WO2020044726A1 - Automated steering system, harvesting machine, automated steering method, automated steering program, and recording medium - Google Patents

Automated steering system, harvesting machine, automated steering method, automated steering program, and recording medium Download PDF

Info

Publication number
WO2020044726A1
WO2020044726A1 PCT/JP2019/023214 JP2019023214W WO2020044726A1 WO 2020044726 A1 WO2020044726 A1 WO 2020044726A1 JP 2019023214 W JP2019023214 W JP 2019023214W WO 2020044726 A1 WO2020044726 A1 WO 2020044726A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
turning
path
traveling
travel
Prior art date
Application number
PCT/JP2019/023214
Other languages
French (fr)
Japanese (ja)
Inventor
阪口和央
佐野友彦
吉田脩
中林隆志
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018160053A external-priority patent/JP6983734B2/en
Priority claimed from JP2018161438A external-priority patent/JP6978388B2/en
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to KR1020217006636A priority Critical patent/KR20210039452A/en
Priority to CN201980056727.2A priority patent/CN112638147A/en
Publication of WO2020044726A1 publication Critical patent/WO2020044726A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • A01D41/1278Control or measuring arrangements specially adapted for combines for automatic steering
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • A01B69/008Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic

Definitions

  • the present invention relates to an automatic steering system, a harvester, an automatic steering method, an automatic steering program, and a recording medium. About.
  • the automatic traveling work vehicle is automatically steered along a linear traveling route covering the work site.
  • the entry from the entry source travel route to the entry destination travel route via the turning travel is sequentially repeated.
  • the turning of the aircraft which is necessary because the direction of the approaching travel route is different from the direction of the approaching travel route, is performed by turning.
  • Patent Literature 1 performs work in an unworked area by traveling in such a way that traveling paths set as a plurality of parallel lines are sequentially connected in a direction change traveling (U-turn traveling).
  • the route for the turning traveling is an arc having a diameter equal to the distance between the adjacent traveling routes (see FIG. 1 of Patent Document 1).
  • an arc having a diameter larger than the route interval is used. Is used as a path for turning traveling. In any case, a path indicated by one circular arc is used for turning traveling for changing the direction of the body.
  • a path composed of two circular arcs having the same radius and a straight line connecting the circular arcs is used as a path for turning traveling for changing the direction of the body (see FIG. 9 of Patent Literature 2). , FIG. 12, FIG. 15).
  • Patent Document 3 discloses a work vehicle that automatically runs on a travel route including a plurality of straight roads generated based on the size of a work place, a work width, and an overlap value (overlap setting width).
  • a travel route including a plurality of straight roads generated based on the size of a work place, a work width, and an overlap value (overlap setting width).
  • An object of the present invention is to provide a harvester that performs control in consideration of a difference in the overlap value when the vehicle automatically travels along a traveling route generated with a different overlap value.
  • the means for solving the problem [1] is as follows.
  • the present invention is an automatic steering system for a field work vehicle that enters an entry destination traveling route via a turning traveling from an entry origin traveling route through an automatic traveling route, and the system is adapted to travel along the entry origin traveling route.
  • An initial turning path calculation unit that calculates an initial turning path for the initial turning traveling following the above, and a late turning path calculation unit that calculates a late turning path for the later turning following the driving along the initial turning path
  • An approach path calculation unit that calculates an approach path connecting the late turn path and the destination travel path is provided, and a turn radius of the initial turn path is set to be larger than a turn radius of the late turn path.
  • the field work vehicle may make the field unduly rough at the time of turning to change the direction of the aircraft.
  • the field tends to be roughened.
  • the turning radius of the initial turning route is set to be larger than the turning radius of the late turning route used when entering the destination travel route.
  • the turning radius of the later turning path is set to be larger than the turning radius of the initial turning path.
  • the traveling device constituted by wheels or crawlers during the initial turning traveling along the initial turning path causes crops to be worked by traveling along the destination traveling path. May be trampled. In order to avoid this, it is necessary to travel on an extension of the approaching travel route until the traveling device completely passes through the approaching travel route. For this reason, in one of the preferred embodiments of the present invention, an extension of the entry-source traveling path for preventing the field work vehicle from stepping on crops at the time of turning is provided at the starting end side of the initial turning path. A preliminary route extending along the direction is calculated.
  • the late turning path is a circular arc
  • the initial turning path calculating unit is configured to determine an arc of a circle that is in contact with an extension of the approaching traveling path and a tangent of the late turning path. To calculate the initial turning path.
  • This configuration not only facilitates the calculation of the turning path by expressing the turning path with an arc, but also allows the transition path from the approaching traveling path to the initial turning path and the initial turning path to the late turning path.
  • the initial turning path and the late turning path are 90-degree arcs, which is convenient. It should be noted that the late turning path and the initial turning path may be in direct contact with each other.
  • the late turning path is an arc
  • a straight intermediate path leading to the late turning path is calculated at a rear end of the initial turning path.
  • the initial turning path calculation unit calculates the initial turning path as an arc of a circle that is in contact with an extension of the approaching traveling path and the intermediate path.
  • the turning path is represented by an arc
  • the transition from the entry traveling path to the initial turning path, the transition from the initial turning path to the intermediate path, and the transition from the intermediate path to the late turning path are tangent to the arc. Therefore, the advantage of smoothness can be obtained. Since the initial turning path and the late turning path that are the steering targets are formed by arcs, steering control is realized such that the turning radius of the actual field work vehicle substantially matches the intended turning radius. You.
  • a harvester which automatically travels along a travel route set in a field while overlapping the ends of the harvest width, a harvest travel mode selection unit that selects a harvest travel mode, An overlap value setting unit for setting an overlap value; and calculating the travel route according to the harvest travel mode so as to cover the work target area with a route interval determined from the harvest width and the overlap value.
  • an automatic traveling control unit that performs steering control based on the control command.
  • the layout of the travel route in harvesting travel is based on the shape and size of the field, the type and state of the harvest, the working travel width of the harvesting device, the intention of the driver and farmer, etc. ), Harvest width, harvest speed, control parameters, etc. are determined.
  • Various types of running in which the running pattern, the harvest width, the harvest speed, the control parameters, and the like are different are collectively referred to herein as a harvest running mode.
  • the overlap value setting unit changes the overlap value according to the harvesting traveling mode. With this configuration, it is possible to set an optimal overlap value for the selected harvesting travel mode, and to automatically travel with the overlap value.
  • the width of the deviation dead zone for invalidating the deviation is changed so as to increase in accordance with the increase in the overlap value. If the overlap value becomes large, the possibility that an unharvested area (an area where the harvesting operation is leaked) due to the instability of the automatic traveling control is reduced. In addition, if the width of the deviation dead zone is made large, the steering sensitivity is not sensitive because the steering correction is not performed with a slight deviation, but the steering correction due to the slight deviation causes the aircraft to oscillate finely. The problem of getting lost is avoided. In this configuration, when the overlap value is large, the width of the deviation dead zone is widened, and the fine swing of the body is suppressed.
  • Swirling running patterns are well known.
  • traveling routes sequentially selected from a plurality of parallel traveling route groups are connected by a U-turn turning traveling.
  • traveling paths parallel to each side of the polygonal work target area are sequentially connected by turning traveling with a reverse movement called an alpha turn. At that time, if the deviation (deviation) of the vehicle position from the target traveling route to be entered next becomes large at the end of the turning travel, an area where the harvesting operation cannot be performed occurs.
  • an approach deviation calculating unit that calculates an approach deviation between the approach target travel path, which is the travel path to be approached through turning, and the position of the host vehicle.
  • An entry stop command for stopping the entry to the entry target travel path when the entry deviation exceeds the inhibition deviation is included in the control command, and the inhibition deviation is changed by the overlap value. Is done.
  • FIG. 12 is a view showing the first embodiment (hereinafter the same up to FIG. 11), and is a side view of an ordinary combine as an example of a field work vehicle. It is explanatory drawing which shows the cutting and running around the combine. It is explanatory drawing which shows the driving
  • FIG. 3 is a functional block diagram illustrating a configuration of a combine control system. It is a figure which shows 2nd Embodiment (henceforth, it is the same until FIG. 23), and is a side view of the common type combine as an example of a harvester. It is explanatory drawing which shows the cutting and running around the combine. It is explanatory drawing which shows the driving
  • FIG. 3 is a functional block diagram illustrating a configuration of a combine control system.
  • the combine includes an airframe 10, a crawler-type traveling device 11, an operating unit 12, a threshing device 13, a grain tank 14, a harvesting unit 15, a transport device 16, a grain discharging device 18, and a vehicle.
  • the position detecting module 80 is provided.
  • the traveling device 11 is provided at a lower portion of the body 10.
  • the combine is configured to be self-propelled by the traveling device 11.
  • the operating unit 12, the threshing device 13, and the grain tank 14 are provided on the upper side of the traveling device 11 and constitute an upper part of the machine body 10.
  • a driver who drives the combine and a monitor who monitors the work of the combine can be boarded on the driving unit 12. The observer may monitor the combine operation from outside the combine.
  • the grain discharge device 18 is provided above the grain tank 14.
  • the vehicle position detection module 80 is attached to the upper surface of the driving unit 12.
  • the harvesting unit 15 is provided at the front of the combine.
  • the transport device 16 is provided on the rear side of the harvesting unit 15.
  • the harvesting unit 15 has a cutting mechanism 15a and a reel 15b.
  • the cutting mechanism 15a cuts the planted grain culm in the field. Further, the reel 15b scrapes the planted grain stem to be harvested while being driven to rotate. With this configuration, the harvesting unit 15 harvests cereals (a kind of agricultural crop) in the field. Then, the combine is capable of traveling by the traveling device 11 while harvesting cereals in the field by the harvesting unit 15.
  • the harvested stalks harvested by the cutting mechanism 15a are transported by the transport device 16 to the threshing device 13.
  • the harvested culm is threshed.
  • the grain obtained by the threshing process is stored in the grain tank 14.
  • the grains stored in the grain tank 14 are discharged out of the machine by a grain discharging device 18 as necessary.
  • the general-purpose terminal 4 is disposed in the driving unit 12. In the present embodiment, the general-purpose terminal 4 is fixed to the driving unit 12. However, the present invention is not limited to this, and the general-purpose terminal 4 may be configured to be detachable from the driving unit 12, or the general-purpose terminal 4 may be able to be taken out of the combine machine. .
  • the vehicle position detection module 80 includes a satellite positioning unit 81 and an inertial navigation unit 82.
  • the satellite positioning unit 81 receives a GNSS (global navigation satellite system) signal (including a GPS signal), which is position information transmitted from the artificial satellite GS, and outputs positioning data for calculating the own vehicle position.
  • the inertial navigation unit 82 incorporates a gyro acceleration sensor and a magnetic direction sensor, and outputs a position vector indicating an instantaneous traveling direction.
  • the inertial navigation unit 82 is used to supplement the own vehicle position calculation by the satellite positioning unit 81.
  • the inertial navigation unit 82 may be located at a different location from the satellite positioning unit 81.
  • the driver / monitor manually operates the combine, and harvests while cutting around the periphery of the field along the boundary of the field at the outer peripheral portion in the field as shown in FIG.
  • the area that has been cut (the already-worked area) by the peripheral cutting is set as the outer peripheral area SA.
  • the inner area left uncut on the uncut area (unworked area) inside the outer peripheral area SA is the unworked area CA, which is set as a work target area in the future.
  • the surrounding mowing travel is performed so that the unworked area CA becomes a square.
  • a triangular or pentagonal unworked area CA may be employed.
  • the driver runs the combine for two or three turns. In this traveling, every time the combine makes one round, the width of the outer peripheral area SA increases by the working width of the combine. At the end of the two or three rounds of travel, the width of the outer peripheral area SA is about two to three times the working width of the combine.
  • the surrounding mowing is not limited to two or three rounds, but may be one round or four or more rounds.
  • the outer peripheral area SA is used as a space for the combine to change directions when performing harvesting traveling in the unworked area CA that is the work target area.
  • the outer peripheral area SA is also used as a space for movement when the harvest travel is once completed and the grain is moved to a grain discharge location, or is moved to a fuel supply location.
  • the carrier CV shown in FIG. 2 can collect and transport the grains discharged from the combine grain discharging device 18 of the combine. In discharging the grains, the combine moves to the vicinity of the transport vehicle CV, and then discharges the grains to the transport vehicle CV by the grain discharging device 18.
  • a reciprocating traveling pattern shown in FIG. 3 is shown as a traveling pattern used when performing traveling (harvest traveling) in the unworked area CA.
  • the combine travels such that two traveling routes parallel to one side of the unworked area CA are connected by a U-turn traveling route, which is one of the turning traveling routes.
  • a traveling route (consisting of a U-turn turning route and a straight traveling route) used for automatically traveling in the unworked area CA using the reciprocating traveling pattern is calculated as follows based on the inside map data.
  • a rectangular unworked area CA including a first side S1, a second side S2, a third side S3, and a fourth side S4 is defined from the inside map data.
  • the first side S1 which is the long side of the unworked area CA, is selected as the reference side S1.
  • a line parallel to the reference side S1 and passing inside the reference side S1 by half of the working width (cutting width) is calculated as the initial reference line L1.
  • This initial reference line L1 corresponds to a traveling route that travels first.
  • the initial reference line L1 a distance parallel to the reference side S1 and further away from the reference side S1 (half the working width + A line passing through (an integral multiple of the working width) is calculated as the initial reference line L1.
  • the next reference line L2 connected from the initial reference line L1 via the turning travel is an initial reference line. It is calculated at intervals of a plurality of times (three times in FIG. 4) the work width in parallel with L1. In the same manner, the next reference line L3 is calculated. As described above, the reference line is sequentially calculated in consideration of the space required for the turning travel.
  • These reference lines L1, L2, L3,... Correspond to traveling routes for straight traveling (an entrance traveling route and an entrance traveling route). In FIG.
  • the shape of the unworked area CA is a quadrangle, but even if this is another polygon such as a triangle or a pentagon, if the reference side S1 is selected, the traveling route can be sequentially calculated in the same manner. Can be.
  • spiral running pattern as another running pattern.
  • the combine runs like a spiral toward the center with a circular running locus similar to the outer shape of the unworked area CA.
  • a turning called an alpha turn using straight running, backward turning, and forward turning is adopted.
  • a reciprocating traveling pattern and a spiral traveling pattern are often mixed as shown in FIG.
  • the surrounding mowing travel is performed by manual steering, and an outer peripheral area SA, which is a work area, is formed on the outermost peripheral side of the field (#b).
  • the spiral travel pattern is set for the unworked area CA, and the spiral travel is performed (#c).
  • automatic running by automatic steering is possible at least in straight running.
  • the spiral running is performed until the unworked area CA becomes large enough to enable the turning running (normal U-turn, switchback turn) in the reciprocating running pattern (#d).
  • a traveling route that covers the unworked area CA in a reciprocating traveling pattern is set for the unworked area CA (#e).
  • the harvesting work in the field is completed (#f).
  • FIGS. 7 to 10 Turning paths used when entering the destination travel path Lm from the entry source travel path Ln are illustrated in FIGS. 7 to 10.
  • the approaching travel route is indicated by Ln
  • the approaching travel route is indicated by Lm
  • An interval (route interval) between the entry traveling route Ln and the entry traveling route Lm is indicated by D.
  • the turning path includes an initial turning path C1 for the initial turning traveling following the traveling along the entry-source traveling path Ln, a late turning path C2 for the late turning traveling following the traveling along the initial turning path C1, and a late turning path.
  • It has an approach route Lin that connects the turning route C2 and the approach destination travel route Lm.
  • the approach route Lin may be an extension route of the destination travel route Lm.
  • a linear intermediate path Lmid connected to the late turning path C2 is interposed on the rear end side of the initial turning path C1.
  • the intermediate path Lmid is a tangent to the initial turning path C1 and the late turning path C2.
  • the initial turning path C1 is a 90-degree arc.
  • the preliminary route Lad is interposed between the initial turning route C ⁇ b> 1 and the end of the approaching traveling route Ln.
  • the preliminary route Lad may be regarded as an extension line extending in the direction in which the entry traveling route Ln extends.
  • the radius R of the arc forming the initial turning path C1 is set to be larger than the radius r of the arc forming the late turning path C2.
  • a minimum value and a maximum value that are larger than r are predetermined in consideration of a radius r of an arc forming the late turning route C2, and the minimum value and the maximum value are determined. May be selected. Furthermore, it may be set in advance on condition that the available turning radius R is a value larger than r.
  • the late turning path C2 used for turning to enter the destination travel path Lm is an arc having a radius r that is in contact with the approach path Lin which is an extension of the destination travel path Lm.
  • the radius r is determined in advance based on the turning radius of the combine.
  • the minimum turning radius of the combine is adopted, and when giving priority to not turning the field over the turning space, a standard turning radius larger than the minimum turning radius is used. Adopted.
  • the length of the approach route Lin is such that the combine that has turned along the late turning route C2 reliably captures the approach destination route Lm, accurately enters the approach destination route Lm, and harvests without cutting. It is calculated so that it can shift to.
  • the minimum required length of the approach route Lin is calculated from the combine specifications (harvest width and turning performance), the field characteristics (slipperiness and unevenness level), and the space available for turning traveling.
  • the initial turning route C1 is directly connected to the late turning route C2 and the entry traveling route Ln.
  • the initial turning path C1 is a 90-degree arc of a circle that is in contact with the late turning path C2 and the approaching traveling path Ln.
  • preconditions are necessary. This prerequisite is that the route interval is relatively short, and even if the vehicle shifts to turning immediately after harvesting on the entry-source traveling route Ln, the traveling device 11 on the turning side causes the planted grain culm in the uncut area to be turned. Is not to trample on.
  • a preliminary route Lad is calculated between the approaching traveling route Ln and the initial turning route C1.
  • the backup route Lad is calculated, the approach route Lin is extended by the length of the backup route Lad.
  • the turning route used when turning from the entry source driving route Ln to the entry destination driving route Lm includes the path interval D, combine specifications (harvest width and turning performance), and field characteristics (slipperiness and unevenness level). ), An appropriate space (one of the four turning patterns shown in FIGS. 7 to 10) is selected from the space available for turning. If it is impossible to turn even with these turning patterns, an alpha pattern as shown in FIG. 5 is selected.
  • FIG. 11 shows a combine control system.
  • the control system of the combine is composed of a control device 5 composed of a number of electronic control units called ECUs connected via an in-vehicle LAN, and various input / output devices for performing signal communication and data communication with the control device 5. I have.
  • the control device 5 includes an output processing unit 58 and an input processing unit 57 as input / output interfaces.
  • the output processing unit 58 is connected to various operating devices 70 via a device driver 65.
  • the operating devices 70 include a traveling device group 71 that is a traveling-related device and a working device group 72 that is a working-related device.
  • the traveling equipment group 71 includes, for example, engine equipment, transmission equipment, braking equipment, steering equipment, and the like.
  • the work equipment group 72 includes control equipment in a harvesting work device (the harvesting unit 15, the threshing device 13, the transport device 16, the grain discharging device 18, and the like shown in FIG. 1).
  • the input processing unit 57 is connected with a running state sensor group 63, a working state sensor group 64, a running operation unit 90, and the like.
  • the running state sensor group 63 includes a vehicle speed sensor, an engine speed sensor, a parking brake detection sensor, a shift position detection sensor, a steering position detection sensor, and the like.
  • the work state sensor group 64 includes a sensor that detects the driving state and the posture of the harvesting operation device described above, and a sensor that detects the state of the grain culm and the grain.
  • the driving operation unit 90 is a general term for operating tools that are manually operated by a driver and whose operation signals are input to the control device 5.
  • the traveling operation unit 90 includes a main transmission lever 91 as a transmission lever, a steering lever 92, a mode operation tool configured as a mode changeover switch 93, an automatic traveling operation tool 94, and the like.
  • the mode switch 93 has a function of sending a command for switching between automatic operation and manual operation to the control device 5.
  • the automatic traveling operation tool 94 outputs an automatic traveling shift request through an operation by the driver.
  • the notifying device 62 is a device for notifying a driver or the like of a warning regarding a working state or a running state, and is a buzzer, a lamp, or the like.
  • the general-purpose terminal 4 also functions as a device that notifies a driver or the like of a working state, a running state, and various information through display on the touch panel 40.
  • This control device 5 is also connected to the general-purpose terminal 4 via the in-vehicle LAN.
  • the general-purpose terminal 4 is a tablet computer having a touch panel 40.
  • the general-purpose terminal 4 includes an input / output control unit 41, a work traveling management unit 42, a traveling route calculation unit 43, and a turning route calculation unit 44.
  • the input / output control unit 41 has a function of constructing a graphic interface using the touch panel 40 and a function of exchanging data through a remote computer, a wireless line, or the Internet.
  • the work traveling management unit 42 includes a traveling trajectory calculation unit 421, a work area determination unit 422, and a discharge position setting unit 423.
  • the travel locus calculation unit 421 calculates a travel locus based on the own vehicle position given from the control device 5.
  • the work area determination unit 422 divides the field into an outer work area CA and an unworked area CA based on a traveling locus obtained by the combine harvesting the outer circumference area SA several times. And is divided into The outermost line of the outer peripheral area SA is used to calculate the boundary with the shore of the field, and the innermost line of the outer peripheral area SA is used to calculate the unworked area CA in which automatic traveling is performed.
  • the discharge position setting unit 423 sets a combine discharge stop position when the grains in the grain tank 14 are discharged to the transport vehicle CV by the grain discharge device 18.
  • the discharge stop position is set in an outer peripheral area SA formed on the outer peripheral side of the field by peripheral mowing traveling, and at a location other than a corner portion of the polygonal outer peripheral area SA.
  • the travel route calculation unit 43 calculates a travel route for automatic traveling with respect to the unworked area CA determined by the work area determination unit 422. When the driver inputs that the manual traveling in the outer peripheral area SA has been completed, the route calculation in the selected traveling pattern is automatically performed.
  • the traveling route calculation unit 43 determines the interval between adjacent traveling routes (path interval) based on the harvest width (work width) of the harvesting unit 15 and the overlap value. Further, the travel route calculation unit 43 calculates the straight travel route using the algorithm described with reference to FIG.
  • the turning path calculation unit 44 calculates the turning path of the U-turn type and the turning path of the alpha-turn type shown in FIG. In particular, in order to calculate the turning path described with reference to FIGS. 7 to 10, the initial turning path calculation unit 441, the late turning path calculation unit 442, the approach path calculation unit 443, the preliminary path calculation unit 444, and the intermediate path calculation unit. 445 are provided.
  • the late turning path calculation unit 442 calculates a 90-degree circular arc having a preset turning radius of the combine through the operation input to the touch panel 40 as the late turning path C2.
  • the approach route calculation unit 443 calculates the length of the approach route necessary to accurately enter the destination travel route Lm using the calculated late turning route C2.
  • the initial turning route calculation unit 441 calculates an initial turning route C1 for the initial turning traveling following the traveling along the entry source traveling route Ln. At this time, a value larger than the radius of the late turning route C2 is used as the radius of the initial turning route C1. It is advantageous if the radius of the initial turning path C1 corresponding to the radius of the late turning path C2 is tabulated.
  • the intermediate path calculation unit 445 determines the required length of the linear intermediate path Lmid. Is calculated. Further, the spare route calculation unit 444 calculates the required length of the spare route Lad based on the current harvest width of the combine, the specifications of the traveling device 11, and the radius of the initial turning route C1.
  • the turning route calculation unit 44 calculates the required length of the intermediate route Lmid and the spare route Lad. If only the required length of the spare route Lad is zero, a turning route as shown in FIG. 8 is calculated. If only the required length of the intermediate route Lmid is zero, a turning route as shown in FIG. 9 is calculated. If the required length of the intermediate route Lmid and the spare route Lad is not zero, the turning route as shown in FIG. 10 is calculated.
  • the control device 5 includes a host vehicle position calculation unit 50, a manual travel control unit 51, an automatic travel control unit 52, a travel route setting unit 53, a work control unit 54, and a notification unit 59.
  • the own vehicle position calculation unit 50 calculates the own vehicle position in the form of map coordinates (or field coordinates) based on the positioning data sequentially transmitted from the satellite positioning unit 81.
  • the own vehicle position calculation unit 50 can also calculate the own vehicle position using the position vector from the inertial navigation unit 82 and the travel distance.
  • the host vehicle position calculation unit 50 can also calculate the host vehicle position by combining signals from the satellite positioning unit 81 and the inertial navigation unit 82. Further, the own-vehicle position calculating unit 50 can also calculate the direction of the body 10 that is the traveling direction of the body 10 from the own-vehicle position over time.
  • the notification unit 59 generates notification data based on a command or the like from each functional unit of the control device 5 and provides the notification data to the notification device 62.
  • the control device 5 determines whether or not the automatic traveling is permitted based on a preset automatic traveling permission condition, and the result of this determination is permission. In this case, an automatic traveling start command is given to the automatic traveling control unit 52.
  • the manual traveling control unit 51 and the automatic traveling control unit 52 have an engine control function, a steering control function, a vehicle speed control function, and the like, and provide a traveling control signal to the traveling equipment group 71.
  • the work control unit 54 provides a work control signal to the work equipment group 72 to control the movement of the harvesting work device.
  • the traveling route setting unit 53 receives the traveling route calculated by the traveling route calculating unit 43 and the turning route calculated by the turning route calculating unit 44 from the general-purpose terminal 4, and Are set as a traveling route and a turning route that are targets of automatic steering.
  • the automatic traveling control unit 52 performs an azimuth shift between the traveling route and the turning route set by the traveling route setting unit 53 and the own vehicle position calculated by the own vehicle position calculating unit 50.
  • a steering control signal is generated so as to eliminate the displacement.
  • the automatic traveling control unit 52 generates a control signal relating to a change in the vehicle speed based on the vehicle speed value set in advance.
  • the manual traveling control unit 51 When the manual traveling mode is selected, when a manual operation signal is sent to the manual traveling control unit 51 based on an operation by the driver, the manual traveling control unit 51 generates a control signal and controls the traveling device group 71. Thus, manual operation is realized.
  • the traveling route and the turning route set by the traveling route setting unit 53 can be used for guidance for the combine to travel along the traveling route and the turning route even in manual operation.
  • the turning route calculation unit 44 calculates the initial turning route C1, the late turning route C2, the intermediate route Lmid, and the spare route Lad when the entry source driving route Ln and the destination driving route Lm are determined.
  • the calculation functions of the initial turning route C1, the late turning route C2, the intermediate route Lmid, and the backup route Lad are tabulated, and the data of the determined entry-source travel route Ln and the determined destination travel route Lm are input.
  • a configuration may be adopted in which data of the initial turning route C1, the late turning route C2, the intermediate route Lmid, and the preliminary route Lad are derived.
  • each functional unit shown in FIG. 11 is divided mainly for the purpose of explanation. In practice, each functional unit may be integrated with another functional unit, or may be divided into a plurality of functional units. For example, the functional units constructed in the general-purpose terminal 4 may be partially or wholly incorporated in the control device 5.
  • the peripheral mowing traveling is performed manually, but in the second and subsequent laps, automatic traveling may be partially used, particularly for linear traveling. .
  • each functional unit in the above-described embodiment can be configured as an automatic steering program. Further, the processing performed by each functional unit in the above-described embodiment can be configured as an automatic steering method.
  • Such an automatic steering program may be configured to be recorded on a recording medium.
  • the present invention can also be used for a self-removing combine.
  • the present invention can also be used for various harvesters such as a corn harvester, a potato harvester, a carrot harvester, and a sugarcane harvester.
  • front means forward with respect to the longitudinal direction of the aircraft (running direction)
  • rear arrow B shown in FIG. 12
  • Direction means backward with respect to the longitudinal direction of the aircraft (running direction).
  • left-right direction or the lateral direction means a cross-machine direction (machine body width direction) orthogonal to the machine body front-rear direction.
  • Up in the direction of arrow U shown in FIG. 12
  • down in the direction of arrow D shown in FIG. 12
  • the combine includes a body 210, a crawler-type traveling device 211, an operating unit 212, a threshing device 213, a grain tank 214, a harvesting unit 215, a transport device 216, a grain discharging device 218, and a vehicle.
  • a position detection module 280 is provided.
  • the traveling device 211 is provided below the body 210.
  • the combine is configured to be able to run by the traveling device 211 by itself.
  • the operation unit 212, the threshing device 213, and the grain tank 214 are provided above the traveling device 211 and constitute an upper part of the body 210.
  • the driver that drives the combine and the monitor that monitors the work of the combine can be boarded on the driving unit 212. The observer may monitor the combine operation from outside the combine.
  • the grain discharge device 218 is provided above the grain tank 214.
  • the vehicle position detection module 280 is mounted on the upper surface of the driving unit 212.
  • the harvesting unit 215 is provided at the front of the combine.
  • the transport device 216 is provided on the rear side of the harvesting unit 215.
  • the harvesting unit 215 has a cutting mechanism 215a and a reel 215b.
  • the cutting mechanism 215a cuts the planted grain culm in the field.
  • the reel 215b scrapes the planted grain stem to be harvested while being driven to rotate.
  • the harvesting unit 215 harvests cereals (a kind of agricultural crop) in the field.
  • the combine is capable of traveling by the traveling device 211 while harvesting cereals in the field by the harvesting unit 215.
  • the harvested culm cut by the cutting mechanism 215a is transported to the threshing device 213 by the transport device 216.
  • the harvested culm is threshed.
  • the grain obtained by the threshing process is stored in the grain tank 214.
  • the grains stored in the grain tank 214 are discharged out of the machine by the grain discharge device 218 as necessary.
  • the general-purpose terminal 204 is disposed in the operation unit 212.
  • the general-purpose terminal 204 is fixed to the driving unit 212.
  • the present invention is not limited to this, and the general-purpose terminal 204 may be configured to be detachable from the driving unit 212, or the general-purpose terminal 204 may be able to be taken out of the combine machine. .
  • the vehicle position detection module 280 includes a satellite positioning unit 281 and an inertial navigation unit 282.
  • the satellite positioning unit 281 receives a GNSS (global navigation satellite system) signal (including a GPS signal), which is position information transmitted from the artificial satellite GS, and outputs positioning data for calculating the position of the own vehicle.
  • the inertial navigation unit 282 incorporates a gyro acceleration sensor and a magnetic direction sensor, and outputs a position vector indicating an instantaneous traveling direction.
  • the inertial navigation unit 282 is used to supplement the own vehicle position calculation by the satellite positioning unit 281.
  • the inertial navigation unit 282 may be located at a different location from the satellite positioning unit 281.
  • the driver / monitor manually operates the combine, and harvests the outer peripheral portion in the field while cutting around the boundary of the field as shown in FIG.
  • the area that has been cut (the already-worked area) by the peripheral cutting is set as the outer peripheral area SA.
  • the inner area left uncut on the uncut area (unworked area) inside the outer peripheral area SA is the unworked area CA, which is set as a work target area in the future.
  • the surrounding mowing travel is performed so that the unworked area CA becomes a square.
  • a triangular or pentagonal or larger polygonal unworked area CA may be employed.
  • the driver runs the combine for two or three turns. In this traveling, every time the combine makes one round, the width of the outer peripheral area SA increases by the working width of the combine. At the end of the two or three rounds of travel, the width of the outer peripheral area SA is about two to three times the working width of the combine.
  • the surrounding mowing is not limited to two or three rounds, but may be one round or four or more rounds.
  • the outer peripheral area SA is used as a space for the combine to change directions when performing harvesting traveling in the unworked area CA that is the work target area.
  • the outer peripheral area SA is also used as a space for movement when the harvest travel is once completed and the grain is moved to a grain discharge location, or is moved to a fuel supply location.
  • the transport vehicle CV shown in FIG. 13 can collect and transport the grains discharged from the grain discharge device 218 by the combine. At the time of discharging the grains, the combine moves to the vicinity of the transport vehicle CV, and then discharges the grains to the transport vehicle CV by the grain discharging device 218.
  • the traveling route for the turning transition traveling is referred to as a turning transition route.
  • the traveling pattern used in the harvesting traveling includes a reciprocating traveling pattern (shown in FIG. 14) in which a plurality of parallel work traveling paths are connected by a U-turn, and a spiral pattern along the outer edge of the unworked area CA.
  • Fig. 16 is a running spiral running pattern (shown in Fig. 15).
  • the combine travels such that a traveling path parallel to one side of the unworked area CA is connected by a U-turn traveling as a turning traveling.
  • the U-turn traveling includes a normal U-turn that extends over one or more traveling routes and a switchback turn that connects adjacent traveling routes.
  • the normal U-turn is a 180-degree turn including two forward 90-degree turns and a straight-ahead run, and the straight-ahead run may be omitted.
  • the switchback turn is a 180-degree turning using a 90-degree forward turn, a reverse, and a 90-degree forward turn.
  • the orbital traveling that is performed while connecting the working traveling route similar to the outer shape of the unworked area CA by the turning traveling route is performed like a spiral toward the center.
  • a turn called an alpha turn using a straight turn, a reverse turn, and a forward turn is used for turning at a corner in each round trip. It is also possible to change from the spiral running pattern to the reciprocating running pattern or from the reciprocating running pattern to the spiral running pattern during the work.
  • the travel route used for automatically traveling the unworked area CA using the reciprocating travel pattern is calculated as follows based on the inside map data. As shown in FIGS. 16 and 17, a quadrangular unworked area CA including a first side S1, a second side S2, a third side S3, and a fourth side S4 is defined from the inside map data.
  • the first side S1 which is the long side of the unworked area CA, is selected as the reference side S1.
  • a line parallel to the reference side S1 and passing inside the reference side S1 by half of the working width (cutting width) is calculated as the initial reference line L1.
  • This initial reference line L1 corresponds to a traveling route that travels first.
  • the initial reference line L1 a distance parallel to the reference side S1 and further away from the reference side S1 (half the working width + A line passing through (an integral multiple of the working width) is calculated as the initial reference line L1.
  • the initial reference line L1 is sequentially turned to the U-turn.
  • the connected reference lines L2, L3,... are calculated at intervals of the working width in parallel with the initial reference line L1.
  • the next reference line L2 connected from the initial reference line L1 via the U-turn is the initial reference line. It is calculated at intervals of a plurality of times (three times in FIG. 6) the work width in parallel with L1. As shown in FIG. 17, the next reference line L3 is calculated in a similar manner. In this manner, the reference lines are sequentially calculated in consideration of the space required for the normal U-turn.
  • These reference lines L1, L2, L3,... Correspond to work traveling routes for straight traveling.
  • the unworked area CA has a quadrangular shape. However, even if the unworked area CA is another polygon such as a triangle or a pentagon, if the reference side S1 is selected, the vehicle travels sequentially in the same manner. A route can be calculated.
  • the work traveling route used for automatic traveling is calculated as follows based on the inside map data.
  • the first side S1 which is the long side of the unworked area CA (or the short side in the spiral running pattern) is selected as the reference side S1.
  • a line that is parallel to the reference side S1 and passes inside the reference side S1 by half of the working width (cutting width) is calculated as the reference line L1.
  • This reference line L1 is an initial reference line that is the first work traveling route of the automatic traveling.
  • a line parallel to the second side S2 adjacent to the reference side S1 in the traveling direction of the combine and passing inside the second side S2 by half of the working width (cutting width) is calculated as the next reference line L2.
  • next work travel route which is the target of the next automatic travel of the work travel route.
  • the first work travel route and the next work travel route are connected by an alpha turn (special turn) that implements a body turn at an angle formed by the reference side S1 and the second side S2.
  • the next reference line L3 is also sequentially calculated.
  • a reciprocating traveling pattern and a spiral traveling pattern are often mixed as shown in FIG.
  • the surrounding mowing is performed by manual steering, and an outer peripheral area SA, which is a work area, is formed on the outermost peripheral side of the field (#b).
  • the spiral traveling pattern is set for the unworked area CA, and the spiral traveling is performed (#c).
  • automatic running by automatic steering is possible at least in straight running.
  • the spiral running is performed until the unworked area CA becomes large enough to enable the turning transition running (normal U-turn, switchback turn) in the reciprocating running pattern (#d).
  • a work travel route that covers the unworked area CA in a reciprocating travel pattern is set for the unworked area CA (#e).
  • the field harvesting work is completed (#f).
  • the path interval between the parallel running paths is set so that the remaining width of the harvesting unit 215 and the error of the automatic steering are absorbed so that uncut leaves do not occur. Is determined on the basis of the overlap value set in (1). Assuming that the harvest width is W and the overlap value is OL, the path interval D is W-OL.
  • the allowable position shift range in which the position shift of the harvesting unit 215 in the left-right direction is allowed is half of the overlap value in each of the left-right direction.
  • the allowable displacement range is determined. As schematically shown in FIG. 21, the allowable displacement range increases as the overlap value increases. If the allowable position shift range becomes large, the accuracy of the steering control can be reduced. For this reason, in this embodiment, the deviation dead zone is changed based on the overlap value so that the larger the overlap value, the wider the deviation dead zone.
  • This function: F is preferably tabulated in advance. This function: F need not be a continuous function, but may be a step-like function.
  • This approach deviation includes lateral displacement of the body 210 with respect to the approach target travel path TL when the body 210 enters within a predetermined distance from the starting point of the approach target travel path TL, the direction of the traveling direction of the combine, and the approach target travel path TL. And the approach angle ⁇ , which is the azimuth deviation between.
  • the lateral deviation does not become so large, and therefore, in this embodiment, only the approach angle ⁇ is treated as the approach deviation.
  • both the lateral displacement and the approach angle ⁇ may be handled as the approach deviation.
  • the approach angle ⁇ exceeds the limit angle ⁇ L as a prohibition deviation that inhibits the approach even though the body 210 is approaching the beginning of the travel route of the approach destination, the approach is stopped and the approach of the approach is stopped.
  • a retry is performed. In this retry, the vehicle 210 moves backward so that the orientation of the body 210 matches the direction of the travel route of the approach destination, then switches to forward travel, and the approach travel to the approach target travel route TL is performed.
  • G need not be a continuous number, but may be a step-like function.
  • FIG. 23 shows a combine control system.
  • the control system of the combine is composed of a control device 205 composed of a number of electronic control units called ECUs connected via an in-vehicle LAN, and various input / output devices for performing signal communication and data communication with the control device 205. I have.
  • the control device 205 includes an output processing unit 258 and an input processing unit 257 as input / output interfaces.
  • the output processing unit 258 is connected to various operating devices 270 via the device driver 265.
  • the operating devices 270 include a traveling device group 271 that is a traveling-related device and a working device group 272 that is a working-related device.
  • the traveling equipment group 271 includes, for example, engine equipment, transmission equipment, braking equipment, steering equipment, and the like.
  • the working equipment group 272 includes control equipment in a harvesting work device (the harvesting unit 215, the threshing device 213, the transport device 216, the grain discharging device 218, and the like illustrated in FIG. 12).
  • the input processing unit 257 is connected to a traveling state sensor group 263, a work state sensor group 264, a traveling operation unit 290, and the like.
  • the traveling state sensor group 263 includes a vehicle speed sensor, an engine speed sensor, a parking brake detection sensor, a shift position detection sensor, a steering position detection sensor, and the like.
  • the work state sensor group 264 includes a sensor that detects a driving state and a posture of the harvesting work device, and a sensor that detects a state of a grain culm or a grain.
  • the traveling operation unit 290 is a general term for operating tools that are manually operated by a driver and whose operation signals are input to the control device 205.
  • the traveling operation unit 290 includes a main transmission lever 291 as a transmission lever, a steering lever 292, a mode operation tool configured as a mode switch 293, an automatic traveling operation tool 294, and the like.
  • the mode changeover switch 293 has a function of sending a command for switching between automatic operation and manual operation to the control device 205.
  • the automatic traveling operation tool 294 outputs an automatic traveling transition request through an operation by the driver.
  • the notifying device 262 is a device for notifying a driver or the like of a warning regarding a working state or a running state, and is a buzzer, a lamp, or the like.
  • the general-purpose terminal 204 also functions as a device that notifies a driver or the like of a work state, a running state, and various information through display on the touch panel 240.
  • the control device 205 is further connected to a general-purpose terminal 204 via an in-vehicle LAN.
  • the general-purpose terminal 204 is a tablet computer having a touch panel 240.
  • the general-purpose terminal 204 includes an input / output control unit 241, a work traveling management unit 242, a harvest traveling mode selection unit 243, a traveling route calculation unit 244, and an overlap value setting unit 245.
  • the input / output control unit 241 also has a function of constructing a graphic interface using the touch panel 240 and a function of exchanging data with a remote computer via a wireless line or the Internet.
  • the work traveling management unit 242 includes a traveling locus calculation unit 2421, a work area determination unit 2422, and a discharge position setting unit 2423.
  • the travel locus calculation unit 2421 calculates a travel locus based on the own vehicle position given from the control device 205.
  • the work area determination unit 2422 divides the field into the outer area SA and the unworked area CA based on the traveling trajectory obtained by cutting the outer circumference area SA several times around the field. And is divided into The outermost line of the outer peripheral area SA is used to calculate the boundary with the shore of the field, and the innermost line of the outer peripheral area SA is used to calculate the unworked area CA in which automatic traveling is performed.
  • the discharge position setting unit 2423 sets a combine discharge stop position when the grains in the grain tank 214 are discharged to the transport vehicle CV by the grain discharge device 218.
  • the discharge stop position is set in an outer peripheral area SA formed on the outer peripheral side of the field by peripheral mowing traveling, and at a location other than a corner portion of the polygonal outer peripheral area SA.
  • the harvest travel mode selection unit 243 selects a harvest travel mode artificially by a driver or a work manager or automatically based on input data.
  • the harvest travel mode includes the type of travel pattern (reciprocal travel pattern or spiral travel pattern) and the type of turning transition travel (normal U-turn, switchback turn, alpha-turn).
  • data considered in determining the detailed control parameters of the harvest running mode include field attribute data (area, soil hardness, slope, slippage, etc.), harvested crop data (rice, wheat, barley, etc.) ), Working device data (harvest width, harvest vehicle speed, etc.), and machine data (minimum turning radius, etc.). These data are displayed on the touch panel 240, and the driver or the like can manually select a desired harvesting traveling mode while viewing the data. Further, the harvesting traveling mode selection unit 243 may automatically select an appropriate harvesting traveling mode based on these data. The selection of the harvest travel mode is possible not only at the start of the work but also during the work.
  • the traveling route calculation unit 244 calculates a traveling route for the automatic traveling with respect to the non-work area CA determined by the work area determination unit 2422. When the driver inputs that the manual traveling in the outer peripheral area SA has been completed, the route calculation in the selected traveling pattern is automatically performed.
  • the traveling route calculation unit 244 determines the interval between adjacent traveling routes (path interval) based on the harvest width (work width) of the harvesting unit 215 and the overlap value set by the overlap value setting unit 245. Further, the travel route calculation unit 244 calculates the travel route using the algorithm described with reference to FIGS.
  • the overlap value setting unit 245 has a function of determining and setting an overlap value in accordance with the harvest travel mode selected by the harvest travel mode selection unit 243, and an overlap value artificially input by a driver or a manager. And a function of setting a lap value.
  • the control device 205 includes a vehicle position calculation unit 250, a manual travel control unit 251, an automatic travel control unit 252, a travel route setting unit 253, a control command generation unit 254, an approach deviation calculation unit 255, a work control unit 256, and a notification unit. 259 are provided.
  • the vehicle position calculation unit 250 calculates the vehicle position in the form of map coordinates (or field coordinates) based on the positioning data sequentially transmitted from the satellite positioning unit 281.
  • the host vehicle position calculation unit 250 can also calculate the host vehicle position using the position vector from the inertial navigation unit 282 and the travel distance.
  • the host vehicle position calculating unit 250 can also calculate the host vehicle position by combining signals from the satellite positioning unit 281 and the inertial navigation unit 282. Further, the own vehicle position calculating unit 250 can also calculate the direction of the body 210, which is the traveling direction of the body 210, from the own vehicle position over time.
  • the notification unit 259 generates notification data based on a command or the like from each functional unit of the control device 205 and provides the notification data to the notification device 262.
  • the control device 205 determines whether to permit the automatic driving based on the preset automatic driving permission condition, and the result of the determination is permission. In this case, an automatic traveling start command is given to the automatic traveling control unit 252.
  • the manual traveling control unit 251 and the automatic traveling control unit 252 have an engine control function, a steering control function, a vehicle speed control function, and the like, and provide a traveling control signal to the traveling equipment group 271.
  • the work control unit 256 provides a work control signal to the work equipment group 272 to control the movement of the harvesting work device.
  • the traveling route setting unit 253 receives the traveling route calculated by the traveling route calculating unit 244 from the general-purpose terminal 204, and sets the traveling route as a traveling route to be a target of automatic steering in a timely manner. I do.
  • the automatic traveling control unit 252 calculates the azimuth deviation and the positional deviation between the traveling route set by the traveling route setting unit 253 and the own vehicle position calculated by the own vehicle position calculating unit 250 in order to perform automatic steering.
  • a steering control signal is generated so as to cancel the operation.
  • the automatic traveling control unit 252 generates a control signal related to vehicle speed change based on a vehicle speed value set in advance.
  • the deviation dead zone described with reference to FIG. 21 is set in the automatic traveling control unit 252, and if the calculated displacement is within the width of the deviation dead zone, the control for correcting the displacement is not performed. I can't.
  • the width of the deviation dead zone is changed according to the increase or decrease of the overlap value.
  • the approach deviation calculation unit 255 calculates the approach angle ⁇ described with reference to FIG. 22 as the approach deviation between the approach target travel path TL, which is the next travel path to be approached through the turning travel, and the direction of the body 210. , Based on the vehicle direction sent from the vehicle position calculation unit 250.
  • the control command generation unit 254 generates a control command based on a deviation between the travel route and the position of the vehicle and an overlap value.
  • the limit angle ⁇ L which is the prohibited deviation described with reference to FIG. 22, is set.
  • the following two control commands are generated by the control command generator 254.
  • the one control command is a command for changing the width of the deviation dead zone set in the automatic traveling control unit 252 in accordance with the increase or decrease of the overlap value, and is given to the automatic traveling control unit 252. According to this control command, if the overlap value increases, the width of the deviation dead zone increases, and if the overlap value decreases, the width of the deviation dead zone decreases.
  • Another control command is to, when the approach angle ⁇ calculated by the approach deviation calculator 255 exceeds the limit angle ⁇ L, enter the approach target travel path TL that is the next travel path.
  • the command is a command to stop (entry stop command) and a retry command to restart this approach, and is given to the automatic traveling control unit 252.
  • the manual traveling control unit 251 When the manual traveling mode is selected, when a manual operation signal is sent to the manual traveling control unit 251 based on an operation by the driver, the manual traveling control unit 251 generates a control signal and controls the traveling device group 271. Thus, manual operation is realized.
  • the traveling route set by the traveling route setting unit 253 can be used for guidance for the combine to travel along the traveling route even in manual operation.
  • the control command generated by the control command generation unit 254 may be used for steering control by the manual traveling control unit 251.
  • the overlap value is not set for each field, but is set after completing the harvesting operation on a part of the field, that is, after completing the local harvesting operation along a predetermined traveling route group. May be changed. At this time, the traveling route set in the non-work area CA at that time is shifted based on the new overlap value.
  • each functional unit shown in FIG. 23 is divided mainly for the purpose of explanation. In practice, each functional unit may be integrated with another functional unit, or may be divided into a plurality of functional units. For example, some or all of the functional units constructed in the general-purpose terminal 204 may be incorporated in the control device 205.
  • the peripheral mowing traveling is performed manually, but in the second and subsequent laps, automatic traveling may be partially used, particularly for linear traveling. .
  • each functional unit in the above-described embodiment can be configured as an automatic steering program for the harvester. Further, the processing performed by each functional unit in the above-described embodiment can be configured as an automatic steering method.
  • Such an automatic steering program may be configured to be recorded on a recording medium.
  • the present invention can also be used for a self-removing combine.
  • the present invention can also be used for various harvesters such as a corn harvester, a potato harvester, a carrot harvester, and a sugarcane harvester.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Guiding Agricultural Machines (AREA)

Abstract

An automated steering system for a field work vehicle, which approaches from an approach origin travel path Ln to an approach destination travel path Lm via a turning travel motion by means of automated travel, is provided with: an initial turning path-calculating unit for calculating an initial turning path C1, which is for an initial turning travel motion that continues from travel along an approach origin travel path Ln; a later turning path-calculating unit for calculating a later turning path C2, which is for a later turning travel motion that continues from travel along the initial turning path; and an approach path-calculating unit for calculating an approach path Lin, which connects the later turning path C2 with the approach destination travel path Lm. The turning radius R of the initial turning path C1 is set to be larger than the turning radius of the later turning path C2.

