WO2019227998A1 - 待机控制方法、系统、终端设备和中继设备 - Google Patents

待机控制方法、系统、终端设备和中继设备 Download PDF

Info

Publication number
WO2019227998A1
WO2019227998A1 PCT/CN2019/076930 CN2019076930W WO2019227998A1 WO 2019227998 A1 WO2019227998 A1 WO 2019227998A1 CN 2019076930 W CN2019076930 W CN 2019076930W WO 2019227998 A1 WO2019227998 A1 WO 2019227998A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication link
terminal device
communication
module
relay device
Prior art date
Application number
PCT/CN2019/076930
Other languages
English (en)
French (fr)
Inventor
于克雄
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19810735.1A priority Critical patent/EP3761716B1/en
Priority to EP23165252.0A priority patent/EP4243511A3/en
Publication of WO2019227998A1 publication Critical patent/WO2019227998A1/zh
Priority to US17/105,078 priority patent/US11789514B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3209Monitoring remote activity, e.g. over telephone lines or network connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/12Arrangements for remote connection or disconnection of substations or of equipment thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/10Active monitoring, e.g. heartbeat, ping or trace-route
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • H04L67/143Termination or inactivation of sessions, e.g. event-controlled end of session
    • H04L67/145Termination or inactivation of sessions, e.g. event-controlled end of session avoiding end of session, e.g. keep-alive, heartbeats, resumption message or wake-up for inactive or interrupted session
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/56Provisioning of proxy services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/56Provisioning of proxy services
    • H04L67/59Providing operational support to end devices by off-loading in the network or by emulation, e.g. when they are unavailable
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications, and in particular, to a standby control method, system, terminal, and relay device.
  • IoT terminals are devices with built-in batteries. On the one hand, they need to maintain a long working time; on the other hand, to meet business needs, the terminals need to communicate with the cloud network quickly and in real time. This puts forward higher technical requirements for IoT terminals to meet low power consumption and fast networking.
  • the IoT terminal generally includes a main control module and a communication module.
  • the main control module performs data processing
  • the communication module obtains data from the router through the high-speed communication link and sends the data to the main control module, or sends the main control through the high-speed communication link.
  • the data processed by the module is sent to the router.
  • the main control module When the IoT terminal is on standby, the main control module will be powered off, but in order to maintain fast networking and remote wake-up of the IoT terminal, the communication module will periodically transmit keep-alive messages with the router through the high-speed communication link to maintain the heartbeat connection. .
  • the power consumption of the communication module transmitting the keep-alive messages through the high-speed communication link is large, so the standby power of the IoT terminal is high.
  • the present application provides a standby control method for reducing power consumption of a terminal during standby.
  • the first aspect of the embodiments of the present application provides a standby control system.
  • the method includes: a standby control system.
  • the system includes: a terminal device and a relay device.
  • the terminal device is configured to pass the first
  • the communication link sends the first notification information to the relay device;
  • the relay device is configured to send the first keep-alive message to the cloud server based on the first notification information, so that the cloud server confirms that the terminal device is online;
  • the terminal device and It is used to close the first communication link and control the central processing unit CPU;
  • the relay device is also used to send a second keep-alive message to the terminal device through the second communication link;
  • the terminal device is also used to send the second communication through the second communication
  • the link sends the response information of the second keep-alive message to the relay device, so that the relay device confirms that the terminal device is online; wherein the communication rate of the second communication link is lower than the communication rate of the first communication link.
  • An embodiment of the present application provides a system for standby control.
  • a terminal device remains connected to the cloud through a relay device, and the terminal device and the relay device transmit business service data through a first communication link.
  • the terminal device closes the first communication link, and the second communication module of the terminal device and the second communication module of the relay device perform heartbeat keepalive through the second communication link, wherein the communication rate of the second communication link is lower than the first communication link.
  • the heartbeat keep-alive is performed through the first communication link when the terminal device is in standby.
  • the power consumption of the terminal device in the standby state is reduced.
  • the terminal device is further configured to receive a wake-up message sent by the relay device through the second communication link; the The terminal device is further configured to open the main control CPU and enable the first communication link according to the wake-up message.
  • the standby control system provided in the embodiment of the present application provides that in a standby state of the terminal, the relay device sends a wake-up message to the terminal device through the second communication link to wake the terminal, and the terminal resumes the normal business mode from the standby mode. It provides a specific way for the terminal to be woken up and improves the implementability of the solution.
  • closing the first communication link includes shutting down RF module.
  • closing the first communication link may be closing an RF module for high-speed data transmission
  • opening the first communication link may also be an RF module for high-speed data transmission.
  • a method for opening or closing the first communication link is provided, which improves the realizability of the solution.
  • the wakeup message includes the A channel parameter of the first communication link; the terminal device is specifically configured to enable the first communication link according to the channel parameter to perform service communication with the relay device through the first communication link.
  • the terminal device when a terminal device is awakened, the terminal device can resume service communication by using the channel parameters of the first communication link obtained in the wake-up message, thereby improving the speed of networking when the terminal device wakes up.
  • the terminal device Before the terminal device closes the first communication link, the terminal device is further configured to send a second notification message to the relay device through the first communication link to notify the relay device that the RF module will be shut down; the The relay device is further configured to set the terminal device to be online in the first communication link after receiving the second notification information.
  • the terminal device may send a second notification message to the relay device to notify that it is about to enter the standby mode, so that the relay device sets the terminal device to
  • the connection state in the first communication link is set to be always online, and even if the preset time limit is exceeded, it is not determined that the terminal is offline.
  • the relay device when the relay device does not receive the response information of the second keep-alive message from the terminal device within a preset time limit, the relay device is further configured to stop sending the first to the cloud server. A keep-alive message to disconnect the terminal device from the cloud server.
  • the relay device after the terminal device enters the standby mode, if the relay device does not receive a response message from the terminal device to the second keep-alive message within a preset time limit, it determines that the terminal is offline, The cloud keep-alive for this terminal device will be stopped, that is, the first keep-alive message is sent to the cloud server, so that the relay device can always avoid cloud services after the terminal goes offline.
  • the first implementation of the first aspect of the embodiment of the application to the fifth implementation of the first aspect of the embodiment of the application, the first aspect of the first aspect of the embodiment of the application
  • the communication resources occupied by the response information of the second keep-alive message are smaller than the communication resources occupied by the second keep-alive message.
  • the terminal device after the terminal device enters the standby mode, it maintains a heartbeat connection with the relay device through the second communication link, the relay device sends a second keep-alive message to the terminal device, and the terminal device receives the The second keep-alive message and the response message of the second keep-alive message are returned, because the communication resources occupied by the response information of the second keep-alive message are less than the communication resources occupied by the second keep-alive message, which can further reduce The power consumption of the terminal device in standby mode.
  • the terminal device before the terminal device closes the first communication link, the terminal device is further configured to negotiate a heartbeat period with the relay device through the first communication link; the relay device is specifically configured to Sending the second keep-alive message to the terminal device through the second communication link according to the heartbeat period.
  • the terminal device before the terminal device enters the standby mode, the terminal device can also negotiate a heartbeat period with the relay device through the first communication link, and provides a more specific implementation of sending a second keep-alive message.
  • the method improves the implementability of the solution. Since the second keep-alive message is sent periodically, communication resources can be saved and power consumption can be reduced.
  • the method further includes: the terminal main control module and the second communication module of the relay device negotiate a heartbeat period and The wake-up random number, the heartbeat period is a period in which the second communication module of the relay device sends a keep-alive message to the second communication module of the terminal, and the wake-up random number is a random number used for security verification when the terminal wakes up.
  • the heartbeat period and the wake-up random number can be negotiated with the relay device, which improves the flexibility of the solution.
  • the wake-up message carries at least one of a wake-up feature code or a wake-up random number
  • the wake-up feature code is a preset identifier for identifying the wake-up message
  • a terminal when a terminal is awakened, it can obtain at least one of a wake-up feature code or a wake-up random number.
  • the wake-up random number can be used for security verification, which can improve the security of the wake-up process and wake
  • the feature code can be used to identify the wake-up message, which improves the implementability and security of the solution.
  • a second aspect of the embodiments of the present application provides a standby control method, including: after receiving a standby instruction, sending a first notification message to a relay device through a first communication link, where the first notification information is used to indicate the relay device Acting on the terminal device to send a first keep-alive message to the cloud server, so that the cloud server confirms that the terminal device is online; closing the first communication link and controlling the central processing unit CPU; receiving the relay device through the second communication chain The second keep-alive message sent by the router, and return the response information of the second keep-alive message, so that the relay device confirms that the terminal device is online; the communication rate of the second communication link is lower than the first communication link The communication speed of the channel.
  • An embodiment of the present application provides a standby control method.
  • a terminal device is connected to a relay device through a first communication link.
  • the terminal device closes the first communication link, and the second communication module of the terminal device.
  • the heartbeat keep-alive is performed between the relay devices through the second communication link, wherein the communication rate of the second communication link is lower than the communication rate of the first communication link, and the heartbeat is performed through the first communication link when the terminal device is in standby. Keep-alive, the power consumption of the terminal device in the standby state is reduced in the embodiments of the present application.
  • the method further includes: receiving the relay device through the second communication chain The wake-up message sent by the channel; notify the main control CPU to power on according to the wake-up message; and enable the first communication link according to the wake-up message.
  • the standby control method provided in the embodiment of the present application provides that a terminal receives a wake-up message sent by a relay device through a second communication link in a standby state, and wakes up according to the wake-up message to restore the normal business mode from the standby mode. Provides a specific way for terminal to wake up and improves the realizability of the solution.
  • closing the first communication link includes closing the RF module for high-speed data transmission.
  • the RF module used for high-speed data transmission when the terminal closes the first communication link, the RF module used for high-speed data transmission may be turned off, and when the first communication link is opened, the RF module used for high-speed data transmission may be turned on.
  • the terminal device is provided with a method for opening or closing the first communication link, which improves the implementability of the solution.
  • the wakeup message includes the Channel parameters of the first communication link; the first communication link is opened according to the channel parameters to perform service communication with the relay device through the first communication link.
  • the terminal device when a terminal device is awakened, the terminal device can resume service communication by using channel parameters of the first communication link obtained in the wake-up message, thereby improving the speed of networking when the terminal device wakes up.
  • the method further includes: sending a second notification message to the relay device through the first communication link, used to inform the relay device that the RF module will be turned off.
  • the terminal device may send a second notification message to the relay device to notify that the standby mode is about to be entered, the RF module will be turned off, and transmission through the first communication link will be stopped data.
  • the fifth implementation manner of the second aspect of the embodiment of the present application The communication resource occupied by the response information of the second keep-alive message is smaller than the communication resource occupied by the second keep-alive message.
  • the terminal device after the terminal device enters the standby mode, it maintains a heartbeat connection with the relay device through a second communication link, the relay device sends a second keep-alive message to the terminal device, and the terminal device receives the first The second keep-alive message and the response message of the second keep-alive message are returned. Because the communication resources occupied by the response information of the second keep-alive message are less than the communication resources occupied by the second keep-alive message, the terminal can be further reduced. The power consumption of the device in standby mode.
  • the method further includes: negotiating a heartbeat cycle with the relay device through the first communication link; and receiving a second heartbeat period sent by the relay device through the second communication link.
  • the keep-alive message specifically includes: receiving the second keep-alive message sent by the relay device through the second communication link according to the heartbeat period.
  • the terminal device before the terminal device enters the standby mode, the terminal device can also negotiate a heartbeat period with the relay device through the first communication link, which provides a more specific implementation manner of the heartbeat connection and improves the solution. flexibility.
  • a third aspect of the embodiments of the present application provides a standby control method, including: receiving a first notification message sent by a terminal device through a first communication link; and under the instruction of the first notification message, proxying the terminal device to The cloud server sends a first keep-alive message to make the cloud server confirm that the terminal device is online; sends a second keep-alive message to the terminal device through a second communication link; and receives the second keep-alive message through the second communication link Response information of the second keep-alive message returned by the terminal device, and confirming that the terminal device is online based on the response information; wherein the communication rate of the second communication link is lower than the first communication The communication rate of the link.
  • the relay device may maintain a connection with the terminal device through the first communication link and transmit business service data.
  • the terminal device closes the first communication link.
  • Heartbeat keepalive is performed between the second communication module of the relay device and the second communication module of the terminal device through a second communication link, wherein the communication rate of the second communication link is lower than the communication rate of the first communication link, compared with the terminal.
  • the heartbeat keep-alive is performed through the first communication link when the device is in standby, and the power consumption of the terminal device in the standby state is reduced in the embodiments of the present application.
  • the method further includes: sending a wake-up message to the terminal device through the second communication link, so that all the The terminal device opens the main control CPU and enables the first communication link according to the wake-up message.
  • the relay device may send a wake-up message to the terminal device through the second communication link to wake the terminal.
  • a specific way to wake up the terminal device is provided, which improves the implementability of the solution.
  • the enabling the first communication link includes turning on an RF module for high-speed data transmission .
  • the RF module used for high-speed data transmission when the terminal closes the first communication link, the RF module used for high-speed data transmission may be turned off, and when the first communication link is opened, the RF module used for high-speed data transmission may be turned on.
  • a method for opening or closing the first communication link is provided, which improves the realizability of the solution.
  • the wakeup message includes Channel parameters of the first communication link; after the terminal device opens the first communication link according to the channel parameters, perform service communication with the terminal device through the first communication link.
  • the relay device when the terminal device is awakened, may carry the channel parameter of the first communication link in the wake-up message, which is used to resume business communication, and may increase the speed of networking when the terminal device wakes up. .
  • the method further includes: receiving a second notification message sent by the terminal device through the first communication link ; Setting the terminal device to a connected state in the first communication link according to the second notification message.
  • the relay device before the terminal device enters the standby mode, can receive the second notification message sent by the terminal device through the first communication link, and set the terminal device in the first communication chain by setting parameters.
  • the connection status in the road is set to be always online. Even if the preset time limit is exceeded, the terminal is not determined to be offline.
  • the first implementation of the third aspect of the embodiment of the present application, or the fourth implementation of the third aspect of the embodiment of the present application, the fifth implementation of the third aspect of the embodiment of the present application When the response information of the second keep-alive message returned by the terminal device is not received within the preset time limit, sending the first keep-alive message to the cloud server is stopped, so that the terminal device Disconnected from the cloud server.
  • the relay device after the terminal device enters the standby mode, if the relay device does not receive a response message from the terminal device to the second keep-alive message within a preset time limit, it is determined that the terminal is offline, and Stopping the cloud keep-alive for the terminal device, that is, sending the first keep-alive message to the cloud server, so that the relay device can always avoid cloud services after the terminal goes offline.
  • the first implementation of the third aspect of the embodiment of the present application, or the fifth implementation of the third aspect of the embodiment of the present application, the sixth implementation of the third aspect of the embodiment of the present application The communication resource occupied by the response information of the second keep-alive message is smaller than the communication resource occupied by the second keep-alive message.
  • the relay device after the terminal device enters the standby mode, the relay device maintains a heartbeat connection with the terminal device through the second communication link, the relay device sends a second keep-alive message to the terminal device, and the terminal device receives The second keep-alive message and the response message of the second keep-alive message are returned. Since the communication resources occupied by the response information of the second keep-alive message are less than the communication resources occupied by the second keep-alive message, it can be further Reduce power consumption of terminal devices in standby mode.
  • the method before the sending a second keep-alive message to the terminal device through a second communication link, the method further includes: negotiating a heartbeat cycle with the terminal device through the first communication link; the Sending the second keep-alive message to the terminal device through the second communication link specifically includes: sending the second keep-alive message to the terminal device through the second communication link according to the heartbeat period.
  • the relay device before the terminal device enters the standby mode, can also negotiate a heartbeat period with the terminal device through the first communication link, and provides a more specific implementation manner for sending a second keep-alive message. This improves the implementation of the solution. Since the second keep-alive message is sent periodically, it can also save communication resources and reduce power consumption.
  • a fourth aspect of the embodiments of the present application provides a terminal, including: a main control module, a first communication module, and a second communication module; the main control module is configured to, after receiving a standby instruction, control the first communication module through The first communication link sends a first notification message to the relay device, where the first notification information is used to instruct the relay device to proxy the first keep-alive message to the cloud server, and the first communication link Is the communication link between the first communication module and the relay device; the main control module is further configured to close the first communication link and control the central processing unit CPU; the second communication A module configured to receive a second keep-alive message sent by the relay device through a second communication link, and return response information of the second keep-alive message, so that the relay device confirms the terminal device Online; the second communication link is a communication link between the second communication module and the relay device, and the communication rate of the second communication link is lower than that of the first communication link rate.
  • the terminal provided in the embodiment of the present application is connected to the relay device through the first communication link.
  • the terminal device closes the first communication link, and the second communication module of the terminal device and the relay device pass through the second
  • the communication link performs heartbeat keepalive, wherein the communication rate of the second communication link is lower than the communication rate of the first communication link, and the heartbeat keepalive is performed through the first communication link when the terminal device is in standby.
  • This application implements In the example, the power consumption of the terminal device during standby is reduced.
  • the second communication module is further configured to: receive a message sent by the relay device through the second communication link. A wake-up message; notifying the main control module to turn on the CPU according to the wake-up message; and notifying the main control module to enable the first communication link according to the wake-up message.
  • the terminal device provided in the embodiment of the present application provides that in a standby state of the terminal, the second communication module receives the wake-up message sent by the relay device through the second communication link, and wakes up according to the wake-up message, and returns to normal from the standby mode.
  • Business model Provides a specific way for terminal to wake up and improves the realizability of the solution.
  • the closing the first communication link includes: closing, by the first communication module, an RF module for high-speed data transmission. .
  • the terminal closing the first communication link may be closing an RF module for high-speed data transmission
  • opening the first communication link may also be an RF module for high-speed data transmission.
