WO2019198691A1 - Information processing device and wearable terminal - Google Patents

Information processing device and wearable terminal Download PDF

Info

Publication number
WO2019198691A1
WO2019198691A1 PCT/JP2019/015391 JP2019015391W WO2019198691A1 WO 2019198691 A1 WO2019198691 A1 WO 2019198691A1 JP 2019015391 W JP2019015391 W JP 2019015391W WO 2019198691 A1 WO2019198691 A1 WO 2019198691A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
result
information processing
graph
processing apparatus
Prior art date
Application number
PCT/JP2019/015391
Other languages
French (fr)
Japanese (ja)
Inventor
あずさ 中野
林 哲也
洋 昌谷
啓司 武田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2020513271A priority Critical patent/JPWO2019198691A1/en
Publication of WO2019198691A1 publication Critical patent/WO2019198691A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K29/00Other apparatus for animal husbandry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval

Definitions

  • the following disclosure relates to a technique for acquiring the mental state or physical state of an animal.
  • Patent Document 1 JP 2010-155166 A discloses a pulse wave diagnostic device and a pulse wave diagnostic device control method. According to Patent Document 1, the pulse wave diagnostic device and the pulse wave diagnostic device control method detect a pulse wave using a photoelectric sensor, and calculate a fluctuation of the pulse wave from the detected pulse wave.
  • the pulse wave diagnostic device control method includes a photoelectric pulse wave detector that receives transmitted light transmitted through an artery or scattered light scattered by an artery and detects a pulse wave, and the photoelectric pulse The pulse wave amplitude for each beat of the pulse wave detected by the wave detection unit is calculated, and the point of the pulse wave amplitude on the orthogonal coordinate plane formed by the two pulse wave amplitudes calculated successively is calculated. And a pulse wave amplitude Poincare calculation unit that calculates Poincare coordinates for each beat.
  • An object of the present disclosure is to provide an information processing apparatus, a state acquisition program, a server, and an information processing apparatus that can accurately grasp the mental state or physical state of an animal more accurately than in the past or more efficiently than in the past. It is to provide an information processing method.
  • a second electrode including a plurality of electrodes, a dispersion or standard deviation of the potential difference in the first period, which is obtained via the plurality of electrodes, and a second period including the period before the first period.
  • an information processing apparatus including a processor having a first determination unit that determines whether a predetermined condition is satisfied based on a variance or standard deviation of a potential difference of a period.
  • an information processing apparatus capable of grasping an animal's mental state or physical state more accurately than before or grasping more efficiently than before, and state acquisition A program, a server, and an information processing method are provided.
  • Correspondence relationship table 321A between pulsation interval RR (n) and the next pulsation interval RR (n + 1) according to the first embodiment from the Y X direction and the axis in the direction perpendicular thereto. It is an image figure which shows conversion.
  • surface which shows the standard of the product of and the ratio of standard deviation.
  • It is a flowchart which shows the 1st process sequence for calculating the respiration rate of the information processing system 1 concerning 1st Embodiment. It is an example of the relationship between the pulsation detection timing concerning 1st Embodiment, and a pulsation interval. It is an example of the power spectrum distribution concerning 1st Embodiment.
  • R relating to the determination according to the eighth embodiment is a flowchart showing a processing procedure for determining whether or not the amplitude is too large. It is a flowchart which shows the flat determination regarding the determination concerning 8th Embodiment, and the process sequence which judges whether the amplitude of R wave is too large.
  • FIG. 1 is a diagram showing an overall configuration of an information processing system 1 according to the present embodiment.
  • FIG. 1 is a diagram showing an overall configuration of an information processing system 1 according to the present embodiment.
  • the case where the state of the dog which has a respiratory arrhythmia is judged on behalf of an animal is demonstrated.
  • An information processing system 1 mainly includes electrodes 401, 402, and 403 for acquiring electrocardiograms attached to a chest of a dog, a signal processing device 500 for processing an electrocardiogram signal, and signal processing. Diagnostic terminal 300 that can communicate with apparatus 500 is included.
  • the electrodes 401, 402, and 403 for acquiring electrocardiograms are preferably attached to the chest and the like so as to sandwich the heart part.
  • the hair balls such as the paws of both front legs (or front legs and rear legs) are grown. There may be no place.
  • it is desirable that the hair is in a state of being trimmed, or has an electrode with a gel attached thereto, or a protrusion-like structure that contacts the skin even if hair is present. Or the form which induces an electrocardiogram through a capacitive material without contact in the state with hair is desirable. Thereby, even an animal whose epidermis such as a dog is covered with hair can obtain an electrocardiogram.
  • three electrodes 401, 402, and 403 are used. However, the number of electrodes may be two or more, and more electrodes may be used.
  • FIG. 2 is a diagram illustrating a functional configuration of the information processing system 1 according to the present embodiment.
  • FIG. 3 is a flowchart showing a processing procedure of the information processing system 1 according to the present embodiment.
  • the signal processing device 500 includes an electrocardiogram preprocessing unit 511, a pulsation interval calculation unit 512, and a transmission unit 560.
  • the electrocardiogram preprocessing unit 511 includes a filter and an amplifier.
  • the electrocardiogram pre-processing unit 511 converts the electrocardiogram signal sent from the electrodes 401, 402, and 403 into pulsation data, and delivers it to the pulsation interval calculation unit 512.
  • the electrocardiogram preprocessing unit 511 includes a filter device such as a high-pass filter and a low-pass filter, an amplification device including an operational amplifier, an A / D conversion device that converts an electrocardiogram analog signal into a digital signal, and the like. Is included.
  • the filter device, the amplification device, and the like may be implemented by software.
  • the beat interval calculation unit 512 is realized by, for example, a CPU (Central Processing Unit) 510 executing a memory program.
  • the pulsation interval calculation unit 512 sequentially calculates pulsation intervals based on the pulsation data. More specifically, the pulsation interval calculation unit 512 detects an electrocardiographic peak signal (R wave) by a method such as threshold detection, and calculates the interval (time) of each electrocardiographic peak.
  • the pulsation interval may be calculated by derivation of a period using an autocorrelation function or a method using a rectangular wave correlation trigger.
  • the pulsation interval calculation unit 512 continuously calculates the pulsation interval for the electrocardiogram signals that are continuously input.
  • the pulsation interval calculation unit 512 transmits the calculated pulsation interval and pulsation data itself to the diagnosis terminal 300 via the transmission unit 560.
  • the transmission unit 560 is realized by a communication interface including an antenna, a connector, and the like, for example.
  • the diagnostic terminal 300 includes a reception unit 361, a beat interval storage unit 321, a statistical processing unit 311, a graph creation unit 312, a result output unit 313, a display 330, a data storage unit 322, and a transmission unit 362. .
  • the reception unit 361 and the transmission unit 362 are realized by a communication interface 360 including an antenna, a connector, and the like, for example.
  • the receiving unit 361 receives data indicating the beat interval from the signal processing device 500 (step S102).
  • the pulsation interval storage unit 321 includes various types of memory 320 and stores data received from the signal processing device 500.
  • CPU 310 sequentially accumulates beat intervals received via communication interface 360 as a beat interval table in memory 320 (step S104).
  • these data may be stored in the memory 320 of the diagnostic terminal 300 or may be stored in another device accessible from the diagnostic terminal 300.
  • the statistical processing unit 311, the graph creation unit 312, and the result output unit 313 are realized by the CPU 310 executing a program in the memory 320, for example.
  • the statistical processing unit 311 reads out the beat interval data from the beat interval storage unit 321 in a unit of time necessary for determining the state, for example, 1 minute, 10 minutes, 1 hour, etc.
  • a correspondence table 321A between the pulsation interval RR (n) and the next pulsation interval RR (n + 1) is created (step S106).
  • the beat interval is calculated in units of msec (millisec) as shown in the figure.
  • the statistical processing unit 311 may specify an axis that maximizes the variance by a method such as principal component analysis, and may calculate a standard deviation regarding the axis and an axis perpendicular to the axis. Furthermore, the statistical processing unit 311 may calculate a standard deviation regarding the X axis and the Y axis without performing axis conversion.
  • the direction of large variance is the X-axis direction and the Y-axis direction
  • the standard deviation of the X-axis and the Y-axis is calculated without performing axis conversion, thereby evaluating the variation state of the beat interval plotted by Poincare plot. it can. In this case, since it is not necessary to perform axis conversion, the amount of calculation can be reduced.
  • the degree of variation in the pulsation interval is regarded as the degree of autonomic nerve balance.
  • the numerical value indicating the autonomic balance is not limited to the standard deviation after the axis conversion.
  • the CPU 310 performs the calculation shown in FIG. 3 for a predetermined period, for example, every few minutes, and accumulates the calculation result in the database of the memory 320 for creating a diagnostic graph to be described later.
  • the information processing system 1 concerning this Embodiment may be the form containing the server 100 with which the diagnostic terminal 300 can communicate as shown in FIG.
  • the CPU 310 as the result output unit 313 accumulates the standard deviation and the relation table in the data storage unit 322 or uses the transmission unit 362 to transmit to the server 100 via the Internet or the like.
  • the current output result can be used for grasping the short-term or long-term stress state of the observation target.
  • the graph creation unit 312 determines from the correspondence table in FIG. 5 the pulsation interval RR (n) in the range used for calculating the standard deviation and the next beat. Data with the movement interval RR (n + 1) is acquired, and Poincare plot diagrams as shown in FIGS. 8 to 11 are created.
  • the result output unit 313 displays the generated Poincare plot on an output device such as a display of the diagnostic terminal 300 or an external display.
  • the graph creation unit 312 may create and output a Poincare plot diagram after axis conversion using the result of step S108.
  • FIG. 8 is a Poincare plot in the excited state of the dog according to the present embodiment.
  • FIG. 9 is a Poincare plot in a state where the breathing is stable in the normal state of the dog according to the present embodiment.
  • FIG. 10 is a Poincare plot in the normal state of the dog according to the present embodiment.
  • FIG. 11 is a Poincare plot in the resting state of the dog according to the present embodiment.
  • the size and shape of the distribution of the plot points of the Poincare plot is indirectly estimated based on the calculation result, and whether or not the plot is often observed or reduced in the central portion.
  • the mental state or physical state of the animal can be predicted.
  • the statistical processing unit 311 calculates the degree of variation of the Poincare plot, that is, the standard deviation of the pulsation interval, as a numerical value indicating the autonomic nerve balance.
  • the variation degree refers to, for example, an index for quantifying the variation degree, represented by a dispersion value or a standard deviation.
  • the product of the two standard deviations may be calculated as a numerical value indicating the autonomic balance.
  • FIG. 12 is a flowchart showing a processing procedure of the information processing system 1 according to the present embodiment. Steps S102 to S108 are the same as those in FIG. 3, and therefore description thereof will not be repeated here.
  • the CPU 310 as the statistical processing unit 311 calculates the standard deviation for each axis after the axis conversion (step S110). Note that the statistical processing unit 311 may specify an axis that maximizes the variance and calculate a standard deviation regarding the axis and an axis perpendicular to the axis.
  • the statistical processing unit 311 calculates the product of these two standard deviations, the square root of the product, and the like as a numerical value indicating the autonomic balance (step S112).
  • surface which shows the standard of the square root of etc. and the ratio of standard deviation.
  • the result output unit 313 accumulates the standard deviation, the product of the standard deviation, the square root of the product, the correspondence table, and the like in the data storage unit 322, or uses the transmission unit 362 via the Internet or the like. To the server 100. As a result, the current output result can be used for grasping the short-term or long-term stress state of the observation target.
  • the statistical processing unit 311 calculates a product of standard deviations of two axes, a square root of the product, etc., but calculates a product of standard deviations of three or more axes or a power root thereof. Good.
  • the CPU 310 performs the calculation shown in FIG. 12 for a predetermined period, for example, every few minutes, and accumulates the calculation result in the database of the memory 320 for creating a diagnostic graph to be described later. ⁇ Calculation method of respiratory rate>
  • the CPU 310 of the diagnostic terminal 300 may calculate the respiratory rate of the target animal in addition to the information indicating the autonomic nerve balance of the target animal.
  • CPU 310 of diagnostic terminal 300 executes the following process, for example, by executing a program in memory 320.
  • the CPU 310 obtains a beat interval as shown in FIG. 4 (step S204). As shown in FIG. 15, the CPU 310 mathematically interpolates (for example, spline interpolation) the relationship between the beat detection time for one minute and the beat interval (step S206). More specifically, the CPU 310 detects an electrocardiographic peak signal (R wave) by a method such as threshold detection, and calculates an interval (time) of each electrocardiographic peak. In addition to the above, the pulsation interval may be calculated by derivation of a period using an autocorrelation function or a method using a rectangular wave correlation trigger.
  • R wave electrocardiographic peak signal
  • the pulsation interval may be calculated by derivation of a period using an autocorrelation function or a method using a rectangular wave correlation trigger.
  • the CPU 310 performs frequency analysis of the obtained function as shown in FIG. 16 (step S208).
  • the CPU 310 specifies the maximum peak of the power spectrum in an arbitrary frequency range (for example, between 0.05 and 0.5 Hz) in the power spectrum distribution as shown in FIG. 16 obtained by the frequency analysis (step S210). ).
  • the CPU 310 determines that the state is “measurable”.
  • the RRI fluctuation after the spline interpolation of a dog in a relaxed state in an indoor quiet room is as shown in FIG.
  • the power spectrum distribution in this case is as shown in FIG. 17B, and the ratio of the maximum peak compared to the second largest peak has a magnitude (for example, three times) greater than an arbitrary threshold value.
  • the CPU 310 determines that the state is “measurable”.
  • the RRI fluctuation after spline interpolation of a dog that is not calm in an outdoor noisy environment is as shown in FIG.
  • the power spectrum distribution in this case is as shown in FIG. 18B, and the ratio of the maximum peak compared to the second largest peak has a magnitude (for example, three times) greater than an arbitrary threshold value. Therefore, the CPU 310 determines that the measurement is impossible.
  • the CPU 310 determines that the measurement is impossible, the CPU 310 repeats the processing from step S106 based on the beat interval that the signal processing device 500 has already acquired for another timing.
  • the CPU 310 detects various vital data when it is determined as “measurable state”. For example, the CPU 310 calculates the respiration rate by calculating the reciprocal with the maximum peak in an arbitrary frequency range (for example, a range of 0.05 to 0.5 Hz) in the frequency analysis as the respiration frequency.
  • an arbitrary frequency range for example, a range of 0.05 to 0.5 Hz
  • the CPU 310 displays the respiration rate per unit time and outputs sound through the display 330, the speaker 370, the communication interface 360 for transmitting data to the outside, and the like. Further, the CPU 310 performs the calculation shown in FIG. 14 every predetermined period, for example, every few minutes, and accumulates the calculation result in the database of the memory 320 for creating a diagnostic graph to be described later.
  • the CPU 310 calculates the respiration rate by calculating the reciprocal of the frequency with the maximum peak frequency in the frequency analysis as the respiration frequency.
  • FIG. 19 shows the results of 60-minute respiration rate measurement.
  • the measurement result can be output every minute as shown in FIG. 19A, but the measurement result in various states is included and it is difficult to ensure the accuracy.
  • the respiration rate as shown in FIG. 19B, and obtain only the respiration rate in an appropriate state. be able to.
  • the state of the measurement subject is determined by analyzing the measurement data (for example, an electrocardiogram signal), and vital data (for example, the respiratory rate derived from the electrocardiogram signal) is calculated based on the determination result of the state. , Can be recorded.
  • the measurement data for example, an electrocardiogram signal
  • vital data for example, the respiratory rate derived from the electrocardiogram signal
  • Can be recorded as a means for determining the state, it is determined whether or not an appropriate state has been maintained for a certain time (for example, 1 minute) during measurement.
  • the determination criterion of “whether or not an appropriate state has been maintained” is defined from the fluctuation cycle due to respiration using, for example, heart rate variability analysis.
  • An animal such as a dog has a change in heart rate and respiration rate even when no movement is observed, and this discrimination criterion can discriminate an appropriate state with higher accuracy than analysis of movement using an acceleration sensor or the like. Further, by performing both state determination and vital data detection from a single measurement data such as an electrocardiogram signal, the measurement apparatus can be made small and simple. By reducing the size of the apparatus and system, it is possible to reduce the stress and load on the measurer and to perform measurement in a more natural state.