Description

自動操舵システムおよび収穫機、自動操舵方法、自動操舵プログラム、記録媒体Automatic steering system and harvester, automatic steering method, automatic steering program, recording medium
 本発明は、自動操舵システム、および、収穫機、自動操舵方法、自動操舵プログラム、記録媒体に関する。
に関する。
The present invention relates to an automatic steering system, a harvester, an automatic steering method, an automatic steering program, and a recording medium.
About.
〔1〕
 従来、自動走行によって進入元走行経路から旋回走行を介して進入先走行経路に進入する圃場作業車のための自動操舵システムがある。
に関する。
[1]
2. Description of the Related Art Conventionally, there is an automatic steering system for a field work vehicle that automatically enters a destination travel route from a source travel route via a turning travel by an automatic travel.
About.
 自動走行作業車は、作業地を網羅する線状の走行経路に沿うように自動操舵される。進入元走行経路から旋回走行を介して進入先走行経路に進入することが順次繰り返される。進入元走行経路の方向と進入先走行経路の方向とが違うために必要となる機体の方向転換が、旋回走行によって行われる。 The automatic traveling work vehicle is automatically steered along a linear traveling route covering the work site. The entry from the entry source travel route to the entry destination travel route via the turning travel is sequentially repeated. The turning of the aircraft, which is necessary because the direction of the approaching travel route is different from the direction of the approaching travel route, is performed by turning.
 特許文献1によるコンバインは、複数の平行線として設定された走行経路を、方向転換走行(Uターン走行)で順次つなぐように走行することで、未作業領域の作業が行われる。方向転換走行のための経路は、隣接する走行経路の間隔を直径とする円弧となっている(特許文献1の図1を参照)。さらに、一本の走行経路を間に挟んで進入元走行経路から旋回走行を介して進入先走行経路に進入する場合では(特許文献1の図8を参照)、経路間隔より大きな直径を有する円弧が旋回走行の経路として用いられている。いずれも、機体の方向転換のための旋回走行には、1つの円弧で示される経路が用いられている。 コ ン The combine according to Patent Literature 1 performs work in an unworked area by traveling in such a way that traveling paths set as a plurality of parallel lines are sequentially connected in a direction change traveling (U-turn traveling). The route for the turning traveling is an arc having a diameter equal to the distance between the adjacent traveling routes (see FIG. 1 of Patent Document 1). Further, in the case where the vehicle travels from the entry source travel route to the destination travel route via the turning travel with one travel route interposed therebetween (see FIG. 8 of Patent Document 1), an arc having a diameter larger than the route interval is used. Is used as a path for turning traveling. In any case, a path indicated by one circular arc is used for turning traveling for changing the direction of the body.
 特許文献2によるコンバインでは、機体の方向転換のための旋回走行のための経路として、同じ半径を有する2つの円弧とこの円弧を結ぶ直線からなる経路が用いられている(特許文献2の図9、図12、図15を参照)。 In the combine according to Patent Literature 2, a path composed of two circular arcs having the same radius and a straight line connecting the circular arcs is used as a path for turning traveling for changing the direction of the body (see FIG. 9 of Patent Literature 2). , FIG. 12, FIG. 15).
〔2〕
 従来、収穫幅の端部をオーバーラップさせながら、圃場内に設定された走行経路に沿って自動走行する収穫機がある。
[2]
2. Description of the Related Art Conventionally, there is a harvester that automatically travels along a travel route set in a field while overlapping the ends of a harvest width.
 特許文献3では、作業地の大きさと作業幅とオーバーラップ値(重複設定幅)とに基づいて生成された複数の直線路を含む走行経路を自動走行する作業車が開示されている。所定のオーバーララップ値を含む作業幅で作業地を網羅する走行経路を生成する際に、収穫幅に満たない幅の未作業領域が発生する場合には、所定のオーバーラップ値を広げることで作業幅に満たない幅の未作業領域が最後に残ってしまうことを回避する走行経路が生成される。 Patent Document 3 discloses a work vehicle that automatically runs on a travel route including a plurality of straight roads generated based on the size of a work place, a work width, and an overlap value (overlap setting width). When generating a travel route that covers a work site with a work width including a predetermined overlap value, if an unworked area having a width less than the harvest width occurs, the predetermined overlap value is increased. A travel route is generated that prevents an unworked area having a width less than the work width from remaining at the end.
日本国特開2017-055673号公報Japanese Patent Application Publication No. 2017-055673 日本国特開2018-068284号公報Japanese Patent Application Publication No. 2018-068284 日本国特開2017-134527号公報Japanese Patent Application Publication No. 2017-134527
〔1〕背景技術〔1〕に対応する課題は、以下の通りである。
 コンバインのような圃場作業車では、最小旋回半径と走行作業幅との関係から、隣接する平行な2つの走行経路をつなぐような旋回走行を1つ円弧経路で行うのは、困難であることから、進入元走行経路と進入先走行経路との間に1本以上の走行経路を挟むような旋回走行が行われる。そのような旋回走行では、特許文献2で示すような、2つの円弧とこの円弧を結ぶ直線からなる旋回経路が用いられる。しかしながら、2つの円弧を用いた旋回走行において、進入元走行経路と進入先走行経路との間の距離を小さくするためには、小さい半径の円弧を用いた旋回経路を採用する必要があるが、そのような旋回経路に沿った旋回走行は、地面を荒らしてしまう問題が生じる。このことから、2つの円弧を用いた旋回走行を、できるだけコンパクトに、かつ地面を荒らさないように行うための適切な自動操舵手法が要望されている。
[1] The problems corresponding to the background art [1] are as follows.
In a field work vehicle such as a combine, it is difficult to perform a single turn along an arc route to connect two adjacent parallel drive routes due to the relationship between the minimum turning radius and the running width. In this case, the turning traveling is performed such that one or more traveling routes are sandwiched between the entry traveling route and the entrance traveling route. In such a turning traveling, a turning path composed of two arcs and a straight line connecting the arcs as shown in Patent Document 2 is used. However, in turning traveling using two arcs, it is necessary to adopt a turning path using an arc having a small radius in order to reduce the distance between the approaching traveling path and the entering traveling path. The turning traveling along such a turning path causes a problem of roughening the ground. For this reason, there is a demand for an appropriate automatic steering method for performing turning traveling using two arcs as compactly as possible and without roughening the ground.
〔2〕背景技術〔2〕に対応する課題は、以下の通りである。
 特許文献3による作業車では、オーバーラップ値を調整することで、未作業領域内に設定される走行経路で、未作業領域を作業することが可能となる。この作業車に搭載されている走行経路作成アルゴリズムは、オーバーラップ値が可変となっているので、作業車は実質的に種々の作業幅の走行経路で作業走行することができる。しかしながら、オーバーラップ値の違いが、自動走行における操舵制御に考慮されていないので、小さいオーバーラップ値で生成された走行経路であっても、大きなオーバーラップ値で生成された走行経路であっても同一の操舵制御が行われる。
[2] The problems corresponding to the background art [2] are as follows.
In the work vehicle according to Patent Literature 3, by adjusting the overlap value, it becomes possible to work in the unworked area on the traveling route set in the unworked area. Since the overlap value is variable in the travel route creation algorithm mounted on the work vehicle, the work vehicle can travel on travel routes having substantially various work widths. However, since the difference in the overlap value is not taken into account in the steering control in the automatic traveling, even if the traveling route is generated with a small overlap value or the traveling route is generated with a large overlap value, The same steering control is performed.
 本発明の目的は、異なるオーバーラップ値で生成された走行経路に沿って自動走行する際に、オーバーラップ値の違いを考慮した制御が行われる収穫機を提供することである。 An object of the present invention is to provide a harvester that performs control in consideration of a difference in the overlap value when the vehicle automatically travels along a traveling route generated with a different overlap value.
〔1〕課題〔1〕に対応する解決手段は、以下の通りである。
 本発明は、自動走行で、進入元走行経路から旋回走行を介して進入先走行経路に進入する圃場作業車のための自動操舵システムであり、このシステムは、前記進入元走行経路に沿った走行に続く初期旋回走行のための初期旋回経路を算出する初期旋回経路算出部と、前記初期旋回経路に沿った走行に続く後期旋回走行のための後期旋回経路を算出する後期旋回経路算出部と、前記後期旋回経路と前記進入先走行経路とをつなぐ進入経路を算出する進入経路算出部とを備え、前記初期旋回経路の旋回半径は、前記後期旋回経路の旋回半径より大きく設定されている。
[1] The means for solving the problem [1] is as follows.
The present invention is an automatic steering system for a field work vehicle that enters an entry destination traveling route via a turning traveling from an entry origin traveling route through an automatic traveling route, and the system is adapted to travel along the entry origin traveling route. An initial turning path calculation unit that calculates an initial turning path for the initial turning traveling following the above, and a late turning path calculation unit that calculates a late turning path for the later turning following the driving along the initial turning path, An approach path calculation unit that calculates an approach path connecting the late turn path and the destination travel path is provided, and a turn radius of the initial turn path is set to be larger than a turn radius of the late turn path.
 圃場作業車は、機体の方向転換のための旋回走行時に、圃場を少なからず荒らしてしまう。特に、直進走行から旋回走行に移行する際に圃場が荒らされる傾向がある。本発明の構成では、一方では、直進走行から旋回走行に移行する際に用いられる初期旋回経路の旋回半径を大きくすることで、直進走行から旋回走行に移行する際の圃場の荒れを抑制することを意図している。具体的には、初期旋回経路の旋回半径は進入先走行経路に進入する際に用いられる後期旋回経路の旋回半径より大きく設定されている。他方では、後期旋回経路の旋回半径を小さくすることで、進入元走行経路と進入先走行経路との間隔が小さいコンパクトな旋回走行が可能となることを意図している。具体的には、後期旋回経路の旋回半径は、初期旋回経路の旋回半径より大きく設定されている。 (4) The field work vehicle may make the field unduly rough at the time of turning to change the direction of the aircraft. In particular, when shifting from straight running to turning running, the field tends to be roughened. In the configuration of the present invention, on the one hand, by increasing the turning radius of the initial turning path used when shifting from straight running to turning, it is possible to suppress the roughening of the field when shifting from straight running to turning. Is intended. Specifically, the turning radius of the initial turning route is set to be larger than the turning radius of the late turning route used when entering the destination travel route. On the other hand, by reducing the turning radius of the later turning path, it is intended that compact turning can be performed in which the distance between the approaching traveling path and the approaching traveling path is small. Specifically, the turning radius of the later turning path is set to be larger than the turning radius of the initial turning path.
 進入元走行経路と初期旋回経路を直接接続すると、初期旋回経路の沿った初期旋回走行時に、車輪またはクローラで構成される走行装置が、進入先走行経路に沿った走行で作業される予定の農作物を踏み付けてしまう可能性がある。これを避けるためには、走行装置が進入元走行経路を完全に抜け切るまで進入元走行経路の延長上を走行する必要がある。このことから、本発明の好適な実施形態の1つでは、前記初期旋回経路の始端側には、旋回時に前記圃場作業車が農作物を踏み付けることを回避するための前記進入元走行経路の延び方向に沿って延びる予備経路が算出される。 When the entry source travel path is directly connected to the initial turning path, the traveling device constituted by wheels or crawlers during the initial turning traveling along the initial turning path causes crops to be worked by traveling along the destination traveling path. May be trampled. In order to avoid this, it is necessary to travel on an extension of the approaching travel route until the traveling device completely passes through the approaching travel route. For this reason, in one of the preferred embodiments of the present invention, an extension of the entry-source traveling path for preventing the field work vehicle from stepping on crops at the time of turning is provided at the starting end side of the initial turning path. A preliminary route extending along the direction is calculated.
 本発明の好適な実施形態の1つでは、前記後期旋回経路が円弧であり、前記初期旋回経路算出部は、前記進入元走行経路の延長線と前記後期旋回経路の接線とに接する円の円弧として、前記初期旋回経路を算出する。この構成では、旋回経路を円弧で表現することで旋回経路を算出する際の演算が容易となるだけでなく、進入元走行経路から初期旋回経路への移行経路及び初期旋回経路から後期旋回経路への移行経路が、自動操舵に適した滑らかで連続的な線となる利点がある。その際、後期旋回経路の接線が進入先走行経路に直交する接線であれば、初期旋回経路及び後期旋回経路が90度円弧となるので、好都合である。なお、後期旋回経路と初期旋回経路とが直接接するような形態であってもよい。 In one preferred embodiment of the present invention, the late turning path is a circular arc, and the initial turning path calculating unit is configured to determine an arc of a circle that is in contact with an extension of the approaching traveling path and a tangent of the late turning path. To calculate the initial turning path. This configuration not only facilitates the calculation of the turning path by expressing the turning path with an arc, but also allows the transition path from the approaching traveling path to the initial turning path and the initial turning path to the late turning path. Has the advantage of being a smooth, continuous line suitable for automatic steering. At this time, if the tangent to the late turning path is a tangent perpendicular to the approaching travel path, the initial turning path and the late turning path are 90-degree arcs, which is convenient. It should be noted that the late turning path and the initial turning path may be in direct contact with each other.
 さらに別な、本発明の好適な実施形態の1つでは、前記後期旋回経路が円弧であり、前記初期旋回経路の後端側には、前記後期旋回経路につながる直線状の中間経路が算出されており、前記初期旋回経路算出部は、前記進入元走行経路の延長線と前記中間経路とに接する円の円弧として、前記初期旋回経路を算出する。この構成においても、旋回経路は円弧で表現され、進入元走行経路から初期旋回経路への移行、初期旋回経路から中間経路への移行、及び中間経路から後期旋回経路への移行が、円弧に対する接線の形態で行われるので、スムーズとなる利点が得られる。操舵目標となる初期旋回経路及び後期旋回経路が円弧で形成されているので、実際の圃場作業車の旋回半径と、実質的に意図している旋回半径とが一致するような操舵制御が実現される。 In still another preferred embodiment of the present invention, the late turning path is an arc, and a straight intermediate path leading to the late turning path is calculated at a rear end of the initial turning path. The initial turning path calculation unit calculates the initial turning path as an arc of a circle that is in contact with an extension of the approaching traveling path and the intermediate path. Also in this configuration, the turning path is represented by an arc, and the transition from the entry traveling path to the initial turning path, the transition from the initial turning path to the intermediate path, and the transition from the intermediate path to the late turning path are tangent to the arc. Therefore, the advantage of smoothness can be obtained. Since the initial turning path and the late turning path that are the steering targets are formed by arcs, steering control is realized such that the turning radius of the actual field work vehicle substantially matches the intended turning radius. You.
〔2〕課題〔2〕に対応する解決手段は、以下の通りである。
 収穫幅の端部をオーバーラップさせながら、圃場内に設定された走行経路に沿って自動走行する、本発明による収穫機は、収穫走行形態を選択する収穫走行形態選択部と、前記オーバーラップのオーバーラップ値を設定するオーバーラップ値設定部と、前記収穫幅と前記オーバーラップ値とから決定される経路間隔で作業対象領域を網羅するように、前記走行経路を前記収穫走行形態に応じて算出する走行経路算出部と、自車位置を算出する自車位置算出部と、前記走行経路と前記自車位置との間の偏差及び前記オーバーラップ値に基づいて制御指令を生成する制御指令生成部と、前記制御指令に基づいて操舵制御を行う自動走行制御部とを備える。
[2] The solution to the problem [2] is as follows.
A harvester according to the present invention, which automatically travels along a travel route set in a field while overlapping the ends of the harvest width, a harvest travel mode selection unit that selects a harvest travel mode, An overlap value setting unit for setting an overlap value; and calculating the travel route according to the harvest travel mode so as to cover the work target area with a route interval determined from the harvest width and the overlap value. A traveling route calculating unit, a vehicle position calculating unit that calculates a vehicle position, and a control command generating unit that generates a control command based on a deviation between the traveling route and the vehicle position and the overlap value. And an automatic traveling control unit that performs steering control based on the control command.
 コンバインなどの収穫機の場合、圃場の形状、大きさ、収穫物の種類や状態、収穫装置の作業走行幅、運転者や営農家の意向、などから、収穫走行における走行経路のレイアウト(走行パターン)、収穫幅、収穫速度、制御パラメータなどが決定される。この走行パターン、収穫幅、収穫速度、制御パラメータなどが異なる形態での各種走行は、ここでは収穫走行形態と総称される。本発明による上記構成の収穫機では、収穫走行形態に応じて算出された走行経路におけるオーバーラップ値が設定されると、このオーバーラップ値及び走行経路と自車位置との間の偏差に基づいて制御指令が生成されるので、オーバーラップ値が異なる走行経路に対しては異なる操舵制御の実行が可能となる。その結果、より適切な操舵制御を用いた自動走行による収穫作業が可能となる。 In the case of harvesters such as combine harvesters, the layout of the travel route in harvesting travel (driving pattern) is based on the shape and size of the field, the type and state of the harvest, the working travel width of the harvesting device, the intention of the driver and farmer, etc. ), Harvest width, harvest speed, control parameters, etc. are determined. Various types of running in which the running pattern, the harvest width, the harvest speed, the control parameters, and the like are different are collectively referred to herein as a harvest running mode. In the harvester having the above-described configuration according to the present invention, when the overlap value in the traveling route calculated according to the harvest traveling mode is set, based on the overlap value and the deviation between the traveling route and the own vehicle position. Since the control command is generated, it is possible to execute different steering controls for traveling routes having different overlap values. As a result, a harvesting operation by automatic traveling using more appropriate steering control can be performed.
 本発明の好適な実施形態の1つでは、前記オーバーラップ値設定部は、前記収穫走行形態に応じて、前記オーバーラップ値を変更する。この構成では、選択された収穫走行形態にとって最適なオーバーラップ値を設定し、そのオーバーラップ値で自動走行することができる。 In one preferred embodiment of the present invention, the overlap value setting unit changes the overlap value according to the harvesting traveling mode. With this configuration, it is possible to set an optimal overlap value for the selected harvesting travel mode, and to automatically travel with the overlap value.
 本発明の好適な実施形態の1つでは、前記偏差を無効にする偏差不感帯の幅が、前記オーバーラップ値の増大に対応して広くなるように変更される。オーバーラップ値が大きくなれば、自動走行制御の不安定による収穫残しの領域(収穫作業もれ領域)が生じる可能性が低くなる。また、偏差不感帯の幅を大きくすれば、わずかな偏差では操舵修正が行われないので、制御感度は鈍感となるが、それゆえに、わずかな偏差による操舵修正の結果、機体が微細揺動してしまうという問題は回避される。この構成では、オーバーラップ値が大きい場合には、偏差不感帯の幅を広くし、機体の微細揺動を抑制している。 In one preferred embodiment of the present invention, the width of the deviation dead zone for invalidating the deviation is changed so as to increase in accordance with the increase in the overlap value. If the overlap value becomes large, the possibility that an unharvested area (an area where the harvesting operation is leaked) due to the instability of the automatic traveling control is reduced. In addition, if the width of the deviation dead zone is made large, the steering sensitivity is not sensitive because the steering correction is not performed with a slight deviation, but the steering correction due to the slight deviation causes the aircraft to oscillate finely. The problem of getting lost is avoided. In this configuration, when the overlap value is large, the width of the deviation dead zone is widened, and the fine swing of the body is suppressed.
 圃場の農作物を走行しながら収穫する収穫機走行パターンとして、複数の平行な走行経路をUターンによってつないで走行する往復走行パターンと、作業対象領域の外縁に沿って渦巻き状に内側に向かって走行する渦巻き走行パターンがよく知られている。往復走行パターンでは、複数の平行な走行経路群から順次選択される走行経路がUターン旋回走行でつながれていく。渦巻き走行パターン経路では、多角形形状の作業対象領域の各辺に平行となる走行経路が、順次アルファターンと呼ばれる後進を伴う旋回走行でつながれていく。その際、旋回走行の最後において、次に進入する目標となる走行経路からの自車位置の偏差(ずれ)が大きくなると、収穫作業ができない領域が生じてしまう。これを避けるためには、一旦その進入走行を中止し、後進を行い、進入走行をやり直す必要がある。ただし、オーバーラップ値が大きくなれば、自車位置の偏差の許容範囲が大きくなるので、この進入走行やり直し条件は緩和可能となる。このことから、本発明の好適な実施形態の1つでは、旋回走行を通じて進入しようとする前記走行経路である進入目標走行経路と前記自車位置との間の進入偏差を算出する進入偏差算出部が備えられ、前記進入偏差が禁止偏差を超えた場合に前記進入目標走行経路への進入を中止させる進入中止指令が、前記制御指令に含まれており、前記禁止偏差が前記オーバーラップ値によって変更される。 A reciprocating traveling pattern in which a plurality of parallel traveling paths are connected by a U-turn and a spiral traveling inward along the outer edge of the work target area as a harvesting machine traveling pattern for harvesting while traveling on crops in a field. Swirling running patterns are well known. In the reciprocating traveling pattern, traveling routes sequentially selected from a plurality of parallel traveling route groups are connected by a U-turn turning traveling. In the spiral traveling pattern path, traveling paths parallel to each side of the polygonal work target area are sequentially connected by turning traveling with a reverse movement called an alpha turn. At that time, if the deviation (deviation) of the vehicle position from the target traveling route to be entered next becomes large at the end of the turning travel, an area where the harvesting operation cannot be performed occurs. In order to avoid this, it is necessary to temporarily stop the approach traveling, perform reverse traveling, and restart the approach traveling. However, if the overlap value increases, the permissible range of the deviation of the position of the own vehicle increases, so that the condition for re-entering and traveling can be relaxed. For this reason, in one preferred embodiment of the present invention, an approach deviation calculating unit that calculates an approach deviation between the approach target travel path, which is the travel path to be approached through turning, and the position of the host vehicle. An entry stop command for stopping the entry to the entry target travel path when the entry deviation exceeds the inhibition deviation is included in the control command, and the inhibition deviation is changed by the overlap value. Is done.