  • the terminal device is provided with a method for opening or closing the first communication link, which improves the implementability of the solution.
  • the wakeup message includes Channel parameters of the first communication link; the first communication module is further configured to: enable the first communication link according to the channel parameters to communicate with the relay device through the first communication link For business communication.
  • the terminal device when the terminal device is awakened, the terminal device can resume service communication by using the channel parameters of the first communication link obtained in the wake-up message, thereby improving the speed of networking when the terminal device wakes up.
  • the main control module further Configured to: send second notification information to the relay device through the first communication link, to notify the relay device that the RF module will be turned off.
  • the main control module may send a second notification message to the relay device through the first communication link to notify that the standby mode is about to be entered.
  • the first communication link transmits data.
  • the main control module is further configured to negotiate a heartbeat period with the relay device through the first communication link;
  • the second communication module is specifically configured to receive the relay device through the second communication link The communication link sends the second keep-alive message according to the heartbeat period.
  • the main control module can also negotiate the heartbeat period with the relay device through the first communication link, which provides a more specific implementation of the heartbeat connection and improves the solution. flexibility.
  • a fifth aspect of the embodiments of the present application provides a relay device, including: a first communication module and a second communication module; the first communication module is configured to receive a first notification sent by a terminal device through a first communication link A message; the first communication module is further configured to, according to the first notification message, send the first keep-alive message to the cloud server on behalf of the terminal device, so that the cloud server confirms that the terminal device is online;
  • the second communication module is configured to send a second keep-alive message to the terminal device through a second communication link; the second communication module is further configured to receive the terminal through the second communication link The response information of the second keep-alive message returned by the device, and confirming that the terminal device is online based on the response information; wherein the communication rate of the second communication link is lower than that of the first communication link Communication speed.
  • the relay device can maintain a connection with the terminal device through the first communication link and transmit business service data.
  • the terminal device closes the first communication link, and the relay device Heartbeat keepalive is performed between the second communication module and the second communication module of the terminal device through a second communication link, wherein the communication rate of the second communication link is lower than the communication rate of the first communication link, and compared to the terminal device standby
  • the heartbeat keep-alive is performed through the first communication link, and the power consumption of the terminal device in the standby state is reduced in the embodiment of the present application.
  • the second communication module is further configured to send a wake-up report to the terminal device through the second communication link.
  • Text so that the terminal device opens the main control CPU and enables the first communication link according to the wake-up message.
  • the second communication module may send a wake-up message to the terminal device through the second communication link to wake the terminal.
  • a specific way to wake up the terminal device is provided, which improves the implementability of the solution.
  • the enabling the first communication link includes turning on an RF module for high-speed data transmission .
  • the terminal closing the first communication link may be closing an RF module for high-speed data transmission
  • opening the first communication link may also be an RF module for high-speed data transmission.
  • a method for opening or closing the first communication link is provided, which improves the realizability of the solution.
  • the wakeup message includes Channel parameters of the first communication link; the first communication module is further configured to: after the terminal device opens the first communication link according to the channel parameters, communicate with the first communication link through the first communication link The terminal device performs service communication.
  • the relay device when the terminal device is awakened, may carry the channel parameter of the first communication link in the wake-up message, which is used to resume business communication, and may increase the speed of networking when the terminal device wakes up. .
  • the first communication module is further configured to: receive a second notification message sent by the terminal device through the first communication link, and learn that the terminal device will close the RF module; and according to the second The notification message sets the terminal device to be online in the first communication link.
  • the first communication module before the terminal device enters the standby mode, can receive the second notification message sent by the terminal device through the first communication link, and set the terminal device to communicate with the first device by setting parameters.
  • the connection status in the link is set to be always online. Even if the preset time limit is exceeded, the terminal is not determined to be offline.
  • the first communication module is further configured to stop sending to the cloud when the second communication module fails to receive the response information of the second keep-alive message returned by the terminal device within a preset time limit.
  • the server sends the first keep-alive message, so that the terminal device is disconnected from the cloud server.
  • a communication module will stop performing cloud keep-alive for the terminal device, that is, send a first keep-alive message to the cloud server, so as to prevent the relay device from always acting for cloud services after the terminal goes offline.
  • the second communication module is further configured to: before the second communication module sends a second keep-alive message to the terminal device through a second communication link, communicate with the terminal through the first communication link.
  • the terminal device negotiates a heartbeat period; the second communication module is further configured to send the second keep-alive message to the terminal device through the second communication link according to the heartbeat period.
  • the second communication module maintains a heartbeat connection with the terminal device through the second communication link, and the relay device sends a second keep-alive message to the terminal device.
  • the device receives the second keep-alive message and returns a response message for the second keep-alive message, because the communication resource occupied by the response information of the second keep-alive message is less than the communication resource occupied by the second keep-alive message, The power consumption of the terminal device in the standby mode can be further reduced.
  • a sixth aspect of the embodiments of the present application provides a terminal.
  • the terminal includes a processor, a memory, and the processor executes the foregoing implementation of the present application by running a software program stored in the memory and calling data stored in the memory.
  • the method of each embodiment provided in the second aspect of the example.
  • a relay device includes a processor, a memory, and the processor executes the foregoing method by running a software program stored in the memory and calling data stored in the memory.
  • An eighth aspect of the embodiments of the present application provides a computer program product.
  • the computer program product includes computer program instructions, and the computer program instructions can be loaded by a processor to implement the methods in the second aspect and the implementation manners.
  • a ninth aspect of the embodiments of the present application provides a computer program product.
  • the computer program product includes computer program instructions, and the computer program instructions can be loaded by a processor to implement the methods in the third aspect and the implementation manners.
  • a tenth aspect of the embodiment of the present application provides a computer storage medium for storing computer program instructions, which includes a program for executing the steps of each implementation manner provided by the second aspect of the embodiment of the present application.
  • the eleventh aspect of the embodiments of the present application provides a computer storage medium for storing computer program instructions, which includes a program for executing the steps of the implementation manners provided by the third aspect of the foregoing embodiments of the present application.
  • FIG. 1 is a schematic diagram of a terminal standby mode
  • FIG. 2 is a terminal networking architecture diagram in an embodiment of the present application
  • FIG. 3 is a schematic diagram of a layered model of a terminal device according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a layered model of a relay device in an embodiment of the present application.
  • FIG. 5 is an interaction flowchart of the standby control method in the embodiment of the present application.
  • FIG. 6 is another interaction flowchart of the standby control method in the embodiment of the present application.
  • FIG. 7 is a schematic diagram of an embodiment of a terminal according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a relay device according to an embodiment of the present application.
  • At least one (item) means one (item) or more (items), and “multiple (item)” means two (items) or more.
  • “And / or” is used to describe the association relationship of related objects, which means that there can be three kinds of relationships, for example, “A and / or B” can mean: only A, B, and both A and B Where A and B can be singular or plural.
  • the character “/” generally indicates that the related objects are an "or” relationship.
  • At least one or more of the following” or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • At least one (a), a, b, or c can represent: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", Where a, b, and c can be single or multiple.
  • An embodiment of the present application provides a standby control method, which is used to reduce power consumption of a terminal when the terminal is in standby.
  • the terminal communicates with the router through a network communication module.
  • the terminal mainly includes a central processing unit (CPU) and a network communication module.
  • CPU central processing unit
  • the terminal mainly includes a central processing unit (CPU) and a network communication module.
  • the main control CPU is powered off, and the network communication module maintains a heartbeat connection with the router, which can support fast networking and remote wake-up. . Since the network communication module maintains a heartbeat connection with the router when the terminal is in standby, the power consumption is high.
  • FIG. 2 is a terminal networking architecture diagram in the embodiment of the present application. This architecture can be used in scenarios such as terminal video data transmission.
  • a relay device is added to the terminal networking architecture.
  • the terminal communicates with the router through the relay device, and the terminal communicates with the cloud through the relay device, the router, and the cloud.
  • the terminal structure mainly includes a main control CPU, a wireless fidelity (WiFi) module, a microcontroller unit (MCU) and a power management unit (PMU), and a radio frequency (RF) Module.
  • WiFi wireless fidelity
  • MCU microcontroller unit
  • PMU power management unit
  • RF radio frequency
  • An RF module is added to the terminal structure in the embodiment of the present application.
  • the main control CPU may be, for example, a camera CPU, a set-top box CPU, and is responsible for running media services, such as login services, push services, and on-demand services; optionally, the main control CPU may include at least one of the following types: a general-purpose central A processor, a digital signal processor (DSP), a microprocessor, a microcontroller (MCU), or a microprocessor.
  • the master CPU may be a single-CPU processor or a multi-CPU processor.
  • the main control CPU may be a processor group composed of multiple processors, and the multiple processors are coupled to each other through one or more buses.
  • the main control CPU may include an analog-to-digital converter (ADC) and a digital-to-analog converter (DAC) to implement signal connection between different components of the device.
  • ADC analog-to-digital converter
  • DAC digital-to-analog converter
  • MCU is used for power control and external event detection;
  • PMU can provide power for main control CPU and terminal component modules;
  • WIFI module ie high-speed communication module, can also be the fourth generation mobile communication technology (4G) Wireless module and the like, WIFI module is used for business communication; for example, the network communication module may include a central processing unit CPU or a microcontroller MCU, a radio frequency transceiver (also referred to as a radio frequency circuit).
  • the RF module is a wake-up module, such as a Bluetooth module.
  • the RF module is used to send keep-alive messages to the relay device in the terminal standby mode to maintain a heartbeat connection with the relay device.
  • the wake-up message wakes up the terminal in standby mode.
  • the power consumption of the RF module is lower than that of the WIFI module.
  • the reason for the low power consumption of the RF module can be: the narrow bandwidth of the monitoring frequency point and the small amount of data carried, so the energy consumption required is low; the protocol is simple
  • the chip has simple logic processing and low power consumption.
  • the terminal RF module may be integrated in the terminal; or it may exist separately as external hardware. It should be understood that when the terminal RF module is a separate external hardware, in an optional case, the terminal RF module The group can be connected to the terminal through a serial peripheral interface (SPI).
  • SPI serial peripheral interface
  • the composition structure of the relay device mainly includes a main control CPU, a WIFI module, an MCU, and an RF module.
  • the relay device structure also has a relay device proxy module.
  • the proxy module can be integrated in the relay device WIFI module, or it can be implemented in modules other than the relay device WIFI module.
  • the functions of the relay device proxy module include cloud service keep-alive, terminal remote wake-up and terminal IP address, router DHCP renewal, etc.
  • the main control CPU of the relay device can be used to run the media service.
  • the WIFI module that is, the network communication module is a high-speed communication module, or a 4G wireless module, etc.
  • the WIFI module is used for business communication with the terminal.
  • the RF module is a wake-up module. It can also be a Bluetooth module, etc.
  • the RF module is used to maintain a heartbeat connection with the terminal when the terminal is in standby mode, and sends a wake-up message to the terminal RF module when the terminal is woken up remotely.
  • the RF module of the relay device can be integrated in the relay device; or it can exist separately as external hardware. It should be understood that when the RF module of the relay device is a separate external hardware, it is optional. In the relay device, the RF module can be connected to the relay device through a serial peripheral interface.
  • the WIFI module of the terminal device and the relay device both include an RF module.
  • the RF module in the WIFI module transmits a large amount of data per unit time.
  • the RF in the WIFI module is The amount of data transmitted by the module per unit time is greater than 10M; and the amount of data that can be transmitted by the RF module that acts as a wakeup per unit time is small.
  • the data transmitted by the RF module that acts as a wakeup per unit time The amount is less than 1M.
  • the main control CPU and the WIFI module are both powered on.
  • the terminal communicates with the router and the cloud through the WIFI module based on the first communication link.
  • RF The module is on standby or powered off.
  • the terminal's main control CPU is powered off, and the WIFI module turns off power to most of the functional modules.
  • the network communication module turns off the RF module to stop sending and receiving data, and only saves the power of some modules to maintain memory refresh.
  • the terminal maintains a heartbeat connection with the relay device based on the second communication link through the RF module, and maintains a connection with the cloud through the relay device.
  • the WIFI module is in an ultra-low power consumption mode. Since the power consumption of the RF module is lower than that of the WIFI module, compared with the prior art, the terminal performs heartbeat connection through the WIFI module, and the standby power consumption of the terminal is reduced.
  • the first communication link is a wireless WIFI communication link with a high transmission rate
  • the second communication link is an RF communication link with a low transmission rate.
  • the first The second communication link corresponds to a new air interface and is based on a simple data protocol. For example, the simple data protocol is reflected in the low complexity of the carrier wave and the low complexity of the protocol transmission itself.
  • FIG. 3 is a schematic diagram of a layered model of a terminal device in an embodiment of the present application.
  • the terminal device includes a main control CPU module, a network communication module, and a wake-up module.
  • the main control CPU module and the network communication module can be connected through a secure digital input and output (SDIO), a peripheral interface connection, and an SDIO port. It can be used to transmit data blocks;
  • the main control CPU and the wake-up module can be connected through a serial port, and the network communication module and the wake-up module can be connected through a general purpose input / output interface (GPIO).
  • SDIO secure digital input and output
  • GPIO general purpose input / output interface
  • the main control CPU can include a business layer, a middleware layer, an operating system (OS) layer, a driver layer, and a hardware layer; the driver layer is an interface of the hardware layer, and the OS layer can control the work of the hardware device only through the driver layer.
  • OS operating system
  • the business layer standby function may include a function for terminal standby control;
  • the RTOS of the OS layer is a real-time operating system (RTOS).
  • RTOS real-time operating system
  • the serial ports of the driver layer and the hardware layer are connected to the wake-up module together.
  • the network communication module can include a business layer, a driver layer, and a hardware layer.
  • the business layer includes standby and wake-up, which can be used for terminal standby control; the GPIO driver of the driver layer is used for GPIO connection with the wake-up module, and the SDIO driver is used for connection with the master control.
  • the CPU is connected to transmit data blocks through the SDIO port; RF TX in the hardware layer is a radio frequency transmitting unit; RF TX is a radio frequency receiving unit.
  • the wake-up module can include a business layer, a driver layer, and a hardware layer.
  • the business layer can complete low-power consumption, keep-alive, and wake-up functions.
  • the wake-up module and the relay device pass through a second communication chain.
  • the device performs heartbeat keepalive to maintain a low-power connection between the terminal device and the relay device; or when the terminal is awakened by the cloud, the wake-up module receives the wake-up message through the second communication link to wake the terminal; the serial port of the driver layer It is used to control the connection between the hardware and the main control CPU.
  • the 433M RF at the hardware layer is a 433 megahertz radio frequency module, which is used to establish a second communication link with the relay device and perform heartbeat keepalive in the terminal standby mode.
  • the main control CPU module, network communication module, and wake-up module of the terminal device can implement the standby control method in the embodiment of the present application through the above hierarchical model.
  • steps performed by the terminal device refer to the embodiment corresponding to FIG. 6.
  • the schematic diagram of the layered model of the terminal in the embodiment of the present application is introduced above. Please refer to FIG. 4 below, the schematic diagram of the layered model of the relay device in the embodiment of the present application.
  • the relay device includes a main control CPU module, a network communication module, and a wake-up module.
  • the network communication module and the wake-up module can be connected through a serial port.
  • the relay device network communication module may include a service layer, an OS layer, a driver layer, and a hardware layer; the driver layer is an interface of the hardware layer, and the OS layer can control the work of the hardware device only through the driver layer.
  • the HOSTAPD of the relay device business layer can complete two functions in the standby control method: 1) obtain the channel and device IP parameters from the network communication module 2) set the device online without timeout; the cloud keep-alive agent: can proxy terminal The relay device sends the first keep-alive message; dynamic host configuration protocol (DHCP) proxy: the relay device sends a DCHP renewal message to the router for the IP address renewal lease; free address resolution Protocol (address resolution protocol, ARP) proxy: sending ARP packets to the router to keep the connection with the router to prevent the router's ARP table from aging.
  • the RTOS of the OS layer is a real-time operating system.
  • the wake-up module can include the business layer, the driver layer and the hardware layer.
  • RTOS is a real-time operating system (RTOS)
  • RF is a radio-frequency module
  • 433M RF is a 433-MHz radio-frequency module
  • RF TX is a radio-frequency transmitting unit.
  • RFRX is a radio frequency receiving unit.
  • the parameter management of the service layer is used to negotiate the parameters related to keep-alive, the heartbeat period, and construct the wake-up message
  • the RF of the driver layer is used to drive the RF module to send the keep-alive or wake-up message through the second communication link.
  • the network communication module and the wake-up module of the relay device can implement the standby control method in the embodiment of the present application through the above hierarchical model. For specific steps performed by the relay device, refer to the embodiment corresponding to FIG. 6.
  • FIG. 5 is an interaction flowchart of the standby control method in the embodiment of the present application.
  • the main control CPU When the terminal device enters the standby mode, the main control CPU is powered off, and the network communication module (such as a WIFI module high-speed communication module) turns off the RF module for high-speed data transmission and stops sending and receiving data, leaving only a small amount of power to Maintain the memory refresh of the WIFI module, and replace the high-speed communication WIFI module with the low-speed communication RF module.
  • the low-speed communication link periodically sends keep-alive messages to the relay device, thereby maintaining a heartbeat connection with the cloud server through the relay device. Therefore, before the terminal device enters the standby mode, it needs to negotiate with the relay device for the preparation work required for keep-alive.
  • the standby control method specifically includes:
  • Step 1 The terminal device enters the standby mode after receiving the standby instruction, and sends first notification information to the relay device through the first communication link.
  • the first notification information is used to notify the relay device that after the terminal device enters the standby mode.
  • the relay device proxy terminal device sends a first keep-alive message to the cloud server to inform the cloud server that the terminal device is still alive.
  • keep-alive messages can also be referred to as heartbeat packets. It should be understood that heartbeat generally refers to one end of the two communication parties sending a custom instruction to the other end to determine whether the two parties are alive, and usually sent at a certain interval, similar to Because of the heartbeat, it is also called the heartbeat instruction.
  • the first communication link is a wireless WIFI communication link between the WIFI module high-speed communication module of the terminal device and the WIFI module high-speed communication module of the relay device, and the first communication link is a high-speed communication link.
  • the terminal device When the terminal device is in a normal business mode, it performs service and data communication with the cloud server through the first communication link.
  • the relay device maintains a connection with the router by sending a DHCP renewal message and an ARP message to the router, and further maintains a connection with the cloud server through the router.
  • the DHCP renewal message can be used to renew the lease of the IP address
  • the free ARP message is used to prevent the router's ARP table from aging.
  • the action of the relay device to send a DHCP renewal message and a free ARP message to the router is sent periodically.
  • the sending period can be 30 seconds to 60 seconds.
  • the text wastes resources too much to increase system power consumption.
  • the relay device and the cloud server can be kept connected, and the power consumption of the system is reasonably reduced.
  • the router has an aging period.
  • the characteristic information about the terminal device (such as the ARP table and NAT table) stored in the router will be cleared every time the aging period is exceeded.
  • the relay device sends a DHCP renewal report to the router.
  • the period of the packet and the gratuitous ARP packet is smaller than the aging period of the router.
  • the embodiment of this application does not specifically limit the period of the packet sent by the relay device to the router.