  • step S110 of FIG. 14 the CPU 310 searches for the maximum peak of the power spectrum in an arbitrary frequency range (for example, between 0.05 Hz and 0.5 Hz) in the power spectrum distribution obtained by the frequency analysis.
  • an arbitrary frequency range for example, between 0.05 Hz and 0.5 Hz
  • the respiratory rate is measurable. More specifically, if it can be determined whether or not the maximum peak in an arbitrary frequency range (for example, between 0.05 and 0.5 Hz) is prominent in the power spectrum distribution as compared with other power spectra.
  • the CPU 310 may determine the “measurable state” by another method.
  • the CPU 310 determines that the target animal is in a resting state when the standard deviation, the product of the standard deviation, its square root, or the like is larger than a predetermined value. It may be judged (steps S302 to 312). Then, when it is determined as “measurable state”, the CPU 310 may calculate the number of maximum (or minimum) points in the time series change of the pulsation interval as the respiration rate, as shown in FIG. The CPU 310 performs the calculation shown in FIG. 20 for a predetermined period, for example, every few minutes, and accumulates the calculation result in the database of the memory 320 for creating a diagnostic graph to be described later. ⁇ Result output method>
  • the CPU 310 of the diagnostic terminal 300 displays various graphs on the display 330 based on the signal as shown in FIG.
  • the CPU 310 shows, for each individual, a first graph in which the pulsation interval is spline-interpolated, a second graph showing the ECG peak signal itself, and a Poincare plot of the pulsation interval.
  • a third graph of interpolation, a fourth graph obtained by frequency analysis of the first graph, and the like are displayed on the display 330.
  • FIG. 22 shows (a) a first graph in which the beat interval is spline-interpolated, (b) a second graph showing the electrocardiographic peak signal itself, and (c) regarding an individual in a normally relaxed state.
  • FIG. 5 shows a third interpolated graph showing a Poincare plot of pulsation intervals, and (d) a fourth graph obtained by frequency analysis of the first graph.
  • FIG. 23 shows (a) a first graph showing a signal itself when an electrocardiographic peak signal cannot be acquired correctly, (b) a second graph showing a Poincare plot of a beat interval, and (c 3) A third graph in which the pulsation intervals are spline-interpolated, and (d) a fourth graph in which the third graph is frequency-analyzed.
  • the second graph showing the electrocardiographic peak signal itself at the lower right is marked as “not adopted” in the time zone when it was not correctly acquired.
  • the “non-adopted” period refers to a period in which it is determined that the R wave cannot be detected correctly or is likely not to be detected correctly. An example of the determination method will be described later.
  • the 2nd graph of this embodiment may show transition of the environmental data of the environment which is measuring the pulsation or pulse of the animal individual for every animal individual or every timing instead of the graph which shows the ECG peak signal itself. good.
  • the environmental data may be, for example, changes in temperature, humidity, noise, and the like.
  • the CPU 310 can select a mode in which any kind of graph relating to each of a plurality of individuals is arranged and displayed on the display 330.
  • CPU 310 makes the display mode of the graph related to the measurement determined to be highly likely to be different from the display mode of the graph related to the measurement determined to be normal.
  • the CPU 310 displays the second graph of a plurality of individuals side by side on the display 330 and displays the original first graph together with the second graph for the measurement determined to be abnormal. It is.
  • the second graph and the first graph may be displayed simultaneously for a predetermined period.
  • the first graph may be displayed after a while after the second graph is displayed. If the first graph and the second graph are simultaneously displayed for a predetermined period, the first graph is displayed. Either the second graph or the second graph may not be displayed on the display first.
  • the horizontal axes of the first graph and the second graph both indicate the measurement time. It is preferable that the measurement interval, length, and scale on the horizontal axis of the first graph and the second graph are aligned. Furthermore, the horizontal axis of the first graph and the horizontal axis of the second graph are preferably arranged in parallel to each other. By aligning the horizontal axes of the first graph and the second graph, it is easy to confirm the correspondence between the data included in both graphs when visually comparing the two graphs.
  • the original first graph together with the second graph is displayed smaller than the graph related to the measurement determined to be normal so that the position where the graph related to the measurement determined to be normal is not changed.
  • FIG. 25 is a flowchart for determining whether or not the obtained electrocardiographic data is sufficient to detect the R wave, that is, whether or not the R wave cannot be detected correctly or is likely not to be detected correctly. is there.
  • the determination is divided into two stages.
  • the first stage is a stage for determining whether or not the amplitude of the R wave is sufficient
  • the second stage is a stage for determining depending on whether or not there is more noise than or equal to the R wave.
  • the first stage is referred to as flat determination (second determination means, step S410)
  • the second stage is referred to as multi-noise determination (first determination means).
  • the CPU 310 obtains an average Et_ave of Et as a flat determination (step S412), and obtains a difference from the maximum value Em of Et (step S414). If the difference exceeds a predetermined threshold value Jflat (for example, 30), the CPU 310 sets the flat determination result to FALSE (step S416), and sets the difference to TRUE (step S416).
  • a predetermined threshold value Jflat for example, 30
  • the CPU 310 determines that this area Et cannot be employ
  • the threshold value Jflat may be changed according to the size of the dog breed or the contact resistance of the skin, or may be changed according to the ambient temperature and humidity.
  • the CPU 310 obtains dispersion values Dt and Dref for Et and Eref, respectively (step S434).
  • Dt exceeds Dref
  • the CPU 310 determines that this section Et is not adopted because there is too much noise (first result, step S446).
  • Dt is lower than Dref
  • the CPU 310 determines that Et can be adopted (second result, step S442).
  • the t seconds and ref seconds may be changed according to the size of the dog breed and the contact resistance of the skin, or may be changed depending on the ambient temperature and humidity. Moreover, you may change according to the activeness of the dog under measurement. For example, the activity can be measured by an acceleration sensor or the like.
  • each maximum value is determined depending on whether or not a predetermined threshold EMAX (for example, 150) is exceeded when Et and Eref are acquired. Normalization (step S422, step S424, step S430, step S432).
  • This predetermined threshold EMAX is desirably adjusted according to the resolution of the voltage value to be detected.
  • the numerical value indicating the autonomic balance is not limited to the product of the standard deviation or standard deviation of the Poincare plot, but the average of the distances between two consecutive Poincare plots can be used, and other Poincare blot variations The numerical value shown may be used, or another calculation method other than the Poincare plot may be used.
  • the pulsation interval is calculated using the electrodes 401, 402, and 403 for acquiring electrocardiograms.
  • a pulse wave signal may be acquired by a photoelectric pulse wave type pulse wave meter or a pulse oximeter, and a pulsation interval may be calculated from the pulse wave signal.
  • the pulse wave measurement site is preferably the site where the skin, including the tongue and ears, is exposed.
  • a heart sound signal may be acquired by an electronic stethoscope or the like, and the heart sound signal or the beat interval may be calculated. In these cases, measurement can be performed by a method that does not use an electrode.
  • a pulse wave signal may be acquired using a pulse wave acquisition sensor such as a microwave Doppler sensor, and the pulsation interval may be calculated from the pulse wave signal.
  • a microwave transmission device is installed on the ceiling or the like, and a form of acquiring a pulse wave from an animal such as a dog without contact is conceivable. In this case, non-contact measurement is possible and there is an effect of further reducing the load on the subject.
  • the output method of the result is not limited to that of the above embodiment.
  • the CPU 310 of the diagnostic terminal 300 acquires the average Et_ave of Et as the flat determination shown in FIG. 26 (step S412), and obtains the difference from the maximum value Em of Et (step S414). Then, the CPU 310 may not arrange the graph itself on the display 330 when the difference does not exceed the second predetermined threshold value Jflat (for example, 15).
  • step S446 in FIG. 25 if Dt exceeds a predetermined value (for example, twice) of Dref, the CPU 310 may not arrange this graph on the display 330 because there is too much noise. Good.
  • a predetermined value for example, twice
  • the CPU 310 determines that there is an abnormal range in the graph when a part or all of the graph satisfies a predetermined condition by the second determination unit.
  • the graph 330 is displayed on the display 330 with a display different from that of the graph. Then, when a part or all of the graph further satisfies a predetermined condition by the first determination means, the CPU 310 does not display the graph itself but instead displays the next graph on the display 330. To do.
  • a graph such as 80% or more that is highly likely to be abnormal is automatically excluded in advance, and a user such as a veterinarian may diagnose a graph that may be abnormal, such as 30% or more It becomes easier to judge whether or not to adopt or consider.
  • the CPU 310 receives a setting such as a numerical value of the possibility itself or other threshold value, which serves as an index for the determination, via an operation unit such as a button or a touch panel.
  • CPU 310 changes the display mode of the graph related to the measurement that is determined to be highly likely to be different from the display mode of the graph related to the measurement that is determined to be normal. For example, the CPU 310 causes the display 330 to display the second graphs of a plurality of individuals side by side, and regarding the measurement result determined to be not normal, it is determined to be not normal on the screen as shown in FIG. The original first graph may be superimposed on the second graph and displayed.
  • the CPU 310 preferably matches the vertical main range of the first graph and the vertical main range of the second graph to the same extent.
  • the CPU 310 may change the display mode of the graph related to the measurement that is determined to be highly likely to be different from the display mode of the graph related to the measurement that is determined to be normal. That is, the CPU 310 causes the display 330 to display the second graph of a plurality of individuals side by side, and displays a frame around the second graph for the measurement result determined to be not normal. Alternatively, the CPU 310 changes the line color of the second graph, changes the back color, or adds exclamation.
  • the CPU 310 displays the original graph together with the second graph regarding the measurement that is determined to be abnormal on the screen as shown in FIG.
  • the first graph is also displayed side by side.
  • CPU 310 displays an image or text for accepting an instruction to leave or exclude a graph related to the measurement on the screen. Then, the CPU 310 returns the display mode of the measurement graph to be the same as that of the normal graph according to the “remaining command” input through the operation unit, or “input through the operation unit”. In response to the “exclusion command”, the graph of the target measurement is removed from the screen, and the next graph of another measurement is displayed in front.
  • the CPU 310 displays the first graph together with the second graph while displaying the original first graph side by side.
  • a portion of the graph that is determined to be highly likely to be abnormal may be displayed in a display mode different from the other portions.
  • the CPU 310 displays a frame line that surrounds a portion of the first and second graphs that is determined to have a high possibility of being abnormal.
  • the CPU 310 makes the back color of the area of the first and second graphs determined to be highly normal different from the other parts.
  • the CPU 310 displays three or more values related to the measurement determined to be abnormal on the screen. You may transition to a screen that displays a graph. Also in this case, the CPU 310 may display a portion of the first and second graphs that is determined to be highly likely to be abnormal in a display mode different from other portions.
  • the output method of the result is not limited to the method of displaying the graphs of a plurality of different individuals side by side as in the above embodiment.
  • the CPU 310 of the diagnostic terminal 300 may display a graph regarding each of a plurality of different timings related to a specified individual on the display 330.
  • the signal processing device 500 acquires the beat interval based on the electrocardiogram signals from the electrodes 401, 402, and 403, and the diagnosis terminal 300 determines the state of the animal from the beat interval.
  • the information for judging the above or the information on the judgment result of the animal state is calculated and output.
  • all or some of the roles of the one device may be played by another device or may be shared by a plurality of devices. Conversely, one device may play the role of all or part of the plurality of devices, or another device may play the role.
  • the diagnostic terminal 300 may be equipped with all or part of the functions of the signal processing device 500.
  • the diagnostic terminal 300 acquires the electrocardiogram signals from the electrodes 401, 402, and 403 from the simple signal processing device 501 by wireless communication.
  • An electrocardiogram signal from the electrode is converted into a digital signal by a simple electrocardiogram preprocessing unit 570 including a minimum filter device, amplification device, and A / D conversion device, and transmitted from the transmission unit 560.
  • the diagnosis terminal 300 calculates information for determining the interval between pulsations and the state of the animal or information on the determination result of the state of the animal from the electrocardiogram signal. Then, the diagnostic terminal 300 outputs the final result information to a display or a speaker.
  • the signal processing device 500 may be equipped with all or part of the functions of the diagnostic terminal 300. In this case, based on the electrocardiogram signals from the electrodes 401, 402, and 403, the signal processing device 500 calculates information for determining the pulsation interval and the state of the animal or information on the determination result of the state of the animal. Then, the signal processing device 500 outputs the final result information to a display or a speaker.
  • the server 100 may play the role of the diagnostic terminal 300.
  • the server 100 is equipped with the function of the diagnostic terminal 300 of the above embodiment.
  • a communication terminal as the diagnostic terminal 300 transmits necessary information such as a beat interval from the signal processing device 500 to the server 100 via a router, a carrier network, the Internet, or the like.
  • the server 100 calculates information for determining the animal state or information indicating the determination result of the animal state, and transmits the information to the diagnostic terminal 300. It is conceivable that the diagnostic terminal 300 outputs the final result information to a display or a speaker.
  • the reception unit 161 and the transmission unit 162 of the server 100 are realized by the communication interface 160 of the server 100.
  • the beat interval storage unit 121 and the data storage unit 122 are realized by the memory 120 of the server 100 or another device accessible from the server 100.
  • the statistical processing unit 111, the graph creation unit 112, and the result output unit 113 are realized by the CPU 110 executing the program in the memory 120.
  • the signal processing device 500 transmits necessary information such as a beat interval to the server 100 via a router, a carrier network, the Internet, or the like.
  • the server 100 calculates information for determining the state of the animal or information on the determination result of the state of the animal, and transmits the information to a communication terminal as the diagnostic terminal 300 via the Internet, a carrier network, a router, or the like.
  • the diagnostic terminal 300 outputs information on the final result to a display or a speaker.
  • the signal processing device 500 and the diagnostic terminal 300 may not be connected by a wireless LAN or a wired LAN.
  • the reception unit 161 and the transmission unit 162 of the server 100 are realized by the communication interface 160 of the server 100.
  • the beat interval storage unit 121 and the data storage unit 122 are realized by the memory 120 of the server 100 or another device accessible from the server 100.
  • the statistical processing unit 111, the graph creation unit 112, and the result output unit 113 are realized by the CPU 110 executing the program in the memory 120.
  • the CPU of the apparatus 500 should not be limited to actually printing or displaying a Poincare plot image on a paper medium or a display.
  • the process is a concept including, for example, a process in which the CPU stores or expands data that substantially indicates a Poincare plot in a memory.
  • the display mode of the graph related to the measurement that is determined to be highly normal is different from the display mode of the graph related to the measurement that is determined to be normal.
  • it is not limited to such a form.
  • a determination is made according to whether or not the amplitude of the R wave is sufficient, or it is equal to or higher than the R wave. It may be determined (multiple noise determination) according to whether there is a lot of noise.
  • the CPU 310 determines that it is normal, it does not display an error on the display 330 as shown in FIG.
  • the CPU 310 may output a message that “the electrodes are disconnected” to the display 330 as illustrated in FIG.
  • the CPU 310 determines that it is not normal in the multi-noise determination, as shown in (c) of FIG. May be output ".
  • determination is made according to whether or not the amplitude of the R wave is sufficient (flat determination). Or making a determination (multiple noise determination) depending on whether there is more noise than the R wave.
  • the CPU 310 obtains an average Et_ave of Et (step S412), and obtains a difference from the maximum value Em of Et (step S414B). The CPU 310 determines whether or not this difference exceeds a predetermined threshold (for example, 200) (step S414B). If this difference exceeds a predetermined threshold, the determination result is TRUE (step S418B), and if not, FALSE is set (step S416B). If the determination is TRUE, the CPU 310 determines that this section Et cannot be adopted and causes the display 330 or the speaker to output that effect (step S418B).
  • a predetermined threshold for example, 200
  • the CPU 310 obtains an average Et_ave of Et as a flat determination (step S412), and obtains a difference from the maximum value Em of Et (step S414). If the difference does not exceed a predetermined threshold value Jflat (for example, 30), CPU 310 sets TRUE (step S418). If the CPU 310 determines that the flat determination is TRUE, the CPU 310 causes the display 330 or the speaker to output the fact that the section Et cannot be adopted (step S418). On the other hand, when the flat determination is FALSE, it is determined whether or not the difference between the maximum value Em of Et exceeds a predetermined threshold (for example, 200) (step S414B).
  • a predetermined threshold for example, 200
  • step S418B If this difference exceeds a predetermined threshold, the determination result is TRUE (step S418B), and if not, FALSE is set (step S416B). If the determination is TRUE, the CPU 310 determines that this section Et cannot be adopted and causes the display 330 or the speaker to output that effect (step S418B).
