention relates to a technique for automatically traveling in a reciprocating traveling pattern of traveling by connecting a plurality of parallel work traveling paths by a turning traveling path.
  • Patent Literature 1 Background technology
  • a combine described in Patent Literature 1 is already known. This combine is capable of harvesting and traveling by harvesting crops in a field by a harvesting device ("a reaper” in Patent Document 1) while traveling by the traveling device.
  • the combine includes a grain tank (“Glen tank” in Patent Literature 1) for storing the harvested product harvested by the harvesting device.
  • the combine is configured to automatically travel based on a signal received from a GPS satellite, and a yield sensor that detects the amount of grains in a grain tank (in Japanese Patent Application Laid-Open No. H11-163873, “grain amount detecting means”). It has. When the value detected by the yield sensor is equal to or greater than a set value, the combine is automatically moved to the vicinity of the transport vehicle (discharge point) in order to discharge grains from the grain tank. .
  • Harvesters such as combine harvesters that harvest crops while traveling in the field, temporarily store the harvest in the harvest tank, and once the harvest tank is full, suspend the harvesting work and temporarily stop the specified discharge. After traveling to the area and discharging the harvest to a transport vehicle or the like parked there, return to the place where the work was interrupted and resume the harvest work.
  • the transport vehicle loaded with the harvest transports the harvest to a facility that performs the next processing, such as a drying facility.
  • the combine according to Patent Literature 2 includes a grain sensor that detects the amount of grains in a grain tank, finds the time required from the start of harvesting to reach full tank, and transmits the required time to a designated mobile phone. Having.
  • Patent Document 3 discloses a harvester that automatically travels along a traveling route selected from a traveling route group calculated to cover a field.
  • a discharge request for discharging the harvest is issued.
  • the harvester temporarily suspends the harvest run, disengages from the previously traveled travel route, and selects the travel route to guide the harvester to the harvest discharge parking position. Use to drive to the harvest discharge parking position.
  • the problems corresponding to the background art [1] are as follows.
  • the automatic traveling including the movement for discharging the kernel may not be efficient depending on the position where the amount of the grain to be discharged is reached. For example, if the amount of grain to be discharged at a position away from the edge of the field is reached, the combine retreats to the swirling area (unworked land) of the already harvested field and moves to the discharge point. It was necessary to perform inefficient automatic driving.
  • An object of the present invention is to perform efficient automatic traveling.
  • the problems corresponding to the background art [2] are as follows.
  • a fullness notification process or a discharge process for interrupting the harvesting operation and emptying the harvest tank is performed.
  • interrupting the harvest travel and performing a discharge process to empty the harvest tank is particularly difficult when automatic travel is adopted.
  • Difficult problems such as searching for a return point and selecting a discharge travel route and a return travel route occur. Such a problem does not occur when the storage amount of the harvest tank becomes an amount requiring discharge (for example, full) at a point where selection of the discharge travel route and the return travel route is easy.
  • An object of the present invention is to provide a harvester that can control a storage amount of a harvest tank to be an amount requiring discharge at a point where a discharge travel route and a return travel route can be easily set. That is.
  • a traveling route generation system includes an automatic traveling route in a combine for harvesting a crop in the unworked land, while reciprocating in an unworked land in a field along an automatically running traveling path along a mutually parallel traveling route.
  • a travel route generation system that generates a yield acquisition unit that acquires a yield rate that is a yield per unit area in the field, an area acquisition unit that acquires the area of the unworked land, and the yield rate From the area, a total yield estimating unit that estimates the total yield of kernels that are expected to be harvested in the unworked land, and based on the shape and the total yield of the unworked land, A traveling route generating unit that generates a preliminary adjustment route for performing automatic traveling prior to the reciprocating traveling so that the shape becomes an optimal shape for the reciprocating traveling.
  • the optimal shape for harvesting is a shape that does not result in an emission yield in the middle of the travel route, and the travel route generation unit generates the preliminary adjustment route in consideration of the emission yield. Is preferred.
  • the travel route may be inefficient, such as the need to move backward to move to the grain discharge point.
  • the un-worked site after traveling on the pre-adjustment route will have a travel route that considers movement to the discharge point. It becomes easy to generate, and an efficient travel route can be easily generated.
  • the discharge yield may be the yield when the grain tank is full.
  • the discharge yield may be set so as to be equal to or more than a predetermined ratio of the yield when the grain tank is full.
  • the capacity of the transport vehicle and the yield to be discharged in response to external requests may be specified.
  • an efficient traveling route can be generated.
  • a discharge point setting unit configured to set a discharge point for discharging the kernel stored in the kernel tank to one end of the travel route on an outer side of the unworked land; It is preferable that the preliminary adjustment path is generated so that the discharge yield is obtained on the side where one end or the other end of the travel path is located, of the sides constituting the outer shape of the unworked land.
  • a more efficient traveling route can be generated by generating a traveling route so as to obtain a discharge yield particularly at a position facing the discharge point and cut through an unworked land.
  • the traveling route generation unit may include, among the sides constituting the unworked land, one side facing the entrance from the ridge in the field or one side facing the entrance and an opposite side across the traveling path.
  • the preliminary adjustment path is generated so as to complete the harvesting work of the unworked land.
  • the traveling route when leaving the field after finishing the harvesting work is also optimized, and a more efficient traveling route can be generated.
  • the preliminary adjustment path is a path for adjusting the length of the traveling path of the reciprocating traveling.
  • the preliminary adjustment route is a route along a direction intersecting with the traveling route.
  • the preliminary adjustment path may be a path along the outer periphery of the unworked land.
  • the traveling route generation method is a combine harvesting device that harvests crops of the unworked land while automatically reciprocating on unworked land in a field along running paths parallel to each other.
  • a traveling route generation method for generating an automatic traveling route wherein a step of acquiring a yield rate that is a yield per unit area in the field, a step of acquiring an area of the unworked land, and the yield rate and the area From the step of estimating the total yield of kernels that are predicted to be harvested in the unworked land, and based on the shape of the unworked land and the total yield, the shape of the unworked land is reciprocated Generating a preliminary adjustment path for performing automatic traveling prior to the reciprocating traveling so as to have an optimal shape for traveling.
  • the optimal shape for harvesting is a shape that does not result in a discharge yield in the middle of the traveling route, and it is preferable to generate the preliminary adjustment route in consideration of the discharge yield.
  • the traveling route may be inefficient, such as the need to move backward to move to the grain discharge point.
  • the un-worked site after traveling on the pre-adjustment route will have a travel route that considers movement to the discharge point. It becomes easy to generate, and an efficient travel route can be easily generated.
  • the discharge yield may be the yield when the grain tank is full.
  • the discharge yield may be set so as to be equal to or more than a predetermined ratio of the yield when the grain tank is full.
  • the capacity of the transport vehicle and the yield to be discharged in response to external requests may be specified.
  • an efficient traveling route can be generated.
  • a discharge point for discharging the grains stored in the grain tank is set at one end of the traveling path on the outer side of the unworked land, and a side of the side constituting the outer shape of the unworked land is set.
  • the preliminary adjustment path is generated such that the discharge yield is obtained on a side where one end or the other end of the travel path is located.
  • the pre-adjustment path is generated so as to complete the work.
  • the traveling route when leaving the field after finishing the harvesting work is also optimized, and a more efficient traveling route can be generated.
  • the preliminary adjustment path is a path for adjusting the length of the traveling path of the reciprocating traveling.
  • the preliminary adjustment route is a route along a direction intersecting with the traveling route.
  • the preliminary adjustment path may be a path along the outer periphery of the unworked land.
  • the traveling route generation program is a combine harvester that harvests crops of the unworked land while automatically reciprocating through the unworked land in the field along the running paths parallel to each other.
  • a travel route generation program that generates an automatic travel route, a function of acquiring a yield rate that is a yield per unit area in the field, a function of acquiring an area of the unworked land, the yield rate and the area From the above, based on the function of estimating the total yield of kernels that are predicted to be harvested in the unworked land, and the shape of the unworked land and the total yield, the shape of the unworked land is reciprocated
  • a function of generating a preliminary adjustment path for performing automatic traveling prior to the reciprocating traveling so as to have an optimal shape for traveling.
  • the recording medium in which the traveling route generation program according to the embodiment of the present invention is recorded while traveling back and forth by automatic traveling along the traveling routes parallel to each other on the unworked land in the field,
  • the work management system includes a grain tank that stores the grains harvested and threshed and a yield sensor that measures the yield of the grains stored in the grain tank.
  • a work management system for a combine that harvests crops in an outer peripheral area in a field by manual traveling, and harvests the crop while automatically traveling on an unworked area inside the already-operated land where the manual traveling has been performed.
  • a satellite antenna provided in the combine and receiving a satellite signal from a satellite, a satellite positioning module provided in the combine and outputting positioning data corresponding to the vehicle position based on the satellite signal, Provided in the combine, a yield output unit that outputs the yield measured by the yield sensor, a data acquisition unit that acquires the positioning data and the yield, and a data acquisition unit that acquires during the manual driving.
  • an area calculation unit that calculates an already-worked area of the already-worked area and an un-worked area of the un-worked area, and the yield and the already-worked area obtained during the manual traveling
  • a yield rate calculation unit that calculates a yield rate that is a yield per unit area in the already-worked area, and a grain that is expected to be harvested in the un-worked area from the unworked area and the yield rate.
  • a total yield estimating unit for estimating the total yield of.
  • the total yield of the unworked land By estimating the total yield of the unworked land in this way, it is possible to easily manage the harvesting work including this field or another field when the surrounding mowing is completed. In addition, when generating a traveling route in the automatic traveling of the unworked land, the total yield harvested in the unworked land can be considered. Therefore, the total yield is one measure, and it is possible to efficiently generate a traveling route for automatic traveling.
  • the decimal number is rounded up, and a discharge frequency calculation unit for calculating a minimum required discharge frequency during the automatic traveling of the unworked land may be provided. preferable.
  • the discharge count calculating unit preferably calculates the discharge count using the yield stored at the time of discharging during the manual running as the discharge yield.
  • An emission-based yield calculation unit configured to calculate an emission-based yield that is equal to or less than the emission yield from the total yield and the number of times of emission, and a travel route generation that generates an automatic travel route based on the emission-based yield. It is preferable to include a part.
  • the yield of the stored kernels be a yield suitable for discharge.
  • the emission standard yield obtained as described above is obtained by calculating the yield that is a reference when discharging from the minimum required number of discharges, and the final number of discharges does not change even if the emission is performed at the emission reference yield. Therefore, when generating a travel route, the yield at the time of discharge can be given a range so as to discharge between the discharge reference yield and the discharge yield.
  • the degree of freedom in generating the traveling route is improved, and when reaching the end of the unworked land, the yield of the stored kernels becomes a suitable yield for discharging. It becomes easier. As a result, efficient generation of a traveling route becomes easier.
  • the apparatus may further include a discharge point setting unit configured to set a discharge point for discharging the kernel stored in the kernel tank, wherein the travel route generation unit generates the automatic travel route in consideration of the discharge point. preferable.
  • a travel route can be generated such that harvesting ends at the end of the unworked land closer to the discharge point, and it becomes easier to efficiently generate a travel route.
  • the work management method includes a kernel tank for storing a grain harvested and threshed, and a yield sensor for measuring the yield of the kernel stored in the kernel tank.
  • a management method a step of receiving a satellite signal from a satellite, calculating positioning data corresponding to the own vehicle position of the combine based on the satellite signal, and obtaining the positioning data and the yield, From the positioning data acquired during the manual traveling, a step of calculating an area of the already-occupied land of the already-occupied land and an unoccupied area of the unoccupied land; From the area A step of calculating a yield rate that is a yield per unit area in the already-worked land; and, based on the unworked-land area and the yield rate, the total yield of kernels that are expected to be harvested in the unworked land Calculating the following.
  • the total yield of the unworked land By estimating the total yield of the unworked land in this way, it is possible to easily manage the harvesting work including this field or another field when the surrounding mowing is completed. In addition, when generating a traveling route in the automatic traveling of the unworked land, the total yield harvested in the unworked land can be considered. Therefore, the total yield is one measure, and it is possible to efficiently generate a traveling route for automatic traveling.
  • the method further comprises a step of dividing the total yield by the discharge yield of the grain tank, and then rounding up decimal places to calculate a minimum required number of discharges during the automatic traveling of the unworked land.
  • the number of discharges is calculated using the yield stored at the time of discharging during the manual driving as the discharge yield.
  • the method further includes a step of calculating an emission reference yield that is equal to or less than the emission yield from the total yield and the number of discharges, and a step of generating an automatic traveling route based on the emission reference yield. .
  • the yield at the time of discharge can be given a range so as to discharge between the discharge reference yield and the discharge yield. Therefore, the degree of freedom in generating the traveling route is improved, and when reaching the end of the unworked land, the yield of the stored grains can be set to a suitable yield for discharging. It will be easier. As a result, efficient generation of a traveling route becomes easier.
  • the method further includes the step of setting a discharge point for discharging the kernel stored in the kernel tank, wherein the automatic traveling route is generated in consideration of the discharge point.
  • a travel route can be generated such that harvesting ends at the end of the unworked land closer to the discharge point, and it becomes easier to efficiently generate a travel route.
  • the work management program includes a kernel tank for storing cropped and threshed kernels and a yield sensor for measuring the yield of kernels stored in the kernel tanks.
  • a kernel tank for storing cropped and threshed kernels
  • a yield sensor for measuring the yield of kernels stored in the kernel tanks.
  • a management program receiving a satellite signal from a satellite, a function of calculating positioning data corresponding to the own vehicle position of the combine based on the satellite signal, and a function of obtaining the positioning data and the yield, From the positioning data acquired at the time of the manual traveling, a function of calculating an already-worked area of the already-worked area and an un-worked area of the un-worked area, and the yield and the already-worked ground acquired at the time of the manual traveling From the function of calculating the yield rate, which is the yield per unit area in the already-worked land, and from the un-worked area and the yield rate, the kernel is expected to be harvested in the un-worked land And a function for calculating the total yield.
  • a recording medium recording a work management program measures a grain tank that stores grains that are harvested and threshed, and a yield of grains stored in the grain tank.
  • a recording medium recording a work management program for monitoring work, a function of receiving a satellite signal from a satellite, and calculating positioning data corresponding to the own vehicle position of the combine based on the satellite signal; and A function of obtaining data and the yield, a function of calculating an area of the already-worked land and an un-worked area of the un-worked land from the positioning data obtained during the manual running, and A function of calculating a yield rate, which is a yield per unit area in the already-worked land, from the obtained yield and the already-worked area, and the un-worked area from the un-worked area and the yield rate.
  • a function for calculating the total yield of the grain expected to be harvested by the computer and a work management program for causing a computer to realize the function.
  • the means for solving the problem [2] is as follows.
  • the harvester according to the present invention which automatically travels in a reciprocating travel pattern in which a plurality of parallel work travel paths are connected by a turning travel path, travels in a reciprocating travel pattern, includes a harvest tank for storing harvested crops, and the work travel path in an unworked area.
  • a traveling route setting unit that sets at predetermined intervals, an automatic traveling control unit that performs automatic traveling along the work traveling route based on the work traveling route and the own vehicle position, and a harvest amount per unit traveling distance.
  • a specific work travel route that is the work travel route in which the discharge timing of the crop tank occurs and a discharge timing prediction unit that predicts a discharge timing occurrence position in the specific work travel route, and a harvest width in the specific work travel route.
  • a travel path adjusting section that gives to the automatic travel control unit instead of the path.
  • the discharge timing of the harvest tank (for example, when the harvest tank is full or the harvest tank reaches an acceptable amount in the secondary processing step) is predicted at a specific position in the work traveling path.
  • the work travel route is regarded as a specific work travel route.
  • the occurrence of the discharge timing is set as the end point of the work travel route. This is made possible by replacing the adjusted travel route with a reduced harvest width (work width) with the specific work travel route. As a result, the harvester reaches the discharge timing when the traveling along the adjusted travel route is completed. Therefore, the harvester leaves the adjusted travel route and goes to the discharge stop location.
  • the actual harvest width in the harvest travel along the adjusted travel path is narrower than the harvest width in the harvest travel along the original work travel path, so an unharvested area occurs in the area where the original harvest is performed. . In order to cover this unharvested area, it is necessary to change the work travel route used for harvest travel performed thereafter. Two methods are proposed as a preferable method of changing the work traveling route.
  • the travel route adjustment unit creates the adjusted travel route by laterally shifting the specific work travel route in a direction in which the harvest width decreases, and performs a lateral shift of the specific work travel route.
  • the work travel route in the unworked area is laterally shifted in order to make the interval of the spread work travel route the predetermined interval.
  • the interval between the non-work area adjacent to the specific work travel route and the adjacent work travel route is widened.
  • the adjacent work travel route is also shifted laterally.
  • the work traveling route in the unworked area whose interval has been widened by this lateral shift is sequentially laterally shifted. If all the work travel routes that need to be shifted laterally are shifted as a result and there is not enough work travel routes to completely cover the unworked area, a new work travel route may be created.
  • the traveling route adjustment unit newly creates a virtual traveling route parallel to the specific work traveling route as the adjusted traveling route.
  • This virtual traveling route is set only with the coordinate position of the starting end at which the work traveling is started and the azimuth (meaning the extending direction, but may be an azimuth in which the extending direction changes like a curved line). Just do it.
  • the harvest traveling with the appropriately narrowed harvest width is performed only by maintaining the set azimuth.
  • the interval between the virtual travel route and the work travel route adjacent to the virtual travel route is smaller than the normal route interval, and the range of the harvest width in the harvest travel along the work travel route is: Many harvested areas are included, resulting in poor work efficiency.
  • the travel route adjustment unit laterally shifts the specific work travel route and the work travel route in the non-work area in a direction away from the virtual travel route.
  • the value of the lateral shift may be a value obtained by subtracting the interval between the specific work travel route and the virtual travel route from the predetermined interval.
  • the traveling route adjustment unit creates an updated traveling route in which the harvest width is equal to an unworked area remaining after traveling on the adjusted traveling route, and The work travel route previously set in the area is replaced with the updated travel route.
  • the updated travel route is created so as to have an evenly distributed harvest width with respect to the unworked area remaining after traveling on the adjusted travel route.
  • the traveling pattern creating system includes a reciprocating traveling pattern in which a harvester having a harvest tank for storing crops automatically travels by connecting a plurality of parallel work traveling paths by a turning traveling path.
  • a travel route setting unit that sets the work travel route at a predetermined interval in an unworked area; and a work route along the work travel route based on the work travel route and the own vehicle position.
  • An automatic travel control unit that performs automatic travel, and a specific work travel path that is the work travel path in which a discharge timing of the crop tank is generated based on a harvest amount per unit travel distance, and a discharge timing generation in the specific work travel path.
  • Create an adjustment travel path for delaying the serial ejection timing includes a travel path adjusting unit to be supplied to the automatic travel control unit instead of the adjustment travel route to the specific working travel route, the.
  • Such a running pattern creation system can also achieve the same effects as the harvester described above.
  • a traveling pattern creation program includes a reciprocating traveling pattern in which a harvester having a harvest tank that stores harvested products automatically travels by connecting a plurality of parallel work traveling paths by a turning traveling path.
  • a travel route setting function for setting the work travel route in a non-work area at a predetermined interval; and a travel route creation function based on the work travel route and the own vehicle position.
  • Driving by setting the discharge timing prediction function to predict the position and the harvest width narrower than the harvest width in the specific work travel route Create an adjustment travel path for delaying the discharge timing to the Ryoten, and a traveling path adjusting function to give to the automatic cruise control functions in place the adjustment travel route to the specific working travel route.
  • the recording medium on which the running pattern creation program according to one embodiment of the present invention is recorded is a machine in which a harvester having a harvest tank for storing harvests connects a plurality of parallel work travel paths by a turning travel path.
  • a recording medium storing a traveling pattern creating program for creating a reciprocating traveling pattern for traveling, a traveling route setting function for setting the working traveling route at a predetermined interval in an unworked area, An automatic travel control function for automatically traveling along the work travel path based on the specified travel path, and a specific work travel path that is the work travel path in which the discharge timing of the crop tank is generated based on the amount of harvest per unit travel distance And a discharge timing prediction function for predicting a discharge timing occurrence position in the specific work travel route; A travel route adjustment that creates an adjusted travel route that delays the discharge timing until the end point of travel by making the harvest width smaller than the harvest width, and gives the adjusted travel route to the automatic travel control function instead of the specific work travel route
  • a running pattern creation program for causing a computer to
  • the traveling pattern creating method is a method in which a harvester having a harvest tank for storing crops automatically travels by connecting a plurality of parallel work traveling paths by a turning traveling path.
  • Create an adjustment travel path for delaying the discharge timing comprising: a traveling path adjusting step of providing the automatic travel control process in place of the adjustment travel route to the specific working travel route, the.
  • FIG. 3 is a diagram illustrating a traveling route in automatic traveling.
  • FIG. 3 is a functional block diagram illustrating a configuration of a combine management / control system. It is a figure explaining discharge of a grain performed during harvesting run. It is a figure explaining a preliminary adjustment course. It is a figure in the management and control method of a combine which shows. It is a figure explaining the preliminary adjustment course in ⁇ cutting. It is a side view of a normal type combine as an example of a harvester. It is explanatory drawing which shows the cutting and running around the combine.
  • FIG. 8 is an explanatory diagram illustrating calculation of a work traveling route in a reciprocating traveling pattern using a normal U-turn. It is explanatory drawing explaining calculation of the work travel route in a spiral running pattern. It is explanatory drawing explaining the flow of the harvesting work by the combine performed using manual driving
  • FIG. 3 is a functional block diagram illustrating a configuration of a combine control system.
  • FIG. 8 is an explanatory diagram illustrating equal allocation of work traveling routes performed based on setting of an adjusted traveling route.
  • the combine includes a crawler-type traveling device 11, an operation unit 12, a threshing device 13, a grain tank 14, a harvesting device H, a transport device 16, a grain discharging device 18, and a satellite positioning module. 80.
  • the traveling device 11 is provided below the traveling vehicle body 10 (hereinafter simply referred to as the vehicle body 10).
  • the combine is configured to be self-propelled by the traveling device 11.
  • the operating unit 12, the threshing device 13, and the grain tank 14 are provided above the traveling device 11.
  • An operator who monitors the operation of the combine can be boarded on the driving unit 12. The observer may be monitoring the combine operation from outside the combine.
  • the grain discharge device 18 is provided above the grain tank 14. Further, the satellite positioning module 80 is mounted on the upper surface of the driving unit 12.
  • the harvesting device H is provided at the front of the combine.
  • the transport device 16 is provided on the rear side of the harvesting device H. Further, the harvesting device H has a cutting mechanism 15 and a reel 17.
  • the cutting mechanism 15 cuts the planted grain culm in the field. Further, the reel 17 scrapes the planted grain stem to be harvested while being driven to rotate. With this configuration, the harvesting device H harvests cereals in the field (hereinafter, also referred to as “crops”). Then, the combine can perform harvesting travel in which the harvesting device H harvests cereals in a field while traveling by the traveling device 11.
  • the combine includes the harvesting device H that harvests cereals in the field and the traveling device 11.
  • the harvested culm cut by the cutting mechanism 15 is transported by the transport device 16 to the threshing device 13.
  • the harvested culm is threshed.
  • the grain obtained by the threshing process is stored in the grain tank 14.
  • the grain tank 14 is provided with a yield sensor 19 that measures the yield of the grains stored in the grain tank 14.
  • the grains stored in the grain tank 14 are discharged out of the machine by a grain discharging device 18 as necessary.
  • the combine is provided with the grain tank 14 that stores the grains harvested by the harvesting device H.
  • the communication terminal 2 is arranged in the driving unit 12.
  • the communication terminal 2 is fixed to a driving unit 12.
  • the present invention is not limited to this, and the communication terminal 2 may be configured to be detachable from the driving unit 12. Further, it may be taken out of the combine machine.
  • the satellite positioning module 80 having a satellite antenna includes a satellite navigation module 81 and an inertial navigation module 82.
  • the satellite navigation module 81 receives a GNSS (global navigation satellite system) signal (including a GPS signal) from the artificial satellite GS via a satellite antenna and outputs positioning data for calculating the position of the own vehicle.
  • the inertial navigation module 82 incorporates a gyro acceleration sensor and a magnetic direction sensor, and outputs a position vector indicating an instantaneous traveling direction.
  • the inertial navigation module 82 is used to supplement the own vehicle position calculation by the satellite navigation module 81.
  • the inertial navigation module 82 may be located at a different location from the satellite navigation module 81.
  • the driver / monitor manually operates the combine, and performs harvesting traveling so as to orbit along the boundary of the field in the outer peripheral portion of the field as shown in FIG. Also referred to as).
  • the area that has been cut (the already worked place) is set as the outer peripheral area SA.
  • the area left uncut (unworked) inside the outer peripheral area SA is set as the work target area CA.
  • FIG. 2 shows an example of the outer peripheral area SA and the work target area CA.
  • the surrounding mowing is performed by manual traveling.In this case, the peripheral mowing may be a traveling in which the driver rides on the combine and steers the combine. May be.
  • the driver runs the combine for two or three turns. In this traveling, every time the combine makes one round, the width of the outer peripheral area SA increases by the working width of the combine. After the first two or three rounds of travel, the width of the outer peripheral area SA becomes about two to three times the working width of the combine. Note that the first round traveling by the driver is not limited to two or three laps, but may be longer (four or more laps) or one lap.
  • the outer peripheral area SA is used as a space for the combine to change directions when performing harvesting traveling by automatic traveling in the work target area CA.
  • the outer peripheral area SA is also used as a space for movement when the harvest travel is once completed and the grain is moved to a grain discharge location, or is moved to a fuel supply location.
  • the transport vehicle CV shown in FIG. 2 can collect and transport the kernels discharged from the combine. In discharging the grains, the combine moves to the vicinity of the transport vehicle CV, and then discharges the grains to the transport vehicle CV by the grain discharging device 18.
  • the traveling route in the work area CA is calculated as shown in FIG.
  • the calculated traveling route is sequentially generated based on the work traveling pattern, and becomes a route along which the combine automatically travels along the generated traveling route.
  • a turning pattern for turning in addition to a U turning pattern in which the direction changes along a U-shaped turning traveling path as shown in FIG. It has a turning pattern and a switchback turning pattern that performs the same direction change as the U turning pattern in an area narrower than the U turning pattern with backward traveling.
  • Such turning movement including backward movement is also performed, for example, when the grain tank 14 is full and the combine that has left the traveling route in the work target area CA is positioned with respect to the transport vehicle CV.
  • the combine management / control system includes a control unit 5 composed of a number of electronic control units called ECUs, and various input / outputs for performing signal communication (data communication) with the control unit 5 through a wiring network such as an in-vehicle LAN. It is composed of equipment.
  • the communication unit 66 is used by the combine management / control system to exchange data with the communication terminal 2 or with a management computer installed in a remote place.
  • the communication terminal 2 includes a tablet computer operated by an observer standing on a field, a driver and an observer riding in a combine, and a computer installed in a home or a management office.
  • the control unit 5 is a core element of the control system, and is shown as an aggregate of a plurality of ECUs. A signal from the satellite positioning module 80 is input to the control unit 5 through the onboard LAN. Note that some of the components of the control unit 5 may be arranged in the communication terminal 2.
  • the control unit 5 includes an input processing unit 90, a vehicle position calculation unit 55, a vehicle body direction calculation unit 56, a field management unit 83, a yield management unit 70, and a travel route generation unit 54. Further, although not shown, the control unit 5 may include an output processing unit, a traveling control unit that controls a traveling device group, a work control unit that controls a harvesting work device, and the like.
  • the output processing unit includes a steering device, an engine device, a transmission device, a braking device, a harvesting device H (see FIG. 1), a threshing device 13 (see FIG. 1), a transport device 16 (see FIG. 1), and a grain discharging device 18 (see FIG. 1). (See FIG. 1).
  • the input processing unit 90 is connected with the satellite positioning module 80, the yield output unit 20, the traveling state sensor group 63, the work state sensor group 64, the traveling operation unit (not shown), and the like.
  • the input processing unit 90 receives the information from these, and provides the information to various functional units in the control unit 5.
  • the running state sensor group 63 includes an engine speed sensor, an overheat detection sensor, a brake pedal position detection sensor, a shift position detection sensor, a steering position detection sensor, and the like.
  • the work state sensor group 64 includes a harvesting operation device (harvesting device H (see FIG. 1)), a threshing device 13 (see FIG. 1), a transport device 16 (see FIG. 1), and a grain discharging device 18 (see FIG. 1). And a sensor for detecting the state of the grain culm and the grain.
  • the own vehicle position calculating unit 55 sets the own vehicle as the map coordinates (or the field coordinates) of a specific location of the vehicle body 10 (see FIG. 1) which is set in advance. Calculate the position and the position of both ends of the harvest width.
  • the body direction calculation unit 56 obtains a traveling locus in a short time from the vehicle position sequentially calculated by the vehicle position calculation unit 55, and calculates the vehicle direction indicating the direction of the vehicle body 10 (see FIG. 1) in the traveling direction. decide. Further, the vehicle body azimuth calculating unit 56 can also determine the vehicle azimuth based on the azimuth data included in the output data from the inertial navigation module 82.
  • the field management unit 83 calculates the outer shape of the field, the outer shape of the work target area CA, the area of the field, the area of the work target area CA, and the like based on the own vehicle position calculated by the own vehicle position calculator 55.
  • the field management unit 83 includes an area calculation unit 84, a shape calculation unit 85, and the like.
  • the shape calculator 85 calculates the outer shape of the field and the outer shape of the work target area CA.
  • the area calculation unit 84 calculates the area of the field and the area of the work target area CA.
  • the field management unit 83 may include a discharge point setting unit 86 that sets a discharge point for discharging kernels to the transport vehicle CV.
  • the yield management unit 70 manages the yield used for determining a traveling route for automatic traveling and the like. Therefore, the yield management unit 70 estimates a yield rate, which is the yield of harvesting the crop per unit area of the field, the total yield that can be harvested in the work target area CA, and the like. Further, the yield management unit 70 calculates the minimum number of times of discharging the stored grains and the yield of the grains to be discharged, which are required at the minimum when harvesting the crop in the work target area CA. Specifically, the yield management unit 70 can include a yield rate calculation unit 71, a total yield calculation unit 72 (corresponding to a total yield estimation unit), a discharge count calculation unit 73, a discharge reference yield calculation unit 74, and the like. In addition, the yield management unit 70 can include all of them, or can also include some of them in combination.
  • the yield rate calculation unit 71 calculates the yield rate, which is the yield per unit area, from the yield of the kernel harvested in the outer peripheral area SA and the area of the outer peripheral area SA in the peripheral mowing. Specifically, the yield rate is obtained by dividing the yield of the kernel harvested in the outer peripheral area SA by the area of the outer peripheral area SA. The yield of the grain harvested in the outer peripheral area SA is obtained from the increase amount of the grain stored in the grain tank 14 from the start to the end of the peripheral cutting by manual traveling. When the kernel is discharged during the peripheral cutting, the increment of the kernel before and after that is added up.
  • the yield of the kernel harvested in the outer peripheral area SA may be calculated by the yield rate calculation unit 71, or may be calculated by another function unit such as another function unit in the yield management unit 70.
  • the area of the outer peripheral area SA is obtained by the area calculator 84 subtracting the area of the work target area CA from the area of the field.
  • the total yield calculator 72 estimates the total yield of kernels that are expected to be harvested in the entire work area CA from the area and the yield rate of the work area CA. Specifically, the total yield is obtained by multiplying the area of the work area CA by the yield rate. This makes it possible to efficiently generate a traveling route for automatic traveling in the work target area CA while referring to the total yield and considering the discharge of grains.
  • the discharge number calculation unit 73 determines the minimum required for automatic traveling in the work target area CA from the discharge yield, which is the yield stored in the grain tank 14 when discharging the kernel, and the total yield of the work target area CA. Is calculated. Specifically, the number of discharges is determined by dividing the total yield by the discharge yield and rounding up to an integer value.
  • the discharge yield is a full yield of the grain tank 14 or a yield that is a predetermined ratio or a predetermined amount less than the full yield, a discharge yield required from the outside, a yield corresponding to the loading capacity of a transport vehicle, or a yield at the time of discharge in advance. Can be obtained.
  • the yield at the time of discharging may be used as the discharge yield.
  • the emission-based yield calculation unit 74 calculates the emission-based yield from the total yield of the work target area CA and the number of emissions calculated by the number-of-emissions calculation unit 73.
  • the discharge standard yield is the yield of the grains stored in the grain tank 14 as a measure for discharging the grains during the automatic traveling. Specifically, the emission standard yield is obtained by dividing the total yield by the number of emissions.
  • the traveling route generation unit 54 generates a traveling route for automatic traveling in the work target area CA based on the outer shape of the field, the outer shape of the work target area CA, and the like.
  • the traveling route used in the automatic traveling can be generated by the traveling route generation unit 54 by a route calculation algorithm by itself, but the traveling route generated by the communication terminal 2 or a remote management computer may be used. It is possible. Note that the traveling route calculated by the traveling route generating unit 54 can be used for guidance for the combine to travel along the traveling route even in manual operation.
  • This combine can be run in both automatic operation, in which harvesting is performed automatically, and manual operation, in which harvesting is performed manually.
  • automatic driving the automatic driving mode is set, and for performing manual driving, the manual driving mode is set.
  • the switching of the traveling mode is managed by a traveling mode management unit (not shown) or the like.
  • traveling route generation unit 54 when the traveling route generation unit 54 generates the traveling route of the automatic traveling, one of the total yield of the work target area CA, the number of discharges calculated by the discharge number calculation unit 73, and the discharge reference yield is used. They can be considered in appropriate combinations. Further, the traveling route generation unit 54 can also generate the traveling route in consideration of the discharge points set by the discharge point setting unit 86.
  • the travel route including the discharge travel to the discharge point can be efficiently performed while referring to the emission yield. Can be generated. Further, it is also possible to calculate the remaining yield from the yield of the grains harvested during the automatic traveling, and change the traveling route from time to time to the more efficient traveling route as the automatic traveling progresses.
  • the automatic traveling performed from discharging the kernel to discharging the next kernel is performed.
  • the optimum travel route can be easily and efficiently generated by equalizing the distance of the harvest travel.
  • the traveling route estimates the timing at which it is necessary to discharge the grain such as reaching the discharge yield, and considering the route to the discharge point, the timing at which the discharge yield is reached is determined in the work target area. It is desirable to generate the CA so as to be able to cut through the CA.
  • the combine during automatic traveling travels so as to traverse the work target area CA at a certain position, then turns and traverses the work target area CA at another position.
  • the combine (illustrated as the traveling vehicle body 10 in the figure) is set near the transport vehicle CV to discharge the stored grains.
  • the discharge point PO Assuming that the combine is traveling at a position (for example, position PF1) inside the work target area CA when the discharge yield is reached, the combine retreats along the traveling path that has already been harvested and turns in the outer peripheral area SA.
  • the vehicle travels on the discharge travel route LO1 toward the discharge point PO.
  • the discharge traveling route LO1 associated with the discharge becomes long, and the efficiency of the automatic traveling deteriorates.
  • the traveling route can be easily generated such that the timing of moving to the discharge point is the timing of cutting through the work target area CA. For example, as shown in FIG. 5, assuming that at a position PF2 at the end of the work area CA, a yield having a width equal to or larger than the discharge reference yield and equal to or smaller than the full yield is reached, the vehicle advances forward and moves along the discharge travel route LO2. Through the discharge point PO. As a result, an efficient traveling route can be easily generated.
  • the traveling route generating unit 54 adjusts the length of the work target area CA in the direction along the traveling route in the automatic traveling.
  • the preliminary adjustment route LR for performing the preliminary adjustment traveling may be generated.
  • a traveling route is generated such that the emission yield is reached at the timing of cutting through the work target area CA so that the emission yield does not become inside the work target area CA. It becomes easier.
  • a traveling route can be generated so as to reach the discharge yield at the end of the work target area CA during the reciprocating traveling. Thereby, it is possible to always discharge the grain with a suitable yield to the discharge point PO through the discharge travel path LO2 without retreat.
  • the discharge yield at this time may be a discharge reference yield or a yield equal to or higher than the discharge reference yield and equal to or lower than a predetermined ratio or a predetermined yield lower than the full yield.
  • the preliminary adjustment path LR is generated at one side end of the work target area CA, but the preliminary adjustment path LR may be generated at two opposite ends.
  • the input processing unit 90 or the traveling route generation unit 54 and other functional units acquire an area acquiring unit for acquiring an area of the work target area CA, a yield rate acquiring unit for acquiring a yield rate, and acquire a total yield. It functions as a data acquisition unit such as a total yield acquisition unit that acquires the number of emissions, a discharge count acquisition unit that acquires the number of discharges, and a discharge standard yield acquisition unit that acquires the emission reference yield.
  • the traveling route generating unit 54 generate the preliminary adjustment route so that the harvesting operation of the work target area CA is completed on one side facing the entrance from the ridge in the field.
  • the method described below may be realized by the above-described apparatus configuration shown in FIG. 4, but may be realized by another arbitrary configuration. Further, the method described below can be realized using a program.
  • the program is stored in the storage device 92, and is executed by the control unit 91 including a CPU, an ECU, and the like. Further, the storage device 92 and the control unit 91 may be provided in the control unit 5 or may be provided in another place.
  • the outer shape of the work target area CA (unworked land), which is the uncut land (unworked land) inside the outer peripheral area SA (worked land), based on the positioning data continuously calculated after the surrounding mowing is performed. And the outer shape of the outer peripheral area SA (the outer shape of the field) are calculated. In addition, the area of the work target area CA and the area of the outer peripheral area SA are calculated (Step # 4 in FIG. 7).
  • the yield rate which is the yield per unit area when the outer peripheral area SA is trimmed around, is calculated from the yield of the kernel harvested during the peripheral cutting and the area of the outer peripheral area SA. Specifically, the yield rate is obtained by dividing the yield of the grain harvested at the time of peripheral cutting by the area of the outer peripheral area SA. The obtained yield rate is estimated to be applicable to the harvest in the entire field, and can be used for generating a traveling route of the work target area CA by automatic traveling (step # 5 in FIG. 7).
  • the total yield of kernels that are expected to be harvested in the work target area CA is calculated from the area of the work target area CA and the yield rate. Specifically, the total yield is obtained by multiplying the area of the work target area CA by the yield rate.
  • the minimum number of times of grain discharge required when automatically traveling in the work target area CA is calculated from the discharge yield and the total yield of the work target area CA. Specifically, the minimum required number of times of grain release is obtained by dividing the total yield by the yield and moving up the decimal places.
  • the discharge yield here is the full yield of the grain tank 14, the yield which is smaller than the full yield by a predetermined ratio or a predetermined amount, the discharge yield required from the outside, the capacity corresponding to the loading capacity of the transport vehicle, Alternatively, the yield can be a yield defined in advance as the yield at the time of discharge. Further, when the kernel is discharged during the peripheral cutting, the yield at the time of discharging may be used as the discharge yield (step # 7 in FIG. 7).
  • a discharge standard yield is calculated from the total yield of the work target area CA and the minimum required number of discharges of the grains.
  • the discharge standard yield is obtained by dividing the total yield of the work target area CA by the minimum required number of discharges of kernels.
  • the emission standard yield obtained in this way is equivalent to the yield when the yield discharged in each automatic driving is equally allocated when the kernel is discharged with the minimum required number of discharges of the kernel. .
  • the emission standard yield is equal to or lower than the emission yield. Therefore, as the yield at the time of emission considered when generating the traveling route of the automatic traveling, a yield equal to or higher than the emission reference yield and equal to or lower than the emission yield can be used.
  • the yield at the time of discharge considered when generating the traveling route can be given a range, the movement to the discharge point PO is started at a position convenient for moving to the discharge point PO.
  • Such a traveling route can be generated more easily (step # 8 in FIG. 7).
  • the preliminary adjustment path is a path in which harvesting travel is performed in order to reduce the length of the outer shape of the work target area CA so that the length of reciprocating travel in the work target area CA by automatic travel is reduced. Therefore, the preliminary adjustment route is a route that travels in a direction that intersects the direction in which the vehicle travels back and forth.
  • the work target area CA has an optimal shape for performing reciprocating traveling by automatic traveling thereafter.
  • the optimal shape is, for example, a shape that does not result in a discharge yield in the middle of the traveling route in the work target area CA (inside the work target area CA) in automatic traveling.
  • the preliminary adjustment path is a path for making the shape of the work target area CA into a shape that facilitates generation of such a traveling path. Such a preliminary adjustment path is generated based on the total yield of the work target area CA described above. Further, it is preferable to consider the emission yield.
  • the discharge yield is, as described above, a full yield of the grain tank 14 or a yield that is a predetermined ratio or a predetermined amount less than the full yield, a discharge yield required from the outside, a capacity corresponding to the loading capacity of the transport vehicle, or The yield specified in advance as the yield at the time of discharge can be set (step # 9 in FIG. 7).
  • the total yield may be the total yield determined in step # 6 of FIG. 7, but may be the previously determined total yield, and may be obtained externally when generating the preliminary adjustment route. good.
  • a discharge point for discharging the kernel stored in the kernel tank 14 may be set in advance, and the preliminary adjustment path may be generated in consideration of the discharge point.
  • a preliminary adjustment path may be generated so that the harvesting operation of the work target area CA is completed on one side of the sides constituting the work target area CA, which faces the entrance from the ridge in the field.
  • Step # 10 in FIG. 7 a traveling route for the automatic traveling of the unharvested work target area CA is generated.
  • the generation of the traveling route in the automatic traveling can be performed in consideration of at least one of the yield rate, the total yield, the number of discharges, and the reference discharge yield. Further, at the time of generating the travel route, a discharge point for discharging the grains stored in the grain tank 14 may be set in advance, and the travel route may be generated in consideration of the discharge point.
  • the yield rate, the total yield, the number of discharges, and the discharge standard yield are calculated based on the information on the cutting around the field, and a map of the field is created in the cutting around the field.
  • a field map creation start switch or the like.
  • the operation of the field map creation start switch may be restricted so that it can be performed only when the assist switch is input (assist mode is ON) and the operation state is related to the automatic traveling.
  • the surrounding mowing may be started only in a harvesting state and in a state where the field map creation start switch is input.
  • the harvesting state is a case where the harvesting device H (see FIG. 1) is at a predetermined height, and may be a state where the threshing device 13 (see FIG. 1) is operating.
  • a warning may be issued when the field map creation start switch is not input. Thereby, forgetting to input the field map creation start switch can be suppressed.
  • the determination as to whether or not the surrounding mowing is being made can be made based on whether an assist switch has been input or the harvesting device H (see FIG. 1) is at a predetermined position in a place where no map has been created.
  • the positioning state of the satellite positioning module 80 (see FIG. 1) is reduced while the surroundings are being trimmed (during the creation of the field map), a warning may be issued, and the creation of the field map or the harvesting operation may be interrupted. Thus, it is possible to suppress creation of an incorrect field map.
  • the above warning can be issued to the communication terminal 2 (see FIG. 1) such as a VT (virtual terminal), the driving unit 12 (see FIG. 1), and the like, such as sounding a warning sound and lighting a warning lamp. .
  • the communication terminal 2 such as a VT (virtual terminal), the driving unit 12 (see FIG. 1), and the like, such as sounding a warning sound and lighting a warning lamp. .
  • the creation of the field map including the calculation of the outer shape and the area of the field and the work area CA and the automatic traveling in the work area CA can be performed by two or more different work machines such as combine machines. Thereby, while performing the automatic traveling in the work target area CA with one working machine and performing the surrounding mowing with the other working machine, it is possible to efficiently perform harvesting work in many fields. In addition, since the surrounding mowing requires experience, a more experienced worker performs mowing, and an inexperienced worker monitors the automatic traveling, so that a more efficient harvesting operation can be performed. .
  • the working machine that cuts the surroundings is not a working machine that can perform automatic traveling, but can be a working machine that includes a satellite positioning module 80 (see FIG. 1) capable of recording measurement data and a communication device.
  • the positioning data may be transmitted to a management server or the like, information such as a field map may be created by the management server, and the information may be transferred to a work machine that performs automatic traveling. Thereby, it is possible to harvest the field by automatic traveling with a simpler configuration.
  • the working machine that cuts the surroundings may be a working machine that cannot perform automatic traveling, which is provided with a satellite positioning module 80 (see FIG. 1) and a communication device as a retrofit.
  • the recording device that records the positioning data may be provided outside the satellite positioning module 80 (see FIG. 1). If the management server can record the positioning data, the satellite positioning module 80 (see FIG. 1) does not need to record the positioning data.
  • the preliminary adjustment route LR is a route in a direction intersecting the traveling route, and the preliminary adjustment traveling is a traveling in which the U-turn is repeatedly performed along the preliminary adjustment route LR.
  • the present invention is not limited to this configuration, and the preliminary adjustment path LR may be any path that can adjust the length of the work target area CA in the direction along the traveling path, and the preliminary adjustment traveling can be performed by an arbitrary turning method.
  • the preliminary adjustment route LR may be a route along the outer periphery of the work target area CA.
  • the preliminary adjustment path LR is a path that goes from the outermost periphery of the work target area CA toward the inner peripheral side in parallel with each outer periphery of the work target area CA.
  • the preliminary adjustment route LR makes a round around the work target area CA along the outer periphery of the work target area CA with the vicinity of the corner of the work target area CA as a starting point, and if necessary, the inside of the path that has made one round.
  • it is easy to perform an ⁇ -turn when turning from a route parallel to one outer periphery to a route parallel to the next outer periphery. Yes and preferred.
  • the length of the work target area CA in the direction along the traveling path can be adjusted. Therefore, in the automatic traveling, it is easy to generate a traveling route so as to reach the discharge yield at the timing of cutting through the work target area CA so that the discharge yield does not become (in the middle of) the work target area CA. As a result, it is possible to always discharge the PO to the discharge point PO without retreat and discharge an appropriate amount of grain. As a result, it is possible to easily generate an efficient travel route that can efficiently discharge grains and perform efficient discharge travel.
  • the preliminary adjustment path LR is not limited to a path that circulates from the outer peripheral side to the inner peripheral side of the work target area CA as described above, and may be a path that circulates from the inner peripheral side to the outer peripheral side. . Further, the preliminary adjustment path LR may be a path that circulates a predetermined area inward from the outer periphery of the work target area CA in an arbitrary order.
  • the length in the direction parallel to the travel route of the remaining work area RA which is the unworked area of the work target area CA, becomes the length L.
  • the length L generates a travel route such that the discharge yield is reached at the timing of cutting through the remaining work area RA so that the discharge yield does not become inside the work target area CA (remaining work area RA) in the automatic traveling. It is a length that makes it possible.
  • the traveling distance that can be harvested until the discharge standard yield is reached.
  • the travel distance LS is obtained, for example, from the travel distance and the yield that can be obtained from the positioning data in the case of cutting the periphery, for example, to obtain the travel distance required to harvest a unit yield.
  • the traveling distance LS of the traveling route S1 in the harvesting traveling is an odd multiple of L, and the combine (the traveling vehicle body 10) enters the traveling target region CA (the remaining work region RA) in the traveling route S1. It is a path that cuts through from the side opposite to the remaining side of the remaining work area RA. If the discharge point PO is set in the vicinity of the entering side, if n is an odd number, the discharge travel route LO2 will be long.
  • the preliminary adjustment route LR may be generated such that the traveling distance LS is an even multiple of L.
  • the path such as the traveling path S2 that can always be cut off from the side that enters the work target area CA (remaining work area RA). Therefore, it is preferable to generate the preliminary adjustment route LR by properly selecting whether the travel distance LS is an odd multiple of L or an even multiple of L in accordance with the position of the discharge point PO.
  • Each functional unit in the above embodiment can be configured as a traveling route generation program for causing a computer to realize the functional units.
  • the traveling route generation program is configured to generate an automatic traveling route in a combine harvesting crops in the unworked land while reciprocating the unworked land in the field by automatic traveling along the parallel running routes.
  • a route generation program a function of acquiring a yield rate that is a yield per unit area in the field, a function of acquiring an area of the unworked land, and the unworked land based on the yield rate and the area.
  • the shape of the unworked land becomes an optimal shape for the reciprocating travel.
  • the computer it is also possible to configure the computer to realize the function of generating a preliminary adjustment path for performing automatic traveling prior to the reciprocating traveling.
  • traveling route generation program can be configured to be recorded on a recording medium.
  • the functional units in the work management system and the work management method according to the above embodiments may be configured as a work management program for causing a computer to realize the functions.
  • the work management program has a grain tank that stores the grain obtained by harvesting and threshing the crop and a yield sensor that measures the yield of the grain stored in the grain tank.
  • a work management program for manually harvesting crops in an area, and monitoring a combine harvesting operation while automatically traveling on unworked land inside the already-worked land where the manual travel was performed comprising: A function of calculating positioning data corresponding to the own vehicle position of the combine based on the satellite signal, a function of obtaining the positioning data and the yield, and From the positioning data, the function of calculating the already-worked land area of the already-worked land and the un-worked land area of the un-worked land, and the yield and the already-worked land area obtained during the manual traveling, Earth A function of calculating a yield rate, which is the yield per unit area, and a function of calculating the total yield of kernels that are expected to be harvested in the unworked land from the unworked land area and the yield rate.
  • Such a work management program can be configured to be recorded on a recording medium.
  • front means forward in the longitudinal direction of the aircraft (running direction)
  • rear arrow B shown in FIG. 9
  • Direction means backward with respect to the longitudinal direction of the aircraft (running direction).
  • left-right direction or the lateral direction means a cross-machine direction (machine body width direction) orthogonal to the machine body front-rear direction.
  • Up in the direction of arrow U shown in FIG. 9) and “down” (in the direction of arrow D shown in FIG. 9) are positional relationships in the vertical direction (vertical direction) of the airframe 110, and are related to the ground level. Is shown.
  • the combine includes a body 110, a crawler-type traveling device 111, an operating unit 112, a threshing device 113, a grain tank 114 as a harvest tank, a harvesting unit 115, a transport device 116, and a grain discharging device.
  • the apparatus 118 includes a vehicle position detection module 180.
  • the traveling device 111 is provided below the body 110.
  • the combine is configured to be self-propelled by the traveling device 111.
  • the operation unit 112, the threshing device 113, and the grain tank 114 are provided above the traveling device 111 and constitute an upper portion of the body 110.
  • the driver that drives the combine and the monitor that monitors the work of the combine can be boarded on the driving unit 112. The observer may monitor the combine operation from outside the combine.
  • the grain discharge device 118 is connected to a lower rear portion of the grain tank 114.
  • the vehicle position detection module 180 is mounted on the upper surface of the driving unit 112.
  • the harvesting unit 115 is provided at the front of the combine.
  • the transport device 116 is provided behind the harvesting unit 115.
  • the harvesting unit 115 has a cutting mechanism 115a and a reel 115b.
  • the cutting mechanism 115a cuts the planted grain culm in the field.
  • the reel 115b scrapes the planted grain stem to be harvested while being driven to rotate.
  • the harvesting unit 115 harvests cereals (a kind of agricultural crop) in the field.
  • the combine is capable of traveling by the traveling device 111 while harvesting cereals in the field by the harvesting unit 115.
  • the harvested stalks cut by the cutting mechanism 115 a are transported to the threshing device 113 by the transport device 116.
  • the harvested culm is threshed.
  • the grain obtained by the threshing process is stored in the grain tank 114.
  • the grains stored in the grain tank 114 are discharged outside the machine by a grain discharging device 118 as necessary.
  • the grain tank 114 is provided with a yield sensor 119 for measuring the yield of the grain stored in the grain tank 114.
  • the yield per unit traveling distance (yield per unit area) of the combine can be calculated from the measurement signal from the yield sensor 119, the vehicle speed, and the harvest width of the harvester 115. .
  • the general-purpose terminal 104 is arranged in the driving unit 112. In the present embodiment, the general-purpose terminal 104 is fixed to the driving unit 112. However, the general-purpose terminal 104 may be configured to be detachable from the driving unit 112, or the general-purpose terminal 104 may be able to be taken out of the combine machine.
  • the vehicle position detection module 180 includes a satellite positioning unit 181 and an inertial navigation unit 182.
  • the satellite positioning unit 181 receives a GNSS (global navigation satellite system) signal (including a GPS signal), which is position information transmitted from the artificial satellite 100GS, and outputs positioning data for calculating the own vehicle position.
  • the inertial navigation unit 182 incorporates a gyro acceleration sensor and a magnetic azimuth sensor, and outputs a signal indicating an instantaneous change in the attitude of the body 110.
  • the inertial navigation unit 182 is used to supplement the own vehicle position calculation by the satellite positioning unit 181.
  • the inertial navigation unit 182 may be located at a different location from the satellite positioning unit 181.
  • the driver / monitor manually operates the combine, and harvests the outer peripheral portion of the field along the boundary of the field while cutting and running, as shown in FIG.
  • the area that has been cut by the surrounding mowing travel is set as the outer peripheral area (worked area) SA.
  • the internal area left as uncut land (unworked land) inside the outer peripheral area SA is set as the unworked area 100CA.
  • the surrounding mowing travel is performed so that the unworked area 100CA becomes a square.
  • a triangular or pentagonal or larger polygonal unworked area 100CA may be employed.
  • the driver runs the combine for two or three turns.
  • the width of the outer peripheral area SA is increased by the harvest width (working width) of the combine.
  • the width of the outer peripheral area SA is about two to three times the harvest width of the combine. Note that the first round traveling by the driver is not limited to two or three laps, but may be longer (four or more laps) or one lap.
  • the outer peripheral area SA is used as a space for the combine to change directions when performing harvesting traveling in the unworked area 100CA.
  • the outer peripheral area SA is also used as a space for movement when the harvest travel is once completed and the grain is moved to a grain discharge location, or is moved to a fuel supply location.
  • the 2 can collect and transport the grains discharged from the grain discharge device 118 by the combine. At the time of discharging the grains, the combine moves to the vicinity of the transport vehicle 100CV, and then discharges the grains to the transport vehicle 100CV by the grain discharging device 118.
  • the traveling route for the turning transition traveling is referred to as a turning transition route.
  • the traveling pattern used in the harvest traveling includes a reciprocating traveling pattern (shown in FIG. 11) in which a plurality of parallel work traveling paths are connected by a U-turn path and a spiral pattern along the outer edge of the unworked area 100CA. 12 is a spiral running pattern (shown in FIG. 12).
  • the harvesting unit 115 on the adjacent work travel route is used so that uncut cropping of the culm (harvest omission) does not occur.
  • Harvest widths are slightly overlapped. This overlap is called overlap. However, in the description of this embodiment, the overlap is ignored.
  • the combine travels such that a work traveling path parallel to one side of the unworked area 100CA is connected by a U-turn that is a turning traveling.
  • the U-turn includes a normal U-turn that skips one or more work travel paths and travels to the next work travel path, and a switchback turn that travels so as to connect adjacent work travel paths.
  • the normal U-turn is, for example, a 180-degree turn including two forward 90-degree turns and straight-ahead traveling, and the straight-ahead traveling may be omitted.
  • the switchback turn is, for example, a 180-degree turning using a 90-degree forward turn, a reverse, and a 90-degree forward turn.
  • the term “straight” is used as a phrase that includes advancing along a straight line, advancing along a gentle curved line, and advancing while slightly swinging left and right.
  • the orbital running performed while connecting the working running route similar to the outer shape of the unworked area 100CA with the turning running route is performed so as to form a spiral toward the center.
  • a turning called an alpha turn that turns by repeating forward and backward several times is used for the turning at the corner in each round traveling. It is also possible to change from the spiral running pattern to the reciprocating running pattern or from the reciprocating running pattern to the spiral running pattern during the work.
  • the work travel route used for automatically traveling the unworked area 100CA using the reciprocating travel pattern is calculated as follows based on the inside map data. As shown in FIGS. 13 and 14, a quadrangular unworked area 100CA including a first side 100S1, a second side 100S2, a third side 100S3, and a fourth side 100S4 is defined from the inside map data.
  • the first side 100S1 which is the long side of the unworked area 100CA, is selected as the reference side 100S1.
  • a line parallel to the reference side 100S1 and passing inside the reference side 100S1 by half of the harvest width (cutting width) is calculated as the initial reference line 100L1. This initial reference line 100L1 corresponds to the work traveling route that travels first.
  • the initial reference line 100L1 is parallel to the reference side 100S1 and further away from the reference side 100S1 (half of the harvest width + A line passing through (an integral multiple of the harvest width) is calculated as the initial reference line 100L1.
  • a U-turn path is formed from the initial reference line 100L1.
  • the reference lines 100L2, 100L3,... are connected in parallel with the initial reference line 100L1 and at intervals of the harvest width.
  • the next reference line 100L2 connected from the initial reference line 100L1 via the U-turn path is the initial reference line. It is calculated at intervals of a plurality of times (three times in FIG. 14) the harvest width in parallel to the line 100L1. As shown in FIG. 14, the next reference line 100L3 is calculated in a similar manner. In this manner, the reference lines are sequentially calculated in consideration of the space required for the normal U-turn. These reference lines 100L1, 100L2, 100L3,... Correspond to work traveling routes for straight traveling.
  • the shape of the unworked area 100CA is a quadrangle. However, even if the unworked area 100CA is another polygon such as a triangle or a pentagon, if the reference side 100S1 is selected, the work is sequentially performed in the same manner. A traveling route can be calculated.
  • the work traveling route used for automatic traveling is calculated as follows based on the inside map data.
  • the first side 100S1 which is the long side of the unworked area 100CA (or the short side in the spiral running pattern)
  • the reference side 100S1 is selected as the reference side 100S1.
  • a line that is parallel to the reference side 100S1 and passes inside the reference side 100S1 by half the harvest width is calculated as the reference line 100L1.
  • This reference line 100L1 is an initial reference line that is the first work traveling route of the automatic traveling.
  • next reference line 100L2 a line parallel to the second side 100S2 adjacent to the reference side 100S1 in the traveling direction of the combine and passing inside the second side 100S2 by half of the harvest width is calculated as the next reference line 100L2, and the first work travel route Is the next work travel route that is the target of the next automatic travel.
  • the first work travel route and the next work travel route are connected by an alpha turn that implements an aircraft turning at an angle formed by the reference side 100S1 and the second side 100S2.
  • the next reference line 100L3 is also sequentially calculated.
  • a reciprocating traveling pattern and a spiral traveling pattern are often mixed.
  • the surrounding mowing is manually performed to form an outer peripheral area SA, which is an already worked area, on the outermost peripheral side of the field (#b).
  • the spiral traveling pattern is set for the unworked area 100CA, and the spiral traveling is performed (#c). In this spiral running, automatic running is possible at least straight ahead.
  • the spiral running is performed until the unworked area 100CA becomes large enough to enable the turning transition running (normal U-turn, switchback turn) in the reciprocating running pattern (#d).
  • a work travel route that covers the unworked area 100CA in a reciprocating travel pattern is set for the unworked area 100CA (#e).
  • the field harvesting work is completed (#f).
  • FIG. 17 shows a combine control system.
  • the control system of the combine is composed of a control device 105 composed of a number of electronic control units called ECUs connected via an in-vehicle LAN, and various input / output devices for performing signal communication and data communication with the control device 105. I have.
  • the control device 105 includes an output processing unit 158 and an input processing unit 157 as input / output interfaces.
  • the output processing unit 158 is connected to various operation devices 170 via the device driver 165.
  • the operating devices 170 include a traveling device group 171 that is a traveling-related device and a working device group 172 that is a working-related device.
  • the traveling equipment group 171 includes, for example, engine equipment, transmission equipment, braking equipment, steering equipment, and the like.
  • the working equipment group 172 includes control equipment in a harvesting work device (the harvesting unit 115, the threshing device 113, the transport device 116, the grain discharging device 118, and the like illustrated in FIG. 9).
  • the input processing unit 157 is connected with a yield sensor 119, a traveling state sensor group 163, a work state sensor group 164, a traveling operation unit 190, and the like.
  • the traveling state sensor group 163 includes a vehicle speed sensor, an engine speed sensor, a parking brake detection sensor, a shift position detection sensor, a steering position detection sensor, and the like.
  • the working state sensor group 164 includes a sensor that detects a driving state and a posture of the harvesting work device, and a sensor that detects a state of a grain culm or a grain.
  • the traveling operation unit 190 is a general term for operating tools that are manually operated by a driver and whose operation signals are input to the control device 105.
  • the travel operation unit 190 includes a main shift lever 191 as a shift lever, a steering lever 192, a mode operation tool configured as a mode switch 193, an automatic travel operation tool 194, and the like.
  • the mode changeover switch 193 gives a command to the control device 105 for switching between automatic operation and manual operation.
  • the automatic traveling operation tool 194 gives an automatic traveling transition request to the control device 105.
  • the notifying device 162 is a device for notifying a driver or the like of a warning regarding a working state or a running state, and includes a buzzer, a lamp, a display panel such as a liquid crystal panel, and the like.
  • the general-purpose terminal 104 also functions as a device that notifies a driver or the like of a work state, a traveling state, and various information through display on the touch panel 140.
  • This control device 105 is also connected to the general-purpose terminal 104 via the in-vehicle LAN.
  • the general-purpose terminal 104 is a tablet computer having a touch panel 140.
  • the general-purpose terminal 104 includes an input / output control unit 141, a work traveling management unit 142, a traveling route calculation unit 143, and a traveling route adjustment unit 144.
  • the input / output control unit 141 has a function of constructing a graphic interface using the touch panel 140 and a function of exchanging data with a remote computer via a wireless line or the Internet.
  • the work traveling management unit 142 includes a traveling locus calculation unit 1421, a work area determination unit 1422, and a discharge position setting unit 1423.
  • the travel locus calculation unit 1421 calculates a travel locus based on the own vehicle position given from the control device 105. For example, as shown in FIG. 10, the traveling locus calculation unit 1421 calculates the traveling locus when the combine cuts around the outer peripheral area SA.
  • the work area determination unit 1422 divides the field into the outer area SA and the unworked area 100CA based on the traveling locus in the outer area SA.
  • the outermost line of the outer peripheral area SA is used to calculate the boundary line with the ridge of the field, and the innermost line of the outer peripheral area SA is used to calculate the unworked area (the shape of the unworked area 100CA) in which automatic traveling is performed.
  • the discharge position setting unit 1423 sets the discharge stop position of the combine when the kernel of the kernel tank 114 is discharged to the transport vehicle 100CV by the kernel discharge device 118 when the kernel tank 114 is full.
  • the travel route calculation unit 143 calculates a work travel route for automatic traveling with respect to the unworked area determined by the work area determination unit 1422.
  • a traveling pattern (reciprocating traveling pattern or spiral traveling pattern) for automatically traveling in the non-work area is input through the touch panel 140.
  • the route calculation in the selected traveling pattern is automatically performed.
  • the travel route calculation unit 143 determines the interval between adjacent work travel routes (route interval) based on the harvest width of the harvesting unit 115, and calculates the work travel route. Note that, when the work traveling route is adjusted so that the grain culm entering the harvest width is reduced, that is, the actual harvest width is narrowed, the yield (yield) per unit travel decreases.
  • the travel route adjustment unit 144 performs such adjustment of the work travel route. For example, when the travel route adjustment unit 144 performs an adjustment to reduce the interval (route interval) between the work travel route that has already been harvested and the work travel route that is to be run from now on, the harvest width is reduced, and the work travel route is reduced. Yield per unit run on the road is reduced.
  • the control device 105 includes a vehicle position calculation unit 150, a travel control unit 151, a work control unit 152, a grain storage information generation unit 153, and a discharge timing prediction unit 154.
  • the host vehicle position calculation unit 150 calculates the host vehicle position in the form of map coordinates (or field coordinates) based on the positioning data sequentially transmitted from the satellite positioning unit 181.
  • the host vehicle position calculating unit 150 can also calculate the host vehicle position using the attitude change of the body 110 based on a signal from the inertial navigation unit 182 and the travel distance of the body 110.
  • the own vehicle position calculating unit 150 can also calculate the own vehicle position by combining signals from the satellite positioning unit 181 and the inertial navigation unit 182.
  • the notification unit 156 generates notification data based on a command or the like from each functional unit of the control device 105, and provides the notification data to the notification device 162.
  • the traveling control unit 151 has an engine control function, a steering control function, a vehicle speed control function, and the like, and provides a traveling control signal to the traveling equipment group 171.
  • the work control unit 152 provides a work control signal to the work equipment group 172 to control the movement of the harvesting work device.
  • the traveling control unit 151 includes a manual traveling control unit 1511, an automatic traveling control unit 1512, a traveling route setting unit 1513, and an automatic traveling management unit 1514.
  • the automatic traveling control unit 1512 controls the traveling equipment group 171.
  • the travel route setting unit 1513 receives, from the general-purpose terminal 104, the adjusted travel route that is the work travel route calculated by the travel route calculation unit 143 or the work travel route adjusted by the travel route adjustment unit 144, and automatically performs timely operation. It is set as a work travel route that is a steering target.
  • the automatic traveling control unit 1512 performs azimuth and positional deviation between the work traveling route set by the traveling route setting unit 1513 and the own vehicle position calculated by the own vehicle position calculating unit 150 in order to perform automatic steering. , A steering control signal is generated. Further, the automatic traveling control unit 1512 generates a control signal related to vehicle speed change based on a vehicle speed value set in advance.
  • the work travel route set by the travel route setting unit 1513 can be used even in a manual operation, and can be used, for example, for guidance for the combine to travel along the work travel route.
  • the automatic traveling management unit 1514 determines whether to permit the automatic traveling based on the preset automatic traveling permission condition, and determines whether the automatic traveling is permitted. In the case of, an automatic traveling start command is given to the automatic traveling control unit 1512.
  • the kernel storage information generation unit 153 calculates the kernel storage amount (yield) in the kernel tank 114 based on the measurement signal from the yield sensor 119, and further calculates the unit travel from the storage increase amount per unit time and the vehicle speed. Calculate the storage amount per distance.
  • the storage amount per unit travel distance is normalized by the harvest width, an increase amount of kernels in the kernel tank 114 at a unit harvest width and a unit travel distance, that is, a so-called unit kernel increase amount is obtained.
  • By multiplying the unit grain increase amount by an arbitrary harvest width and an arbitrary travel distance an increase amount of the kernel in the kernel tank 114 when the vehicle travels an arbitrary travel distance with an arbitrary harvest width is obtained. .
  • Such information such as the amount of stored grain in the grain tank 114 and the amount of increase in unit grain is generated by the grain storage information generation unit 153 as grain storage information, and the discharge timing prediction unit 154 and the traveling route adjustment unit 144.
  • the travel route calculation unit 143 calculates a work travel route in the unworked area 100CA.
  • the kernel storage state in the kernel tank 114 at an arbitrary position on the calculated work travel route can be calculated by simulation by the discharge timing prediction unit 154. This simulation is performed before the work traveling on the unworked area 100CA, but may be performed during the work traveling on the unworked area 100CA.
  • the discharge timing prediction unit 154 determines that a work traveling route (referred to as a specific work traveling route) in which the grain tank 114 is full when the harvest traveling is continued with the current harvest width in the current grain storage amount in the grain tank 114. ), And a full occurrence position at which the grain tank 114 becomes full in this work traveling route is predicted.
  • the kernel storage amount when the kernel tank 114 is full is set in advance.
  • the combine When the grain tank 114 is full, the combine must move to the discharge stop and discharge the grain from the grain tank 114. Therefore, the full occurrence timing is the discharge timing, and the full occurrence position is the discharge timing occurrence position.
  • the “fullness of the grain tank 114” described here indicates a storage amount that requires the discharge of the grain from the grain tank 114, and the grain tank 114 is not necessarily 100% of the grain. It does not mean that it is satisfied.
  • a work travel route having a narrower harvest width than the current harvest width is used, so that the position at which the discharge timing occurs is set to the work travel route.
  • a method of delaying until the end point (traveling end point) of the route is adopted. Such a method is realized by the traveling route adjustment unit 144. If the point at which the route leaves is the end point of the work travel route, the route leaving travel and the route return travel for discharging the grain are facilitated.
  • the travel route adjustment unit 144 adjusts the adjusted travel route extending in parallel with the specific work travel route at a position closer to the existing work area than the specific work travel route so that the harvest width is smaller than the harvest width when traveling on the specific work travel route. create.
  • the harvest width when traveling on the adjusted travel route is determined such that the discharge timing is reached when the combine has finished traveling on the adjusted travel route at the harvest width.
  • FIG. 18 shows the principle of creating the adjusted travel route.
  • the set work traveling routes are indicated by 100L1, 100L2, 100L3, 100L4, and 100L5.
  • the basic harvest width which is the harvest width used when calculating the work travel route, is indicated by Wo.
  • FIG. 18 shows a simulation result that a discharge timing occurs during traveling on the 100L3 work traveling route.
  • the discharge timing point at which the discharge timing occurs is indicated by P
  • the work traveling route of 100L3 is a specific work traveling route (indicated by 100SL in FIG. 18).
  • the adjusted travel route is a work travel route that delays the discharge timing point to the end point of the work travel route by narrowing the harvest width, and is an extremely thick line indicated by AL in FIG.
  • each work travel route D
  • the travel distance to the discharge timing occurrence position in the specific work travel route Dp
  • the harvest width in the specific work travel route Wo
  • the adjustment travel route Using the harvest width of Wx
  • the traveling route adjustment unit 144 creates an adjusted traveling route based on the calculated coordinate position for the adjusted traveling route, and provides the adjusted traveling route to the traveling route setting unit 1513.
  • three creation examples of the adjusted travel route by the travel route adjustment unit 144 will be described with reference to FIGS. 19, 20, and 21. 19, 20, and 21, work traveling routes from 100L1 to 100L6 are shown, and 100L4 is predicted to be a specific working traveling route: 100SL.
  • the adjusted travel route is indicated by AL.
  • the travel route adjustment unit 144 laterally shifts the work travel route: 100L4, which has become the specific work travel route: 100SL, to the already-worked area side by a distance corresponding to the above-described shift amount: d1.
  • Adjusted travel route: AL is created. Since the discharge timing occurs at the end of the travel of the adjusted travel route: AL, the combine leaves the work travel route and heads to the discharge stop location after completing the travel of the adjusted travel route: AL. Since the work travel route: 100L4 is shifted laterally, the route interval between the work travel route: 100L4 and the work travel route: 100L5 adjacent on the non-work area side is widened, so that the route interval becomes the original predetermined interval.
  • Work traveling route: 100L5 is also shifted laterally. Further, the gap between the work travel route 100L5 and the work travel route 100L6 is also widened by the lateral shift, so that the work travel route 100L6 is laterally shifted to the original predetermined interval. Such a lateral shift is performed for all the work traveling routes that have not traveled yet.
  • an additional work travel route: 100Lx indicated by a dotted line in FIG. 19 is created.
  • the creation of the additional work travel route: 100Lx for example, if there is an appropriate work travel route used in forming the outer peripheral area SA, the work travel route is laterally shifted and used as the additional work travel route: 100Lx. You may.
  • the example of FIG. 20 does not laterally shift the work travel route: 100L4 that has become the specific work travel route: 100SL, but shifts the work travel route: 100L4 from the work travel route: 100L4 to the existing work area by a shift amount: d1.
  • Work travel route: A new virtual travel route parallel to 100L4 is created and used as the adjusted travel route: AL.
  • This virtual traveling route may be a route in which only the starting map coordinate position and the extending direction (direction) are defined.
  • the route interval between the adjusted travel route: AL and the work travel route: 100L4 is narrower than the basic harvest width: Wo, the route interval becomes the original predetermined interval.
  • Work travel route All of the work travel routes set in the unworked area after 100L4 (work travel route: 100L4 to 100L6 in FIG. 20) are laterally shifted. In this example, there is an advantage that the inconvenience that the number of work traveling routes calculated first becomes insufficient is not generated.
  • the harvest width is equal to the unworked area remaining after traveling along the adjusted travel route: AL. Is updated and a new updated traveling route is newly set.
  • the uniform harvest width which is a new harvest width equally divided in such a manner, is indicated by We, and the updated travel route changed using the uniform harvest width: We is represented by La, Lb, and Lc. Indicated by
  • the discharge timing is configured to occur when the grain tank 114 is full, but a configuration is employed in which the discharge timing occurs when the grain tank 114 is in the grain storage state. May be.
  • the timing at which the amount of grains that can be loaded on the transport vehicle 100CV is stored in the grain tank 114 may be used as the discharge timing.
  • the timing at which an acceptable amount of grains is stored in the grain tank 114 in a secondary processing step such as a drying step in a drying facility may be used as the discharge timing.
  • the yield per unit mileage is calculated based on the measurement signal from the yield sensor 119, but other measurement methods can be adopted. For example, it is also possible to temporarily store the grains sent from the threshing device 113 to the grain tank 114 and calculate the yield per unit traveling distance from the stored amount per hour. Furthermore, it is also possible to provide a contact sensor or a non-contact sensor in the grain tank 114, detect the grains stored in the grain tank 114, and calculate the storage amount from the detection result. Moreover, you may combine those measuring methods.
  • each functional unit shown in FIG. 17 is divided mainly for the purpose of explanation. In practice, each functional unit may be integrated with another functional unit, or may be divided into a plurality of functional units. For example, some or all of the functional units built in the general-purpose terminal 104 may be incorporated in the control device 105.
  • the surrounding mowing traveling is performed by manual traveling.
  • automatic traveling may be partially used, particularly for linear traveling. .
  • the harvester has been described.
  • Each functional unit in the above embodiment can be configured as a running pattern creation system.
  • the traveling pattern creating system includes a traveling pattern creating system that creates a reciprocating traveling pattern in which a harvester having a harvest tank that stores harvested products automatically connects a plurality of parallel work traveling paths by a turning traveling path to travel.
  • a travel route setting unit that sets the work travel route in a non-work area at predetermined intervals; and automatic travel control that performs automatic travel along the work travel route based on the work travel route and the position of the own vehicle.
  • a discharge timing prediction for predicting a specific work travel route that is the work travel route in which the discharge timing of the harvest tank is generated based on a harvest amount per unit travel distance and a discharge timing occurrence position in the specific work travel route. And the harvest timing narrower than the harvest width in the specific work travel route, thereby delaying the discharge timing until the travel end point.
  • the traveling pattern creating program is a traveling pattern creating program that creates a reciprocating traveling pattern in which a harvester having a harvest tank that stores harvested products automatically connects a plurality of parallel work traveling paths by a turning traveling path.
  • a travel route setting function for setting the work travel route in a non-work area at predetermined intervals; and automatic travel control for performing automatic travel along the work travel route based on the work travel route and the position of the own vehicle.
  • a discharge timing prediction for predicting a function and a specific work travel path that is the work travel path in which the discharge timing of the harvest tank is generated based on a harvest amount per unit travel distance and a discharge timing occurrence position in the specific work travel path.
  • the discharge tie It is possible to configure the computer to realize an adjustment traveling route that delays the running, and to realize a traveling route adjustment function that gives the automatic traveling control function to the automatic traveling control function in place of the adjustment traveling route in place of the specific work traveling route. is there.
  • Such a running pattern creation program can be configured to be recorded on a recording medium.
  • the harvester includes A travel route setting step of setting a work travel path at a predetermined interval; an automatic travel control step of performing automatic travel along the work travel path based on the work travel path and the position of the vehicle; and harvesting per unit travel distance A discharge timing prediction step of predicting a specific work travel path that is the work travel path in which the discharge timing of the crop tank is generated based on the amount and a discharge timing occurrence position in the specific work travel path; Create an adjusted travel route that delays the discharge timing until the travel end point by making the harvest width narrower than the harvest width of It is also possible to configure to include a traveling path adjusting step of providing the automatic travel control process in place of the adjustment travel route to the specific working travel route, the.
  • the present invention is suitable for various harvesting vehicles and harvesters such as combine harvesters.
  • the present invention can be used not only for a normal combine but also for a self-contained combine. Further, the present invention can be used for various harvesters such as a corn harvester, a carrot harvester, and a sugarcane harvester.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Threshing Machine Elements (AREA)
  • Guiding Agricultural Machines (AREA)