第1実施形態を示す図であって(以下、図11まで同じ)、圃場作業車の一例としての普通型のコンバインの側面図である。FIG. 12 is a view showing the first embodiment (hereinafter the same up to FIG. 11), and is a side view of an ordinary combine as an example of a field work vehicle. コンバインの周囲刈り走行を示す説明図である。It is explanatory drawing which shows the cutting and running around the combine. Uターンでつながれた往復走行を繰り返す走行パターンを示す説明図である。It is explanatory drawing which shows the driving | running | working pattern which repeats reciprocating driving | running connected by U-turn. Uターン旋回経路と直進走行経路とからなる走行経路の算出の基本原理を示す説明図である。It is explanatory drawing which shows the basic principle of calculation of the driving | running route which consists of a U-turn turning route and a straight driving | running | working route. アルファターンを用いた渦巻き走行パターンを示す説明図である。It is explanatory drawing which shows the spiral running pattern using an alpha turn. 手動走行と自動走行とを用いて行われるコンバインによる収穫作業の流れを説明する説明図である。It is explanatory drawing explaining the flow of the harvesting work by the combine performed using manual driving | running | working and automatic driving | running. 進入元走行経路、初期旋回経路、後期旋回経路、進入経路、進入先走行経路のそれぞれの関係を示す説明図である。It is explanatory drawing which shows each relationship of an approach origin driving | running route, an initial turning route, a late turning route, an approach route, and an approach destination driving route. 進入元走行経路、初期旋回経路、中間経路、後期旋回経路、進入経路、進入先走行経路のそれぞれの関係を示す説明図である。It is explanatory drawing which shows each relationship of an approach origin driving | running route, an initial turning route, an intermediate route, a late turning route, an approach route, and an approach destination driving route. 進入元走行経路、予備経路、初期旋回経路、後期旋回経路、進入経路、進入先走行経路のそれぞれの関係を示す説明図である。It is explanatory drawing which shows each relationship of the approaching travel route, the preliminary route, the initial turning route, the late turning route, the approach route, and the approaching traveling route. 進入元走行経路、予備経路、初期旋回経路、中間経路、後期旋回経路、進入経路、進入先走行経路のそれぞれの関係を示す説明図である。It is explanatory drawing which shows each relationship of an approach origin driving | running route, a preliminary | backup route, an initial turning route, an intermediate route, a late turning route, an approaching route, and an approaching driving route. コンバインの制御系の構成を示す機能ブロック図である。FIG. 3 is a functional block diagram illustrating a configuration of a combine control system. 第2実施形態を示す図であって(以下、図23まで同じ)、収穫機の一例としての普通型のコンバインの側面図である。It is a figure which shows 2nd Embodiment (henceforth, it is the same until FIG. 23), and is a side view of the common type combine as an example of a harvester. コンバインの周囲刈り走行を示す説明図である。It is explanatory drawing which shows the cutting and running around the combine. Uターンでつながれた往復走行を繰り返す走行パターンを示す説明図である。It is explanatory drawing which shows the driving | running | working pattern which repeats reciprocating driving | running connected by U-turn. 渦巻き状に中心に向かって走行する走行パターンを示す説明図である。It is explanatory drawing which shows the driving | running | working pattern which runs toward the center in the shape of a spiral. スイッチバックを用いた往復走行パターンでの走行経路の算出を説明する説明図である。It is explanatory drawing explaining calculation of the driving | running route in a reciprocating driving | running | working pattern using switchback. ノーマルUターンを用いた往復走行パターンでの走行経路の算出を説明する説明図である。It is explanatory drawing explaining calculation of the driving | running route in the reciprocating driving | running | working pattern using a normal U-turn. 渦巻き走行パターンでの走行経路の算出を説明する説明図である。It is explanatory drawing explaining calculation of the driving | running route in a spiral driving | running | working pattern. 手動走行と自動走行とを用いて行われるコンバインによる収穫作業の流れを説明する説明図である。It is explanatory drawing explaining the flow of the harvesting work by the combine performed using manual driving | running | working and automatic driving | running. 収穫幅とオーバーラップ値と経路間隔との関係を示す説明図である。It is explanatory drawing which shows the relationship between a harvest width, an overlap value, and a route interval. オーバーラップ値の増減と偏差不感帯幅との関係を示す説明図である。It is explanatory drawing which shows the relationship between the increase / decrease of an overlap value, and the deviation dead zone width. オーバーラップ値の増減と進入走行時の限界角度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the increase / decrease of an overlap value, and the limit angle at the time of approach driving | running | working. コンバインの制御系の構成を示す機能ブロック図である。FIG. 3 is a functional block diagram illustrating a configuration of a combine control system.
〔第1実施形態〕
 まず、図1~図11を参照しながら、第1実施形態について説明する。
 次に、本発明による自動操舵システムを採用した自動走行可能な圃場作業車の一例として、普通型のコンバインが取り上げられ、説明される。なお、本明細書では、特に断りがない限り、「前」(図1に示す矢印Fの方向)は機体前後方向(走行方向)に関して前方を意味し、「後」(図1に示す矢印Bの方向)は機体前後方向(走行方向)に関して後方を意味する。また、左右方向または横方向は、機体前後方向に直交する機体横断方向(機体幅方向)を意味する。「上」(図1に示す矢印Uの方向)及び「下」(図1に示す矢印Dの方向)は、機体10の鉛直方向(垂直方向)での位置関係であり、地上高さにおける関係を示す。
[First Embodiment]
First, a first embodiment will be described with reference to FIGS.
Next, as an example of a field work vehicle capable of automatically traveling employing the automatic steering system according to the present invention, a normal type combine is taken up and described. In this specification, unless otherwise specified, “front” (direction of arrow F shown in FIG. 1) means forward with respect to the longitudinal direction of the aircraft (running direction), and “rear” (arrow B shown in FIG. 1). Direction) means backward with respect to the longitudinal direction of the aircraft (running direction). In addition, the left-right direction or the lateral direction means a cross-machine direction (machine body width direction) orthogonal to the machine body front-rear direction. “Up” (in the direction of arrow U shown in FIG. 1) and “down” (in the direction of arrow D shown in FIG. 1) are positional relationships in the vertical direction (vertical direction) of the fuselage 10, and are related to the ground level. Is shown.
 図1に示すように、このコンバインは、機体10、クローラ式の走行装置11、運転部12、脱穀装置13、穀粒タンク14、収穫部15、搬送装置16、穀粒排出装置18、自車位置検出モジュール80を備えている。 As shown in FIG. 1, the combine includes an airframe 10, a crawler-type traveling device 11, an operating unit 12, a threshing device 13, a grain tank 14, a harvesting unit 15, a transport device 16, a grain discharging device 18, and a vehicle. The position detecting module 80 is provided.
 走行装置11は、機体10の下部に備えられている。コンバインは、走行装置11によって自走可能に構成されている。運転部12、脱穀装置13、穀粒タンク14は、走行装置11の上側に備えられ、機体10の上部を構成している。運転部12には、コンバインを運転する運転者及びコンバインの作業を監視する監視者が搭乗可能である。なお、監視者は、コンバインの機外からコンバインの作業を監視してもよい。 The traveling device 11 is provided at a lower portion of the body 10. The combine is configured to be self-propelled by the traveling device 11. The operating unit 12, the threshing device 13, and the grain tank 14 are provided on the upper side of the traveling device 11 and constitute an upper part of the machine body 10. A driver who drives the combine and a monitor who monitors the work of the combine can be boarded on the driving unit 12. The observer may monitor the combine operation from outside the combine.
 穀粒排出装置18は、穀粒タンク14よりも上側に設けられている。また、自車位置検出モジュール80は、運転部12の上面に取り付けられている。 The grain discharge device 18 is provided above the grain tank 14. The vehicle position detection module 80 is attached to the upper surface of the driving unit 12.
 収穫部15は、コンバインにおける前部に備えられている。そして、搬送装置16は、収穫部15の後側に設けられている。また、収穫部15は、切断機構15a及びリール15bを有している。切断機構15aは、圃場の植立穀稈を刈り取る。また、リール15bは、回転駆動しながら収穫対象の植立穀稈を掻き込む。この構成により、収穫部15は、圃場の穀物(農作物の一種)を収穫する。そして、コンバインは、収穫部15によって圃場の穀物を収穫しながら走行装置11によって走行する作業走行が可能である。 The harvesting unit 15 is provided at the front of the combine. The transport device 16 is provided on the rear side of the harvesting unit 15. The harvesting unit 15 has a cutting mechanism 15a and a reel 15b. The cutting mechanism 15a cuts the planted grain culm in the field. Further, the reel 15b scrapes the planted grain stem to be harvested while being driven to rotate. With this configuration, the harvesting unit 15 harvests cereals (a kind of agricultural crop) in the field. Then, the combine is capable of traveling by the traveling device 11 while harvesting cereals in the field by the harvesting unit 15.
 切断機構15aによって刈り取られた刈取穀稈は、搬送装置16によって脱穀装置13へ搬送される。脱穀装置13において、刈取穀稈は脱穀処理される。脱穀処理により得られた穀粒は、穀粒タンク14に貯留される。穀粒タンク14に貯留された穀粒は、必要に応じて、穀粒排出装置18によって機外に排出される。 刈 The harvested stalks harvested by the cutting mechanism 15a are transported by the transport device 16 to the threshing device 13. In the threshing device 13, the harvested culm is threshed. The grain obtained by the threshing process is stored in the grain tank 14. The grains stored in the grain tank 14 are discharged out of the machine by a grain discharging device 18 as necessary.
 また、運転部12には、汎用端末4が配置されている。本実施形態において、汎用端末4は、運転部12に固定されている。しかしながら、本発明はこれに限定されず、汎用端末4は、運転部12に対して着脱可能に構成されていても良いし、汎用端末4は、コンバインの機外に持ち出し可能であってもよい。 汎 用 Further, the general-purpose terminal 4 is disposed in the driving unit 12. In the present embodiment, the general-purpose terminal 4 is fixed to the driving unit 12. However, the present invention is not limited to this, and the general-purpose terminal 4 may be configured to be detachable from the driving unit 12, or the general-purpose terminal 4 may be able to be taken out of the combine machine. .
 図2に示すように、このコンバインは、圃場において設定された走行経路に沿って自動走行する。これには、自車位置の情報が必要である。自車位置検出モジュール80には、衛星測位ユニット81と慣性航法ユニット82とが含まれている。衛星測位ユニット81は、人工衛星GSから送信される位置情報であるGNSS(global navigation satellite system)信号(GPS信号を含む)を受信して、自車位置を算出するための測位データを出力する。慣性航法ユニット82は、ジャイロ加速度センサ及び磁気方位センサを組み込んでおり、瞬時の走行方向を示す位置ベクトルを出力する。慣性航法ユニット82は、衛星測位ユニット81による自車位置算出を補完するために用いられる。慣性航法ユニット82は、衛星測位ユニット81とは別の場所に配置されてもよい。 コ ン As shown in FIG. 2, the combine automatically travels along a travel route set in a field. This requires information on the position of the vehicle. The vehicle position detection module 80 includes a satellite positioning unit 81 and an inertial navigation unit 82. The satellite positioning unit 81 receives a GNSS (global navigation satellite system) signal (including a GPS signal), which is position information transmitted from the artificial satellite GS, and outputs positioning data for calculating the own vehicle position. The inertial navigation unit 82 incorporates a gyro acceleration sensor and a magnetic direction sensor, and outputs a position vector indicating an instantaneous traveling direction. The inertial navigation unit 82 is used to supplement the own vehicle position calculation by the satellite positioning unit 81. The inertial navigation unit 82 may be located at a different location from the satellite positioning unit 81.
 このコンバインによって圃場での収穫作業を行う場合の手順は、以下に説明する通りである。 手 順 The procedure for performing harvesting work in the field using this combine is as described below.
 まず、運転者兼監視者は、コンバインを手動で操作し、図2に示すように、圃場内の外周部分において、圃場の境界線に沿って周囲刈り走行しながら収穫を行う。周囲刈り走行により既刈領域(既作業領域)となった領域は、外周領域SAとして設定される。そして、外周領域SAの内側に未刈地(未作業地)のまま残された内部領域は未作業領域CAであり、今後の作業対象領域として設定される。この実施形態では、未作業領域CAが四角形となるように、周囲刈り走行が行われる。もちろん、三角形や五角形の未作業領域CAが採用されてもよい。 First, the driver / monitor manually operates the combine, and harvests while cutting around the periphery of the field along the boundary of the field at the outer peripheral portion in the field as shown in FIG. The area that has been cut (the already-worked area) by the peripheral cutting is set as the outer peripheral area SA. Then, the inner area left uncut on the uncut area (unworked area) inside the outer peripheral area SA is the unworked area CA, which is set as a work target area in the future. In this embodiment, the surrounding mowing travel is performed so that the unworked area CA becomes a square. Of course, a triangular or pentagonal unworked area CA may be employed.
 また、このとき、外周領域SAの幅をある程度広く確保するために、運転者は、コンバインを2~3周走行させる。この走行においては、コンバインが1周する毎に、コンバインの作業幅分だけ外周領域SAの幅が拡大する。この2~3周の走行が終わると、外周領域SAの幅は、コンバインの作業幅の2~3倍程度の幅となる。なお、周囲刈りは、2~3周に限らず、1周でもよいし、4周以上でもよい。 こ の At this time, in order to secure the width of the outer peripheral area SA to some extent, the driver runs the combine for two or three turns. In this traveling, every time the combine makes one round, the width of the outer peripheral area SA increases by the working width of the combine. At the end of the two or three rounds of travel, the width of the outer peripheral area SA is about two to three times the working width of the combine. The surrounding mowing is not limited to two or three rounds, but may be one round or four or more rounds.
 外周領域SAは、作業対象領域である未作業領域CAにおいて収穫走行を行うときに、コンバインが方向転換するためのスペースとして利用される。また、外周領域SAは、収穫走行を一旦終えて、穀粒の排出場所へ移動する際や、燃料の補給場所へ移動する際等の移動用のスペースとしても利用される。 The outer peripheral area SA is used as a space for the combine to change directions when performing harvesting traveling in the unworked area CA that is the work target area. In addition, the outer peripheral area SA is also used as a space for movement when the harvest travel is once completed and the grain is moved to a grain discharge location, or is moved to a fuel supply location.
 なお、図2に示す運搬車CVは、コンバインの穀粒排出装置18から排出した穀粒を収集し、運搬することができる。穀粒排出の際、コンバインは運搬車CVの近傍へ移動した後、穀粒排出装置18によって穀粒を運搬車CVへ排出する。 The carrier CV shown in FIG. 2 can collect and transport the grains discharged from the combine grain discharging device 18 of the combine. In discharging the grains, the combine moves to the vicinity of the transport vehicle CV, and then discharges the grains to the transport vehicle CV by the grain discharging device 18.
 未作業領域CAの形状を示す内側マップデータが作成されると、この内側マップデータに基づいて算出される線状(直線又は曲線)の走行経路に沿う自動走行と、1つの走行経路(旋回元走行経路)から次の走行経路(旋回先走行経路)に移行するための旋回走行とによって未作業領域CAの植付穀稈が刈り取られる。未作業領域CAを作業走行(収穫走行)する際に用いられる走行パターンとして、図3に示す往復走行パターンが示されている。この往復走行パターンでは、コンバインは、未作業領域CAの一辺に平行な2つの走行経路を旋回走行経路の1つであるUターン走行経路によってつなぐように、走行する。 When the inside map data indicating the shape of the unworked area CA is created, automatic traveling along a linear (straight or curved) traveling route calculated based on the inside map data and one traveling route (turning origin) are performed. The turning cruise for shifting from the (traveling route) to the next traveling route (turning destination traveling route) cuts the planted grain culm in the unworked area CA. A reciprocating traveling pattern shown in FIG. 3 is shown as a traveling pattern used when performing traveling (harvest traveling) in the unworked area CA. In this reciprocating traveling pattern, the combine travels such that two traveling routes parallel to one side of the unworked area CA are connected by a U-turn traveling route, which is one of the turning traveling routes.
 往復走行パターンを用いて未作業領域CAを自動走行するために用いられる走行経路(Uターン旋回経路と直進走行経路とからなる)は、内側マップデータに基づいて以下のように算出される。図4に示すように、内側マップデータから、第1辺S1、第2辺S2、第3辺S3、第4辺S4からなる四角形の未作業領域CAが規定される。この未作業領域CAの長辺である第1辺S1が基準辺S1として選択される。この基準辺S1に平行で、作業幅(刈取り幅)の半分だけ基準辺S1から内側を通る線が初期基準線L1として算出される。この初期基準線L1が最初に走行する走行経路に対応する。なお、最初に、未作業領域CAを中割するような収穫走行が採用される場合、初期基準線L1として、基準辺S1に平行で、基準辺S1からさらに離れた距離(作業幅の半分+作業幅の整数倍)を通る線が初期基準線L1として算出される。 走 行 A traveling route (consisting of a U-turn turning route and a straight traveling route) used for automatically traveling in the unworked area CA using the reciprocating traveling pattern is calculated as follows based on the inside map data. As shown in FIG. 4, a rectangular unworked area CA including a first side S1, a second side S2, a third side S3, and a fourth side S4 is defined from the inside map data. The first side S1, which is the long side of the unworked area CA, is selected as the reference side S1. A line parallel to the reference side S1 and passing inside the reference side S1 by half of the working width (cutting width) is calculated as the initial reference line L1. This initial reference line L1 corresponds to a traveling route that travels first. Note that, first, when a harvesting travel that divides the unworked area CA is adopted, as the initial reference line L1, a distance parallel to the reference side S1 and further away from the reference side S1 (half the working width + A line passing through (an integral multiple of the working width) is calculated as the initial reference line L1.
 コンバインが、進入元走行経路から進入先走行経路へ180度の旋回走行するために必要なスペースを確保するため、初期基準線L1から旋回走行を介してつながる次の基準線L2は、初期基準線L1に平行で作業幅の複数倍(図4では3倍)の間隔で算出される。同様な方法で、次の基準線L3も算出される。このように、旋回走行で必要なスペースを考慮して、順次基準線が算出される。これらの基準線L1、L2、L3・・・が直進走行用の走行経路(進入元走行経路及び進入先走行経路)に対応する。図4では、未作業領域CAの形状は四角形であったが、これが三角形や五角形などの他の多角形であっても基準辺S1を選択すれば、同様な方法で順次走行経路を算出することができる。 In order to secure a space required for the combine to make a 180-degree turn from the approaching travel route to the approaching travel route, the next reference line L2 connected from the initial reference line L1 via the turning travel is an initial reference line. It is calculated at intervals of a plurality of times (three times in FIG. 4) the work width in parallel with L1. In the same manner, the next reference line L3 is calculated. As described above, the reference line is sequentially calculated in consideration of the space required for the turning travel. These reference lines L1, L2, L3,... Correspond to traveling routes for straight traveling (an entrance traveling route and an entrance traveling route). In FIG. 4, the shape of the unworked area CA is a quadrangle, but even if this is another polygon such as a triangle or a pentagon, if the reference side S1 is selected, the traveling route can be sequentially calculated in the same manner. Can be.
 なお、走行パターンとして、その他に渦巻き走行パターンがある。渦巻き走行パターンでは、図5に示されているように、コンバインは、未作業領域CAの外形に相似するような周回走行軌跡をもって、中心に向けて渦巻きのように走行する。その際、各コーナ領域で必要な旋回走行として、直進と後進旋回と前進旋回とを用いた、アルファターンと呼ばれる旋回走行が採用される。 In addition, there is a spiral running pattern as another running pattern. In the spiral running pattern, as shown in FIG. 5, the combine runs like a spiral toward the center with a circular running locus similar to the outer shape of the unworked area CA. At this time, as a necessary turning in each corner area, a turning called an alpha turn using straight running, backward turning, and forward turning is adopted.
 実際の圃場における収穫作業では、図6に示されているように、往復走行パターンと渦巻き走行パターンとが混在することが少なくない。図6の例では、コンバインが圃場に入ると(#a)、手動操舵で周囲刈り走行が行われ、圃場の最外周側に既作業領域である外周領域SAが形成される(#b)。この周囲刈り走行で形成される外周領域SAがコンバインのアルファターンが可能となる大きさになれば、未作業領域CAにたいして渦巻き走行パターンが設定され、渦巻き走行が行われる(#c)。この渦巻き走行では、少なくとも直進は自動操舵による自動走行が可能である。渦巻き走行は、未作業領域CAが、往復走行パターンにおける旋回走行(ノーマルUターン、スイッチバックターン)が可能となる大きさになるまで、行われる(#d)。次に、未作業領域CAに対して、往復走行パターンで未作業領域CAを網羅するような走行経路が設定される(#e)。設定された走行経路に沿って往復走行を実施することで、圃場の収穫作業が終了する(#f)。 (6) In an actual harvesting operation in a field, a reciprocating traveling pattern and a spiral traveling pattern are often mixed as shown in FIG. In the example of FIG. 6, when the combine enters the field (#a), the surrounding mowing travel is performed by manual steering, and an outer peripheral area SA, which is a work area, is formed on the outermost peripheral side of the field (#b). When the outer peripheral area SA formed by the peripheral mowing travel has a size that enables the alpha turn of the combine, the spiral travel pattern is set for the unworked area CA, and the spiral travel is performed (#c). In this spiral running, automatic running by automatic steering is possible at least in straight running. The spiral running is performed until the unworked area CA becomes large enough to enable the turning running (normal U-turn, switchback turn) in the reciprocating running pattern (#d). Next, a traveling route that covers the unworked area CA in a reciprocating traveling pattern is set for the unworked area CA (#e). By performing the reciprocating traveling along the set traveling route, the harvesting work in the field is completed (#f).
 進入元走行経路Lnから進入先走行経路Lmに進入する際に用いられる旋回経路が、図7から図10に例示されている。図7から図10において、進入元走行経路はLnで示され、進入先走行経路はLmで示されている。進入元走行経路Lnと進入先走行経路Lmとの間隔(経路間隔)は、Dで示されている。旋回経路は、進入元走行経路Lnに沿った走行に続く初期旋回走行のための初期旋回経路C1と、初期旋回経路C1に沿った走行に続く後期旋回走行のための後期旋回経路C2と、後期旋回経路C2と進入先走行経路Lmをつなぐ進入経路Linとを有する。進入経路Linは進入先走行経路Lmの延長経路であってよい。図8及び図10の例では、初期旋回経路C1の後端側には、後期旋回経路C2につながる直線状の中間経路Lmidが介在している。ここで例示されている旋回経路では、中間経路Lmidは初期旋回経路C1および後期旋回経路C2に接する接線である。初期旋回経路C1は90度円弧である。図9及び図10の例では、初期旋回経路C1と進入元走行経路Lnの終端との間に、予備経路Ladが介在している。予備経路Ladは、進入元走行経路Lnの延び方向に延びた延長線とみなしてもよい。図7から図10に例示された旋回経路において重要な点は、初期旋回経路C1を形成する円弧の半径Rは、後期旋回経路C2を形成する円弧の半径rより大きく設定されることである。初期旋回経路C1の旋回半径Rに関しては、後期旋回経路C2を形成する円弧の半径rを考慮して、rより大きな値である最小値及び最大値が予め決められ、その最小値と最大値との範囲で選択されるようにしてもよい。さらには、利用可能な旋回半径Rがrより大きな値であることを条件として予め設定されていてもよい。 Turning paths used when entering the destination travel path Lm from the entry source travel path Ln are illustrated in FIGS. 7 to 10. In FIGS. 7 to 10, the approaching travel route is indicated by Ln, and the approaching travel route is indicated by Lm. An interval (route interval) between the entry traveling route Ln and the entry traveling route Lm is indicated by D. The turning path includes an initial turning path C1 for the initial turning traveling following the traveling along the entry-source traveling path Ln, a late turning path C2 for the late turning traveling following the traveling along the initial turning path C1, and a late turning path. It has an approach route Lin that connects the turning route C2 and the approach destination travel route Lm. The approach route Lin may be an extension route of the destination travel route Lm. In the examples of FIGS. 8 and 10, a linear intermediate path Lmid connected to the late turning path C2 is interposed on the rear end side of the initial turning path C1. In the turning path illustrated here, the intermediate path Lmid is a tangent to the initial turning path C1 and the late turning path C2. The initial turning path C1 is a 90-degree arc. In the examples of FIGS. 9 and 10, the preliminary route Lad is interposed between the initial turning route C <b> 1 and the end of the approaching traveling route Ln. The preliminary route Lad may be regarded as an extension line extending in the direction in which the entry traveling route Ln extends. An important point in the turning paths exemplified in FIGS. 7 to 10 is that the radius R of the arc forming the initial turning path C1 is set to be larger than the radius r of the arc forming the late turning path C2. Regarding the turning radius R of the initial turning route C1, a minimum value and a maximum value that are larger than r are predetermined in consideration of a radius r of an arc forming the late turning route C2, and the minimum value and the maximum value are determined. May be selected. Furthermore, it may be set in advance on condition that the available turning radius R is a value larger than r.
 進入先走行経路Lmに進入するための旋回走行に用いられる後期旋回経路C2は、進入先走行経路Lmの延長線である進入経路Linに接する半径rの円弧である。半径rは、コンバインの旋回半径に基づいて予め決定されている。圃場の荒れより旋回スペースを小さくすることを優先する場合には、コンバインの最小旋回半径が採用され、旋回スペースより圃場を荒らさないことを優先する場合には、最小旋回半径より大きな標準旋回半径が採用される。 後 The late turning path C2 used for turning to enter the destination travel path Lm is an arc having a radius r that is in contact with the approach path Lin which is an extension of the destination travel path Lm. The radius r is determined in advance based on the turning radius of the combine. When giving priority to making the turning space smaller than the roughness of the field, the minimum turning radius of the combine is adopted, and when giving priority to not turning the field over the turning space, a standard turning radius larger than the minimum turning radius is used. Adopted.
 進入経路Linの長さは、後期旋回経路C2に沿って旋回走行してきたコンバインが確実に進入先走行経路Lmを捕捉して、進入先走行経路Lmに精度良く進入し、刈り残しなしに収穫走行に移行できるように算出される。この進入経路Linの最小必要長さは、コンバイン仕様(収穫幅や旋回性能)及び圃場特性(滑り易さや凹凸のレベル)、旋回走行に利用可能なスペースから算出される。 The length of the approach route Lin is such that the combine that has turned along the late turning route C2 reliably captures the approach destination route Lm, accurately enters the approach destination route Lm, and harvests without cutting. It is calculated so that it can shift to. The minimum required length of the approach route Lin is calculated from the combine specifications (harvest width and turning performance), the field characteristics (slipperiness and unevenness level), and the space available for turning traveling.
 図7の例では、初期旋回経路C1は、後期旋回経路C2と進入元走行経路Lnとに直接連結している。言い換えると、初期旋回経路C1は、後期旋回経路C2と進入元走行経路Lnとに接する円の90度円弧である。このようなケースでは、前提条件が必要である。この前提条件は、経路間隔が比較的短こと、及び、進入元走行経路Lnでの収穫走行後すぐに旋回走行に移行しても、旋回側の走行装置11が未刈領域の植付穀稈を踏み付けないことである。 で は In the example of FIG. 7, the initial turning route C1 is directly connected to the late turning route C2 and the entry traveling route Ln. In other words, the initial turning path C1 is a 90-degree arc of a circle that is in contact with the late turning path C2 and the approaching traveling path Ln. In such cases, preconditions are necessary. This prerequisite is that the route interval is relatively short, and even if the vehicle shifts to turning immediately after harvesting on the entry-source traveling route Ln, the traveling device 11 on the turning side causes the planted grain culm in the uncut area to be turned. Is not to trample on.