  • CPU 310 determines whether or not Dt exceeds 150% of Dref (step S436B). When Dt exceeds 150% of Dref, CPU 110 causes the display 330 and the speaker to output the fact that the section Et is not adopted because there is too much noise (step S446B). Conversely, if Dt is less than 150% of Dref, CPU 310 can adopt Et (step S442).
  • the CPU 310 may determine whether Dt is 70% or less of Dref (step S436C). When Dt is 70% or less of Dref, CPU 110 causes the display 330 and the speaker to output the fact that the section Et is not adopted because the voltage value is too low (step S446B). Conversely, when Dt exceeds 70% of Dref, the CPU 310 can adopt Et (step S442).
  • CPU 310 determines whether or not Dt exceeds 150% of Dref (step S436B). When Dt exceeds 150% of Dref, CPU 110 causes the display 330 and the speaker to output the fact that the section Et is not adopted because there is too much noise (step S446B). Conversely, if Dt is less than 150% of Dref, it is determined whether Dt is 70% or less of Dref (step S436C). When Dt is 70% or less of Dref, CPU 110 causes the display 330 and the speaker to output the fact that the section Et is not adopted because the voltage value is too low (step S446B). Conversely, when Dt exceeds 70% of Dref, the CPU 310 can adopt Et (step S442). ⁇ Tenth Embodiment>
  • all or a part of the roles of the one device may be played by another device or may be shared by a plurality of devices. Conversely, one device may play the role of all or part of the plurality of devices, or another device may play the role.
  • the CPU 510 of the signal processing device 500 may execute the above various determinations. That is, the CPU 510 executes the processing of FIG. 25, FIG. 26, FIG. 39 to FIG. 44, and outputs the display as shown in FIG. 38 to the display 530 of the signal processing device 500 and the display 330 of the diagnostic terminal 300. Also good. Alternatively, when the CPU 510 determines that an error has occurred, the light 531 of the signal processing device 500 and the light 331 of the diagnostic terminal 300 shine red, or when it is determined to be normal, the light 531 of the signal processing device 500 and the diagnostic terminal 300 The light 331 may be lit in green.
  • the CPU 510 may cause the speaker 532 of the signal processing device 500 or the speaker 332 of the diagnostic terminal 300 to output the determination result.
  • the signal processing device 500 is a wearable terminal for wearing on an animal such as a dog, and determines whether data can be normally acquired in the wearable terminal.
  • the display 530, the light 531 and the speaker 532 of the wearable terminal may output error information and the like.
  • the signal processing device 500 is provided in an appliance (for example, a wear, a harness, etc.) for wearing on an animal such as a dog.
  • the signal processing device 500 may be configured to be detachable with respect to the appliance by hooks, buttons, cables, or the like.
  • the signal processing device 500 is electrically connected to the electrodes 401, 402, and 403 via hooks, buttons, and cables. Connect.
  • the signal processing device 500 is electrically insulated from the electrodes 401, 402, and 403 by detaching from the equipment connected by hooks, buttons, and cables.
  • the electrodes 401, 402, 403 can also be configured to be removable from the appliance.
  • the electrodes 401, 402, and 403 are attached to the appliance by means of hook-and-loop fasteners, buttons, hooks, and the like, and the signal processing device 500 is also connected to the appliance so that it can be configured as a wearable terminal as a whole. It becomes.
  • FIG. 48 shows an example in which the reference periods are different in flat determination and noise determination.
  • E 48 is an example in which the periods used for evaluation in S410 and S436 in FIG. 25 are different.
  • electrocardiogram data Es third period
  • Em in Es is acquired (S404B).
  • Es is used instead of Et, and in the same drawing, Et can be read as Es, so that periods used in both determination processes can be made different.
  • the present disclosure can also be applied to a case where the present disclosure is achieved by supplying a program to a system or apparatus. Then, a storage medium (or memory) storing a program represented by software for achieving the present disclosure is supplied to the system or apparatus, and the computer (or CPU or MPU) of the system or apparatus stores it in the storage medium.
  • the effect of the present disclosure can also be enjoyed by reading and executing the program code.
  • the program code itself read from the storage medium realizes the functions of the above-described embodiments, and the storage medium storing the program code constitutes the present disclosure.
  • Information processing system 100 Server 110: CPU 111: statistical processing unit 112: graph creation unit 113: result output unit 120: memory 121: pulsation interval storage unit 122: data storage unit 160: communication interface 161: reception unit 162: transmission unit 300: diagnostic terminal (information processing apparatus) ) 310: CPU 311: Statistical processing unit 312: Graph creation unit 313: Result output unit 320: Memory 321: Beat interval storage unit 321A: Correspondence table 322: Data storage unit 330: Display 331: Light 332: Speaker 360: Communication interface 361: Receiver 362: Transmitter 370: Speaker 401: Electrode 402: Electrode 403: Electrode 500: Signal processor 501: Simple signal processor 511: Electrocardiogram preprocessor 512: Pulsation interval calculator 530: Display 531: Light 532 : Speaker 560: Transmission unit 570: Simple electrocardiogram preprocessing unit

Abstract

Provided are information processing devices (500, 300) provided with: a plurality of electrodes (401, 402, 403); and processors (510, 310) for outputting an error when a prescribed condition is met on the basis of the degree of potential difference fluctuation in a first period and the degree of potential difference fluctuation in a second period that includes a period before the first period, the degrees being acquired through the plurality of electrodes (401, 402, 403).

Description

情報処理装置、およびウェアラブル端末Information processing apparatus and wearable terminal
 以下の開示は、動物の精神的状態または肉体的状態を取得するための技術に関する。 The following disclosure relates to a technique for acquiring the mental state or physical state of an animal.
 従来から、動物の精神的または肉体的な状態を取得するための技術が知られている。例えば、特開2010-155166号公報(特許文献1)には、脈波診断装置及び脈波診断装置制御方法が開示されている。特許文献1によると、脈波診断装置及び脈波診断装置制御方法は、光電センサを用いて脈波を検出し、検出した脈波から脈波の変動を算出することを特徴とする。具体的には、本発明に係る脈波診断装置制御方法は、動脈を透過した透過光又は動脈で散乱された散乱光を受光して脈波を検出する光電脈波検出部と、前記光電脈波検出部の検出する脈波の1拍ごとの脈波振幅を算出し、連続して算出された2つの前記脈波振幅同士で形成される直交座標平面上での前記脈波振幅の点をポアンカレ座標として1拍ごとに算出する脈波振幅ポアンカレ算出部と、を備えることを特徴とする。 Conventionally, techniques for acquiring the mental or physical state of an animal are known. For example, JP 2010-155166 A (Patent Document 1) discloses a pulse wave diagnostic device and a pulse wave diagnostic device control method. According to Patent Document 1, the pulse wave diagnostic device and the pulse wave diagnostic device control method detect a pulse wave using a photoelectric sensor, and calculate a fluctuation of the pulse wave from the detected pulse wave. Specifically, the pulse wave diagnostic device control method according to the present invention includes a photoelectric pulse wave detector that receives transmitted light transmitted through an artery or scattered light scattered by an artery and detects a pulse wave, and the photoelectric pulse The pulse wave amplitude for each beat of the pulse wave detected by the wave detection unit is calculated, and the point of the pulse wave amplitude on the orthogonal coordinate plane formed by the two pulse wave amplitudes calculated successively is calculated. And a pulse wave amplitude Poincare calculation unit that calculates Poincare coordinates for each beat.
特開2010-155166号公報JP 2010-155166 A
 本開示の目的は、動物の精神的状態または肉体的状態を従来よりも正確に把握したり、あるいは従来よりも効率的に把握したりすることができる情報処理装置、状態取得プログラム、サーバ、および情報処理方法を提供することにある。 An object of the present disclosure is to provide an information processing apparatus, a state acquisition program, a server, and an information processing apparatus that can accurately grasp the mental state or physical state of an animal more accurately than in the past or more efficiently than in the past. It is to provide an information processing method.
 この発明のある態様に従うと、複数の電極と、複数の電極を介して取得される、第1の期間の電位差の分散または標準偏差と、第1の期間よりも前の期間を含む第2の期間の電位差の電位差の分散または標準偏差と、に基づいて、所定の条件が満たされているかを判断する第1判定手段を有するプロセッサと、を備える情報処理装置が提供される。 According to an aspect of the present invention, a second electrode including a plurality of electrodes, a dispersion or standard deviation of the potential difference in the first period, which is obtained via the plurality of electrodes, and a second period including the period before the first period. There is provided an information processing apparatus including a processor having a first determination unit that determines whether a predetermined condition is satisfied based on a variance or standard deviation of a potential difference of a period.
 以上のように、本開示によれば、動物の精神的状態または肉体的状態を従来よりも正確に把握したり、あるいは従来よりも効率的に把握したりすることができる情報処理装置、状態取得プログラム、サーバ、および情報処理方法が提供される。 As described above, according to the present disclosure, an information processing apparatus capable of grasping an animal's mental state or physical state more accurately than before or grasping more efficiently than before, and state acquisition A program, a server, and an information processing method are provided.
第1の実施の形態にかかる情報処理システム1の全体構成を示す図である。It is a figure showing the whole information processing system 1 composition concerning a 1st embodiment. 第1の実施の形態にかかる情報処理システム1の機能構成を示す図である。It is a figure which shows the function structure of the information processing system 1 concerning 1st Embodiment. 第1の実施の形態にかかる情報処理システム1の第1の自律神経バランスを算出するための処理手順を示すフローチャートである。It is a flowchart which shows the process sequence for calculating the 1st autonomic nerve balance of the information processing system 1 concerning 1st Embodiment. 第1の実施の形態にかかる心電データと拍動間隔との例である。It is an example of the electrocardiogram data and pulsation interval according to the first embodiment. 第1の実施の形態にかかる拍動間隔R-R(n)とその次の拍動間隔R-R(n+1)との対応関係テーブルを示す図である。It is a figure which shows the corresponding | compatible relationship table of pulsation interval RR (n) concerning the 1st Embodiment, and the following pulsation interval RR (n + 1). 第1の実施の形態にかかる拍動間隔R-R(n)とその次の拍動間隔R-R(n+1)との対応関係テーブル321AからY=X方向とそれに垂直な方向の軸への変換を示すイメージ図である。Correspondence relationship table 321A between pulsation interval RR (n) and the next pulsation interval RR (n + 1) according to the first embodiment from the Y = X direction and the axis in the direction perpendicular thereto. It is an image figure which shows conversion. 第1の実施の形態にかかる犬の精神的状態または肉体的状態毎の、第1の自律神経バランスとしての、Y=X軸に関する標準偏差と、Y=Xと垂直な軸に関する標準偏差との目安を示す表である。The standard deviation about the Y = X axis and the standard deviation about the axis perpendicular to Y = X as the first autonomic nerve balance for each mental state or physical state of the dog according to the first embodiment It is a table | surface which shows a standard. 第1の実施の形態にかかる犬の興奮状態におけるポアンカレプロット図である。It is a Poincare plot figure in the excitement state of the dog concerning a 1st embodiment. 第1の実施の形態にかかる犬の通常状態で呼吸が安定している状態におけるポアンカレプロット図である。It is a Poincare plot figure in the state where breathing is stable in the normal state of the dog concerning a 1st embodiment. 第1の実施の形態にかかる犬の通常状態におけるポアンカレプロット図である。It is a Poincare plot figure in the normal state of the dog concerning 1st Embodiment. 第1の実施の形態にかかる犬の安静状態におけるポアンカレプロット図である。It is a Poincare plot figure in the resting state of the dog concerning 1st Embodiment. 第1の実施の形態にかかる情報処理システム1の第2の自律神経バランスを算出するための処理手順を示すフローチャートである。It is a flowchart which shows the process sequence for calculating the 2nd autonomic nerve balance of the information processing system 1 concerning 1st Embodiment. 第1の実施の形態にかかる犬の精神的または肉体的状態毎の、Y=X軸に関する標準偏差と、Y=Xと垂直な軸に関する標準偏差と、第2の自律神経バランスとしての標準偏差の積と、標準偏差の比との目安を示す表である。The standard deviation about the Y = X axis, the standard deviation about the axis perpendicular to Y = X, and the standard deviation as the second autonomic balance for each mental or physical state of the dog according to the first embodiment It is a table | surface which shows the standard of the product of and the ratio of standard deviation. 第1の実施の形態にかかる情報処理システム1の呼吸数を算出するための第1の処理手順を示すフローチャートである。It is a flowchart which shows the 1st process sequence for calculating the respiration rate of the information processing system 1 concerning 1st Embodiment. 第1の実施の形態にかかる拍動検出タイミングと拍動間隔との関係の例である。It is an example of the relationship between the pulsation detection timing concerning 1st Embodiment, and a pulsation interval. 第1の実施の形態にかかるパワースペクトル分布の例である。It is an example of the power spectrum distribution concerning 1st Embodiment. 第1の実施の形態にかかる犬の安静時におけるスプライン補間後のRRI変動とパワースペクトル分布との例である。It is an example of RRI fluctuation and power spectrum distribution after spline interpolation when the dog according to the first embodiment is at rest. 第1の実施の形態にかかる犬の興奮時におけるスプライン補間後のRRI変動とパワースペクトル分布との例である。It is an example of RRI fluctuation and power spectrum distribution after spline interpolation during dog excitement according to the first embodiment. 第1の実施の形態による呼吸数の取得方法の効果の例である。It is an example of the effect of the acquisition method of the respiration rate by a 1st embodiment. 第1の実施の形態にかかる情報処理システム1の呼吸数の第2の処理手順を示すフローチャートである。It is a flowchart which shows the 2nd process sequence of the respiration rate of the information processing system 1 concerning 1st Embodiment. 第1の実施の形態にかかる入力される心電の電圧値を示すイメージ図である。It is an image figure which shows the voltage value of the electrocardiogram input concerning 1st Embodiment. 第1の実施の形態にかかる正常な状態を示す診断グラフの表示画面を示すイメージ図である。It is an image figure which shows the display screen of the diagnostic graph which shows the normal state concerning 1st Embodiment. 第1の実施の形態にかかる正常でない状態を示す診断グラフの表示画面を示すイメージ図である。It is an image figure which shows the display screen of the diagnostic graph which shows the abnormal state concerning 1st Embodiment. 第1の実施の形態にかかる診断端末300の表示画面の一例を示すイメージ図である。It is an image figure which shows an example of the display screen of the diagnostic terminal 300 concerning 1st Embodiment. 第1の実施の形態にかかる得られた心電データがR波を検出するに足りるデータか否かを判定する判定処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the determination process which determines whether the obtained electrocardiogram data concerning 1st Embodiment are data sufficient to detect an R wave. 第1の実施の形態にかかるフラット判定の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the flat determination concerning 1st Embodiment. 第3の実施の形態にかかる診断グラフを示すイメージ図である。It is an image figure which shows the diagnostic graph concerning 3rd Embodiment. 第3の実施の形態にかかる診断端末300の第1の表示画面の一例を示すイメージ図である。It is an image figure which shows an example of the 1st display screen of the diagnostic terminal 300 concerning 3rd Embodiment. 第3の実施の形態にかかる診断端末300の第2の表示画面の一例を示すイメージ図である。It is an image figure which shows an example of the 2nd display screen of the diagnostic terminal 300 concerning 3rd Embodiment. 第3の実施の形態にかかる診断端末300の表示画面の推移の一例を示すイメージ図である。It is an image figure which shows an example of transition of the display screen of the diagnostic terminal 300 concerning 3rd Embodiment. 第4の実施の形態にかかる第1の診断グラフを示すイメージ図である。It is an image figure which shows the 1st diagnostic graph concerning 4th Embodiment. 第4の実施の形態にかかる第2の診断グラフを示すイメージ図である。It is an image figure which shows the 2nd diagnostic graph concerning 4th Embodiment. 第4の実施の形態にかかる第3の診断グラフを示すイメージ図である。It is an image figure which shows the 3rd diagnostic graph concerning 4th Embodiment. 第6の実施の形態にかかる第1の情報処理システム1の機能構成を示す図である。It is a figure which shows the function structure of the 1st information processing system 1 concerning 6th Embodiment. 第6の実施の形態にかかる第2の情報処理システム1の機能構成を示す図である。It is a figure which shows the function structure of the 2nd information processing system 1 concerning 6th Embodiment. 第6の実施の形態にかかる第3の情報処理システム1の機能構成を示す図である。It is a figure which shows the function structure of the 3rd information processing system 1 concerning 6th Embodiment. 第6の実施の形態にかかる第4の情報処理システム1の機能構成を示す図である。It is a figure which shows the function structure of the 4th information processing system 1 concerning 6th Embodiment. 第7の実施の形態にかかる診断端末300の表示画面の一例を示すイメージ図である。It is an image figure which shows an example of the display screen of the diagnostic terminal 300 concerning 7th Embodiment. 第8の実施の形態にかかる判定に関するRは振幅が大きすぎるか否かを判断する処理手順を示すフローチャートである。R relating to the determination according to the eighth embodiment is a flowchart showing a processing procedure for determining whether or not the amplitude is too large. 第8の実施の形態にかかる判定に関するフラット判定および、R波の振幅が大きすぎるか否かを判断する処理手順を示すフローチャートである。It is a flowchart which shows the flat determination regarding the determination concerning 8th Embodiment, and the process sequence which judges whether the amplitude of R wave is too large. 第9の実施の形態にかかる得られた心電データがR波を検出するに足りるデータか否かを判定する第1の判定処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the 1st determination process which determines whether the obtained electrocardiogram data concerning 9th Embodiment are data sufficient to detect an R wave. 第9の実施の形態にかかる心電データの例である。It is an example of the electrocardiogram data concerning 9th Embodiment. 第9の実施の形態にかかる得られた心電データがR波を検出するに足りるデータか否かを判定する第2の判定処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the 2nd determination process which determines whether the obtained electrocardiogram data concerning 9th Embodiment are data sufficient to detect an R wave. 第9の実施の形態にかかる得られた心電データがR波を検出するに足りるデータか否かを判定する第3の判定処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the 3rd determination process which determines whether the obtained electrocardiogram data concerning 9th Embodiment are data sufficient to detect an R wave. 第10の実施の形態にかかる情報処理システム1の機能構成を示す図である。It is a figure which shows the function structure of the information processing system 1 concerning 10th Embodiment. 第10の実施の形態にかかる信号処理装置500としてのウェアラブル端末を示す第1のイメージ図である。It is a 1st image figure which shows the wearable terminal as the signal processing apparatus 500 concerning 10th Embodiment. 第10の実施の形態にかかる信号処理装置500としてのウェアラブル端末を示す第2のイメージ図である。It is a 2nd image figure which shows the wearable terminal as the signal processing apparatus 500 concerning 10th Embodiment. 第11の実施の形態にかかる得られた心電データがR波を検出するに足りるデータか否かを判定する判定処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the determination process which determines whether the obtained electrocardiogram data concerning 11th Embodiment are data sufficient to detect an R wave.