Abstract

This travel route generation system generates an autonomous travel route for a combine for harvesting crops in a non-worked region CA of a field while autonomously traveling back and forth along travel routes parallel to each other in the non-worked region CA. The travel route generation system is provided with: a yield acquisition unit for acquiring a yield ratio which is the yield per unit area of the field; an area acquisition unit for acquiring the area of the non-worked region CA; a total yield estimation unit for estimating the total yield of grain expected to be harvested in the non-worked region CA from the yield ratio and the area; and a travel route setting unit for generating, on the basis of the shape of the non-worked region CA and the total yield, a preliminary adjustment route LR for autonomous travel prior to back-and-forth travel so that the non-worked region has an optimum shape for back-and-forth travel.

Description

走行経路生成システム、走行経路生成方法、走行経路生成プログラム、及び走行経路生成プログラムが記録されている記録媒体と、作業管理システム、作業管理方法、作業管理プログラム、及び作業管理プログラムが記録されている記録媒体と、収穫機、走行パターン作成システム、走行パターン作成プログラム、走行パターン作成プログラムが記録されている記録媒体、及び走行パターン作成方法A travel route generation system, a travel route generation method, a travel route generation program, and a recording medium on which the travel route generation program is recorded, and a work management system, a work management method, a work management program, and a work management program are recorded. Recording medium, harvester, travel pattern creation system, travel pattern creation program, recording medium on which travel pattern creation program is recorded, and travel pattern creation method
 本発明は、圃場の作物を収穫するコンバインの作業を管理し、制御する技術に関する。 The present invention relates to a technique for managing and controlling the operation of a combine for harvesting crops in a field.
 本発明は、複数の平行な作業走行経路を旋回走行経路によってつないで走行する往復走行パターンで自動走行する技術に関する。 The present invention relates to a technique for automatically traveling in a reciprocating traveling pattern of traveling by connecting a plurality of parallel work traveling paths by a turning traveling path.
1-1.背景技術〔1〕
 コンバインとして、例えば、特許文献1に記載のものが既に知られている。このコンバインは、走行装置によって走行しながら、収穫装置(特許文献1では「刈取装置」)によって圃場の作物を収穫する収穫走行が可能である。また、このコンバインは、収穫装置によって収穫された収穫物を貯留する穀粒タンク(特許文献1では「グレンタンク」)を備えている。
1-1. Background technology [1]
As the combine, for example, a combine described in Patent Literature 1 is already known. This combine is capable of harvesting and traveling by harvesting crops in a field by a harvesting device ("a reaper" in Patent Document 1) while traveling by the traveling device. In addition, the combine includes a grain tank ("Glen tank" in Patent Literature 1) for storing the harvested product harvested by the harvesting device.
 このコンバインは、GPS衛星から受信した信号に基づいて自動走行するように構成されていると共に、穀粒タンク内の穀粒量を検出する収量センサ(特許文献1では「穀粒量検出手段」)を備えている。そして、このコンバインは、収量センサによる検出値が設定値以上になると、穀粒タンクから穀粒を排出するために、収穫作業を中断して運搬車の近傍(排出ポイント)へ自動的に移動する。 The combine is configured to automatically travel based on a signal received from a GPS satellite, and a yield sensor that detects the amount of grains in a grain tank (in Japanese Patent Application Laid-Open No. H11-163873, “grain amount detecting means”). It has. When the value detected by the yield sensor is equal to or greater than a set value, the combine is automatically moved to the vicinity of the transport vehicle (discharge point) in order to discharge grains from the grain tank. .
 1-2.背景技術〔2〕
 圃場を走行しながら農作物を収穫するコンバインなどの収穫機では、収穫物を収穫物タンクに一時的に貯留し、収穫物タンクが満杯になれば、一旦収穫作業を中断し、指定されている排出エリアまで走行し、そこに駐車されている運搬車などに収穫物を排出した後、作業を中断した場所に戻り、収穫作業を再開する。収穫物を積み込んだ運搬車は、乾燥施設など、次の処理を行う施設に収穫物を運搬する。
1-2. Background technology [2]
Harvesters, such as combine harvesters that harvest crops while traveling in the field, temporarily store the harvest in the harvest tank, and once the harvest tank is full, suspend the harvesting work and temporarily stop the specified discharge. After traveling to the area and discharging the harvest to a transport vehicle or the like parked there, return to the place where the work was interrupted and resume the harvest work. The transport vehicle loaded with the harvest transports the harvest to a facility that performs the next processing, such as a drying facility.
 特許文献2によるコンバインでは、穀粒タンク内の穀粒量を検出する穀粒センサを備え、刈取開始から満タンに達するまでの所要時間を求め、この所要時間を指定の携帯電話に送信する機能を有する。 The combine according to Patent Literature 2 includes a grain sensor that detects the amount of grains in a grain tank, finds the time required from the start of harvesting to reach full tank, and transmits the required time to a designated mobile phone. Having.
 特許文献3には、圃場を網羅するように算出された走行経路群から選択された走行経路に沿って自動走行する収穫機が開示されている。この収穫機では、作業走行に伴って収穫物タンクが満杯に近づくと、収穫物の排出を要求する排出要求が出される。この排出要求に応答して、収穫機は収穫走行を一時的に中止し、それまで走行していた走行経路から離脱し、収穫機を収穫物排出用駐車位置に導くために選択された走行経路を用いて、収穫物排出用駐車位置まで走行する。 Patent Document 3 discloses a harvester that automatically travels along a traveling route selected from a traveling route group calculated to cover a field. In this harvester, when the harvest tank is almost full due to work traveling, a discharge request for discharging the harvest is issued. In response to this discharge request, the harvester temporarily suspends the harvest run, disengages from the previously traveled travel route, and selects the travel route to guide the harvester to the harvest discharge parking position. Use to drive to the harvest discharge parking position.
特開2001-69836号公報JP 2001-69836 A 特開2006-094780号公報JP 2006-094780 A 特開2018-068284号公報JP 2018-068284 A
2-1.課題〔1〕
 背景技術〔1〕に対応する課題は、以下の通りである。
 従来のコンバインの自動走行では、穀粒を排出すべき穀粒量に到達した位置によっては、穀粒を排出するための移動を含めた自動走行が効率的でない場合があった。例えば、圃場の端部から離れた位置で穀粒を排出すべき穀粒量に到達した場合、コンバインはすでに収穫を終えた圃場の旋回領域(未作業地)まで後退した後、排出ポイントに移動する必要があり、非効率的な自動走行を行う必要があった。
2-1. Assignment [1]
The problems corresponding to the background art [1] are as follows.
In the conventional automatic traveling of a combine, the automatic traveling including the movement for discharging the kernel may not be efficient depending on the position where the amount of the grain to be discharged is reached. For example, if the amount of grain to be discharged at a position away from the edge of the field is reached, the combine retreats to the swirling area (unworked land) of the already harvested field and moves to the discharge point. It was necessary to perform inefficient automatic driving.
 本発明は、効率的な自動走行を行うことを目的とする。
2-2.課題〔2〕
 背景技術〔2〕に対応する課題は、以下の通りである。
 特許文献2及び特許文献3による収穫機では、収穫物タンクの満杯が検出されると、満杯報知処理、あるいは、収穫作業を中断して収穫物タンクを空にする排出処理が、行われる。しかしながら、広大な圃場における収穫作業中に、その収穫走行を中断して、収穫物タンクを空にするための排出処理を行うことは、特に自動走行が採用されている場合には、収穫走行への復帰点の探索や、排出走行経路及び復帰走行経路の選択などの困難な問題が発生する。このような問題は、排出走行経路や復帰走行経路の選択が容易となる地点で収穫物タンクの貯留量が排出を必要とする量(例えば、満杯)となった場合には、生じない。
An object of the present invention is to perform efficient automatic traveling.
2-2. Assignment [2]
The problems corresponding to the background art [2] are as follows.
In the harvesters disclosed in Patent Literature 2 and Patent Literature 3, when the harvest tank is full, a fullness notification process or a discharge process for interrupting the harvesting operation and emptying the harvest tank is performed. However, during harvesting work in a vast field, interrupting the harvest travel and performing a discharge process to empty the harvest tank is particularly difficult when automatic travel is adopted. Difficult problems such as searching for a return point and selecting a discharge travel route and a return travel route occur. Such a problem does not occur when the storage amount of the harvest tank becomes an amount requiring discharge (for example, full) at a point where selection of the discharge travel route and the return travel route is easy.
 本発明の課題は、排出走行経路や復帰走行経路が容易に設定できるような地点で、収穫物タンクの貯留量が排出を必要とする量となるような制御が可能となる収穫機を提供することである。 An object of the present invention is to provide a harvester that can control a storage amount of a harvest tank to be an amount requiring discharge at a point where a discharge travel route and a return travel route can be easily set. That is.
3-1.解決手段〔1〕
 課題〔1〕に対応する解決手段は、以下の通りである。
3-1. Solution [1]
The means for solving the problem [1] is as follows.
 発明の一実施形態に係る走行経路生成システムは、圃場の未作業地を、互いに並列する走行経路に沿って自動走行で往復走行しながら、前記未作業地の作物を収穫するコンバインにおける自動走行経路を生成する走行経路生成システムであって、前記圃場における単位面積あたりの収量である収量率を取得する収量取得部と、前記未作業地の面積を取得する面積取得部と、前記収量率と前記面積とから、前記未作業地で収穫されることが予測される穀粒の総収量を推定する総収量推定部と、前記未作業地の形状及び前記総収量に基づいて、前記未作業地の形状が前記往復走行に最適な形状となるように、前記往復走行に先立って自動走行を行う予備調整経路を生成する走行経路生成部とを備える。 A traveling route generation system according to an embodiment of the present invention includes an automatic traveling route in a combine for harvesting a crop in the unworked land, while reciprocating in an unworked land in a field along an automatically running traveling path along a mutually parallel traveling route. A travel route generation system that generates a yield acquisition unit that acquires a yield rate that is a yield per unit area in the field, an area acquisition unit that acquires the area of the unworked land, and the yield rate From the area, a total yield estimating unit that estimates the total yield of kernels that are expected to be harvested in the unworked land, and based on the shape and the total yield of the unworked land, A traveling route generating unit that generates a preliminary adjustment route for performing automatic traveling prior to the reciprocating traveling so that the shape becomes an optimal shape for the reciprocating traveling.
 このように、未作業地に対する自動走行に先立って予備調整経路を走行することにより、自動走行において効率的な走行経路を容易に生成することができるような未作業地の形状とすることができる。 As described above, by traveling on the preliminary adjustment route prior to the automatic traveling on the unworked ground, it is possible to form the unworked ground such that an efficient traveling route can be easily generated in the automatic traveling. .
 また、前記収穫するのに最適な形状は、前記走行経路の途中で排出収量にならないような形状であり、前記走行経路生成部は、前記排出収量を考慮して前記予備調整経路を生成することが好ましい。 Further, the optimal shape for harvesting is a shape that does not result in an emission yield in the middle of the travel route, and the travel route generation unit generates the preliminary adjustment route in consideration of the emission yield. Is preferred.
 未作業地の内部(走行経路の途中)で排出収量になった場合、穀粒の排出ポイントへ移動するために後進が必要になる等の、走行経路が非効率的になる場合がある。未作業地の内部で排出収量にならないような形状となる予備調整経路での走行を行うことにより、予備調整経路を走行した後の未作業地は、排出ポイントへの移動を考慮した走行経路を生成することが容易となり、効率的な走行経路を容易に生成することができる。 排出 If the emission yield is reached inside the unworked land (middle of the travel route), the travel route may be inefficient, such as the need to move backward to move to the grain discharge point. By traveling on the pre-adjustment route that has a shape that does not result in emission yield inside the un-worked site, the un-worked site after traveling on the pre-adjustment route will have a travel route that considers movement to the discharge point. It becomes easy to generate, and an efficient travel route can be easily generated.
 また、前記排出収量は穀粒タンクの満杯状態における収量であっても良い。 The discharge yield may be the yield when the grain tank is full.
 穀粒タンクが満杯状態となったときに穀粒を排出すると、多くの穀粒を一度に排出することができ、穀粒を効率的に排出することができる。 穀 If the grains are discharged when the grain tank is full, many grains can be discharged at once, and the grains can be discharged efficiently.
 また、前記排出収量は穀粒タンクの満杯状態における収量の所定割合以上となるように設定されても良い。 The discharge yield may be set so as to be equal to or more than a predetermined ratio of the yield when the grain tank is full.
 運搬車の容量や、外部からの要求に応じて排出する収量が規定されることがある。このような場合、その収量に応じて排出収量を規定することにより、効率的な走行経路を生成することができる。 The capacity of the transport vehicle and the yield to be discharged in response to external requests may be specified. In such a case, by defining the emission yield according to the yield, an efficient traveling route can be generated.
 また、前記穀粒タンクに貯留された前記穀粒を排出するための排出ポイントを前記未作業地の外側部の前記走行経路の一端側に設定する排出ポイント設定部を備え、前記走行経路生成部は、前記未作業地の外形を構成する辺の内、前記走行経路の一端または他端が位置する辺上で前記排出収量となるように前記予備調整経路を生成することが好ましい。 A discharge point setting unit configured to set a discharge point for discharging the kernel stored in the kernel tank to one end of the travel route on an outer side of the unworked land; It is preferable that the preliminary adjustment path is generated so that the discharge yield is obtained on the side where one end or the other end of the travel path is located, of the sides constituting the outer shape of the unworked land.
 このような構成により、特に排出ポイントに向かい合う位置で排出収量となり、かつ未作業地から刈り抜けるように走行経路を生成することで、より効率的な走行経路を生成することができる。 With such a configuration, a more efficient traveling route can be generated by generating a traveling route so as to obtain a discharge yield particularly at a position facing the discharge point and cut through an unworked land.
 また、前記走行経路生成部は、前記未作業地を構成する辺の内、前記圃場における畦からの進入口に向かい合う一辺または前記進入口に向かい合う一辺と前記走行経路を挟んで逆側の辺上で前記未作業地の収穫作業を終えるように前記予備調整経路を生成することが好ましい。 In addition, the traveling route generation unit may include, among the sides constituting the unworked land, one side facing the entrance from the ridge in the field or one side facing the entrance and an opposite side across the traveling path. Preferably, the preliminary adjustment path is generated so as to complete the harvesting work of the unworked land.
 このような構成により、収穫作業を終えてから圃場から退出する際の走行経路も最適化され、より効率的な走行経路を生成することができる。 With such a configuration, the traveling route when leaving the field after finishing the harvesting work is also optimized, and a more efficient traveling route can be generated.
 また、前記予備調整経路は、前記往復走行の前記走行経路の長さを調整するための経路であることが好ましい。 Preferably, the preliminary adjustment path is a path for adjusting the length of the traveling path of the reciprocating traveling.
 このような構成により、未作業地の形状を、容易に効率的な走行経路を生成することができる形状にすることができる。 構成 With such a configuration, it is possible to make the shape of the unworked land a shape that can easily generate an efficient traveling route.
 また、前記予備調整経路は、前記走行経路と交わる方向に沿った経路であることが好ましい。 Preferably, the preliminary adjustment route is a route along a direction intersecting with the traveling route.
 このような構成により、未作業地の形状を、容易に効率的な走行経路を生成することができる形状にすることができる。 構成 With such a configuration, it is possible to make the shape of the unworked land a shape that can easily generate an efficient traveling route.
 また、前記予備調整経路は、前記未作業地の外周に沿った経路であっても良い。 予 備 Also, the preliminary adjustment path may be a path along the outer periphery of the unworked land.
 このような構成により、周囲刈りの領域を拡大することで予備調整走行を行うことができ、容易に効率的な走行経路を生成することができる形状にすることができる。 With such a configuration, it is possible to perform preliminary adjustment traveling by enlarging the area of the surrounding mowing, and it is possible to obtain a shape that can easily generate an efficient traveling route.
 さらに、本発明の一実施形態に係る走行経路生成方法は、圃場の未作業地を、互いに並列する走行経路に沿って自動走行で往復走行しながら、前記未作業地の作物を収穫するコンバインにおける自動走行経路を生成する走行経路生成方法であって、前記圃場における単位面積あたりの収量である収量率を取得する工程と、前記未作業地の面積を取得する工程と、前記収量率と前記面積とから、前記未作業地で収穫されることが予測される穀粒の総収量を推定する工程と、前記未作業地の形状及び前記総収量に基づいて、前記未作業地の形状が前記往復走行に最適な形状となるように、前記往復走行に先立って自動走行を行う予備調整経路を生成する工程とを備える。 Furthermore, the traveling route generation method according to an embodiment of the present invention is a combine harvesting device that harvests crops of the unworked land while automatically reciprocating on unworked land in a field along running paths parallel to each other. A traveling route generation method for generating an automatic traveling route, wherein a step of acquiring a yield rate that is a yield per unit area in the field, a step of acquiring an area of the unworked land, and the yield rate and the area From the step of estimating the total yield of kernels that are predicted to be harvested in the unworked land, and based on the shape of the unworked land and the total yield, the shape of the unworked land is reciprocated Generating a preliminary adjustment path for performing automatic traveling prior to the reciprocating traveling so as to have an optimal shape for traveling.
 このように、未作業地に対する自動走行に先立って予備調整経路を走行することにより、自動走行において効率的な走行経路を容易に生成することができるような未作業地の形状とすることができる。 As described above, by traveling on the preliminary adjustment route prior to the automatic traveling on the unworked ground, it is possible to form the unworked ground such that an efficient traveling route can be easily generated in the automatic traveling. .
 また、前記収穫するのに最適な形状は、前記走行経路の途中で排出収量にならないような形状であり、前記排出収量を考慮して前記予備調整経路を生成することが好ましい。 The optimal shape for harvesting is a shape that does not result in a discharge yield in the middle of the traveling route, and it is preferable to generate the preliminary adjustment route in consideration of the discharge yield.
 未作業地の内部で排出収量になった場合、穀粒の排出ポイントへ移動するために後進が必要になる等の、走行経路が非効率的になる場合がある。未作業地の内部で排出収量にならないような形状となる予備調整経路での走行を行うことにより、予備調整経路を走行した後の未作業地は、排出ポイントへの移動を考慮した走行経路を生成することが容易となり、効率的な走行経路を容易に生成することができる。 排出 If the emission yield is reached inside the unworked land, the traveling route may be inefficient, such as the need to move backward to move to the grain discharge point. By traveling on the pre-adjustment route that has a shape that does not result in emission yield inside the un-worked site, the un-worked site after traveling on the pre-adjustment route will have a travel route that considers movement to the discharge point. It becomes easy to generate, and an efficient travel route can be easily generated.
 また、前記排出収量は穀粒タンクの満杯状態における収量であっても良い。 The discharge yield may be the yield when the grain tank is full.
 穀粒タンクが満杯状態となったときに、穀粒を排出することが最も効率的である場合が多い。そのため、未作業地の内部で穀粒タンクが満杯状態とならない形状とすることにより、より効率的な走行経路を生成することができる。 穀 When the grain tank is full, it is often most efficient to discharge the grain. Therefore, by making the shape such that the grain tank does not become full inside the unworked land, a more efficient traveling route can be generated.
 また、前記排出収量は穀粒タンクの満杯状態における収量の所定割合以上となるように設定されても良い。 The discharge yield may be set so as to be equal to or more than a predetermined ratio of the yield when the grain tank is full.
 運搬車の容量や、外部からの要求に応じて排出する収量が規定されることがある。このような場合、その収量に応じて排出収量を規定することにより、効率的な走行経路を生成することができる。 The capacity of the transport vehicle and the yield to be discharged in response to external requests may be specified. In such a case, by defining the emission yield according to the yield, an efficient traveling route can be generated.
 また、前記穀粒タンクに貯留された前記穀粒を排出するための排出ポイントが前記未作業地の外側部の前記走行経路の一端側に設定され、前記未作業地の外形を構成する辺の内、前記走行経路の一端または他端が位置する辺上で前記排出収量となるように前記予備調整経路を生成することが好ましい。 In addition, a discharge point for discharging the grains stored in the grain tank is set at one end of the traveling path on the outer side of the unworked land, and a side of the side constituting the outer shape of the unworked land is set. Preferably, the preliminary adjustment path is generated such that the discharge yield is obtained on a side where one end or the other end of the travel path is located.
 このような構成により、特に排出ポイントに向かい合う位置で排出収量となり、かつ未作業地から刈り抜けるように走行経路を生成することができ、より効率的な走行経路を生成することができる。 With such a configuration, it is possible to generate a traveling route so as to obtain a discharge yield particularly at a position facing the discharge point and cut through an unworked area, and to generate a more efficient traveling route.
 また、前記未作業地を構成する辺の内、前記圃場における畦からの進入口に向かい合う一辺または前記進入口に向かい合う一辺と前記走行経路を挟んで逆側の辺上で前記未作業地の収穫作業を終えるように前記予備調整経路を生成することが好ましい。 Further, among the sides constituting the unworked land, harvesting of the unworked land on one side facing the entrance from the ridge in the field or on the side opposite to the one side facing the entrance with the traveling path interposed therebetween. Preferably, the pre-adjustment path is generated so as to complete the work.
 このような構成により、収穫作業を終えてから圃場から退出する際の走行経路も最適化され、より効率的な走行経路を生成することができる。 With such a configuration, the traveling route when leaving the field after finishing the harvesting work is also optimized, and a more efficient traveling route can be generated.
 また、前記予備調整経路は、前記往復走行の前記走行経路の長さを調整するための経路であることが好ましい。 Preferably, the preliminary adjustment path is a path for adjusting the length of the traveling path of the reciprocating traveling.
 このような構成により、未作業地の形状を、容易に効率的な走行経路を生成することができる形状にすることができる。 構成 With such a configuration, it is possible to make the shape of the unworked land a shape that can easily generate an efficient traveling route.
 また、前記予備調整経路は、前記走行経路と交わる方向に沿った経路であることが好ましい。 Preferably, the preliminary adjustment route is a route along a direction intersecting with the traveling route.
 このような構成により、未作業地の形状を、容易に効率的な走行経路を生成することができる形状にすることができる。 構成 With such a configuration, it is possible to make the shape of the unworked land a shape that can easily generate an efficient traveling route.
 また、前記予備調整経路は、前記未作業地の外周に沿った経路であっても良い。 予 備 Also, the preliminary adjustment path may be a path along the outer periphery of the unworked land.
 このような構成により、周囲刈りの領域を拡大することで予備調整走行を行うことができ、容易に効率的な走行経路を生成することができる形状にすることができる。 With such a configuration, it is possible to perform preliminary adjustment traveling by enlarging the area of the surrounding mowing, and it is possible to obtain a shape that can easily generate an efficient traveling route.
 また、本発明の一実施形態に係る走行経路生成プログラムは、圃場の未作業地を、互いに並列する走行経路に沿って自動走行で往復走行しながら、前記未作業地の作物を収穫するコンバインにおける自動走行経路を生成する走行経路生成プログラムであって、前記圃場における単位面積あたりの収量である収量率を取得する機能と、前記未作業地の面積を取得する機能と、前記収量率と前記面積とから、前記未作業地で収穫されることが予測される穀粒の総収量を推定する機能と、前記未作業地の形状及び前記総収量に基づいて、前記未作業地の形状が前記往復走行に最適な形状となるように、前記往復走行に先立って自動走行を行う予備調整経路を生成する機能と、を備える。 Further, the traveling route generation program according to an embodiment of the present invention is a combine harvester that harvests crops of the unworked land while automatically reciprocating through the unworked land in the field along the running paths parallel to each other. A travel route generation program that generates an automatic travel route, a function of acquiring a yield rate that is a yield per unit area in the field, a function of acquiring an area of the unworked land, the yield rate and the area From the above, based on the function of estimating the total yield of kernels that are predicted to be harvested in the unworked land, and the shape of the unworked land and the total yield, the shape of the unworked land is reciprocated A function of generating a preliminary adjustment path for performing automatic traveling prior to the reciprocating traveling so as to have an optimal shape for traveling.
 このような走行経路生成プログラムをコンピュータにインストールして実現させることで、上述した走行経路生成システムと同様の効果を奏することが可能である。 イ ン ス ト ー ル By installing and implementing such a travel route generation program in a computer, it is possible to achieve the same effects as those of the above-described travel route generation system.
 また、本発明の一実施形態に係る走行経路生成プログラムを記録した記録媒体は、圃場の未作業地を、互いに並列する走行経路に沿って自動走行で往復走行しながら、前記未作業地の作物を収穫するコンバインにおける自動走行経路を生成する走行経路生成プログラムを記録した記録媒体であって、前記圃場における単位面積あたりの収量である収量率を取得する機能と、前記未作業地の面積を取得する機能と、前記収量率と前記面積とから、前記未作業地で収穫されることが予測される穀粒の総収量を推定する機能と、前記未作業地の形状及び前記総収量に基づいて、前記未作業地の形状が前記往復走行に最適な形状となるように、前記往復走行に先立って自動走行を行う予備調整経路を生成する機能と、をコンピュータに実現させるための走行経路生成プログラムが記録されている。 Further, the recording medium in which the traveling route generation program according to the embodiment of the present invention is recorded, while traveling back and forth by automatic traveling along the traveling routes parallel to each other on the unworked land in the field, A recording medium recording a traveling route generation program for generating an automatic traveling route in a combine harvesting, a function of acquiring a yield rate that is a yield per unit area in the field, and acquiring an area of the unworked land. Function, from the yield rate and the area, the function of estimating the total yield of the grain is expected to be harvested in the unworked land, based on the shape of the unworked land and the total yield And a function of generating a preliminary adjustment path for performing automatic traveling prior to the reciprocating travel so that the shape of the unworked area becomes an optimal shape for the reciprocating traveling. Travel route generating program is recorded.
 このような記録媒体に記録された走行経路生成プログラムをコンピュータにインストールし、当該コンピュータに実現させることで、上述した走行経路生成システムと同様の効果を奏することが可能である。 イ ン ス ト ー ル By installing the running route generation program recorded on such a recording medium in a computer and causing the computer to realize the same, it is possible to achieve the same effects as the running route generation system described above.
 更に、本発明の一実施形態に係る作業管理システムは、作物を収穫して脱穀した穀粒を貯留する穀粒タンクと前記穀粒タンクに貯留された穀粒の収量を測定する収量センサとを有し、圃場内の外周領域の作物を手動走行で収穫し、前記手動走行が行われた既作業地の内側の未作業地を自動走行しながら作物の収穫を行うコンバインのための作業管理システムであって、前記コンバインに設けられ、衛星からの衛星信号を受信する衛星アンテナと、前記コンバインに設けられ、前記衛星信号に基づいて自車位置に対応する測位データを出力する衛星測位モジュールと、前記コンバインに設けられ、前記収量センサが測定した前記収量を出力する収量出力部と、前記測位データ及び前記収量を取得するデータ取得部と、前記手動走行時に取得した前記測位データから、前記既作業地の既作業地面積と前記未作業地の未作業地面積とを算出する面積算出部と、前記手動走行時に取得した前記収量と前記既作業地面積とから、前記既作業地における単位面積当たりの収量である収量率を算出する収量率算出部と、前記未作業地面積と前記収量率とから、前記未作業地で収穫されることが予想される穀粒の総収量を推定する総収量推定部とを備える。 Furthermore, the work management system according to one embodiment of the present invention includes a grain tank that stores the grains harvested and threshed and a yield sensor that measures the yield of the grains stored in the grain tank. A work management system for a combine that harvests crops in an outer peripheral area in a field by manual traveling, and harvests the crop while automatically traveling on an unworked area inside the already-operated land where the manual traveling has been performed. A satellite antenna provided in the combine and receiving a satellite signal from a satellite, a satellite positioning module provided in the combine and outputting positioning data corresponding to the vehicle position based on the satellite signal, Provided in the combine, a yield output unit that outputs the yield measured by the yield sensor, a data acquisition unit that acquires the positioning data and the yield, and a data acquisition unit that acquires during the manual driving. From the positioning data, an area calculation unit that calculates an already-worked area of the already-worked area and an un-worked area of the un-worked area, and the yield and the already-worked area obtained during the manual traveling, A yield rate calculation unit that calculates a yield rate that is a yield per unit area in the already-worked area, and a grain that is expected to be harvested in the un-worked area from the unworked area and the yield rate. And a total yield estimating unit for estimating the total yield of.
 このように未作業地の総収量を推定することにより、この圃場または他の圃場を含めた収穫作業の管理を、周囲刈りが終了した時点で容易に行うことができる。また、未作業地の自動走行における走行経路を生成する際に、未作業地で収穫される総収量を考慮することができる。そのため、総収量が一つの目安となって、自動走行の走行経路を効率的に生成することが可能となる。 推定 By estimating the total yield of the unworked land in this way, it is possible to easily manage the harvesting work including this field or another field when the surrounding mowing is completed. In addition, when generating a traveling route in the automatic traveling of the unworked land, the total yield harvested in the unworked land can be considered. Therefore, the total yield is one measure, and it is possible to efficiently generate a traveling route for automatic traveling.
 また、前記総収量を前記穀粒タンクの排出収量で除した上で小数点以下を繰り上げて、前記未作業地の自動走行中に最低限必要な排出回数を算出する排出回数算出部を備えることが好ましい。 Further, after dividing the total yield by the discharge yield of the grain tank, the decimal number is rounded up, and a discharge frequency calculation unit for calculating a minimum required discharge frequency during the automatic traveling of the unworked land may be provided. preferable.
 このような構成により、穀粒を排出するタイミングを最適化することが容易となり、自動走行の走行経路を効率的に生成することが可能となる。 に よ り With such a configuration, it is easy to optimize the timing of discharging kernels, and it is possible to efficiently generate a traveling route for automatic traveling.
 また、前記手動走行中に穀粒の排出を行った場合、前記排出回数算出部は、前記手動走行中の排出時に貯留されていた収量を前記排出収量として前記排出回数を算出することが好ましい。 In addition, when the grain is discharged during the manual running, the discharge count calculating unit preferably calculates the discharge count using the yield stored at the time of discharging during the manual running as the discharge yield.
 実際に排出した際の収量を排出収量とすることにより、より現実的な排出回数を算出することが可能となる。 (4) By setting the yield at the time of actual release as the release yield, it is possible to calculate a more realistic number of releases.
 また、前記総収量と前記排出回数とから、前記排出収量以下の収量である排出基準収量を算出する排出基準収量算出部と、前記排出基準収量に基づいて、自動走行経路を生成する走行経路生成部とを備えることが好ましい。 An emission-based yield calculation unit configured to calculate an emission-based yield that is equal to or less than the emission yield from the total yield and the number of times of emission, and a travel route generation that generates an automatic travel route based on the emission-based yield. It is preferable to include a part.
 自動走行において効率的な走行経路を生成するためには、効率的に排出ポイントに移動する経路を生成することが好ましい。効率的に排出ポイントに移動するためには、未作業地を刈り抜けてそのまま排出ポイントに移行することが重要である。そのため、未作業地の端部に至った際に、貯留されている穀粒の収量が排出するのに適した収量となっている必要がある。上記のように求めた排出基準収量は、最低限必要な排出回数から排出する際に基準となる収量を算出したものであり、排出基準収量で排出したとしても最終的な排出回数は変わらない。そのため、走行経路を生成する際に、排出基準収量から排出収量の間で排出するように、排出時の収量に幅を持たせることができる。これに伴い、走行経路を生成する際の自由度が向上し、未作業地の端部に至った際に、貯留されている穀粒の収量が排出するのに適した収量となるようにすることが容易となる。その結果、効率的な走行経路の生成がより容易となる。 In order to generate an efficient traveling route in automatic traveling, it is preferable to generate a route that efficiently moves to the discharge point. In order to efficiently move to the discharge point, it is important to cut through the unworked land and shift to the discharge point as it is. Therefore, when reaching the end of the unworked land, it is necessary that the yield of the stored kernels be a yield suitable for discharge. The emission standard yield obtained as described above is obtained by calculating the yield that is a reference when discharging from the minimum required number of discharges, and the final number of discharges does not change even if the emission is performed at the emission reference yield. Therefore, when generating a travel route, the yield at the time of discharge can be given a range so as to discharge between the discharge reference yield and the discharge yield. Along with this, the degree of freedom in generating the traveling route is improved, and when reaching the end of the unworked land, the yield of the stored kernels becomes a suitable yield for discharging. It becomes easier. As a result, efficient generation of a traveling route becomes easier.
 また、前記穀粒タンクに貯留された穀粒を排出する排出ポイントを設定する排出ポイント設定部を備え、前記走行経路生成部は、前記排出ポイントを考慮して前記自動走行経路を生成することが好ましい。 The apparatus may further include a discharge point setting unit configured to set a discharge point for discharging the kernel stored in the kernel tank, wherein the travel route generation unit generates the automatic travel route in consideration of the discharge point. preferable.
 排出ポイントを考慮することにより、排出ポイントにより近い未作業地の端部で収穫が終了するように走行経路を生成することができ、効率的な走行経路の生成がより容易となる。 走 行 By considering the discharge point, a travel route can be generated such that harvesting ends at the end of the unworked land closer to the discharge point, and it becomes easier to efficiently generate a travel route.
 さらに、本発明の一実施形態に係る作業管理方法は、作物を収穫して脱穀した穀粒を貯留する穀粒タンクと前記穀粒タンクに貯留された穀粒の収量を測定する収量センサとを有し、圃場内の外周領域の作物を手動走行で収穫し、前記手動走行が行われた既作業地の内側の未作業地を自動走行しながら作物の収穫を行うコンバインに対して行われる作業管理方法であって、衛星からの衛星信号を受信し、前記衛星信号に基づいて前記コンバインの自車位置に対応する測位データを算出する工程と、前記測位データ及び前記収量を取得する工程と、前記手動走行時に取得した前記測位データから、前記既作業地の既作業地面積と前記未作業地の未作業地面積とを算出する工程と、前記手動走行時に取得した前記収量と前記既作業地面積とから、前記既作業地における単位面積当たりの収量である収量率を算出する工程と、前記未作業地面積と前記収量率とから、前記未作業地で収穫されることが予想される穀粒の総収量を算出する工程とを備える。 Further, the work management method according to an embodiment of the present invention includes a kernel tank for storing a grain harvested and threshed, and a yield sensor for measuring the yield of the kernel stored in the kernel tank. An operation to be performed on a combine that harvests a crop in an outer peripheral area in a field by manual traveling and harvests the crop while automatically traveling on an unworked land inside the already-operated land where the manual traveling has been performed. A management method, a step of receiving a satellite signal from a satellite, calculating positioning data corresponding to the own vehicle position of the combine based on the satellite signal, and obtaining the positioning data and the yield, From the positioning data acquired during the manual traveling, a step of calculating an area of the already-occupied land of the already-occupied land and an unoccupied area of the unoccupied land; From the area A step of calculating a yield rate that is a yield per unit area in the already-worked land; and, based on the unworked-land area and the yield rate, the total yield of kernels that are expected to be harvested in the unworked land Calculating the following.
 このように未作業地の総収量を推定することにより、この圃場または他の圃場を含めた収穫作業の管理を、周囲刈りが終了した時点で容易に行うことができる。また、未作業地の自動走行における走行経路を生成する際に、未作業地で収穫される総収量を考慮することができる。そのため、総収量が一つの目安となって、自動走行の走行経路を効率的に生成することが可能となる。 推定 By estimating the total yield of the unworked land in this way, it is possible to easily manage the harvesting work including this field or another field when the surrounding mowing is completed. In addition, when generating a traveling route in the automatic traveling of the unworked land, the total yield harvested in the unworked land can be considered. Therefore, the total yield is one measure, and it is possible to efficiently generate a traveling route for automatic traveling.
 また、前記総収量を前記穀粒タンクの排出収量で除した上で小数点以下を繰り上げて、前記未作業地の自動走行中に最低限必要な排出回数を算出する工程を備えることが好ましい。 Preferably, the method further comprises a step of dividing the total yield by the discharge yield of the grain tank, and then rounding up decimal places to calculate a minimum required number of discharges during the automatic traveling of the unworked land.
 このような構成により、穀粒を排出するタイミングを最適化することが容易となり、自動走行の走行経路を効率的に生成することが可能となる。 に よ り With such a configuration, it is easy to optimize the timing of discharging kernels, and it is possible to efficiently generate a traveling route for automatic traveling.
 また、前記手動走行中に穀粒の排出を行った場合、前記手動走行中の排出時に貯留されていた収量を前記排出収量として前記排出回数を算出することが好ましい。 In addition, when the grain is discharged during the manual driving, it is preferable that the number of discharges is calculated using the yield stored at the time of discharging during the manual driving as the discharge yield.
 実際に排出した際の収量を排出収量とすることにより、より現実的な排出回数を算出することが可能となる。 (4) By setting the yield at the time of actual release as the release yield, it is possible to calculate a more realistic number of releases.
 また、前記総収量と前記排出回数とから、前記排出収量以下の収量である排出基準収量を算出する工程と、前記排出基準収量に基づいて、自動走行経路を生成する工程とを備えることが好ましい。 Further, it is preferable that the method further includes a step of calculating an emission reference yield that is equal to or less than the emission yield from the total yield and the number of discharges, and a step of generating an automatic traveling route based on the emission reference yield. .
 このような構成により、走行経路を生成する際に、排出基準収量から排出収量の間で排出するように、排出時の収量に幅を持たせることができる。そのため、走行経路を生成する際の自由度が向上し、未作業地の端部に至った際に、貯留されている穀粒の収量が排出するのに適した収量となるようにすることが容易となる。その結果、効率的な走行経路の生成がより容易となる。 With such a configuration, when generating a travel route, the yield at the time of discharge can be given a range so as to discharge between the discharge reference yield and the discharge yield. Therefore, the degree of freedom in generating the traveling route is improved, and when reaching the end of the unworked land, the yield of the stored grains can be set to a suitable yield for discharging. It will be easier. As a result, efficient generation of a traveling route becomes easier.
 また、前記穀粒タンクに貯留された穀粒を排出する排出ポイントを設定する工程を備え、前記自動走行経路は、前記排出ポイントを考慮して生成されることが好ましい。 Preferably, the method further includes the step of setting a discharge point for discharging the kernel stored in the kernel tank, wherein the automatic traveling route is generated in consideration of the discharge point.
 排出ポイントを考慮することにより、排出ポイントにより近い未作業地の端部で収穫が終了するように走行経路を生成することができ、効率的な走行経路の生成がより容易となる。 走 行 By considering the discharge point, a travel route can be generated such that harvesting ends at the end of the unworked land closer to the discharge point, and it becomes easier to efficiently generate a travel route.