 進入元走行経路Lnでの収穫走行後すぐに旋回走行に移行すれば、旋回側の走行装置11が未刈領域の植付穀稈を踏み付けてしまう場合には、図9や図10に示すように、進入元走行経路Lnと初期旋回経路C1との間に、予備経路Ladが算出される。予備経路Ladが算出されると、予備経路Ladの長さ分だけ、進入経路Linが延長される。 If the vehicle shifts to turning immediately after the harvesting traveling on the approaching traveling route Ln, as shown in FIGS. 9 and 10, when the traveling device 11 on the turning side steps on the planted grain culm in the uncut area. Next, a preliminary route Lad is calculated between the approaching traveling route Ln and the initial turning route C1. When the backup route Lad is calculated, the approach route Lin is extended by the length of the backup route Lad.
 経路間隔が図7や図9の例に比べて長い場合、初期旋回経路C1が後期旋回経路C2に直接つながるような旋回経路を採用すると、初期旋回経路C1の半径Rが非常に大きくなる。このため、初期旋回経路C1の始端が進入元走行経路Lnに深く入り込むことになり、その旋回走行時に、コンバインの走行装置11が植付穀稈を踏み付けてしまう。これを回避するため、図8や図10に示すように、初期旋回経路C1の後端側には、後期旋回経路C2につながる直線状の中間経路Lmidが算出される。 場合 When the path interval is longer than in the examples of FIGS. 7 and 9, if a turning path in which the initial turning path C1 is directly connected to the later turning path C2 is employed, the radius R of the initial turning path C1 becomes very large. For this reason, the starting end of the initial turning route C1 enters deeply into the approaching starting route Ln, and the running device 11 of the combine steps on the planted grain culm during the turning run. In order to avoid this, as shown in FIG. 8 and FIG. 10, a straight intermediate route Lmid connected to the late turning route C2 is calculated at the rear end side of the initial turning route C1.
 このように、進入元走行経路Lnから進入先走行経路Lmに旋回移行する際に用いられる旋回経路は、経路間隔D、コンバイン仕様(収穫幅や旋回性能)及び圃場特性(滑り易さや凹凸のレベル)、旋回走行に利用可能なスペースから適切なもの(図7から図10で示された4つの旋回パターンの1つ)が選択される。これらの旋回パターンでも旋回不能な場合には、図5で示したようなアルファパターンが選択される。 As described above, the turning route used when turning from the entry source driving route Ln to the entry destination driving route Lm includes the path interval D, combine specifications (harvest width and turning performance), and field characteristics (slipperiness and unevenness level). ), An appropriate space (one of the four turning patterns shown in FIGS. 7 to 10) is selected from the space available for turning. If it is impossible to turn even with these turning patterns, an alpha pattern as shown in FIG. 5 is selected.
 図11に、コンバインの制御系が示されている。コンバインの制御系は、車載LANを介して接続された多数のECUと呼ばれる電子制御ユニットから構成される制御装置5、及び制御装置5と信号通信やデータ通信を行う各種入出力機器から構成されている。 FIG. 11 shows a combine control system. The control system of the combine is composed of a control device 5 composed of a number of electronic control units called ECUs connected via an in-vehicle LAN, and various input / output devices for performing signal communication and data communication with the control device 5. I have.
 制御装置5は、入出力インタフェースとして、出力処理部58と入力処理部57とを備えている。出力処理部58は、機器ドライバ65を介して種々の動作機器70と接続している。動作機器70として、走行関係の機器である走行機器群71と作業関係の機器である作業機器群72とがある。走行機器群71には、例えば、エンジン機器、変速機器、制動機器、操舵機器などが含まれている。作業機器群72には、収穫作業装置(図1に示す、収穫部15、脱穀装置13、搬送装置16、穀粒排出装置18など)における制御機器が含まれている。 The control device 5 includes an output processing unit 58 and an input processing unit 57 as input / output interfaces. The output processing unit 58 is connected to various operating devices 70 via a device driver 65. The operating devices 70 include a traveling device group 71 that is a traveling-related device and a working device group 72 that is a working-related device. The traveling equipment group 71 includes, for example, engine equipment, transmission equipment, braking equipment, steering equipment, and the like. The work equipment group 72 includes control equipment in a harvesting work device (the harvesting unit 15, the threshing device 13, the transport device 16, the grain discharging device 18, and the like shown in FIG. 1).
 入力処理部57には、走行状態センサ群63、作業状態センサ群64、走行操作ユニット90、などが接続されている。走行状態センサ群63には、車速センサ、エンジン回転数センサ、駐車ブレーキ検出センサ、変速位置検出センサ、操舵位置検出センサ、などが含まれている。作業状態センサ群64には、上述した収穫作業装置の駆動状態や姿勢を検出するセンサ、及び穀稈や穀粒の状態を検出するセンサが含まれている。 The input processing unit 57 is connected with a running state sensor group 63, a working state sensor group 64, a running operation unit 90, and the like. The running state sensor group 63 includes a vehicle speed sensor, an engine speed sensor, a parking brake detection sensor, a shift position detection sensor, a steering position detection sensor, and the like. The work state sensor group 64 includes a sensor that detects the driving state and the posture of the harvesting operation device described above, and a sensor that detects the state of the grain culm and the grain.
 走行操作ユニット90は、運転者によって手動操作され、その操作信号が制御装置5に入力される操作具の総称である。走行操作ユニット90には、変速レバーとしての主変速レバー91、操舵レバー92、モード切替スイッチ93として構成されたモード操作具、自動走行操作具94、などが含まれている。モード切替スイッチ93は、自動運転と手動運転とを切り替えるための指令を制御装置5に送り出す機能を有する。自動走行操作具94は、運転者による操作を通じて、自動走行移行要求を出力する。 The driving operation unit 90 is a general term for operating tools that are manually operated by a driver and whose operation signals are input to the control device 5. The traveling operation unit 90 includes a main transmission lever 91 as a transmission lever, a steering lever 92, a mode operation tool configured as a mode changeover switch 93, an automatic traveling operation tool 94, and the like. The mode switch 93 has a function of sending a command for switching between automatic operation and manual operation to the control device 5. The automatic traveling operation tool 94 outputs an automatic traveling shift request through an operation by the driver.
 報知デバイス62は、運転者等に作業状態や走行状態に関する警告を報知するためのデバイスであり、ブザーやランプなどである。なお、汎用端末4もタッチパネル40での表示を通じて運転者等に作業状態や走行状態や種々の情報を報知するデバイスとして機能する。 The notifying device 62 is a device for notifying a driver or the like of a warning regarding a working state or a running state, and is a buzzer, a lamp, or the like. The general-purpose terminal 4 also functions as a device that notifies a driver or the like of a working state, a running state, and various information through display on the touch panel 40.
 この制御装置5は、さらに車載LANを通じて汎用端末4とも接続している。汎用端末4はタッチパネル40を備えたタブレットコンピュータである。汎用端末4は、入出力制御部41、作業走行管理部42、走行経路算出部43、旋回経路算出部44を有する。入出力制御部41は、タッチパネル40を用いてグラフィックインターフェースを構築する機能、及び、遠隔地のコンピュータ、無線回線やインターネットを通じて、データ交換する機能を備えている。 This control device 5 is also connected to the general-purpose terminal 4 via the in-vehicle LAN. The general-purpose terminal 4 is a tablet computer having a touch panel 40. The general-purpose terminal 4 includes an input / output control unit 41, a work traveling management unit 42, a traveling route calculation unit 43, and a turning route calculation unit 44. The input / output control unit 41 has a function of constructing a graphic interface using the touch panel 40 and a function of exchanging data through a remote computer, a wireless line, or the Internet.
 作業走行管理部42は、走行軌跡算出部421と作業領域決定部422と排出位置設定部423とを備えている。走行軌跡算出部421は、制御装置5から与えられた自車位置に基づいて走行軌跡を算出する。作業領域決定部422は、図2に示すように、コンバインが圃場の外周領域SAを何周か周囲刈り走行することで得られた走行軌跡に基づいて、圃場を外周領域SAと未作業領域CAとに区分けする。外周領域SAの最外線によって圃場の畔との境界線が算出され、外周領域SAの最内線によって、自動走行が行われる未作業領域CAが算出される。排出位置設定部423は、穀粒タンク14が満杯になった場合、穀粒タンク14の穀粒を穀粒排出装置18によって運搬車CVに排出する際のコンバインの排出停車位置を設定する。排出停車位置は、周囲刈り走行によって圃場の外周側に形成される外周領域SAで、かつ多角形状の外周領域SAのコーナ部以外の場所に設定される。 The work traveling management unit 42 includes a traveling trajectory calculation unit 421, a work area determination unit 422, and a discharge position setting unit 423. The travel locus calculation unit 421 calculates a travel locus based on the own vehicle position given from the control device 5. As shown in FIG. 2, the work area determination unit 422 divides the field into an outer work area CA and an unworked area CA based on a traveling locus obtained by the combine harvesting the outer circumference area SA several times. And is divided into The outermost line of the outer peripheral area SA is used to calculate the boundary with the shore of the field, and the innermost line of the outer peripheral area SA is used to calculate the unworked area CA in which automatic traveling is performed. When the grain tank 14 is full, the discharge position setting unit 423 sets a combine discharge stop position when the grains in the grain tank 14 are discharged to the transport vehicle CV by the grain discharge device 18. The discharge stop position is set in an outer peripheral area SA formed on the outer peripheral side of the field by peripheral mowing traveling, and at a location other than a corner portion of the polygonal outer peripheral area SA.
 走行経路算出部43は、作業領域決定部422によって決定された未作業領域CAに対して自動走行用の走行経路を算出する。外周領域SAの手動走行が終了したことを、運転者が入力することで、選択された走行パターンでの経路算出が自動的に行われる。 The travel route calculation unit 43 calculates a travel route for automatic traveling with respect to the unworked area CA determined by the work area determination unit 422. When the driver inputs that the manual traveling in the outer peripheral area SA has been completed, the route calculation in the selected traveling pattern is automatically performed.
 走行経路算出部43は、収穫部15の収穫幅(作業幅)と、オーバーラップ値とに基づいて、隣接走行経路の間隔(経路間隔)を決定する。さらに、走行経路算出部43は、図4を用いて説明したようなアルゴリズムを用いて、直進用の走行経路を算出する。 The traveling route calculation unit 43 determines the interval between adjacent traveling routes (path interval) based on the harvest width (work width) of the harvesting unit 15 and the overlap value. Further, the travel route calculation unit 43 calculates the straight travel route using the algorithm described with reference to FIG.
 旋回経路算出部44は、Uターンタイプの旋回経路や、図5に示されたアルファターンタイプの旋回経路を算出する。特に、図7から図10を用いて説明された旋回経路を算出するため、初期旋回経路算出部441、後期旋回経路算出部442、進入経路算出部443、予備経路算出部444、中間経路算出部445が備えられている。 The turning path calculation unit 44 calculates the turning path of the U-turn type and the turning path of the alpha-turn type shown in FIG. In particular, in order to calculate the turning path described with reference to FIGS. 7 to 10, the initial turning path calculation unit 441, the late turning path calculation unit 442, the approach path calculation unit 443, the preliminary path calculation unit 444, and the intermediate path calculation unit. 445 are provided.
 後期旋回経路算出部442は、タッチパネル40に対する操作入力を通じて予め設定されているコンバインの使用旋回半径を有する90度円弧を後期旋回経路C2として算出する。その際、進入経路算出部443は、算出された後期旋回経路C2を用いて、進入先走行経路Lmに精度よく進入するために必要な進入経路の長さを算出する。初期旋回経路算出部441は、進入元走行経路Lnに沿った走行に続く初期旋回走行のための初期旋回経路C1を算出する。その際、初期旋回経路C1の半径として、後期旋回経路C2の半径より大きな値が用いられる。後期旋回経路C2の半径に対応する初期旋回経路C1の半径がテーブル化されていると好都合である。算出された初期旋回経路C1と後期旋回経路C2、及び進入元走行経路Lnと進入先走行経路Lmとの間の経路間隔に基づいて、中間経路算出部445が直線状の中間経路Lmidの必要長さを算出する。さらに、予備経路算出部444が、現状のコンバインの収穫幅と走行装置11の仕様と初期旋回経路C1の半径とに基づいて、予備経路Ladの必要長さを算出する。 The late turning path calculation unit 442 calculates a 90-degree circular arc having a preset turning radius of the combine through the operation input to the touch panel 40 as the late turning path C2. At that time, the approach route calculation unit 443 calculates the length of the approach route necessary to accurately enter the destination travel route Lm using the calculated late turning route C2. The initial turning route calculation unit 441 calculates an initial turning route C1 for the initial turning traveling following the traveling along the entry source traveling route Ln. At this time, a value larger than the radius of the late turning route C2 is used as the radius of the initial turning route C1. It is advantageous if the radius of the initial turning path C1 corresponding to the radius of the late turning path C2 is tabulated. Based on the calculated path intervals between the initial turning path C1 and the late turning path C2, and between the approaching travel path Ln and the approaching travel path Lm, the intermediate path calculation unit 445 determines the required length of the linear intermediate path Lmid. Is calculated. Further, the spare route calculation unit 444 calculates the required length of the spare route Lad based on the current harvest width of the combine, the specifications of the traveling device 11, and the radius of the initial turning route C1.
 旋回経路算出部44による旋回経路の算出において、中間経路Lmidと予備経路Ladとの必要長さがゼロであれば、図7に示したような旋回経路が算出される。予備経路Ladの必要長さだけがゼロであれば、図8に示したような旋回経路が算出される。中間経路Lmidの必要長さだけがゼロであれば、図9に示したような旋回経路が算出される。中間経路Lmidと予備経路Ladとの必要長さがゼロでなければ、図10に示したような旋回経路が算出される。 In the calculation of the turning route by the turning route calculation unit 44, if the required length of the intermediate route Lmid and the spare route Lad is zero, the turning route as shown in FIG. 7 is calculated. If only the required length of the spare route Lad is zero, a turning route as shown in FIG. 8 is calculated. If only the required length of the intermediate route Lmid is zero, a turning route as shown in FIG. 9 is calculated. If the required length of the intermediate route Lmid and the spare route Lad is not zero, the turning route as shown in FIG. 10 is calculated.
 制御装置5には、自車位置算出部50、手動走行制御部51、自動走行制御部52、走行経路設定部53、作業制御部54、報知部59が備えられている。 The control device 5 includes a host vehicle position calculation unit 50, a manual travel control unit 51, an automatic travel control unit 52, a travel route setting unit 53, a work control unit 54, and a notification unit 59.
 自車位置算出部50は、衛星測位ユニット81から逐次送られてくる測位データに基づいて、自車位置を地図座標(または圃場座標)の形式で算出する。自車位置算出部50は、慣性航法ユニット82からの位置ベクトルと走行距離とを用いて自車位置を算出することもできる。自車位置算出部50は、衛星測位ユニット81及び慣性航法ユニット82からの信号を組み合わせて自車位置を算出することも可能である。さらに、自車位置算出部50は、経時的な自車位置から、機体10の進行方向である機体10の向きを算出することも可能である。 The own vehicle position calculation unit 50 calculates the own vehicle position in the form of map coordinates (or field coordinates) based on the positioning data sequentially transmitted from the satellite positioning unit 81. The own vehicle position calculation unit 50 can also calculate the own vehicle position using the position vector from the inertial navigation unit 82 and the travel distance. The host vehicle position calculation unit 50 can also calculate the host vehicle position by combining signals from the satellite positioning unit 81 and the inertial navigation unit 82. Further, the own-vehicle position calculating unit 50 can also calculate the direction of the body 10 that is the traveling direction of the body 10 from the own-vehicle position over time.
 報知部59は、制御装置5の各機能部からの指令等に基づいて報知データを生成し、報知デバイス62に与える。制御装置5は、モード切替スイッチ93により走行モードが自動走行モードに切り替えられている場合、予め設定されている自動走行許可条件に基づいて自動走行の許否を判定し、この判定結果が許可である場合、自動走行開始指令を自動走行制御部52に与える。 The notification unit 59 generates notification data based on a command or the like from each functional unit of the control device 5 and provides the notification data to the notification device 62. When the traveling mode is switched to the automatic traveling mode by the mode changeover switch 93, the control device 5 determines whether or not the automatic traveling is permitted based on a preset automatic traveling permission condition, and the result of this determination is permission. In this case, an automatic traveling start command is given to the automatic traveling control unit 52.
 手動走行制御部51及び自動走行制御部52は、エンジン制御機能、操舵制御機能、車速制御機能などを有し、走行機器群71に走行制御信号を与える。作業制御部54は、収穫作業装置の動きを制御するために、作業機器群72に作業制御信号を与える。 The manual traveling control unit 51 and the automatic traveling control unit 52 have an engine control function, a steering control function, a vehicle speed control function, and the like, and provide a traveling control signal to the traveling equipment group 71. The work control unit 54 provides a work control signal to the work equipment group 72 to control the movement of the harvesting work device.
 このコンバインは、自動走行で収穫作業を行う自動運転と、手動走行で収穫作業を行う手動運転との両方で走行可能である。自動走行モードが設定されている場合、走行経路設定部53は、走行経路算出部43によって算出された走行経路及び旋回経路算出部44によって算出された旋回経路を、汎用端末4から受け取って、適時に、自動操舵の目標となる走行経路及び旋回経路として設定する。自動走行制御部52は、自動操舵を行うために、走行経路設定部53によって設定された走行経路及び旋回経路と、自車位置算出部50によって算出された自車位置との間の方位ずれ及び位置ずれを解消するように、操舵制御信号を生成する。さらに、自動走行制御部52は、前もって設定された車速値に基づいて車速変更に関する制御信号を生成する。 This combine can run in both automatic operation, in which harvesting is performed by automatic running, and manual operation, in which harvesting is performed by manual running. When the automatic traveling mode is set, the traveling route setting unit 53 receives the traveling route calculated by the traveling route calculating unit 43 and the turning route calculated by the turning route calculating unit 44 from the general-purpose terminal 4, and Are set as a traveling route and a turning route that are targets of automatic steering. In order to perform automatic steering, the automatic traveling control unit 52 performs an azimuth shift between the traveling route and the turning route set by the traveling route setting unit 53 and the own vehicle position calculated by the own vehicle position calculating unit 50. A steering control signal is generated so as to eliminate the displacement. Further, the automatic traveling control unit 52 generates a control signal relating to a change in the vehicle speed based on the vehicle speed value set in advance.
 手動走行モードが選択されている場合、運転者による操作に基づいて手動操作信号が手動走行制御部51に送られると、手動走行制御部51が制御信号を生成し、走行機器群71を制御することで、手動運転が実現される。なお、走行経路設定部53によって設定された走行経路及び旋回経路は、手動運転であっても、コンバインが当該走行経路及び旋回経路に沿って走行するためのガイダンスのために利用することができる。 When the manual traveling mode is selected, when a manual operation signal is sent to the manual traveling control unit 51 based on an operation by the driver, the manual traveling control unit 51 generates a control signal and controls the traveling device group 71. Thus, manual operation is realized. The traveling route and the turning route set by the traveling route setting unit 53 can be used for guidance for the combine to travel along the traveling route and the turning route even in manual operation.
〔第1実施形態の別実施の形態〕
(1)上述した実施形態では、旋回経路算出部44は、進入元走行経路Lnと進入先走行経路Lmが決定すると、初期旋回経路C1、後期旋回経路C2、中間経路Lmid、予備経路Ladを算出するように構成されていた。これに代えて、初期旋回経路C1、後期旋回経路C2、中間経路Lmid、予備経路Ladの各算出機能をテーブル化し、決定された進入元走行経路Ln及び進入先走行経路Lmのデータが入力されると、初期旋回経路C1、後期旋回経路C2、中間経路Lmid、予備経路Ladのデータが導出されるような構成を採用してもよい。
[Another Embodiment of the First Embodiment]
(1) In the above-described embodiment, the turning route calculation unit 44 calculates the initial turning route C1, the late turning route C2, the intermediate route Lmid, and the spare route Lad when the entry source driving route Ln and the destination driving route Lm are determined. Was configured to be. Instead, the calculation functions of the initial turning route C1, the late turning route C2, the intermediate route Lmid, and the backup route Lad are tabulated, and the data of the determined entry-source travel route Ln and the determined destination travel route Lm are input. A configuration may be adopted in which data of the initial turning route C1, the late turning route C2, the intermediate route Lmid, and the preliminary route Lad are derived.
(2)図11で示された各機能部は、主に説明目的で区分けされている。実際には、各機能部は他の機能部と統合してもよいし、または複数の機能部に分けてもよい。例えば、汎用端末4に構築された機能部は、部分的にあるいはその全てを制御装置5に組み込まれてもよい。 (2) Each functional unit shown in FIG. 11 is divided mainly for the purpose of explanation. In practice, each functional unit may be integrated with another functional unit, or may be divided into a plurality of functional units. For example, the functional units constructed in the general-purpose terminal 4 may be partially or wholly incorporated in the control device 5.
(3)上述の実施形態においては、周囲刈り走行は、手動走行で行われていたが、2周目以降では、部分的に、特に直線状の走行に関しては、自動走行を採用してもよい。 (3) In the above-described embodiment, the peripheral mowing traveling is performed manually, but in the second and subsequent laps, automatic traveling may be partially used, particularly for linear traveling. .
(4)上述の実施形態においては、圃場作業車のための自動操舵システムについて説明した。しかしながら、上述の実施形態における各機能部を、自動操舵プログラムとして構成することも可能である。さらに、上述の実施形態における各機能部が行う処理を、自動操舵方法として構成することも可能である。 (4) In the above embodiment, the automatic steering system for the field work vehicle has been described. However, each functional unit in the above-described embodiment can be configured as an automatic steering program. Further, the processing performed by each functional unit in the above-described embodiment can be configured as an automatic steering method.
(5)また、このような自動操舵プログラムを、記録媒体に記録するように構成することも可能である。 (5) Further, such an automatic steering program may be configured to be recorded on a recording medium.
(6)上述の実施形態においては、普通型のコンバインに適用したものを示したが、本発明は、自脱型のコンバインにも利用可能である。また、トウモロコシ収穫機、ジャガイモ収穫機、ニンジン収穫機、サトウキビ収穫機等の種々の収穫機にも利用できる。 (6) In the above-described embodiment, an example in which the present invention is applied to an ordinary combine is shown. However, the present invention can also be used for a self-removing combine. The present invention can also be used for various harvesters such as a corn harvester, a potato harvester, a carrot harvester, and a sugarcane harvester.
〔第2実施形態〕
 以下では、図12~図23を参照しながら、第2実施形態について説明する。
 次に、本発明による、自動運転と手動運転とが可能な収穫機の一例として、普通型のコンバインを取り上げて説明する。なお、本明細書では、特に断りがない限り、「前」(図12に示す矢印Fの方向)は機体前後方向(走行方向)に関して前方を意味し、「後」(図12に示す矢印Bの方向)は機体前後方向(走行方向)に関して後方を意味する。また、左右方向または横方向は、機体前後方向に直交する機体横断方向(機体幅方向)を意味する。「上」(図12に示す矢印Uの方向)及び「下」(図12に示す矢印Dの方向)は、機体210の鉛直方向(垂直方向)での位置関係であり、地上高さにおける関係を示す。
[Second embodiment]
Hereinafter, the second embodiment will be described with reference to FIGS.
Next, as an example of a harvester capable of automatic operation and manual operation according to the present invention, a general-type combiner will be described. In this specification, “front” (direction of arrow F shown in FIG. 12) means forward with respect to the longitudinal direction of the aircraft (running direction), and “rear” (arrow B shown in FIG. 12) unless otherwise specified. Direction) means backward with respect to the longitudinal direction of the aircraft (running direction). In addition, the left-right direction or the lateral direction means a cross-machine direction (machine body width direction) orthogonal to the machine body front-rear direction. “Up” (in the direction of arrow U shown in FIG. 12) and “down” (in the direction of arrow D shown in FIG. 12) are positional relationships in the vertical direction (vertical direction) of the airframe 210, and are related to the ground level. Is shown.