 以下、図面を参照しつつ、本開示の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
 <第1の実施の形態>
 <情報処理システムの全体構成>
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following description, the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
<First Embodiment>
<Overall configuration of information processing system>
 まず、図1を参照して、本実施の形態にかかる情報処理システム1の全体構成について説明する。図1は、本実施の形態にかかる情報処理システム1の全体構成を示す図である。なお、以下では、動物を代表して、呼吸性の不整脈を有する犬の状態を判断する場合について説明する。 First, the overall configuration of the information processing system 1 according to the present embodiment will be described with reference to FIG. FIG. 1 is a diagram showing an overall configuration of an information processing system 1 according to the present embodiment. In addition, below, the case where the state of the dog which has a respiratory arrhythmia is judged on behalf of an animal is demonstrated.
 本実施の形態にかかる情報処理システム1は、主に、犬の胸部に取り付けられる心電取得用の電極401,402,403と、心電信号を処理するための信号処理装置500と、信号処理装置500と通信可能な診断端末300とを含む。 An information processing system 1 according to the present embodiment mainly includes electrodes 401, 402, and 403 for acquiring electrocardiograms attached to a chest of a dog, a signal processing device 500 for processing an electrocardiogram signal, and signal processing. Diagnostic terminal 300 that can communicate with apparatus 500 is included.
 心電取得用の電極401,402,403は、胸部等において、心臓部を挟むような位置に取り付けることが望ましく、例えば、両前足(または、前足と後ろ足)の肉球部など毛の生えていない場所であってもよい。また、毛を刈った状態であるか、ゲルなどが付着した電極、あるいは、突起状の構造を持ち、毛があっても皮膚と接触する構成であることが望ましい。あるいは、毛がある状態で、非接触で容量性材料を介して心電を誘導する形態が望ましい。それにより、犬等の表皮が毛に覆われた動物であっても心電を取得することが可能となる。本実施の形態においては、3個の電極401,402,403を使用する構成としているが、電極は、2個以上であればよく、さらに、多くの電極を使用する構成としてもよい。
 <情報処理システムの機能構成と処理手順>
The electrodes 401, 402, and 403 for acquiring electrocardiograms are preferably attached to the chest and the like so as to sandwich the heart part. For example, the hair balls such as the paws of both front legs (or front legs and rear legs) are grown. There may be no place. In addition, it is desirable that the hair is in a state of being trimmed, or has an electrode with a gel attached thereto, or a protrusion-like structure that contacts the skin even if hair is present. Or the form which induces an electrocardiogram through a capacitive material without contact in the state with hair is desirable. Thereby, even an animal whose epidermis such as a dog is covered with hair can obtain an electrocardiogram. In this embodiment, three electrodes 401, 402, and 403 are used. However, the number of electrodes may be two or more, and more electrodes may be used.
<Functional configuration and processing procedure of information processing system>
 次に、図2および図3を参照して、本実施の形態にかかる情報処理システム1の機能構成と処理手順とについて説明する。図2は、本実施の形態にかかる情報処理システム1の機能構成を示す図である。図3は、本実施の形態にかかる情報処理システム1の処理手順を示すフローチャートである。 Next, the functional configuration and processing procedure of the information processing system 1 according to the present embodiment will be described with reference to FIGS. FIG. 2 is a diagram illustrating a functional configuration of the information processing system 1 according to the present embodiment. FIG. 3 is a flowchart showing a processing procedure of the information processing system 1 according to the present embodiment.
 まず、情報処理システム1の信号処理装置500の構成について説明する。信号処理装置500は、心電前処理部511と拍動間隔算出部512と送信部560を含む。 First, the configuration of the signal processing device 500 of the information processing system 1 will be described. The signal processing device 500 includes an electrocardiogram preprocessing unit 511, a pulsation interval calculation unit 512, and a transmission unit 560.
 心電前処理部511は、フィルタや増幅器を含む。心電前処理部511は、電極401,402,403から送られている心電信号を拍動データに変換して、拍動間隔算出部512に受け渡す。 The electrocardiogram preprocessing unit 511 includes a filter and an amplifier. The electrocardiogram pre-processing unit 511 converts the electrocardiogram signal sent from the electrodes 401, 402, and 403 into pulsation data, and delivers it to the pulsation interval calculation unit 512.
 より詳細には、心電前処理部511には、ハイパスフィルタ、ローパスフィルタなどのフィルタ装置、オペアンプなどから構成される増幅装置、心電のアナログ信号をデジタル信号に変換するA/D変換装置等が含まれる。尚、フィルタ装置、増幅装置などは、ソフトウェアにより実装される形態であってもよい。また、A/D変換装置においては、拍動間隔のゆらぎ量の差異が判別できる周期と精度でのサンプリングを行うことが望ましい。すなわち、少なくとも25Hz以上の周波数で心電信号を取得することが望ましい。例えば、本実施の形態においては、100Hzでの心電信号のサンプリングを行っている。サンプリングの周波数を高めることにより、拍動間隔の揺らぎ量を正確に把握することが可能となる。 More specifically, the electrocardiogram preprocessing unit 511 includes a filter device such as a high-pass filter and a low-pass filter, an amplification device including an operational amplifier, an A / D conversion device that converts an electrocardiogram analog signal into a digital signal, and the like. Is included. The filter device, the amplification device, and the like may be implemented by software. In addition, in the A / D converter, it is desirable to perform sampling with a period and accuracy that can determine the difference in fluctuation amount of the pulsation interval. That is, it is desirable to acquire an electrocardiographic signal at a frequency of at least 25 Hz. For example, in the present embodiment, sampling of an electrocardiogram signal at 100 Hz is performed. By increasing the sampling frequency, it is possible to accurately grasp the fluctuation amount of the beat interval.
 拍動間隔算出部512は、例えばCPU(Central Processing Unit)510がメモリのプログラムを実行することによって実現される。拍動間隔算出部512は、拍動データに基づいて、拍動間隔を逐次算出する。より詳細には、拍動間隔算出部512は、閾値検出などの方法により、心電のピーク信号(R波)を検出し、各心電のピークの間隔(時間)を算出する。拍動間隔の算出方法として、上記の他に、自己相関関数を用いた周期の導出や矩形波相関トリガを用いる方法などで行ってもよい。 The beat interval calculation unit 512 is realized by, for example, a CPU (Central Processing Unit) 510 executing a memory program. The pulsation interval calculation unit 512 sequentially calculates pulsation intervals based on the pulsation data. More specifically, the pulsation interval calculation unit 512 detects an electrocardiographic peak signal (R wave) by a method such as threshold detection, and calculates the interval (time) of each electrocardiographic peak. In addition to the above, the pulsation interval may be calculated by derivation of a period using an autocorrelation function or a method using a rectangular wave correlation trigger.
 本実施の形態においては、図4に示すように、拍動間隔算出部512は、連続して入力される心電信号に対して連続して拍動間隔の算出を実行する。拍動間隔算出部512は、算出した拍動間隔や拍動データ自体を、送信部560を介して診断端末300に送信する。なお、送信部560は、例えば、アンテナやコネクタなどを含む通信インターフェイスによって実現される。 In the present embodiment, as shown in FIG. 4, the pulsation interval calculation unit 512 continuously calculates the pulsation interval for the electrocardiogram signals that are continuously input. The pulsation interval calculation unit 512 transmits the calculated pulsation interval and pulsation data itself to the diagnosis terminal 300 via the transmission unit 560. The transmission unit 560 is realized by a communication interface including an antenna, a connector, and the like, for example.
 次に、診断端末300の構成について説明する。診断端末300は、受信部361、拍動間隔記憶部321、統計処理部311と、グラフ作成部312と、結果出力部313と、ディスプレイ330と、データ記憶部322と、送信部362とを含む。 Next, the configuration of the diagnostic terminal 300 will be described. The diagnostic terminal 300 includes a reception unit 361, a beat interval storage unit 321, a statistical processing unit 311, a graph creation unit 312, a result output unit 313, a display 330, a data storage unit 322, and a transmission unit 362. .
 まず、受信部361と送信部362は、例えば、アンテナやコネクタなどを含む通信インターフェイス360によって実現される。受信部361は、信号処理装置500からの拍動間隔を示すデータを受信する(ステップS102)。 First, the reception unit 361 and the transmission unit 362 are realized by a communication interface 360 including an antenna, a connector, and the like, for example. The receiving unit 361 receives data indicating the beat interval from the signal processing device 500 (step S102).
 拍動間隔記憶部321は各種のメモリ320などによって構成され、信号処理装置500から受信したデータを格納する。本実施の形態においては、CPU310が、通信インターフェイス360を介して受信した拍動間隔を拍動間隔テーブルとして逐次メモリ320に蓄積していく(ステップS104)。ただし、これらのデータは、診断端末300のメモリ320に記憶されてもよいし、診断端末300からアクセス可能な他の装置に記憶されてもよい。 The pulsation interval storage unit 321 includes various types of memory 320 and stores data received from the signal processing device 500. In the present embodiment, CPU 310 sequentially accumulates beat intervals received via communication interface 360 as a beat interval table in memory 320 (step S104). However, these data may be stored in the memory 320 of the diagnostic terminal 300 or may be stored in another device accessible from the diagnostic terminal 300.
 統計処理部311と、グラフ作成部312と、結果出力部313とは、例えばCPU310がメモリ320のプログラムを実行することによって実現される。統計処理部311は、一定時間単位、例えば、1分、10分、1時間など、状態を判定するために必要な時間単位で、拍動間隔記憶部321から拍動間隔データを読み出して、図5に示すような、拍動間隔R-R(n)とその次の拍動間隔R-R(n+1)との対応関係テーブル321Aを作成する(ステップS106)。拍動間隔は、例えば、図に示すようにmsec(ミリセック)の単位で計算される。 The statistical processing unit 311, the graph creation unit 312, and the result output unit 313 are realized by the CPU 310 executing a program in the memory 320, for example. The statistical processing unit 311 reads out the beat interval data from the beat interval storage unit 321 in a unit of time necessary for determining the state, for example, 1 minute, 10 minutes, 1 hour, etc. As shown in FIG. 5, a correspondence table 321A between the pulsation interval RR (n) and the next pulsation interval RR (n + 1) is created (step S106). For example, the beat interval is calculated in units of msec (millisec) as shown in the figure.
 統計処理部311は、図6に示すように、拍動間隔R-R(n)とその次の拍動間隔R-R(n+1)との対応関係テーブルからY=X方向とそれに垂直な方向の軸への変換を行う(ステップS108)。 As shown in FIG. 6, the statistical processing unit 311 determines the Y = X direction and the direction perpendicular thereto from the correspondence table between the pulsation interval RR (n) and the next pulsation interval RR (n + 1). Is converted into an axis (step S108).
 統計処理部311は、自律神経バランスを示す数値としての、軸の変換を行った後のそれぞれの軸を構成する数値列に関する標準偏差を算出する(ステップS110)。なお、統計処理部311は、Y=X軸に関する標準偏差だけを算出してもよいし、Y=Xと垂直な軸に関する標準偏差だけを算出してもよいし、両方を算出してもよい。図7は、犬の精神状態または肉体的状態毎の、Y=X軸に関する標準偏差と、Y=Xと垂直な軸に関する標準偏差との目安を示す表である。 The statistical processing unit 311 calculates a standard deviation regarding a numerical sequence constituting each axis after the conversion of the axis as a numerical value indicating the autonomic nerve balance (step S110). Note that the statistical processing unit 311 may calculate only the standard deviation about the Y = X axis, may calculate only the standard deviation about the axis perpendicular to Y = X, or may calculate both. . FIG. 7 is a table showing a standard deviation of the standard deviation on the Y = X axis and the standard deviation on the axis perpendicular to Y = X for each mental state or physical state of the dog.
 なお、統計処理部311は、主成分分析などの方法により分散が最大になる軸を特定し、当該軸と当該軸に垂直な軸に関する標準偏差を算出してもよい。さらには、統計処理部311は、軸変換を行わずに、X軸とY軸に関する標準偏差を算出するものであってもよい。分散の大きい方向がX軸方向とY軸方向である場合には、軸変換を行わなくとも、X軸とY軸の標準偏差を算出することで、ポアンカレプロットした拍動間隔のばらつき状態を評価できる。この場合、軸変換を行う必要が無いために、計算量を低減することができる。 Note that the statistical processing unit 311 may specify an axis that maximizes the variance by a method such as principal component analysis, and may calculate a standard deviation regarding the axis and an axis perpendicular to the axis. Furthermore, the statistical processing unit 311 may calculate a standard deviation regarding the X axis and the Y axis without performing axis conversion. When the direction of large variance is the X-axis direction and the Y-axis direction, the standard deviation of the X-axis and the Y-axis is calculated without performing axis conversion, thereby evaluating the variation state of the beat interval plotted by Poincare plot. it can. In this case, since it is not necessary to perform axis conversion, the amount of calculation can be reduced.
 結果出力部313は、例えば、診断端末300の、あるいは外部の、ディスプレイ330やスピーカなどの出力装置に、標準偏差を表示させたり、音声メッセージを出力させたりする(ステップS114)。より詳細には、結果出力部313は、Y=X軸に関する標準偏差だけを出力させてもよいし、Y=Xと垂直な軸に関する標準偏差だけを出力させてもよいし、両方を出力させてもよいし、大きい方だけを出力させてもよいし、小さい方だけを出力させてもよい。 The result output unit 313 displays the standard deviation or outputs a voice message on an output device such as the display 330 or the speaker, for example, outside the diagnostic terminal 300 (step S114). More specifically, the result output unit 313 may output only the standard deviation regarding the Y = X axis, may output only the standard deviation regarding the axis perpendicular to Y = X, or may output both. Alternatively, only the larger one may be output, or only the smaller one may be output.