 また、本発明の一実施形態に係る作業管理プログラムは、作物を収穫して脱穀した穀粒を貯留する穀粒タンクと前記穀粒タンクに貯留された穀粒の収量を測定する収量センサとを有し、圃場内の外周領域の作物を手動走行で収穫し、前記手動走行が行われた既作業地の内側の未作業地を自動走行しながら作物の収穫を行うコンバインの作業を監視する作業管理プログラムであって、衛星からの衛星信号を受信し、前記衛星信号に基づいて前記コンバインの自車位置に対応する測位データを算出する機能と、前記測位データ及び前記収量を取得する機能と、前記手動走行時に取得した前記測位データから、前記既作業地の既作業地面積と前記未作業地の未作業地面積とを算出する機能と、前記手動走行時に取得した前記収量と前記既作業地面積とから、前記既作業地における単位面積当たりの収量である収量率を算出する機能と、前記未作業地面積と前記収量率とから、前記未作業地で収穫されることが予想される穀粒の総収量を算出する機能と、を備える。 In addition, the work management program according to an embodiment of the present invention includes a kernel tank for storing cropped and threshed kernels and a yield sensor for measuring the yield of kernels stored in the kernel tanks. Work for harvesting crops in an outer peripheral area in a field by manual traveling, and monitoring a combine operation for harvesting a crop while automatically traveling on an unworked area inside the already worked area where the manual traveling has been performed. A management program, receiving a satellite signal from a satellite, a function of calculating positioning data corresponding to the own vehicle position of the combine based on the satellite signal, and a function of obtaining the positioning data and the yield, From the positioning data acquired at the time of the manual traveling, a function of calculating an already-worked area of the already-worked area and an un-worked area of the un-worked area, and the yield and the already-worked ground acquired at the time of the manual traveling From the function of calculating the yield rate, which is the yield per unit area in the already-worked land, and from the un-worked area and the yield rate, the kernel is expected to be harvested in the un-worked land And a function for calculating the total yield.
 このような作業管理プログラムをコンピュータにインストールして実現させることで、上述した作業管理システムと同様の効果を奏することが可能である。 イ ン ス ト ー ル By installing and implementing such a work management program in a computer, it is possible to achieve the same effects as those of the work management system described above.
 また、本発明の一実施形態に係る作業管理プログラムを記録した記録媒体は、作物を収穫して脱穀した穀粒を貯留する穀粒タンクと前記穀粒タンクに貯留された穀粒の収量を測定する収量センサとを有し、圃場内の外周領域の作物を手動走行で収穫し、前記手動走行が行われた既作業地の内側の未作業地を自動走行しながら作物の収穫を行うコンバインの作業を監視する作業管理プログラムを記録した記録媒体であって、衛星からの衛星信号を受信し、前記衛星信号に基づいて前記コンバインの自車位置に対応する測位データを算出する機能と、前記測位データ及び前記収量を取得する機能と、前記手動走行時に取得した前記測位データから、前記既作業地の既作業地面積と前記未作業地の未作業地面積とを算出する機能と、前記手動走行時に取得した前記収量と前記既作業地面積とから、前記既作業地における単位面積当たりの収量である収量率を算出する機能と、前記未作業地面積と前記収量率とから、前記未作業地で収穫されることが予想される穀粒の総収量を算出する機能と、をコンピュータに実現させるための作業管理プログラムが記録されている。 In addition, a recording medium recording a work management program according to an embodiment of the present invention measures a grain tank that stores grains that are harvested and threshed, and a yield of grains stored in the grain tank. A combine sensor for harvesting crops in an outer peripheral area in a field by manual traveling, and harvesting the crop while automatically traveling on an unworked land inside the already-worked land where the manual traveling was performed. A recording medium recording a work management program for monitoring work, a function of receiving a satellite signal from a satellite, and calculating positioning data corresponding to the own vehicle position of the combine based on the satellite signal; and A function of obtaining data and the yield, a function of calculating an area of the already-worked land and an un-worked area of the un-worked land from the positioning data obtained during the manual running, and A function of calculating a yield rate, which is a yield per unit area in the already-worked land, from the obtained yield and the already-worked area, and the un-worked area from the un-worked area and the yield rate. And a function for calculating the total yield of the grain expected to be harvested by the computer, and a work management program for causing a computer to realize the function.
 このような記録媒体に記録された作業管理プログラムをコンピュータにインストールし、当該コンピュータに実現させることで、上述した作業管理システムと同様の効果を奏することが可能である。 イ ン ス ト ー ル By installing the work management program recorded on such a recording medium on a computer and causing the computer to realize the same, it is possible to achieve the same effects as those of the work management system described above.
3-2.解決手段〔2〕
 課題〔2〕に対応する解決手段は、以下の通りである。
 複数の平行な作業走行経路を旋回走行経路によってつないで走行する往復走行パターンで自動走行する、本発明による収穫機は、収穫物を貯留する収穫物タンクと、未作業領域に前記作業走行経路を所定間隔で設定する走行経路設定部と、前記作業走行経路と自車位置とに基づいて前記作業走行経路に沿った自動走行を行う自動走行制御部と、単位走行距離当たりの収穫量に基づいて前記収穫物タンクの排出タイミングが発生する前記作業走行経路である特定作業走行経路及び当該特定作業走行経路における排出タイミング発生位置を予測する排出タイミング予測部と、前記特定作業走行経路での収穫幅より狭い収穫幅とすることで走行終了点まで前記排出タイミングを遅延させる調整走行経路を作成し、当該調整走行経路を前記特定作業走行経路に代えて前記自動走行制御部に与える走行経路調整部とを備える。
3-2. Solution [2]
The means for solving the problem [2] is as follows.
The harvester according to the present invention, which automatically travels in a reciprocating travel pattern in which a plurality of parallel work travel paths are connected by a turning travel path, travels in a reciprocating travel pattern, includes a harvest tank for storing harvested crops, and the work travel path in an unworked area. A traveling route setting unit that sets at predetermined intervals, an automatic traveling control unit that performs automatic traveling along the work traveling route based on the work traveling route and the own vehicle position, and a harvest amount per unit traveling distance. A specific work travel route that is the work travel route in which the discharge timing of the crop tank occurs and a discharge timing prediction unit that predicts a discharge timing occurrence position in the specific work travel route, and a harvest width in the specific work travel route. By creating a narrow harvest width, an adjusted travel route that delays the discharge timing until the travel end point is created, and the adjusted travel route is defined as the specific work route. And a travel path adjusting section that gives to the automatic travel control unit instead of the path.
 このように構成された収穫機では作業走行経路における特定位置で収穫物タンクの排出タイミング(例えば、収穫タンクの満杯や、二次処理工程にて受け入れ可能な量への到達)が予測されると、その作業走行経路は特定作業走行経路とみなされる。さらに、特定作業走行経路における排出タイミングの発生を先延ばしすることで、当該排出タイミングの発生が作業走行経路の終点となるようにする。これは、収穫幅(作業幅)を狭くした調整走行経路が特定作業走行経路に代えて置き換えられることにより可能となる。これにより、収穫機は、調整走行経路に沿った走行が終了した時点で、排出タイミングとなるので、そこで、調整走行経路を離脱し、排出停止場所に向かう。収穫物の排出が終わると、次の新しい作業走行経路から、収穫走行が再開される。これにより、作業走行経路の途中で収穫走行を中断して作業走行経路を離脱し、収穫物の排出が終わると、当該作業走行経路の途中に戻るといった手間のかかる走行を回避することができる。 With the harvester configured as described above, it is predicted that the discharge timing of the harvest tank (for example, when the harvest tank is full or the harvest tank reaches an acceptable amount in the secondary processing step) is predicted at a specific position in the work traveling path. The work travel route is regarded as a specific work travel route. Furthermore, by delaying the occurrence of the discharge timing in the specific work travel route, the occurrence of the discharge timing is set as the end point of the work travel route. This is made possible by replacing the adjusted travel route with a reduced harvest width (work width) with the specific work travel route. As a result, the harvester reaches the discharge timing when the traveling along the adjusted travel route is completed. Therefore, the harvester leaves the adjusted travel route and goes to the discharge stop location. When the discharge of the crop is completed, the harvest travel is restarted from the next new work travel route. Thus, it is possible to avoid the troublesome traveling of returning to the middle of the work travel route when the harvest travel is interrupted in the middle of the work travel route to leave the work travel route and to discharge the harvested product.
 調整走行経路に沿った収穫走行での実際の収穫幅は、本来の作業走行経路に沿った収穫走行での収穫幅に比べて、狭くなるので、本来収穫が行われる領域において未収穫領域が生じる。この未収穫領域をカバーするためには、その後に行われる収穫走行に用いる作業走行経路を変更する必要がある。そのような作業走行経路の好適な変更方法として、2つの方法が提案される。 The actual harvest width in the harvest travel along the adjusted travel path is narrower than the harvest width in the harvest travel along the original work travel path, so an unharvested area occurs in the area where the original harvest is performed. . In order to cover this unharvested area, it is necessary to change the work travel route used for harvest travel performed thereafter. Two methods are proposed as a preferable method of changing the work traveling route.
 その1つの変更方法では、前記走行経路調整部は、前記特定作業走行経路を前記収穫幅が減少する方向に横シフトさせることで前記調整走行経路を作成し、当該特定作業走行経路の横シフトによって広がった前記作業走行経路の間隔を前記所定間隔にするため、前記未作業領域における前記作業走行経路を横シフトする。この実施形態では、特定作業走行経路が調整走行経路として用いられるために横シフトされるので、この特定作業走行経路に隣接する未作業領域の隣接作業走行経路との間隔が広くなっている。これを解消するために隣接作業走行経路も横シフトされる。この横シフトによって間隔が広がった未作業領域の作業走行経路を順次横シフトする。横シフトする必要のある全ての作業走行経路を横シフトさせた結果、未作業領域を完全にカバーする作業走行経路が不足した場合には、新たに、作業走行経路を作成すれば良い。 In the one change method, the travel route adjustment unit creates the adjusted travel route by laterally shifting the specific work travel route in a direction in which the harvest width decreases, and performs a lateral shift of the specific work travel route. The work travel route in the unworked area is laterally shifted in order to make the interval of the spread work travel route the predetermined interval. In this embodiment, since the specific work travel route is shifted laterally to be used as the adjustment travel route, the interval between the non-work area adjacent to the specific work travel route and the adjacent work travel route is widened. To solve this, the adjacent work travel route is also shifted laterally. The work traveling route in the unworked area whose interval has been widened by this lateral shift is sequentially laterally shifted. If all the work travel routes that need to be shifted laterally are shifted as a result and there is not enough work travel routes to completely cover the unworked area, a new work travel route may be created.
 他の1つの変更方法では、前記走行経路調整部は、前記調整走行経路として、前記特定作業走行経路に平行な仮想走行経路を新たに作成する。この仮想走行経路は、作業走行が開始される始端の座標位置と、方位(延び方向を意味するが、湾曲線のように延び方向が変化していくような方位であっても良い)だけ設定するだけでよい。始端の座標位置に自車位置を合わせた後には、設定された方位だけを維持するだけで、適切に狭くされた収穫幅での収穫走行が行われる。この変更方法では、仮想走行経路と、この仮想走行経路に隣接する作業走行経路との間隔は、通常の経路間隔より狭いものとなり、当該作業走行経路に沿った収穫走行における収穫幅の範囲に、収穫が終えた領域が多く含まれることになり、作業効率が悪くなる。この問題を解決するために、前記走行経路調整部は、前記特定作業走行経路及び前記未作業領域における前記作業走行経路を前記仮想走行経路から遠ざかる方向に横シフトする。その際、この横シフトの値は、前記所定間隔から前記特定作業走行経路と前記仮想走行経路との間隔を引いた値とすれば良い。 In another modification method, the traveling route adjustment unit newly creates a virtual traveling route parallel to the specific work traveling route as the adjusted traveling route. This virtual traveling route is set only with the coordinate position of the starting end at which the work traveling is started and the azimuth (meaning the extending direction, but may be an azimuth in which the extending direction changes like a curved line). Just do it. After adjusting the position of the vehicle to the coordinate position of the starting end, the harvest traveling with the appropriately narrowed harvest width is performed only by maintaining the set azimuth. In this changing method, the interval between the virtual travel route and the work travel route adjacent to the virtual travel route is smaller than the normal route interval, and the range of the harvest width in the harvest travel along the work travel route is: Many harvested areas are included, resulting in poor work efficiency. In order to solve this problem, the travel route adjustment unit laterally shifts the specific work travel route and the work travel route in the non-work area in a direction away from the virtual travel route. At this time, the value of the lateral shift may be a value obtained by subtracting the interval between the specific work travel route and the virtual travel route from the predetermined interval.
 本発明の好適な実施形態の1つでは、前記走行経路調整部は、前記調整走行経路の走行後に残る未作業領域に対して前記収穫幅が均等となる更新走行経路を作成し、当該未作業領域に先に設定されている前記作業走行経路を前記更新走行経路で置き換える。この構成では、更新走行経路は、調整走行経路の走行後に残る未作業領域に対して、均等に配分された収穫幅を有するように作成されている。これにより、最後に作業走行する収穫幅が異常に狭くなった場合に生じる問題、例えば、その最後の作業走行が無駄の多い走行であるとみなされる問題や自動走行エラーが生じているとみなされる問題が回避される。 In one preferred embodiment of the present invention, the traveling route adjustment unit creates an updated traveling route in which the harvest width is equal to an unworked area remaining after traveling on the adjusted traveling route, and The work travel route previously set in the area is replaced with the updated travel route. In this configuration, the updated travel route is created so as to have an evenly distributed harvest width with respect to the unworked area remaining after traveling on the adjusted travel route. As a result, a problem that occurs when the harvest width of the last work traveling becomes abnormally narrow, for example, a problem that the last work traveling is regarded as a wasteful traveling or an automatic traveling error is regarded as occurring. The problem is avoided.
 また、本発明の一実施形態に係る走行パターン作成システムは、収穫物を貯留する収穫物タンクを有する収穫機が、複数の平行な作業走行経路を旋回走行経路によってつないで自動走行する往復走行パターンを作成する走行パターン作成システムであって、未作業領域に前記作業走行経路を所定間隔で設定する走行経路設定部と、前記作業走行経路と自車位置とに基づいて前記作業走行経路に沿った自動走行を行う自動走行制御部と、単位走行距離当たりの収穫量に基づいて前記収穫物タンクの排出タイミングが発生する前記作業走行経路である特定作業走行経路及び当該特定作業走行経路における排出タイミング発生位置を予測する排出タイミング予測部と、前記特定作業走行経路での収穫幅より狭い収穫幅とすることで走行終了点まで前記排出タイミングを遅延させる調整走行経路を作成し、当該調整走行経路を前記特定作業走行経路に代えて前記自動走行制御部に与える走行経路調整部と、を備える。 In addition, the traveling pattern creating system according to one embodiment of the present invention includes a reciprocating traveling pattern in which a harvester having a harvest tank for storing crops automatically travels by connecting a plurality of parallel work traveling paths by a turning traveling path. A travel route setting unit that sets the work travel route at a predetermined interval in an unworked area; and a work route along the work travel route based on the work travel route and the own vehicle position. An automatic travel control unit that performs automatic travel, and a specific work travel path that is the work travel path in which a discharge timing of the crop tank is generated based on a harvest amount per unit travel distance, and a discharge timing generation in the specific work travel path. A discharge timing prediction unit for predicting a position, and a harvest width narrower than a harvest width in the specific work travel route to a travel end point. Create an adjustment travel path for delaying the serial ejection timing includes a travel path adjusting unit to be supplied to the automatic travel control unit instead of the adjustment travel route to the specific working travel route, the.
 このような走行パターン作成システムも、上述した収穫機と同様の効果を奏することが可能である。 Such a running pattern creation system can also achieve the same effects as the harvester described above.
 また、本発明の一実施形態に係る走行パターン作成プログラムは、収穫物を貯留する収穫物タンクを有する収穫機が、複数の平行な作業走行経路を旋回走行経路によってつないで自動走行する往復走行パターンを作成する走行パターン作成プログラムであって、未作業領域に前記作業走行経路を所定間隔で設定する走行経路設定機能と、前記作業走行経路と自車位置とに基づいて前記作業走行経路に沿った自動走行を行う自動走行制御機能と、単位走行距離当たりの収穫量に基づいて前記収穫物タンクの排出タイミングが発生する前記作業走行経路である特定作業走行経路及び当該特定作業走行経路における排出タイミング発生位置を予測する排出タイミング予測機能と、前記特定作業走行経路での収穫幅より狭い収穫幅とすることで走行終了点まで前記排出タイミングを遅延させる調整走行経路を作成し、当該調整走行経路を前記特定作業走行経路に代えて前記自動走行制御機能に与える走行経路調整機能と、を備える。 A traveling pattern creation program according to one embodiment of the present invention includes a reciprocating traveling pattern in which a harvester having a harvest tank that stores harvested products automatically travels by connecting a plurality of parallel work traveling paths by a turning traveling path. A travel route setting function for setting the work travel route in a non-work area at a predetermined interval; and a travel route creation function based on the work travel route and the own vehicle position. An automatic travel control function for performing automatic travel, and a specific work travel path that is the work travel path in which a discharge timing of the crop tank is generated based on a harvest amount per unit travel distance, and a discharge timing generation in the specific work travel path. Driving by setting the discharge timing prediction function to predict the position and the harvest width narrower than the harvest width in the specific work travel route Create an adjustment travel path for delaying the discharge timing to the Ryoten, and a traveling path adjusting function to give to the automatic cruise control functions in place the adjustment travel route to the specific working travel route.
 このような走行パターン作成プログラムをコンピュータにインストールして実現させることで、上述した収穫機と同様の効果を奏することが可能である。 イ ン ス ト ー ル By installing and running such a running pattern creation program in a computer, it is possible to achieve the same effects as those of the harvester described above.
 また、本発明の一実施形態に係る走行パターン作成プログラムを記録した記録媒体は、収穫物を貯留する収穫物タンクを有する収穫機が、複数の平行な作業走行経路を旋回走行経路によってつないで自動走行する往復走行パターンを作成する走行パターン作成プログラムを記録した記録媒体であって、未作業領域に前記作業走行経路を所定間隔で設定する走行経路設定機能と、前記作業走行経路と自車位置とに基づいて前記作業走行経路に沿った自動走行を行う自動走行制御機能と、単位走行距離当たりの収穫量に基づいて前記収穫物タンクの排出タイミングが発生する前記作業走行経路である特定作業走行経路及び当該特定作業走行経路における排出タイミング発生位置を予測する排出タイミング予測機能と、前記特定作業走行経路での収穫幅より狭い収穫幅とすることで走行終了点まで前記排出タイミングを遅延させる調整走行経路を作成し、当該調整走行経路を前記特定作業走行経路に代えて前記自動走行制御機能に与える走行経路調整機能と、をコンピュータに実現させるための走行パターン作成プログラムが記録されている。 Further, the recording medium on which the running pattern creation program according to one embodiment of the present invention is recorded is a machine in which a harvester having a harvest tank for storing harvests connects a plurality of parallel work travel paths by a turning travel path. A recording medium storing a traveling pattern creating program for creating a reciprocating traveling pattern for traveling, a traveling route setting function for setting the working traveling route at a predetermined interval in an unworked area, An automatic travel control function for automatically traveling along the work travel path based on the specified travel path, and a specific work travel path that is the work travel path in which the discharge timing of the crop tank is generated based on the amount of harvest per unit travel distance And a discharge timing prediction function for predicting a discharge timing occurrence position in the specific work travel route; A travel route adjustment that creates an adjusted travel route that delays the discharge timing until the end point of travel by making the harvest width smaller than the harvest width, and gives the adjusted travel route to the automatic travel control function instead of the specific work travel route A running pattern creation program for causing a computer to realize the functions is recorded.
 このような記録媒体に記録された走行パターン作成プログラムをコンピュータにインストールし、当該コンピュータに実現させることで、上述した収穫機と同様の効果を奏することが可能である。 イ ン ス ト ー ル By installing the running pattern creation program recorded on such a recording medium in a computer and causing the computer to realize the same, it is possible to achieve the same effects as the harvester described above.
 また、本発明の一実施形態に係る走行パターン作成方法は、収穫物を貯留する収穫物タンクを有する収穫機が、複数の平行な作業走行経路を旋回走行経路によってつないで自動走行する往復走行パターンを作成する走行パターン作成方法であって、未作業領域に前記作業走行経路を所定間隔で設定する走行経路設定工程と、前記作業走行経路と自車位置とに基づいて前記作業走行経路に沿った自動走行を行う自動走行制御工程と、単位走行距離当たりの収穫量に基づいて前記収穫物タンクの排出タイミングが発生する前記作業走行経路である特定作業走行経路及び当該特定作業走行経路における排出タイミング発生位置を予測する排出タイミング予測工程と、前記特定作業走行経路での収穫幅より狭い収穫幅とすることで走行終了点まで前記排出タイミングを遅延させる調整走行経路を作成し、当該調整走行経路を前記特定作業走行経路に代えて前記自動走行制御工程に与える走行経路調整工程と、を備える。 The traveling pattern creating method according to one embodiment of the present invention is a method in which a harvester having a harvest tank for storing crops automatically travels by connecting a plurality of parallel work traveling paths by a turning traveling path. A travel route setting step of setting the work travel route in a non-work area at predetermined intervals, and a method of creating a travel pattern along the work travel route based on the work travel route and the own vehicle position. An automatic travel control step of performing automatic travel, and a specific work travel path that is the work travel path in which a discharge timing of the harvest tank occurs based on a harvest amount per unit travel distance, and a discharge timing generation in the specific work travel path. A discharge timing prediction step of predicting a position, and a harvest width narrower than the harvest width in the specific work travel route, so that the travel end point is reached. Create an adjustment travel path for delaying the discharge timing, comprising: a traveling path adjusting step of providing the automatic travel control process in place of the adjustment travel route to the specific working travel route, the.
 このような走行パターン作成、上述した収穫機と同様の効果を奏することが可能である。 作成 It is possible to create such a running pattern and to achieve the same effects as those of the harvester described above.
コンバインの左側面図である。It is a left view of a combine. コンバインの自動走行の概要を示す図である。It is a figure showing the outline of automatic running of a combine. 自動走行における走行経路を示す図である。FIG. 3 is a diagram illustrating a traveling route in automatic traveling. コンバインの管理・制御系の構成を示す機能ブロック図である。FIG. 3 is a functional block diagram illustrating a configuration of a combine management / control system. 収穫走行中に行う穀粒の排出を説明する図である。It is a figure explaining discharge of a grain performed during harvesting run. 予備調整経路を説明する図である。It is a figure explaining a preliminary adjustment course. コンバインの管理・制御方法におけるフローを示す図である。It is a figure in the management and control method of a combine which shows. α刈りでの予備調整経路を説明する図である。It is a figure explaining the preliminary adjustment course in α cutting. 収穫機の一例としての普通型のコンバインの側面図である。It is a side view of a normal type combine as an example of a harvester. コンバインの周囲刈り走行を示す説明図である。It is explanatory drawing which shows the cutting and running around the combine. Uターンでつながれた往復走行を繰り返す走行パターンを示す説明図である。It is explanatory drawing which shows the driving | running | working pattern which repeats reciprocating driving | running connected by U-turn. 渦巻き状に中心に向かって走行する走行パターンを示す説明図である。It is explanatory drawing which shows the driving | running | working pattern which runs toward the center in the shape of a spiral. スイッチバックターンを用いた往復走行パターンでの作業走行経路の算出を説明する説明図である。It is explanatory drawing explaining calculation of the work travel route in the reciprocating travel pattern using a switchback turn. ノーマルUターンを用いた往復走行パターンでの作業走行経路の算出を説明する説明図である。FIG. 8 is an explanatory diagram illustrating calculation of a work traveling route in a reciprocating traveling pattern using a normal U-turn. 渦巻き走行パターンでの作業走行経路の算出を説明する説明図である。It is explanatory drawing explaining calculation of the work travel route in a spiral running pattern. 手動走行と自動走行とを用いて行われるコンバインによる収穫作業の流れを説明する説明図である。It is explanatory drawing explaining the flow of the harvesting work by the combine performed using manual driving | running | working and automatic driving | running. コンバインの制御系の構成を示す機能ブロック図である。FIG. 3 is a functional block diagram illustrating a configuration of a combine control system. 特定作業走行経路から調整走行経路を作成する手順を説明する説明図である。It is explanatory drawing explaining the procedure which produces an adjustment travel route from a specific work travel route. 調整走行経路の設定に基づいて行われる作業走行経路の横シフトを説明する説明図である。It is explanatory drawing explaining the horizontal shift of the work travel route performed based on the setting of the adjustment travel route. 調整走行経路の設定に基づいて行われる作業走行経路の横シフトを説明する説明図である。It is explanatory drawing explaining the horizontal shift of the work travel route performed based on the setting of the adjustment travel route. 調整走行経路の設定に基づいて行われる作業走行経路の均等割り付けを説明する説明図である。FIG. 8 is an explanatory diagram illustrating equal allocation of work traveling routes performed based on setting of an adjusted traveling route.
4-1.第1の実施形態
 本発明を実施するための形態について、図面に基づき説明する。なお、以下の説明においては、図1に示す矢印Fの方向を「前」、矢印Bの方向を「後」とし、図1の紙面の手前方向を「左」、奥向き方向を「右」とする。また、図1に示す矢印Uの方向を「上」、矢印Dの方向を「下」とする。
4-1. First Embodiment A mode for carrying out the present invention will be described with reference to the drawings. In the following description, the direction of arrow F shown in FIG. 1 is referred to as “front”, the direction of arrow B is referred to as “rear”, the near side of FIG. 1 is “left”, and the back direction is “right”. And The direction of arrow U shown in FIG. 1 is “up”, and the direction of arrow D is “down”.
 〔コンバインの全体構成〕
 図1及び図2に示すように、コンバインは、クローラ式の走行装置11、運転部12、脱穀装置13、穀粒タンク14、収穫装置H、搬送装置16、穀粒排出装置18、衛星測位モジュール80を備えている。
[Overall structure of combine]
As shown in FIGS. 1 and 2, the combine includes a crawler-type traveling device 11, an operation unit 12, a threshing device 13, a grain tank 14, a harvesting device H, a transport device 16, a grain discharging device 18, and a satellite positioning module. 80.
 図1に示すように、走行装置11は、走行車体10(以下単に車体10と称する)の下部に備えられている。コンバインは、走行装置11によって自走可能に構成されている。 走 行 As shown in FIG. 1, the traveling device 11 is provided below the traveling vehicle body 10 (hereinafter simply referred to as the vehicle body 10). The combine is configured to be self-propelled by the traveling device 11.
 また、運転部12、脱穀装置13、穀粒タンク14は、走行装置11の上側に備えられている。運転部12には、コンバインの作業を監視する監視者が搭乗可能である。なお、監視者は、コンバインの機外からコンバインの作業を監視していても良い。 運 転 The operating unit 12, the threshing device 13, and the grain tank 14 are provided above the traveling device 11. An operator who monitors the operation of the combine can be boarded on the driving unit 12. The observer may be monitoring the combine operation from outside the combine.
 穀粒排出装置18は、穀粒タンク14の上側に設けられている。また、衛星測位モジュール80は、運転部12の上面に取り付けられている。 The grain discharge device 18 is provided above the grain tank 14. Further, the satellite positioning module 80 is mounted on the upper surface of the driving unit 12.
 収穫装置Hは、コンバインにおける前部に備えられている。そして、搬送装置16は、収穫装置Hの後側に設けられている。また、収穫装置Hは、切断機構15及びリール17を有している。 The harvesting device H is provided at the front of the combine. The transport device 16 is provided on the rear side of the harvesting device H. Further, the harvesting device H has a cutting mechanism 15 and a reel 17.
 切断機構15は、圃場の植立穀稈を刈り取る。また、リール17は、回転駆動しながら収穫対象の植立穀稈を掻き込む。この構成により、収穫装置Hは、圃場の穀物(以下、「作物」とも称す)を収穫する。そして、コンバインは、走行装置11によって走行しながら、収穫装置Hによって圃場の穀物を収穫する収穫走行が可能である。 The cutting mechanism 15 cuts the planted grain culm in the field. Further, the reel 17 scrapes the planted grain stem to be harvested while being driven to rotate. With this configuration, the harvesting device H harvests cereals in the field (hereinafter, also referred to as “crops”). Then, the combine can perform harvesting travel in which the harvesting device H harvests cereals in a field while traveling by the traveling device 11.
 このように、コンバインは、圃場の穀物を収穫する収穫装置Hと、走行装置11と、を備えている。 As described above, the combine includes the harvesting device H that harvests cereals in the field and the traveling device 11.
 切断機構15により刈り取られた刈取穀稈は、搬送装置16によって脱穀装置13へ搬送される。脱穀装置13において、刈取穀稈は脱穀処理される。脱穀処理により得られた穀粒は、穀粒タンク14に貯留される。穀粒タンク14には、穀粒タンク14に貯留された穀粒の収量を測定する収量センサ19が設けられる。穀粒タンク14に貯留された穀粒は、必要に応じて、穀粒排出装置18によって機外に排出される。 The harvested culm cut by the cutting mechanism 15 is transported by the transport device 16 to the threshing device 13. In the threshing device 13, the harvested culm is threshed. The grain obtained by the threshing process is stored in the grain tank 14. The grain tank 14 is provided with a yield sensor 19 that measures the yield of the grains stored in the grain tank 14. The grains stored in the grain tank 14 are discharged out of the machine by a grain discharging device 18 as necessary.
 このように、コンバインは、収穫装置Hによって収穫された穀粒を貯留する穀粒タンク14を備えている。 As described above, the combine is provided with the grain tank 14 that stores the grains harvested by the harvesting device H.
 運転部12には、通信端末2が配置されている。図1において、通信端末2は、運転部12に固定されている。しかしながら、本発明はこれに限定されず、通信端末2は、運転部12に対して着脱可能に構成されていても良い。また、コンバインの機外に持ち出されても良い。 通信 The communication terminal 2 is arranged in the driving unit 12. In FIG. 1, the communication terminal 2 is fixed to a driving unit 12. However, the present invention is not limited to this, and the communication terminal 2 may be configured to be detachable from the driving unit 12. Further, it may be taken out of the combine machine.
 〔自動走行に関する構成〕
 図2に示すように、コンバインは、圃場において生成された走行経路に沿って自動走行する。そのため、コンバインは、自車位置を認識することが必要である。衛星アンテナを備える衛星測位モジュール80には、衛星航法モジュール81と慣性航法モジュール82とが含まれている。衛星航法モジュール81は、人工衛星GSからのGNSS(global navigation satellite system)信号(GPS信号を含む)を衛星アンテナを介して受信して、自車位置を算出するための測位データを出力する。慣性航法モジュール82は、ジャイロ加速度センサ及び磁気方位センサを組み込んでおり、瞬時の走行方向を示す位置ベクトルを出力する。慣性航法モジュール82は、衛星航法モジュール81による自車位置算出を補完するために用いられる。慣性航法モジュール82は、衛星航法モジュール81とは別の場所に配置してもよい。
[Configuration related to automatic driving]
As shown in FIG. 2, the combine automatically travels along a travel route generated in a field. Therefore, the combine needs to recognize the own vehicle position. The satellite positioning module 80 having a satellite antenna includes a satellite navigation module 81 and an inertial navigation module 82. The satellite navigation module 81 receives a GNSS (global navigation satellite system) signal (including a GPS signal) from the artificial satellite GS via a satellite antenna and outputs positioning data for calculating the position of the own vehicle. The inertial navigation module 82 incorporates a gyro acceleration sensor and a magnetic direction sensor, and outputs a position vector indicating an instantaneous traveling direction. The inertial navigation module 82 is used to supplement the own vehicle position calculation by the satellite navigation module 81. The inertial navigation module 82 may be located at a different location from the satellite navigation module 81.
 コンバインによって圃場での収穫作業を行う場合の手順は、以下に説明する通りである。 手 順 The procedure for performing harvesting work in the field by combine is as described below.
 まず、運転者兼監視者は、コンバインを手動で操作し、図2に示すように、圃場内の外周部分において、圃場の境界線に沿って周回するように収穫走行を行う(以下、周囲刈りとも称す)。これにより既刈地(既作業地)となった領域は、外周領域SAとして設定される。そして、外周領域SAの内側に未刈地(未作業地)のまま残された領域は、作業対象領域CAとして設定される。図2は、外周領域SAと作業対象領域CAの一例を示している。なお、周囲刈りは手動走行により行われるが、この際の周囲刈りは、運転者がコンバインに搭乗してコンバインを操縦する走行であっても良いが、遠隔操作により監視者等がコンバインを走行させても良い。 First, the driver / monitor manually operates the combine, and performs harvesting traveling so as to orbit along the boundary of the field in the outer peripheral portion of the field as shown in FIG. Also referred to as). As a result, the area that has been cut (the already worked place) is set as the outer peripheral area SA. Then, the area left uncut (unworked) inside the outer peripheral area SA is set as the work target area CA. FIG. 2 shows an example of the outer peripheral area SA and the work target area CA. The surrounding mowing is performed by manual traveling.In this case, the peripheral mowing may be a traveling in which the driver rides on the combine and steers the combine. May be.
 また、このとき、外周領域SAの幅をある程度広く確保するために、運転者は、コンバインを2~3周走行させる。この走行においては、コンバインが1周する毎に、コンバインの作業幅分だけ外周領域SAの幅が拡大する。最初の、2~3周の走行が終わると、外周領域SAの幅は、コンバインの作業幅の2~3倍程度の幅となる。なお、運転者による最初の周回走行は2~3周でなく、それ以上(4周以上)であっても良いし、1周であっても良い。 こ の At this time, in order to secure the width of the outer peripheral area SA to some extent, the driver runs the combine for two or three turns. In this traveling, every time the combine makes one round, the width of the outer peripheral area SA increases by the working width of the combine. After the first two or three rounds of travel, the width of the outer peripheral area SA becomes about two to three times the working width of the combine. Note that the first round traveling by the driver is not limited to two or three laps, but may be longer (four or more laps) or one lap.
 外周領域SAは、作業対象領域CAにおいて自動走行により収穫走行を行うときに、コンバインが方向転換するためのスペースとして利用される。また、外周領域SAは、収穫走行を一旦終えて、穀粒の排出場所へ移動する際や、燃料の補給場所へ移動する際等の移動用のスペースとしても利用される。 (4) The outer peripheral area SA is used as a space for the combine to change directions when performing harvesting traveling by automatic traveling in the work target area CA. In addition, the outer peripheral area SA is also used as a space for movement when the harvest travel is once completed and the grain is moved to a grain discharge location, or is moved to a fuel supply location.
 なお、図2に示す運搬車CVは、コンバインから排出された穀粒を収集し、運搬することができる。穀粒排出の際、コンバインは運搬車CVの近傍へ移動した後、穀粒排出装置18によって穀粒を運搬車CVへ排出する。 運 搬 Note that the transport vehicle CV shown in FIG. 2 can collect and transport the kernels discharged from the combine. In discharging the grains, the combine moves to the vicinity of the transport vehicle CV, and then discharges the grains to the transport vehicle CV by the grain discharging device 18.
 外周領域SA及び作業対象領域CAが設定されると、図3に示すように、作業対象領域CAにおける走行経路が算定される。算定された走行経路は、作業走行のパターンに基づいて順次生成され、生成された走行経路に沿ってコンバインが自動走行する経路となる。なお、コンバインは、旋回走行のための旋回パターンとして、図3に示すようなU字状の旋回走行経路に沿って方向転換するU旋回パターンの他にも、前後進を繰り返しながら方向転換するα旋回パターンや、後進走行をともなってU旋回パターンよりも狭い領域でU旋回パターンと同様の方向転換をするスイッチバック旋回パターンを有する。このような後進を含む旋回走行は、穀粒タンク14が満杯になって、作業対象領域CAの走行経路から離脱したコンバインが、運搬車CVに対して位置合わせする時などにも行われる。 When the outer peripheral area SA and the work area CA are set, the traveling route in the work area CA is calculated as shown in FIG. The calculated traveling route is sequentially generated based on the work traveling pattern, and becomes a route along which the combine automatically travels along the generated traveling route. In addition, as a turning pattern for turning, in addition to a U turning pattern in which the direction changes along a U-shaped turning traveling path as shown in FIG. It has a turning pattern and a switchback turning pattern that performs the same direction change as the U turning pattern in an area narrower than the U turning pattern with backward traveling. Such turning movement including backward movement is also performed, for example, when the grain tank 14 is full and the combine that has left the traveling route in the work target area CA is positioned with respect to the transport vehicle CV.
〔自動走行に係る管理・制御について〕
 以下、図4~図6を用いて自動走行に係る管理・制御を行う構成について説明する。
[Management and control related to automatic driving]
Hereinafter, a configuration for performing management and control related to automatic driving will be described with reference to FIGS. 4 to 6.
 コンバインの管理・制御系は、多数のECUと呼ばれる電子制御ユニットからなる制御ユニット5、及び、この制御ユニット5との間で車載LANなどの配線網を通じて信号通信(データ通信)を行う各種入出力機器から構成されている。 The combine management / control system includes a control unit 5 composed of a number of electronic control units called ECUs, and various input / outputs for performing signal communication (data communication) with the control unit 5 through a wiring network such as an in-vehicle LAN. It is composed of equipment.
 通信部66は、このコンバインの管理・制御系が、通信端末2との間で、あるいは、遠隔地に設置されている管理コンピュータとの間でデータ交換するために用いられる。通信端末2には、圃場に立っている監視者、またはコンバイン乗り込んでいる運転者兼監視者が操作するタブレットコンピュータ、自宅や管理事務所に設置されているコンピュータなども含まれる。制御ユニット5は、この制御系の中核要素であり、複数のECUの集合体として示されている。衛星測位モジュール80からの信号は、車載LANを通じて制御ユニット5に入力される。なお、制御ユニット5の構成要素の一部は、通信端末2に配置されても良い。 The communication unit 66 is used by the combine management / control system to exchange data with the communication terminal 2 or with a management computer installed in a remote place. The communication terminal 2 includes a tablet computer operated by an observer standing on a field, a driver and an observer riding in a combine, and a computer installed in a home or a management office. The control unit 5 is a core element of the control system, and is shown as an aggregate of a plurality of ECUs. A signal from the satellite positioning module 80 is input to the control unit 5 through the onboard LAN. Note that some of the components of the control unit 5 may be arranged in the communication terminal 2.
 制御ユニット5は、入力処理部90、自車位置算出部55、車体方位算出部56、圃場管理部83、収量管理部70、走行経路生成部54を含む。さらに制御ユニット5は、図示しないが、出力処理部、走行機器群を制御する走行制御部、収穫作業装置を制御する作業制御部等を含めることができる。出力処理部は、操舵機器、エンジン機器、変速機器、制動機器、収穫装置H(図1参照)、脱穀装置13(図1参照)、搬送装置16(図1参照)、穀粒排出装置18(図1参照)等と接続される。 The control unit 5 includes an input processing unit 90, a vehicle position calculation unit 55, a vehicle body direction calculation unit 56, a field management unit 83, a yield management unit 70, and a travel route generation unit 54. Further, although not shown, the control unit 5 may include an output processing unit, a traveling control unit that controls a traveling device group, a work control unit that controls a harvesting work device, and the like. The output processing unit includes a steering device, an engine device, a transmission device, a braking device, a harvesting device H (see FIG. 1), a threshing device 13 (see FIG. 1), a transport device 16 (see FIG. 1), and a grain discharging device 18 (see FIG. 1). (See FIG. 1).
 入力処理部90には、衛星測位モジュール80、収量出力部20、走行状態センサ群63、作業状態センサ群64、走行操作ユニット(図示せず)等が接続されている。入力処理部90は、これらから情報を受信し、制御ユニット5内の各種機能部に情報を提供する。走行状態センサ群63には、エンジン回転数センサ、オーバーヒート検出センサ、ブレーキペダル位置検出センサ、変速位置検出センサ、操舵位置検出センサ等が含まれている。作業状態センサ群64には、収穫作業装置(収穫装置H(図1参照))、脱穀装置13(図1参照)、搬送装置16(図1参照)、穀粒排出装置18(図1参照)の駆動状態を検出するセンサ、穀稈や穀粒の状態を検出するセンサなどが含まれている。 The input processing unit 90 is connected with the satellite positioning module 80, the yield output unit 20, the traveling state sensor group 63, the work state sensor group 64, the traveling operation unit (not shown), and the like. The input processing unit 90 receives the information from these, and provides the information to various functional units in the control unit 5. The running state sensor group 63 includes an engine speed sensor, an overheat detection sensor, a brake pedal position detection sensor, a shift position detection sensor, a steering position detection sensor, and the like. The work state sensor group 64 includes a harvesting operation device (harvesting device H (see FIG. 1)), a threshing device 13 (see FIG. 1), a transport device 16 (see FIG. 1), and a grain discharging device 18 (see FIG. 1). And a sensor for detecting the state of the grain culm and the grain.