 図13に示すように、このコンバインは、機体210、クローラ式の走行装置211、運転部212、脱穀装置213、穀粒タンク214、収穫部215、搬送装置216、穀粒排出装置218、自車位置検出モジュール280を備えている。 As shown in FIG. 13, the combine includes a body 210, a crawler-type traveling device 211, an operating unit 212, a threshing device 213, a grain tank 214, a harvesting unit 215, a transport device 216, a grain discharging device 218, and a vehicle. A position detection module 280 is provided.
 走行装置211は、機体210の下部に備えられている。コンバインは、走行装置211によって自走可能に構成されている。運転部212、脱穀装置213、穀粒タンク214は、走行装置211の上側に備えられ、機体210の上部を構成している。運転部212には、コンバインを運転する運転者及びコンバインの作業を監視する監視者が搭乗可能である。なお、監視者は、コンバインの機外からコンバインの作業を監視してもよい。 The traveling device 211 is provided below the body 210. The combine is configured to be able to run by the traveling device 211 by itself. The operation unit 212, the threshing device 213, and the grain tank 214 are provided above the traveling device 211 and constitute an upper part of the body 210. The driver that drives the combine and the monitor that monitors the work of the combine can be boarded on the driving unit 212. The observer may monitor the combine operation from outside the combine.
 穀粒排出装置218は、穀粒タンク214の上側に設けられている。また、自車位置検出モジュール280は、運転部212の上面に取り付けられている。 The grain discharge device 218 is provided above the grain tank 214. The vehicle position detection module 280 is mounted on the upper surface of the driving unit 212.
 収穫部215は、コンバインにおける前部に備えられている。そして、搬送装置216は、収穫部215の後側に設けられている。また、収穫部215は、切断機構215a及びリール215bを有している。切断機構215aは、圃場の植立穀稈を刈り取る。また、リール215bは、回転駆動しながら収穫対象の植立穀稈を掻き込む。この構成により、収穫部215は、圃場の穀物(農作物の一種)を収穫する。そして、コンバインは、収穫部215によって圃場の穀物を収穫しながら走行装置211によって走行する作業走行が可能である。 The harvesting unit 215 is provided at the front of the combine. The transport device 216 is provided on the rear side of the harvesting unit 215. The harvesting unit 215 has a cutting mechanism 215a and a reel 215b. The cutting mechanism 215a cuts the planted grain culm in the field. In addition, the reel 215b scrapes the planted grain stem to be harvested while being driven to rotate. With this configuration, the harvesting unit 215 harvests cereals (a kind of agricultural crop) in the field. Then, the combine is capable of traveling by the traveling device 211 while harvesting cereals in the field by the harvesting unit 215.
 切断機構215aによって刈り取られた刈取穀稈は、搬送装置216によって脱穀装置213へ搬送される。脱穀装置213において、刈取穀稈は脱穀処理される。脱穀処理により得られた穀粒は、穀粒タンク214に貯留される。穀粒タンク214に貯留された穀粒は、必要に応じて、穀粒排出装置218によって機外に排出される。 刈 The harvested culm cut by the cutting mechanism 215a is transported to the threshing device 213 by the transport device 216. In the threshing device 213, the harvested culm is threshed. The grain obtained by the threshing process is stored in the grain tank 214. The grains stored in the grain tank 214 are discharged out of the machine by the grain discharge device 218 as necessary.
 また、運転部212には、汎用端末204が配置されている。本実施形態において、汎用端末204は、運転部212に固定されている。しかしながら、本発明はこれに限定されず、汎用端末204は、運転部212に対して着脱可能に構成されていても良いし、汎用端末204は、コンバインの機外に持ち出し可能であってもよい。 The general-purpose terminal 204 is disposed in the operation unit 212. In the present embodiment, the general-purpose terminal 204 is fixed to the driving unit 212. However, the present invention is not limited to this, and the general-purpose terminal 204 may be configured to be detachable from the driving unit 212, or the general-purpose terminal 204 may be able to be taken out of the combine machine. .
 図13に示すように、このコンバインは、圃場において設定された走行経路に沿って自動走行する。これには、自車位置の情報が必要である。自車位置検出モジュール280には、衛星測位ユニット281と慣性航法ユニット282とが含まれている。衛星測位ユニット281は、人工衛星GSから送信される位置情報であるGNSS(global navigation satellite system)信号(GPS信号を含む)を受信して、自車位置を算出するための測位データを出力する。慣性航法ユニット282は、ジャイロ加速度センサ及び磁気方位センサを組み込んでおり、瞬時の走行方向を示す位置ベクトルを出力する。慣性航法ユニット282は、衛星測位ユニット281による自車位置算出を補完するために用いられる。慣性航法ユニット282は、衛星測位ユニット281とは別の場所に配置してもよい。 よ う As shown in FIG. 13, this combine automatically travels along a travel route set in a field. This requires information on the position of the vehicle. The vehicle position detection module 280 includes a satellite positioning unit 281 and an inertial navigation unit 282. The satellite positioning unit 281 receives a GNSS (global navigation satellite system) signal (including a GPS signal), which is position information transmitted from the artificial satellite GS, and outputs positioning data for calculating the position of the own vehicle. The inertial navigation unit 282 incorporates a gyro acceleration sensor and a magnetic direction sensor, and outputs a position vector indicating an instantaneous traveling direction. The inertial navigation unit 282 is used to supplement the own vehicle position calculation by the satellite positioning unit 281. The inertial navigation unit 282 may be located at a different location from the satellite positioning unit 281.
 このコンバインによって圃場での収穫作業を行う場合の手順は、以下に説明する通りである。 手 順 The procedure for performing harvesting work in the field using this combine is as described below.
 まず、運転者兼監視者は、コンバインを手動で操作し、図13に示すように、圃場内の外周部分において、圃場の境界線に沿って周囲刈り走行しながら収穫を行う。周囲刈り走行により既刈領域(既作業領域)となった領域は、外周領域SAとして設定される。そして、外周領域SAの内側に未刈地(未作業地)のまま残された内部領域は未作業領域CAであり、今後の作業対象領域として設定される。この実施形態では、未作業領域CAが四角形となるように、周囲刈り走行が行われる。もちろん、三角形や五角形以上の多角形の未作業領域CAが採用されてもよい。 First, the driver / monitor manually operates the combine, and harvests the outer peripheral portion in the field while cutting around the boundary of the field as shown in FIG. The area that has been cut (the already-worked area) by the peripheral cutting is set as the outer peripheral area SA. Then, the inner area left uncut on the uncut area (unworked area) inside the outer peripheral area SA is the unworked area CA, which is set as a work target area in the future. In this embodiment, the surrounding mowing travel is performed so that the unworked area CA becomes a square. Of course, a triangular or pentagonal or larger polygonal unworked area CA may be employed.
 また、このとき、外周領域SAの幅をある程度広く確保するために、運転者は、コンバインを2~3周走行させる。この走行においては、コンバインが1周する毎に、コンバインの作業幅分だけ外周領域SAの幅が拡大する。この2~3周の走行が終わると、外周領域SAの幅は、コンバインの作業幅の2~3倍程度の幅となる。なお、周囲刈りは、2~3周に限らず、1周でもよいし、4周以上でもよい。 こ の At this time, in order to secure the width of the outer peripheral area SA to some extent, the driver runs the combine for two or three turns. In this traveling, every time the combine makes one round, the width of the outer peripheral area SA increases by the working width of the combine. At the end of the two or three rounds of travel, the width of the outer peripheral area SA is about two to three times the working width of the combine. The surrounding mowing is not limited to two or three rounds, but may be one round or four or more rounds.
 外周領域SAは、作業対象領域である未作業領域CAにおいて収穫走行を行うときに、コンバインが方向転換するためのスペースとして利用される。また、外周領域SAは、収穫走行を一旦終えて、穀粒の排出場所へ移動する際や、燃料の補給場所へ移動する際等の移動用のスペースとしても利用される。 The outer peripheral area SA is used as a space for the combine to change directions when performing harvesting traveling in the unworked area CA that is the work target area. In addition, the outer peripheral area SA is also used as a space for movement when the harvest travel is once completed and the grain is moved to a grain discharge location, or is moved to a fuel supply location.
 なお、図13に示す運搬車CVは、コンバインが穀粒排出装置218から排出した穀粒を収集し、運搬することができる。穀粒排出の際、コンバインは運搬車CVの近傍へ移動した後、穀粒排出装置218によって穀粒を運搬車CVへ排出する。 Note that the transport vehicle CV shown in FIG. 13 can collect and transport the grains discharged from the grain discharge device 218 by the combine. At the time of discharging the grains, the combine moves to the vicinity of the transport vehicle CV, and then discharges the grains to the transport vehicle CV by the grain discharging device 218.
 未作業領域CAの形状を示す内側マップデータが作成されると、この内側マップデータに基づいて算出される線状(直線又は曲線)の作業走行経路に沿う自動走行と、1つの作業走行経路から次の作業走行経路に移行するための旋回移行走行とによる収穫走行によって未作業領域CAの植付穀稈が刈り取られる。なお、旋回移行走行のための走行経路は、旋回移行経路と称する。収穫走行で用いられる走行パターンは、複数の平行な作業走行経路をUターンによってつないで走行する往復走行パターン(図14に示されている)と、未作業領域CAの外縁に沿って渦巻き状に走行する渦巻き走行パターン(図15に示されている)である。 When the inside map data indicating the shape of the unworked area CA is created, automatic traveling along a linear (straight or curved) work traveling route calculated based on the inside map data, The harvested vegetation in the unworked area CA is cut off by the harvest traveling by the turning transition traveling for transition to the next work traveling route. The traveling route for the turning transition traveling is referred to as a turning transition route. The traveling pattern used in the harvesting traveling includes a reciprocating traveling pattern (shown in FIG. 14) in which a plurality of parallel work traveling paths are connected by a U-turn, and a spiral pattern along the outer edge of the unworked area CA. Fig. 16 is a running spiral running pattern (shown in Fig. 15).
 図14に示されている往復走行パターンでは、コンバインは、未作業領域CAの一辺に平行な走行経路を旋回走行であるUターン走行によってつなぐように、走行する。Uターン走行には、1つ以上の走行経路をまたぐノーマルUターンと、隣接する走行経路をつなぐスイッチバックターンがある。ノーマルUターンは、2つの前進90度旋回と直進とを含む180度旋回であり、直進が省略される場合もある。スイッチバックターンは、前進90度旋回と後進と前進90度旋回を用いた180度方向転換である。 In the reciprocating traveling pattern shown in FIG. 14, the combine travels such that a traveling path parallel to one side of the unworked area CA is connected by a U-turn traveling as a turning traveling. The U-turn traveling includes a normal U-turn that extends over one or more traveling routes and a switchback turn that connects adjacent traveling routes. The normal U-turn is a 180-degree turn including two forward 90-degree turns and a straight-ahead run, and the straight-ahead run may be omitted. The switchback turn is a 180-degree turning using a 90-degree forward turn, a reverse, and a 90-degree forward turn.
 図15に示されている渦巻き走行パターンでは、コンバインは、未作業領域CAの外形に類似する作業走行経路を旋回走行経路でつなぎながら行われる周回走行が、中心に向けて渦巻きのように行われる。各周回走行におけるコーナでの旋回には、直進と後進旋回と前進旋回とを用いた、アルファターンと呼ばれる旋回が用いられる。なお、作業途中において、渦巻き走行パターンから往復走行パターン、または往復走行パターンから渦巻き走行パターンに変更することも可能である。 In the spiral running pattern shown in FIG. 15, in the combine, the orbital traveling that is performed while connecting the working traveling route similar to the outer shape of the unworked area CA by the turning traveling route is performed like a spiral toward the center. . A turn called an alpha turn using a straight turn, a reverse turn, and a forward turn is used for turning at a corner in each round trip. It is also possible to change from the spiral running pattern to the reciprocating running pattern or from the reciprocating running pattern to the spiral running pattern during the work.
 未作業領域CAを往復走行パターンを用いて自動走行するために用いられる走行経路は、内側マップデータに基づいて以下のように算出される。図16及び図17に示すように、内側マップデータから、第1辺S1、第2辺S2、第3辺S3、第4辺S4からなる四角形の未作業領域CAが規定される。この未作業領域CAの長辺である第1辺S1が基準辺S1として選択される。この基準辺S1に平行で、作業幅(刈取り幅)の半分だけ基準辺S1から内側を通る線が初期基準線L1として算出される。この初期基準線L1が最初に走行する走行経路に対応する。なお、最初に、未作業領域CAを中割するような収穫走行が採用される場合、初期基準線L1として、基準辺S1に平行で、基準辺S1からさらに離れた距離(作業幅の半分+作業幅の整数倍)を通る線が初期基準線L1として算出される。 The travel route used for automatically traveling the unworked area CA using the reciprocating travel pattern is calculated as follows based on the inside map data. As shown in FIGS. 16 and 17, a quadrangular unworked area CA including a first side S1, a second side S2, a third side S3, and a fourth side S4 is defined from the inside map data. The first side S1, which is the long side of the unworked area CA, is selected as the reference side S1. A line parallel to the reference side S1 and passing inside the reference side S1 by half of the working width (cutting width) is calculated as the initial reference line L1. This initial reference line L1 corresponds to a traveling route that travels first. Note that, first, when a harvesting travel that divides the unworked area CA is adopted, as the initial reference line L1, a distance parallel to the reference side S1 and further away from the reference side S1 (half the working width + A line passing through (an integral multiple of the working width) is calculated as the initial reference line L1.
 180度ターン(Uターン)するために必要とするスペースが小さいスイッチバックターンが旋回移行走行として採用される場合、図16に示されているように、初期基準線L1からUターンを介して順次つながっていく基準線L2、L3・・・が、初期基準線L1に平行で作業幅の間隔で算出される。これらの基準線L1、L2、L3・・・が直進走行用の作業走行経路に対応する。 When a switchback turn that requires a small space to make a 180-degree turn (U-turn) is adopted as the turning transition running, as shown in FIG. 16, the initial reference line L1 is sequentially turned to the U-turn. The connected reference lines L2, L3,... Are calculated at intervals of the working width in parallel with the initial reference line L1. These reference lines L1, L2, L3,... Correspond to work traveling routes for straight traveling.
 Uターンするために必要とするスペースがスイッチバックターンより大きくなるノーマルUターンが旋回移行走行として採用される場合、初期基準線L1からUターンを介してつながる次の基準線L2は、初期基準線L1に平行で作業幅の複数倍(図6では3倍)の間隔で算出される。図17に示されているように、同様な方法で、次の基準線L3が算出される。このようにして、ノーマルUターンで必要なスペースを考慮して、順次基準線が算出される。これらの基準線L1、L2、L3・・・が直進走行用の作業走行経路に対応する。 When a normal U-turn in which the space required for making a U-turn is larger than the switchback turn is adopted as the turning transition traveling, the next reference line L2 connected from the initial reference line L1 via the U-turn is the initial reference line. It is calculated at intervals of a plurality of times (three times in FIG. 6) the work width in parallel with L1. As shown in FIG. 17, the next reference line L3 is calculated in a similar manner. In this manner, the reference lines are sequentially calculated in consideration of the space required for the normal U-turn. These reference lines L1, L2, L3,... Correspond to work traveling routes for straight traveling.
 なお、図16及び図17では、未作業領域CAの形状は四角形であったが、これが三角形や五角形などの他の多角形であっても基準辺S1を選択すれば、同様な方法で順次走行経路を算出することができる。 In FIGS. 16 and 17, the unworked area CA has a quadrangular shape. However, even if the unworked area CA is another polygon such as a triangle or a pentagon, if the reference side S1 is selected, the vehicle travels sequentially in the same manner. A route can be calculated.
 渦巻き走行パターンが選択された場合、自動走行のために用いられる作業走行経路は、内側マップデータに基づいて以下のように算出される。図18に示すように、この未作業領域CAの長辺(渦巻き走行パターンでは短辺でもよい)である第1辺S1が基準辺S1として選択される。この基準辺S1に平行で、作業幅(刈取り幅)の半分だけ基準辺S1から内側を通る線が基準線L1として算出される。この基準線L1は、自動走行の最初の作業走行経路となる初期基準線である。さらに、コンバインの進行方向で基準辺S1に隣接する第2辺S2に平行で、作業幅(刈取り幅)の半分だけ第2辺S2から内側を通る線が次の基準線L2として算出され、最初の作業走行経路の次の自動走行の目標となる次作業走行経路となる。最初の作業走行経路と次作業走行経路とは、基準辺S1と第2辺S2とがなす角度の機体旋回を実現するアルファターン(特殊旋回)によってつながれる。同様に、更に次の基準線L3も、順次算出される。これらの基準線L1、L2、L3・・・が直進走行用の作業走行経路に対応する。 場合 When the spiral running pattern is selected, the work traveling route used for automatic traveling is calculated as follows based on the inside map data. As shown in FIG. 18, the first side S1 which is the long side of the unworked area CA (or the short side in the spiral running pattern) is selected as the reference side S1. A line that is parallel to the reference side S1 and passes inside the reference side S1 by half of the working width (cutting width) is calculated as the reference line L1. This reference line L1 is an initial reference line that is the first work traveling route of the automatic traveling. Further, a line parallel to the second side S2 adjacent to the reference side S1 in the traveling direction of the combine and passing inside the second side S2 by half of the working width (cutting width) is calculated as the next reference line L2. Is the next work travel route which is the target of the next automatic travel of the work travel route. The first work travel route and the next work travel route are connected by an alpha turn (special turn) that implements a body turn at an angle formed by the reference side S1 and the second side S2. Similarly, the next reference line L3 is also sequentially calculated. These reference lines L1, L2, L3,... Correspond to work traveling routes for straight traveling.
 実際の圃場における収穫作業では、図19に示されているように、往復走行パターンと渦巻き走行パターンとが混在することが少なくない。図19の例では、コンバインが圃場に入ると(#a)、手動操舵で周囲刈り走行を行い、圃場の最外周側に既作業領域である外周領域SAを形成する(#b)。この周囲刈り走行で形成される外周領域SAがアルファターンでの方向転換が可能となる大きさになれば、未作業領域CAにたいして渦巻き走行パターンが設定され、渦巻き走行が行われる(#c)。この渦巻き走行では、少なくとも直進は自動操舵による自動走行が可能である。渦巻き走行は、未作業領域CAが、往復走行パターンにおける旋回移行走行(ノーマルUターン、スイッチバックターン)が可能となる大きさになるまで、行われる(#d)。次に、未作業領域CAに対して、往復走行パターンで未作業領域CAを網羅するような作業走行経路が設定される(#e)。設定された作業走行経路に沿って往復走行を繰り返すことで、圃場の収穫作業が完了する(#f)。 In a harvesting operation in an actual field, a reciprocating traveling pattern and a spiral traveling pattern are often mixed as shown in FIG. In the example of FIG. 19, when the combine enters the field (#a), the surrounding mowing is performed by manual steering, and an outer peripheral area SA, which is a work area, is formed on the outermost peripheral side of the field (#b). When the outer peripheral area SA formed by this peripheral mowing traveling has a size that enables the direction change in the alpha turn, the spiral traveling pattern is set for the unworked area CA, and the spiral traveling is performed (#c). In this spiral running, automatic running by automatic steering is possible at least in straight running. The spiral running is performed until the unworked area CA becomes large enough to enable the turning transition running (normal U-turn, switchback turn) in the reciprocating running pattern (#d). Next, a work travel route that covers the unworked area CA in a reciprocating travel pattern is set for the unworked area CA (#e). By repeating the reciprocation along the set work travel route, the field harvesting work is completed (#f).
 このコンバインは、収穫幅の端部をオーバーラップさせながら走行経路に沿って自動走行する。このため、図20で模式的に示されているように、平行に並んだ走行経路の経路間隔は、収穫部215の収穫幅と、自動操舵の誤差を吸収することで刈り残しが生じないように設定されているオーバーラップ値とに基づいて決定される。収穫幅をWとし、オーバーラップ値をOLとすれば、経路間隔:Dは、W-OLとなる。オーバーラップ値が設定されると、収穫部215の左右方向の位置ずれが許容される許容位置ずれ範囲は、左右方向それぞれにおいて、オーバーラップ値の半分となる。 This combine automatically travels along the traveling route while overlapping the ends of the harvest width. For this reason, as schematically shown in FIG. 20, the path interval between the parallel running paths is set so that the remaining width of the harvesting unit 215 and the error of the automatic steering are absorbed so that uncut leaves do not occur. Is determined on the basis of the overlap value set in (1). Assuming that the harvest width is W and the overlap value is OL, the path interval D is W-OL. When the overlap value is set, the allowable position shift range in which the position shift of the harvesting unit 215 in the left-right direction is allowed is half of the overlap value in each of the left-right direction.
 所定のオーバーラップ値が設定されると、許容位置ずれ範囲が決まる。許容位置ずれ範囲は、図21で模式的に示されているように、オーバーラップ値が大きいほど大きくなる。許容位置ずれ範囲が大きくなれば、操舵制御の精度を落とすことができる。このことから、この実施形態では、オーバーラップ値が大きくなれば、偏差不感帯が広くなるように、偏差不感帯がオーバーラップ値に基づいて変更されるように構成されている。偏差不感帯とは、左右方向それぞれにおける横位置ずれ(横位置偏差)を無効として、当該位置偏差を解消する操舵制御を行わない範囲である。したがって、偏差不感帯幅:Zは、オーバーラップ値:OLの関数:Fで求められ、Z=F(OL)と表現できる。この関数:Fは予めテーブル化されることが好ましい。この関数:Fは連続的な関数である必要はなく、階段状の関数であってよい。 (4) When the predetermined overlap value is set, the allowable displacement range is determined. As schematically shown in FIG. 21, the allowable displacement range increases as the overlap value increases. If the allowable position shift range becomes large, the accuracy of the steering control can be reduced. For this reason, in this embodiment, the deviation dead zone is changed based on the overlap value so that the larger the overlap value, the wider the deviation dead zone. The deviation dead zone is a range in which the lateral position deviation (lateral position deviation) in each of the left and right directions is invalidated and steering control for eliminating the position deviation is not performed. Therefore, the deviation dead zone width: Z is obtained by the function F of the overlap value OL, and can be expressed as Z = F (OL). This function: F is preferably tabulated in advance. This function: F need not be a continuous function, but may be a step-like function.
 図22に示されているように、旋回移行走行から次の走行経路である進入目標走行経路TLに進入する際、自車位置と進入目標走行経路TLとの間の進入偏差が大きい場合、その進入を取り止めて、一旦後進して、自車位置を変更してから、再進入を試みる。この進入偏差には、機体210が進入目標走行経路TLの始点から所定距離内に入った際の、機体210の進入目標走行経路TLに対する横ずれと、コンバインの進行方向の向きと進入目標走行経路TLとの間の方位ずれである進入角度θとが含まれる。機体210が進入目標走行経路TLの始点から所定距離内に入っている場合、その横ずれはそれほど大きくならないので、この実施形態では、進入偏差として、進入角度θだけが取り扱われている。もちろん、進入偏差として、横ずれと進入角度θの両方が取り扱われてもよい。 As shown in FIG. 22, when the vehicle travels from the turning transition traveling to the approach target travel route TL, which is the next travel route, when the approach deviation between the own vehicle position and the approach target travel route TL is large, Cancel the approach, move backward, change the position of the vehicle, and try to enter again. This approach deviation includes lateral displacement of the body 210 with respect to the approach target travel path TL when the body 210 enters within a predetermined distance from the starting point of the approach target travel path TL, the direction of the traveling direction of the combine, and the approach target travel path TL. And the approach angle θ, which is the azimuth deviation between. When the vehicle body 210 is within a predetermined distance from the start point of the approach target travel route TL, the lateral deviation does not become so large, and therefore, in this embodiment, only the approach angle θ is treated as the approach deviation. Of course, both the lateral displacement and the approach angle θ may be handled as the approach deviation.
 機体210が進入先の走行経路の始端に接近しているにもかかわらず、進入角度θが、進入を禁止する禁止偏差としての限界角度θLを超えている場合、この進入が中止され、進入の再試行が行われる。この再試行では、一旦、機体210の向きを進入先の走行経路の向きに合わせるように後進し、その後、前進に切り替えて、進入目標走行経路TLへの進入走行が行われる。 If the approach angle θ exceeds the limit angle θL as a prohibition deviation that inhibits the approach even though the body 210 is approaching the beginning of the travel route of the approach destination, the approach is stopped and the approach of the approach is stopped. A retry is performed. In this retry, the vehicle 210 moves backward so that the orientation of the body 210 matches the direction of the travel route of the approach destination, then switches to forward travel, and the approach travel to the approach target travel route TL is performed.
 この実施形態では、オーバーラップ値:OLが大きくなることで、許容位置ずれ範囲が大きくなると、限界角度θLも、大きくなるように構成されている。つまり、限界角度θLは、オーバーラップ値:OLの関数:Gで求められ、θL=G(OL)と表現できる。この関数:Gは連続的な数である必要はなく、階段状の関数であってよい。 In the present embodiment, the limit angle θL is configured to increase as the allowable displacement range increases due to an increase in the overlap value OL. That is, the limit angle θL is obtained by the function G of the overlap value OL and can be expressed as θL = G (OL). This function: G need not be a continuous number, but may be a step-like function.