  • the relay device proxy terminal device sends a cloud keep-alive message to the cloud server, so that the cloud server considers that the terminal and the cloud server are in a connected state.
  • the interval at which the relay device sends a cloud keep-alive message may be 30 seconds to 60 seconds.
  • Step 2 The terminal device negotiates standby parameters and wake-up parameters with the relay device through the first communication link.
  • the standby parameter includes a period during which the relay device sends a terminal keep-alive message to the terminal device during standby.
  • the keep-alive message may also be referred to as a heartbeat packet.
  • the relay device during standby The period for sending the terminal keep-alive message to the terminal device may be 5 seconds to 10 seconds, but the specific value of the heartbeat period is not specifically limited in the embodiment of the present application.
  • the wake-up parameters may include parameters such as a wake-up random code and a wake-up random number.
  • the wake-up random number is a verification random number when the terminal is woken up from a standby state, and the terminal may improve the security of the wake-up process by verifying the wake-up random number.
  • Step 3 The terminal device sends the second notification information to the relay device through the first communication link, and the second notification information is used to notify the relay device that the terminal device will turn off the RF module in the WIFI module for high-speed transmission.
  • the relay device is enabled to allow the device to be online without timeout, that is, the relay device does not limit the online time of the terminal device, and maintains the connection state of the network communication with the terminal device.
  • the online non-timeout function can be understood as the relay device setting related parameters, and even if the service communication is not performed beyond the preset time limit, the terminal device is not determined to be offline.
  • Step 4 The terminal device turns off the RF module in the WIFI module for high-speed transmission.
  • the high-speed transmission WIFI module completes the network communication function including data and information transmission.
  • the WIFI module contains MCU, RF transmitter, RF receiver, etc., when the terminal device When entering standby mode, in order to reduce the power consumption of the terminal device as much as possible, turn off the RF module for high-speed data transmission and stop sending and receiving data. Only a small amount of power is retained to maintain the memory refresh of the WIFI module.
  • the WIFI module is in an ultra-low power consumption mode. In an optional case, the operating current of the WIFI module in the ultra-low power consumption mode is only about 10 microamperes to 20 microamperes. It should be understood that the ultra-low power consumption mode is different from the power-down mode. Since the WIFI module memory is always refreshed, the WIFI module of the terminal device can quickly resume the normal business mode when there is a business need.
  • Step 5 The terminal device powers off the main control CPU, and the terminal enters the standby mode.
  • Step 6 The terminal device receives and responds to the terminal keep-alive message sent by the relay device through the second communication link.
  • the low-speed communication RF module receives the terminal keep-alive message sent by the relay device through the second communication link, and sends a response message to the relay device.
  • the terminal The response message sent by the device to the relay device can be an ACK message.
  • the form of the ACK message is simple, usually occupying only 4 bytes or 8 bytes, and the normal keep-alive message (such as the cloud sent by the relay device Keepalive messages and terminal keepalive messages) need to occupy a dozen bytes.
  • the relay device sends a keep-alive message to the terminal device, and the terminal device only needs to send a simpler response message. That is, the relay device inquires whether the terminal device is online through the keep-alive message. The terminal device only needs to answer yes, the response information is simpler, and the power consumption is lower. When the relay device cannot receive the response from the terminal device, it is considered that the terminal device is disconnected. At this time, the relay device stops sending the cloud keep-alive message to the cloud server, and the terminal is disconnected from the cloud server. When the relay device receives the response from the terminal device, the relay device considers the terminal device to be online and sends the cloud keep-alive message to the cloud server to keep the terminal device connected to the cloud server.
  • the terminal device sends the terminal keep-alive message to the terminal device periodically.
  • the sending period may be obtained through negotiation in step 2.
  • the low-speed RF module of the terminal starts up every 0.5 to 1 second to Used to receive and respond to wake-up or keep-alive messages.
  • the working current of the low-speed RF module is 30 microamperes to 40 microamperes, which is significantly lower than the operating current of the terminal when the terminal is performing heartbeat keepalive through the high-speed WIFI module. Microamps to 400 microamps.
  • Step 7 The cloud server sends a first wake-up message to the relay device.
  • the cloud constructs a first wake-up message and sends it to the relay device.
  • the first wake-up message carries the device ID of the terminal device to be awakened. In addition, it can also carry a wake-up cycle. OK, used to instruct the relay device to send a wake-up message to the terminal device according to the wake-up period, and the specific value of the wake-up period is not limited here.
  • the wake-up message is periodically sent to the relay device proxy module by the router according to the wake-up period.
  • Step 8 The relay device constructs a second wake-up message based on the received first wake-up message.
  • the relay device After receiving the wake-up message sent from the cloud, the relay device parses and obtains the device ID of the terminal that needs to be awakened from the wake-up message, and the relay device obtains relevant parameters of the network communication of the terminal device according to the device ID.
  • the relay device obtains relevant parameters of the network communication of the terminal device from the HOSPPAD of the high-speed communication module of the WIFI module; the relay device constructs a second wake-up message based on the analysis result, and the second wake-up message may include the device ID
  • the related parameters of the network communication may include the channel parameters of the first communication link, the address parameters of the terminal device, etc.
  • the parameters can be used to quickly establish a communication connection between the terminal device and the relay device through the first communication link to restore the normal business mode.
  • the wake-up feature code is a preset identifier for identifying a wake-up message.
  • the cloud may notify the relay device to wake up the terminal device by sending 010101 to the relay device, and the 010101 is the wake-up feature code.
  • Step 9 The relay device sends a second wake-up message to the terminal device through the second communication link.
  • the relay device sends a second wake-up message to the terminal wake-up module corresponding to the device ID through the second communication link.
  • Step 10 After receiving the second wake-up message, the terminal device verifies whether the wake-up random number carried in the second wake-up message is consistent with the preset or negotiated wake-up random number. If they are the same, the terminal main control CPU is powered on; If not, the terminal is still in standby mode. The terminal turns on the power-off part of the high-speed WIFI module, and turns on the RF module to enter the normal business mode. Optionally, the terminal device quickly establishes a communication connection with the relay device based on the channel and address parameters in the second wake-up message. And resume business communication through the first communication link.
  • Step 11 The terminal device sends a third notification message to the relay device through the first communication link.
  • the third notification message is used to notify the relay device to stop sending the keep-alive message to the cloud on behalf of the terminal device, and the terminal device enters a business service mode. For example, login services, push services, and on-demand services can be performed.
  • the embodiment corresponding to FIG. 5 introduces the steps performed by the terminal device and the relay device in the standby control method from the perspective of the standby control system.
  • the following describes the standby control method from the perspective of the module of the terminal device and the relay device.
  • FIG. 6 The terminal networking architecture diagram shown in FIG. 6 is another interaction flowchart of the standby control method provided by the embodiment of the present application.
  • the relay device proxy module may be integrated in the first communication module of the relay device, or integrated with other modules.
  • the specific implementation form of the relay device proxy module is not limited here.
  • the terminal main control module sends a notification message to the relay device proxy module.
  • the terminal can communicate with the cloud through relay devices and routers.
  • the terminal transmits data through a first communication link between the terminal network communication module and the relay device network communication module.
  • the first communication link is a high-speed transmission link, and the transmission rate is greater than 10 megabits per second.
  • the terminal main control module sends a notification message to the relay device proxy module through the first communication link to notify the relay device proxy module to perform a cloud standby keepalive agent.
  • the cloud standby keepalive agent is used for Keep the terminal connected to the cloud.
  • the relay device proxy module sends a message to the cloud.
  • the relay device proxy module After the relay device proxy module receives the notification message sent by the terminal main control module, it starts the cloud standby keep-alive agent.
  • the relay device proxy module is located in the relay device.
  • the relay device proxy module sends the message to the cloud.
  • the relay device proxy module actually sends the message to the cloud through the relay device network communication module.
  • the message sent by the relay agent module is transmitted to the cloud via the router.
  • the cloud standby keep-alive agent may include the following aspects:
  • the relay device proxy module periodically sends keep-alive messages to the cloud through the router to maintain the connection between the terminal and the cloud;
  • the relay device proxy module periodically sends DHCP renewal messages and free ARP messages to the router to maintain the connection between the terminal and the router.
  • DHCP renewal messages can be used to renew leases of IP addresses.
  • Free ARP messages are used. To prevent router ARP table from aging.
  • the relay device proxy module can send keep-alive messages at intervals between the relay device and the cloud through keep-alive messages.
  • the DHCP device renewal messages and free ARP messages can be sent by the relay device agent module and the router.
  • the relay device proxy module sends a keep-alive message, a DHCP renewal message, and a free ARP message at a specific interval.
  • the relay The period for the agent module to send messages to the cloud can be 30 seconds to 60 seconds. It should be understood that periodically sending keep-alive messages by setting a time interval is to reduce power consumption, and setting an appropriate time interval can both ensure that the relay device remains connected to the cloud and reasonably reduce system power consumption.
  • the terminal main control module sends a notification message to the relay device wake-up module.
  • the terminal main control module sends a standby notification message to the relay device wake-up module through the first communication link.
  • the relay device wake-up module establishes a second communication link with the terminal wake-up module according to the standby notification message.
  • the terminal main control module may carry the heartbeat period and the wake-up random number in the standby notification message, or the terminal main control module and the relay device wake-up module negotiate the parameters such as the heartbeat period and the wake-up random number through a message.
  • the heartbeat cycle is the cycle of sending heartbeat packets between the terminal wake-up module and the relay device wake-up module when the terminal is in standby mode.
  • the cycle of the terminal wake-up module and the relay wake-up module sending heartbeat packets may be It is 5 seconds to 10 seconds, but the specific value of the heartbeat period is not specifically limited in the embodiment of the present application.
  • the wake-up random number is a verification random number when the terminal is woken up from the standby state.
  • the terminal can improve the security of the wake-up process by verifying the wake-up random number.
  • steps 601 and 603 are not limited, and step 601 may be executed first and then step 603 may be executed; step 603 may be executed first and then step 601 may be executed.
  • the relay device wake-up module sends a notification message to the relay network communication module.
  • the notification information is used to inform the relay network communication module that the terminal will enter the standby mode.
  • the relay network communication module After receiving the notification message sent by the wake-up module of the relay device, the relay network communication module turns on the function of allowing the device to be online without timeout.
  • the online non-timeout function means that the relay network communication module sets related parameters, keeps the terminal network communication module online, and does not determine that the terminal is offline even if business communication is not performed within a preset time limit.
  • the terminal main control module sends a message to the terminal network communication module.
  • the terminal main control module sends a notification message to the terminal network communication module to instruct the terminal network communication module to enter the standby mode.
  • the terminal network communication module enters a standby mode.
  • the terminal network communication module enters the standby mode after receiving the notification message sent by the terminal main control module.
  • the network communication module in the standby mode shuts down the power supply of most of the functional modules, and reserves only a small part of the power supply for maintaining the memory refresh.
  • the terminal network communication module in the standby mode turns off the RF module and no longer transmits or receives radio frequency signals, and the CPU of the terminal network communication module is powered off and no longer processes communication services.
  • the power consumption of the terminal network communication module in standby mode Very low.
  • the working current of the terminal network communication module in this state is only about 10 microamperes (uA) to 20 microamps (uA).
  • the terminal network communication module in the standby mode is not completely powered off, and a part of the module is kept in a power-consuming state, and only the memory refresh is maintained, so that when the communication demand occurs, the normal business mode can be quickly restored.
  • the terminal main control module sends a notification message to the terminal wake-up module.
  • the terminal main control module sends a notification message to the terminal wake-up module to notify the terminal that the wake-up module will enter the standby mode.
  • the terminal wake-up module sets related parameters so that the wake-up module can receive and respond to keep-alive messages sent by the relay device wake-up module.
  • the terminal main control module is powered off.
  • the terminal main control module is powered off, and the terminal enters the standby state.
  • the wake-up module of the relay device sends a keep-alive message to the wake-up module of the terminal.
  • the relay device wake-up module sends a keep-alive message to the terminal wake-up module according to the negotiated heartbeat cycle through the second communication link, and the cycle of the relay device wake-up module to send the keep-alive message is not specifically limited.
  • the sending cycle may be 0.5 Seconds to 1 second, to ensure that the terminal can be woken up in time when it receives communication needs from the cloud.
  • step 609 and step 604 is not specifically limited. Step 604 and step 609 may be performed first, step 609 and step 604 may be performed first, or step 604 and step 609 may be performed in parallel.
  • the terminal wake-up module sends response information to the relay device wake-up module
  • the wake-up module of the terminal After the terminal wake-up module receives the keep-alive messages periodically sent by the wake-up module of the relay device, the wake-up module of the terminal will send a response message to the wake-up module of the relay device through the second communication link, and the wake-up module of the relay device receives the wake-up module and sends it. After answering the message, you can confirm that the terminal and the relay device are still connected.
  • the terminal standby state the terminal performs heartbeat keepalive through the terminal wake-up module and the relay device wake-up module.
  • the working current of the terminal wake-up module is 30 ⁇ A to 40 ⁇ A, which is significantly lower than that of the terminal.
  • the working current is about 300 microamperes to 400 microamperes.
  • the cloud sends a wake-up message to the relay device proxy module.
  • the cloud constructs a wake-up message and sends it to the relay device proxy module.
  • the wake-up message carries the device ID of the terminal to be awakened. In addition, it can also carry the wake-up period.
  • the wake-up period can be determined by the cloud.
  • the relay device is instructed to send a wake-up message to the terminal according to the wake-up period, and the specific value of the wake-up period is not limited here.
  • the wake-up message is periodically sent to the relay device proxy module by the router according to the wake-up period.
  • the relay device proxy module sends a wake-up message to the relay device wake-up module.
  • the relay device proxy module After the relay device proxy module receives the wake-up message sent from the cloud, it parses and obtains the device ID of the terminal that needs to be woken up from the wake-up message, and then sends a wake-up message carrying the device ID to the relay device wake-up module.
  • the relay device wake-up module obtains channel parameters of the relay device network communication module.
  • the relay device wake-up module receives the wake-up message carrying the device ID information sent by the network communication module of the relay device, and the relay device wake-up module obtains the parameters such as the channel and address of the network communication module of the relay device from the network communication module of the relay device according to the device ID
  • This parameter is a relevant parameter that can be used to establish a communication connection between the terminal network communication module and the relay device network communication module.
  • the relay device wake-up module sends a wake-up message to the terminal wake-up module.
  • the relay device wake-up module constructs a wake-up message and sends a wake-up message to the terminal wake-up module corresponding to the device ID through the second communication link.
  • the wake-up message may carry the channel parameters of the relay device network communication module, optionally The channel parameters may include information such as a channel and an address.
  • the wake-up message may also carry a wake-up feature code and a wake-up random number.
  • the wake-up feature code is a preset identifier for identifying a wake-up message.
  • the terminal wake-up module verifies whether the wake-up random number is consistent with the wake-up random number preset or negotiated by the terminal main control module. If the wake-up random number is consistent, the terminal wake-up module wakes up the terminal; if not, the terminal wake-up module does not wake up the terminal.
  • the terminal wake-up module wakes up the main control module.
  • the terminal wake-up module receives the wake-up message, and wakes up the terminal main control module according to the wake-up message, and the terminal main control module is powered on.
  • the terminal wake-up module wakes up the terminal network communication module.
  • the terminal wake-up module can wake up the network communication module of the terminal according to the wake-up message.
  • the network communication module is powered off and powered on again, and the radio frequency module is turned on to enter the normal business mode.
  • the terminal wake-up module sends a notification message to the terminal network communication module, and the notification message may carry channel parameters of the network communication module of the relay device.
  • the network communication module can quickly resume service communication through the first communication link according to the channel parameter.
  • the terminal main control module sends a notification message to the relay device network communication module
  • the terminal main control module sends a notification message to the relay device network communication module through the first communication link to notify the relay device network communication module to terminate the terminal keep-alive agent, and the terminal enters a business service mode, and can perform, for example, login services, push services, and on-demand Business and other businesses.
  • the standby control method by adding a second terminal communication module and a relay device, when in the standby mode, the first communication module of the terminal enters an ultra-low-power standby mode, and the terminal communicates with the medium through the second communication module of the terminal.
  • the relay device maintains a heartbeat connection. Since the second communication module of the terminal has lower power consumption than the first communication module of the terminal, the power consumption of the terminal in the standby state is reduced.
  • FIG. 7 is a schematic diagram of a standby control terminal according to an embodiment of the present application.
  • the terminal main control module 701 is used to control the terminal to enter the standby mode. For details, refer to the description of steps 601, 603, 605 to 608, and step 617 in the method embodiment, and details are not described herein again.
  • the terminal first communication module 702 is used to transmit data in the business communication mode. When the terminal is in the standby mode, the terminal first communication module 702 will stop working. For details, refer to the description of steps 606 and 616 in the method embodiment. I will not repeat them here.
  • the second terminal communication module 703 is configured to perform the heartbeat keep-alive function in the terminal standby mode and wake the terminal from the standby mode. For details, refer to the description of steps 607, 610, 615, and 616 in the method embodiment. I won't repeat them here.
  • the heartbeat keep-alive is performed with the relay device through the terminal second communication module 403, the terminal first communication module turns off the radio frequency, and the terminal main control module 401 is powered off.
  • the standby power consumption of the module 403 is lower than that of the first communication module of the terminal, and the power consumption in the standby mode of the terminal is reduced.
  • FIG. 8 is a schematic diagram of an embodiment of the relay device in the embodiment of the present application.
  • the relay device includes a relay device first communication module 801, a relay device second communication module 802, and a relay device agent module 803.
  • the first communication module 801 of the relay device is used to provide a connection between the terminal and the cloud for data transmission in the terminal business service mode.
  • step 604 step 605 to step 608, and step 617 in the method embodiment.
  • step 617 step 617 in the method embodiment.
  • the second communication module 802 of the relay device is used to cooperate with the second communication module of the terminal to perform the heartbeat keep-alive function in the terminal standby mode and wake the terminal from the standby mode. For details, refer to step 603 and step 604 in the method embodiment. Steps 609, 610, 610, and 612 to 614 are not described herein.
  • the relay device first communication module 801 is configured to keep the proxy terminal connected to the cloud and receive a cloud wake-up message after the terminal enters the standby mode. For details, refer to step 601, step 602, The descriptions of steps 611 and 612 are not repeated here.
  • the relay device proxy module 803 may be integrated into the first communication module 801 of the relay device, and is not repeated here.
  • the relay device when the terminal enters the standby mode, can maintain a heartbeat connection with the terminal through the second communication module 802 of the relay device, and can also perform a cloud standby keep-alive agent through the relay device proxy module 803, so that When the terminal is in the standby mode, it still maintains the connection with the relay device, router, and the cloud, and can quickly resume business communication when it wakes up.
  • the communication with the terminal second communication module through the second communication module 802 of the relay device can also reduce the power consumption of the terminal standby module.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
  • An embodiment of the present application further provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions, and when the computer-readable storage medium runs on the computer, the computer causes one or more steps in any one of the foregoing methods to be executed.
  • the component modules of the terminal or the relay device are implemented in the form of software functional units and sold or used as independent products, they may be stored in the computer-readable storage medium.
  • the technical solution of the present application is essentially a part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium , Including a number of instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present application.
  • the foregoing storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例公开了一种用于终端待机时的待机控制方法,该方法包括:终端设备在进入待机模式之前,通过第一通信链路向中继设备发送第一通知信息;中继设备根据第一通知信息代理终端设备向云端服务器发送第一保活报文,使得云端服务器确认终端设备在线;终端设备关闭第一通信链路以及主控中央处理单元CPU;中继设备通过第二通信链路向终端设备发送第二保活报文;终端设备通过第二通信链路向中继设备发送第二保活报文的应答信息,使中继设备确认终端设备在线;其中,第二通信链路的通信速率低于第一通信链路的通信速率。