 標準偏差を計算することにより、拍動間隔R-R(n)とその次の拍動間隔R-R(n+1)とをそれぞれ軸としてポアンカレプロットした拍動間隔のばらつき状態が評価できる。ここでは、拍動間隔のばらつきの程度を自律神経バランスの程度とみなしている。なお、後述するように、自律神経バランスを示す数値は、軸変換後の標準偏差に限られるものではない。 By calculating the standard deviation, it is possible to evaluate the variation state of the beat interval obtained by Poincare plot with the beat interval R−R (n) and the next beat interval R−R (n + 1) as axes. Here, the degree of variation in the pulsation interval is regarded as the degree of autonomic nerve balance. As will be described later, the numerical value indicating the autonomic balance is not limited to the standard deviation after the axis conversion.
 本実施の形態においては、CPU310は、所定の期間たとえば数分間毎の図3に示す計算を行い、当該計算結果を後述する診断グラフ作成のためにメモリ320のデータベースに蓄積していく。 In the present embodiment, the CPU 310 performs the calculation shown in FIG. 3 for a predetermined period, for example, every few minutes, and accumulates the calculation result in the database of the memory 320 for creating a diagnostic graph to be described later.
 なお、詳しくは後述するが、本実施の形態にかかる情報処理システム1は、図2に示すように診断端末300が通信可能なサーバ100を含む形態であってもよい。その場合、結果出力部313としてのCPU310は、標準偏差や関係テーブルなどデータ記憶部322に蓄積したり、送信部362を利用することによって、インターネットなどを介してサーバ100に送信したりする。これによって、今回の出力結果を観察対象の短期または長期のストレス状態の把握などに利用することができる。 In addition, although mentioned later in detail, the information processing system 1 concerning this Embodiment may be the form containing the server 100 with which the diagnostic terminal 300 can communicate as shown in FIG. In that case, the CPU 310 as the result output unit 313 accumulates the standard deviation and the relation table in the data storage unit 322 or uses the transmission unit 362 to transmit to the server 100 via the Internet or the like. As a result, the current output result can be used for grasping the short-term or long-term stress state of the observation target.
 本実施の形態においては、ステップS108とは別に、グラフ作成部312は、図5の対応関係テーブルから、標準偏差の計算に使用した範囲の拍動間隔R-R(n)とその次の拍動間隔R-R(n+1)とのデータを取得して、図8~図11に示すようなポアンカレプロット図を作成する。 In the present embodiment, separately from step S108, the graph creation unit 312 determines from the correspondence table in FIG. 5 the pulsation interval RR (n) in the range used for calculating the standard deviation and the next beat. Data with the movement interval RR (n + 1) is acquired, and Poincare plot diagrams as shown in FIGS. 8 to 11 are created.
 そして、結果出力部313は、作成されたポアンカレプロット図を、診断端末300のディスプレイまたは外部のディスプレイなどの出力装置に表示させる。なお、グラフ作成部312は、ステップS108の結果を利用して、軸変換後のポアンカレプロット図を作成して出力してもよい。 Then, the result output unit 313 displays the generated Poincare plot on an output device such as a display of the diagnostic terminal 300 or an external display. Note that the graph creation unit 312 may create and output a Poincare plot diagram after axis conversion using the result of step S108.
 ここで、ポアンカレプロット図に関して説明する。図8は、本実施の形態にかかる犬の興奮状態におけるポアンカレプロット図である。図9は、本実施の形態にかかる犬の通常状態で呼吸が安定している状態におけるポアンカレプロット図である。図10は、本実施の形態にかかる犬の通常状態におけるポアンカレプロット図である。図11は、本実施の形態にかかる犬の安静状態におけるポアンカレプロット図である。 Here, the Poincare plot will be explained. FIG. 8 is a Poincare plot in the excited state of the dog according to the present embodiment. FIG. 9 is a Poincare plot in a state where the breathing is stable in the normal state of the dog according to the present embodiment. FIG. 10 is a Poincare plot in the normal state of the dog according to the present embodiment. FIG. 11 is a Poincare plot in the resting state of the dog according to the present embodiment.
 まず、例えば犬などの呼吸性の不整脈を有する動物の場合、図8のような興奮状態においては、心拍数が上昇し(拍動間隔は短くなる)、拍動間隔の揺らぎは小さくなり、プロットの点が一定の場所に集まるような状態になる。 First, in the case of an animal having a respiratory arrhythmia such as a dog, in the excited state as shown in FIG. 8, the heart rate rises (beat interval is shortened), and the fluctuation of the beat interval becomes small. It will be in the state where these points gather in a certain place.
 そして、図9のような呼吸が安定している通常の状態においては、心拍数が安静状態ほどは少なくない(プロットの点の広がりが安静状態ほど大きくない)が、プロット点の分布の中心にプロットが少ない(穴の空白)領域が存在する。このような形状になるのは、犬の心拍が呼吸の影響を大きく受けるため、拍動変動が周期的に変化することが原因と考えられる(呼吸性不整脈)。そのため、リラックスした緩やかな拍動ではないが、呼吸が安定して行われているため、空白の存在する状態になると考えられる。 In the normal state where the breathing is stable as shown in FIG. 9, the heart rate is not as small as in the resting state (the spread of the plot points is not as great as in the resting state), but at the center of the distribution of the plot points. There are areas with few plots (hole blanks). The reason for this shape is thought to be that the fluctuation of the pulsation changes periodically (respiratory arrhythmia) because the heartbeat of the dog is greatly affected by respiration. Therefore, although it is not a relaxed and gentle pulsation, it is considered that there is a blank space because breathing is performed stably.
 そして、図10のような通常状態においては、拍動に揺らぎがみられ、ばらつきは大きくなる(プロット点が広がる)が、プロット点が散乱している状態となる。 In the normal state as shown in FIG. 10, the pulsation fluctuates and the variation becomes large (the plot points are widened), but the plot points are scattered.
 そして、図11の安静状態においては、犬がリラックスしているために拍動の間隔が大きくなり、さらに呼吸性不整脈の影響を大きく受けるために、プロット点の広がりが大きくなると共に、円形や四角形に近い形状や、三角形に近い形状となる。そのいずれの形状においても、安静状態ではポアンカレプロットのプロット点の分布の中心部に空白部分が見られる形状となる。 In the resting state of FIG. 11, since the dog is relaxed, the interval between pulsations is increased, and the influence of the respiratory arrhythmia is greatly increased. Therefore, the spread of the plot points is increased, and the circular or rectangular shape is increased. It becomes a shape close to or a shape close to a triangle. In any of the shapes, in a resting state, a blank portion can be seen at the center of the distribution of plot points of the Poincare plot.
 このように、本実施の形態においては、算出結果に基づいて間接的に、ポアンカレプロットのプロット点の分布の広がりの大きさや形状、中心部にプロットが多くみられるか少なくみられるかを予想することができ、その結果、動物の精神的状態または肉体的状態を予想することができる。そして、上述した通り、統計処理部311は、自律神経バランスを示す数値として、ポアンカレプロットのバラツキ具合すなわち拍動間隔の標準偏差を算出するものである。ここで、バラツキ具合とは、例えば、分散値や標準偏差に代表される、バラツキ具合を数値化する指標を指すものとする。
 <自律神経バランスの数値に関する別の形態>
As described above, in the present embodiment, the size and shape of the distribution of the plot points of the Poincare plot is indirectly estimated based on the calculation result, and whether or not the plot is often observed or reduced in the central portion. As a result, the mental state or physical state of the animal can be predicted. As described above, the statistical processing unit 311 calculates the degree of variation of the Poincare plot, that is, the standard deviation of the pulsation interval, as a numerical value indicating the autonomic nerve balance. Here, the variation degree refers to, for example, an index for quantifying the variation degree, represented by a dispersion value or a standard deviation.
<Another form of numerical values for autonomic balance>
 上記の実施の形態においては、診断端末300が、ポアンカレプロットのY=Xの軸に沿った標準偏差またはY=Xと垂直な軸に沿った標準偏差を出力するものであった。しかしながら、自律神経バランスを示す数値として、それら2つの標準偏差の積を算出してもよい。以下では、図12を参照して、本実施の形態にかかる情報処理システム1の処理手順について説明する。 In the above embodiment, the diagnostic terminal 300 outputs the standard deviation along the Y = X axis of the Poincare plot or the standard deviation along the axis perpendicular to Y = X. However, the product of the two standard deviations may be calculated as a numerical value indicating the autonomic balance. Below, with reference to FIG. 12, the process sequence of the information processing system 1 concerning this Embodiment is demonstrated.
 図12は、本実施の形態にかかる情報処理システム1の処理手順を示すフローチャートである。ステップS102~ステップS108は、図3のものと同様であるため、ここでは説明を繰り返さない。 FIG. 12 is a flowchart showing a processing procedure of the information processing system 1 according to the present embodiment. Steps S102 to S108 are the same as those in FIG. 3, and therefore description thereof will not be repeated here.
 統計処理部311としてのCPU310は、軸の変換を行った後のそれぞれの軸に関する標準偏差を算出する(ステップS110)。なお、統計処理部311は、分散が最大になる軸を特定し、当該軸と当該軸に垂直な軸に関する標準偏差を算出してもよい。 The CPU 310 as the statistical processing unit 311 calculates the standard deviation for each axis after the axis conversion (step S110). Note that the statistical processing unit 311 may specify an axis that maximizes the variance and calculate a standard deviation regarding the axis and an axis perpendicular to the axis.
 そして、統計処理部311は、自律神経バランスを示す数値として、それらの2つの標準偏差の積や積の平方根などを計算する(ステップS112)。 Then, the statistical processing unit 311 calculates the product of these two standard deviations, the square root of the product, and the like as a numerical value indicating the autonomic balance (step S112).
 結果出力部313は、例えば、診断端末300の、または外部の、ディスプレイやスピーカなどの出力装置に、標準偏差の積や積の平方根などを表示させたり、音声メッセージを出力させたりする(ステップS114)。より詳細には、結果出力部313は、Y=X軸に関する標準偏差と、Y=-Xの軸に関する標準偏差と、両者の積や積の平方根などとを出力させてもよい。 The result output unit 313 displays the product of the standard deviation, the square root of the product, or the like, or outputs a voice message on an output device such as a display or a speaker, for example, outside the diagnostic terminal 300 (step S114). ). More specifically, the result output unit 313 may output a standard deviation with respect to the Y = X axis, a standard deviation with respect to the Y = −X axis, the product of both, the square root of the product, and the like.
 図13は、犬の精神状態または肉体的状態毎の、Y=X軸に関する標準偏差と、Y=Xと垂直な軸に関する標準偏差と、自律神経バランスを示す数値としての標準偏差の積や積の平方根などと、標準偏差の比との目安を示す表である。 FIG. 13 shows the product or product of the standard deviation for the Y = X axis, the standard deviation for the axis perpendicular to Y = X, and the standard deviation as a numerical value indicating the autonomic nerve balance for each mental state or physical state of the dog. It is a table | surface which shows the standard of the square root of etc. and the ratio of standard deviation.
 標準偏差の積を計算することにより、拍動間隔R-R(n)とその次の拍動間隔R-R(n+1)とをそれぞれ軸としてポアンカレプロットした拍動間隔の分布の広がりの大きさや形状、一様に分散している、中心に空白がある等のばらつき状態が評価できる。また、縦横比が同じで大きさのみ変化している状態や分布の広がり面積が同じで中心部のばらつき状態が異なる場合などに有効にばらつき状態を評価できる。 By calculating the product of the standard deviation, the size of the spread of the beat interval distribution obtained by Poincare plot with the beat interval R−R (n) and the next beat interval R−R (n + 1) as axes, respectively, Variations such as shape, uniform dispersion, and blank at the center can be evaluated. In addition, it is possible to effectively evaluate the variation state when the aspect ratio is the same and only the size is changed, or when the distribution spread area is the same and the variation state of the central portion is different.
 この場合も、結果出力部313は、標準偏差や標準偏差の積や積の平方根や対応関係テーブルなどをデータ記憶部322に蓄積したり、送信部362を利用することによって、インターネットなどを介してサーバ100に送信したりする。これによって、今回の出力結果を観察対象の短期または長期のストレス状態の把握などに利用することができる。 Also in this case, the result output unit 313 accumulates the standard deviation, the product of the standard deviation, the square root of the product, the correspondence table, and the like in the data storage unit 322, or uses the transmission unit 362 via the Internet or the like. To the server 100. As a result, the current output result can be used for grasping the short-term or long-term stress state of the observation target.
 統計処理部311は、2つの軸の標準偏差の積や積の平方根などを計算するものであるが、3つ以上の軸の標準偏差の積やその累乗根などを計算するものであってもよい。 The statistical processing unit 311 calculates a product of standard deviations of two axes, a square root of the product, etc., but calculates a product of standard deviations of three or more axes or a power root thereof. Good.
 CPU310は、所定の期間たとえば数分間毎の図12に示す計算を行い、当該計算結果を後述する診断グラフ作成のためにメモリ320のデータベースに蓄積していく。
 <呼吸数の計算方法>
The CPU 310 performs the calculation shown in FIG. 12 for a predetermined period, for example, every few minutes, and accumulates the calculation result in the database of the memory 320 for creating a diagnostic graph to be described later.
<Calculation method of respiratory rate>
 本実施の形態にかかる診断端末300のCPU310は、対象となる動物の自律神経バランスを示す情報に加えて、当該対象となる動物の呼吸数を計算してもよい。図14を参照して、診断端末300のCPU310は、メモリ320のプログラムを実行することによって、たとえば以下の処理を実行する。 The CPU 310 of the diagnostic terminal 300 according to the present embodiment may calculate the respiratory rate of the target animal in addition to the information indicating the autonomic nerve balance of the target animal. Referring to FIG. 14, CPU 310 of diagnostic terminal 300 executes the following process, for example, by executing a program in memory 320.
 CPU310は、図4に示すような拍動間隔を取得する(ステップS204)。CPU310は、図15に示すように、1分間の拍動検出時刻と拍動間隔の関係を数学的に補間(例えばスプライン補間)する(ステップS206)。より詳細には、CPU310は、閾値検出などの方法により、心電のピーク信号(R波)を検出し、各心電のピークの間隔(時間)を算出する。拍動間隔の算出方法として、上記の他に、自己相関関数を用いた周期の導出や矩形波相関トリガを用いる方法などで行ってもよい。 CPU 310 obtains a beat interval as shown in FIG. 4 (step S204). As shown in FIG. 15, the CPU 310 mathematically interpolates (for example, spline interpolation) the relationship between the beat detection time for one minute and the beat interval (step S206). More specifically, the CPU 310 detects an electrocardiographic peak signal (R wave) by a method such as threshold detection, and calculates an interval (time) of each electrocardiographic peak. In addition to the above, the pulsation interval may be calculated by derivation of a period using an autocorrelation function or a method using a rectangular wave correlation trigger.
 そして、CPU310は、図16に示すように得られた関数の周波数解析を行う(ステップS208)。 Then, the CPU 310 performs frequency analysis of the obtained function as shown in FIG. 16 (step S208).
 CPU310は、周波数解析で得られた図16のようなパワースペクトル分布のなかで、任意の周波数範囲(例えば0.05~0.5Hzの間)においてパワースペクトルの最大のピークを特定する(ステップS210)。ここでは一例として、CPU310は、2番目に大きいピークに比べた最大のピークの割合が、任意の閾値以上の大きさ(例えば3倍)を有する場合には、「測定可能状態」と判別する。 The CPU 310 specifies the maximum peak of the power spectrum in an arbitrary frequency range (for example, between 0.05 and 0.5 Hz) in the power spectrum distribution as shown in FIG. 16 obtained by the frequency analysis (step S210). ). Here, as an example, if the ratio of the maximum peak compared to the second largest peak has a magnitude (for example, three times) equal to or greater than an arbitrary threshold, the CPU 310 determines that the state is “measurable”.
 より詳細には、例えば、屋内の静かな部屋でリラックスしている状態の犬のスプライン補間後のRRI変動は、図17(a)に示すようなものとなる。この場合のパワースペクトル分布は、図17(b)に示すようなものとなり、2番目に大きいピークに比べた最大のピークの割合が、任意の閾値以上の大きさ(例えば3倍)を有するため、CPU310は、「測定可能状態」と判別する。 More specifically, for example, the RRI fluctuation after the spline interpolation of a dog in a relaxed state in an indoor quiet room is as shown in FIG. The power spectrum distribution in this case is as shown in FIG. 17B, and the ratio of the maximum peak compared to the second largest peak has a magnitude (for example, three times) greater than an arbitrary threshold value. The CPU 310 determines that the state is “measurable”.