 図23に、コンバインの制御系が示されている。コンバインの制御系は、車載LANを介して接続された多数のECUと呼ばれる電子制御ユニットから構成される制御装置205、及び制御装置205と信号通信やデータ通信を行う各種入出力機器から構成されている。 FIG. 23 shows a combine control system. The control system of the combine is composed of a control device 205 composed of a number of electronic control units called ECUs connected via an in-vehicle LAN, and various input / output devices for performing signal communication and data communication with the control device 205. I have.
 制御装置205は、入出力インタフェースとして、出力処理部258と入力処理部257とを備えている。出力処理部258は、機器ドライバ265を介して種々の動作機器270と接続している。動作機器270として、走行関係の機器である走行機器群271と作業関係の機器である作業機器群272とがある。走行機器群271には、例えば、エンジン機器、変速機器、制動機器、操舵機器などが含まれている。作業機器群272には、収穫作業装置(図12に示す、収穫部215、脱穀装置213、搬送装置216、穀粒排出装置218など)における制御機器が含まれている。 The control device 205 includes an output processing unit 258 and an input processing unit 257 as input / output interfaces. The output processing unit 258 is connected to various operating devices 270 via the device driver 265. The operating devices 270 include a traveling device group 271 that is a traveling-related device and a working device group 272 that is a working-related device. The traveling equipment group 271 includes, for example, engine equipment, transmission equipment, braking equipment, steering equipment, and the like. The working equipment group 272 includes control equipment in a harvesting work device (the harvesting unit 215, the threshing device 213, the transport device 216, the grain discharging device 218, and the like illustrated in FIG. 12).
 入力処理部257には、走行状態センサ群263、作業状態センサ群264、走行操作ユニット290、などが接続されている。走行状態センサ群263には、車速センサ、エンジン回転数センサ、駐車ブレーキ検出センサ、変速位置検出センサ、操舵位置検出センサ、などが含まれている。作業状態センサ群264には、収穫作業装置の駆動状態や姿勢を検出するセンサ、及び穀稈や穀粒の状態を検出するセンサが含まれている。 The input processing unit 257 is connected to a traveling state sensor group 263, a work state sensor group 264, a traveling operation unit 290, and the like. The traveling state sensor group 263 includes a vehicle speed sensor, an engine speed sensor, a parking brake detection sensor, a shift position detection sensor, a steering position detection sensor, and the like. The work state sensor group 264 includes a sensor that detects a driving state and a posture of the harvesting work device, and a sensor that detects a state of a grain culm or a grain.
 走行操作ユニット290は、運転者によって手動操作され、その操作信号が制御装置205に入力される操作具の総称である。走行操作ユニット290には、変速レバーとしての主変速レバー291、操舵レバー292、モード切替スイッチ293として構成されたモード操作具、自動走行操作具294、などが含まれている。モード切替スイッチ293は、自動運転と手動運転とを切り替えるための指令を制御装置205に送り出す機能を有する。自動走行操作具294は、運転者による操作を通じて、自動走行移行要求を出力する。 The traveling operation unit 290 is a general term for operating tools that are manually operated by a driver and whose operation signals are input to the control device 205. The traveling operation unit 290 includes a main transmission lever 291 as a transmission lever, a steering lever 292, a mode operation tool configured as a mode switch 293, an automatic traveling operation tool 294, and the like. The mode changeover switch 293 has a function of sending a command for switching between automatic operation and manual operation to the control device 205. The automatic traveling operation tool 294 outputs an automatic traveling transition request through an operation by the driver.
 報知デバイス262は、運転者等に作業状態や走行状態に関する警告を報知するためのデバイスであり、ブザーやランプなどである。なお、汎用端末204もタッチパネル240での表示を通じて運転者等に作業状態や走行状態や種々の情報を報知するデバイスとして機能する。 The notifying device 262 is a device for notifying a driver or the like of a warning regarding a working state or a running state, and is a buzzer, a lamp, or the like. The general-purpose terminal 204 also functions as a device that notifies a driver or the like of a work state, a running state, and various information through display on the touch panel 240.
 この制御装置205は、さらに車載LANを通じて汎用端末204とも接続している。汎用端末204はタッチパネル240を備えたタブレットコンピュータである。汎用端末204は、入出力制御部241、作業走行管理部242、収穫走行形態選択部243、走行経路算出部244、オーバーラップ値設定部245を有する。入出力制御部241には、タッチパネル240を用いてグラフィックインターフェースを構築する機能、及び、遠隔地のコンピュータとも、無線回線やインターネットを通じて、データ交換する機能も備えている。 制 御 The control device 205 is further connected to a general-purpose terminal 204 via an in-vehicle LAN. The general-purpose terminal 204 is a tablet computer having a touch panel 240. The general-purpose terminal 204 includes an input / output control unit 241, a work traveling management unit 242, a harvest traveling mode selection unit 243, a traveling route calculation unit 244, and an overlap value setting unit 245. The input / output control unit 241 also has a function of constructing a graphic interface using the touch panel 240 and a function of exchanging data with a remote computer via a wireless line or the Internet.
 作業走行管理部242は、走行軌跡算出部2421と作業領域決定部2422と排出位置設定部2423を備えている。走行軌跡算出部2421は、制御装置205から与えられた自車位置に基づいて走行軌跡を算出する。作業領域決定部2422は、図13に示すように、コンバインが圃場の外周領域SAを何周か周囲刈り走行することで得られた走行軌跡に基づいて、圃場を外周領域SAと未作業領域CAとに区分けする。外周領域SAの最外線によって圃場の畔との境界線が算出され、外周領域SAの最内線によって、自動走行が行われる未作業領域CAが算出される。排出位置設定部2423は、穀粒タンク214が満杯になった場合、穀粒タンク214の穀粒を穀粒排出装置218によって運搬車CVに排出する際のコンバインの排出停車位置を設定する。排出停車位置は、周囲刈り走行によって圃場の外周側に形成される外周領域SAで、かつ多角形状の外周領域SAのコーナ部以外の場所に設定される。 The work traveling management unit 242 includes a traveling locus calculation unit 2421, a work area determination unit 2422, and a discharge position setting unit 2423. The travel locus calculation unit 2421 calculates a travel locus based on the own vehicle position given from the control device 205. As shown in FIG. 13, the work area determination unit 2422 divides the field into the outer area SA and the unworked area CA based on the traveling trajectory obtained by cutting the outer circumference area SA several times around the field. And is divided into The outermost line of the outer peripheral area SA is used to calculate the boundary with the shore of the field, and the innermost line of the outer peripheral area SA is used to calculate the unworked area CA in which automatic traveling is performed. When the grain tank 214 is full, the discharge position setting unit 2423 sets a combine discharge stop position when the grains in the grain tank 214 are discharged to the transport vehicle CV by the grain discharge device 218. The discharge stop position is set in an outer peripheral area SA formed on the outer peripheral side of the field by peripheral mowing traveling, and at a location other than a corner portion of the polygonal outer peripheral area SA.
 収穫走行形態選択部243は、運転者や作業管理者によって人為的に、または入力されたデータに基づいて自動的に、収穫走行形態を選択する。収穫走行形態には、走行パターンの種類(往復走行パターンまたは渦巻き走行パターン)、及び、旋回移行走行の種類(ノーマルUターン、スイッチバックターン、アルファターン)が含まれている。さらに、収穫走行形態の詳細な制御パラメータを決定するために考慮されるデータは、圃場属性データ(面積、土壌固さ、傾斜度、滑り度など)、収穫農作物データ(稲、小麦、大麦、など)、作業装置データ(収穫幅、収穫車速など)、機体データ(最小旋回半径など)である。これらのデータをタッチパネル240に表示させ、これらデータを見ながら、運転者等が、手動で、所望の収穫走行形態を選択することができる。また、これらデータに基づいて、収穫走行形態選択部243が自動的に適切な収穫走行形態を選択してもよい。この収穫走行形態の選択は、作業開始時だけでなく、作業の途中でも可能である。 The harvest travel mode selection unit 243 selects a harvest travel mode artificially by a driver or a work manager or automatically based on input data. The harvest travel mode includes the type of travel pattern (reciprocal travel pattern or spiral travel pattern) and the type of turning transition travel (normal U-turn, switchback turn, alpha-turn). Further, data considered in determining the detailed control parameters of the harvest running mode include field attribute data (area, soil hardness, slope, slippage, etc.), harvested crop data (rice, wheat, barley, etc.) ), Working device data (harvest width, harvest vehicle speed, etc.), and machine data (minimum turning radius, etc.). These data are displayed on the touch panel 240, and the driver or the like can manually select a desired harvesting traveling mode while viewing the data. Further, the harvesting traveling mode selection unit 243 may automatically select an appropriate harvesting traveling mode based on these data. The selection of the harvest travel mode is possible not only at the start of the work but also during the work.
 走行経路算出部244は、作業領域決定部2422によって決定された未作業領域CAに対して自動走行用の走行経路を算出する。外周領域SAの手動走行が終了したことを、運転者が入力することで、選択された走行パターンでの経路算出が自動的に行われる。 The traveling route calculation unit 244 calculates a traveling route for the automatic traveling with respect to the non-work area CA determined by the work area determination unit 2422. When the driver inputs that the manual traveling in the outer peripheral area SA has been completed, the route calculation in the selected traveling pattern is automatically performed.
 走行経路算出部244は、収穫部215の収穫幅(作業幅)と、オーバーラップ値設定部245によって設定されたオーバーラップ値とに基づいて、隣接走行経路の間隔(経路間隔)を決定する。さらに、走行経路算出部244は、図16~図18を用いて説明したようなアルゴリズムを用いて、走行経路を算出する。 The traveling route calculation unit 244 determines the interval between adjacent traveling routes (path interval) based on the harvest width (work width) of the harvesting unit 215 and the overlap value set by the overlap value setting unit 245. Further, the travel route calculation unit 244 calculates the travel route using the algorithm described with reference to FIGS.
 オーバーラップ値設定部245は、収穫走行形態選択部243によって選択された収穫走行形態に応じてオーバーラップ値を決定して設定する機能と、運転者や管理者などによって人為的に入力されたオーバーラップ値を設定する機能とを有する。 The overlap value setting unit 245 has a function of determining and setting an overlap value in accordance with the harvest travel mode selected by the harvest travel mode selection unit 243, and an overlap value artificially input by a driver or a manager. And a function of setting a lap value.
 制御装置205には、自車位置算出部250、手動走行制御部251、自動走行制御部252、走行経路設定部253、制御指令生成部254、進入偏差算出部255、作業制御部256、報知部259が備えられている。 The control device 205 includes a vehicle position calculation unit 250, a manual travel control unit 251, an automatic travel control unit 252, a travel route setting unit 253, a control command generation unit 254, an approach deviation calculation unit 255, a work control unit 256, and a notification unit. 259 are provided.
 自車位置算出部250は、衛星測位ユニット281から逐次送られてくる測位データに基づいて、自車位置を地図座標(または圃場座標)の形式で算出する。自車位置算出部250は、慣性航法ユニット282からの位置ベクトルと走行距離とを用いて自車位置を算出することもできる。自車位置算出部250は、衛星測位ユニット281及び慣性航法ユニット282からの信号を組み合わせて自車位置を算出することも可能である。さらに、自車位置算出部250は、経時的な自車位置から、機体210の進行方向である機体210の向きを算出することも可能である。 The vehicle position calculation unit 250 calculates the vehicle position in the form of map coordinates (or field coordinates) based on the positioning data sequentially transmitted from the satellite positioning unit 281. The host vehicle position calculation unit 250 can also calculate the host vehicle position using the position vector from the inertial navigation unit 282 and the travel distance. The host vehicle position calculating unit 250 can also calculate the host vehicle position by combining signals from the satellite positioning unit 281 and the inertial navigation unit 282. Further, the own vehicle position calculating unit 250 can also calculate the direction of the body 210, which is the traveling direction of the body 210, from the own vehicle position over time.
 報知部259は、制御装置205の各機能部からの指令等に基づいて報知データを生成し、報知デバイス262に与える。制御装置205は、モード切替スイッチ293により走行モードが自動走行モードに切り替えられている場合、予め設定されている自動走行許可条件に基づいて自動走行の許否を判定し、この判定結果が許可である場合、自動走行開始指令を自動走行制御部252に与える。 The notification unit 259 generates notification data based on a command or the like from each functional unit of the control device 205 and provides the notification data to the notification device 262. When the driving mode is switched to the automatic driving mode by the mode changeover switch 293, the control device 205 determines whether to permit the automatic driving based on the preset automatic driving permission condition, and the result of the determination is permission. In this case, an automatic traveling start command is given to the automatic traveling control unit 252.
 手動走行制御部251及び自動走行制御部252は、エンジン制御機能、操舵制御機能、車速制御機能などを有し、走行機器群271に走行制御信号を与える。作業制御部256は、収穫作業装置の動きを制御するために、作業機器群272に作業制御信号を与える。 The manual traveling control unit 251 and the automatic traveling control unit 252 have an engine control function, a steering control function, a vehicle speed control function, and the like, and provide a traveling control signal to the traveling equipment group 271. The work control unit 256 provides a work control signal to the work equipment group 272 to control the movement of the harvesting work device.
 このコンバインは、自動走行で収穫作業を行う自動運転と、手動走行で収穫作業を行う手動運転との両方で走行可能である。自動走行モードが設定されている場合、走行経路設定部253は、走行経路算出部244によって算出された走行経路を、汎用端末204から受け取って、適時に、自動操舵の目標となる走行経路として設定する。自動走行制御部252は、自動操舵を行うために、走行経路設定部253によって設定された走行経路と、自車位置算出部250によって算出された自車位置との間の方位ずれ及び位置ずれを解消するように、操舵制御信号を生成する。さらに、自動走行制御部252は、前もって設定された車速値に基づいて車速変更に関する制御信号を生成する。その際、自動走行制御部252には、図21を用いて説明された偏差不感帯が設定されており、算出された位置ずれが偏差不感帯の幅内であれば、位置ずれを修正する制御は行われない。偏差不感帯の幅はオーバーラップ値の増減に対応して変更される。 This combine can run in both automatic operation, in which harvesting is performed by automatic running, and manual operation, in which harvesting is performed by manual running. When the automatic traveling mode is set, the traveling route setting unit 253 receives the traveling route calculated by the traveling route calculating unit 244 from the general-purpose terminal 204, and sets the traveling route as a traveling route to be a target of automatic steering in a timely manner. I do. The automatic traveling control unit 252 calculates the azimuth deviation and the positional deviation between the traveling route set by the traveling route setting unit 253 and the own vehicle position calculated by the own vehicle position calculating unit 250 in order to perform automatic steering. A steering control signal is generated so as to cancel the operation. Further, the automatic traveling control unit 252 generates a control signal related to vehicle speed change based on a vehicle speed value set in advance. At this time, the deviation dead zone described with reference to FIG. 21 is set in the automatic traveling control unit 252, and if the calculated displacement is within the width of the deviation dead zone, the control for correcting the displacement is not performed. I can't. The width of the deviation dead zone is changed according to the increase or decrease of the overlap value.
 進入偏差算出部255は、旋回走行を通じて進入しようとする次の走行経路である進入目標走行経路TLと、機体210の向きとの間の進入偏差として、図22を用いて説明した進入角度θを、自車位置算出部250から送られてくる自車方位に基づいて算出する。 The approach deviation calculation unit 255 calculates the approach angle θ described with reference to FIG. 22 as the approach deviation between the approach target travel path TL, which is the next travel path to be approached through the turning travel, and the direction of the body 210. , Based on the vehicle direction sent from the vehicle position calculation unit 250.
 制御指令生成部254は、走行経路と自車位置との間の偏差及びオーバーラップ値に基づいて制御指令を生成する。制御指令生成部254には、図22を用いて説明された禁止偏差である限界角度θLが設定されている。この実施形態では、制御指令生成部254によって生成される制御指令は次の2つである。
(1)その1つの制御指令は、自動走行制御部252に設定されている偏差不感帯の幅を、オーバーラップ値の増減に対応して変更させる指令であり、自動走行制御部252に与えられる。この制御指令により、オーバーラップ値が大きくなれば、偏差不感帯の幅が広くされ、オーバーラップ値が小さくなれば、偏差不感帯の幅が狭くされる。
(2)他の1つの制御指令は、進入偏差算出部255によって算出された進入角度θが限界角度θLを超えた場合に、次に走行する走行経路である進入目標走行経路TLへの進入を中止させる指令(進入中止指令)、及び、この進入をやり直させる再試行指令であり、自動走行制御部252に与えられる。
The control command generation unit 254 generates a control command based on a deviation between the travel route and the position of the vehicle and an overlap value. In the control command generator 254, the limit angle θL, which is the prohibited deviation described with reference to FIG. 22, is set. In this embodiment, the following two control commands are generated by the control command generator 254.
(1) The one control command is a command for changing the width of the deviation dead zone set in the automatic traveling control unit 252 in accordance with the increase or decrease of the overlap value, and is given to the automatic traveling control unit 252. According to this control command, if the overlap value increases, the width of the deviation dead zone increases, and if the overlap value decreases, the width of the deviation dead zone decreases.
(2) Another control command is to, when the approach angle θ calculated by the approach deviation calculator 255 exceeds the limit angle θL, enter the approach target travel path TL that is the next travel path. The command is a command to stop (entry stop command) and a retry command to restart this approach, and is given to the automatic traveling control unit 252.
 手動走行モードが選択されている場合、運転者による操作に基づいて手動操作信号が手動走行制御部251に送られると、手動走行制御部251が制御信号を生成し、走行機器群271を制御することで、手動運転が実現する。なお、走行経路設定部253によって設定された走行経路は、手動運転であっても、コンバインが当該走行経路に沿って走行するためのガイダンスのために利用することができる。また、制御指令生成部254によって生成される制御指令は、手動走行制御部251による操舵制御に利用されてもよい。 When the manual traveling mode is selected, when a manual operation signal is sent to the manual traveling control unit 251 based on an operation by the driver, the manual traveling control unit 251 generates a control signal and controls the traveling device group 271. Thus, manual operation is realized. Note that the traveling route set by the traveling route setting unit 253 can be used for guidance for the combine to travel along the traveling route even in manual operation. Further, the control command generated by the control command generation unit 254 may be used for steering control by the manual traveling control unit 251.
〔第2実施形態の別実施の形態〕
(1)オーバーラップ値は、圃場単位で設定するのではなく、圃場の一部分の収穫作業を終えた後に、つまり所定の走行経路群に沿った局部的な収穫作業が終了した後に、オーバーラップ値を変更してもよい。その際、その時点で未作業領域CAに設定されている走行経路は新しいオーバーラップ値に基づいて、シフトされる。
[Another Embodiment of Second Embodiment]
(1) The overlap value is not set for each field, but is set after completing the harvesting operation on a part of the field, that is, after completing the local harvesting operation along a predetermined traveling route group. May be changed. At this time, the traveling route set in the non-work area CA at that time is shifted based on the new overlap value.
(2)図23で示された各機能部は、主に説明目的で区分けされている。実際には、各機能部は他の機能部と統合してもよいし、または複数の機能部に分けてもよい。例えば、汎用端末204に構築された機能部を、部分的にあるいはその全てを制御装置205に組み込んでもよい。 (2) Each functional unit shown in FIG. 23 is divided mainly for the purpose of explanation. In practice, each functional unit may be integrated with another functional unit, or may be divided into a plurality of functional units. For example, some or all of the functional units constructed in the general-purpose terminal 204 may be incorporated in the control device 205.
(3)上述の実施形態においては、周囲刈り走行は、手動走行で行われていたが、2周目以降では、部分的に、特に直線状の走行に関しては、自動走行を採用してもよい。 (3) In the above-described embodiment, the peripheral mowing traveling is performed manually, but in the second and subsequent laps, automatic traveling may be partially used, particularly for linear traveling. .
(4)上述の実施形態においては、収穫幅の端部をオーバーラップさせながら、圃場内に設定された走行経路に沿って自動走行する収穫機について説明した。しかしながら、上述の実施形態における各機能部を、前記収穫機のための自動操舵プログラムとして構成することも可能である。さらに、上述の実施形態における各機能部が行う処理を、自動操舵方法として構成することも可能である。 (4) In the above-described embodiment, the harvester that automatically travels along the travel route set in the field while overlapping the ends of the harvest width has been described. However, each functional unit in the above-described embodiment can be configured as an automatic steering program for the harvester. Further, the processing performed by each functional unit in the above-described embodiment can be configured as an automatic steering method.
(5)また、このような自動操舵プログラムを、記録媒体に記録するように構成することも可能である。 (5) Further, such an automatic steering program may be configured to be recorded on a recording medium.
(6)上述の実施形態においては、普通型のコンバインに適用したものを示したが、本発明は、自脱型のコンバインにも利用可能である。また、トウモロコシ収穫機、ジャガイモ収穫機、ニンジン収穫機、サトウキビ収穫機等の種々の収穫機にも利用できる。 (6) In the above-described embodiment, an example in which the present invention is applied to an ordinary combine is shown. However, the present invention can also be used for a self-removing combine. The present invention can also be used for various harvesters such as a corn harvester, a potato harvester, a carrot harvester, and a sugarcane harvester.
 10   :機体
 11   :走行装置
 4    :汎用端末
 40   :タッチパネル
 41   :入出力制御部
 42   :作業走行管理部
 421  :走行軌跡算出部
 422  :作業領域決定部
 43   :走行経路算出部
 44   :旋回経路算出部
 441  :初期旋回経路算出部
 442  :後期旋回経路算出部
 443  :進入経路算出部
 444  :予備経路算出部
 445  :中間経路算出部
 5    :制御装置
 50   :自車位置算出部
 51   :手動走行制御部
 52   :自動走行制御部
 53   :走行経路設定部
 80   :自車位置検出モジュール
 C1   :初期旋回経路
 C2   :後期旋回経路
 CA   :未作業領域
 Lad  :予備経路
 Lin  :進入経路
 Lm   :進入先走行経路
 Lmid :中間経路
 Ln   :進入元走行経路
 r    :半径
 R    :半径
 204  :汎用端末
 205  :制御装置
 210  :機体
 242  :作業走行管理部
 2421 :走行軌跡算出部
 2422 :作業領域決定部
 2423 :排出位置設定部
 243  :収穫走行形態選択部
 244  :走行経路算出部
 245  :オーバーラップ値設定部
 250  :自車位置算出部
 251  :手動走行制御部
 252  :自動走行制御部
 253  :走行経路設定部
 254  :制御指令生成部
 255  :進入偏差算出部
 280  :自車位置検出モジュール
 281  :衛星測位ユニット
 CA   :未作業領域
 CV   :運搬車
 D    :矢印
 F    :矢印
 GS   :人工衛星
 TL   :進入目標走行経路(走行経路)
 θ    :進入角度
 θL   :限界角度
10: Airframe 11: Traveling device 4: General-purpose terminal 40: Touch panel 41: Input / output control unit 42: Work travel management unit 421: Travel locus calculation unit 422: Work area determination unit 43: Travel route calculation unit 44: Turning route calculation unit 441: Initial turning route calculation unit 442: Late turning route calculation unit 443: Entry route calculation unit 444: Preparatory route calculation unit 445: Intermediate route calculation unit 5: Control device 50: Own vehicle position calculation unit 51: Manual traveling control unit 52 : Automatic traveling control unit 53: Traveling route setting unit 80: Own vehicle position detection module C1: Initial turning route C2: Late turning route CA: Unworked area Lad: Preliminary route Lin: Approach route Lm: Approach destination running route Lmid: Intermediate Route Ln: Entry travel route r: Radius R: Radius 204: General-purpose end 205: Control device 210: Airframe 242: Work travel management unit 2421: Travel locus calculation unit 2422: Work area determination unit 2423: Discharge position setting unit 243: Harvest travel mode selection unit 244: Travel route calculation unit 245: Overlap value setting Unit 250: own vehicle position calculating unit 251: manual traveling control unit 252: automatic traveling control unit 253: traveling route setting unit 254: control command generating unit 255: approach deviation calculating unit 280: own vehicle position detecting module 281: satellite positioning unit CA: unworked area CV: transport vehicle D: arrow F: arrow GS: satellite TL: entry target travel route (travel route)
θ: Approach angle θL: Limit angle