 自車位置算出部55は、衛星測位モジュール80から逐次送られてくる測位データに基づいて、予め設定されている車体10(図1参照)の特定箇所の地図座標(または圃場座標)として自車位置や収穫幅の両端部の位置を算出する。車体方位算出部56は、自車位置算出部55で逐次算出される自車位置から、微小時間での走行軌跡を求めて車体10(図1参照)の走行方向での向きを示す車体方位を決定する。また、車体方位算出部56は、慣性航法モジュール82からの出力データに含まれている方位データに基づいて車体方位を決定することも可能である。 Based on the positioning data sequentially transmitted from the satellite positioning module 80, the own vehicle position calculating unit 55 sets the own vehicle as the map coordinates (or the field coordinates) of a specific location of the vehicle body 10 (see FIG. 1) which is set in advance. Calculate the position and the position of both ends of the harvest width. The body direction calculation unit 56 obtains a traveling locus in a short time from the vehicle position sequentially calculated by the vehicle position calculation unit 55, and calculates the vehicle direction indicating the direction of the vehicle body 10 (see FIG. 1) in the traveling direction. decide. Further, the vehicle body azimuth calculating unit 56 can also determine the vehicle azimuth based on the azimuth data included in the output data from the inertial navigation module 82.
 圃場管理部83は、自車位置算出部55が算出した自車位置に基づいて、圃場の外形形状や作業対象領域CAの外形形状、圃場の面積や作業対象領域CAの面積等を算出する。例えば、圃場管理部83は、面積算出部84、形状算出部85等を備える。形状算出部85は、圃場の外形形状や作業対象領域CAの外形形状を算出する。面積算出部84は、圃場の面積や作業対象領域CAの面積を算出する。なお、圃場管理部83は、運搬車CVに穀粒を排出する排出ポイントを設定する排出ポイント設定部86を備えても良い。 The field management unit 83 calculates the outer shape of the field, the outer shape of the work target area CA, the area of the field, the area of the work target area CA, and the like based on the own vehicle position calculated by the own vehicle position calculator 55. For example, the field management unit 83 includes an area calculation unit 84, a shape calculation unit 85, and the like. The shape calculator 85 calculates the outer shape of the field and the outer shape of the work target area CA. The area calculation unit 84 calculates the area of the field and the area of the work target area CA. In addition, the field management unit 83 may include a discharge point setting unit 86 that sets a discharge point for discharging kernels to the transport vehicle CV.
 収量管理部70は、自動走行の走行経路の決定等を行うために用いる収量を管理する。そのため、収量管理部70は、圃場の単位面積当たりに作物を収穫する収量である収量率や、作業対象領域CAで収穫できる総収量等を推定する。また、収量管理部70は、作業対象領域CAの作物を収穫する際に最低限必要となる、貯留された穀粒の排出回数や、排出すべき際の穀粒の収量を算出する。具体的には、収量管理部70は、収量率算出部71、総収量算出部72(総収量推定部に相当)、排出回数算出部73、排出基準収量算出部74等を備えることができる。なお、収量管理部70は、これらの全てを備えることができ、あるいはこれらの一部を組み合わせて備えることもできる。 (4) The yield management unit 70 manages the yield used for determining a traveling route for automatic traveling and the like. Therefore, the yield management unit 70 estimates a yield rate, which is the yield of harvesting the crop per unit area of the field, the total yield that can be harvested in the work target area CA, and the like. Further, the yield management unit 70 calculates the minimum number of times of discharging the stored grains and the yield of the grains to be discharged, which are required at the minimum when harvesting the crop in the work target area CA. Specifically, the yield management unit 70 can include a yield rate calculation unit 71, a total yield calculation unit 72 (corresponding to a total yield estimation unit), a discharge count calculation unit 73, a discharge reference yield calculation unit 74, and the like. In addition, the yield management unit 70 can include all of them, or can also include some of them in combination.
 収量率算出部71は、周囲刈りにおいて、外周領域SAで収穫された穀粒の収量と、外周領域SAの面積とから、単位面積当たりの収量である収量率を算出する。具体的には、収量率は、外周領域SAで収穫された穀粒の収量を外周領域SAの面積で除算することにより求められる。外周領域SAで収穫された穀粒の収量は、手動走行による周囲刈りを開始してから終了するまでに穀粒タンク14に貯留された穀粒の増加量から求められる。なお、周囲刈り中に穀粒の排出を行った場合には、その前後における穀粒の増加量が積算される。また、外周領域SAで収穫された穀粒の収量は収量率算出部71が算出しても良いが、収量管理部70における他の機能部等の、その他の機能部が算出しても良い。外周領域SAの面積は、面積算出部84が、圃場の面積から作業対象領域CAの面積を減算することにより求められる。 The yield rate calculation unit 71 calculates the yield rate, which is the yield per unit area, from the yield of the kernel harvested in the outer peripheral area SA and the area of the outer peripheral area SA in the peripheral mowing. Specifically, the yield rate is obtained by dividing the yield of the kernel harvested in the outer peripheral area SA by the area of the outer peripheral area SA. The yield of the grain harvested in the outer peripheral area SA is obtained from the increase amount of the grain stored in the grain tank 14 from the start to the end of the peripheral cutting by manual traveling. When the kernel is discharged during the peripheral cutting, the increment of the kernel before and after that is added up. In addition, the yield of the kernel harvested in the outer peripheral area SA may be calculated by the yield rate calculation unit 71, or may be calculated by another function unit such as another function unit in the yield management unit 70. The area of the outer peripheral area SA is obtained by the area calculator 84 subtracting the area of the work target area CA from the area of the field.
 総収量算出部72は、作業対象領域CAの面積と収量率とから、作業対象領域CA全体で収穫されると予想される穀粒の総収量を推定する。具体的には、総収量は、作業対象領域CAの面積と収量率とを乗算することにより求められる。これにより、総収量を参考に、穀粒の排出を考慮しながら、作業対象領域CAにおける自動走行の走行経路を効率的に生成することが可能となる。 (4) The total yield calculator 72 estimates the total yield of kernels that are expected to be harvested in the entire work area CA from the area and the yield rate of the work area CA. Specifically, the total yield is obtained by multiplying the area of the work area CA by the yield rate. This makes it possible to efficiently generate a traveling route for automatic traveling in the work target area CA while referring to the total yield and considering the discharge of grains.
 排出回数算出部73は、穀粒を排出する際に穀粒タンク14に貯留された収量である排出収量と、作業対象領域CAの総収量とから、作業対象領域CAにおける自動走行時に最低限必要となる排出回数を算出する。具体的には、排出回数は、総収量を排出収量で除算して、整数値に繰り上げることにより求められる。排出収量は、穀粒タンク14の満杯収量や満杯収量に対して所定の割合又は所定量少ない収量、外部から要求される排出収量、運搬車の積載容量に対応した収量、あるいはあらかじめ排出時の収量として規定された収量とすることができる。また、周囲刈り中に穀粒の排出を行った場合、排出時の収量を排出収量としても良い。このように排出回数を算出することにより、後段で例示するように、排出回数を考慮して効率的な排出タイミングを設定しながら、作業対象領域CAでの自動走行において、効率的な走行経路を生成することが可能となる。 The discharge number calculation unit 73 determines the minimum required for automatic traveling in the work target area CA from the discharge yield, which is the yield stored in the grain tank 14 when discharging the kernel, and the total yield of the work target area CA. Is calculated. Specifically, the number of discharges is determined by dividing the total yield by the discharge yield and rounding up to an integer value. The discharge yield is a full yield of the grain tank 14 or a yield that is a predetermined ratio or a predetermined amount less than the full yield, a discharge yield required from the outside, a yield corresponding to the loading capacity of a transport vehicle, or a yield at the time of discharge in advance. Can be obtained. In addition, when the kernel is discharged during the peripheral cutting, the yield at the time of discharging may be used as the discharge yield. By calculating the number of discharges in this way, as will be described later, while setting an efficient discharge timing in consideration of the number of discharges, an efficient traveling route in the automatic traveling in the work target area CA is set. Can be generated.
 排出基準収量算出部74は、作業対象領域CAの総収量と排出回数算出部73で算出された排出回数とから、排出基準収量を算出する。排出基準収量は、自動走行中に穀粒を排出する目安とする、穀粒タンク14に貯留された穀粒の収量である。具体的には、排出基準収量は、総収量を排出回数で除算することにより求められる。このように排出基準収量を算出することにより、後段で例示するように、排出基準収量を目安として効率的な排出タイミングを設定しながら、作業対象領域CAにおける自動走行の走行経路を効率的に生成することが可能となる。 The emission-based yield calculation unit 74 calculates the emission-based yield from the total yield of the work target area CA and the number of emissions calculated by the number-of-emissions calculation unit 73. The discharge standard yield is the yield of the grains stored in the grain tank 14 as a measure for discharging the grains during the automatic traveling. Specifically, the emission standard yield is obtained by dividing the total yield by the number of emissions. By calculating the emission standard yield in this way, as will be exemplified later, while efficiently setting the emission timing using the emission standard yield as a guide, the traveling route of the automatic traveling in the work target area CA is efficiently generated. It is possible to do.
 走行経路生成部54は、圃場の外形形状や作業対象領域CAの外形形状等に基づいて、作業対象領域CAにおける自動走行の走行経路を生成する。自動走行で用いられる走行経路は、走行経路生成部54が経路算出アルゴリズムによって自ら生成することもできるが、通信端末2や遠隔地の管理コンピュータ等で生成されたものをダウンロードしたものを用いることも可能である。なお、走行経路生成部54によって算出された走行経路は、手動運転であっても、コンバインが当該走行経路に沿って走行するためのガイダンス目的で利用することができる。 The traveling route generation unit 54 generates a traveling route for automatic traveling in the work target area CA based on the outer shape of the field, the outer shape of the work target area CA, and the like. The traveling route used in the automatic traveling can be generated by the traveling route generation unit 54 by a route calculation algorithm by itself, but the traveling route generated by the communication terminal 2 or a remote management computer may be used. It is possible. Note that the traveling route calculated by the traveling route generating unit 54 can be used for guidance for the combine to travel along the traveling route even in manual operation.
 また、このコンバインは自動走行で収穫作業を行う自動運転と手動走行で収穫作業を行う手動運転との両方で走行可能である。自動運転を行う際には、自動走行モードが設定され、手動運転を行うためには手動走行モードが設定される。走行モードの切り替えは、走行モード管理部(図示せず)等によって管理される。 こ の This combine can be run in both automatic operation, in which harvesting is performed automatically, and manual operation, in which harvesting is performed manually. When performing automatic driving, the automatic driving mode is set, and for performing manual driving, the manual driving mode is set. The switching of the traveling mode is managed by a traveling mode management unit (not shown) or the like.
 なお、走行経路生成部54は、自動走行の走行経路を生成するに際し、作業対象領域CAの総収量、排出回数算出部73で算出される排出回数、及び排出基準収量のいずれか、またはこれらを適宜組み合わせて考慮することもできる。また、走行経路生成部54は、排出ポイント設定部86で設定された排出ポイントを考慮して、走行経路を生成することもできる。 Note that, when the traveling route generation unit 54 generates the traveling route of the automatic traveling, one of the total yield of the work target area CA, the number of discharges calculated by the discharge number calculation unit 73, and the discharge reference yield is used. They can be considered in appropriate combinations. Further, the traveling route generation unit 54 can also generate the traveling route in consideration of the discharge points set by the discharge point setting unit 86.
 作業対象領域CAの総収量を考慮して作業対象領域CAを自動走行する走行経路を生成することにより、排出収量を参照しながら、排出ポイントに移動する排出走行を含めた走行経路を効率的に生成することができる。また、自動走行中に収穫した穀粒の収量から残りの収量を算出し、自動走行が進むにつれて、作業対象領域CAの残りの収量から随時効率的な走行経路に変更することも可能である。 By generating a travel route that automatically travels in the work target area CA in consideration of the total yield of the work target area CA, the travel route including the discharge travel to the discharge point can be efficiently performed while referring to the emission yield. Can be generated. Further, it is also possible to calculate the remaining yield from the yield of the grains harvested during the automatic traveling, and change the traveling route from time to time to the more efficient traveling route as the automatic traveling progresses.
 また、排出回数を考慮して作業対象領域CAを自動走行する走行経路を生成することにより、排出回数に応じて、穀粒を排出してから次に穀粒を排出するまでに行う自動走行による収穫走行の距離を均等にする等して、容易に最適な走行経路を効率的に生成することができる。 In addition, by generating a traveling route that automatically travels in the work target area CA in consideration of the number of discharges, according to the number of discharges, the automatic traveling performed from discharging the kernel to discharging the next kernel is performed. The optimum travel route can be easily and efficiently generated by equalizing the distance of the harvest travel.
 また、走行経路は、排出収量に到達する等の穀粒を排出する必要が生じる状態となるタイミングを推定し、排出ポイントへ移動する経路を考慮して、排出収量に到達するタイミングが作業対象領域CAを刈り抜けるタイミングとなるように生成することが望ましい。 In addition, the traveling route estimates the timing at which it is necessary to discharge the grain such as reaching the discharge yield, and considering the route to the discharge point, the timing at which the discharge yield is reached is determined in the work target area. It is desirable to generate the CA so as to be able to cut through the CA.
 例えば、図5に示すように、自動走行中のコンバインは、ある位置で作業対象領域CAを縦断するように走行した後旋回して別の位置で作業対象領域CAを縦断し、このような往復走行を繰り返す。コンバイン(図では走行車体10として図示する)は、穀粒タンク14に貯留された穀粒の収量が排出収量に到達すると、貯留された穀粒を排出するために運搬車CVの近傍に設定された排出ポイントPOに移動する。排出収量に到達した際、コンバインが作業対象領域CAの内部の位置(例えば位置PF1)を走行していたとすると、コンバインは、すでに収穫を行った走行経路を後退し、外周領域SAで旋回して排出ポイントPOに向かう排出走行経路LO1を走行する。しかし、このように走行経路を後退し、排出ポイントPOに向かうと排出に伴う排出走行経路LO1が長くなり、自動走行の効率が悪くなる。 For example, as shown in FIG. 5, the combine during automatic traveling travels so as to traverse the work target area CA at a certain position, then turns and traverses the work target area CA at another position. Repeat running. When the yield of the grains stored in the grain tank 14 reaches the discharge yield, the combine (illustrated as the traveling vehicle body 10 in the figure) is set near the transport vehicle CV to discharge the stored grains. To the discharge point PO. Assuming that the combine is traveling at a position (for example, position PF1) inside the work target area CA when the discharge yield is reached, the combine retreats along the traveling path that has already been harvested and turns in the outer peripheral area SA. The vehicle travels on the discharge travel route LO1 toward the discharge point PO. However, when the vehicle travels backward on the traveling route and reaches the discharge point PO, the discharge traveling route LO1 associated with the discharge becomes long, and the efficiency of the automatic traveling deteriorates.
 これに対して、排出基準収量を考慮して作業対象領域CAを自動走行する走行経路を生成することにより、穀粒を排出する際の収量として排出基準収量から満杯収量を超えない範囲で幅を持たせた収量を考慮すればよい。そのため、排出ポイントに移動するタイミングが作業対象領域CAを刈り抜けるタイミングとなるように走行経路を容易に生成することができる。例えば、図5に示すように、作業対象領域CAの端部の位置PF2で排出基準収量以上で満杯収量以下の幅を持たせた収量に到達したとすると、そのまま前進して排出走行経路LO2を通って排出ポイントPOに向かうことができる。その結果、効率的な走行経路を容易に生成することができる。 On the other hand, by generating a traveling route that automatically travels in the work target area CA in consideration of the discharge standard yield, the width when the kernel is discharged does not exceed the full yield from the discharge standard yield. The yield given may be considered. Therefore, the traveling route can be easily generated such that the timing of moving to the discharge point is the timing of cutting through the work target area CA. For example, as shown in FIG. 5, assuming that at a position PF2 at the end of the work area CA, a yield having a width equal to or larger than the discharge reference yield and equal to or smaller than the full yield is reached, the vehicle advances forward and moves along the discharge travel route LO2. Through the discharge point PO. As a result, an efficient traveling route can be easily generated.
 さらに、図6に示すように、効率的な走行経路を容易に生成するために、走行経路生成部54は、自動走行において、走行経路に沿った方向の作業対象領域CAの長さを調整する予備調整走行を行う予備調整経路LRを生成しても良い。このように予備調整走行を行うことにより、自動走行において、作業対象領域CAの内部で排出収量にならないように、作業対象領域CAを刈り抜けるタイミングで排出収量に到達するように走行経路を生成することが容易となる。例えば、往復走行中に作業対象領域CAの端部で排出収量に到達するように走行経路を生成することができる。これにより、常に後退を伴わない排出走行経路LO2を通って排出ポイントPOに向かい、適量の収量の穀粒を排出することができる。その結果、効率的に穀粒の排出を行うと共に効率的な排出走行を行うことができる、効率的な走行経路を容易に生成することが可能となる。この際の排出収量は、排出基準収量または、排出基準収量以上で満杯収量に対して所定の割合又は所定の収量少ない収量以下の収量とすることもできる。また、図では、作業対象領域CAの一辺側端部に予備調整経路LRを生成する例を示したが、向かい合う二辺側の端部に予備調整経路LRを生成しても良い。 Further, as shown in FIG. 6, in order to easily generate an efficient traveling route, the traveling route generating unit 54 adjusts the length of the work target area CA in the direction along the traveling route in the automatic traveling. The preliminary adjustment route LR for performing the preliminary adjustment traveling may be generated. By performing the preliminary adjustment traveling in this way, in the automatic traveling, a traveling route is generated such that the emission yield is reached at the timing of cutting through the work target area CA so that the emission yield does not become inside the work target area CA. It becomes easier. For example, a traveling route can be generated so as to reach the discharge yield at the end of the work target area CA during the reciprocating traveling. Thereby, it is possible to always discharge the grain with a suitable yield to the discharge point PO through the discharge travel path LO2 without retreat. As a result, it is possible to easily generate an efficient travel route that can efficiently discharge grains and perform efficient discharge travel. The discharge yield at this time may be a discharge reference yield or a yield equal to or higher than the discharge reference yield and equal to or lower than a predetermined ratio or a predetermined yield lower than the full yield. Also, in the drawing, an example is shown in which the preliminary adjustment path LR is generated at one side end of the work target area CA, but the preliminary adjustment path LR may be generated at two opposite ends.
 なお、作業対象領域CAの面積、収量率、作業対象領域CAの総収量、排出回数算出部73で算出された排出回数、及び排出基準収量の少なくとも一部は、あらかじめ調べておいたものを保持して用いても良いし、入力処理部90を介して外部から取得したものを用いても良い。外部から取得する場合、入力処理部90または走行経路生成部54、その他の機能部は、作業対象領域CAの面積を取得する面積取得部、収量率を取得する収量率取得部、総収量を取得する総収量取得部、排出回数を取得する排出回数取得部及び排出基準収量を取得する排出基準収量取得部等のデータ取得部として機能する。 It should be noted that at least a part of the area of the work area CA, the yield rate, the total yield of the work area CA, the number of discharges calculated by the discharge number calculation unit 73, and at least a part of the discharge standard yield, hold those previously checked. Or may be obtained from outside via the input processing unit 90. When acquiring from outside, the input processing unit 90 or the traveling route generation unit 54 and other functional units acquire an area acquiring unit for acquiring an area of the work target area CA, a yield rate acquiring unit for acquiring a yield rate, and acquire a total yield. It functions as a data acquisition unit such as a total yield acquisition unit that acquires the number of emissions, a discharge count acquisition unit that acquires the number of discharges, and a discharge standard yield acquisition unit that acquires the emission reference yield.
 また、走行経路生成部54は、圃場における畦からの進入口に向かい合う一辺上で作業対象領域CAの収穫作業を終えるように予備調整経路を生成することが好ましい。 走 行 In addition, it is preferable that the traveling route generating unit 54 generate the preliminary adjustment route so that the harvesting operation of the work target area CA is completed on one side facing the entrance from the ridge in the field.
 以下、図4~図7を用いて自動走行に係る管理・制御を行う方法について説明する。なお、以下で説明する方法は、上述した図4に示す装置構成によって実現しても良いが、その他の任意の構成で実現しても良い。また、以下で説明する方法をプログラムを用いて実現することができる。例えば、プログラムは記憶装置92に格納され、CPUやECU等からなる制御部91によって実行される。また、記憶装置92及び制御部91は、制御ユニット5に設けられても良いが、別の個所に設けられても良い。 Hereinafter, a method of managing and controlling the automatic driving will be described with reference to FIGS. The method described below may be realized by the above-described apparatus configuration shown in FIG. 4, but may be realized by another arbitrary configuration. Further, the method described below can be realized using a program. For example, the program is stored in the storage device 92, and is executed by the control unit 91 including a CPU, an ECU, and the like. Further, the storage device 92 and the control unit 91 may be provided in the control unit 5 or may be provided in another place.
 継続的に衛星からの衛星信号が受信され、自車位置に対応する測位データが算出される(図7のステップ#1)。 (4) The satellite signal from the satellite is continuously received, and the positioning data corresponding to the own vehicle position is calculated (Step # 1 in FIG. 7).
 また、継続的に穀粒タンク14に貯留される穀粒の収量が測定される(図7のステップ#2)。 (4) The yield of the grains continuously stored in the grain tank 14 is measured (Step # 2 in FIG. 7).
 このように測位データの算出と収量の測定を継続的に行いながら、コンバインは圃場の外周領域SAの周囲刈りを行う(図7のステップ#3)。 (4) While continuously calculating the positioning data and measuring the yield, the combine harvests the periphery of the outer peripheral area SA of the field (step # 3 in FIG. 7).
 周囲刈りを行った後、継続的に算出された測位データから、外周領域SA(既作業地)の内側の未刈地(未作業地)である作業対象領域CA(未作業地)の外形形状と外周領域SAの外形形状(圃場の外形形状)が算出される。加えて、作業対象領域CAの面積と外周領域SAの面積とが算出される(図7のステップ#4)。 The outer shape of the work target area CA (unworked land), which is the uncut land (unworked land) inside the outer peripheral area SA (worked land), based on the positioning data continuously calculated after the surrounding mowing is performed. And the outer shape of the outer peripheral area SA (the outer shape of the field) are calculated. In addition, the area of the work target area CA and the area of the outer peripheral area SA are calculated (Step # 4 in FIG. 7).
 また、周囲刈りの際に収穫した穀粒の収量と外周領域SAの面積とから、外周領域SAを周囲刈りした際の単位面積当たりの収量である収量率が算出される。具体的には、収量率は、周囲刈りの際に収穫した穀粒の収量を外周領域SAの面積で除算することによって求められる。なお、求められた収量率は、圃場全体における収穫に適応できると見積もって、自動走行による作業対象領域CAの走行経路の生成等に用いることができる(図7のステップ#5)。 {Circle around (4)} The yield rate, which is the yield per unit area when the outer peripheral area SA is trimmed around, is calculated from the yield of the kernel harvested during the peripheral cutting and the area of the outer peripheral area SA. Specifically, the yield rate is obtained by dividing the yield of the grain harvested at the time of peripheral cutting by the area of the outer peripheral area SA. The obtained yield rate is estimated to be applicable to the harvest in the entire field, and can be used for generating a traveling route of the work target area CA by automatic traveling (step # 5 in FIG. 7).
 そして、作業対象領域CAの面積と収量率とから、作業対象領域CAで収穫されることが見込まれる穀粒の総収量を算出する。具体的には、総収量は、作業対象領域CAの面積と収量率とを乗算することによって求められる。総収量を参考にすることにより、穀粒の排出を考慮しながら、作業対象領域CAにおける自動走行の走行経路を効率的に生成することが可能となる(図7のステップ#6)。 Then, the total yield of kernels that are expected to be harvested in the work target area CA is calculated from the area of the work target area CA and the yield rate. Specifically, the total yield is obtained by multiplying the area of the work target area CA by the yield rate. By referring to the total yield, it is possible to efficiently generate a traveling route of the automatic traveling in the work target area CA while considering the discharge of grains (step # 6 in FIG. 7).
 次に、排出収量と作業対象領域CAの総収量とから、作業対象領域CAを自動走行する際に最低限必要となる穀粒の排出回数が算出される。具体的には、最低限必要となる穀粒の排出回数は、総収量を排出収量で除した上で小数点以下を繰り上げて求められる。なお、ここでの排出収量は、穀粒タンク14の満杯収量や、満杯収量に対して所定の割合又は所定量少ない収量、外部から要求される排出収量、運搬車の積載容量に対応した容量、あるいはあらかじめ排出時の収量として規定された収量とすることができる。また、周囲刈り中に穀粒の排出を行った場合、排出時の収量を排出収量としても良い(図7のステップ#7)。 Next, the minimum number of times of grain discharge required when automatically traveling in the work target area CA is calculated from the discharge yield and the total yield of the work target area CA. Specifically, the minimum required number of times of grain release is obtained by dividing the total yield by the yield and moving up the decimal places. In addition, the discharge yield here is the full yield of the grain tank 14, the yield which is smaller than the full yield by a predetermined ratio or a predetermined amount, the discharge yield required from the outside, the capacity corresponding to the loading capacity of the transport vehicle, Alternatively, the yield can be a yield defined in advance as the yield at the time of discharge. Further, when the kernel is discharged during the peripheral cutting, the yield at the time of discharging may be used as the discharge yield (step # 7 in FIG. 7).
 上述したように、排出収量になるまで自動走行を行った場合、作業対象領域CAの内部で排出収量になると、排出ポイントPOに移動するために後退する必要がある等、効率的な自動走行ができなくなる場合がある。これに対して、最低限必要となる穀粒の排出回数を求めておくことにより、自動走行の走行経路を生成する際に、排出回数を考慮しながら、排出収量に至らない状態であっても、排出ポイントPOに移動するのに都合の良い位置で排出ポイントPOへの移動を開始する走行経路を生成することができる場合がある。その結果、作業対象領域CAにおける自動走行において、効率的な走行経路を生成することが可能となる。 As described above, when the automatic traveling is performed until the emission yield is reached, when the emission yield is reached inside the work target area CA, it is necessary to retreat in order to move to the ejection point PO. May not be possible. On the other hand, by calculating the minimum required number of discharges of kernels, when generating a traveling route for automatic driving, taking into account the number of discharges, even in a state where the discharge yield does not reach In some cases, it is possible to generate a traveling route that starts moving to the discharge point PO at a position convenient for moving to the discharge point PO. As a result, it is possible to generate an efficient traveling route in the automatic traveling in the work target area CA.
 次に、作業対象領域CAの総収量と最低限必要となる穀粒の排出回数とから、排出基準収量が算出される。具体的には、排出基準収量は、作業対象領域CAの総収量を最低限必要となる穀粒の排出回数で除算することにより求められる。このようにして求めた排出基準収量は、最低限必要となる穀粒の排出回数で穀粒を排出する際に、それぞれの自動走行において排出される収量を均等に割り振った場合の収量に相当する。そして、排出基準収量は排出収量以下の収量となる。そのため、自動走行の走行経路を生成する際に考慮される排出時の収量として、排出基準収量以上排出収量以下の収量を用いることができる。このように、走行経路を生成する際に考慮される排出時の収量に幅を持たせることができるため、排出ポイントPOに移動するのに都合の良い位置で排出ポイントPOへの移動を開始するような走行経路を、より容易に生成することが可能となる(図7のステップ#8)。 Next, a discharge standard yield is calculated from the total yield of the work target area CA and the minimum required number of discharges of the grains. Specifically, the discharge standard yield is obtained by dividing the total yield of the work target area CA by the minimum required number of discharges of kernels. The emission standard yield obtained in this way is equivalent to the yield when the yield discharged in each automatic driving is equally allocated when the kernel is discharged with the minimum required number of discharges of the kernel. . The emission standard yield is equal to or lower than the emission yield. Therefore, as the yield at the time of emission considered when generating the traveling route of the automatic traveling, a yield equal to or higher than the emission reference yield and equal to or lower than the emission yield can be used. As described above, since the yield at the time of discharge considered when generating the traveling route can be given a range, the movement to the discharge point PO is started at a position convenient for moving to the discharge point PO. Such a traveling route can be generated more easily (step # 8 in FIG. 7).
 次に、自動走行による作業対象領域CAの走行経路を生成する際に、まず、予備調整経路が生成される。予備調整経路は、作業対象領域CAを自動走行により往復走行する長さが短くなるように、作業対象領域CAの外形形状の長さを短くするために収穫走行が行われる経路である。そのため、予備調整経路は、往復走行する方向と交わる方向に走行する経路である。予備調整経路を収穫走行することにより、作業対象領域CAが、その後の自動走行による往復走行を行うのに最適な形状となる。最適な形状は、例えば、自動走行において、作業対象領域CAにおける走行経路の途中(作業対象領域CAの内部)で排出収量にならないような形状である。上述のように、走行経路の途中で排出収量となると、効率的に排出ポイントPOへの移動ができなくなる。そのため、作業対象領域CAの端部で排出ポイントPOへの移動を開始できるような収量となるように、走行経路を生成することが好ましい。予備調整経路は、作業対象領域CAの形状を、このような走行経路を生成し易い形状にするための経路である。このような予備調整経路は、上述の作業対象領域CAの総収量に基づいて生成される。さらに、排出収量を考慮することが好ましい。排出収量は、上述のように、穀粒タンク14の満杯収量や満杯収量に対して所定の割合又は所定量少ない収量、外部から要求される排出収量、運搬車の積載容量に対応した容量、あるいはあらかじめ排出時の収量として規定された収量とすることができる(図7のステップ#9)。 Next, when generating a traveling route of the work target area CA by automatic traveling, first, a preliminary adjustment route is generated. The preliminary adjustment path is a path in which harvesting travel is performed in order to reduce the length of the outer shape of the work target area CA so that the length of reciprocating travel in the work target area CA by automatic travel is reduced. Therefore, the preliminary adjustment route is a route that travels in a direction that intersects the direction in which the vehicle travels back and forth. By performing the harvesting traveling on the preliminary adjustment path, the work target area CA has an optimal shape for performing reciprocating traveling by automatic traveling thereafter. The optimal shape is, for example, a shape that does not result in a discharge yield in the middle of the traveling route in the work target area CA (inside the work target area CA) in automatic traveling. As described above, when the emission yield is reached in the middle of the traveling route, it is not possible to efficiently move to the emission point PO. Therefore, it is preferable to generate the traveling route so that the yield can be started at the end of the work target area CA to the discharge point PO. The preliminary adjustment path is a path for making the shape of the work target area CA into a shape that facilitates generation of such a traveling path. Such a preliminary adjustment path is generated based on the total yield of the work target area CA described above. Further, it is preferable to consider the emission yield. The discharge yield is, as described above, a full yield of the grain tank 14 or a yield that is a predetermined ratio or a predetermined amount less than the full yield, a discharge yield required from the outside, a capacity corresponding to the loading capacity of the transport vehicle, or The yield specified in advance as the yield at the time of discharge can be set (step # 9 in FIG. 7).
 なお、総収量は、図7のステップ#6で求めた総収量を用いても良いが、あらかじめ求めた総収量を用いても良く、予備調整経路を生成する際に、外部から取得しても良い。 The total yield may be the total yield determined in step # 6 of FIG. 7, but may be the previously determined total yield, and may be obtained externally when generating the preliminary adjustment route. good.
 また、予備調整経路を生成する際に、穀粒タンク14に貯留された穀粒を排出する排出ポイントをあらかじめ設定し、排出ポイントを考慮して予備調整経路を生成しても良い。また、作業対象領域CAを構成する辺の内、圃場における畦からの進入口に向かい合う一辺上で作業対象領域CAの収穫作業を終えるように予備調整経路を生成しても良い。 In addition, when generating the preliminary adjustment path, a discharge point for discharging the kernel stored in the kernel tank 14 may be set in advance, and the preliminary adjustment path may be generated in consideration of the discharge point. In addition, a preliminary adjustment path may be generated so that the harvesting operation of the work target area CA is completed on one side of the sides constituting the work target area CA, which faces the entrance from the ridge in the field.
 次に、収穫を行っていない作業対象領域CAに対する自動走行のための走行経路が生成される(図7のステップ#10)。 Next, a traveling route for the automatic traveling of the unharvested work target area CA is generated (Step # 10 in FIG. 7).
 最後に、収穫を行っていない作業対象領域CAに対して自動走行による収穫が行われる(図7のステップ#11)。すべての領域の収穫走行が終了した時点で処理を終了する。 (4) Finally, harvesting by automatic running is performed on the work target area CA where harvesting has not been performed (step # 11 in FIG. 7). The process is ended when the harvesting and running of all the areas are completed.
 なお、自動走行における走行経路の生成は、収量率、総収量、排出回数、排出基準収量の内の少なくとも1つを考慮して行うこともできる。また、走行経路の生成の際に、穀粒タンク14に貯留された穀粒を排出する排出ポイントをあらかじめ設定し、排出ポイントを考慮して走行経路を生成しても良い。 The generation of the traveling route in the automatic traveling can be performed in consideration of at least one of the yield rate, the total yield, the number of discharges, and the reference discharge yield. Further, at the time of generating the travel route, a discharge point for discharging the grains stored in the grain tank 14 may be set in advance, and the travel route may be generated in consideration of the discharge point.
 上記実施形態において、下記各別実施形態を組み合わせて実施することもできる。 に お い て In the above embodiment, the following different embodiments can be combined and implemented.
〔別実施形態1〕
 収量率、総収量、排出回数及び排出基準収量は、圃場の周囲刈りにおける情報に基づいて算出され、周囲刈りでは、圃場のマップが作成される。圃場のマップを作成する際には、圃場マップ作成開始スイッチ等により、圃場のマップの作成を開始するための操作が行われる。また、圃場マップ作成開始スイッチの操作は、アシストスイッチが入力されて(アシストモードがON状態)、自動走行に関連する作業状態である場合にのみ可能となるように規制しても良い。さらに、周囲刈りは、収穫状態で、かつ、圃場マップ作成開始スイッチが入力されている状態でのみ開始されるようにしても良い。以上のような規制を設けることにより、不適切な位置において圃場マップが作成することを回避でき、圃場の周囲刈りの際に適切な圃場マップを作成することができる。
[Another embodiment 1]
The yield rate, the total yield, the number of discharges, and the discharge standard yield are calculated based on the information on the cutting around the field, and a map of the field is created in the cutting around the field. When creating a field map, an operation for starting creation of a field map is performed by a field map creation start switch or the like. Further, the operation of the field map creation start switch may be restricted so that it can be performed only when the assist switch is input (assist mode is ON) and the operation state is related to the automatic traveling. Further, the surrounding mowing may be started only in a harvesting state and in a state where the field map creation start switch is input. By providing the above-described regulation, it is possible to avoid creating a field map at an inappropriate position, and to create an appropriate field map when cutting around the field.
 なお、収穫状態は、収穫装置H(図1参照)が所定の高さにある場合であり、さらに、脱穀装置13(図1参照)が稼働している状態であっても良い。また、周囲刈り中であると判断される状態において、圃場マップ作成開始スイッチが入力されていない場合、警告を行っても良い。これにより、圃場マップ作成開始スイッチの入力忘れを抑制することができる。周囲刈り中であるか否かの判断は、マップが作成されていない場所において、アシストスイッチが入力されているか、収穫装置H(図1参照)が所定の位置であるか等により判断できる。 Note that the harvesting state is a case where the harvesting device H (see FIG. 1) is at a predetermined height, and may be a state where the threshing device 13 (see FIG. 1) is operating. In addition, in a state where it is determined that the surroundings are being cut, a warning may be issued when the field map creation start switch is not input. Thereby, forgetting to input the field map creation start switch can be suppressed. The determination as to whether or not the surrounding mowing is being made can be made based on whether an assist switch has been input or the harvesting device H (see FIG. 1) is at a predetermined position in a place where no map has been created.
 また、周囲刈り中(圃場マップ作成中)に衛星測位モジュール80(図1参照)の測位状態が低下すると、警告を行い、さらに、圃場マップの作成または収穫作業を中断しても良い。これにより、不正確な圃場マップが作成されることを抑制することができる。 If the positioning state of the satellite positioning module 80 (see FIG. 1) is reduced while the surroundings are being trimmed (during the creation of the field map), a warning may be issued, and the creation of the field map or the harvesting operation may be interrupted. Thus, it is possible to suppress creation of an incorrect field map.
 なお、上記の警告は、VT(virtual terminal)等の通信端末2(図1参照)や運転部12(図1参照)等に行うことができ、警告音の鳴動や警告ランプの点灯等である。 The above warning can be issued to the communication terminal 2 (see FIG. 1) such as a VT (virtual terminal), the driving unit 12 (see FIG. 1), and the like, such as sounding a warning sound and lighting a warning lamp. .
〔別実施形態2〕
 算出された収量率、総収量、排出回数及び排出基準収量をはじめ、各作業が終了したこと、穀粒タンク14(図1参照)が満杯あるいは所定の収量となる予測時間、走行が停止したこと、異常停止したこと、収穫装置H(図1参照)等に詰りが検知されたこと等の情報を、ベテランの作業者や管理者等の他者のスマートフォン等の端末に通知するようにしても良い。これにより、他者から必要な指示やアドバイスを受けたり、運搬車の移動等の必要な作業を行うことを促したりすることが可能となる。
[Another embodiment 2]
Completion of each operation, including the calculated yield rate, total yield, number of discharges, and discharge standard yield, predicted time when the grain tank 14 (see FIG. 1) is full or a predetermined yield, and stoppage of traveling. Also, information such as abnormal stop, detection of clogging in the harvesting device H (see FIG. 1) and the like may be notified to a terminal such as a veteran worker or an administrator such as a smartphone of another person. good. As a result, it is possible to receive necessary instructions and advice from others, and to urge the user to perform necessary work such as moving a transport vehicle.
〔別実施形態3〕
 圃場及び作業対象領域CAについての外形形状や面積の算出を含めた圃場マップの作成と、作業対象領域CAにおける自動走行とを、2以上の異なるコンバイン等の作業機で行うこともできる。これにより、一方の作業機で作業対象領域CAにおける自動走行を行いながら、他方の作業機で周囲刈りを行うことにより、多くの圃場に対して効率的に収穫作業を行うことができる。また、周囲刈りには経験が必要であるため、経験の多い作業者が周囲刈りを行い、自動走行の監視は経験の浅い作業者が行うことにより、より効率的な収穫作業を行うことができる。
[Another Embodiment 3]
The creation of the field map including the calculation of the outer shape and the area of the field and the work area CA and the automatic traveling in the work area CA can be performed by two or more different work machines such as combine machines. Thereby, while performing the automatic traveling in the work target area CA with one working machine and performing the surrounding mowing with the other working machine, it is possible to efficiently perform harvesting work in many fields. In addition, since the surrounding mowing requires experience, a more experienced worker performs mowing, and an inexperienced worker monitors the automatic traveling, so that a more efficient harvesting operation can be performed. .