Description

待机控制方法、系统、终端设备和中继设备
本申请要求于2018年5月31日提交中国国家知识产权局、申请号为201810553415.X、发明名称为“待机控制方法、系统、终端设备和中继设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,特别涉及待机控制方法、系统、终端和中继设备。
背景技术
近年来,物联网技术发展迅速,在智能制造、智慧家居、车联网、物流、交通、抄表等行业市场前景广阔。许多物联网终端为内置电池的设备,一方面需要维持较长的工作时间;另一方面,为满足业务需要,终端需要快速实时与云端网络连接通信。这就对物联网终端满足低功耗和快速联网提出了较高的技术要求。
物联网终端,一般包含主控模块和通信模块。现有技术中,当物联网终端正常工作时,主控模块进行数据处理,通信模块通过高速通信链路从路由器获取数据并将数据发送给主控模块,或者是通过高速通信链路将主控模块处理后的数据发送给路由器。
当物联网终端待机时,主控模块会下电,但为了保持能够快速联网和远程唤醒该物联网终端,通信模块会通过高速通信链路定时与路由器之间传输保活报文以保持心跳连接。
但是,通信模块通过高速通信链路传输保活报文的功耗较大,所以物联网终端待机时的待机功率较高。
发明内容
本申请提供了一种待机控制方法,用于降低终端待机时的功耗。
本申请实施例第一方面提供了一种待机控制系统,该方法包括:一种待机控制的系统,系统包括:终端设备和中继设备;终端设备,用于在进入待机模式之前,通过第一通信链路向中继设备发送第一通知信息;中继设备,用于根据第一通知信息代理终端设备向云端服务器发送第一保活报文,使得云端服务器确认终端设备在线;终端设备,还用于关闭第一通信链路以及主控中央处理单元CPU;中继设备,还用于通过第二通信链路向终端设备发送第二保活报文;终端设备,还用于通过第二通信链路向中继设备发送第二保活报文的应答信息,使中继设备确认终端设备在线;其中,第二通信链路的通信速率低于第一通信链路的通信速率。
本申请实施例提供了一种待机控制的系统,终端设备通过中继设备与云端保持连接,终端设备与中继设备之间通过第一通信链路传送业务服务数据,当终端进入待机模式时,终端设备关闭第一通信链路,终端设备第二通信模块与中继设备第二通信模块间通过第二通信链路进行心跳保活,其中,第二通信链路的通信速率低于该第一通信链路的通信速率,相较终端设备待机时通过第一通信链路进行心跳保活,本申请实施例中终端设备待机状态时的功耗降低。
基于本申请实施例第一方面,本申请实施例第一方面的第一种实施方式中,该终端设备,还用于通过该第二通信链路接收该中继设备发送的唤醒报文;该终端设备,还用于根据该唤醒报文打开该主控CPU和启用该第一通信链路。
本申请实施例提供的待机控制的系统,提供了终端在待机状态下,中继设备通过第二通信链路向终端设备发送唤醒报文,将终端唤醒,终端从待机模式恢复正常业务模式。提供了终端被唤醒的一种具体方式,提升了方案的可实现性。
基于本申请实施例第一方面或第一方面的第一种实施方式,本申请实施例第一方面的第二种实施方式中,该关闭该第一通信链路包括关闭用于高速传输数据的RF模块。
本申请实施例提供的待机控制的系统,关闭第一通信链路可以是关闭用于高速传输数据的RF模块,开启第一通信链路也可以是开启用于高速传输数据的RF模块。提供了开启或关闭第一通信链路的方法,提升了方案的可实现性。
基于本申请实施例第一方面的第一种实施方式或本申请实施例第一方面的第二种实施方式,本申请实施例第一方面的第三种实施方式中,该唤醒报文包括该第一通信链路的信道参数;该终端设备具体用于根据该信道参数开启该第一通信链路,以通过该第一通信链路与该中继设备进行业务通信。
本申请实施例提供的待机控制的系统,在终端设备被唤醒时,终端设备可以通过唤醒报文中获取的第一通信链路的信道参数恢复业务通信,提高了终端设备唤醒时联网的速度。
基于本申请实施例第一方面的第一种实施方式至本申请实施例第一方面的第三种实施方式中任一项,本申请实施例第一方面的第四种实施方式中,在该终端设备关闭该第一通信链路之前,该终端设备,还用于通过该第一通信链路向该中继设备发送第二通知信息,用于告知该中继设备将关闭该RF模块;该中继设备,还用于在接收该第二通知信息之后设置该终端设备在该第一通信链路中为在线状态。
本申请实施例提供的待机控制的系统,在终端设备进入待机模式之前,终端设备可以向中继设备发送第二通知消息,告知即将进入待机模式,使得中继设备通过设置参数,将终端设备在第一通信链路中的连接状态设置为始终在线的状态,即使超出预设时限,也不判定终端下线。
基于本申请实施例第一方面、本申请实施例第一方面的第一种实施方式至本申请实施例第一方面的第四种实施方式中任一项,本申请实施例第一方面的第五种实施方式中,当该中继设备超过预设时限未收到该终端设备对该第二保活报文的应答信息时,该中继设备,还用于停止向该云端服务器发送该第一保活报文,以使该终端设备与该云端服务器断开连接。
本申请实施例提供的待机控制的系统,在终端设备进入待机模式之后,若中继设备超过预设时限未收到终端设备对第二保活报文的应答消息时,则判定终端下线,将停止为该终端设备进行云端保活,即向云端服务器发送第一保活报文,这样,可以避免终端下线后,中继设备一直代理云端业务。
基于本申请实施例第一方面、本申请实施例第一方面的第一种实施方式至本申请实施例第一方面的第五种实施方式中任一项,本申请实施例第一方面的第六种实施方式中,该第二保活报文的应答信息所占用的通信资源小于该第二保活报文所占用的通信资源。
本申请实施例提供的待机控制的系统,终端设备进入待机模式之后,通过第二通信链路 与中继设备保持心跳连接,中继设备向终端设备发送第二保活报文,终端设备接收该第二保活报文并返回第二保活报文的应答消息,由于第二保活报文的应答信息所占用的通信资源小于该第二保活报文所占用的通信资源,可以进一步降低终端设备在待机模式中的功耗。
基于本申请实施例第一方面、本申请实施例第一方面的第一种实施方式至本申请实施例第一方面的第六种实施方式中任一项,本申请实施例第一方面的第七种实施方式中,在该终端设备关闭该第一通信链路之前,该终端设备,还用于通过该第一通信链路与该中继设备协商心跳周期;该中继设备,具体用于根据该心跳周期,通过该第二通信链路向该终端设备发送该第二保活报文。
本申请实施例提供的待机控制的系统,在终端设备进入待机模式之前,终端设备还可以通过第一通信链路与中继设备协商心跳周期,提供了发送第二保活报文更具体的实现方式,提升了方案的可实现性,由于周期性发送第二保活报文,还可以节约通信资源,降低功耗。
基于本申请实施例第一方面、本申请实施例第一方面的第一种实施方式至本申请实施例第一方面的第二种实施方式中任一项,本申请实施例第一方面的第三种实施方式中,该终端主控模块通知中继设备第二通信模块进行终端待机保活代理之后,该方法还包括:该终端主控模块与该中继设备第二通信模块协商心跳周期和唤醒随机数,该心跳周期为该中继设备第二通信模块向该终端第二通信模块发送保活报文的周期,该唤醒随机数为用于该终端唤醒时的安全验证随机数。
本申请实施例提供的待机控制的系统,终端待机时可以与中继设备协商心跳周期和唤醒随机数,提高了方案的灵活性。
基于本申请实施例第一方面、本申请实施例第一方面的第一种实施方式至本申请实施例第一方面的第二种实施方式中任一项,本申请实施例第一方面的第四种实施方式中,该唤醒报文携带唤醒特征码或唤醒随机数中的至少一项,该唤醒特征码为预设的用于识别唤醒报文的标识。
本申请实施例提供的待机控制的系统,终端在被唤醒时,可以获取唤醒特征码或唤醒随机数中的至少一项,唤醒随机数可以用于安全验证,可以提升唤醒过程的安全性,唤醒特征码可用于识别唤醒报文,提升了方案的可实现性和安全性。
本申请实施例第二方面提供了一种待机控制方法,包括:接收待机指令后,通过第一通信链路向中继设备发送第一通知消息,该第一通知信息用于指示该中继设备代理该终端设备向云端服务器发送第一保活报文,使该云端服务器确认该终端设备在线;关闭该第一通信链路以及主控中央处理单元CPU;接收该中继设备通过第二通信链路发送的第二保活报文,并返回该第二保活报文的应答信息,使该中继设备确认该终端设备在线;该第二通信链路的通信速率低于该第一通信链路的通信速率。
本申请实施例提供了一种待机控制方法,终端设备通过第一通信链路与中继设备连接,当终端进入待机模式时,终端设备关闭第一通信链路,终端设备第二通信模块与中继设备间通过第二通信链路进行心跳保活,其中,第二通信链路的通信速率低于该第一通信链路的通信速率,相较终端设备待机时通过第一通信链路进行心跳保活,本申请实施例中终端设备待机状态时的功耗降低。
基于本申请实施例第二方面,本申请实施例第二方面的第一种实施方式中,该关闭主控 中央处理单元CPU之后,该方法还包括:接收该中继设备通过该第二通信链路发送的唤醒报文;根据该唤醒报文通知该主控CPU上电;根据该唤醒报文启用该第一通信链路。
本申请实施例提供的待机控制方法,提供了终端在待机状态下,通过第二通信链路接收中继设备发送的唤醒报文,并根据该唤醒报文唤醒,从待机模式恢复正常业务模式。提供了终端唤醒的一种具体方式,提升了方案的可实现性。
基于本申请实施例第二方面或本申请实施例第二方面的第一种实施方式,本申请实施例第二方面的第二种实施方式中,该关闭该第一通信链路包括关闭用于高速传输数据的RF模块。
本申请实施例提供的待机控制方法,终端关闭第一通信链路可以是关闭用于高速传输数据的RF模块,开启第一通信链路也可以是开启用于高速传输数据的RF模块。给终端设备提供了开启或关闭第一通信链路的方法,提升了方案的可实现性。
基于本申请实施例第二方面的第一种实施方式或本申请实施例第二方面的第二种实施方式,本申请实施例第二方面的第三种实施方式中,该唤醒报文包括该第一通信链路的信道参数;根据该信道参数开启该第一通信链路,以通过该第一通信链路与该中继设备进行业务通信。
本申请实施例提供的待机控制方法,在终端设备被唤醒时,终端设备可以通过唤醒报文中获取的第一通信链路的信道参数恢复业务通信,提高了终端设备唤醒时联网的速度。
基于本申请实施例第二方面的第二种实施方式或本申请实施例第二方面的第三种实施方式,本申请实施例第二方面的第四种实施方式中,在该关闭该第一通信链路之前,该方法还包括:通过该第一通信链路向该中继设备发送第二通知信息,用于告知该中继设备将关闭该RF模块。
本申请实施例提供的待机控制方法,在终端设备进入待机模式之前,终端设备可以向中继设备发送第二通知消息,告知即将进入待机模式,将关闭RF模块,停止通过第一通信链路传输数据。
基于本申请实施例第二方面、本申请实施例第二方面的第一种实施方式至本申请实施例第二方面的第四种实施方式,本申请实施例第二方面的第五种实施方式中,该第二保活报文的应答信息所占用的通信资源小于该第二保活报文所占用的通信资源。
本申请实施例提供的待机控制方法,终端设备进入待机模式之后,通过第二通信链路与中继设备保持心跳连接,中继设备向终端设备发送第二保活报文,终端设备接收该第二保活报文并返回第二保活报文的应答消息,由于第二保活报文的应答信息所占用的通信资源小于该第二保活报文所占用的通信资源,可以进一步降低终端设备在待机模式中的功耗。
基于本申请实施例第二方面、本申请实施例第二方面的第一种实施方式至本申请实施例第二方面的第五种实施方式,本申请实施例第二方面的第六种实施方式中,在该关闭该第一通信链路之前,该方法还包括:通过该第一通信链路与该中继设备协商心跳周期;该接收该中继设备通过第二通信链路发送的第二保活报文具体包括:接收该中继设备通过该第二通信链路根据该心跳周期发送的该第二保活报文。
本申请实施例提供的待机控制方法,在终端设备进入待机模式之前,终端设备还可以通过第一通信链路与中继设备协商心跳周期,提供了心跳连接更具体的实现方式,提升了方案的灵活性。
本申请实施例第三方面提供了一种待机控制方法,包括:接收终端设备通过第一通信链路发送的第一通知消息;在所述第一通知消息的指示下,代理所述终端设备向云端服务器发送第一保活报文,使所述云端服务器确认所述终端设备在线;通过第二通信链路向所述终端设备发送第二保活报文;通过所述第二通信链路接收所述终端设备返回的所述第二保活报文的应答信息,并基于所述应答信息确认所述终端设备在线;其中,所述第二通信链路的通信速率低于所述第一通信链路的通信速率。
本申请实施例提供的待机控制方法中,中继设备可以通过第一通信链路与终端设备保持连接,并传送业务服务数据,当终端进入待机模式时,终端设备关闭第一通信链路,中继设备第二通信模块与终端设备第二通信模块间通过第二通信链路进行心跳保活,其中,第二通信链路的通信速率低于该第一通信链路的通信速率,相较终端设备待机时通过第一通信链路进行心跳保活,本申请实施例中终端设备待机状态时的功耗降低。
基于本申请实施例第三方面,本申请实施例第三方面的第一种实施方式中,所述方法还包括:通过所述第二通信链路向所述终端设备发送唤醒报文,使得所述终端设备根据所述唤醒报文打开所述主控CPU和启用所述第一通信链路。
本申请实施例提供的待机控制方法,在终端设备处于待机模式时,中继设备可以通过第二通信链路向终端设备发送唤醒报文,将终端唤醒。提供了唤醒终端设备的一种具体方式,提升了方案的可实现性。
基于本申请实施例第三方面的第一种实施方式,本申请实施例第三方面的第二种实施方式中,所述启用所述第一通信链路包括打开用于高速传输数据的RF模块。
本申请实施例提供的待机控制方法,终端关闭第一通信链路可以是关闭用于高速传输数据的RF模块,开启第一通信链路也可以是开启用于高速传输数据的RF模块。提供了开启或关闭第一通信链路的方法,提升了方案的可实现性。
基于本申请实施例第三方面的第一种实施方式或本申请实施例第三方面的第二种实施方式,本申请实施例第三方面的第三种实施方式中,所述唤醒报文包括所述第一通信链路的信道参数;在所述终端设备根据所述信道参数开启所述第一通信链路之后,通过所述第一通信链路与所述终端设备进行业务通信。
本申请实施例提供的待机控制方法,在唤醒终端设备时,中继设备可以在唤醒报文中携带第一通信链路的信道参数,用于恢复业务通信,可以提高终端设备唤醒时联网的速度。
基于本申请实施例第三方面、本申请实施例第三方面的第一种实施方式或本申请实施例第三方面的第三种实施方式,本申请实施例第三方面的第四种实施方式中,在所述通过第二通信链路向所述终端设备发送第二保活报文之前,所述方法还包括:接收所述终端设备通过所述第一通信链路发送的第二通知消息;根据所述第二通知消息设置所述终端设备在所述第一通信链路中为连接状态。
本申请实施例提供的待机控制方法,在终端设备进入待机模式之前,中继设备可以通过第一通信链路接收终端设备发送第二通知消息,并通过设置参数,将终端设备在第一通信链路中的连接状态设置为始终在线的状态,即使超出预设时限,也不判定终端下线。
基于本申请实施例第三方面、本申请实施例第三方面的第一种实施方式或本申请实施例第三方面的第四种实施方式,本申请实施例第三方面的第五种实施方式中,当超过预设时限 未收到所述终端设备返回的所述第二保活报文的应答信息时,停止向所述云端服务器发送所述第一保活报文,使得所述终端设备与所述云端服务器断开连接。
本申请实施例提供的待机控制方法,在终端设备进入待机模式之后,若中继设备超过预设时限未收到终端设备对第二保活报文的应答消息时,则判定终端下线,将停止为该终端设备进行云端保活,即向云端服务器发送第一保活报文,这样,可以避免终端下线后,中继设备一直代理云端业务。
基于本申请实施例第三方面、本申请实施例第三方面的第一种实施方式或本申请实施例第三方面的第五种实施方式,本申请实施例第三方面的第六种实施方式中,所述第二保活报文的应答信息所占用的通信资源小于所述第二保活报文所占用的通信资源。
本申请实施例提供的待机控制方法,终端设备进入待机模式之后,中继设备通过第二通信链路与终端设备保持心跳连接,中继设备向终端设备发送第二保活报文,终端设备接收该第二保活报文并返回第二保活报文的应答消息,由于第二保活报文的应答信息所占用的通信资源小于该第二保活报文所占用的通信资源,可以进一步降低终端设备在待机模式中的功耗。
基于本申请实施例第三方面、本申请实施例第三方面的第一种实施方式或本申请实施例第三方面的第六种实施方式,本申请实施例第三方面的第七种实施方式中,在所述通过第二通信链路向所述终端设备发送第二保活报文之前,所述方法还包括:通过所述第一通信链路与所述终端设备协商心跳周期;所述通过第二通信链路向所述终端设备发送第二保活报文具体包括:根据所述心跳周期,通过所述第二通信链路向所述终端设备发送所述第二保活报文。
本申请实施例提供的待机控制方法,在终端设备进入待机模式之前,中继设备还可以通过第一通信链路与终端设备协商心跳周期,提供了发送第二保活报文更具体的实现方式,提升了方案的可实现性,由于周期性发送第二保活报文,还可以节约通信资源,降低功耗。
本申请实施例第四方面提供了一种终端,包括:主控模块、第一通信模块和第二通信模块;所述主控模块用于,接收待机指令后,控制所述第一通信模块通过第一通信链路向中继设备发送第一通知消息,所述第一通知信息用于指示所述中继设备代理所述向云端服务器发送第一保活报文,所述第一通信链路为所述第一通信模块与所述中继设备之间的通信链路;所述主控模块还用于,关闭所述第一通信链路以及主控中央处理单元CPU;所述第二通信模块用于,接收所述中继设备通过第二通信链路发送的第二保活报文,并返回所述第二保活报文的应答信息,使所述中继设备确认所述终端设备在线;所述第二通信链路为所述第二通信模块与所述中继设备之间的通信链路,所述第二通信链路的通信速率低于所述第一通信链路的通信速率。
本申请实施例提供的终端,通过第一通信链路与中继设备连接,当终端进入待机模式时,终端设备关闭第一通信链路,终端设备第二通信模块与中继设备间通过第二通信链路进行心跳保活,其中,第二通信链路的通信速率低于该第一通信链路的通信速率,相较终端设备待机时通过第一通信链路进行心跳保活,本申请实施例中终端设备待机状态时的功耗降低。
基于本申请实施例第四方面,本申请实施例第四方面的第一种实施方式中,所述第二通信模块还用于:接收所述中继设备通过所述第二通信链路发送的唤醒报文;根据所述唤醒报文通知所述主控模块打开所述CPU;根据所述唤醒报文通知所述主控模块启用所述第一通信链路。
本申请实施例提供的终端设备,提供了终端在待机状态下,第二通信模块通过第二通信链路接收中继设备发送的唤醒报文,并根据该唤醒报文唤醒,从待机模式恢复正常业务模式。提供了终端唤醒的一种具体方式,提升了方案的可实现性。
基于本申请实施例第四方面或本申请实施例第四方面的第一种实施方式,所述关闭所述第一通信链路包括:所述第一通信模块关闭用于高速传输数据的RF模块。