Claims (26)

  1.  自動走行によって進入元走行経路から旋回走行を介して進入先走行経路に進入する圃場作業車のための自動操舵システムであって、
     前記進入元走行経路に沿った走行に続く初期旋回走行のための初期旋回経路を算出する初期旋回経路算出部と、
     前記初期旋回経路に沿った走行に続く後期旋回走行のための後期旋回経路を算出する後期旋回経路算出部と、
     前記後期旋回経路と前記進入先走行経路とをつなぐ進入経路を算出する進入経路算出部とを備え、
     前記初期旋回経路の旋回半径は、前記後期旋回経路の旋回半径より大きく設定されている自動操舵システム。
    An automatic steering system for a field work vehicle that enters an entry destination travel route via a turning travel from an entry source travel route by automatic travel,
    An initial turning path calculation unit that calculates an initial turning path for an initial turning traveling following the traveling along the approaching source driving path,
    A late turning path calculation unit that calculates a late turning path for a late turning travel following the travel along the initial turning path,
    An approach route calculation unit that calculates an approach route connecting the late turning route and the approach destination travel route,
    The automatic steering system wherein a turning radius of the initial turning path is set to be larger than a turning radius of the late turning path.
  2.  前記初期旋回経路の始端側には、旋回時に前記圃場作業車が農作物を踏み付けることを回避するために前記進入元走行経路の延び方向に沿って延びる予備経路が算出される請求項1に記載の自動操舵システム。 The preliminary route extending along the extending direction of the approaching traveling route is calculated on a starting end side of the initial turning route in order to prevent the field work vehicle from stepping on a crop when turning. Automatic steering system.
  3.  前記後期旋回経路が円弧であり、
     前記初期旋回経路算出部は、前記進入元走行経路の延長線と前記後期旋回経路の接線とに接する円の円弧として、前記初期旋回経路を算出する請求項1または2に記載の自動操舵システム。
    The late turning path is an arc,
    3. The automatic steering system according to claim 1, wherein the initial turning path calculation unit calculates the initial turning path as an arc of a circle that is in contact with an extension of the approaching traveling path and a tangent of the late turning path. 4.
  4.  前記後期旋回経路が円弧であり、
     前記初期旋回経路の後端側には、前記後期旋回経路につながる直線状の中間経路が算出されており、
     前記初期旋回経路算出部は、前記進入元走行経路の延長線と前記中間経路とに接する円の円弧として、前記初期旋回経路を算出する請求項1または2に記載の自動操舵システム。
    The late turning path is an arc,
    On the rear end side of the initial turning path, a linear intermediate path leading to the latter turning path is calculated,
    3. The automatic steering system according to claim 1, wherein the initial turning path calculation unit calculates the initial turning path as an arc of a circle that is in contact with an extension of the approaching traveling path and the intermediate path. 4.
  5.  自動走行によって進入元走行経路から旋回走行を介して進入先走行経路に進入する圃場作業車のための自動操舵方法であって、
     前記進入元走行経路に沿った走行に続く初期旋回走行のための初期旋回経路を算出する初期旋回経路算出ステップと、
     前記初期旋回経路に沿った走行に続く後期旋回走行のための後期旋回経路を算出する後期旋回経路算出ステップと、
     前記後期旋回経路と前記進入先走行経路とをつなぐ進入経路を算出する進入経路算出ステップとを含み、
     前記初期旋回経路の旋回半径は、前記後期旋回経路の旋回半径より大きく設定されている自動操舵方法。
    An automatic steering method for a field work vehicle that enters an entry destination travel route via a turning travel from an entry source travel route by automatic travel,
    An initial turning path calculation step of calculating an initial turning path for an initial turning traveling following the traveling along the approaching source driving path,
    A late turning path calculation step of calculating a late turning path for the late turning traveling following the traveling along the initial turning path,
    An approach route calculating step of calculating an approach route connecting the late turning route and the approach destination travel route,
    The automatic steering method, wherein a turning radius of the initial turning path is set to be larger than a turning radius of the late turning path.
  6.  前記初期旋回経路の始端側には、旋回時に前記圃場作業車が農作物を踏み付けることを回避するために前記進入元走行経路の延び方向に沿って延びる予備経路が算出される請求項5に記載の自動操舵方法。 The preliminary route extending along the extending direction of the approaching traveling route is calculated on a starting end side of the initial turning route in order to prevent the field work vehicle from stepping on a crop when turning. Automatic steering method.
  7.  前記後期旋回経路が円弧であり、
     前記初期旋回経路算出ステップにおいて、前記進入元走行経路の延長線と前記後期旋回経路の接線とに接する円の円弧として、前記初期旋回経路を算出する請求項5または6に記載の自動操舵方法。
    The late turning path is an arc,
    7. The automatic steering method according to claim 5, wherein in the initial turning path calculation step, the initial turning path is calculated as an arc of a circle that is tangent to an extension of the approaching traveling path and a tangent to the late turning path.
  8.  前記後期旋回経路が円弧であり、
     前記初期旋回経路の後端側には、前記後期旋回経路につながる直線状の中間経路が算出されており、
     前記初期旋回経路算出ステップにおいて、前記進入元走行経路の延長線と前記中間経路とに接する円の円弧として、前記初期旋回経路を算出する請求項5または6に記載の自動操舵方法。
    The late turning path is an arc,
    On the rear end side of the initial turning path, a linear intermediate path leading to the latter turning path is calculated,
    7. The automatic steering method according to claim 5, wherein in the initial turning path calculation step, the initial turning path is calculated as an arc of a circle that is in contact with an extension of the approaching traveling path and the intermediate path. 8.
  9.  自動走行によって進入元走行経路から旋回走行を介して進入先走行経路に進入する圃場作業車のための自動操舵プログラムであって、
     前記進入元走行経路に沿った走行に続く初期旋回走行のための初期旋回経路を算出する初期旋回経路算出機能と、
     前記初期旋回経路に沿った走行に続く後期旋回走行のための後期旋回経路を算出する後期旋回経路算出機能と、
     前記後期旋回経路と前記進入先走行経路とをつなぐ進入経路を算出する進入経路算出機能とを、コンピュータに実現させ、
     前記初期旋回経路の旋回半径は、前記後期旋回経路の旋回半径より大きく設定されている自動操舵プログラム。
    An automatic steering program for a field work vehicle that enters an entry destination travel route via a turning travel from an entry source travel route by automatic travel,
    An initial turning path calculation function for calculating an initial turning path for an initial turning traveling following the traveling along the approaching source driving path,
    A late turning path calculation function for calculating a late turning path for a late turning travel following the traveling along the initial turning path,
    An entry path calculation function for calculating an entry path connecting the late turning path and the entry destination travel path is realized by a computer,
    An automatic steering program in which a turning radius of the initial turning path is set to be larger than a turning radius of the late turning path.
  10.  前記初期旋回経路の始端側には、旋回時に前記圃場作業車が農作物を踏み付けることを回避するために前記進入元走行経路の延び方向に沿って延びる予備経路が算出される請求項9に記載の自動操舵プログラム。 10. A preliminary route extending along an extending direction of the approaching traveling route is calculated on a starting end side of the initial turning route in order to prevent the field work vehicle from stepping on a crop when turning. Automatic steering program.
  11.  前記後期旋回経路が円弧であり、
     前記初期旋回経路算出機能は、前記進入元走行経路の延長線と前記後期旋回経路の接線とに接する円の円弧として、前記初期旋回経路を算出する請求項9または10に記載の自動操舵プログラム。
    The late turning path is an arc,
    The automatic steering program according to claim 9, wherein the initial turning path calculation function calculates the initial turning path as an arc of a circle that is in contact with an extension of the approaching traveling path and a tangent to the late turning path.
  12.  前記後期旋回経路が円弧であり、
     前記初期旋回経路の後端側には、前記後期旋回経路につながる直線状の中間経路が算出されており、
     前記初期旋回経路算出機能は、前記進入元走行経路の延長線と前記中間経路とに接する円の円弧として、前記初期旋回経路を算出する請求項9または10に記載の自動操舵プログラム。
    The late turning path is an arc,
    On the rear end side of the initial turning path, a linear intermediate path leading to the latter turning path is calculated,
    The automatic steering program according to claim 9, wherein the initial turning path calculation function calculates the initial turning path as an arc of a circle that is in contact with an extension of the approaching traveling path and the intermediate path.
  13.  請求項9から12のいずれか一項に記載の自動操舵プログラムが記録されたコンピュータで読み取り可能な記録媒体。 A computer-readable recording medium on which the automatic steering program according to any one of claims 9 to 12 is recorded.
  14.  収穫幅の端部をオーバーラップさせながら、圃場内に設定された走行経路に沿って自動走行する収穫機であって、
     収穫走行形態を選択する収穫走行形態選択部と、
     前記オーバーラップのオーバーラップ値を設定するオーバーラップ値設定部と、
     前記収穫幅と前記オーバーラップ値とから決定される経路間隔で作業対象領域を網羅するように、前記走行経路を前記収穫走行形態に応じて算出する走行経路算出部と、
     自車位置を算出する自車位置算出部と、
     前記走行経路と前記自車位置との間の偏差及び前記オーバーラップ値に基づいて制御指令を生成する制御指令生成部と、
     前記制御指令に基づいて操舵制御を行う自動走行制御部と、
    を備えた収穫機。
    A harvester that automatically travels along a travel route set in a field while overlapping the ends of a harvest width,
    A harvest travel mode selection unit that selects a harvest travel mode,
    An overlap value setting unit that sets an overlap value of the overlap,
    A travel route calculation unit that calculates the travel route according to the harvest travel mode, so as to cover the work target area at a route interval determined from the harvest width and the overlap value.
    An own-vehicle position calculating unit that calculates an own-vehicle position;
    A control command generation unit that generates a control command based on the deviation between the travel route and the position of the vehicle and the overlap value,
    An automatic traveling control unit that performs steering control based on the control command,
    Harvester equipped with.
  15.  前記オーバーラップ値設定部は、前記収穫走行形態に応じて、前記オーバーラップ値を変更する請求項14に記載の収穫機。 The harvester according to claim 14, wherein the overlap value setting unit changes the overlap value according to the harvest travel mode.
  16.  前記偏差を無効にする偏差不感帯の幅が、前記オーバーラップ値の増大に対応して広くなるように変更される請求項14または15に記載の収穫機。 The harvester according to claim 14 or 15, wherein the width of the deviation dead zone that invalidates the deviation is changed so as to increase in accordance with the increase in the overlap value.
  17.  旋回走行を通じて進入しようとする進入目標走行経路と前記自車位置との間の進入偏差を算出する進入偏差算出部が備えられ、前記進入偏差が禁止偏差を超えた場合に前記進入目標走行経路への進入を中止させる進入中止指令が、前記制御指令に含まれており、前記禁止偏差が前記オーバーラップ値によって変更される請求項14から16のいずれか一項に記載の収穫機。 An entry deviation calculation unit for calculating an entry deviation between an entry target traveling route to be approached through the turning traveling and the host vehicle position; and when the entry deviation exceeds a prohibition deviation, the vehicle enters the entry target traveling route. The harvester according to any one of claims 14 to 16, wherein an approach stop command for stopping the approach is included in the control command, and the prohibition deviation is changed by the overlap value.
  18.  収穫幅の端部をオーバーラップさせながら、圃場内に設定された走行経路に沿って自動走行する収穫機のための自動操舵方法であって、
     収穫走行形態を選択する収穫走行形態選択ステップと、
     前記オーバーラップのオーバーラップ値を設定するオーバーラップ値設定ステップと、
     前記収穫幅と前記オーバーラップ値とから決定される経路間隔で作業対象領域を網羅するように、前記走行経路を前記収穫走行形態に応じて算出する走行経路算出ステップと、
     自車位置を算出する自車位置算出ステップと、
     前記走行経路と前記自車位置との間の偏差及び前記オーバーラップ値に基づいて制御指令を生成する制御指令生成ステップと、
     前記制御指令に基づいて操舵制御を行う自動走行制御ステップと、
    を含む自動操舵方法。
    An automatic steering method for a harvester that automatically travels along a travel route set in a field while overlapping an end of a harvest width,
    A harvest travel mode selection step of selecting a harvest travel mode,
    An overlap value setting step of setting an overlap value of the overlap;
    A travel route calculation step of calculating the travel route according to the harvest travel mode so as to cover the work target area at a route interval determined from the harvest width and the overlap value,
    Own vehicle position calculating step of calculating the own vehicle position,
    A control command generation step of generating a control command based on the deviation between the travel route and the position of the vehicle and the overlap value;
    An automatic driving control step of performing steering control based on the control command,
    Automatic steering method including.
  19.  前記オーバーラップ値設定ステップにおいて、前記収穫走行形態に応じて、前記オーバーラップ値を変更する請求項18に記載の自動操舵方法。 19. The automatic steering method according to claim 18, wherein, in the overlap value setting step, the overlap value is changed according to the harvest travel mode.
  20.  前記偏差を無効にする偏差不感帯の幅が、前記オーバーラップ値の増大に対応して広くなるように変更される請求項18または19に記載の自動操舵方法。 20. The automatic steering method according to claim 18 or 19, wherein the width of the deviation dead zone for invalidating the deviation is changed so as to increase in accordance with the increase in the overlap value.
  21.  旋回走行を通じて進入しようとする進入目標走行経路と前記自車位置との間の進入偏差を算出する進入偏差算出ステップが含まれ、前記進入偏差が禁止偏差を超えた場合に前記進入目標走行経路への進入を中止させる進入中止指令が、前記制御指令に含まれており、前記禁止偏差が前記オーバーラップ値によって変更される請求項18から20のいずれか一項に記載の自動操舵方法。 An entry deviation calculation step of calculating an entry deviation between the entry target traveling route to be entered through the turning travel and the position of the own vehicle; and when the entry deviation exceeds a prohibition deviation, the vehicle enters the entry target traveling route. 21. The automatic steering method according to claim 18, wherein an approach stop command for stopping the approach of the vehicle is included in the control command, and the prohibition deviation is changed by the overlap value.
  22.  収穫幅の端部をオーバーラップさせながら、圃場内に設定された走行経路に沿って自動走行する収穫機のための自動操舵プログラムであって、
     収穫走行形態を選択する収穫走行形態選択機能と、
     前記オーバーラップのオーバーラップ値を設定するオーバーラップ値設定機能と、
     前記収穫幅と前記オーバーラップ値とから決定される経路間隔で作業対象領域を網羅するように、前記走行経路を前記収穫走行形態に応じて算出する走行経路算出機能と、
     自車位置を算出する自車位置算出機能と、
     前記走行経路と前記自車位置との間の偏差及び前記オーバーラップ値に基づいて制御指令を生成する制御指令生成機能と、
     前記制御指令に基づいて操舵制御を行う自動走行制御機能と、
    をコンピュータに実現させる自動操舵プログラム。
    An automatic steering program for a harvester that automatically travels along a travel route set in a field while overlapping the ends of a harvest width,
    A harvest travel mode selection function for selecting a harvest travel mode,
    An overlap value setting function for setting an overlap value of the overlap;
    A travel route calculation function that calculates the travel route according to the harvest travel mode so as to cover the work target area at a route interval determined from the harvest width and the overlap value,
    A vehicle position calculation function for calculating the vehicle position,
    A control command generation function of generating a control command based on a deviation between the travel route and the position of the vehicle and the overlap value;
    An automatic cruise control function for performing steering control based on the control command;
    Automatic steering program that makes a computer realize
  23.  前記オーバーラップ値設定機能は、前記収穫走行形態に応じて、前記オーバーラップ値を変更する請求項22に記載の自動操舵プログラム。 23. The automatic steering program according to claim 22, wherein the overlap value setting function changes the overlap value according to the harvest travel mode.
  24.  前記偏差を無効にする偏差不感帯の幅が、前記オーバーラップ値の増大に対応して広くなるように変更される請求項22または23に記載の自動操舵プログラム。 24. The automatic steering program according to claim 22, wherein the width of the deviation dead zone that invalidates the deviation is changed so as to increase in accordance with the increase in the overlap value.
  25.  旋回走行を通じて進入しようとする進入目標走行経路と前記自車位置との間の進入偏差を算出する進入偏差算出機能が備えられ、前記進入偏差が禁止偏差を超えた場合に前記進入目標走行経路への進入を中止させる進入中止指令が、前記制御指令に含まれており、前記禁止偏差が前記オーバーラップ値によって変更される請求項22から24のいずれか一項に記載の自動操舵プログラム。 An entry deviation calculating function for calculating an entry deviation between an entry target traveling route to be approached through turning traveling and the position of the host vehicle; and when the entry deviation exceeds a prohibition deviation, the vehicle enters the entry target traveling route. The automatic steering program according to any one of claims 22 to 24, wherein an approach stop command for stopping the approach is included in the control command, and the inhibition deviation is changed by the overlap value.
  26.  請求項22から25のいずれか一項に記載の自動操舵プログラムが記録されたコンピュータで読み取り可能な記録媒体。 A computer-readable recording medium on which the automatic steering program according to any one of claims 22 to 25 is recorded.
PCT/JP2019/023214 2018-08-29 2019-06-12 Automated steering system, harvesting machine, automated steering method, automated steering program, and recording medium WO2020044726A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217006636A KR20210039452A (en) 2018-08-29 2019-06-12 Automatic steering system and harvester, automatic steering method, automatic steering program, recording medium
CN201980056727.2A CN112638147A (en) 2018-08-29 2019-06-12 Automatic steering system, harvester, automatic steering method, automatic steering program, and recording medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-160053 2018-08-29
JP2018160053A JP6983734B2 (en) 2018-08-29 2018-08-29 Harvester
JP2018161438A JP6978388B2 (en) 2018-08-30 2018-08-30 Automatic steering system for field work vehicles
JP2018-161438 2018-08-30