 逆に、例えば、屋外の騒がしい環境で落ち着きがない状態の犬のスプライン補間後のRRI変動は、図18(a)に示すようなものとなる。この場合のパワースペクトル分布は、図18(b)に示すようなものとなり、2番目に大きいピークに比べた最大のピークの割合が、任意の閾値以上の大きさ(例えば3倍)を有さないため、CPU310は、「測定不可能状態」と判別する。 Conversely, for example, the RRI fluctuation after spline interpolation of a dog that is not calm in an outdoor noisy environment is as shown in FIG. The power spectrum distribution in this case is as shown in FIG. 18B, and the ratio of the maximum peak compared to the second largest peak has a magnitude (for example, three times) greater than an arbitrary threshold value. Therefore, the CPU 310 determines that the measurement is impossible.
 CPU310は、「測定不可能状態」と判別した場合は、別のタイミングに関して、信号処理装置500が既に取得している拍動間隔に基づいて、ステップS106からの処理を繰り返す。 When the CPU 310 determines that the measurement is impossible, the CPU 310 repeats the processing from step S106 based on the beat interval that the signal processing device 500 has already acquired for another timing.
 CPU310は、「測定可能状態」と判別した場合に、各種のバイタルデータを検出する。たとえば、CPU310は、周波数解析における任意の周波数範囲(例えば0.05~0.5Hzの範囲)における最大ピークを呼吸の周波数として、逆数を計算することによって呼吸数を算出する。 CPU 310 detects various vital data when it is determined as “measurable state”. For example, the CPU 310 calculates the respiration rate by calculating the reciprocal with the maximum peak in an arbitrary frequency range (for example, a range of 0.05 to 0.5 Hz) in the frequency analysis as the respiration frequency.
 CPU310は、ディスプレイ330、スピーカ370、外部へデータを送信するための通信インターフェイス360などを介して、単位時間当たりの呼吸数を表示したり、音声出力したりする。また、CPU310は、所定の期間たとえば数分間毎の図14に示す計算を行い、当該計算結果を後述する診断グラフ作成のためにメモリ320のデータベースに蓄積していく。 The CPU 310 displays the respiration rate per unit time and outputs sound through the display 330, the speaker 370, the communication interface 360 for transmitting data to the outside, and the like. Further, the CPU 310 performs the calculation shown in FIG. 14 every predetermined period, for example, every few minutes, and accumulates the calculation result in the database of the memory 320 for creating a diagnostic graph to be described later.
 本実施の形態においては、CPU310は、周波数解析における最大ピークの周波数を呼吸の周波数として、当該周波数の逆数を計算することによって呼吸数を算出する。図19は60分間の呼吸数測定の結果である。状態判別をしなかった場合には、図19(a)のように測定結果が毎分出力可能であるが、様々な状態での測定結果を含み、また、精度を担保することが困難である。一方、「測定不可能状態」と判別した時間のデータは算出しないことにより、図19(b)に示すような呼吸数を算出することが可能になり、適切な状態下における呼吸数のみを得ることができる。 In the present embodiment, the CPU 310 calculates the respiration rate by calculating the reciprocal of the frequency with the maximum peak frequency in the frequency analysis as the respiration frequency. FIG. 19 shows the results of 60-minute respiration rate measurement. When the state is not discriminated, the measurement result can be output every minute as shown in FIG. 19A, but the measurement result in various states is included and it is difficult to ensure the accuracy. . On the other hand, by not calculating the data of the time determined as “unmeasurable state”, it becomes possible to calculate the respiration rate as shown in FIG. 19B, and obtain only the respiration rate in an appropriate state. be able to.
 より詳細には、バイタルデータを蓄積することは医学的に重要な意義を持つが、一定の環境下(例えば安静時)において測定されたデータを比較・解析することが必要である。特に、長期的にデータを比較する場合や、被測定者(例えば犬)が自ら一定の状態を維持することができない場合には、信頼性をもってバイタルデータを記録するためには、測定時の被測定者の状態を判別することが必要である。特に呼吸数は、随意的に変動するため被測定者が意識的に測定可能な状態を作り出すことが困難であり、現在では、自動的に測定可能かどうかを判別する手段が確立されていない。 More specifically, it is important medically to accumulate vital data, but it is necessary to compare and analyze data measured in a certain environment (for example, at rest). In particular, when comparing data over a long period of time, or when the person being measured (for example, a dog) is unable to maintain a certain state of its own, in order to reliably record vital data, It is necessary to determine the state of the measurer. In particular, since the respiration rate fluctuates arbitrarily, it is difficult for the measurement subject to create a state that can be consciously measured. At present, no means has been established for automatically determining whether the measurement is possible.
 しかしながら、測定データ(例えば心電信号)を解析することで被測定者の状態判別を行い、状態の判別結果に基づいて、バイタルデータ(例えば、心電信号から導かれる呼吸数など)を算出し、記録しておくことができる。特に、状態判別の手段としては、「測定中の一定時間(例えば1分間)にわたって、適切な状態を保っていたかどうか」の判別を行う。そして、「適切な状態を保っていたかどうか」の判別基準は、例えば、心拍変動解析を用いて、呼吸による変動周期から定義する。犬などの動物は、動作が見られない場合にも心拍や呼吸数の変化があり、本判別基準は加速度センサ等を用いて動作を解析するよりも高精度に適切な状態を判別できる。また、状態判定とバイタルデータ検出の両方を、心電信号等の単一の測定データから行うことによって、測定装置を小型かつ簡便にすることができる。そして、装置やシステムを小型化することにより、測定者側へのストレスや負荷を減らし、より自然な状態での測定が可能となる。 However, the state of the measurement subject is determined by analyzing the measurement data (for example, an electrocardiogram signal), and vital data (for example, the respiratory rate derived from the electrocardiogram signal) is calculated based on the determination result of the state. , Can be recorded. In particular, as a means for determining the state, it is determined whether or not an appropriate state has been maintained for a certain time (for example, 1 minute) during measurement. The determination criterion of “whether or not an appropriate state has been maintained” is defined from the fluctuation cycle due to respiration using, for example, heart rate variability analysis. An animal such as a dog has a change in heart rate and respiration rate even when no movement is observed, and this discrimination criterion can discriminate an appropriate state with higher accuracy than analysis of movement using an acceleration sensor or the like. Further, by performing both state determination and vital data detection from a single measurement data such as an electrocardiogram signal, the measurement apparatus can be made small and simple. By reducing the size of the apparatus and system, it is possible to reduce the stress and load on the measurer and to perform measurement in a more natural state.
 なお、図14のステップS110において、CPU310は、周波数解析で得られたパワースペクトル分布のなかで、任意の周波数範囲(例えば0.05Hz~0.5Hzの間)において、パワースペクトルの最大ピークを探し、当該ピークからその半値幅までのパワースペクトルの積分値の、全体に占める割合が設定された閾値以上の場合に、呼吸数の測定可能状態と判別してもよい。より詳細には、パワースペクトル分布のなかで、任意の周波数範囲(例えば0.05~0.5Hzの間)における最大のピークが、他のパワースペクトルと比較して突出しているか否かを判別できればよく、CPU310は、他の方法によって「測定可能状態」と判別してもよい。 In step S110 of FIG. 14, the CPU 310 searches for the maximum peak of the power spectrum in an arbitrary frequency range (for example, between 0.05 Hz and 0.5 Hz) in the power spectrum distribution obtained by the frequency analysis. When the ratio of the integral value of the power spectrum from the peak to its half-value width is greater than or equal to the set threshold value, it may be determined that the respiratory rate is measurable. More specifically, if it can be determined whether or not the maximum peak in an arbitrary frequency range (for example, between 0.05 and 0.5 Hz) is prominent in the power spectrum distribution as compared with other power spectra. The CPU 310 may determine the “measurable state” by another method.
 あるいは、図20に示すように、CPU310は、拍動間隔のポアンカレプロットに基づいて、標準偏差や標準偏差の積やその平方根などが所定値よりも大きい場合に対象の動物が安静状態にあると判断してもよい(ステップS302~312)。そして、CPU310は、「測定可能状態」と判別された場合に、図15に示すように、拍動間隔の時系列変化における極大(または極小)点の数を呼吸数として算出してもよい。CPU310は、所定の期間たとえば数分間毎の図20に示す計算を行い、当該計算結果を後述する診断グラフ作成のためにメモリ320のデータベースに蓄積していく。
 <結果の出力方法>
Alternatively, as shown in FIG. 20, based on the Poincare plot of the beat interval, the CPU 310 determines that the target animal is in a resting state when the standard deviation, the product of the standard deviation, its square root, or the like is larger than a predetermined value. It may be judged (steps S302 to 312). Then, when it is determined as “measurable state”, the CPU 310 may calculate the number of maximum (or minimum) points in the time series change of the pulsation interval as the respiration rate, as shown in FIG. The CPU 310 performs the calculation shown in FIG. 20 for a predetermined period, for example, every few minutes, and accumulates the calculation result in the database of the memory 320 for creating a diagnostic graph to be described later.
<Result output method>
 上記の通り、本実施の形態においては、信号処理装置500が取得した図21に示すような信号に基づいて、診断端末300のCPU310は、各種のグラフをディスプレイ330に表示させる。たとえば、図22に示すように、CPU310は、個体毎に、拍動間隔をスプライン補間した第1のグラフや、心電ピーク信号自体を示す第2のグラフや、拍動間隔のポアンカレプロットを示す補間第3のグラフや、第1のグラフを周波数解析した第4のグラフなどをディスプレイ330に表示する。なお、図22は、正常にリラックスした状態の個体に関する、(a)拍動間隔をスプライン補間した第1のグラフや、(b)心電ピーク信号自体を示す第2のグラフや、(c)拍動間隔のポアンカレプロットを示す補間第3のグラフや、(d)第1のグラフを周波数解析した第4のグラフを示すものである。一方、図23は、(a)心電ピーク信号を正しく取得できなかった場合の信号自体を示す第1のグラフや、(b)拍動間隔のポアンカレプロットを示す第2のグラフや、(c)拍動間隔をスプライン補間した第3のグラフや、(d)第3のグラフを周波数解析した第4のグラフを示すものである。なお、図23では、右下の心電ピーク信号自体を示す第2のグラフには、正しく取得できなかった時間帯に「不採用」と付している。「不採用」期間とは、R波を正しく検出できない或いは正しく検出できない可能性が高いと判定された期間を指すものとする。当該判定方法の例については後述する。本実施形態の第2のグラフは、心電ピーク信号自体を示すグラフの代わりに動物個体毎またはタイミング毎の動物個体の拍動または脈拍を測定している環境の環境データの推移を示しても良い。環境データとは、例えば、温度、湿度、騒音などの推移が考えられる。 As described above, in the present embodiment, the CPU 310 of the diagnostic terminal 300 displays various graphs on the display 330 based on the signal as shown in FIG. For example, as shown in FIG. 22, the CPU 310 shows, for each individual, a first graph in which the pulsation interval is spline-interpolated, a second graph showing the ECG peak signal itself, and a Poincare plot of the pulsation interval. A third graph of interpolation, a fourth graph obtained by frequency analysis of the first graph, and the like are displayed on the display 330. FIG. 22 shows (a) a first graph in which the beat interval is spline-interpolated, (b) a second graph showing the electrocardiographic peak signal itself, and (c) regarding an individual in a normally relaxed state. FIG. 5 shows a third interpolated graph showing a Poincare plot of pulsation intervals, and (d) a fourth graph obtained by frequency analysis of the first graph. On the other hand, FIG. 23 shows (a) a first graph showing a signal itself when an electrocardiographic peak signal cannot be acquired correctly, (b) a second graph showing a Poincare plot of a beat interval, and (c 3) A third graph in which the pulsation intervals are spline-interpolated, and (d) a fourth graph in which the third graph is frequency-analyzed. In FIG. 23, the second graph showing the electrocardiographic peak signal itself at the lower right is marked as “not adopted” in the time zone when it was not correctly acquired. The “non-adopted” period refers to a period in which it is determined that the R wave cannot be detected correctly or is likely not to be detected correctly. An example of the determination method will be described later. The 2nd graph of this embodiment may show transition of the environmental data of the environment which is measuring the pulsation or pulse of the animal individual for every animal individual or every timing instead of the graph which shows the ECG peak signal itself. good. The environmental data may be, for example, changes in temperature, humidity, noise, and the like.
 本実施の形態においては、図24に示すように、CPU310は、複数の個体のそれぞれに関するいずれかの種類のグラフを並べてディスプレイ330に表示するモードが選択できる。そして特に、本実施の形態においては、CPU310は、正常でない可能性が高いと判断される測定に関するグラフの表示態様を、正常と判断される測定に関するグラフの表示態様と異ならせる。たとえば、CPU310は、ディスプレイ330に、複数の個体の第2のグラフを並べて表示させつつ、正常でないと判断される測定に関しては、第2のグラフとともに元の第1のグラフも並べて同時に表示するものである。ここで、第2のグラフと第1のグラフは、所定の期間同時に表示していればよい。例えば、第2のグラフが表示された後、しばらく経ってから第1のグラフが表示されてもよく、第1のグラフおよび第2のグラフを同時所定の期間同時に表示すれば、第1のグラフおよび第2のグラフのどちらかを先にディスプレイに表示させなくしてもよい。 In the present embodiment, as shown in FIG. 24, the CPU 310 can select a mode in which any kind of graph relating to each of a plurality of individuals is arranged and displayed on the display 330. In particular, in the present embodiment, CPU 310 makes the display mode of the graph related to the measurement determined to be highly likely to be different from the display mode of the graph related to the measurement determined to be normal. For example, the CPU 310 displays the second graph of a plurality of individuals side by side on the display 330 and displays the original first graph together with the second graph for the measurement determined to be abnormal. It is. Here, the second graph and the first graph may be displayed simultaneously for a predetermined period. For example, the first graph may be displayed after a while after the second graph is displayed. If the first graph and the second graph are simultaneously displayed for a predetermined period, the first graph is displayed. Either the second graph or the second graph may not be displayed on the display first.
 これによって、獣医などのユーザは、正常でないグラフを診断などに採用したり考慮したりすべきであるか否かを判断しやすくなる。 This makes it easier for a user such as a veterinarian to determine whether or not an abnormal graph should be adopted or taken into consideration.
 図24に示すように、第1のグラフと第2のグラフの横軸はともに測定時間を示す。第1のグラフおよび第2のグラフの横軸の測定間隔、長さ、尺度については揃えられていることが好ましい。さらに、第1のグラフの横軸と第2のグラフの横軸は、互いに平行に配置されていることが好ましい。この第1のグラフおよび第2のグラフの横軸を揃えることによって、目視によって両グラフを見比べる際に、両グラフに含まれるデータ同士の対応関係を確認することが容易となる。 As shown in FIG. 24, the horizontal axes of the first graph and the second graph both indicate the measurement time. It is preferable that the measurement interval, length, and scale on the horizontal axis of the first graph and the second graph are aligned. Furthermore, the horizontal axis of the first graph and the horizontal axis of the second graph are preferably arranged in parallel to each other. By aligning the horizontal axes of the first graph and the second graph, it is easy to confirm the correspondence between the data included in both graphs when visually comparing the two graphs.
 なお、正常と判断される測定に関するグラフの配置される位置が変化しないように、第2のグラフとともに元の第1のグラフを、正常と判断される測定に関するグラフよりも小さく表示させる。 It should be noted that the original first graph together with the second graph is displayed smaller than the graph related to the measurement determined to be normal so that the position where the graph related to the measurement determined to be normal is not changed.
 以下では、診断端末300における、取得した各種のデータが正常であるか否かを判断するための処理について説明する。一例として、図25は、得られた心電データがR波を検出するに足りるデータかどうか、つまり、R波を正しく検出できない或いは正しく検出できない可能性が高いかどうかを判定するためのフローチャートである。 Hereinafter, a process for determining whether or not various types of acquired data are normal in the diagnostic terminal 300 will be described. As an example, FIG. 25 is a flowchart for determining whether or not the obtained electrocardiographic data is sufficient to detect the R wave, that is, whether or not the R wave cannot be detected correctly or is likely not to be detected correctly. is there.