 また、周囲刈りを行う作業機は、自動走行を行うことができる作業機ではなく、測定データを記録可能な衛星測位モジュール80(図1参照)と通信装置とを備える作業機が行うことができる。この場合、測位データを管理サーバ等に送信し、管理サーバで圃場マップ等の情報を作成し、自動走行を行う作業機に転送しても良い。これにより、より簡易な構成で自動走行による圃場の収穫を行うことができる。また、周囲刈りを行う作業機は、自動走行を行えない作業機に、衛星測位モジュール80(図1参照)と通信装置とを後付で設けたものであっても良い。 In addition, the working machine that cuts the surroundings is not a working machine that can perform automatic traveling, but can be a working machine that includes a satellite positioning module 80 (see FIG. 1) capable of recording measurement data and a communication device. . In this case, the positioning data may be transmitted to a management server or the like, information such as a field map may be created by the management server, and the information may be transferred to a work machine that performs automatic traveling. Thereby, it is possible to harvest the field by automatic traveling with a simpler configuration. In addition, the working machine that cuts the surroundings may be a working machine that cannot perform automatic traveling, which is provided with a satellite positioning module 80 (see FIG. 1) and a communication device as a retrofit.
 なお、測位データの記録を行う記録装置は、衛星測位モジュール80(図1参照)の外部に備えられても良い。管理サーバで測位データを記録することができる場合、衛星測位モジュール80(図1参照)は測位データを記録する必要はない。 The recording device that records the positioning data may be provided outside the satellite positioning module 80 (see FIG. 1). If the management server can record the positioning data, the satellite positioning module 80 (see FIG. 1) does not need to record the positioning data.
〔別実施形態4〕
 図6を用いた上記説明では、予備調整経路LRは走行経路に交わる方向の経路であり、予備調整走行は予備調整経路LRに沿ってU旋回を繰り返し行う走行であった。しかしこの構成に限らず、予備調整経路LRは作業対象領域CAの走行経路に沿った方向の長さを調整できる経路であれば良く、予備調整走行も任意の旋回方法で行うことができる。
[Another embodiment 4]
In the above description using FIG. 6, the preliminary adjustment route LR is a route in a direction intersecting the traveling route, and the preliminary adjustment traveling is a traveling in which the U-turn is repeatedly performed along the preliminary adjustment route LR. However, the present invention is not limited to this configuration, and the preliminary adjustment path LR may be any path that can adjust the length of the work target area CA in the direction along the traveling path, and the preliminary adjustment traveling can be performed by an arbitrary turning method.
 例えば、図8に示すように、予備調整経路LRは、作業対象領域CAの外周に沿った経路とすることもできる。具体的には、予備調整経路LRは、作業対象領域CAの最外周から内周側に向かって、作業対象領域CAの各外周辺に平行に周回する経路である。例えば、予備調整経路LRは、作業対象領域CAの角部近傍を始点として、作業対象領域CAの外周辺に沿って作業対象領域CAを1周し、必要に応じてその1周した経路の内側に沿って1または複数周する経路である。なお、このような予備調整経路LRを予備調整走行する場合には、ある外周辺に平行な経路から、次の外周辺に平行な経路に旋回する際には、α旋回を行うことが容易であり好ましい。 For example, as shown in FIG. 8, the preliminary adjustment route LR may be a route along the outer periphery of the work target area CA. Specifically, the preliminary adjustment path LR is a path that goes from the outermost periphery of the work target area CA toward the inner peripheral side in parallel with each outer periphery of the work target area CA. For example, the preliminary adjustment route LR makes a round around the work target area CA along the outer periphery of the work target area CA with the vicinity of the corner of the work target area CA as a starting point, and if necessary, the inside of the path that has made one round. Along one or more routes. Note that, when performing such preliminary adjustment traveling on the preliminary adjustment route LR, it is easy to perform an α-turn when turning from a route parallel to one outer periphery to a route parallel to the next outer periphery. Yes and preferred.
 このような予備調整経路LRを走行する予備調整走行を行う場合にも、作業対象領域CAの走行経路に沿った方向の長さを調整できる。そのため、自動走行において、作業対象領域CAの内部(途中)で排出収量にならないように、作業対象領域CAを刈り抜けるタイミングで排出収量に到達するように走行経路を生成することが容易となる。これにより、常に後退を伴わずに排出ポイントPOに向かい、適量の収量の穀粒を排出することができる。その結果、効率的に穀粒の排出を行うと共に効率的な排出走行を行うことができる、効率的な走行経路を容易に生成することが可能となる。 予 備 Also in the case of performing the preliminary adjustment traveling that travels on such a preliminary adjustment path LR, the length of the work target area CA in the direction along the traveling path can be adjusted. Therefore, in the automatic traveling, it is easy to generate a traveling route so as to reach the discharge yield at the timing of cutting through the work target area CA so that the discharge yield does not become (in the middle of) the work target area CA. As a result, it is possible to always discharge the PO to the discharge point PO without retreat and discharge an appropriate amount of grain. As a result, it is possible to easily generate an efficient travel route that can efficiently discharge grains and perform efficient discharge travel.
 なお、予備調整経路LRは、上述のような作業対象領域CAの外周側から内周側に向かって周回する経路に限らず、内周側から外周側に向かって周回する経路であっても良い。また、予備調整経路LRは、作業対象領域CAの外周から内側に向かう所定の領域を、任意の順に周回する経路であっても良い。 Note that the preliminary adjustment path LR is not limited to a path that circulates from the outer peripheral side to the inner peripheral side of the work target area CA as described above, and may be a path that circulates from the inner peripheral side to the outer peripheral side. . Further, the preliminary adjustment path LR may be a path that circulates a predetermined area inward from the outer periphery of the work target area CA in an arbitrary order.
 ここで、図6および図8で示した予備調整経路LRの生成方法例について、図8を用いて説明する。
 予備調整経路LRを予備調整走行することにより、作業対象領域CAの未作業の領域である残作業領域RAの走行経路に平行な方向の長さは長さLとなる。長さLは、自動走行において、作業対象領域CA(残作業領域RA)の内部で排出収量にならないように、残作業領域RAを刈り抜けるタイミングで排出収量に到達するように走行経路を生成することが可能となる長さである。
Here, an example of a method of generating the preliminary adjustment route LR shown in FIGS. 6 and 8 will be described with reference to FIG.
By performing the preliminary adjustment travel on the preliminary adjustment route LR, the length in the direction parallel to the travel route of the remaining work area RA, which is the unworked area of the work target area CA, becomes the length L. The length L generates a travel route such that the discharge yield is reached at the timing of cutting through the remaining work area RA so that the discharge yield does not become inside the work target area CA (remaining work area RA) in the automatic traveling. It is a length that makes it possible.
 予備調整経路LRを生成する際には、まず、穀粒を排出した後(穀粒タンク14(図1参照)が空の状態)に、排出基準収量になるまでに収穫走行が可能な走行距離をLSとして規定する。ここで、走行距離LSは、例えば、周囲刈り等の際に、測位データから求めることができる走行距離と収量とから、単位収量を収穫するために必要な走行距離を求め、これに排出基準収量を乗算することにより算出することができる。そして、残作業領域RAの走行経路に平行な方向の長さLが、L×n(nは正の整数)=LSの関係を満たすように、予備調整経路LRを生成する。 When generating the preliminary adjustment route LR, first, after the kernel is discharged (the kernel tank 14 (see FIG. 1) is empty), the traveling distance that can be harvested until the discharge standard yield is reached. Is defined as LS. Here, the travel distance LS is obtained, for example, from the travel distance and the yield that can be obtained from the positioning data in the case of cutting the periphery, for example, to obtain the travel distance required to harvest a unit yield. Can be calculated by multiplying Then, the preliminary adjustment route LR is generated such that the length L of the remaining work area RA in the direction parallel to the traveling route satisfies the relationship of L × n (n is a positive integer) = LS.
 なお、nが奇数の場合には、収穫走行における走行経路S1の走行距離LSがLの奇数倍となり、走行経路S1は作業対象領域CA(残作業領域RA)へコンバイン(走行車体10)が侵入する辺に対する残作業領域RAの逆側の辺から刈り抜ける経路となる。仮に、排出ポイントPOが、進入する辺の近傍に設定されている場合、nが奇数であると、排出走行経路LO2が長くなる。この場合は、走行距離LSがLの偶数倍となるように予備調整経路LRを生成すればよく、例えば、L×2n(nは正の整数)=LSの関係を満たすように予備調整経路LRを生成する。これにより、走行経路S2のように、常に作業対象領域CA(残作業領域RA)へ侵入する辺から刈り抜ける経路とすることができる。したがって、排出ポイントPOの位置に応じて、走行距離LSを、Lの奇数倍とするか偶数倍とするかを使い分けて、予備調整経路LRを生成することが好ましい。 When n is an odd number, the traveling distance LS of the traveling route S1 in the harvesting traveling is an odd multiple of L, and the combine (the traveling vehicle body 10) enters the traveling target region CA (the remaining work region RA) in the traveling route S1. It is a path that cuts through from the side opposite to the remaining side of the remaining work area RA. If the discharge point PO is set in the vicinity of the entering side, if n is an odd number, the discharge travel route LO2 will be long. In this case, the preliminary adjustment route LR may be generated such that the traveling distance LS is an even multiple of L. For example, the preliminary adjustment route LR may satisfy the relationship of L × 2n (n is a positive integer) = LS. Generate Thereby, it is possible to set the path such as the traveling path S2 that can always be cut off from the side that enters the work target area CA (remaining work area RA). Therefore, it is preferable to generate the preliminary adjustment route LR by properly selecting whether the travel distance LS is an odd multiple of L or an even multiple of L in accordance with the position of the discharge point PO.
 また、走行距離LSには、往復走行におけるU旋回が含まれ、残作業領域RAの長さLを基準にすると、走行距離LSに誤差が生じる場合がある。また、誤差は、収量センサ19等の誤差も考えられる。誤差が生じた場合、残作業領域RAの途中で排出基準収量となる場合がある。そのため、予備調整経路LRを生成する際の残作業領域RAの長さLにマージンを持たせることが好ましい。具体的には、L’×n(または2n)(nは正の整数)=LSの関係を満たすように予備調整経路LRを生成し、長さL’は長さLより所定の長さまたは割合で短い長さとする。これにより、残作業領域RAの途中で排出基準収量となることを抑制することができる。 走 行 Further, the traveling distance LS includes a U-turn in reciprocating traveling, and an error may occur in the traveling distance LS based on the length L of the remaining work area RA. Further, the error may be an error of the yield sensor 19 or the like. If an error occurs, the discharge reference yield may be reached in the middle of the remaining work area RA. Therefore, it is preferable to provide a margin for the length L of the remaining work area RA when the preliminary adjustment path LR is generated. Specifically, the preliminary adjustment path LR is generated so as to satisfy a relationship of L ′ × n (or 2n) (n is a positive integer) = LS, and the length L ′ is a predetermined length or a length longer than the length L. Make the length shorter in proportion. Thus, it is possible to prevent the discharge reference yield from being reached in the middle of the remaining work area RA.
 上記実施形態では、走行経路生成システム及び走行経路生成方法について説明した。上記実施形態における各機能部をコンピュータに実現させるための走行経路生成プログラムとして構成することも可能である。係る場合、走行経路生成プログラムは、圃場の未作業地を、互いに並列する走行経路に沿って自動走行で往復走行しながら、前記未作業地の作物を収穫するコンバインにおける自動走行経路を生成する走行経路生成プログラムであって、前記圃場における単位面積あたりの収量である収量率を取得する機能と、前記未作業地の面積を取得する機能と、前記収量率と前記面積とから、前記未作業地で収穫されることが予測される穀粒の総収量を推定する機能と、前記未作業地の形状及び前記総収量に基づいて、前記未作業地の形状が前記往復走行に最適な形状となるように、前記往復走行に先立って自動走行を行う予備調整経路を生成する機能と、をコンピュータに実現させるように構成することも可能である。 In the above embodiment, the traveling route generation system and the traveling route generation method have been described. Each functional unit in the above embodiment can be configured as a traveling route generation program for causing a computer to realize the functional units. In such a case, the traveling route generation program is configured to generate an automatic traveling route in a combine harvesting crops in the unworked land while reciprocating the unworked land in the field by automatic traveling along the parallel running routes. A route generation program, a function of acquiring a yield rate that is a yield per unit area in the field, a function of acquiring an area of the unworked land, and the unworked land based on the yield rate and the area. Based on the function of estimating the total yield of the grain that is predicted to be harvested in the shape of the unworked land and the total yield, the shape of the unworked land becomes an optimal shape for the reciprocating travel. As described above, it is also possible to configure the computer to realize the function of generating a preliminary adjustment path for performing automatic traveling prior to the reciprocating traveling.
 また、このような走行経路生成プログラムを、記録媒体に記録するように構成することも可能である。 Further, such a traveling route generation program can be configured to be recorded on a recording medium.
 また、上記実施形態の作業管理システム及び作業管理方法における各機能部をコンピュータに実現させるための作業管理プログラムとして構成することも可能である。係る場合、作業管理プログラムは、作物を収穫して脱穀した穀粒を貯留する穀粒タンクと前記穀粒タンクに貯留された穀粒の収量を測定する収量センサとを有し、圃場内の外周領域の作物を手動走行で収穫し、前記手動走行が行われた既作業地の内側の未作業地を自動走行しながら作物の収穫を行うコンバインの作業を監視する作業管理プログラムであって、衛星からの衛星信号を受信し、前記衛星信号に基づいて前記コンバインの自車位置に対応する測位データを算出する機能と、前記測位データ及び前記収量を取得する機能と、前記手動走行時に取得した前記測位データから、前記既作業地の既作業地面積と前記未作業地の未作業地面積とを算出する機能と、前記手動走行時に取得した前記収量と前記既作業地面積とから、前記既作業地における単位面積当たりの収量である収量率を算出する機能と、前記未作業地面積と前記収量率とから、前記未作業地で収穫されることが予想される穀粒の総収量を算出する機能と、をコンピュータに実現させるように構成することが可能である。 The functional units in the work management system and the work management method according to the above embodiments may be configured as a work management program for causing a computer to realize the functions. In such a case, the work management program has a grain tank that stores the grain obtained by harvesting and threshing the crop and a yield sensor that measures the yield of the grain stored in the grain tank. A work management program for manually harvesting crops in an area, and monitoring a combine harvesting operation while automatically traveling on unworked land inside the already-worked land where the manual travel was performed, comprising: A function of calculating positioning data corresponding to the own vehicle position of the combine based on the satellite signal, a function of obtaining the positioning data and the yield, and From the positioning data, the function of calculating the already-worked land area of the already-worked land and the un-worked land area of the un-worked land, and the yield and the already-worked land area obtained during the manual traveling, Earth A function of calculating a yield rate, which is the yield per unit area, and a function of calculating the total yield of kernels that are expected to be harvested in the unworked land from the unworked land area and the yield rate. Can be configured to be realized by a computer.
 また、このような作業管理プログラムを、記録媒体に記録するように構成することも可能である。 作業 Further, such a work management program can be configured to be recorded on a recording medium.
4-2.第2の実施形態
 次に、本発明による、自動運転と手動運転とが可能な収穫機の一例として、普通型のコンバインを取り上げて説明する。なお、本明細書では、特に断りがない限り、「前」(図9に示す矢印Fの方向)は機体前後方向(走行方向)に関して前方を意味し、「後」(図9に示す矢印Bの方向)は機体前後方向(走行方向)に関して後方を意味する。また、左右方向または横方向は、機体前後方向に直交する機体横断方向(機体幅方向)を意味する。「上」(図9に示す矢印Uの方向)及び「下」(図9に示す矢印Dの方向)は、機体110の鉛直方向(垂直方向)での位置関係であり、地上高さにおける関係を示す。
4-2. Second Embodiment Next, as an example of a harvester capable of performing an automatic operation and a manual operation according to the present invention, a description will be given of a general-purpose combiner. In this specification, “front” (direction of arrow F shown in FIG. 9) means forward in the longitudinal direction of the aircraft (running direction), and “rear” (arrow B shown in FIG. 9) unless otherwise specified. Direction) means backward with respect to the longitudinal direction of the aircraft (running direction). In addition, the left-right direction or the lateral direction means a cross-machine direction (machine body width direction) orthogonal to the machine body front-rear direction. “Up” (in the direction of arrow U shown in FIG. 9) and “down” (in the direction of arrow D shown in FIG. 9) are positional relationships in the vertical direction (vertical direction) of the airframe 110, and are related to the ground level. Is shown.
 図9に示すように、このコンバインは、機体110、クローラ式の走行装置111、運転部112、脱穀装置113、収穫物タンクとしての穀粒タンク114、収穫部115、搬送装置116、穀粒排出装置118、自車位置検出モジュール180を備えている。 As shown in FIG. 9, the combine includes a body 110, a crawler-type traveling device 111, an operating unit 112, a threshing device 113, a grain tank 114 as a harvest tank, a harvesting unit 115, a transport device 116, and a grain discharging device. The apparatus 118 includes a vehicle position detection module 180.
 走行装置111は、機体110の下部に備えられている。コンバインは、走行装置111によって自走可能に構成されている。運転部112、脱穀装置113、穀粒タンク114は、走行装置111の上側に備えられ、機体110の上部を構成している。運転部112には、コンバインを運転する運転者及びコンバインの作業を監視する監視者が搭乗可能である。なお、監視者は、コンバインの機外からコンバインの作業を監視してもよい。 The traveling device 111 is provided below the body 110. The combine is configured to be self-propelled by the traveling device 111. The operation unit 112, the threshing device 113, and the grain tank 114 are provided above the traveling device 111 and constitute an upper portion of the body 110. The driver that drives the combine and the monitor that monitors the work of the combine can be boarded on the driving unit 112. The observer may monitor the combine operation from outside the combine.
 穀粒排出装置118は、穀粒タンク114の後下部に連結されている。また、自車位置検出モジュール180は、運転部112の上部面に取り付けられている。 The grain discharge device 118 is connected to a lower rear portion of the grain tank 114. In addition, the vehicle position detection module 180 is mounted on the upper surface of the driving unit 112.
 収穫部115は、コンバインにおける前部に備えられている。そして、搬送装置116は、収穫部115の後方に設けられている。また、収穫部115は、切断機構115a及びリール115bを有している。切断機構115aは、圃場の植立穀稈を刈り取る。また、リール115bは、回転駆動しながら収穫対象の植立穀稈を掻き込む。この構成により、収穫部115は、圃場の穀物(農作物の一種)を収穫する。そして、コンバインは、収穫部115によって圃場の穀物を収穫しながら走行装置111によって走行する作業走行が可能である。 The harvesting unit 115 is provided at the front of the combine. The transport device 116 is provided behind the harvesting unit 115. The harvesting unit 115 has a cutting mechanism 115a and a reel 115b. The cutting mechanism 115a cuts the planted grain culm in the field. In addition, the reel 115b scrapes the planted grain stem to be harvested while being driven to rotate. With this configuration, the harvesting unit 115 harvests cereals (a kind of agricultural crop) in the field. The combine is capable of traveling by the traveling device 111 while harvesting cereals in the field by the harvesting unit 115.
 切断機構115aによって刈り取られた刈取穀稈は、搬送装置116によって脱穀装置113へ搬送される。脱穀装置113において、刈取穀稈は脱穀処理される。脱穀処理により得られた穀粒は、穀粒タンク114に貯留される。穀粒タンク114に貯留された穀粒は、必要に応じて、穀粒排出装置118によって機外に排出される。 刈 The harvested stalks cut by the cutting mechanism 115 a are transported to the threshing device 113 by the transport device 116. In the threshing device 113, the harvested culm is threshed. The grain obtained by the threshing process is stored in the grain tank 114. The grains stored in the grain tank 114 are discharged outside the machine by a grain discharging device 118 as necessary.
 穀粒タンク114には、穀粒タンク114に貯留された穀粒の収量を測定する収量センサ119が設けられている。後で、詳しく説明されるが、収量センサ119からの測定信号と、車速と、収穫部115の収穫幅とから、コンバインの単位走行距離当たりの収量(単位面積当たりの収量)が算出可能である。 The grain tank 114 is provided with a yield sensor 119 for measuring the yield of the grain stored in the grain tank 114. As will be described in detail later, the yield per unit traveling distance (yield per unit area) of the combine can be calculated from the measurement signal from the yield sensor 119, the vehicle speed, and the harvest width of the harvester 115. .
 また、運転部112には、汎用端末104が配置されている。本実施形態において、汎用端末104は、運転部112に固定されている。しかしながら、汎用端末104は、運転部112に対して着脱可能に構成されていても良いし、汎用端末104は、コンバインの機外に持ち出し可能であってもよい。 The general-purpose terminal 104 is arranged in the driving unit 112. In the present embodiment, the general-purpose terminal 104 is fixed to the driving unit 112. However, the general-purpose terminal 104 may be configured to be detachable from the driving unit 112, or the general-purpose terminal 104 may be able to be taken out of the combine machine.
 図10に示すように、このコンバインは、圃場において設定された走行経路に沿って自動走行する。これには、自車位置の情報が必要である。図17に示すように、自車位置検出モジュール180には、衛星測位ユニット181と慣性航法ユニット182とが含まれている。衛星測位ユニット181は、人工衛星100GSから送信される位置情報であるGNSS(global navigation satellite system)信号(GPS信号を含む)を受信して、自車位置を算出するための測位データを出力する。慣性航法ユニット182は、ジャイロ加速度センサ及び磁気方位センサを組み込んでおり、瞬時の機体110の姿勢変化を示す信号を出力する。慣性航法ユニット182は、衛星測位ユニット181による自車位置算出を補完するために用いられる。慣性航法ユニット182は、衛星測位ユニット181とは別の場所に配置してもよい。 よ う As shown in FIG. 10, this combine automatically travels along a travel route set in a field. This requires information on the position of the vehicle. As shown in FIG. 17, the vehicle position detection module 180 includes a satellite positioning unit 181 and an inertial navigation unit 182. The satellite positioning unit 181 receives a GNSS (global navigation satellite system) signal (including a GPS signal), which is position information transmitted from the artificial satellite 100GS, and outputs positioning data for calculating the own vehicle position. The inertial navigation unit 182 incorporates a gyro acceleration sensor and a magnetic azimuth sensor, and outputs a signal indicating an instantaneous change in the attitude of the body 110. The inertial navigation unit 182 is used to supplement the own vehicle position calculation by the satellite positioning unit 181. The inertial navigation unit 182 may be located at a different location from the satellite positioning unit 181.
 このコンバインによって圃場での収穫作業を行う場合の手順は、以下に説明する通りである。 手 順 The procedure for performing harvesting work in the field using this combine is as described below.
 まず、運転者兼監視者は、コンバインを手動で操作し、図10に示すように、圃場内の外周部分において、圃場の境界線に沿って周囲刈り走行しながら収穫を行う。周囲刈り走行により既刈領域となった領域は、外周領域(既作業領域)SAとして設定される。そして、外周領域SAの内側に未刈地(未作業地)のまま残された内部領域は、未作業領域100CAとして設定される。この実施形態では、未作業領域100CAが四角形となるように、周囲刈り走行が行われる。もちろん、三角形や五角形以上の多角形の未作業領域100CAが採用されてもよい。 First, the driver / monitor manually operates the combine, and harvests the outer peripheral portion of the field along the boundary of the field while cutting and running, as shown in FIG. The area that has been cut by the surrounding mowing travel is set as the outer peripheral area (worked area) SA. Then, the internal area left as uncut land (unworked land) inside the outer peripheral area SA is set as the unworked area 100CA. In this embodiment, the surrounding mowing travel is performed so that the unworked area 100CA becomes a square. Of course, a triangular or pentagonal or larger polygonal unworked area 100CA may be employed.
 また、このとき、外周領域SAの幅をある程度広く確保するために、運転者は、コンバインを2~3周走行させる。この走行においては、コンバインが1周する毎に、コンバインの収穫幅(作業幅)分だけ外周領域SAの幅が拡大する。この2~3周の走行が終わると、外周領域SAの幅は、コンバインの収穫幅の2~3倍程度の幅となる。なお、運転者による最初の周回走行は2~3周でなく、それ以上(4周以上)であっても良いし、1周であっても良い。 こ の At this time, in order to secure the width of the outer peripheral area SA to some extent, the driver runs the combine for two or three turns. In this traveling, each time the combine makes one round, the width of the outer peripheral area SA is increased by the harvest width (working width) of the combine. At the end of this two or three rounds of travel, the width of the outer peripheral area SA is about two to three times the harvest width of the combine. Note that the first round traveling by the driver is not limited to two or three laps, but may be longer (four or more laps) or one lap.
 外周領域SAは、未作業領域100CAにおいて収穫走行を行うときに、コンバインが方向転換するためのスペースとして利用される。また、外周領域SAは、収穫走行を一旦終えて、穀粒の排出場所へ移動する際や、燃料の補給場所へ移動する際等の移動用のスペースとしても利用される。 The outer peripheral area SA is used as a space for the combine to change directions when performing harvesting traveling in the unworked area 100CA. In addition, the outer peripheral area SA is also used as a space for movement when the harvest travel is once completed and the grain is moved to a grain discharge location, or is moved to a fuel supply location.
 なお、図2に示す運搬車100CVは、コンバインが穀粒排出装置118から排出した穀粒を収集し、運搬することができる。穀粒排出の際、コンバインは運搬車100CVの近傍へ移動した後、穀粒排出装置118によって穀粒を運搬車100CVへ排出する。 2 can collect and transport the grains discharged from the grain discharge device 118 by the combine. At the time of discharging the grains, the combine moves to the vicinity of the transport vehicle 100CV, and then discharges the grains to the transport vehicle 100CV by the grain discharging device 118.
 未作業領域100CAの形状を示す内側マップデータが作成されると、この内側マップデータに基づいて算出される線状(直線又は曲線)の作業走行経路に沿う自動走行と、1つの作業走行経路から次の作業走行経路に移行するための旋回移行走行とによる収穫走行によって未作業領域100CAの植付穀稈が刈り取られる。なお、旋回移行走行のための走行経路は、旋回移行経路と称する。収穫走行で用いられる走行パターンは、複数の平行な作業走行経路をUターン経路によってつないで走行する往復走行パターン(図11に示されている)と、未作業領域100CAの外縁に沿って渦巻き状に走行する渦巻き走行パターン(図12に示されている)である。なお、実際の作業走行経路の算出では、コンバインが作業走行時に作業走行経路から横ずれしても、穀稈の刈り残し(収穫漏れ)が発生しないように、隣接する作業走行経路での収穫部115の収穫幅はわずかに重複されている。この重複は、オーバーラップと呼ばれる。ただし、この実施形態の説明においては、オーバーラップは無視されている。 When the inside map data indicating the shape of the unworked area 100CA is created, automatic traveling along a linear (straight or curved) work traveling route calculated based on the inside map data and one working traveling route Harvest traveling by the turning traveling traveling for transition to the next work traveling route cuts the planted culm of the unworked area 100CA. The traveling route for the turning transition traveling is referred to as a turning transition route. The traveling pattern used in the harvest traveling includes a reciprocating traveling pattern (shown in FIG. 11) in which a plurality of parallel work traveling paths are connected by a U-turn path and a spiral pattern along the outer edge of the unworked area 100CA. 12 is a spiral running pattern (shown in FIG. 12). In the calculation of the actual work travel route, even if the combine is shifted from the work travel route during the work travel, the harvesting unit 115 on the adjacent work travel route is used so that uncut cropping of the culm (harvest omission) does not occur. Harvest widths are slightly overlapped. This overlap is called overlap. However, in the description of this embodiment, the overlap is ignored.
 図11に示されている往復走行パターンでは、コンバインは、未作業領域100CAの一辺に平行な作業走行経路を旋回走行であるUターンによってつなぐように走行する。Uターンには、1つ以上の作業走行経路を飛ばしてその先の作業走行経路へ走行するノーマルUターンと、隣接する作業走行経路をつなぐように走行するスイッチバックターンとがある。ノーマルUターンは、例えば、2つの前進90度旋回と直進とを含む180度旋回であり、直進が省略される場合もある。スイッチバックターンは、例えば、前進90度旋回と後進と前進90度旋回を用いた180度方向転換である。なお、ここでは、「直進」は、直線に沿って前進すること、なだらかな湾曲線に沿って前進すること、左右方向にわずかに振れながら前進することを含む語句として用いられている。 In the reciprocating traveling pattern shown in FIG. 11, the combine travels such that a work traveling path parallel to one side of the unworked area 100CA is connected by a U-turn that is a turning traveling. The U-turn includes a normal U-turn that skips one or more work travel paths and travels to the next work travel path, and a switchback turn that travels so as to connect adjacent work travel paths. The normal U-turn is, for example, a 180-degree turn including two forward 90-degree turns and straight-ahead traveling, and the straight-ahead traveling may be omitted. The switchback turn is, for example, a 180-degree turning using a 90-degree forward turn, a reverse, and a 90-degree forward turn. Here, the term “straight” is used as a phrase that includes advancing along a straight line, advancing along a gentle curved line, and advancing while slightly swinging left and right.
 図12に示されている渦巻き走行パターンでは、未作業領域100CAの外形に類似する作業走行経路を旋回走行経路でつなぎながら行われる周回走行が、中心に向けて渦巻きを形成するように行われる。各周回走行におけるコーナでの旋回には、例えば、前後進を何度か繰り返して旋回するアルファターンと呼ばれる旋回が用いられる。なお、作業途中において、渦巻き走行パターンから往復走行パターン、または往復走行パターンから渦巻き走行パターンに変更することも可能である。 In the spiral running pattern shown in FIG. 12, the orbital running performed while connecting the working running route similar to the outer shape of the unworked area 100CA with the turning running route is performed so as to form a spiral toward the center. For the turning at the corner in each round traveling, for example, a turning called an alpha turn that turns by repeating forward and backward several times is used. It is also possible to change from the spiral running pattern to the reciprocating running pattern or from the reciprocating running pattern to the spiral running pattern during the work.
 未作業領域100CAを往復走行パターンを用いて自動走行するために用いられる作業走行経路は、内側マップデータに基づいて以下のように算出される。図13及び図14に示すように、内側マップデータから、第1辺100S1、第2辺100S2、第3辺100S3、第4辺100S4からなる四角形の未作業領域100CAが規定される。この未作業領域100CAの長辺である第1辺100S1が基準辺100S1として選択される。この基準辺100S1に平行で、収穫幅(刈取り幅)の半分だけ基準辺100S1から内側を通る線が初期基準線100L1として算出される。この初期基準線100L1が最初に走行する作業走行経路に対応する。なお、最初に、未作業領域100CAを中割りするような収穫走行が採用される場合、初期基準線100L1として、基準辺100S1に平行で、基準辺100S1からさらに離れた距離(収穫幅の半分+収穫幅の整数倍)を通る線が初期基準線100L1として算出される。 The work travel route used for automatically traveling the unworked area 100CA using the reciprocating travel pattern is calculated as follows based on the inside map data. As shown in FIGS. 13 and 14, a quadrangular unworked area 100CA including a first side 100S1, a second side 100S2, a third side 100S3, and a fourth side 100S4 is defined from the inside map data. The first side 100S1, which is the long side of the unworked area 100CA, is selected as the reference side 100S1. A line parallel to the reference side 100S1 and passing inside the reference side 100S1 by half of the harvest width (cutting width) is calculated as the initial reference line 100L1. This initial reference line 100L1 corresponds to the work traveling route that travels first. In the case where the harvesting traveling is performed such that the unworked area 100CA is first divided, the initial reference line 100L1 is parallel to the reference side 100S1 and further away from the reference side 100S1 (half of the harvest width + A line passing through (an integral multiple of the harvest width) is calculated as the initial reference line 100L1.
 180度ターン(Uターン)するために必要とするスペースが小さいスイッチバックターンが旋回移行走行として採用される場合、例えば、図13に示されているように、初期基準線100L1からUターン経路を介して順次つながっていく基準線100L2、100L3・・・が、初期基準線100L1に平行な状態でかつ収穫幅の間隔を空けた状態で算出される。これらの基準線100L1、100L2、100L3・・・が作業走行経路となる。 When a switchback turn that requires a small space for making a 180-degree turn (U-turn) is adopted as the turning transition traveling, for example, as shown in FIG. 13, a U-turn path is formed from the initial reference line 100L1. Are sequentially calculated in a state in which the reference lines 100L2, 100L3,... Are connected in parallel with the initial reference line 100L1 and at intervals of the harvest width. These reference lines 100L1, 100L2, 100L3,.
 Uターンするために必要とするスペースがスイッチバックターンより大きくなるノーマルUターンが旋回移行走行として採用される場合、初期基準線100L1からUターン経路を介してつながる次の基準線100L2は、初期基準線100L1に平行で収穫幅の複数倍(図14では3倍)の間隔で算出される。図14に示されているように、同様な方法で、次の基準線100L3が算出される。このようにして、ノーマルUターンで必要なスペースを考慮して、順次基準線が算出される。これらの基準線100L1、100L2、100L3・・・が直進走行用の作業走行経路に対応する。 If a normal U-turn in which the space required for making a U-turn is larger than the switchback turn is adopted as the turning transition traveling, the next reference line 100L2 connected from the initial reference line 100L1 via the U-turn path is the initial reference line. It is calculated at intervals of a plurality of times (three times in FIG. 14) the harvest width in parallel to the line 100L1. As shown in FIG. 14, the next reference line 100L3 is calculated in a similar manner. In this manner, the reference lines are sequentially calculated in consideration of the space required for the normal U-turn. These reference lines 100L1, 100L2, 100L3,... Correspond to work traveling routes for straight traveling.
 なお、図13及び図14では、未作業領域100CAの形状は四角形であったが、これが三角形や五角形などの他の多角形であっても基準辺100S1を選択すれば、同様な方法で順次作業走行経路を算出することができる。 In FIGS. 13 and 14, the shape of the unworked area 100CA is a quadrangle. However, even if the unworked area 100CA is another polygon such as a triangle or a pentagon, if the reference side 100S1 is selected, the work is sequentially performed in the same manner. A traveling route can be calculated.
 渦巻き走行パターンが選択された場合、自動走行のために用いられる作業走行経路は、内側マップデータに基づいて以下のように算出される。図15に示すように、この未作業領域100CAの長辺(渦巻き走行パターンでは短辺でもよい)である第1辺100S1が基準辺100S1として選択される。この基準辺100S1に平行で、収穫幅の半分だけ基準辺100S1から内側を通る線が基準線100L1として算出される。この基準線100L1は、自動走行の最初の作業走行経路となる初期基準線である。さらに、コンバインの進行方向で基準辺100S1に隣接する第2辺100S2に平行で、収穫幅の半分だけ第2辺100S2から内側を通る線が次の基準線100L2として算出され、最初の作業走行経路の次の自動走行の目標となる次作業走行経路となる。最初の作業走行経路と次作業走行経路とは、基準辺100S1と第2辺100S2とがなす角度の機体旋回を実現するアルファターンによってつながれる。同様に、更に次の基準線100L3も、順次算出される。これらの基準線100L1、100L2、100L3・・・が直進走行用の作業走行経路に対応する。 場合 When the spiral running pattern is selected, the work traveling route used for automatic traveling is calculated as follows based on the inside map data. As shown in FIG. 15, the first side 100S1, which is the long side of the unworked area 100CA (or the short side in the spiral running pattern), is selected as the reference side 100S1. A line that is parallel to the reference side 100S1 and passes inside the reference side 100S1 by half the harvest width is calculated as the reference line 100L1. This reference line 100L1 is an initial reference line that is the first work traveling route of the automatic traveling. Furthermore, a line parallel to the second side 100S2 adjacent to the reference side 100S1 in the traveling direction of the combine and passing inside the second side 100S2 by half of the harvest width is calculated as the next reference line 100L2, and the first work travel route Is the next work travel route that is the target of the next automatic travel. The first work travel route and the next work travel route are connected by an alpha turn that implements an aircraft turning at an angle formed by the reference side 100S1 and the second side 100S2. Similarly, the next reference line 100L3 is also sequentially calculated. These reference lines 100L1, 100L2, 100L3,... Correspond to work traveling routes for straight traveling.
 実際の圃場における収穫作業では、図16に示されているように、往復走行パターンと渦巻き走行パターンとが混在することが少なくない。図16の例では、コンバインが圃場に入ると(#a)、手動で周囲刈り走行を行い、圃場の最外周側に既作業領域である外周領域SAを形成する(#b)。この周囲刈り走行で形成される外周領域SAがアルファターンでの方向転換が可能となる大きさになれば、未作業領域100CAにたいして渦巻き走行パターンが設定され、渦巻き走行が行われる(#c)。この渦巻き走行では、少なくとも直進は自動走行が可能である。渦巻き走行は、未作業領域100CAが、往復走行パターンにおける旋回移行走行(ノーマルUターン、スイッチバックターン)が可能となる大きさになるまで、行われる(#d)。次に、未作業領域100CAに対して、往復走行パターンで未作業領域100CAを網羅するような作業走行経路が設定される(#e)。設定された作業走行経路に沿って往復走行を繰り返すことで、圃場の収穫作業が完了する(#f)。 In the actual harvesting operation in the field, as shown in FIG. 16, a reciprocating traveling pattern and a spiral traveling pattern are often mixed. In the example of FIG. 16, when the combine enters the field (#a), the surrounding mowing is manually performed to form an outer peripheral area SA, which is an already worked area, on the outermost peripheral side of the field (#b). When the outer peripheral area SA formed by this peripheral mowing traveling has a size that enables the direction change in the alpha turn, the spiral traveling pattern is set for the unworked area 100CA, and the spiral traveling is performed (#c). In this spiral running, automatic running is possible at least straight ahead. The spiral running is performed until the unworked area 100CA becomes large enough to enable the turning transition running (normal U-turn, switchback turn) in the reciprocating running pattern (#d). Next, a work travel route that covers the unworked area 100CA in a reciprocating travel pattern is set for the unworked area 100CA (#e). By repeating the reciprocation along the set work travel route, the field harvesting work is completed (#f).
 図17に、コンバインの制御系が示されている。コンバインの制御系は、車載LANを介して接続された多数のECUと呼ばれる電子制御ユニットから構成される制御装置105、及び制御装置105と信号通信やデータ通信を行う各種入出力機器から構成されている。 FIG. 17 shows a combine control system. The control system of the combine is composed of a control device 105 composed of a number of electronic control units called ECUs connected via an in-vehicle LAN, and various input / output devices for performing signal communication and data communication with the control device 105. I have.
 制御装置105は、入出力インタフェースとして、出力処理部158と入力処理部157とを備えている。出力処理部158は、機器ドライバ165を介して種々の動作機器170と接続している。動作機器170として、走行関係の機器である走行機器群171と作業関係の機器である作業機器群172とがある。走行機器群171には、例えば、エンジン機器、変速機器、制動機器、操舵機器などが含まれている。作業機器群172には、収穫作業装置(図9に示す、収穫部115、脱穀装置113、搬送装置116、穀粒排出装置118など)における制御機器が含まれている。 The control device 105 includes an output processing unit 158 and an input processing unit 157 as input / output interfaces. The output processing unit 158 is connected to various operation devices 170 via the device driver 165. The operating devices 170 include a traveling device group 171 that is a traveling-related device and a working device group 172 that is a working-related device. The traveling equipment group 171 includes, for example, engine equipment, transmission equipment, braking equipment, steering equipment, and the like. The working equipment group 172 includes control equipment in a harvesting work device (the harvesting unit 115, the threshing device 113, the transport device 116, the grain discharging device 118, and the like illustrated in FIG. 9).
 入力処理部157には、収量センサ119、走行状態センサ群163、作業状態センサ群164、走行操作ユニット190、などが接続されている。走行状態センサ群163には、車速センサ、エンジン回転数センサ、駐車ブレーキ検出センサ、変速位置検出センサ、操舵位置検出センサ、などが含まれている。作業状態センサ群164には、収穫作業装置の駆動状態や姿勢を検出するセンサ、及び穀稈や穀粒の状態を検出するセンサが含まれている。 The input processing unit 157 is connected with a yield sensor 119, a traveling state sensor group 163, a work state sensor group 164, a traveling operation unit 190, and the like. The traveling state sensor group 163 includes a vehicle speed sensor, an engine speed sensor, a parking brake detection sensor, a shift position detection sensor, a steering position detection sensor, and the like. The working state sensor group 164 includes a sensor that detects a driving state and a posture of the harvesting work device, and a sensor that detects a state of a grain culm or a grain.