Publications (1)

Publication Number Publication Date
WO2020044726A1 true WO2020044726A1 (en) 2020-03-05

Family

ID=69644138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023214 WO2020044726A1 (en) 2018-08-29 2019-06-12 Automated steering system, harvesting machine, automated steering method, automated steering program, and recording medium

Country Status (3)

Country Link
KR (1) KR20210039452A (en)
CN (1) CN112638147A (en)
WO (1) WO2020044726A1 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
CN113835425A (en) * 2020-06-23 2021-12-24 中强光电股份有限公司 Path planning method
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
WO2022071382A1 (en) * 2020-10-02 2022-04-07 株式会社クボタ Agricultural work machine, agricultural work machine control program, recording medium on which agricultural work machine control program is recorded, and agricultural work machine control method
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
WO2023189015A1 (en) * 2022-03-31 2023-10-05 株式会社クボタ Agricultural work support system, agricultural machine, agricultural work support device, and method for creating travel route for agricultural machine
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
JP7447934B2 (en) 2022-06-13 2024-03-12 井関農機株式会社 combine
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5080855B2 (en) * 2007-05-14 2012-11-21 株式会社クボタ Work vehicle
WO2017169373A1 (en) * 2016-03-30 2017-10-05 ヤンマー株式会社 Path generation device and work vehicle
WO2018124040A1 (en) * 2016-12-27 2018-07-05 三菱マヒンドラ農機株式会社 Work vehicle
JP2018113940A (en) * 2017-01-20 2018-07-26 株式会社クボタ Position measurement device for work vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6502221B2 (en) 2015-09-14 2019-04-17 株式会社クボタ Work vehicle support system
JP6571017B2 (en) 2016-01-26 2019-09-04 ヤンマー株式会社 Agricultural work vehicle
JP6832828B2 (en) 2016-10-26 2021-02-24 株式会社クボタ Travel route determination device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5080855B2 (en) * 2007-05-14 2012-11-21 株式会社クボタ Work vehicle
WO2017169373A1 (en) * 2016-03-30 2017-10-05 ヤンマー株式会社 Path generation device and work vehicle
WO2018124040A1 (en) * 2016-12-27 2018-07-05 三菱マヒンドラ農機株式会社 Work vehicle
JP2018113940A (en) * 2017-01-20 2018-07-26 株式会社クボタ Position measurement device for work vehicle

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11829112B2 (en) 2019-04-10 2023-11-28 Deere & Company Machine control using real-time model
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11650553B2 (en) 2019-04-10 2023-05-16 Deere & Company Machine control using real-time model
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
CN113835425A (en) * 2020-06-23 2021-12-24 中强光电股份有限公司 Path planning method
WO2022071382A1 (en) * 2020-10-02 2022-04-07 株式会社クボタ Agricultural work machine, agricultural work machine control program, recording medium on which agricultural work machine control program is recorded, and agricultural work machine control method
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11871697B2 (en) 2020-10-09 2024-01-16 Deere & Company Crop moisture map generation and control system
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
WO2023189015A1 (en) * 2022-03-31 2023-10-05 株式会社クボタ Agricultural work support system, agricultural machine, agricultural work support device, and method for creating travel route for agricultural machine
JP7447934B2 (en) 2022-06-13 2024-03-12 井関農機株式会社 combine

Also Published As

Publication number Publication date
KR20210039452A (en) 2021-04-09
CN112638147A (en) 2021-04-09

Similar Documents

Publication Publication Date Title
WO2020044726A1 (en) Automated steering system, harvesting machine, automated steering method, automated steering program, and recording medium
WO2019123923A1 (en) Automatic steering system and automatic steering method
WO2020100810A1 (en) Harvester and route setting system
JP7014687B2 (en) Harvester
WO2019124217A1 (en) Work vehicle, travel path selection system for work vehicle, and travel path calculation system
US10754342B2 (en) Work vehicle support system
WO2020026651A1 (en) Harvesting machine, travel system, travel method, travel program, and storage medium
JP6983734B2 (en) Harvester
JP7357444B2 (en) harvester
JP6884092B2 (en) Travel route selection system for work vehicles and work vehicles
JP7117985B2 (en) automatic driving control system
WO2020111102A1 (en) Automatic travel control system, automatic travel control program, recording medium having automatic travel control program recorded thereon, automatic travel control method, control device, control program, recording medium having control program recorded thereon, and control method
JP2020080751A (en) Harvester
JP7423666B2 (en) harvester
JP2019107930A (en) Slip determination system
JP7206099B2 (en) Control device for self-driving work vehicle
JP6991058B2 (en) Automatic steering system
JP6978388B2 (en) Automatic steering system for field work vehicles
JP7030662B2 (en) Harvester
WO2020111088A1 (en) Automatic steering system, automatic steering method, and automatic steering program
KR20210067924A (en) Automatic traveling control system, combine and harvester
JP6976156B2 (en) Automatic steering system for work vehicles
JP6952597B2 (en) Work platform
JP2022048223A (en) Harvester
JP2022048223A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217006636

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19855590

Country of ref document: EP

Kind code of ref document: A1