 図25を参照して、CPU310は、まず直近t秒(例えばt=1)の心電の電圧値Etを取得する。電圧取得のサンプリング周波数を100Hzとすると、Etは100個の数値で構成される(ステップS402)。CPU110は、Etの最大値Emを決定する(ステップS404)。 Referring to FIG. 25, the CPU 310 first acquires the electrocardiographic voltage value Et for the latest t seconds (eg, t = 1). If the sampling frequency for voltage acquisition is 100 Hz, Et is composed of 100 numerical values (step S402). CPU110 determines the maximum value Em of Et (step S404).
 本実施の形態においては、判定は2段階に分けている。1段階目はR波の振幅が足りているか否かに応じて判定する段階であって、2段階目はR波同等もしくはそれ以上にノイズが多いか否かに応じて判定する段階である。以下では、1段階目をフラット判定(第2の判定手段、ステップS410)と呼び、2段階目を多ノイズ判定(第1の判定手段)と呼ぶ。 In the present embodiment, the determination is divided into two stages. The first stage is a stage for determining whether or not the amplitude of the R wave is sufficient, and the second stage is a stage for determining depending on whether or not there is more noise than or equal to the R wave. Hereinafter, the first stage is referred to as flat determination (second determination means, step S410), and the second stage is referred to as multi-noise determination (first determination means).
 図26に示すように、CPU310は、フラット判定として、Etの平均Et_aveを取得し(ステップS412)、Etの最大値Emとの差を求める(ステップS414)。CPU310は、この差が所定閾値Jflat(例えば30)を超える場合は、フラット判定結果はFALSE(ステップS416)、超えない場合はTRUEとする(ステップS416)。CPU310は、フラット判定にてTRUEとなった場合は、この区間Etは採用できないと判定する(第1結果、ステップS452)。なお、閾値Jflatは、犬種の大きさや、皮膚の接触抵抗の大きさによって変更してもよいし、周囲の温湿度によって変更してもよい。 As shown in FIG. 26, the CPU 310 obtains an average Et_ave of Et as a flat determination (step S412), and obtains a difference from the maximum value Em of Et (step S414). If the difference exceeds a predetermined threshold value Jflat (for example, 30), the CPU 310 sets the flat determination result to FALSE (step S416), and sets the difference to TRUE (step S416). CPU310 determines that this area Et cannot be employ | adopted when it becomes TRUE by flat determination (1st result, step S452). The threshold value Jflat may be changed according to the size of the dog breed or the contact resistance of the skin, or may be changed according to the ambient temperature and humidity.
 図25に戻って、CPU310は、Etに加え、直近ref秒(例えばref=15)の電圧値Erefも取得する(ステップS426)。CPU310は、Et,Erefそれぞれの分散値Dt、Drefを求める(ステップS434)。CPU310は、DtがDrefを超えた場合は、ノイズが多すぎるためにこの区間Etを採用しないと判定する(第1結果、ステップS446)。逆にDtがDrefを下回る場合は、CPU310は、Etは採用できると判定する(第2結果、ステップS442)。なお、前記t秒やref秒は、犬種の大きさや、皮膚の接触抵抗の大きさによって変更してもよいし、周囲の温湿度によって変更してもよい。また、測定中の犬の活発さに応じて変更してもよい。例えば、加速度センサなどによって活発さの測定が可能である。 25, in addition to Et, the CPU 310 also acquires the voltage value Eref for the latest ref seconds (for example, ref = 15) (step S426). The CPU 310 obtains dispersion values Dt and Dref for Et and Eref, respectively (step S434). When Dt exceeds Dref, the CPU 310 determines that this section Et is not adopted because there is too much noise (first result, step S446). Conversely, if Dt is lower than Dref, the CPU 310 determines that Et can be adopted (second result, step S442). The t seconds and ref seconds may be changed according to the size of the dog breed and the contact resistance of the skin, or may be changed depending on the ambient temperature and humidity. Moreover, you may change according to the activeness of the dog under measurement. For example, the activity can be measured by an acceleration sensor or the like.
 なお、本実施の形態においては、この多ノイズ判定において、ノイズの大小に配慮するため、EtおよびEref取得時において所定閾値EMAX(例えば150)を超えるか否かに応じて
、それぞれの最大値にて正規化するようにしてもよい(ステップS422、ステップS424、ステップS430、ステップS432)。この所定閾値EMAXは、検出する電圧値の分解能の細かさによって調整することが望ましい。
In the present embodiment, in this multi-noise determination, in order to consider the magnitude of noise, each maximum value is determined depending on whether or not a predetermined threshold EMAX (for example, 150) is exceeded when Et and Eref are acquired. Normalization (step S422, step S424, step S430, step S432). This predetermined threshold EMAX is desirably adjusted according to the resolution of the voltage value to be detected.
 また、自律神経バランスを示す数値に関しても、ポアンカレプロットの標準偏差や標準偏差の積に限らず、ポアンカレプロットの連続する2つのプロット間の距離の平均を利用したり、その他のポアンカレブロットのばらつきを示す数値を利用したり、ポアンカレプロット以外の他の計算方法を利用してもよい。 In addition, the numerical value indicating the autonomic balance is not limited to the product of the standard deviation or standard deviation of the Poincare plot, but the average of the distances between two consecutive Poincare plots can be used, and other Poincare blot variations The numerical value shown may be used, or another calculation method other than the Poincare plot may be used.
 また、上記の実施の形態では、心電取得用の電極401,402,403を用いて拍動間隔を算出しているが、このような形態には限られない。例えば、光電脈波方式の脈波計やパルスオキシメータによって脈波信号を取得し、脈波信号から拍動間隔を算出してもよい。この場合は、脈波の測定部位は、舌、耳などをはじめとした皮膚が露出した部位であることが好ましい。また、電子聴診器などにより心音信号を取得し、心音信号か拍動間隔を算出してもよい。これらこの場合、電極を使用しない方法での測定が可能となる。マイクロ波ドップラーセンサ等の脈波取得センサを利用して、脈波信号を取得し、脈波信号から拍動間隔を算出してもよい。たとえば、マイクロ波発信装置が天井等に設置されており、非接触で犬などの動物からの脈波を取得する形態が考えられる。この場合には、非接触での測定が可能となり、被験体への負荷をより軽減する効果がある。
 <第2の実施の形態>
In the above embodiment, the pulsation interval is calculated using the electrodes 401, 402, and 403 for acquiring electrocardiograms. However, the present invention is not limited to such a form. For example, a pulse wave signal may be acquired by a photoelectric pulse wave type pulse wave meter or a pulse oximeter, and a pulsation interval may be calculated from the pulse wave signal. In this case, the pulse wave measurement site is preferably the site where the skin, including the tongue and ears, is exposed. Alternatively, a heart sound signal may be acquired by an electronic stethoscope or the like, and the heart sound signal or the beat interval may be calculated. In these cases, measurement can be performed by a method that does not use an electrode. A pulse wave signal may be acquired using a pulse wave acquisition sensor such as a microwave Doppler sensor, and the pulsation interval may be calculated from the pulse wave signal. For example, a microwave transmission device is installed on the ceiling or the like, and a form of acquiring a pulse wave from an animal such as a dog without contact is conceivable. In this case, non-contact measurement is possible and there is an effect of further reducing the load on the subject.
<Second Embodiment>
 結果の出力方法は、上記の実施の形態のものには限られない。たとえば、診断端末300のCPU310は、図26に示すフラット判定として、Etの平均Et_aveを取得し(ステップS412)、Etの最大値Emとの差を求める(ステップS414)。そして、CPU310は、この差が第2の所定閾値Jflat(例えば15)を超えない場合は、このグラフ自体をディスプレイ330には並べないようにしてもよい。 The output method of the result is not limited to that of the above embodiment. For example, the CPU 310 of the diagnostic terminal 300 acquires the average Et_ave of Et as the flat determination shown in FIG. 26 (step S412), and obtains the difference from the maximum value Em of Et (step S414). Then, the CPU 310 may not arrange the graph itself on the display 330 when the difference does not exceed the second predetermined threshold value Jflat (for example, 15).
 また、図25のステップS446において、CPU310は、DtがDrefの所定の値(例えば2倍)を超えた場合は、ノイズが多すぎるためにこのグラフ自体をディスプレイ330には並べないようにしてもよい。 In step S446 in FIG. 25, if Dt exceeds a predetermined value (for example, twice) of Dref, the CPU 310 may not arrange this graph on the display 330 because there is too much noise. Good.
 すなわち、本実施の形態においては、CPU310は、グラフに含まれる一部または全部が第2の判定手段によって、所定の条件を満たした場合に、当該グラフ内に正常でない範囲があるものとして、他のグラフと異なる表示で当該グラフをディスプレイ330を表示する。そして、CPU310は、グラフに含まれる一部または全部がさらに第1の判定手段によって、所定の条件までも満たした場合には、当該グラフ自体を表示しないで代わりに次のグラフをディスプレイ330を表示する。 That is, in the present embodiment, the CPU 310 determines that there is an abnormal range in the graph when a part or all of the graph satisfies a predetermined condition by the second determination unit. The graph 330 is displayed on the display 330 with a display different from that of the graph. Then, when a part or all of the graph further satisfies a predetermined condition by the first determination means, the CPU 310 does not display the graph itself but instead displays the next graph on the display 330. To do.
 これによって、正常でない可能性が高い、たとえば80%以上など、グラフはあらかじめ自動的に排除しつつ、獣医などのユーザは、正常でない可能性がある、たとえば30%以上など、グラフに関して診断などに採用したり考慮したりすべきであるか否かを判断しやすくなる。CPU310は、ボタンやタッチパネルなどの操作部を介して、上記の判断の指標となる、当該可能性の数値自体やその他のしきい値などの設定を受けることが好ましい。
 <第3の実施の形態>
As a result, a graph such as 80% or more that is highly likely to be abnormal is automatically excluded in advance, and a user such as a veterinarian may diagnose a graph that may be abnormal, such as 30% or more It becomes easier to judge whether or not to adopt or consider. It is preferable that the CPU 310 receives a setting such as a numerical value of the possibility itself or other threshold value, which serves as an index for the determination, via an operation unit such as a button or a touch panel.
<Third Embodiment>
 結果の出力方法は、上記の実施の形態のものには限られない。本実施の形態においても、CPU310は、正常でない可能性が高いと判断される測定に関するグラフの表示態様を、正常と判断される測定に関するグラフの表示態様と異ならせる。そしてたとえば、CPU310は、ディスプレイ330に、複数の個体の第2のグラフを並べて表示させつつ、正常でないと判断される測定結果に関しては、図27に示すように、画面に、正常でないと判断される測定に関する、第2のグラフに元の第1のグラフを重ねて表示してもよい。 The output method of the result is not limited to that of the above embodiment. Also in the present embodiment, CPU 310 changes the display mode of the graph related to the measurement that is determined to be highly likely to be different from the display mode of the graph related to the measurement that is determined to be normal. For example, the CPU 310 causes the display 330 to display the second graphs of a plurality of individuals side by side, and regarding the measurement result determined to be not normal, it is determined to be not normal on the screen as shown in FIG. The original first graph may be superimposed on the second graph and displayed.
 これによって、獣医などのユーザは、正常でないグラフを診断などに採用したり考慮したりすべきであるか否かを判断しやすくなる。 This makes it easier for a user such as a veterinarian to determine whether or not an abnormal graph should be adopted or taken into consideration.
 この場合は、CPU310は、第1のグラフの縦方向の主要な範囲と第2のグラフの縦方向の主要な範囲とを同程度に合わせることが好ましい。 In this case, the CPU 310 preferably matches the vertical main range of the first graph and the vertical main range of the second graph to the same extent.
 あるいは、図28に示すように、CPU310は、正常でない可能性が高いと判断される測定に関するグラフの表示態様を、正常と判断される測定に関するグラフの表示態様と異ならせてもよい。すなわち、CPU310は、ディスプレイ330に、複数の個体の第2のグラフを並べて表示させつつ、正常でないと判断される測定結果に関しては、第2のグラフの周囲に枠を表示させる。あるいは、CPU310は、第2のグラフの線の色を変えたり、背面色を変えたり、エクスクラメーションを付したりする。 Alternatively, as shown in FIG. 28, the CPU 310 may change the display mode of the graph related to the measurement that is determined to be highly likely to be different from the display mode of the graph related to the measurement that is determined to be normal. That is, the CPU 310 causes the display 330 to display the second graph of a plurality of individuals side by side, and displays a frame around the second graph for the measurement result determined to be not normal. Alternatively, the CPU 310 changes the line color of the second graph, changes the back color, or adds exclamation.
 そして、CPU310は、ボタンやタッチパネルなどの操作部を介して、当該グラフが選択されると、図29に示すように、画面に、正常でないと判断される測定に関する、第2のグラフとともに元の第1のグラフも並べて表示するものである。 Then, when the graph is selected via an operation unit such as a button or a touch panel, the CPU 310 displays the original graph together with the second graph regarding the measurement that is determined to be abnormal on the screen as shown in FIG. The first graph is also displayed side by side.
 より好ましくは、この際に、図30に示すように、CPU310は、画面に、当該測定に関するグラフを画面に残す命令や除外する命令を受け付けるための画像やテキストを表示する。そして、CPU310は、操作部を介して入力される「残す命令」に応じて、対象となる測定のグラフの表示態様を通常のグラフと同じものに戻したり、操作部を介して入力される「除外命令」に応じて、対象となる測定のグラフを画面から取り除いて、次の別の測定のグラフを前に詰めて表示したりする。
 <第4の実施の形態>
More preferably, at this time, as shown in FIG. 30, CPU 310 displays an image or text for accepting an instruction to leave or exclude a graph related to the measurement on the screen. Then, the CPU 310 returns the display mode of the measurement graph to be the same as that of the normal graph according to the “remaining command” input through the operation unit, or “input through the operation unit”. In response to the “exclusion command”, the graph of the target measurement is removed from the screen, and the next graph of another measurement is displayed in front.
<Fourth embodiment>
 あるいは、正常でない可能性が高いと判断される測定に関するグラフに関して、図31に示すように、CPU310は、第2のグラフとともに元の第1のグラフも並べて表示しつつ、当該第1および第2のグラフのうちの正常でない可能性が高いと判断される箇所を他の部分と異なる表示態様で表示させてもよい。たとえば、CPU310は、当該第1および第2のグラフのうちの正常でない可能性が高いと判断される箇所を囲う枠線を表示する。 Alternatively, as shown in FIG. 31, regarding the graph relating to the measurement that is determined to have a high possibility of being abnormal, as shown in FIG. 31, the CPU 310 displays the first graph together with the second graph while displaying the original first graph side by side. A portion of the graph that is determined to be highly likely to be abnormal may be displayed in a display mode different from the other portions. For example, the CPU 310 displays a frame line that surrounds a portion of the first and second graphs that is determined to have a high possibility of being abnormal.
 あるいは、図32に示すように、CPU310は、当該第1および第2のグラフのうちの正常でない可能性が高いと判断される領域の背面色を他の部分と異なるものにする。 Alternatively, as shown in FIG. 32, the CPU 310 makes the back color of the area of the first and second graphs determined to be highly normal different from the other parts.
 あるいは、図27で正常でない可能性が高いと判断される測定に関するグラフが選択されると、図33に示すように、CPU310は、画面に、正常でないと判断される測定に関する、3つ以上のグラフを表示する画面に推移してもよい。この場合も、CPU310は、当該第1および第2のグラフのうちの正常でない可能性が高いと判断される箇所を他の部分と異なる表示態様で表示させてもよい。
 <第5の実施の形態>
Alternatively, when a graph related to a measurement that is determined to have a high possibility of being abnormal in FIG. 27 is selected, as illustrated in FIG. 33, the CPU 310 displays three or more values related to the measurement determined to be abnormal on the screen. You may transition to a screen that displays a graph. Also in this case, the CPU 310 may display a portion of the first and second graphs that is determined to be highly likely to be abnormal in a display mode different from other portions.
<Fifth embodiment>
 結果の出力方法は、上記の実施の形態のように、異なる複数の個体のグラフを並べて表示するものには限られない。たとえば、診断端末300のCPU310は、図24に示すように、指定された個体に関する、異なる複数のタイミングのそれぞれに関するグラフを並べてディスプレイ330に表示してもよい。
 <第6の実施の形態>
The output method of the result is not limited to the method of displaying the graphs of a plurality of different individuals side by side as in the above embodiment. For example, as shown in FIG. 24, the CPU 310 of the diagnostic terminal 300 may display a graph regarding each of a plurality of different timings related to a specified individual on the display 330.