 走行操作ユニット190は、運転者によって手動操作され、その操作信号が制御装置105に入力される操作具の総称である。走行操作ユニット190には、変速レバーとしての主変速レバー191、操舵レバー192、モード切替スイッチ193として構成されたモード操作具、自動走行操作具194、などが含まれている。モード切替スイッチ193は、自動運転と手動運転とを切り替えるための指令を制御装置105に与える。自動走行操作具194は、自動走行移行要求を制御装置105に与える。 The traveling operation unit 190 is a general term for operating tools that are manually operated by a driver and whose operation signals are input to the control device 105. The travel operation unit 190 includes a main shift lever 191 as a shift lever, a steering lever 192, a mode operation tool configured as a mode switch 193, an automatic travel operation tool 194, and the like. The mode changeover switch 193 gives a command to the control device 105 for switching between automatic operation and manual operation. The automatic traveling operation tool 194 gives an automatic traveling transition request to the control device 105.
 報知デバイス162は、運転者等に作業状態や走行状態に関する警告を報知するためのデバイスであり、ブザー、ランプ、液晶パネル等の表示パネル、などが含まれる。なお、汎用端末104もタッチパネル140での表示を通じて運転者等に作業状態や走行状態や種々の情報を報知するデバイスとして機能する。 The notifying device 162 is a device for notifying a driver or the like of a warning regarding a working state or a running state, and includes a buzzer, a lamp, a display panel such as a liquid crystal panel, and the like. The general-purpose terminal 104 also functions as a device that notifies a driver or the like of a work state, a traveling state, and various information through display on the touch panel 140.
 この制御装置105は、さらに車載LANを通じて汎用端末104とも接続している。汎用端末104はタッチパネル140を備えたタブレットコンピュータである。汎用端末104は、入出力制御部141、作業走行管理部142、走行経路算出部143、走行経路調整部144を有する。入出力制御部141には、タッチパネル140を用いてグラフィックインターフェースを構築する機能、及び、無線回線やインターネットを通じて遠隔地のコンピュータとデータ交換する機能を備えている。 This control device 105 is also connected to the general-purpose terminal 104 via the in-vehicle LAN. The general-purpose terminal 104 is a tablet computer having a touch panel 140. The general-purpose terminal 104 includes an input / output control unit 141, a work traveling management unit 142, a traveling route calculation unit 143, and a traveling route adjustment unit 144. The input / output control unit 141 has a function of constructing a graphic interface using the touch panel 140 and a function of exchanging data with a remote computer via a wireless line or the Internet.
 作業走行管理部142は、走行軌跡算出部1421と作業領域決定部1422と排出位置設定部1423を備えている。走行軌跡算出部1421は、制御装置105から与えられた自車位置に基づいて走行軌跡を算出する。例えば、走行軌跡算出部1421は、図10に示すように、コンバインが外周領域SAを周囲刈り走行した際に、その走行軌跡を算出する。作業領域決定部1422は、外周領域SAにおける走行軌跡に基づいて、圃場を外周領域SAと未作業領域100CAとに区分けする。外周領域SAの最外線によって圃場の畦との境界線が算出され、外周領域SAの最内線によって、自動走行が行われる未作業領域(未作業領域100CAの形状)が算出される。排出位置設定部1423は、穀粒タンク114が満杯になった場合、穀粒タンク114の穀粒を穀粒排出装置118によって運搬車100CVに排出する際のコンバインの排出停車位置を設定する。 The work traveling management unit 142 includes a traveling locus calculation unit 1421, a work area determination unit 1422, and a discharge position setting unit 1423. The travel locus calculation unit 1421 calculates a travel locus based on the own vehicle position given from the control device 105. For example, as shown in FIG. 10, the traveling locus calculation unit 1421 calculates the traveling locus when the combine cuts around the outer peripheral area SA. The work area determination unit 1422 divides the field into the outer area SA and the unworked area 100CA based on the traveling locus in the outer area SA. The outermost line of the outer peripheral area SA is used to calculate the boundary line with the ridge of the field, and the innermost line of the outer peripheral area SA is used to calculate the unworked area (the shape of the unworked area 100CA) in which automatic traveling is performed. The discharge position setting unit 1423 sets the discharge stop position of the combine when the kernel of the kernel tank 114 is discharged to the transport vehicle 100CV by the kernel discharge device 118 when the kernel tank 114 is full.
 走行経路算出部143は、作業領域決定部1422によって決定された未作業領域に対して自動走行用の作業走行経路を算出する。なお、未作業領域を自動走行するための走行パターン(往復走行パターンまたは渦巻き走行パターン)は、タッチパネル140を通じて入力しておく。外周領域SAの手動走行が終了したことを、運転者が入力することで、選択された走行パターンでの経路算出が自動的に行われる。 The travel route calculation unit 143 calculates a work travel route for automatic traveling with respect to the unworked area determined by the work area determination unit 1422. A traveling pattern (reciprocating traveling pattern or spiral traveling pattern) for automatically traveling in the non-work area is input through the touch panel 140. When the driver inputs that the manual traveling in the outer peripheral area SA has been completed, the route calculation in the selected traveling pattern is automatically performed.
 走行経路算出部143は、収穫部115の収穫幅に基づいて隣接作業走行経路の間隔(経路間隔)を決定して、作業走行経路を算出する。なお、収穫幅に入る穀稈が少なくなるように、つまり実質的な収穫幅が狭くなるように作業走行経路が調整されると、単位走行当たりの収穫量(収量)は減少する。走行経路調整部144は、このような作業走行経路の調整を行う。例えば、走行経路調整部144が、既に収穫走行した作業走行経路とこれから走行する作業走行経路との間隔(経路間隔)を狭くするような調整を行うと、収穫幅が狭くなり、当該作業走行経路での単位走行当たりの収穫量が減少する。 The travel route calculation unit 143 determines the interval between adjacent work travel routes (route interval) based on the harvest width of the harvesting unit 115, and calculates the work travel route. Note that, when the work traveling route is adjusted so that the grain culm entering the harvest width is reduced, that is, the actual harvest width is narrowed, the yield (yield) per unit travel decreases. The travel route adjustment unit 144 performs such adjustment of the work travel route. For example, when the travel route adjustment unit 144 performs an adjustment to reduce the interval (route interval) between the work travel route that has already been harvested and the work travel route that is to be run from now on, the harvest width is reduced, and the work travel route is reduced. Yield per unit run on the road is reduced.
 制御装置105には、自車位置算出部150、走行制御部151、作業制御部152、穀粒貯留情報生成部153、排出タイミング予測部154が備えられている。自車位置算出部150は、衛星測位ユニット181から逐次送られてくる測位データに基づいて、自車位置を地図座標(または圃場座標)の形式で算出する。自車位置算出部150は、慣性航法ユニット182からの信号に基づく機体110の姿勢変化と、機体110の走行距離とを用いて自車位置を算出することもできる。自車位置算出部150は、衛星測位ユニット181及び慣性航法ユニット182からの信号を組み合わせて自車位置を算出することも可能である。 The control device 105 includes a vehicle position calculation unit 150, a travel control unit 151, a work control unit 152, a grain storage information generation unit 153, and a discharge timing prediction unit 154. The host vehicle position calculation unit 150 calculates the host vehicle position in the form of map coordinates (or field coordinates) based on the positioning data sequentially transmitted from the satellite positioning unit 181. The host vehicle position calculating unit 150 can also calculate the host vehicle position using the attitude change of the body 110 based on a signal from the inertial navigation unit 182 and the travel distance of the body 110. The own vehicle position calculating unit 150 can also calculate the own vehicle position by combining signals from the satellite positioning unit 181 and the inertial navigation unit 182.
 報知部156は、制御装置105の各機能部からの指令等に基づいて報知データを生成し、報知デバイス162に与える。 The notification unit 156 generates notification data based on a command or the like from each functional unit of the control device 105, and provides the notification data to the notification device 162.
 走行制御部151は、エンジン制御機能、操舵制御機能、車速制御機能などを有し、走行機器群171に走行制御信号を与える。作業制御部152は、収穫作業装置の動きを制御するために、作業機器群172に作業制御信号を与える。 The traveling control unit 151 has an engine control function, a steering control function, a vehicle speed control function, and the like, and provides a traveling control signal to the traveling equipment group 171. The work control unit 152 provides a work control signal to the work equipment group 172 to control the movement of the harvesting work device.
 走行制御部151には、手動走行制御部1511、自動走行制御部1512、走行経路設定部1513、自動走行管理部1514が含まれている。 The traveling control unit 151 includes a manual traveling control unit 1511, an automatic traveling control unit 1512, a traveling route setting unit 1513, and an automatic traveling management unit 1514.
 自動走行モードが設定されている場合、自動走行制御部1512が、走行機器群171を制御する。走行経路設定部1513は、走行経路算出部143によって算出された作業走行経路または走行経路調整部144によって調整された作業走行経路である調整走行経路を、汎用端末104から受け取って、適時に、自動操舵の目標となる作業走行経路として設定する。自動走行制御部1512は、自動操舵を行うために、走行経路設定部1513によって設定された作業走行経路と、自車位置算出部150によって算出された自車位置との間の方位ずれ及び位置ずれを解消するように、操舵制御信号を生成する。さらに、自動走行制御部1512は、前もって設定された車速値に基づいて車速変更に関する制御信号を生成する。 When the automatic traveling mode is set, the automatic traveling control unit 1512 controls the traveling equipment group 171. The travel route setting unit 1513 receives, from the general-purpose terminal 104, the adjusted travel route that is the work travel route calculated by the travel route calculation unit 143 or the work travel route adjusted by the travel route adjustment unit 144, and automatically performs timely operation. It is set as a work travel route that is a steering target. The automatic traveling control unit 1512 performs azimuth and positional deviation between the work traveling route set by the traveling route setting unit 1513 and the own vehicle position calculated by the own vehicle position calculating unit 150 in order to perform automatic steering. , A steering control signal is generated. Further, the automatic traveling control unit 1512 generates a control signal related to vehicle speed change based on a vehicle speed value set in advance.
 手動走行モードが選択されている場合、運転者による操作に基づいて手動操作信号が手動走行制御部1511に送られると、手動走行制御部1511が制御信号を生成し、走行機器群171を制御することで、手動運転が実現する。なお、走行経路設定部1513によって設定された作業走行経路は、手動運転であっても利用でき、例えば、コンバインが当該作業走行経路に沿って走行するためのガイダンスのために利用することができる。 When the manual traveling mode is selected, when a manual operation signal is sent to the manual traveling control unit 1511 based on an operation by the driver, the manual traveling control unit 1511 generates a control signal and controls the traveling device group 171. Thereby, manual operation is realized. The work travel route set by the travel route setting unit 1513 can be used even in a manual operation, and can be used, for example, for guidance for the combine to travel along the work travel route.
 自動走行管理部1514は、モード切替スイッチ193により走行モードが自動走行モードに切り替えられている場合、予め設定されている自動走行許可条件に基づいて自動走行の許否を判定し、この判定結果が許可である場合、自動走行開始指令を自動走行制御部1512に与える。 When the traveling mode is switched to the automatic traveling mode by the mode changeover switch 193, the automatic traveling management unit 1514 determines whether to permit the automatic traveling based on the preset automatic traveling permission condition, and determines whether the automatic traveling is permitted. In the case of, an automatic traveling start command is given to the automatic traveling control unit 1512.
 穀粒貯留情報生成部153は、収量センサ119からの測定信号に基づいて穀粒タンク114における穀粒貯留量(収量)を算出し、さらに、単位時間当たりの貯留増加量と車速とから単位走行距離当たりの貯留量を算出する。この単位走行距離当たりの貯留量を収穫幅で正規化すると、単位収穫幅でかつ単位走行距離での、穀粒タンク114における穀粒の増加量、いわゆる単位穀粒増加量が得られる。この単位穀粒増加量に任意の収穫幅と任意の走行距離とを乗算すれば、任意の収穫幅で任意の走行距離を走行した際の、穀粒タンク114における穀粒の増加量が得られる。このような、穀粒タンク114における穀粒貯留量や単位穀粒増加量などの情報は、穀粒貯留情報として穀粒貯留情報生成部153によって生成され、排出タイミング予測部154や走行経路調整部144に送られる。 The kernel storage information generation unit 153 calculates the kernel storage amount (yield) in the kernel tank 114 based on the measurement signal from the yield sensor 119, and further calculates the unit travel from the storage increase amount per unit time and the vehicle speed. Calculate the storage amount per distance. When the storage amount per unit travel distance is normalized by the harvest width, an increase amount of kernels in the kernel tank 114 at a unit harvest width and a unit travel distance, that is, a so-called unit kernel increase amount is obtained. By multiplying the unit grain increase amount by an arbitrary harvest width and an arbitrary travel distance, an increase amount of the kernel in the kernel tank 114 when the vehicle travels an arbitrary travel distance with an arbitrary harvest width is obtained. . Such information such as the amount of stored grain in the grain tank 114 and the amount of increase in unit grain is generated by the grain storage information generation unit 153 as grain storage information, and the discharge timing prediction unit 154 and the traveling route adjustment unit 144.
 周囲刈りを終えると、走行経路算出部143によって、未作業領域100CAにおける作業走行経路が算出される。算出された作業走行経路における任意の位置での、穀粒タンク114内の穀粒貯留状態は、排出タイミング予測部154によるシミュレーションによって算出可能である。このシミュレーションは未作業領域100CAに対する作業走行前に行われるが、未作業領域100CAに対する作業走行中に行われてもよい。排出タイミング予測部154は、穀粒タンク114における現状の穀粒貯留量において、現状の収穫幅で収穫走行を続けた場合、穀粒タンク114が満杯となる作業走行経路(特定作業走行経路と称する)、及びこの作業走行経路における穀粒タンク114が満杯となる満杯発生位置を予測する。穀粒タンク114の満杯時における穀粒貯留量は、予め設定されている。穀粒タンク114が満杯となると、コンバインは排出停車場所まで移動し、穀粒タンク114から穀粒を排出しなければならない。したがって、この満杯発生タイミングは排出タイミングであり、満杯発生位置は排出タイミング発生位置となる。なお、ここで述べている「穀粒タンク114の満杯」とは、穀粒タンク114からの穀粒の排出を必要とする貯留量を表しており、必ずしも穀粒タンク114が穀粒で100%満たされている状態を意味しているわけではない。 When the surrounding mowing is completed, the travel route calculation unit 143 calculates a work travel route in the unworked area 100CA. The kernel storage state in the kernel tank 114 at an arbitrary position on the calculated work travel route can be calculated by simulation by the discharge timing prediction unit 154. This simulation is performed before the work traveling on the unworked area 100CA, but may be performed during the work traveling on the unworked area 100CA. The discharge timing prediction unit 154 determines that a work traveling route (referred to as a specific work traveling route) in which the grain tank 114 is full when the harvest traveling is continued with the current harvest width in the current grain storage amount in the grain tank 114. ), And a full occurrence position at which the grain tank 114 becomes full in this work traveling route is predicted. The kernel storage amount when the kernel tank 114 is full is set in advance. When the grain tank 114 is full, the combine must move to the discharge stop and discharge the grain from the grain tank 114. Therefore, the full occurrence timing is the discharge timing, and the full occurrence position is the discharge timing occurrence position. The “fullness of the grain tank 114” described here indicates a storage amount that requires the discharge of the grain from the grain tank 114, and the grain tank 114 is not necessarily 100% of the grain. It does not mean that it is satisfied.
 作業走行経路の途中から経路離脱する場合、通常、当該走行経路を後進して外周領域SAに戻り、排出停車場所に向かう。この後進走行は、低速で行われ、時間的なロスが大きい。また、後進走行の操舵ミスにより、収穫前の穀稈が踏み倒されてしまう可能性もある。また、排出停車場所で穀粒排出した後に収穫作業を再開するためには、特定作業走行経路での経路離脱した位置(排出タイミング発生位置)に側方から入り込まなければならない。この側方から所望の位置に正確に進入する操舵は、容易ではない。これを避けるために、特定作業走行経路の始点から進入するとすれば、既に収穫作業が終了した経路部分を無駄に走行することになり、作業効率が低下する。また、排出タイミング発生位置から排出停車場所までの走行を自動操舵で行うためには、排出タイミング発生位置から排出停車場所までの離脱走行経路が新たに算出されなければならない。さらに、排出停車場所から排出タイミング発生位置までの復帰走行を自動操舵で行うためには、排出停車場所から排出タイミング発生位置までの復帰走行経路が新たに算出されなければならない。このような問題を回避するため、このコンバインでは、特定作業走行経路に代えて、現状の収穫幅より狭い収穫幅となる作業走行経路が用いられることで、排出タイミングが発生する位置を、作業走行経路の終点(走行終了点)まで遅延させる手法が採用されている。このような手法は、走行経路調整部144によって実現される。経路離脱する地点が作業走行経路の終点となれば、穀粒排出のための経路離脱走行や経路復帰走行が容易となる。 (4) When the vehicle departs from the middle of the work traveling route, usually, the vehicle travels backward on the traveling route, returns to the outer peripheral area SA, and heads toward the discharge stop location. This backward running is performed at a low speed, and there is a large time loss. In addition, there is a possibility that a grain stalk before harvesting may be stepped down due to a steering error in reverse running. Further, in order to resume the harvesting operation after the grain is discharged at the discharge stop place, it is necessary to enter the position (discharge timing occurrence position) from the side of the specific work traveling path from the side. Steering to accurately enter a desired position from this side is not easy. In order to avoid this, if the vehicle enters from the starting point of the specific work traveling route, the vehicle travels uselessly on the route portion where the harvesting work has already been completed, and the work efficiency is reduced. In addition, in order to automatically travel from the discharge timing occurrence position to the discharge stop location, a departure travel route from the discharge timing occurrence position to the discharge stop location must be newly calculated. Further, in order to perform the return travel from the discharge stop position to the discharge timing generation position by automatic steering, a return travel route from the discharge stop position to the discharge timing generation position must be newly calculated. In order to avoid such a problem, in this combine, instead of the specific work travel route, a work travel route having a narrower harvest width than the current harvest width is used, so that the position at which the discharge timing occurs is set to the work travel route. A method of delaying until the end point (traveling end point) of the route is adopted. Such a method is realized by the traveling route adjustment unit 144. If the point at which the route leaves is the end point of the work travel route, the route leaving travel and the route return travel for discharging the grain are facilitated.
 走行経路調整部144は、特定作業走行経路を走行する際の収穫幅より狭い収穫幅となるように特定作業走行経路より既作業領域に近い位置を特定作業走行経路に平行に延びる調整走行経路を作成する。調整走行経路を走行する際の収穫幅は、その収穫幅でコンバインが調整走行経路を走行し終わったときに、排出タイミングとなるように、決定される。 The travel route adjustment unit 144 adjusts the adjusted travel route extending in parallel with the specific work travel route at a position closer to the existing work area than the specific work travel route so that the harvest width is smaller than the harvest width when traveling on the specific work travel route. create. The harvest width when traveling on the adjusted travel route is determined such that the discharge timing is reached when the combine has finished traveling on the adjusted travel route at the harvest width.
 この調整走行経路の作成原理が、図18に示されている。図18では、設定されている作業走行経路は100L1、100L2、100L3,100L4、100L5で示されている。作業走行経路の算出の際に用いられている収穫幅である基本の収穫幅はWoで示されている。図18では、100L3の作業走行経路の走行中に排出タイミングが発生するというシミュレーション結果が出ている。排出タイミングが発生する位置である排出タイミング点はPで示されており、100L3の作業走行経路が特定作業走行経路(図18では100SLで示されている)となる。調整走行経路は、収穫幅を狭くすることで、排出タイミング点を作業走行経路の終了点まで遅延させる作業走行経路であり、図18ではALで示された極太線である。調整走行経路は、特定作業走行経路から、既作業領域側に算出されたずれ量(図18ではd1で示されている)でずらされた位置となっているので、収穫部115は全幅で穀稈を刈り取るのではなく、収穫部115のずれ量:d1に相当する幅の部分は空刈りを行うことになる。つまり、事実上の調整走行経路の収穫幅(図18ではWxで示されている)はWoよりずれ量:d1だけ狭くなっている。このことから、
(式A)d1=Wo-Wx
が得られる。
 さらに、特定作業走行経路における排出タイミング点:Pまでの収穫量は、調整走行経路:ALの全長での収穫量と同じである。このことから、各作業走行経路の長さ:Dと、特定作業走行経路における排出タイミング発生位置:Pまでの走行距離:Dpと、特定作業走行経路での収穫幅:Woと、調整走行経路での収穫幅:Wxとを用いると、
(式B)Wo・Dp=Wx・D
が得られる。
 したがって、シミュレーションにより、特定作業走行経路における排出タイミング発生位置:Pまでの走行距離:Dpが算出されると、(式A)と(式B)用いて、以下の式からずれ量:d1が求められる、
d1=Wo・(1-Dp/D)。
 求められたずれ量:d1に基づいて、調整走行経路のための座標位置が算出される。
FIG. 18 shows the principle of creating the adjusted travel route. In FIG. 18, the set work traveling routes are indicated by 100L1, 100L2, 100L3, 100L4, and 100L5. The basic harvest width, which is the harvest width used when calculating the work travel route, is indicated by Wo. FIG. 18 shows a simulation result that a discharge timing occurs during traveling on the 100L3 work traveling route. The discharge timing point at which the discharge timing occurs is indicated by P, and the work traveling route of 100L3 is a specific work traveling route (indicated by 100SL in FIG. 18). The adjusted travel route is a work travel route that delays the discharge timing point to the end point of the work travel route by narrowing the harvest width, and is an extremely thick line indicated by AL in FIG. Since the adjusted travel route is shifted from the specific work travel route toward the already-worked area by the calculated shift amount (indicated by d1 in FIG. 18), the harvesting unit 115 performs the entire width of the grain. Instead of cutting the culm, empty cutting is performed on a portion having a width corresponding to the shift amount d1 of the harvesting unit 115. That is, the harvest width (indicated by Wx in FIG. 18) of the actual adjusted travel route is smaller than Wo by the shift amount: d1. From this,
(Formula A) d1 = Wo−Wx
Is obtained.
Further, the harvest amount up to the discharge timing point: P in the specific work travel route is the same as the harvest amount in the entire length of the adjusted travel route: AL. Thus, the length of each work travel route: D, the travel distance to the discharge timing occurrence position in the specific work travel route: Dp, the harvest width in the specific work travel route: Wo, and the adjustment travel route Using the harvest width of Wx,
(Formula B) Wo · Dp = Wx · D
Is obtained.
Therefore, when the traveling distance: Dp to the discharge timing occurrence position: P in the specific work traveling route is calculated by the simulation, the deviation amount: d1 is obtained from the following equation using (Equation A) and (Equation B). Can be
d1 = Wo · (1-Dp / D).
A coordinate position for the adjusted travel route is calculated based on the obtained shift amount: d1.
 走行経路調整部144は、算出され調整走行経路のための座標位置に基づいて調整走行経路を作成して、走行経路設定部1513に与える。次に、図19、図20、図21を用いて、走行経路調整部144による調整走行経路の3つの作成例を説明する。図19、図20、図21では、100L1から100L6までの作業走行経路が示され、100L4が特定作業走行経路:100SLになると予測されている。調整走行経路はALで示されている。 The traveling route adjustment unit 144 creates an adjusted traveling route based on the calculated coordinate position for the adjusted traveling route, and provides the adjusted traveling route to the traveling route setting unit 1513. Next, three creation examples of the adjusted travel route by the travel route adjustment unit 144 will be described with reference to FIGS. 19, 20, and 21. 19, 20, and 21, work traveling routes from 100L1 to 100L6 are shown, and 100L4 is predicted to be a specific working traveling route: 100SL. The adjusted travel route is indicated by AL.
 図19の例では、走行経路調整部144は、特定作業走行経路:100SLとなった作業走行経路:100L4を、上述したずれ量:d1に相当する距離で既作業領域側に横シフトさせることで、調整走行経路:ALを作成している。調整走行経路:ALの走行終了時に排出タイミングが発生するので、コンバインは、調整走行経路:ALを走行し終わると、作業走行経路を離脱して排出停止場所に向かう。作業走行経路:100L4の横シフトにより、作業走行経路:100L4と未作業領域側で隣接する作業走行経路:100L5との経路間隔が広がっているので、当該経路間隔が元の所定間隔となるように、作業走行経路:100L5も横シフトされる。さらに、作業走行経路:100L5と作業走行経路:100L6との間隔も、この横シフトにより広がるため、元の所定間隔となるように、作業走行経路:100L6が横シフトされる。このような横シフトは、まだ走行していない作業走行経路全てに対して行われる。この横シフトによって、未作業領域の端部において、作業走行経路が足りなくなった場合には、図19では点線で示されている追加作業走行経路:100Lxが、作成される。この追加作業走行経路:100Lxの作成に関して、例えば、外周領域SAの形成の際に用いられた適当な作業走行経路があれば、当該作業走行経路を横シフトさせて追加作業走行経路:100Lxとして用いてもよい。 In the example of FIG. 19, the travel route adjustment unit 144 laterally shifts the work travel route: 100L4, which has become the specific work travel route: 100SL, to the already-worked area side by a distance corresponding to the above-described shift amount: d1. , Adjusted travel route: AL is created. Since the discharge timing occurs at the end of the travel of the adjusted travel route: AL, the combine leaves the work travel route and heads to the discharge stop location after completing the travel of the adjusted travel route: AL. Since the work travel route: 100L4 is shifted laterally, the route interval between the work travel route: 100L4 and the work travel route: 100L5 adjacent on the non-work area side is widened, so that the route interval becomes the original predetermined interval. , Work traveling route: 100L5 is also shifted laterally. Further, the gap between the work travel route 100L5 and the work travel route 100L6 is also widened by the lateral shift, so that the work travel route 100L6 is laterally shifted to the original predetermined interval. Such a lateral shift is performed for all the work traveling routes that have not traveled yet. When the lateral shift causes a shortage of the work travel route at the end of the unworked area, an additional work travel route: 100Lx indicated by a dotted line in FIG. 19 is created. Regarding the creation of the additional work travel route: 100Lx, for example, if there is an appropriate work travel route used in forming the outer peripheral area SA, the work travel route is laterally shifted and used as the additional work travel route: 100Lx. You may.
 図20の例は、特定作業走行経路:100SLとなった作業走行経路:100L4を横シフトさせるのではなく、作業走行経路:100L4から、既作業領域側にずれ量:d1だけ離れた位置に、作業走行経路:100L4に平行な仮想走行経路を新たに作成し、これを調整走行経路:ALとして用いる。この仮想走行経路は、始端の地図座標位置と、延び方向(向き)だけを定義された経路でよい。この例においては、調整走行経路:ALと作業走行経路:100L4との間の経路間隔は、基本の収穫幅:Woより狭くなっているので、当該経路間隔が元の所定間隔となるように、作業走行経路:100L4より以降の未作業領域に設定されている作業走行経路を全て(図20では、作業走行経路:100L4~100L6)が横シフトされる。この例では、最初に算出されている作業走行経路の数が足りなくなるという不都合が生じないという利点がある。 The example of FIG. 20 does not laterally shift the work travel route: 100L4 that has become the specific work travel route: 100SL, but shifts the work travel route: 100L4 from the work travel route: 100L4 to the existing work area by a shift amount: d1. Work travel route: A new virtual travel route parallel to 100L4 is created and used as the adjusted travel route: AL. This virtual traveling route may be a route in which only the starting map coordinate position and the extending direction (direction) are defined. In this example, since the route interval between the adjusted travel route: AL and the work travel route: 100L4 is narrower than the basic harvest width: Wo, the route interval becomes the original predetermined interval. Work travel route: All of the work travel routes set in the unworked area after 100L4 (work travel route: 100L4 to 100L6 in FIG. 20) are laterally shifted. In this example, there is an advantage that the inconvenience that the number of work traveling routes calculated first becomes insufficient is not generated.
 図21の例では、図20の例のように、調整走行経路:ALを作成したのち、この調整走行経路:ALに沿っての走行の後に残る未作業領域に対して、その収穫幅が均等となるような更新走行経路が新たに設定され直す。図21では、そのように均等割りされた新たな収穫幅である均等収穫幅がWeで示されており、この均等収穫幅:Weを用いて変更された更新走行経路が、La、Lb、Lcで示されている。 In the example of FIG. 21, as in the example of FIG. 20, after the adjusted travel route: AL is created, the harvest width is equal to the unworked area remaining after traveling along the adjusted travel route: AL. Is updated and a new updated traveling route is newly set. In FIG. 21, the uniform harvest width, which is a new harvest width equally divided in such a manner, is indicated by We, and the updated travel route changed using the uniform harvest width: We is represented by La, Lb, and Lc. Indicated by
〔別実施の形態〕
(1)上述の実施形態においては、排出タイミングは、穀粒タンク114の満杯時に発生する構成であったが、それ以外の穀粒タンク114の穀粒貯留状態で排出タイミングが発生する構成を採用してもよい。例えば、運搬車100CVが積載可能な穀粒量が穀粒タンク114に貯留されるタイミングを排出タイミングとしてもよい。さらに、乾燥施設での乾燥工程などの二次処理工程にて受け入れ可能な穀粒量が穀粒タンク114に貯留されるタイミングを排出タイミングとしてもよい。
[Another embodiment]
(1) In the above-described embodiment, the discharge timing is configured to occur when the grain tank 114 is full, but a configuration is employed in which the discharge timing occurs when the grain tank 114 is in the grain storage state. May be. For example, the timing at which the amount of grains that can be loaded on the transport vehicle 100CV is stored in the grain tank 114 may be used as the discharge timing. Further, the timing at which an acceptable amount of grains is stored in the grain tank 114 in a secondary processing step such as a drying step in a drying facility may be used as the discharge timing.
(2)上述の実施形態においては、単位走行距離当たりの収穫量は、収量センサ119からの測定信号に基づいて算出されていたが、これ以外の測定方法を採用することができる。例えば、脱穀装置113から穀粒タンク114に送られてくる穀粒を一時的に貯留させて、その時間当たりの貯留量から単位走行距離当たりの収穫量を算出することも可能である。さらには、穀粒タンク114に接触センサや非接触センサを設け、穀粒タンク114における貯留している穀粒を検出し、その検出結果から貯留量を算出することも可能である。また、それらの測定方法を組み合わせてもよい。 (2) In the above-described embodiment, the yield per unit mileage is calculated based on the measurement signal from the yield sensor 119, but other measurement methods can be adopted. For example, it is also possible to temporarily store the grains sent from the threshing device 113 to the grain tank 114 and calculate the yield per unit traveling distance from the stored amount per hour. Furthermore, it is also possible to provide a contact sensor or a non-contact sensor in the grain tank 114, detect the grains stored in the grain tank 114, and calculate the storage amount from the detection result. Moreover, you may combine those measuring methods.
(3)図17で示された各機能部は、主に説明目的で区分けされている。実際には、各機能部は他の機能部と統合してもよいし、または複数の機能部に分けてもよい。例えば、汎用端末104に構築された機能部に関して、部分的にあるいはその全てが制御装置105に組み込まれてもよい。 (3) Each functional unit shown in FIG. 17 is divided mainly for the purpose of explanation. In practice, each functional unit may be integrated with another functional unit, or may be divided into a plurality of functional units. For example, some or all of the functional units built in the general-purpose terminal 104 may be incorporated in the control device 105.
(4)上述の実施形態においては、周囲刈り走行は、手動走行で行われていたが、2周目以降では、部分的に、特に直線状の走行に関しては、自動走行を採用してもよい。 (4) In the above-described embodiment, the surrounding mowing traveling is performed by manual traveling. However, in the second and subsequent laps, automatic traveling may be partially used, particularly for linear traveling. .
(5)上記実施形態では、収穫機について説明した。上記実施形態における各機能部を走行パターン作成システムとして構成することも可能である。係る場合、走行パターン作成システムは、収穫物を貯留する収穫物タンクを有する収穫機が、複数の平行な作業走行経路を旋回走行経路によってつないで自動走行する往復走行パターンを作成する走行パターン作成システムであって、未作業領域に前記作業走行経路を所定間隔で設定する走行経路設定部と、前記作業走行経路と自車位置とに基づいて前記作業走行経路に沿った自動走行を行う自動走行制御部と、単位走行距離当たりの収穫量に基づいて前記収穫物タンクの排出タイミングが発生する前記作業走行経路である特定作業走行経路及び当該特定作業走行経路における排出タイミング発生位置を予測する排出タイミング予測部と、前記特定作業走行経路での収穫幅より狭い収穫幅とすることで走行終了点まで前記排出タイミングを遅延させる調整走行経路を作成し、当該調整走行経路を前記特定作業走行経路に代えて前記自動走行制御部に与える走行経路調整部と、を備えるように構成することが可能である。 (5) In the above embodiment, the harvester has been described. Each functional unit in the above embodiment can be configured as a running pattern creation system. In such a case, the traveling pattern creating system includes a traveling pattern creating system that creates a reciprocating traveling pattern in which a harvester having a harvest tank that stores harvested products automatically connects a plurality of parallel work traveling paths by a turning traveling path to travel. A travel route setting unit that sets the work travel route in a non-work area at predetermined intervals; and automatic travel control that performs automatic travel along the work travel route based on the work travel route and the position of the own vehicle. And a discharge timing prediction for predicting a specific work travel route that is the work travel route in which the discharge timing of the harvest tank is generated based on a harvest amount per unit travel distance and a discharge timing occurrence position in the specific work travel route. And the harvest timing narrower than the harvest width in the specific work travel route, thereby delaying the discharge timing until the travel end point. Create an adjustment travel route to and can be configured to place the adjustment travel route to the specific working travel path and a travel path adjusting unit to be supplied to the automatic travel control unit.
 また、上記実施形態における各機能部をコンピュータに実現させるための走行パターン作成プログラムとして構成することも可能である。係る場合、走行パターン作成プログラムは、収穫物を貯留する収穫物タンクを有する収穫機が、複数の平行な作業走行経路を旋回走行経路によってつないで自動走行する往復走行パターンを作成する走行パターン作成プログラムであって、未作業領域に前記作業走行経路を所定間隔で設定する走行経路設定機能と、前記作業走行経路と自車位置とに基づいて前記作業走行経路に沿った自動走行を行う自動走行制御機能と、単位走行距離当たりの収穫量に基づいて前記収穫物タンクの排出タイミングが発生する前記作業走行経路である特定作業走行経路及び当該特定作業走行経路における排出タイミング発生位置を予測する排出タイミング予測機能と、前記特定作業走行経路での収穫幅より狭い収穫幅とすることで走行終了点まで前記排出タイミングを遅延させる調整走行経路を作成し、当該調整走行経路を前記特定作業走行経路に代えて前記自動走行制御機能に与える走行経路調整機能と、をコンピュータに実現させるように構成することが可能である。 Further, it is also possible to configure as a running pattern creating program for causing a computer to realize each functional unit in the above embodiment. In such a case, the traveling pattern creating program is a traveling pattern creating program that creates a reciprocating traveling pattern in which a harvester having a harvest tank that stores harvested products automatically connects a plurality of parallel work traveling paths by a turning traveling path. A travel route setting function for setting the work travel route in a non-work area at predetermined intervals; and automatic travel control for performing automatic travel along the work travel route based on the work travel route and the position of the own vehicle. A discharge timing prediction for predicting a function and a specific work travel path that is the work travel path in which the discharge timing of the harvest tank is generated based on a harvest amount per unit travel distance and a discharge timing occurrence position in the specific work travel path. Function and by setting the harvest width smaller than the harvest width in the specific work travel route, the discharge tie It is possible to configure the computer to realize an adjustment traveling route that delays the running, and to realize a traveling route adjustment function that gives the automatic traveling control function to the automatic traveling control function in place of the adjustment traveling route in place of the specific work traveling route. is there.
 また、このような走行パターン作成プログラムを、記録媒体に記録するように構成することも可能である。 Further, such a running pattern creation program can be configured to be recorded on a recording medium.
 更に、収穫物を貯留する収穫物タンクを有する収穫機が、複数の平行な作業走行経路を旋回走行経路によってつないで自動走行する往復走行パターンを作成する走行パターン作成方法として、未作業領域に前記作業走行経路を所定間隔で設定する走行経路設定工程と、前記作業走行経路と自車位置とに基づいて前記作業走行経路に沿った自動走行を行う自動走行制御工程と、単位走行距離当たりの収穫量に基づいて前記収穫物タンクの排出タイミングが発生する前記作業走行経路である特定作業走行経路及び当該特定作業走行経路における排出タイミング発生位置を予測する排出タイミング予測工程と、前記特定作業走行経路での収穫幅より狭い収穫幅とすることで走行終了点まで前記排出タイミングを遅延させる調整走行経路を作成し、当該調整走行経路を前記特定作業走行経路に代えて前記自動走行制御工程に与える走行経路調整工程と、を備えるように構成することも可能である。 Further, as a traveling pattern creating method for creating a reciprocating traveling pattern in which a harvester having a harvest tank for storing the harvest is connected to a plurality of parallel working traveling paths by a turning traveling path to automatically travel, the harvester includes A travel route setting step of setting a work travel path at a predetermined interval; an automatic travel control step of performing automatic travel along the work travel path based on the work travel path and the position of the vehicle; and harvesting per unit travel distance A discharge timing prediction step of predicting a specific work travel path that is the work travel path in which the discharge timing of the crop tank is generated based on the amount and a discharge timing occurrence position in the specific work travel path; Create an adjusted travel route that delays the discharge timing until the travel end point by making the harvest width narrower than the harvest width of It is also possible to configure to include a traveling path adjusting step of providing the automatic travel control process in place of the adjustment travel route to the specific working travel route, the.
 本発明は、コンバイン等の様々な収穫作業車や収穫機に好適である。 The present invention is suitable for various harvesting vehicles and harvesters such as combine harvesters.
 本発明は、普通型のコンバインだけでなく、自脱型のコンバインにも利用可能である。また、トウモロコシ収穫機、ニンジン収穫機、サトウキビ収穫機等の種々の収穫機にも利用できる。 The present invention can be used not only for a normal combine but also for a self-contained combine. Further, the present invention can be used for various harvesters such as a corn harvester, a carrot harvester, and a sugarcane harvester.
〔第1の実施形態〕
 14  :穀粒タンク
 15  :切断機構
 16  :搬送装置
 17  :リール
 18  :穀粒排出装置
 19  :収量センサ
 20  :収量出力部
 54  :走行経路生成部
 71  :収量率算出部
 72  :総収量算出部
 73  :排出回数算出部
 74  :排出基準収量算出部
 80  :衛星測位モジュール
 84  :面積算出部
 86  :排出ポイント設定部
 90  :入力処理部
〔第2の実施形態〕
 110  :機体
 113  :脱穀装置
 114  :穀粒タンク
 115  :収穫部
 116  :搬送装置
 118  :穀粒排出装置
 119  :収量センサ
 104   :汎用端末
 142  :作業走行管理部
 1422 :作業領域決定部
 143  :走行経路算出部
 144  :走行経路調整部
 105   :制御装置
 150  :自車位置算出部
 151  :走行制御部
 1511 :手動走行制御部
 1512 :自動走行制御部
 1513 :走行経路設定部
 153  :穀粒貯留情報生成部
 154  :排出タイミング予測部
 100CA  :未作業領域
 SA  :外周領域
[First Embodiment]
14: Grain tank 15: Cutting mechanism 16: Conveying device 17: Reel 18: Grain discharging device 19: Yield sensor 20: Yield output unit 54: Travel route generation unit 71: Yield rate calculation unit 72: Total yield calculation unit 73 : Emission frequency calculation unit 74: Emission standard yield calculation unit 80: Satellite positioning module 84: Area calculation unit 86: Emission point setting unit 90: Input processing unit [Second embodiment]
110: Machine body 113: Threshing device 114: Grain tank 115: Harvesting unit 116: Conveying device 118: Grain discharging device 119: Yield sensor 104: General-purpose terminal 142: Work traveling management unit 1422: Work area determination unit 143: Travel route Calculation unit 144: Travel route adjustment unit 105: Control device 150: Own vehicle position calculation unit 151: Travel control unit 1511: Manual travel control unit 1512: Automatic travel control unit 1513: Travel route setting unit 153: Grain storage information generation unit 154: discharge timing prediction unit 100CA: unworked area SA: outer peripheral area