本申请实施例提供的终端设备,终端关闭第一通信链路可以是关闭用于高速传输数据的RF模块,开启第一通信链路也可以是开启用于高速传输数据的RF模块。给终端设备提供了开启或关闭第一通信链路的方法,提升了方案的可实现性。
基于本申请实施例第四方面的第一种实施方式或本申请实施例第四方面的第二种实施方式,本申请实施例第四方面的第三种实施方式中,所述唤醒报文包括所述第一通信链路的信道参数;所述第一通信模块还用于:根据所述信道参数开启所述第一通信链路,以通过所述第一通信链路与所述中继设备进行业务通信。
本申请实施例提供的终端设备,在终端设备被唤醒时,终端设备可以通过唤醒报文中获取的第一通信链路的信道参数恢复业务通信,提高了终端设备唤醒时联网的速度。
基于本申请实施例第四方面的第二种实施方式或本申请实施例第四方面的第三种实施方式,本申请实施例第四方面的第四种实施方式中,所述主控模块还用于:通过所述第一通信链路向所述中继设备发送第二通知信息,用于告知所述中继设备将关闭所述RF模块。
本申请实施例提供的终端设备,在终端设备进入待机模式之前,主控模块可以通过第一通信链路向中继设备发送第二通知消息,告知即将进入待机模式,将关闭RF模块,停止通过第一通信链路传输数据。
基于本申请实施例第四方面、本申请实施例第四方面的第一种实施方式至本申请实施例第四方面的第四种实施方式,本申请实施例第四方面的第五种实施方式中,所述主控模块还用于:通过所述第一通信链路与所述中继设备协商心跳周期;所述第二通信模块具体用于:接收所述中继设备通过所述第二通信链路根据所述心跳周期发送的所述第二保活报文。
本申请实施例提供的终端设备,在终端设备进入待机模式之前,主控模块还可以通过第一通信链路与中继设备协商心跳周期,提供了心跳连接更具体的实现方式,提升了方案的灵活性。
本申请实施例第五方面提供了一种中继设备,包括:第一通信模块和第二通信模块;所述第一通信模块用于,接收终端设备通过第一通信链路发送的第一通知消息;所述第一通信模块还用于,根据所述第一通知消息,代理所述终端设备向所述云端服务器发送第一保活报文,使所述云端服务器确认所述终端设备在线;所述第二通信模块用于,通过第二通信链路向所述终端设备发送第二保活报文;所述第二通信模块还用于,通过所述第二通信链路接收所述终端设备返回的所述第二保活报文的应答信息,并基于所述应答信息确认所述终端设备在线;其中,所述第二通信链路的通信速率低于所述第一通信链路的通信速率。
本申请实施例提供的终端设备,中继设备可以通过第一通信链路与终端设备保持连接,并传送业务服务数据,当终端进入待机模式时,终端设备关闭第一通信链路,中继设备第二通信模块与终端设备第二通信模块间通过第二通信链路进行心跳保活,其中,第二通信链路的通信速率低于该第一通信链路的通信速率,相较终端设备待机时通过第一通信链路进行心 跳保活,本申请实施例中终端设备待机状态时的功耗降低。
基于本申请实施例第五方面,本申请实施例第五方面的第一种实施方式中,所述第二通信模块还用于:通过所述第二通信链路向所述终端设备发送唤醒报文,使得所述终端设备根据所述唤醒报文打开所述主控CPU和启用所述第一通信链路。
本申请实施例提供的终端设备,在终端设备处于待机模式时,第二通信模块可以通过第二通信链路向终端设备发送唤醒报文,将终端唤醒。提供了唤醒终端设备的一种具体方式,提升了方案的可实现性。
基于本申请实施例第五方面的第一种实施方式,本申请实施例第五方面的第二种实施方式中,所述启用所述第一通信链路包括打开用于高速传输数据的RF模块。
本申请实施例提供的中继设备,终端关闭第一通信链路可以是关闭用于高速传输数据的RF模块,开启第一通信链路也可以是开启用于高速传输数据的RF模块。提供了开启或关闭第一通信链路的方法,提升了方案的可实现性。
基于本申请实施例第五方面的第一种实施方式或本申请实施例第五方面的第二种实施方式,本申请实施例第五方面的第三种实施方式中,所述唤醒报文包括所述第一通信链路的信道参数;所述第一通信模块还用于:在所述终端设备根据所述信道参数开启所述第一通信链路之后,通过所述第一通信链路与所述终端设备进行业务通信。
本申请实施例提供的待机控制方法,在唤醒终端设备时,中继设备可以在唤醒报文中携带第一通信链路的信道参数,用于恢复业务通信,可以提高终端设备唤醒时联网的速度。
基于本申请实施例第五方面、本申请实施例第五方面的第一种实施方式或本申请实施例第五方面的第三种实施方式,本申请实施例第五方面的第四种实施方式中,所述第一通信模块还用于:接收所述终端设备通过所述第一通信链路发送的第二通知消息,得知所述终端设备将关闭所述RF模块;根据所述第二通知消息设置所述终端设备在所述第一通信链路中为在线状态。
本申请实施例提供的待机控制方法,在终端设备进入待机模式之前,第一通信模块可以通过第一通信链路接收终端设备发送第二通知消息,并通过设置参数,将终端设备在第一通信链路中的连接状态设置为始终在线的状态,即使超出预设时限,也不判定终端下线。
基于本申请实施例第五方面、本申请实施例第五方面的第一种实施方式或本申请实施例第五方面的第四种实施方式,本申请实施例第五方面的第五种实施方式中,所述第一通信模块还用于,当所述第二通信模块超过预设时限未收到所述终端设备返回的所述第二保活报文的应答信息时,停止向所述云端服务器发送所述第一保活报文,使得所述终端设备与所述云端服务器断开连接。
本申请实施例提供的中继设备,在终端设备进入待机模式之后,若中继设备超过预设时限未收到终端设备对第二保活报文的应答消息时,则判定终端下线,第一通信模块将停止为该终端设备进行云端保活,即向云端服务器发送第一保活报文,这样,可以避免终端下线后,中继设备一直代理云端业务。
基于本申请实施例第五方面、本申请实施例第五方面的第一种实施方式或本申请实施例第五方面的第五种实施方式,本申请实施例第五方面的第六种实施方式中,所述第二通信模块还用于:在所述第二通信模块通过第二通信链路向所述终端设备发送第二保活报文之前, 通过所述第一通信链路与所述终端设备协商心跳周期;所述第二通信模块还用于,根据所述心跳周期,通过所述第二通信链路向所述终端设备发送所述第二保活报文。
本申请实施例提供的中继设备,在终端设备进入待机模式之后,第二通信模块通过第二通信链路与终端设备保持心跳连接,中继设备向终端设备发送第二保活报文,终端设备接收该第二保活报文并返回第二保活报文的应答消息,由于第二保活报文的应答信息所占用的通信资源小于该第二保活报文所占用的通信资源,可以进一步降低终端设备在待机模式中的功耗。
本申请实施例第六方面提供了一种终端,该终端包括:处理器、存储器、该处理器通过运行存储在该存储器内的软件程序、调用存储在该存储器内的数据,执行前述本申请实施例第二方面提供的各实施方式的方法。
本申请实施例第七方面提供了一种中继设备,该终端包括:处理器、存储器、该处理器通过运行存储在该存储器内的软件程序、调用存储在该存储器内的数据,执行前述本申请实施例第三方面提供的各实施方式的方法。
本申请实施例第八方面提供了一种计算机程序产品,该计算机程序产品包括计算机程序指令,该计算机程序指令可通过处理器进行加载来实现上述第二方面及其各实现方式中的方法。
本申请实施例第九方面提供了一种计算机程序产品,该计算机程序产品包括计算机程序指令,该计算机程序指令可通过处理器进行加载来实现上述第三方面及其各实现方式中的方法。
本申请实施例第十方面提供了一种计算机储存介质,用于储存计算机程序指令,其包含用于执行前述本申请实施例第二方面提供的各实施方式的步骤的程序。
本申请实施例第十一方面提供了一种计算机储存介质,用于储存计算机程序指令,其包含用于执行前述本申请实施例第三方面提供的各实施方式的步骤的程序。
附图说明
图1为终端待机模式示意图;
图2为本申请实施例中终端联网架构图;
图3为本申请实施例中终端设备的分层模型示意图;
图4为本申请实施例中中继设备的分层模型示意图;
图5为本申请实施例中待机控制方法的一个交互流程图;
图6为本申请实施例中待机控制方法的另一个交互流程图;
图7为本申请实施例中终端的一个实施例示意图;
图8为本申请实施例中中继设备的一个实施例示意图。
具体实施方式
应当理解,在本申请中,“至少一个(项)”是指一个(项)或者多个(项),“多个(项)”是指两个(项)或两个(项)以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况, 其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
本申请实施例提供了一种待机控制方法,用于降低终端待机时的功耗。
请参阅图1,为终端待机模式示意图。在常见的终端待机方法中,终端通过网络通信模块与路由器连接进行通信。终端主要包括主控中央处理器(central processing unit,CPU)和网络通信模块,当终端待机时,主控CPU处于下电状态,而网络通信模块与路由器保持心跳连接,可以支持快速联网和远程唤醒。由于终端待机时,网络通信模块与路由器保持心跳连接,功耗较高。
请参阅图2,本申请实施例中终端联网架构图。该架构可以用于终端视频数据传输等场景。本申请实施例中终端联网架构中增加了中继设备,终端通过中继设备与路由器进行通信连接,终端通过中继设备、路由器与云端进行通信连接。
终端组成结构主要包括主控CPU、无线保真(wireless fidelity,WiFi)模组、微控制单元(microcontroller unit,MCU)和电源管理单元(power management unit,PMU),以及射频(radio frequency,RF)模组。本申请实施例中终端结构中增加了RF模组。
示例性的,主控CPU,例如可以是摄像头CPU、机顶盒CPU,负责运行媒体业务,如登录业务,推送业务和点播业务等;可选的,主控CPU可以包括如下至少一种类型:通用中央处理器、数字信号处理器(digital signal processor,DSP)、微处理器、微控制器(microcontroller unit,MCU)、或微处理器。例如,主控CPU可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。或者该主控CPU可以是多个处理器构成的处理器组,多个处理器之间通过一个或多个总线彼此耦合。该主控CPU可以包括模拟-数字转换器(analog-to-digital converter,ADC)、数字-模拟转换器(digital-to-analog converter,DAC)以实现装置不同部件之间信号的连接。MCU用于电源控制和外部事件检测;PMU能为主控CPU及终端各组成模块提供电源;WIFI模组即高速通信模块还可以是第四代移动通信技术(the 4th generation mobile communication technology,4G)无线模块等,WIFI模组用于进行业务通信;示例性的,网络通信模块可以包括中央处理器CPU或微控制器MCU、射频收发器(也可以称作是射频电路)。
RF模组为唤醒模块,例如可以是蓝牙模块等,RF模组用于在终端待机模式下向中继设备发送保活报文从而与中继设备保持心跳连接,还可以接受中继设备发送的唤醒报文,将待机模式下的终端唤醒。RF模组的功耗低于WIFI模组的功耗,该RF模组功耗低的原因可以是:监听的频点的带宽窄,承载的数据量小,因此需要的能耗低;协议简单,芯片逻辑处理简单,功耗低。需要说明的是,终端RF模组可以集成在终端中;或作为外接硬件单独存在,应当理解,当终端RF模组作为单独存在的外接硬件时,在一种可选的情况中,终端RF模组可以通过串行外设接口(serial peripheral interface,SPI)与终端连接。
中继设备的组成结构主要包括主控CPU、WIFI模组、MCU以及RF模组。
中继设备结构中还设有中继设备代理模块,代理模块可以集成在中继设备WIFI模组中实现,也可以在中继设备WIFI模组之外的其他模块中实现。中继设备代理模块的功能包括云端 服务保活、终端远程唤醒和终端IP地址、路由器DHCP续约等。
中继设备主控CPU可用于负责运行媒体业务WIFI模组即网络通信模块为高速通信模块,还可以是4G无线模块等,WIFI模组用于与终端进行业务通信;RF模组为唤醒模块,还可以是蓝牙模块等,RF模组用于在终端待机模式时与终端保持心跳连接,和在远程唤醒终端时向终端RF模组发送唤醒报文。需要说明的是,中继设备RF模组可以集成在中继设备中;或作为外接硬件单独存在,应当理解,当中继设备RF模组作为单独存在的外接硬件时,在一种可选的情况中,中继设备RF模组可以并通过串行外设接口与中继设备连接。
应当理解,终端设备和中继设备的WIFI模组中均包含RF模块,WIFI模组中的RF模块单位时间内传输的数据量大,在一种可选的情况中,WIFI模组中的RF模块单位时间内传输的数据量大于10M;而起到唤醒作用的RF模块单位时间内可传输的数据量小,在一种可选的情况中,起唤醒作用的RF模块单位时间内传输的数据量小于1M。
在本申请实施例的终端联网架构下,终端正常业务模式时,主控CPU与WIFI模组均为上电状态,终端通过WIFI模组基于第一通信链路与路由器和云端进行连接通信,RF模组待机或下电。当终端进入待机模式时,终端主控CPU下电,WIFI模组关闭大部分功能模块的供电,示例性的,网络通信模块关闭射频模块停止收发数据,仅保存部分模块的供电以维持内存刷新,终端通过RF模组基于第二通信链路与中继设备保持心跳连接,并通过中继设备保持与云端的连接,此时,WIFI模组处于超低功耗模式。由于RF模组的功耗较WIFI模组的功耗低,相较现有技术中终端通过WIFI模组进行心跳连接,终端待机功耗降低。在一种可选的情况中,第一通信链路为无线WIFI通信链路,传输速率高,第二通信链路为RF通讯链路,传输速率低,相比于第一通信链路,第二通信链路对应新的空口、基于简单的数据协议,示例性的,简单的数据协议体现在:载波的复杂度低、协议传输本身的复杂度低。
请参阅图3、本申请实施例中终端设备的分层模型示意图。
终端设备包括主控CPU模块、网络通信模块和唤醒模块,其中主控CPU模块与网络通信模块可以通过安全数字输入输出口(secure digital input and output,SDIO),一种外设接口连接,SDIO口可用于传输数据块;主控CPU与唤醒模块可以通过串口连接,网络通信模块与唤醒模块可以通过通用输入/输出接口(general purpose input output,GPIO)连接。
主控CPU可以包括业务层、中间件层、操作系统(operating system,OS)层、驱动层和硬件层;驱动层为硬件层的接口,OS层只有通过驱动层才能控制硬件设备的工作。
其中,业务层待机功能可以包含用于终端待机控制的功能;OS层的RTOS为实时操作系统(real time operating system,RTOS)。驱动层和硬件层的串口共同与唤醒模块连接。
网络通信模块可以包括业务层、驱动层和硬件层;其中,业务层包括待机和唤醒,可用于终端待机控制;驱动层的GPIO驱动用于与唤醒模块进行GPIO连接,SDIO驱动用于与主控CPU连接,通过SDIO口传输数据块;硬件层的RF TX为射频发送单元;RF RX为射频接收单元。
唤醒模块可以包括业务层、驱动层和硬件层;其中,业务层可以完成低功耗、保活和唤醒功能,用于终端待机控制时,通过唤醒模块与中继设备之间经第二通信链路进行心跳保活,保持终端设备与中继设备之间的低功耗的连接;或者由云端唤醒终端时,由唤醒模块通过第二通信链路接收唤醒报文将终端唤醒;驱动层的串口用于控制硬件与主控CPU的连接;硬件 层的433M RF为433兆频率的射频模块,用于与中继设备建立第二通信链路,在终端待机模式时进行心跳保活。
终端设备的主控CPU模块、网络通信模块和唤醒模块可以通过以上分层模型实现本申请实施例中待机控制的方法,终端设备执行的具体步骤请参见附图6对应的实施例。
上面介绍了本申请实施例中终端的分层模型示意图,下面请参阅图4,本申请实施例中中继设备的分层模型示意图。
中继设备包括主控CPU模块、网络通信模块和唤醒模块,网络通信模块与唤醒模块之间可以通过串口连接。
中继设备网络通信模块可以包括业务层、OS层、驱动层和硬件层;驱动层为硬件层的接口,OS层只有通过驱动层才能控制硬件设备的工作。
其中,中继设备业务层的HOSTAPD可以完成待机控制方法中的两个功能:1)从网络通信模块获取信道和设备IP参数2)设置设备在线不超时;云端保活代理:可代理终端设备向中继设备发送第一保活报文;动态主机配置协议(dynamic host configuration protocol,DHCP)代理:中继设备通过向路由器发送DCHP续约报文,用于IP地址续约租期;免费地址解析协议(address resolution protocol,ARP)代理:向路由器发送ARP报文等与路由器保持连接,防止路由器ARP表老化。OS层的RTOS为实时操作系统。
唤醒模块可以包括业务层、驱动层和硬件层;其中,RTOS为实时操作系统(real time operating system,RTOS),RF为射频模块,433M RF为433兆频率的射频模块,RF TX为射频发送单元;RF RX为射频接收单元。业务层的参数管理用于协商保活的相关参数、心跳周期、构建唤醒报文等;驱动层的RF用于驱动RF模块通过第二通信链路发送保活报文或者唤醒报文。
中继设备的网络通信模块和唤醒模块可以通过以上分层模型实现本申请实施例中待机控制的方法,中继设备执行的具体步骤请参见附图6对应的实施例。
基于图2所示的终端联网架构图,下面对本申请实施例提供的一种待机控制的方法进行说明,请参阅图5,为本申请实施例中待机控制方法的一个交互流程图。
终端设备的进入待机模式时,主控CPU下电、网络通信模块(例如可以是WIFI模组高速通信模块)关闭用于进行高速数据传输的RF模块并停止收发数据,只保留很少的供电以维持WIFI模组的内存刷新,由低速通信的RF模组替代高速通信的WIFI模组通过低速通信链路向中继设备定期发送保活报文,从而通过中继设备与云端服务器保持心跳连接。因此,终端设备在进入待机模式之前,需要与中继设备协商保活所需的准备工作。
该待机控制的方法具体包括:
步骤1、终端设备接收待机指令后将进入待机模式,通过第一通信链路向中继设备发送第一通知信息,该第一通知信息用于通知中继设备在终端设备进入待机模式之后,由中继设备代理终端设备向云端服务器发送第一保活报文,以告知云端服务器终端设备还存活。可选的,保活报文还可以称作心跳包,应当理解,心跳一般是指通信双方的某一端向另一端发送自定义指令,以判断双方是否存活,而且通常会按照一定间隔发送,类似于心跳,因此还被称为心跳指令。
示例性的,该第一通信链路为终端设备的WIFI模组高速通信模块与中继设备的WIFI模 组高速通信模块之间的无线WIFI通信链路,第一通信链路为高速通信链路,当终端设备处于正常业务模式时,通过第一通信链路与云端服务器进行业务和数据通信。示例性的,中继设备通过向路由器发送DHCP续约报文和ARP报文等与路由器保持连接,并借由路由器进一步与云端服务器保持连接。其中,DHCP续约报文可用于IP地址续约租期,免费ARP报文用于防止路由器ARP表老化。在一种可选的情况中,中继设备向路由器发送DHCP续约报文和免费ARP报文的动作是周期性发送的,该发送周期可以为30秒至60秒,由于始终发送保活报文过于浪费资源提升系统功耗,本申请实施例通过周期性发送保活报文既可以确保中继设备与云端服务器保持连接,又合理降低了系统功耗。应当理解,路由器存在老化周期,每超过老化周期路由器中存储的关于终端设备的特征信息(例如ARP表、NAT表等)就会清除,为了避免路由器老化,中继设备给路由器发送DHCP续约报文和免费ARP报文的周期要小于路由器的老化周期,本申请实施例对中继设备向路由器发送报文的周期不作具体限定。
示例性的,中继设备代理终端设备向云端服务器发送云端保活报文,使得云端服务器认为终端与云端服务器处于连接状态。可选的,中继设备发送云端保活报文的周期可以为30秒至60秒。
步骤2、终端设备通过第一通信链路与中继设备协商待机参数和唤醒参数等。
示例性的,待机参数包括终端设备待机期间中继设备向终端设备发送终端保活报文的周期,可选的,保活报文还可以称为心跳包;示例性的,待机期间中继设备向终端设备发送终端保活报文的周期可以为5秒至10秒,但是本申请实施例对心跳周期的具体数值不作具体限定。
示例性的,唤醒参数可以包括唤醒随机码、唤醒随机数等参数,唤醒随机数为终端从待机状态被唤醒时的验证随机数,终端通过验证唤醒随机数可提高唤醒过程的安全性。
步骤3、终端设备通过第一通信链路向中继设备发送第二通知信息,该第二通知信息用于通知中继设备终端设备将关闭用于高速传输的WIFI模组中的RF模块,中继设备开启允许设备在线不超时功能,即中继设备不限定终端设备的在线时长,并与终端设备保持在网络通信的连接状态。其中,在线不超时功能可以理解为中继设备设置相关参数,即使超过预设时限未进行业务通信,也不判定终端设备为下线状态。
步骤4、终端设备关闭用于高速传输的WIFI模组中的RF模块。
应当理解,当终端设备处于正常业务模式时,由高速传输的WIFI模组完成数据和信息传输在内的网络通信功能,WIFI模组内部包含MCU、RF发送器、RF接收器等,当终端设备进入待机模式时,为了尽可能降低终端设备的功耗,关闭用于进行高速数据传输的RF模块并停止收发数据,只保留很少的供电以维持WIFI模组的内存刷新,此时终端设备的WIFI模组处于超低功耗模式,在一种可选的情况中,处于超低功耗模式的WIFI模组的工作电流大约只有10微安至20微安。应当理解,超低功耗模式与下电模式不同,由于WIFI模组内存始终在刷新,当有业务需求时终端设备的WIFI模组可以迅速恢复正常业务模式。
步骤5、终端设备下电主控CPU,终端进入待机模式。
步骤6、终端设备通过第二通信链路接受并应答中继设备发送的终端保活报文。
示例性的,终端设备进入待机模式之后,低速通信的RF模组通过第二通信链路接收中继设备发送的终端保活报文,并向中继设备发送应答报文,可选的,终端设备向中继设备发送 的应答报文可以是ACK报文,ACK报文形式简单,通常只占用4个字节或8个字节,而正常的保活报文(例如中继设备发送的云端保活报文和终端保活报文)需要占用十几个字节。应当理解,为了进一步降低终端设备在待机模式下的功耗,由中继设备向终端设备发送保活报文,终端设备只需要发送形式更简单的应答报文即可。即中继设备通过保活报文询问终端设备是否在线,终端设备只需要回答是即可,应答信息更简单,功耗更低。当中继设备收不到终端设备的回应时,则认为终端设备断线,此时中继设备停止向云端服务器发送云端保活报文,终端与云端服务器断开连接。当中继设备收到终端设备的回应时,则中继设备认为终端设备处于在线状态,并通过向云端服务器发送云端保活报文使终端设备与云端服务器保持连接状态。
可选的,中继设备向终端设备发送终端保活报文是周期性发送的,示例性的,该发送周期可以是步骤2中协商得到的。在一种可选的情况中,为了尽可能缩短唤醒终端所需的时间,在有业务需求时使终端尽快恢复到正常业务模式,终端低速RF模组每隔0.5秒至1秒启动一次,以用于接收和应答唤醒报文或保活报文。
在一个可选地情况下,终端在待机状态下,低速RF模组的工作电流为30微安至40微安,显著低于终端通过高速WIFI模组进行心跳保活时的工作电流约为300微安至400微安。
步骤7、云端服务器向中继设备发送第一唤醒报文。
当需要唤醒终端时,云端构建第一唤醒报文并发送给中继设备,第一唤醒报文中携带了待唤醒的终端设备的设备ID,此外,还可以携带唤醒周期,唤醒周期可以由云端确定,用于指示中继设备根据该唤醒周期发送唤醒报文给终端设备,唤醒周期的具体数值此处不做限定。可选的,该唤醒报文经由路由器按照唤醒周期定期发送给中继设备代理模块。
步骤8、中继设备基于接收到的第一唤醒报文构建第二唤醒报文。
中继设备接收到云端发送的唤醒报文后,从唤醒报文中解析获取需要唤醒的终端的设备ID,中继设备根据该设备ID获取终端设备的网络通信的相关参数,在一种可选的情况中,中继设备从WIFI模组高速通信模块的HOSPPAD处获得终端设备的网络通信的相关参数;中继设备基于解析结果构建第二唤醒报文,该第二唤醒报文可以包括设备ID、解析得到的网络通信的相关参数以及之前协商的唤醒特征码和唤醒随机数等,示例性的,网络通信的相关参数可以包括第一通信链路的信道参数、终端设备的地址参数等,该参数可用于终端设备与中继设备快速通过第一通信链路建立通信连接,以恢复正常业务模式。唤醒特征码为预设的用于识别唤醒报文的标识,例如云端可以通过向中继设备发送010101告知中继设备唤醒终端设备,该010101即为唤醒特征码。
步骤9、中继设备通过第二通信链路向终端设备发送第二唤醒报文。
中继设备通过第二通信链路向该设备ID对应的终端唤醒模块发送第二唤醒报文。
步骤10、终端设备接收到第二唤醒报文后,验证第二唤醒报文中携带的唤醒随机数与预设或协商的唤醒随机数是否一致,如果一致,则终端主控CPU上电;如果不一致,则终端仍然处于待机模式。终端开启高速WIFI模组中下电的部分上电,并开启RF模块,进入正常业务模式,可选的,终端设备基于第二唤醒报文中的信道、地址参数与中继设备快速建立通信连接,并恢复通过第一通信链路进行业务通信。
步骤11、终端设备通过第一通信链路向中继设备发送第三通知消息,第三通知消息用于 通知中继设备停止代理终端设备向云端发送保活报文,终端设备进入业务服务模式,例如可以进行登录业务、推送业务和点播业务等业务。
图5对应的实施例从待机控制系统的角度对待机控制方法中终端设备和中继设备执行的步骤进行了介绍,下面将从终端设备和中继设备的模块角度介绍待机控制方法,基于图2所示的终端联网架构图,请参阅图6,为本申请实施例提供的待机控制方法的另一个交互流程图。
需要说明的是,本实施例中中继设备代理模块可以集成在中继设备第一通信模块中实现,或集成与其他模块中,中继设备代理模块的具体实现形式此处不做限定。
601、终端主控模块向中继设备代理模块发送通知消息;
终端在业务服务模式下,可以通过中继设备、路由器与云端进行通信连接。终端通过终端网络通信模块与中继设备网络通信模块之间的第一通信链路传输数据。示例性的,第一通信链路为高速传输链路,传输速率大于10兆每秒。
当终端收到待机指令后,终端主控模块通过该第一通信链路向中继设备代理模块发送通知消息,通知中继设备代理模块进行云端待机保活代理,该云端待机保活代理用于使该终端与云端保持连接状态。
602、中继设备代理模块向云端发送报文;
中继设备代理模块收到终端主控模块发送的通知消息后,开启云端待机保活代理。
需要说明的是,中继设备代理模块位于中继设备中,中继设备代理模块向云端发送报文实际上是由中继设备代理模块通过中继设备网络通信模块向云端发送该报文,可选的,中继代理模块发送的报文经由路由器传送给云端。
本实施例中,云端待机保活代理可以包括以下几个方面:
1、中继设备代理模块通过路由器向云端定期发送保活报文,用于保持终端与云端的连接;
2、中继设备代理模块定期向路由器发送DHCP续约报文和免费ARP报文,保持终端与路由器的连接,其中,DHCP续约报文可用于IP地址续约租期,免费ARP报文用于防止路由器ARP表老化。
其中,中继设备代理模块发送保活报文的周期可以由中继设备与云端通过保活报文协商,发送DHCP续约报文和免费ARP报文的周期可以由中继设备代理模块与路由器协商或者由中继设备代理模块按照预设周期发送,此处对中继设备代理模块发送保活报文、DHCP续约报文和免费ARP报文的周期不作具体限定,示例性的,中继代理模块向云端发送报文的周期可以是30秒至60秒。应当理解,通过设置时间间隔定期发送保活报文是为了降低功耗,设置合适的时间间隔既可以确保中继设备和云端保持连接又合理降低了系统功耗。
603、终端主控模块向中继设备唤醒模块发送通知消息;
终端主控模块通过第一通信链路向中继设备唤醒模块发送待机通知消息。中继设备唤醒模块根据该待机通知消息与终端唤醒模块建立第二通信链路。终端主控模块可以在待机通知消息中携带心跳周期和唤醒随机数,或者,终端主控模块和中继设备唤醒模块通过报文协商心跳周期和唤醒随机数等参数。
其中,心跳周期为终端待机模式时,终端唤醒模块与中继设备唤醒模块之间发送心跳包的周期,在一种可选的情况中,终端唤醒模块与中继唤醒模块发送心跳包的周期可以为5秒 至10秒,但是本申请实施例对心跳周期的具体数值不作具体限定。
唤醒随机数为终端从待机状态被唤醒时的验证随机数,终端通过验证唤醒随机数可提高唤醒过程的安全性。
需要说明的是,步骤601与步骤603之间的执行顺序不做限定,可以先执行步骤601再执行步骤603;也可以先执行步骤603,再执行步骤601。
604、中继设备唤醒模块向中继网络通信模块发送通知消息;
该通知信息用于告知中继网络通信模块,终端将进入待机模式。中继网络通信模块接收中继设备唤醒模块发送的通知消息后,开启允许设备在线不超时功能。其中,在线不超时功能是指中继网络通信模块设置相关参数,保持终端网络通信模块为上线状态,即使超过预设时限未进行业务通信,也不判定终端下线。
605、终端主控模块向终端网络通信模块发送消息;
终端主控模块向终端网络通信模块发送通知消息,用于指示终端网络通信模块进入待机模式。
606、终端网络通信模块进入待机模式;
终端网络通信模块收到终端主控模块发送的通知消息后进入待机模式。
应当理解,处于待机模式的网络通信模块关闭了大部分功能模块的供电,仅保留很少一部分供电用于维持内存刷新。示例性的,处于待机模式的终端网络通信模块关闭射频模块不再发射或接收射频信号,且终端网络通信模块的CPU断电,不再处理通信业务,处于待机模式的终端网络通信模块的功耗很低,在一种可选的情况中,此状态的终端网络通信模块的工作电流大约只有10微安(uA)至20微安(uA)。
但是处于待机模式的终端网络通信模块并没有完全断电,会保留一部分模块处于耗电状态,只维持内存刷新,以便当通信需求出现时,可以迅速恢复正常业务模式。
607、终端主控模块向终端唤醒模块发送通知消息;
终端主控模块向终端唤醒模块发送通知消息,通知终端唤醒模块终端将进入待机模式,终端唤醒模块设置相关参数,使得唤醒模块可以接收和应答中继设备唤醒模块发送的保活报文。
608、终端主控模块下电;
终端主控模块下电,终端进入待机状态。
609、中继设备唤醒模块向终端唤醒模块发送保活报文;
中继设备唤醒模块通过第二通信链路按照协商的心跳周期向终端唤醒模块发送保活报文,中继设备唤醒模块发送保活报文的周期具体不做限定,例如,发送周期可以为0.5秒至1秒,确保终端可以在接到云端的通信需求时及时被唤醒。
需要说明的是,步骤609与步骤604的执行顺序不做具体限定,可以先执行步骤604再执行步骤609,可以先执行步骤609再执行步骤604,或者可以并行执行步骤604与步骤609。
610、终端唤醒模块向中继设备唤醒模块发送应答信息;
终端唤醒模块收到中继设备唤醒模块定期发送的保活报文后,终端唤醒模块将通过第二通信链路向中继设备唤醒模块发送应答信息,中继设备唤醒模块接收到终端唤醒模块发送的应答信息后,可以确认终端与中继设备仍保持连接。在终端待机状态下,终端通过终端唤醒 模块与中继设备唤醒模块进行心跳保活,在一个可选地情况下,终端唤醒模块的工作电流为30微安至40微安,显著低于终端通过网络通信模块进行心跳保活时约为300微安至400微安的工作电流。
611、云端向中继设备代理模块发送唤醒报文;
当需要唤醒终端时,云端构建唤醒报文并发送给中继设备代理模块,唤醒报文中携带了待唤醒的终端的设备ID,此外,还可以携带唤醒周期,唤醒周期可以由云端确定,用于指示中继设备根据该唤醒周期发送唤醒报文给终端,唤醒周期的具体数值此处不做限定。该唤醒报文经由路由器按照唤醒周期定期发送给中继设备代理模块。
612、中继设备代理模块向中继设备唤醒模块发送唤醒消息;
中继设备代理模块接收到云端发送的唤醒报文后,从唤醒报文中解析获取需要唤醒的终端的设备ID,然后给中继设备唤醒模块发送携带设备ID的唤醒消息。
613、中继设备唤醒模块获取中继设备网络通信模块的信道参数;
中继设备唤醒模块接收中继设备网络通信模块发送的携带设备ID信息的唤醒消息,中继设备唤醒模块根据设备ID从中继设备网络通信模块中获取中继设备网络通信模块的信道、地址等参数,该参数为可用于终端网络通信模块与中继设备网络通信模块建立通信连接的相关参数。
614、中继设备唤醒模块向终端唤醒模块发送唤醒报文;
中继设备唤醒模块构建唤醒报文,并通过第二通信链路向该设备ID对应的终端唤醒模块发送唤醒报文,唤醒报文中可以携带中继设备网络通信模块的信道参数,可选地,信道参数可以包括信道、地址等信息,可选地,唤醒报文中还可以携带唤醒特征码和唤醒随机数等。唤醒特征码为预设的用于识别唤醒报文的标识。终端唤醒模块验证唤醒随机数是否与终端主控模块预设或协商确定的唤醒随机数一致,若一致,则终端唤醒模块对终端进行唤醒;若不一致,则终端唤醒模块不对终端进行唤醒。
615、终端唤醒模块唤醒主控模块;
终端唤醒模块接收唤醒报文,并根据唤醒报文唤醒终端主控模块,终端主控模块上电。
616、终端唤醒模块唤醒终端网络通信模块;
终端唤醒模块接收唤醒报文后,可根据唤醒报文唤醒终端网络通信模块,网络通信模块下电部分重新上电,并开启射频模块,进入正常业务模式。可选地,终端唤醒模块向终端网络通信模块发送通知消息,通知消息中可以携带中继设备网络通信模块的信道参数。网络通信模块可以根据该信道参数快速恢复通过第一通信链路进行业务通信。
617、终端主控模块向中继设备网络通信模块发送通知消息;
终端主控模块通过第一通信链路向中继设备网络通信模块发送通知消息,通知中继设备网络通信模块终止终端保活代理,终端进入业务服务模式,可以进行例如登录业务、推送业务和点播业务等业务。
本申请实施例提供的待机控制方法,通过增加终端第二通信模块和中继设备,在在待机模式时,终端第一通信模块进入超低功耗待机模式,终端通过终端第二通信模块与中继设备保持心跳连接。由于终端第二通信模块较终端第一通信模块功耗低,因此,终端待机状态时的功耗降低。
上述实施例介绍了待机控制方法,下面将对实现该待机控制方法的终端进行介绍,请参阅图7,为本申请实施例提供的一种待机控制的终端的示意图。
包括:终端主控模块701、终端第一通信模块702和终端第二通信模块703;
该终端主控模块701用于控制终端进入待机模式,具体请参考方法实施例部分对步骤601、步骤603、步骤605至步骤608部分和步骤617的描述,此处不再赘述。
终端第一通信模块702用于业务通信模式时传输数据,当终端进行待机模式时,终端第一通信模块702将停止工作,具体请参考方法实施例部分对步骤606与步骤616部分的描述,此处不再赘述。
终端第二通信模块703用于执行终端待机模式时的心跳保活功能与将终端从待机模式下唤醒,具体请参考方法实施例部分对步骤607、步骤610、步骤615和步骤616部分的描述,此处不再赘述。本申请实施例中,终端在待机模式时,通过终端第二通信模块403与中继设备进行心跳保活,终端第一通信模块则关闭射频,终端主控模块401下电,由于终端第二通信模块403待机功耗较终端第一通信模块低,终端待机模式下功耗降低。
上面介绍了实现待机控制方法的终端,下面对实现待机控制方法的中继设备进行介绍,请参阅图8,本申请实施例中中继设备的一个实施例示意图。
该中继设备包括:中继设备第一通信模块801、中继设备第二通信模块802和中继设备代理模块803。
中继设备第一通信模块801用于在终端业务服务模式时为终端与云端提供连接传输数据,具体请参考方法实施例部分对步骤604、步骤605至步骤608部分和步骤617的描述,此处不再赘述。
中继设备第二通信模块802用于与终端第二通信模块配合执行终端待机模式时的心跳保活功能,并将终端从待机模式下唤醒,具体请参考方法实施例部分对步骤603、步骤604、步骤609、步骤610和步骤612至步骤614部分的描述,此处不再赘述。
中继设备代理模块803该中继设备第一通信模块801用于在终端进入待机模式后代理终端与云端保持连接,并接收云端唤醒消息,具体请参考方法实施例部分对步骤601、步骤602、步骤611和步骤612部分的描述,此处不再赘述。
需要说明的是,本实施例中中继设备代理模块803可以集成在中继设备第一通信模块801中实现,此处不再赘述。
本申请实施例中,中继设备在终端进入待机模式时,可以通过中继设备第二通信模块802保持与终端的心跳连接,还可以通过中继设备代理模块803进行云端待机保活代理,使得终端在待机模式时仍保持与中继设备、路由器和云端的连接,在唤醒时可以快速恢复业务通信。通过中继设备第二通信模块802与终端第二通信模块进行通信还可以降低终端待机模块的功耗。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结 合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述任一个方法中的一个或多个步骤。上述终端或中继设备的各组成模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在所述计算机可读取存储介质中。
基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (40)