Claims (41)

  1.  圃場の未作業地を、互いに並列する走行経路に沿って自動走行で往復走行しながら、前記未作業地の作物を収穫する収穫機における自動走行経路を生成する走行経路生成システムであって、
     前記圃場における単位面積あたりの収量である収量率を取得する収量取得部と、
     前記未作業地の面積を取得する面積取得部と、
     前記収量率と前記面積とから、前記未作業地で収穫されることが予測される穀粒の総収量を推定する総収量推定部と、
     前記未作業地の形状及び前記総収量に基づいて、前記未作業地の形状が前記往復走行に最適な形状となるように、前記往復走行に先立って自動走行を行う予備調整経路を生成する走行経路生成部とを備える走行経路生成システム。
    A traveling route generation system that generates an automatic traveling route in a harvester that harvests a crop of the unworked land while reciprocating the unworked land of the field by automatic traveling along traveling paths that are parallel to each other,
    A yield obtaining unit that obtains a yield rate that is a yield per unit area in the field,
    An area acquisition unit that acquires an area of the unworked land,
    From the yield rate and the area, a total yield estimating unit that estimates the total yield of kernels that are expected to be harvested in the unworked land,
    Travel that generates a preliminary adjustment route that performs automatic travel prior to the reciprocating travel so that the shape of the unworked ground becomes an optimal shape for the reciprocating travel based on the shape of the unworked ground and the total yield. A traveling route generation system including a route generation unit.
  2.  前記収穫するのに最適な形状は、前記走行経路の途中で排出収量にならないような形状であり、
     前記走行経路生成部は、前記排出収量を考慮して前記予備調整経路を生成する請求項1に記載の走行経路生成システム。
    The optimal shape for harvesting is a shape that does not result in emission yield in the middle of the traveling route,
    The travel route generation system according to claim 1, wherein the travel route generation unit generates the preliminary adjustment route in consideration of the emission yield.
  3.  前記排出収量は穀粒タンクの満杯状態における収量である請求項2に記載の走行経路生成システム。 The travel route generation system according to claim 2, wherein the discharge yield is a yield in a state where the grain tank is full.
  4.  前記排出収量は穀粒タンクの満杯状態における収量の所定割合以上となるように設定される請求項2に記載の走行経路生成システム。 The travel route generation system according to claim 2, wherein the discharge yield is set to be equal to or more than a predetermined ratio of the yield when the grain tank is full.
  5.  穀粒タンクに貯留された前記穀粒を排出するための排出ポイントを前記未作業地の外側部の前記走行経路の一端側に設定する排出ポイント設定部を備え、
     前記走行経路生成部は、前記未作業地の外形を構成する辺の内、前記走行経路の一端または他端が位置する辺上で前記排出収量となるように前記予備調整経路を生成する請求項2から4のいずれか一項に記載の走行経路生成システム。
    A discharge point setting unit that sets a discharge point for discharging the kernel stored in a kernel tank to one end side of the traveling path on an outer side of the unworked land,
    The travel route generation unit generates the preliminary adjustment route such that the discharge yield is obtained on a side on which one end or the other end of the travel route is located, among sides constituting an outer shape of the unworked land. The travel route generation system according to any one of 2 to 4.
  6.  前記走行経路生成部は、前記未作業地を構成する辺の内、前記圃場における畦からの進入口に向かい合う一辺または前記進入口に向かい合う一辺と前記走行経路を挟んで逆側の辺上で前記未作業地の収穫作業を終えるように前記予備調整経路を生成する請求項1から5のいずれか一項に記載の走行経路生成システム。 The traveling route generation unit is configured to include, on the opposite side across the traveling route, one side facing the entrance from the ridge in the field or one side facing the entrance, of the sides constituting the unworked land, The travel route generation system according to any one of claims 1 to 5, wherein the preliminary adjustment route is generated so as to complete a harvest operation of an unworked land.
  7.  前記予備調整経路は、前記往復走行の前記走行経路の長さを調整するための経路である請求項1から6のいずれか一項に記載の走行経路生成システム。 The travel route generation system according to any one of claims 1 to 6, wherein the preliminary adjustment route is a route for adjusting a length of the travel route of the reciprocating travel.
  8.  前記予備調整経路は、前記走行経路と交わる方向に沿った経路である請求項1から7のいずれか一項に記載の走行経路生成システム。 The travel route generation system according to any one of claims 1 to 7, wherein the preliminary adjustment route is a route along a direction intersecting the travel route.
  9.  前記予備調整経路は、前記未作業地の外周に沿った経路である請求項1から7のいずれか一項に記載の走行経路生成システム。 The travel route generating system according to any one of claims 1 to 7, wherein the preliminary adjustment route is a route along an outer periphery of the unworked land.
  10.  圃場の未作業地を、互いに並列する走行経路に沿って自動走行で往復走行しながら、前記未作業地の作物を収穫するコンバインにおける自動走行経路を生成する走行経路生成方法であって、
     前記圃場における単位面積あたりの収量である収量率を取得する工程と、
     前記未作業地の面積を取得する工程と、
     前記収量率と前記面積とから、前記未作業地で収穫されることが予測される穀粒の総収量を推定する工程と、
     前記未作業地の形状及び前記総収量に基づいて、前記未作業地の形状が前記往復走行に最適な形状となるように、前記往復走行に先立って自動走行を行う予備調整経路を生成する工程とを備える走行経路生成方法。
    A traveling route generation method for generating an automatic traveling route in a combine harvesting a crop of the unworked land while automatically reciprocating the unworked land of the field along a traveling path parallel to each other,
    Obtaining a yield rate that is the yield per unit area in the field,
    A step of acquiring the area of the unworked land;
    From the yield rate and the area, the step of estimating the total yield of the grain is expected to be harvested in the unworked land,
    A step of generating a preliminary adjustment path for performing automatic traveling prior to the reciprocation, based on the shape of the unreached land and the total yield, such that the shape of the unreached land becomes an optimal shape for the reciprocation. A driving route generation method comprising:
  11.  前記収穫するのに最適な形状は、前記走行経路の途中で排出収量にならないような形状であり、
     前記排出収量を考慮して前記予備調整経路を生成する請求項10に記載の走行経路生成方法。
    The optimal shape for harvesting is a shape that does not result in emission yield in the middle of the traveling route,
    The travel route generation method according to claim 10, wherein the preliminary adjustment route is generated in consideration of the emission yield.
  12.  前記排出収量は穀粒タンクの満杯状態における収量である請求項11に記載の走行経路生成方法。 The travel route generation method according to claim 11, wherein the discharge yield is a yield when the grain tank is full.
  13.  前記排出収量は穀粒タンクの満杯状態における収量の所定割合以上となるように設定される請求項11に記載の走行経路生成方法。 The travel route generation method according to claim 11, wherein the discharge yield is set to be equal to or more than a predetermined ratio of the yield when the grain tank is full.
  14.  穀粒タンクに貯留された前記穀粒を排出するための排出ポイントが前記未作業地の外側部の前記走行経路の一端側に設定され、
     前記未作業地の外形を構成する辺の内、前記走行経路の一端または他端が位置する辺上で前記排出収量となるように前記予備調整経路を生成する請求項11から13のいずれか一項に記載の走行経路生成方法。
    A discharge point for discharging the kernel stored in the kernel tank is set at one end of the traveling path on the outer side of the unworked land,
    14. The pre-adjustment route is generated such that the discharge yield is obtained on a side on which one end or the other end of the travel route is located among sides constituting an outer shape of the unworked land. The driving route generation method according to the paragraph.
  15.  前記未作業地を構成する辺の内、前記圃場における畦からの進入口に向かい合う一辺または前記進入口に向かい合う一辺と前記走行経路を挟んで逆側の辺上で前記未作業地の収穫作業を終えるように前記予備調整経路を生成する請求項10から14のいずれか一項に記載の走行経路生成方法。 Of the sides constituting the unworked land, the harvesting of the unworked land is performed on one side facing the entrance from the ridge in the field or on the side opposite to the one side facing the entrance with the traveling path interposed therebetween. The traveling route generation method according to any one of claims 10 to 14, wherein the preliminary adjustment route is generated so as to end.
  16.  前記予備調整経路は、前記往復走行の前記走行経路の長さを調整するための経路である請求項10から15のいずれか一項に記載の走行経路生成方法。 The travel route generation method according to any one of claims 10 to 15, wherein the preliminary adjustment route is a route for adjusting a length of the travel route of the reciprocating travel.
  17.  前記予備調整経路は、前記走行経路と交わる方向に沿った経路である請求項10から16のいずれか一項に記載の走行経路生成方法。 The travel route generation method according to any one of claims 10 to 16, wherein the preliminary adjustment route is a route along a direction intersecting the travel route.
  18.  前記予備調整経路は、前記未作業地の外周に沿った経路である請求項10から16のいずれか一項に記載の走行経路生成方法。 The travel route generation method according to any one of claims 10 to 16, wherein the preliminary adjustment route is a route along an outer periphery of the unworked land.
  19.  圃場の未作業地を、互いに並列する走行経路に沿って自動走行で往復走行しながら、前記未作業地の作物を収穫するコンバインにおける自動走行経路を生成する走行経路生成プログラムであって、
     前記圃場における単位面積あたりの収量である収量率を取得する機能と、
     前記未作業地の面積を取得する機能と、
     前記収量率と前記面積とから、前記未作業地で収穫されることが予測される穀粒の総収量を推定する機能と、
     前記未作業地の形状及び前記総収量に基づいて、前記未作業地の形状が前記往復走行に最適な形状となるように、前記往復走行に先立って自動走行を行う予備調整経路を生成する機能と、
    をコンピュータに実現させるための走行経路生成プログラム。
    A traveling route generating program for generating an automatic traveling route in a combine harvesting a crop of the unworked land while automatically reciprocating the unworked land of the field along a traveling path parallel to each other,
    A function of obtaining a yield rate that is a yield per unit area in the field,
    A function of acquiring the area of the unworked land,
    From the yield rate and the area, the function of estimating the total yield of the grain is expected to be harvested in the unworked land,
    A function of generating a preliminary adjustment path for performing automatic traveling prior to the reciprocation, based on the shape of the unoccupied land and the total yield, so that the shape of the untreated land becomes an optimal shape for the reciprocation. When,
    Route generation program for causing a computer to realize the operation.
  20.  圃場の未作業地を、互いに並列する走行経路に沿って自動走行で往復走行しながら、前記未作業地の作物を収穫するコンバインにおける自動走行経路を生成する走行経路生成プログラムを記録した記録媒体であって、
     前記圃場における単位面積あたりの収量である収量率を取得する機能と、
     前記未作業地の面積を取得する機能と、
     前記収量率と前記面積とから、前記未作業地で収穫されることが予測される穀粒の総収量を推定する機能と、
     前記未作業地の形状及び前記総収量に基づいて、前記未作業地の形状が前記往復走行に最適な形状となるように、前記往復走行に先立って自動走行を行う予備調整経路を生成する機能と、
    をコンピュータに実現させるための走行経路生成プログラムが記録されている記録媒体。
    A recording medium recording a traveling route generation program for generating an automatic traveling route in a combine harvesting crops of the unworked land while reciprocating in an unworked land of the field along an automatic traveling along a traveling path parallel to each other. So,
    A function of obtaining a yield rate that is a yield per unit area in the field,
    A function of acquiring the area of the unworked land,
    From the yield rate and the area, the function of estimating the total yield of the grain is expected to be harvested in the unworked land,
    A function of generating a preliminary adjustment path for performing automatic traveling prior to the reciprocation, based on the shape of the unoccupied land and the total yield, so that the shape of the untreated land becomes an optimal shape for the reciprocation. When,
    Recording medium for recording a traveling route generation program for causing a computer to realize the above.
  21.  作物を収穫して脱穀した穀粒を貯留する穀粒タンクと前記穀粒タンクに貯留された穀粒の収量を測定する収量センサとを有し、圃場内の外周領域の作物を手動走行で収穫し、前記手動走行が行われた既作業地の内側の未作業地を自動走行しながら作物の収穫を行うコンバインのための作業管理システムであって、
     前記コンバインに設けられ、衛星からの衛星信号を受信する衛星アンテナと、
     前記コンバインに設けられ、前記衛星信号に基づいて自車位置に対応する測位データを出力する衛星測位モジュールと、
     前記コンバインに設けられ、前記収量センサが測定した前記収量を出力する収量出力部と、
     前記測位データ及び前記収量を取得するデータ取得部と、
     前記手動走行時に取得した前記測位データから、前記既作業地の既作業地面積と前記未作業地の未作業地面積とを算出する面積算出部と、
     前記手動走行時に取得した前記収量と前記既作業地面積とから、前記既作業地における単位面積当たりの収量である収量率を算出する収量率算出部と、
     前記未作業地面積と前記収量率とから、前記未作業地で収穫されることが予想される穀粒の総収量を推定する総収量推定部と
    を備える作業管理システム。
    A grain tank that stores the grain obtained by harvesting and threshing the crop, and a yield sensor that measures the yield of the grain stored in the grain tank, and manually harvests the crop in the outer peripheral area in the field A work management system for a combine that harvests a crop while automatically traveling on an unworked land inside the already-worked land where the manual traveling has been performed,
    A satellite antenna provided in the combine, for receiving a satellite signal from a satellite;
    A satellite positioning module that is provided in the combine and outputs positioning data corresponding to the vehicle position based on the satellite signal;
    A yield output unit that is provided in the combine and outputs the yield measured by the yield sensor,
    A data acquisition unit that acquires the positioning data and the yield,
    From the positioning data acquired at the time of the manual traveling, an area calculation unit that calculates an already-worked area of the already-worked area and an un-worked area of the un-worked area,
    From the yield obtained at the time of the manual traveling and the area of the already-worked land, a yield rate calculation unit that calculates a yield rate that is a yield per unit area in the already-worked land,
    A work management system comprising: a total yield estimating unit configured to estimate a total yield of kernels that are expected to be harvested in the unworked land from the unworked land area and the yield rate.
  22.  前記総収量を前記穀粒タンクの排出収量で除した上で小数点以下を繰り上げて、前記未作業地の自動走行中に最低限必要な排出回数を算出する排出回数算出部を備える請求項21に記載の作業管理システム。 22. The apparatus according to claim 21, further comprising a discharge frequency calculation unit configured to calculate the minimum required discharge frequency during the automatic traveling of the unworked land by raising the decimal part after dividing the total yield by the discharge yield of the grain tank. Work management system as described.
  23.  前記手動走行中に穀粒の排出を行った場合、前記排出回数算出部は、前記手動走行中の排出時に貯留されていた収量を前記排出収量として前記排出回数を算出する請求項22に記載の作業管理システム。 23. The method according to claim 22, wherein when discharging the grain during the manual driving, the discharge frequency calculating unit calculates the discharge frequency by setting the yield stored at the time of discharging during the manual driving as the discharge yield. Work management system.
  24.  前記総収量と前記排出回数とから、前記排出収量以下の収量である排出基準収量を算出する排出基準収量算出部と、
     前記排出基準収量に基づいて、自動走行経路を生成する走行経路生成部と
    を備える請求項22又は23に記載の作業管理システム。
    From the total yield and the number of discharges, an emission-based yield calculation unit that calculates an emission-based yield that is equal to or less than the emission yield,
    24. The work management system according to claim 22, further comprising: a traveling route generation unit configured to generate an automatic traveling route based on the emission reference yield.
  25.  前記穀粒タンクに貯留された穀粒を排出する排出ポイントを設定する排出ポイント設定部を備え、
     前記走行経路生成部は、前記排出ポイントを考慮して前記自動走行経路を生成する請求項24に記載の作業管理システム。
    A discharge point setting unit that sets a discharge point for discharging the kernel stored in the kernel tank,
    25. The work management system according to claim 24, wherein the travel route generation unit generates the automatic travel route in consideration of the discharge point.
  26.  作物を収穫して脱穀した穀粒を貯留する穀粒タンクと前記穀粒タンクに貯留された穀粒の収量を測定する収量センサとを有し、圃場内の外周領域の作物を手動走行で収穫し、前記手動走行が行われた既作業地の内側の未作業地を自動走行しながら作物の収穫を行うコンバインに対して行われる作業管理方法であって、
     衛星からの衛星信号を受信し、前記衛星信号に基づいて前記コンバインの自車位置に対応する測位データを算出する工程と、
     前記測位データ及び前記収量を取得する工程と、
     前記手動走行時に取得した前記測位データから、前記既作業地の既作業地面積と前記未作業地の未作業地面積とを算出する工程と、
     前記手動走行時に取得した前記収量と前記既作業地面積とから、前記既作業地における単位面積当たりの収量である収量率を算出する工程と、
     前記未作業地面積と前記収量率とから、前記未作業地で収穫されることが予想される穀粒の総収量を算出する工程とを備える作業管理方法。
    A grain tank that stores the grain obtained by harvesting and threshing the crop, and a yield sensor that measures the yield of the grain stored in the grain tank, and manually harvests the crop in the outer peripheral area in the field A work management method performed on a combine that harvests a crop while automatically traveling on an unworked land inside the already-worked land where the manual traveling was performed,
    Receiving a satellite signal from a satellite, and calculating positioning data corresponding to the own vehicle position of the combine based on the satellite signal;
    Obtaining the positioning data and the yield,
    From the positioning data obtained at the time of the manual traveling, a step of calculating the work area of the work area and the work area of the work area, and
    A step of calculating a yield rate that is a yield per unit area in the already-worked land from the yield and the already-worked land area acquired during the manual traveling,
    Calculating a total yield of kernels expected to be harvested in the unworked land from the unworked land area and the yield rate.
  27.  前記総収量を前記穀粒タンクの排出収量で除した上で小数点以下を繰り上げて、前記未作業地の自動走行中に最低限必要な排出回数を算出する工程を備える請求項26に記載の作業管理方法。 27. The work according to claim 26, further comprising a step of dividing the total yield by the discharge yield of the grain tank, and then moving up the decimal portion to calculate a minimum required discharge frequency during the automatic traveling of the unworked land. Management method.
  28.  前記手動走行中に穀粒の排出を行った場合、前記手動走行中の排出時に貯留されていた収量を前記排出収量として前記排出回数を算出する請求項27に記載の作業管理方法。 28. The work management method according to claim 27, wherein when the grain is discharged during the manual traveling, the number of discharges is calculated using the yield stored at the time of the discharging during the manual traveling as the discharge yield.
  29.  前記総収量と前記排出回数とから、前記排出収量以下の収量である排出基準収量を算出する工程と、
     前記排出基準収量に基づいて、自動走行経路を生成する工程と
    を備える請求項27又は28に記載の作業管理方法。
    From the total yield and the number of discharges, a step of calculating a discharge reference yield that is a yield equal to or less than the discharge yield,
    And generating an automatic traveling route based on the emission reference yield.
  30.  前記穀粒タンクに貯留された穀粒を排出する排出ポイントを設定する工程を備え、
     前記自動走行経路は、前記排出ポイントを考慮して生成される請求項29に記載の作業管理方法。
    A step of setting a discharge point for discharging the kernel stored in the kernel tank,
    The work management method according to claim 29, wherein the automatic traveling route is generated in consideration of the discharge point.
  31.  作物を収穫して脱穀した穀粒を貯留する穀粒タンクと前記穀粒タンクに貯留された穀粒の収量を測定する収量センサとを有し、圃場内の外周領域の作物を手動走行で収穫し、前記手動走行が行われた既作業地の内側の未作業地を自動走行しながら作物の収穫を行うコンバインの作業を監視する作業管理プログラムであって、
     衛星からの衛星信号を受信し、前記衛星信号に基づいて前記コンバインの自車位置に対応する測位データを算出する機能と、
     前記測位データ及び前記収量を取得する機能と、
     前記手動走行時に取得した前記測位データから、前記既作業地の既作業地面積と前記未作業地の未作業地面積とを算出する機能と、
     前記手動走行時に取得した前記収量と前記既作業地面積とから、前記既作業地における単位面積当たりの収量である収量率を算出する機能と、
     前記未作業地面積と前記収量率とから、前記未作業地で収穫されることが予想される穀粒の総収量を算出する機能と、
    をコンピュータに実現させるための作業管理プログラム。
    A grain tank that stores the grain obtained by harvesting and threshing the crop, and a yield sensor that measures the yield of the grain stored in the grain tank, and manually harvests the crop in the outer peripheral area in the field A work management program for monitoring the work of a combine that harvests a crop while automatically running on an unworked land inside the already-worked land where the manual running was performed,
    A function of receiving a satellite signal from a satellite and calculating positioning data corresponding to the own vehicle position of the combine based on the satellite signal;
    A function of acquiring the positioning data and the yield,
    From the positioning data acquired at the time of the manual traveling, a function of calculating the work area of the work area and the work area of the work area, and
    A function of calculating a yield rate that is a yield per unit area in the already-worked land from the yield and the already-worked land area acquired during the manual traveling;
    From the unworked land area and the yield rate, a function of calculating the total yield of kernels expected to be harvested in the unworked land,
    Work management program to make a computer realize.
  32.  作物を収穫して脱穀した穀粒を貯留する穀粒タンクと前記穀粒タンクに貯留された穀粒の収量を測定する収量センサとを有し、圃場内の外周領域の作物を手動走行で収穫し、前記手動走行が行われた既作業地の内側の未作業地を自動走行しながら作物の収穫を行うコンバインの作業を監視する作業管理プログラムを記録した記録媒体であって、
     衛星からの衛星信号を受信し、前記衛星信号に基づいて前記コンバインの自車位置に対応する測位データを算出する機能と、
     前記測位データ及び前記収量を取得する機能と、
     前記手動走行時に取得した前記測位データから、前記既作業地の既作業地面積と前記未作業地の未作業地面積とを算出する機能と、
     前記手動走行時に取得した前記収量と前記既作業地面積とから、前記既作業地における単位面積当たりの収量である収量率を算出する機能と、
     前記未作業地面積と前記収量率とから、前記未作業地で収穫されることが予想される穀粒の総収量を算出する機能と、
    をコンピュータに実現させるための作業管理プログラムが記録されている記録媒体。
    A grain tank that stores the grain obtained by harvesting and threshing the crop, and a yield sensor that measures the yield of the grain stored in the grain tank, and manually harvests the crop in the outer peripheral area in the field A recording medium recording a work management program for monitoring the work of a combine harvesting crop while automatically traveling on an unworked land inside the already-worked land where the manual running was performed,
    A function of receiving a satellite signal from a satellite and calculating positioning data corresponding to the own vehicle position of the combine based on the satellite signal;
    A function of acquiring the positioning data and the yield,
    From the positioning data acquired at the time of the manual traveling, a function of calculating the work area of the work area and the work area of the work area, and
    A function of calculating a yield rate that is a yield per unit area in the already-worked land from the yield and the already-worked land area acquired during the manual traveling;
    From the unworked land area and the yield rate, a function of calculating the total yield of kernels expected to be harvested in the unworked land,
    Recording medium on which a work management program for causing a computer to realize the above is recorded.
  33.  複数の平行な作業走行経路を旋回走行経路によってつないで走行する往復走行パターンで自動走行する収穫機であって、
     収穫物を貯留する収穫物タンクと、
     未作業領域に前記作業走行経路を所定間隔で設定する走行経路設定部と、
     前記作業走行経路と自車位置とに基づいて前記作業走行経路に沿った自動走行を行う自動走行制御部と、
     単位走行距離当たりの収穫量に基づいて前記収穫物タンクの排出タイミングが発生する前記作業走行経路である特定作業走行経路及び当該特定作業走行経路における排出タイミング発生位置を予測する排出タイミング予測部と、
     前記特定作業走行経路での収穫幅より狭い収穫幅とすることで走行終了点まで前記排出タイミングを遅延させる調整走行経路を作成し、当該調整走行経路を前記特定作業走行経路に代えて前記自動走行制御部に与える走行経路調整部と、
    を備えた収穫機。
    A harvester that automatically travels in a reciprocating traveling pattern in which a plurality of parallel work traveling paths are connected by a turning traveling path and travels,
    A crop tank for storing the crop,
    A travel route setting unit that sets the work travel route in a non-work area at predetermined intervals,
    An automatic travel control unit that performs automatic travel along the work travel path based on the work travel path and the vehicle position,
    A discharge timing prediction unit that predicts a specific work travel path that is the work travel path and a discharge timing occurrence position in the specific work travel path that is the work travel path in which the discharge timing of the crop tank is generated based on a harvest amount per unit traveling distance,
    An adjusted travel route that delays the discharge timing until a travel end point is created by setting the harvest width smaller than the harvest width in the specific work travel route, and the automatic travel is performed instead of the adjusted work route in place of the specific work travel route A traveling route adjustment unit to be given to the control unit;
    Harvester equipped with.
  34.  前記走行経路調整部は、前記特定作業走行経路を前記収穫幅が減少する方向に横シフトさせることで前記調整走行経路を作成し、当該特定作業走行経路の横シフトによって広がった前記作業走行経路の間隔を前記所定間隔にするために、前記未作業領域における前記作業走行経路を横シフトする請求項33に記載の収穫機。 The travel route adjustment unit creates the adjusted travel route by laterally shifting the specific work travel route in a direction in which the harvest width decreases, and creates the adjusted travel route by the lateral shift of the specific work travel route. 34. The harvester according to claim 33, wherein the work travel path in the unworked area is laterally shifted to set the interval to the predetermined interval.
  35.  前記走行経路調整部は、前記調整走行経路として、前記特定作業走行経路に平行な仮想走行経路を新たに作成する請求項33に記載の収穫機。 34. The harvester according to claim 33, wherein the travel route adjustment unit newly creates a virtual travel route parallel to the specific work travel route as the adjusted travel route.
  36.  前記走行経路調整部は、前記特定作業走行経路及び前記未作業領域における前記作業走行経路を前記仮想走行経路から遠ざかる方向に横シフトし、この横シフトの値は、前記所定間隔から前記特定作業走行経路と前記仮想走行経路との間隔を引いた値である請求項35に記載の収穫機。 The travel route adjustment unit laterally shifts the specific work travel route and the work travel route in the non-work area in a direction away from the virtual travel route, and a value of the lateral shift is determined based on the specific work travel route from the predetermined interval. The harvester according to claim 35, wherein the harvester is a value obtained by subtracting an interval between a route and the virtual traveling route.
  37.  前記走行経路調整部は、前記調整走行経路の走行後に残る未作業領域に対して前記収穫幅が均等となる更新走行経路を作成し、当該未作業領域に先に設定されている前記作業走行経路を前記更新走行経路で置き換える請求項35に記載の収穫機。 The traveling route adjustment unit creates an updated traveling route in which the harvest width is equal to an unworked region remaining after traveling on the adjusted traveling route, and the work traveling route set earlier in the unworked region. 36. The harvester according to claim 35, wherein is replaced with the updated travel route.
  38.  収穫物を貯留する収穫物タンクを有する収穫機が、複数の平行な作業走行経路を旋回走行経路によってつないで自動走行する往復走行パターンを作成する走行パターン作成システムであって、
     未作業領域に前記作業走行経路を所定間隔で設定する走行経路設定部と、
     前記作業走行経路と自車位置とに基づいて前記作業走行経路に沿った自動走行を行う自動走行制御部と、
     単位走行距離当たりの収穫量に基づいて前記収穫物タンクの排出タイミングが発生する前記作業走行経路である特定作業走行経路及び当該特定作業走行経路における排出タイミング発生位置を予測する排出タイミング予測部と、
     前記特定作業走行経路での収穫幅より狭い収穫幅とすることで走行終了点まで前記排出タイミングを遅延させる調整走行経路を作成し、当該調整走行経路を前記特定作業走行経路に代えて前記自動走行制御部に与える走行経路調整部と、
    を備えた走行パターン作成システム。
    A harvesting machine having a harvest tank for storing the harvest, a traveling pattern creating system that creates a reciprocating traveling pattern that automatically travels by connecting a plurality of parallel work traveling paths by a turning traveling path,
    A travel route setting unit that sets the work travel route in a non-work area at predetermined intervals,
    An automatic travel control unit that performs automatic travel along the work travel path based on the work travel path and the vehicle position,
    A discharge timing prediction unit that predicts a specific work travel path that is the work travel path and a discharge timing occurrence position in the specific work travel path that is the work travel path in which the discharge timing of the crop tank is generated based on a harvest amount per unit traveling distance,
    An adjusted travel route that delays the discharge timing until a travel end point is created by setting the harvest width smaller than the harvest width in the specific work travel route, and the automatic travel is performed instead of the adjusted work route in place of the specific work travel route A traveling route adjustment unit to be given to the control unit;
    A running pattern creation system equipped with
  39.  収穫物を貯留する収穫物タンクを有する収穫機が、複数の平行な作業走行経路を旋回走行経路によってつないで自動走行する往復走行パターンを作成する走行パターン作成プログラムであって、
     未作業領域に前記作業走行経路を所定間隔で設定する走行経路設定機能と、
     単位走行距離当たりの収穫量に基づいて前記収穫物タンクの排出タイミングが発生する前記作業走行経路である特定作業走行経路及び当該特定作業走行経路における排出タイミング発生位置を予測する排出タイミング予測機能と、
     前記特定作業走行経路での収穫幅より狭い収穫幅とすることで走行終了点まで前記排出タイミングを遅延させる調整走行経路を作成する走行経路調整機能と、
    をコンピュータに実現させるための走行パターン作成プログラム。
    A harvesting machine having a harvest tank for storing the harvest, a traveling pattern creating program for creating a reciprocating traveling pattern for automatically traveling by connecting a plurality of parallel work traveling paths by a turning traveling path,
    A travel route setting function for setting the work travel route in a non-work area at predetermined intervals;
    A discharge timing prediction function for predicting a specific work travel path that is the work travel path and a discharge timing occurrence position in the specific work travel path, the discharge timing of the crop tank being generated based on a harvest amount per unit travel distance,
    A travel route adjustment function for creating an adjusted travel route that delays the discharge timing until a travel end point by setting a harvest width smaller than the harvest width in the specific work travel route,
    Running pattern creation program to make the computer realize.
  40.  収穫物を貯留する収穫物タンクを有する収穫機が、複数の平行な作業走行経路を旋回走行経路によってつないで自動走行する往復走行パターンを作成する走行パターン作成プログラムを記録した記録媒体であって、
     未作業領域に前記作業走行経路を所定間隔で設定する走行経路設定機能と、
     単位走行距離当たりの収穫量に基づいて前記収穫物タンクの排出タイミングが発生する前記作業走行経路である特定作業走行経路及び当該特定作業走行経路における排出タイミング発生位置を予測する排出タイミング予測機能と、
     前記特定作業走行経路での収穫幅より狭い収穫幅とすることで走行終了点まで前記排出タイミングを遅延させる調整走行経路を作成する走行経路調整機能と、
    をコンピュータに実現させるための走行パターン作成プログラムが記録されている記録媒体。
    A harvester having a harvest tank for storing the harvest, a recording medium that records a traveling pattern creation program that creates a reciprocating traveling pattern that automatically travels by connecting a plurality of parallel work traveling paths by a turning traveling path,
    A travel route setting function for setting the work travel route in a non-work area at predetermined intervals;
    A discharge timing prediction function for predicting a specific work travel path that is the work travel path and a discharge timing occurrence position in the specific work travel path, the discharge timing of the crop tank being generated based on a harvest amount per unit travel distance,
    A travel route adjustment function for creating an adjusted travel route that delays the discharge timing until a travel end point by setting a harvest width smaller than the harvest width in the specific work travel route,
    Recording medium on which a running pattern creation program for causing a computer to realize the above is recorded.
  41.  収穫物を貯留する収穫物タンクを有する収穫機が、複数の平行な作業走行経路を旋回走行経路によってつないで自動走行する往復走行パターンを作成する走行パターン作成方法であって、
     未作業領域に前記作業走行経路を所定間隔で設定する走行経路設定工程と、
     単位走行距離当たりの収穫量に基づいて前記収穫物タンクの排出タイミングが発生する前記作業走行経路である特定作業走行経路及び当該特定作業走行経路における排出タイミング発生位置を予測する排出タイミング予測工程と、
     前記特定作業走行経路での収穫幅より狭い収穫幅とすることで走行終了点まで前記排出タイミングを遅延させる調整走行経路を作成する走行経路調整工程と、
    を備える走行パターン作成方法。
    A harvesting machine having a harvest tank for storing the harvest, a traveling pattern creating method for creating a reciprocating traveling pattern for automatically traveling by connecting a plurality of parallel work traveling paths by a turning traveling path,
    A travel route setting step of setting the work travel route in a non-work area at predetermined intervals;
    A discharge timing prediction step of predicting a specific work travel path that is the work travel path and a discharge timing occurrence position in the specific work travel path that is the work travel path in which the discharge timing of the crop tank is generated based on a harvest amount per unit traveling distance,
    A travel route adjustment step of creating an adjusted travel route that delays the discharge timing until a travel end point by setting a harvest width smaller than the harvest width in the specific work travel route,
    A traveling pattern creating method comprising:
PCT/JP2019/021600 2018-07-31 2019-05-30 Travel route generation system, travel route generation method, travel route generation program, storage medium storing travel route generation program, operation management system, operation management method, operation management program, storage medium storing operation management program, harvester, travel pattern generation system, travel pattern generation program, storage medium storing travel pattern generation program, and travel pattern generation method WO2020026578A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980049840.8A CN112533474B (en) 2018-07-31 2019-05-30 Travel route generation system, method and recording medium
KR1020217005563A KR20210038613A (en) 2018-07-31 2019-05-30 A recording medium in which a travel path generation system, a travel path generation method, a travel path generation program, and a travel path generation program are recorded, and a recording medium in which a job management system, a job management method, a job management program, and a job management program are recorded. Wow, harvester, driving pattern creation system, driving pattern creation program, recording medium in which the driving pattern creation program is recorded, and driving pattern creation method