  1. 一种待机控制的系统,其特征在于,所述系统包括:终端设备和中继设备;
    所述终端设备,用于在进入待机模式之前,通过第一通信链路向所述中继设备发送第一通知信息;
    所述中继设备,用于根据所述第一通知信息代理所述终端设备向云端服务器发送第一保活报文,使得所述云端服务器确认所述终端设备在线;
    所述终端设备,还用于关闭所述第一通信链路以及主控中央处理单元CPU;
    所述中继设备,还用于通过第二通信链路向所述终端设备发送第二保活报文;
    所述终端设备,还用于通过所述第二通信链路向所述中继设备发送所述第二保活报文的应答信息,使所述中继设备确认所述终端设备在线;
    其中,所述第二通信链路的通信速率低于所述第一通信链路的通信速率。
  2. 根据权利要求1所述的系统,其特征在于,
    所述终端设备,还用于通过所述第二通信链路接收所述中继设备发送的唤醒报文;
    所述终端设备,还用于根据所述唤醒报文打开所述主控CPU和启用所述第一通信链路。
  3. 根据权利要求1或2所述的系统,其特征在于,所述关闭所述第一通信链路包括关闭用于高速传输数据的RF模块。
  4. 根据权利要求2或3所述的系统,其特征在于,所述唤醒报文包括所述第一通信链路的信道参数;
    所述终端设备具体用于根据所述信道参数开启所述第一通信链路,以通过所述第一通信链路与所述中继设备进行业务通信。
  5. 根据权利要求3或4所述的系统,其特征在于,在所述终端设备关闭所述第一通信链路之前,
    所述终端设备,还用于通过所述第一通信链路向所述中继设备发送第二通知信息,用于告知所述中继设备将关闭所述RF模块;
    所述中继设备,还用于在接收所述第二通知信息之后设置所述终端设备在所述第一通信链路中为在线状态。
  6. 根据权利要求1至5中任一项所述的系统,其特征在于,当所述中继设备超过预设时限未收到所述终端设备对所述第二保活报文的应答信息时,
    所述中继设备,还用于停止向所述云端服务器发送所述第一保活报文,以使所述终端设备与所述云端服务器断开连接。
  7. 根据权利要求1至6中任一项所述的系统,其特征在于,所述第二保活报文的应答信息所占用的通信资源小于所述第二保活报文所占用的通信资源。
  8. 根据权利要求1至7中任一项所述的系统,其特征在于,在所述终端设备关闭所述第一通信链路之前,
    所述终端设备,还用于通过所述第一通信链路与所述中继设备协商心跳周期;
    所述中继设备,具体用于根据所述心跳周期,通过所述第二通信链路向所述终端设备发送所述第二保活报文。
  9. 一种待机控制方法,其特征在于,包括:
    接收待机指令后,通过第一通信链路向中继设备发送第一通知消息,所述第一通知信息用于指示所述中继设备代理所述终端设备向云端服务器发送第一保活报文,使所述云端服务器确认所述终端设备在线;
    关闭所述第一通信链路以及主控中央处理单元CPU;
    接收所述中继设备通过第二通信链路发送的第二保活报文,并返回所述第二保活报文的应答信息,使所述中继设备确认所述终端设备在线;
    所述第二通信链路的通信速率低于所述第一通信链路的通信速率。
  10. 根据权利要求9所述的待机控制方法,其特征在于,所述关闭主控中央处理单元CPU之后,所述方法还包括:
    接收所述中继设备通过所述第二通信链路发送的唤醒报文;
    根据所述唤醒报文通知所述主控CPU上电;
    根据所述唤醒报文启用所述第一通信链路。
  11. 根据权利要求9或10所述的方法,其特征在于,所述关闭所述第一通信链路包括关闭用于高速传输数据的RF模块。
  12. 根据权利要求10或11所述的方法,其特征在于,所述唤醒报文包括所述第一通信链路的信道参数;
    根据所述信道参数开启所述第一通信链路,以通过所述第一通信链路与所述中继设备进行业务通信。
  13. 根据权利要求11或12所述的方法,其特征在于,在所述关闭所述第一通信链路之前,所述方法还包括:
    通过所述第一通信链路向所述中继设备发送第二通知信息,用于告知所述中继设备将关闭所述RF模块。
  14. 根据权利要求9至13中任一项所述的方法,其特征在于,所述第二保活报文的应答信息所占用的通信资源小于所述第二保活报文所占用的通信资源。
  15. 根据权利要求9至14中任一项所述的方法,其特征在于,在所述关闭所述第一通信链路之前,所述方法还包括:
    通过所述第一通信链路与所述中继设备协商心跳周期;
    所述接收所述中继设备通过第二通信链路发送的第二保活报文具体包括:
    接收所述中继设备通过所述第二通信链路根据所述心跳周期发送的所述第二保活报文。
  16. 一种待机控制方法,其特征在于,包括:
    接收终端设备通过第一通信链路发送的第一通知消息;
    在所述第一通知消息的指示下,代理所述终端设备向云端服务器发送第一保活报文,使所述云端服务器确认所述终端设备在线;
    通过第二通信链路向所述终端设备发送第二保活报文;
    通过所述第二通信链路接收所述终端设备返回的所述第二保活报文的应答信息,并基于所述应答信息确认所述终端设备在线;
    其中,所述第二通信链路的通信速率低于所述第一通信链路的通信速率。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    通过所述第二通信链路向所述终端设备发送唤醒报文,使得所述终端设备根据所述唤醒报文打开所述主控CPU和启用所述第一通信链路。
  18. 根据权利要求17所述的方法,其特征在于,所述启用所述第一通信链路包括打开用于高速传输数据的RF模块。
  19. 根据权利要求17或18所述的方法,其特征在于,所述唤醒报文包括所述第一通信链路的信道参数;
    在所述终端设备根据所述信道参数开启所述第一通信链路之后,通过所述第一通信链路与所述终端设备进行业务通信。
  20. 根据权利要求16至19中任一项所述的方法,其特征在于,在所述通过第二通信链路向所述终端设备发送第二保活报文之前,所述方法还包括:
    接收所述终端设备通过所述第一通信链路发送的第二通知消息;
    根据所述第二通知消息设置所述终端设备在所述第一通信链路中为连接状态。
  21. 根据权利要求16至20中任一项所述的方法,其特征在于,当超过预设时限未收到所述终端设备返回的所述第二保活报文的应答信息时,
    停止向所述云端服务器发送所述第一保活报文,使得所述终端设备与所述云端服务器断开连接。
  22. 根据权利要求16至21中任一项所述的方法,其特征在于,所述第二保活报文的应答信息所占用的通信资源小于所述第二保活报文所占用的通信资源。
  23. 根据权利要求16至22中任一项所述的方法,其特征在于,在所述通过第二通信链路向所述终端设备发送第二保活报文之前,所述方法还包括:
    通过所述第一通信链路与所述终端设备协商心跳周期;
    所述通过第二通信链路向所述终端设备发送第二保活报文具体包括:
    根据所述心跳周期,通过所述第二通信链路向所述终端设备发送所述第二保活报文。
  24. 一种待机控制的终端设备,其特征在于,包括:主控模块、第一通信模块和第二通信模块;
    所述主控模块用于,接收待机指令后,控制所述第一通信模块通过第一通信链路向中继设备发送第一通知消息,所述第一通知信息用于指示所述中继设备代理所述向云端服务器发送第一保活报文,所述第一通信链路为所述第一通信模块与所述中继设备之间的通信链路;
    所述主控模块还用于,关闭所述第一通信链路以及主控中央处理单元CPU;
    所述第二通信模块用于,接收所述中继设备通过第二通信链路发送的第二保活报文,并返回所述第二保活报文的应答信息,使所述中继设备确认所述终端设备在线;
    所述第二通信链路为所述第二通信模块与所述中继设备之间的通信链路,所述第二通信链路的通信速率低于所述第一通信链路的通信速率。
  25. 根据权利要求24所述的终端设备,其特征在于,所述第二通信模块还用于:
    接收所述中继设备通过所述第二通信链路发送的唤醒报文;
    根据所述唤醒报文通知所述主控模块打开所述CPU;
    根据所述唤醒报文通知所述主控模块启用所述第一通信链路。
  26. 根据权利要求24或25所述的终端设备,其特征在于,所述关闭所述第一通信链路 包括:
    所述第一通信模块关闭用于高速传输数据的RF模块。
  27. 根据权利要求25或26所述的终端设备,其特征在于,所述唤醒报文包括所述第一通信链路的信道参数;
    所述第一通信模块还用于:
    根据所述信道参数开启所述第一通信链路,以通过所述第一通信链路与所述中继设备进行业务通信。
  28. 根据权利要求26或27所述的终端设备,其特征在于,所述主控模块还用于:
    通过所述第一通信链路向所述中继设备发送第二通知信息,用于告知所述中继设备将关闭所述RF模块。
  29. 根据权利要求25至28中任一项所述的终端设备,其特征在于,所述主控模块还用于:
    通过所述第一通信链路与所述中继设备协商心跳周期;
    所述第二通信模块具体用于:
    接收所述中继设备通过所述第二通信链路根据所述心跳周期发送的所述第二保活报文。
  30. 一种中继设备,其特征在于,包括第一通信模块和第二通信模块;
    所述第一通信模块用于,接收终端设备通过第一通信链路发送的第一通知消息;
    所述第一通信模块还用于,根据所述第一通知消息,代理所述终端设备向所述云端服务器发送第一保活报文,使所述云端服务器确认所述终端设备在线;
    所述第二通信模块用于,通过第二通信链路向所述终端设备发送第二保活报文;
    所述第二通信模块还用于,通过所述第二通信链路接收所述终端设备返回的所述第二保活报文的应答信息,并基于所述应答信息确认所述终端设备在线;
    其中,所述第二通信链路的通信速率低于所述第一通信链路的通信速率。
  31. 根据权利要求30所述的中继设备,其特征在于,所述第二通信模块还用于:
    通过所述第二通信链路向所述终端设备发送唤醒报文,使得所述终端设备根据所述唤醒报文打开所述主控CPU和启用所述第一通信链路。
  32. 根据权利要求31所述的中继设备,其特征在于,所述启用所述第一通信链路包括打开用于高速传输数据的RF模块。
  33. 根据权利要求31或32所述的中继设备,其特征在于,所述唤醒报文包括所述第一通信链路的信道参数;
    所述第一通信模块还用于:
    在所述终端设备根据所述信道参数开启所述第一通信链路之后,通过所述第一通信链路与所述终端设备进行业务通信。
  34. 根据权利要求32或33所述的中继设备,其特征在于,所述第一通信模块还用于:
    接收所述终端设备通过所述第一通信链路发送的第二通知消息,得知所述终端设备将关闭所述RF模块;
    根据所述第二通知消息设置所述终端设备在所述第一通信链路中为在线状态。
  35. 根据权利要求30至34中任一项所述的中继设备,其特征在于,所述第一通信模块 还用于,当所述第二通信模块超过预设时限未收到所述终端设备返回的所述第二保活报文的应答信息时,停止向所述云端服务器发送所述第一保活报文,使得所述终端设备与所述云端服务器断开连接。
  36. 根据权利要求30至35中任一项所述的中继设备,其特征在于,所述第二通信模块还用于:
    在所述第二通信模块通过第二通信链路向所述终端设备发送第二保活报文之前,通过所述第一通信链路与所述终端设备协商心跳周期;
    所述第二通信模块还用于,根据所述心跳周期,通过所述第二通信链路向所述终端设备发送所述第二保活报文。
  37. 一种终端设备,其特征在于,包括:主处理器和从处理器;
    所述主处理器,用于被配置为读取存储器中的软件指令,执行所述软件指令以实现如下操作:
    在接收待机指令后,通过第一通信链路向中继设备发送第一通知消息,所述第一通知信息用于指示所述中继设备代理所述终端设备向云端服务器发送第一保活报文,使所述云端服务器确认所述终端设备在线;
    关闭所述第一通信链路以及主控中央处理单元CPU;
    所述从处理器,用于接收所述中继设备通过第二通信链路发送的第二保活报文,并返回所述第二保活报文的应答信息,使所述中继设备确认所述终端设备在线,所述第二通信链路的通信速率低于所述第一通信链路的通信速率。
  38. 一种中继设备,其特征在于,包括:通信处理器和从处理器;
    所述主处理器,用于被配置为读取存储器中的软件指令,执行所述软件指令以实现如下操作:
    接收终端设备通过第一通信链路发送的第一通知消息;
    在所述第一通知消息的指示下,代理所述终端设备向云端服务器发送第一保活报文,使所述云端服务器确认所述终端设备在线;
    所述从处理器,用于通过第二通信链路向所述终端设备发送第二保活报文;
    通过所述第二通信链路接收所述终端设备返回的所述第二保活报文的应答信息,并基于所述应答信息确认所述终端设备在线;
    其中,所述第二通信链路的通信速率低于所述第一通信链路的通信速率。
  39. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在计算机或处理器上运行时,使得所述计算机或所述处理器执行如权利要求9至23中任一项所述的方法。
  40. 一种计算机可读存储介质,所述计算机可读存储介质中存储有程序指令,其特征在于,当所述程序指令在计算机或处理器上运行时,使得所述计算机或所述处理器执行如权利要求9至23中任一项所述的方法。
PCT/CN2019/076930 2018-05-31 2019-03-05 待机控制方法、系统、终端设备和中继设备 WO2019227998A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19810735.1A EP3761716B1 (en) 2018-05-31 2019-03-05 Standby control method and terminal device and relay device
EP23165252.0A EP4243511A3 (en) 2018-05-31 2019-03-05 Standby control method and terminal device and relay device
US17/105,078 US11789514B2 (en) 2018-05-31 2020-11-25 Standby control method and system, terminal, and relay device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810553415.X 2018-05-31
CN201810553415.XA CN110557263B (zh) 2018-05-31 2018-05-31 待机控制方法、系统、终端设备和中继设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/105,078 Continuation US11789514B2 (en) 2018-05-31 2020-11-25 Standby control method and system, terminal, and relay device