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018144480 2018-07-31
JP2018-144479 2018-07-31
JP2018-144480 2018-07-31
JP2018144479A JP7136623B2 (en) 2018-07-31 2018-07-31 Work management system and work management method
JP2018-167810 2018-09-07
JP2018167810A JP7030662B2 (en) 2018-09-07 2018-09-07 Harvester
JP2018-214873 2018-11-15
JP2018214873A JP7224151B2 (en) 2018-07-31 2018-11-15 Driving route generation system and driving route generation method

Publications (1)

Publication Number Publication Date
WO2020026578A1 true WO2020026578A1 (en) 2020-02-06

Family

ID=69230647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021600 WO2020026578A1 (en) 2018-07-31 2019-05-30 Travel route generation system, travel route generation method, travel route generation program, storage medium storing travel route generation program, operation management system, operation management method, operation management program, storage medium storing operation management program, harvester, travel pattern generation system, travel pattern generation program, storage medium storing travel pattern generation program, and travel pattern generation method

Country Status (1)

Country Link
WO (1) WO2020026578A1 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044995A (en) * 2007-08-20 2009-03-05 Mitsubishi Agricult Mach Co Ltd Combine harvester
JP2017042174A (en) * 2016-12-06 2017-03-02 株式会社クボタ Crop harvester and program for portable communication terminal built into the crop harvester

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044995A (en) * 2007-08-20 2009-03-05 Mitsubishi Agricult Mach Co Ltd Combine harvester
JP2017042174A (en) * 2016-12-06 2017-03-02 株式会社クボタ Crop harvester and program for portable communication terminal built into the crop harvester

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11829112B2 (en) 2019-04-10 2023-11-28 Deere & Company Machine control using real-time model
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11650553B2 (en) 2019-04-10 2023-05-16 Deere & Company Machine control using real-time model
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11871697B2 (en) 2020-10-09 2024-01-16 Deere & Company Crop moisture map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system

Similar Documents

Publication Publication Date Title
WO2020026578A1 (en) Travel route generation system, travel route generation method, travel route generation program, storage medium storing travel route generation program, operation management system, operation management method, operation management program, storage medium storing operation management program, harvester, travel pattern generation system, travel pattern generation program, storage medium storing travel pattern generation program, and travel pattern generation method
WO2020100810A1 (en) Harvester and route setting system
JP6936356B2 (en) Work vehicle automatic driving system
WO2020031473A1 (en) External shape calculation system, external shape calculation method, external shape calculation program, storage medium having external shape calculation program stored therein, farm field map generation system, farm field map generation program, storage medium having farm field map generation program stored therein, and farm field map generation method
WO2019124217A1 (en) Work vehicle, travel path selection system for work vehicle, and travel path calculation system
WO2018042853A1 (en) Autonomous work vehicle travel system, travel route-managing device, travel route-generating device, and travel route-determining device
JP2020127405A5 (en)
CN112533474B (en) Travel route generation system, method and recording medium
JP6793625B2 (en) Travel route management system
JP6920958B2 (en) Travel route generator
JP6920969B2 (en) Travel route management system
JP6689738B2 (en) Work vehicle automatic traveling system
CN109964190B (en) Automatic traveling system of working vehicle
JP7118119B2 (en) Work vehicle automatic driving system
JP6842907B2 (en) Work vehicle automatic driving system
JP6891097B2 (en) Travel route determination device
JP6983734B2 (en) Harvester
JP6789800B2 (en) Work vehicle automatic driving system
JP6982116B2 (en) Work vehicle automatic driving system and driving route management device
KR20190096955A (en) Driving route determining device
JP7068961B2 (en) External shape calculation system and external shape calculation method
JP2018099112A5 (en)
JP2024015257A (en) Work management system and work management method
JP2022180405A5 (en)
JP2022028836A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217005563

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19845280

Country of ref document: EP

Kind code of ref document: A1