Publications (1)

Publication Number Publication Date
WO2019227998A1 true WO2019227998A1 (zh) 2019-12-05

Family

ID=68698654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076930 WO2019227998A1 (zh) 2018-05-31 2019-03-05 待机控制方法、系统、终端设备和中继设备

Country Status (4)

Country Link
US (1) US11789514B2 (zh)
EP (2) EP4243511A3 (zh)
CN (1) CN110557263B (zh)
WO (1) WO2019227998A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115989696A (zh) * 2020-08-28 2023-04-18 华为技术有限公司 一种通信的方法及装置
EP4184822A4 (en) * 2020-08-18 2024-01-03 Huawei Tech Co Ltd METHOD AND APPARATUS FOR KEEPING A USER TERMINAL ALIVE

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113133095B (zh) * 2020-01-15 2022-08-26 华为技术有限公司 一种降低移动终端功耗的方法及移动终端
CN113473231B (zh) * 2020-03-31 2023-08-08 海信视像科技股份有限公司 电视开机方法及装置
CN114025011B (zh) * 2021-11-22 2024-04-16 北京小米移动软件有限公司 设备控制方法、设备控制装置及存储介质
US11902138B2 (en) * 2022-01-26 2024-02-13 Getac Technology Corporation Connection maintenance method for internet of things device
WO2023197216A1 (zh) * 2022-04-13 2023-10-19 京东方科技集团股份有限公司 驱动电路、电子设备及其通信方法
CN115529654A (zh) * 2022-06-28 2022-12-27 青岛海尔智能家电科技有限公司 用于待机通信的方法、装置、存储介质和中继设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102939782A (zh) * 2010-06-02 2013-02-20 高通股份有限公司 无线链路上的应用代理支持
CN103283300A (zh) * 2011-01-03 2013-09-04 高通股份有限公司 使用来自代理设备的辅助的无线客户端终端中的性能改善
CN105072029A (zh) * 2015-08-31 2015-11-18 浪潮(北京)电子信息产业有限公司 一种双活双控存储系统的冗余链路设计方法及系统
CN105637919A (zh) * 2013-06-11 2016-06-01 七网络有限责任公司 优化无线网络中的保活和其他后台流量

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7768939B1 (en) * 2007-01-02 2010-08-03 Juniper Networks, Inc. Network proxy with asymmetric connection connectivity
CN101374139A (zh) * 2007-08-22 2009-02-25 华为技术有限公司 代理设备、会话存活检测方法及系统
US8934404B2 (en) * 2008-03-03 2015-01-13 Qualcomm Incorporated Access point with proxy functionality for facilitating power conservation in wireless client terminals
US9402277B2 (en) * 2008-03-03 2016-07-26 Qualcomm Incorporated Proxy server for facilitating power conservation in wireless client terminals
JP5158600B2 (ja) * 2008-10-15 2013-03-06 国立大学法人名古屋大学 通信装置、通信システム及び通信方法
PL3367252T3 (pl) * 2010-07-26 2020-05-18 Seven Networks, Llc Zarządzanie ruchem z uwzględnieniem kontekstu w celu zaoszczędzenia zasobów w sieci bezprzewodowej
US8886176B2 (en) * 2010-07-26 2014-11-11 Seven Networks, Inc. Mobile application traffic optimization
US9525742B2 (en) * 2011-06-14 2016-12-20 Interdigital Patent Holdings, Inc. Method and apparatus for efficiently maintaining communications connectivity for a plurality of applications
US8566625B2 (en) * 2011-07-01 2013-10-22 Intel Corporation System and method for determining transmitting frequency to maintain remote application server connectivity
JP6290053B2 (ja) * 2014-09-18 2018-03-07 株式会社東芝 通信装置、通信システムおよび通信方法
CN106998270B (zh) * 2017-05-16 2019-12-31 北京京东尚科信息技术有限公司 无人机通信系统以及无人机服务器的通信系统
CN107645556B (zh) * 2017-09-26 2018-12-07 中国联合网络通信有限公司广东省分公司 一种实现sdn转控分离的宽带接入与保活方法及装置
US11089114B1 (en) * 2017-09-29 2021-08-10 Amazon Technologies, Inc. Message frequency modification for connection maintenance
WO2019127103A1 (en) * 2017-12-27 2019-07-04 Telefonaktiebolaget Lm Ericsson (Publ) Connection establishement in a cellular network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102939782A (zh) * 2010-06-02 2013-02-20 高通股份有限公司 无线链路上的应用代理支持
CN103283300A (zh) * 2011-01-03 2013-09-04 高通股份有限公司 使用来自代理设备的辅助的无线客户端终端中的性能改善
CN105637919A (zh) * 2013-06-11 2016-06-01 七网络有限责任公司 优化无线网络中的保活和其他后台流量
CN105072029A (zh) * 2015-08-31 2015-11-18 浪潮(北京)电子信息产业有限公司 一种双活双控存储系统的冗余链路设计方法及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4184822A4 (en) * 2020-08-18 2024-01-03 Huawei Tech Co Ltd METHOD AND APPARATUS FOR KEEPING A USER TERMINAL ALIVE
CN115989696A (zh) * 2020-08-28 2023-04-18 华为技术有限公司 一种通信的方法及装置
EP4195785A4 (en) * 2020-08-28 2023-10-11 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND APPARATUS

Also Published As

Publication number Publication date
US11789514B2 (en) 2023-10-17
EP3761716A4 (en) 2021-04-28
US20210081021A1 (en) 2021-03-18
EP4243511A2 (en) 2023-09-13
EP4243511A3 (en) 2023-10-11
CN110557263A (zh) 2019-12-10
EP3761716A1 (en) 2021-01-06
CN110557263B (zh) 2021-08-03
EP3761716B1 (en) 2023-05-10

Similar Documents

Publication Publication Date Title
WO2019227998A1 (zh) 待机控制方法、系统、终端设备和中继设备
US10860079B2 (en) Negotiating a transmit wake time
US8839015B2 (en) Systems and methods for reducing power consumption of a communication device
WO2020238423A1 (zh) 一种电子货架标签的数据通信方法、系统及相关组件
US8234510B2 (en) System and method for energy savings through emulation of wake on LAN in energy efficient ethernet
US9104406B2 (en) Network presence offloads to network interface
US20110029659A1 (en) Method and System for Network Proxy Services for Energy Efficient Networking
CN102959487B (zh) 提供用于将电子设备从低功率模式唤醒的唤醒逻辑
EP2168027A1 (en) Management method and system of low power consuming devices
US20060075269A1 (en) Distributed link-layer wake-up agent system, method, and device for universal plug and play function with low power proxy
US8650416B2 (en) Communications network with nodes having power control capability
US20020157030A1 (en) Power conservation in communication systems
US20080310337A1 (en) Periodic heartbeat communication between devices and a control point
CN102571507A (zh) 一种唤醒设备的方法、休眠代理设备及系统
CN114584707B (zh) 摄像机中无线通信组件功耗的控制方法
US9436271B2 (en) System and method for providing power-save operation in an in-home communication network
US20140126908A1 (en) System and Method for Enabling Energy Efficiency Over Ethernet Links in Consideration of Optical Network Transport Equipment
US20130308941A1 (en) Energy Efficient Ethernet Network Capability and Feature Exchange in Optical Network Links
US11832177B2 (en) Transmission system comprising first and second bridge devices
KR20130048558A (ko) 통신 단말, 프록시 장치 및 수면 제어 방법
EP3563519B1 (en) Technologies for a local network power management protocol
CN112399088B (zh) 一种利用双网络协议栈的无线网络摄像机图像传输方法
WO2019136583A1 (zh) 一种工作模式的控制方法及装置、计算机存储介质
Wasserman IT'S NOT EASY BEING" GREEN

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810735

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019810735

Country of ref document: EP

Effective date: 20201001

NENP Non-entry into the national phase

Ref country code: DE