<Sixth Embodiment>
 上記の実施の形態にかかる情報処理システム1は、電極401,402,403からの心電信号に基づいて信号処理装置500が拍動間隔を取得し、診断端末300が拍動間隔から動物の状態を判断するための情報または動物の状態の判定結果の情報を算出して出力するものであった。しかしながら、それらの1つの装置の全部または一部の役割が、別の装置によって担われてもよいし、複数の装置によって分担されてもよい。逆に、それら複数の装置の全部または一部の役割を、1つの装置が担ってもよいし、別の装置が担ってもよい。 In the information processing system 1 according to the above-described embodiment, the signal processing device 500 acquires the beat interval based on the electrocardiogram signals from the electrodes 401, 402, and 403, and the diagnosis terminal 300 determines the state of the animal from the beat interval. The information for judging the above or the information on the judgment result of the animal state is calculated and output. However, all or some of the roles of the one device may be played by another device or may be shared by a plurality of devices. Conversely, one device may play the role of all or part of the plurality of devices, or another device may play the role.
 例えば、図34に示すように、診断端末300が信号処理装置500の全部または一部の機能を搭載するものであってもよい。この場合は、診断端末300は、簡易信号処理装置501から、電極401,402,403からの心電信号を無線通信によって取得する。電極からの心電信号は、最低限のフィルタ装置、増幅装置及びA/D変換装置を含む簡易心電前処理部570によりデジタル信号に変換され、送信部560から送信される。診断端末300は、心電信号から拍動間隔や動物の状態を判断するための情報または動物の状態の判定結果の情報を算出する。そして、診断端末300が最終的な結果の情報をディスプレイやスピーカに出力する。 For example, as shown in FIG. 34, the diagnostic terminal 300 may be equipped with all or part of the functions of the signal processing device 500. In this case, the diagnostic terminal 300 acquires the electrocardiogram signals from the electrodes 401, 402, and 403 from the simple signal processing device 501 by wireless communication. An electrocardiogram signal from the electrode is converted into a digital signal by a simple electrocardiogram preprocessing unit 570 including a minimum filter device, amplification device, and A / D conversion device, and transmitted from the transmission unit 560. The diagnosis terminal 300 calculates information for determining the interval between pulsations and the state of the animal or information on the determination result of the state of the animal from the electrocardiogram signal. Then, the diagnostic terminal 300 outputs the final result information to a display or a speaker.
 あるいは、図35に示すように、信号処理装置500が診断端末300の全部または一部の機能を搭載するものであってもよい。この場合は、電極401,402,403からの心電信号に基づいて、信号処理装置500が拍動間隔や動物の状態を判断するための情報または動物の状態の判定結果の情報を算出する。そして、信号処理装置500が最終的な結果の情報をディスプレイやスピーカに出力する。 Alternatively, as shown in FIG. 35, the signal processing device 500 may be equipped with all or part of the functions of the diagnostic terminal 300. In this case, based on the electrocardiogram signals from the electrodes 401, 402, and 403, the signal processing device 500 calculates information for determining the pulsation interval and the state of the animal or information on the determination result of the state of the animal. Then, the signal processing device 500 outputs the final result information to a display or a speaker.
 あるいは、図36に示すように、診断端末300の役割をサーバ100が担ってもよい。この場合は、サーバ100が、上記の実施の形態の診断端末300の機能を搭載することになる。例えば、診断端末300としての通信端末が信号処理装置500からの拍動間隔などの必要な情報をルータやキャリア網やインターネットなどを介してサーバ100に送信する。サーバ100が動物の状態を判断するための情報または動物の状態の判定結果を示す情報を算出し、当該情報を診断端末300に送信する。診断端末300が最終的な結果の情報をディスプレイやスピーカに出力することが考えられる。 Alternatively, as shown in FIG. 36, the server 100 may play the role of the diagnostic terminal 300. In this case, the server 100 is equipped with the function of the diagnostic terminal 300 of the above embodiment. For example, a communication terminal as the diagnostic terminal 300 transmits necessary information such as a beat interval from the signal processing device 500 to the server 100 via a router, a carrier network, the Internet, or the like. The server 100 calculates information for determining the animal state or information indicating the determination result of the animal state, and transmits the information to the diagnostic terminal 300. It is conceivable that the diagnostic terminal 300 outputs the final result information to a display or a speaker.
 なお、この場合は、当然に、サーバ100の受信部161や送信部162は、サーバ100の通信インターフェイス160によって実現される。そして、拍動間隔記憶部121やデータ記憶部122は、サーバ100のメモリ120またはサーバ100からアクセス可能な他の装置などによって実現される。統計処理部111やグラフ作成部112や結果出力部113は、CPU110がメモリ120のプログラムを実行することによって実現される。 In this case, as a matter of course, the reception unit 161 and the transmission unit 162 of the server 100 are realized by the communication interface 160 of the server 100. The beat interval storage unit 121 and the data storage unit 122 are realized by the memory 120 of the server 100 or another device accessible from the server 100. The statistical processing unit 111, the graph creation unit 112, and the result output unit 113 are realized by the CPU 110 executing the program in the memory 120.
 あるいは、図37に示すように、信号処理装置500が拍動間隔などの必要な情報をルータやキャリア網やインターネットなどを介してサーバ100に送信する。サーバ100が動物の状態を判断するための情報または動物の状態の判定結果の情報を算出して、当該情報をインターネットやキャリア網やルータなどを介して診断端末300としての通信端末に送信する。診断端末300が最終的な結果の情報をディスプレイやスピーカに出力する。この場合は、信号処理装置500と診断端末300とは無線LANまたは有線LANで接続されていなくてもよい。 Alternatively, as shown in FIG. 37, the signal processing device 500 transmits necessary information such as a beat interval to the server 100 via a router, a carrier network, the Internet, or the like. The server 100 calculates information for determining the state of the animal or information on the determination result of the state of the animal, and transmits the information to a communication terminal as the diagnostic terminal 300 via the Internet, a carrier network, a router, or the like. The diagnostic terminal 300 outputs information on the final result to a display or a speaker. In this case, the signal processing device 500 and the diagnostic terminal 300 may not be connected by a wireless LAN or a wired LAN.
 なお、この場合も、当然に、サーバ100の受信部161や送信部162は、サーバ100の通信インターフェイス160によって実現される。そして、拍動間隔記憶部121やデータ記憶部122は、サーバ100のメモリ120またはサーバ100からアクセス可能な他の装置などによって実現される。統計処理部111やグラフ作成部112や結果出力部113は、CPU110がメモリ120のプログラムを実行することによって実現される。 In this case, as a matter of course, the reception unit 161 and the transmission unit 162 of the server 100 are realized by the communication interface 160 of the server 100. The beat interval storage unit 121 and the data storage unit 122 are realized by the memory 120 of the server 100 or another device accessible from the server 100. The statistical processing unit 111, the graph creation unit 112, and the result output unit 113 are realized by the CPU 110 executing the program in the memory 120.
 上記の実施の形態の説明においては、「ポアンカレプロット」を行う処理や「ポアンカレプロット処理後の軸変換」を行う処理について述べられているが、当該処理は、診断端末300・サーバ100・信号処理装置500のCPUが実際に紙媒体やディスプレイにポアンカレプロットの画像を印刷したり表示したりすることに限定されるべきではない。当該処理は、たとえば、CPUが、メモリに、実質的にポアンカレプロットを示すデータを格納したり展開したりする処理をも含む概念である。
 <第7の実施の形態>
In the description of the above embodiment, the processing for performing “Poincare plot” and the processing for performing “axis conversion after Poincare plot processing” are described. The CPU of the apparatus 500 should not be limited to actually printing or displaying a Poincare plot image on a paper medium or a display. The process is a concept including, for example, a process in which the CPU stores or expands data that substantially indicates a Poincare plot in a memory.
<Seventh embodiment>
 上記の実施の形態にかかる情報処理システム1においては、正常でない可能性が高いと判断される測定に関するグラフの表示態様を、正常と判断される測定に関するグラフの表示態様と異ならせるものであった。しかしながら、このような形態には限られない。 In the information processing system 1 according to the above embodiment, the display mode of the graph related to the measurement that is determined to be highly normal is different from the display mode of the graph related to the measurement that is determined to be normal. . However, it is not limited to such a form.
 たとえば、診断端末300のCPU310が、信号処理装置500からデータを取得したタイミングで、R波の振幅が足りているか否かに応じて判定(フラット判定)したり、R波と同等もしくはそれ以上にノイズが多いか否かに応じて判定(多ノイズ判定)したりしてもよい。 For example, at the timing when the CPU 310 of the diagnostic terminal 300 acquires data from the signal processing device 500, a determination (flat determination) is made according to whether or not the amplitude of the R wave is sufficient, or it is equal to or higher than the R wave. It may be determined (multiple noise determination) according to whether there is a lot of noise.
 そして、CPU310は、正常であると判断した場合には、図38の(a)に示すように、ディスプレイ330にエラー表示をさせない。CPU310は、フラット判定において正常でないと判断した場合には、図38の(b)に示すように、ディスプレイ330に「電極がはずれている」旨のメッセージを出力してもよい。CPU310は、多ノイズ判定において正常でないと判断した場合には、図38の(c)に示すように、ディスプレイ330に「電極が正常に取り付けられていない」旨のメッセージや「対象の動物が動いている」旨のメッセージを出力してもよい。
 <第8の実施の形態>
When the CPU 310 determines that it is normal, it does not display an error on the display 330 as shown in FIG. When the CPU 310 determines that the flat determination is not normal, the CPU 310 may output a message that “the electrodes are disconnected” to the display 330 as illustrated in FIG. When the CPU 310 determines that it is not normal in the multi-noise determination, as shown in (c) of FIG. May be output ".
<Eighth Embodiment>
 上記の実施の形態にかかる情報処理システム1においては、取得した各種のデータが正常であるか否かを判断するために、R波の振幅が足りているか否かに応じて判定(フラット判定)したり、R波同等もしくはそれ以上にノイズが多いか否かに応じて判定(多ノイズ判定)したりするものであった。 In the information processing system 1 according to the above-described embodiment, in order to determine whether or not the various types of acquired data are normal, determination is made according to whether or not the amplitude of the R wave is sufficient (flat determination). Or making a determination (multiple noise determination) depending on whether there is more noise than the R wave.
 しかしながら、フラット判定の代わりに、R波の振幅が大き過ぎるか否かに応じて、取得した各種のデータが正常であるか否かを判断してもよい。たとえば、図39に示すように、CPU310は、Etの平均Et_aveを取得し(ステップS412)、Etの最大値Emとの差を求める(ステップS414B)。CPU310は、この差が所定閾値(例えば200)を超えるか否かを判定する(ステップS414B)。この差が所定閾値を超える場合は、判定結果はTRUE(ステップS418B)、超えない場合はFALSEとする(ステップS416B)。CPU310は、判定にてTRUEとなった場合は、この区間Etは採用できないとして、ディスプレイ330やスピーカにその旨を出力させる(ステップS418B)。 However, instead of the flat determination, it may be determined whether or not the acquired various data are normal depending on whether or not the amplitude of the R wave is too large. For example, as shown in FIG. 39, the CPU 310 obtains an average Et_ave of Et (step S412), and obtains a difference from the maximum value Em of Et (step S414B). The CPU 310 determines whether or not this difference exceeds a predetermined threshold (for example, 200) (step S414B). If this difference exceeds a predetermined threshold, the determination result is TRUE (step S418B), and if not, FALSE is set (step S416B). If the determination is TRUE, the CPU 310 determines that this section Et cannot be adopted and causes the display 330 or the speaker to output that effect (step S418B).
 あるいは、この判定と上記のフラット判定とを組み合わせてもよい。すなわち、図40に示すように、CPU310は、フラット判定として、Etの平均Et_aveを取得し(ステップS412)、Etの最大値Emとの差を求める(ステップS414)。CPU310は、この差が所定閾値Jflat(例えば30)を超えない場合はTRUEとする(ステップS418)。CPU310は、フラット判定にてTRUEとなった場合は、この区間Etは採用できないとして、ディスプレイ330やスピーカにその旨を出力させる(ステップS418)。一方、フラット判定にてFALSEとなった場合には、Etの最大値Emとの差が所定閾値(例えば200)を超えるか否かを判定する(ステップS414B)。この差が所定閾値を超える場合は、判定結果はTRUE(ステップS418B)、超えない場合はFALSEとする(ステップS416B)。CPU310は、判定にてTRUEとなった場合は、この区間Etは採用できないとして、ディスプレイ330やスピーカにその旨を出力させる(ステップS418B)。
 <第9の実施の形態>
Or you may combine this determination and said flat determination. That is, as shown in FIG. 40, the CPU 310 obtains an average Et_ave of Et as a flat determination (step S412), and obtains a difference from the maximum value Em of Et (step S414). If the difference does not exceed a predetermined threshold value Jflat (for example, 30), CPU 310 sets TRUE (step S418). If the CPU 310 determines that the flat determination is TRUE, the CPU 310 causes the display 330 or the speaker to output the fact that the section Et cannot be adopted (step S418). On the other hand, when the flat determination is FALSE, it is determined whether or not the difference between the maximum value Em of Et exceeds a predetermined threshold (for example, 200) (step S414B). If this difference exceeds a predetermined threshold, the determination result is TRUE (step S418B), and if not, FALSE is set (step S416B). If the determination is TRUE, the CPU 310 determines that this section Et cannot be adopted and causes the display 330 or the speaker to output that effect (step S418B).
<Ninth embodiment>
 多ノイズ判定に関しても、様々な処理があげられる。たとえば、図41に示すように、CPU310は、DtがDrefの150%を超えるか否かを判断する(ステップS436B)。CPU110は、DtがDrefの150%を超えた場合は、ノイズが多すぎるためにこの区間Etを採用しないとして、ディスプレイ330やスピーカにその旨を出力させる(ステップS446B)。逆にDtがDrefの150%を下回る場合は、CPU310は、Etは採用できるとする(ステップS442)。 There are various types of processing related to multi-noise determination. For example, as shown in FIG. 41, CPU 310 determines whether or not Dt exceeds 150% of Dref (step S436B). When Dt exceeds 150% of Dref, CPU 110 causes the display 330 and the speaker to output the fact that the section Et is not adopted because there is too much noise (step S446B). Conversely, if Dt is less than 150% of Dref, CPU 310 can adopt Et (step S442).
 これによって、図42のような、枠内のような電位が得られた場合に、エラーを出力することができるようになる。図42においては、多ノイズ判定においてエラーと判断された期間にエラーフラグ「1」が付されており、多ノイズ判定においてエラーと判断されなかった期間に正常フラグ「0」が付されている。 This makes it possible to output an error when the potential in the frame as shown in FIG. 42 is obtained. In FIG. 42, an error flag “1” is added during a period when an error is determined in the multiple noise determination, and a normal flag “0” is added during a period when the error is not determined in the multiple noise determination.
 あるいは、図43に示すように、CPU310は、DtがDrefの70%以下か否かを判断してもよい(ステップS436C)。CPU110は、DtがDrefの70%以下の場合は、電圧値が低すぎるためにこの区間Etを採用しないとして、ディスプレイ330やスピーカにその旨を出力させる(ステップS446B)。逆にDtがDrefの70%を超える場合は、CPU310は、Etは採用できるとする(ステップS442)。 Alternatively, as shown in FIG. 43, the CPU 310 may determine whether Dt is 70% or less of Dref (step S436C). When Dt is 70% or less of Dref, CPU 110 causes the display 330 and the speaker to output the fact that the section Et is not adopted because the voltage value is too low (step S446B). Conversely, when Dt exceeds 70% of Dref, the CPU 310 can adopt Et (step S442).
 あるいは、図44に示すように、これらの判定を組み合わせてもよい。すなわち、CPU310は、DtがDrefの150%を超えるか否かを判断する(ステップS436B)。CPU110は、DtがDrefの150%を超えた場合は、ノイズが多すぎるためにこの区間Etを採用しないとして、ディスプレイ330やスピーカにその旨を出力させる(ステップS446B)。逆にDtがDrefの150%を下回る場合は、DtがDrefの70%以下か否かを判断する(ステップS436C)。CPU110は、DtがDrefの70%以下の場合は、電圧値が低すぎるためにこの区間Etを採用しないとして、ディスプレイ330やスピーカにその旨を出力させる(ステップS446B)。逆にDtがDrefの70%を超える場合は、CPU310は、Etは採用できるとする(ステップS442)。
 <第10の実施の形態>
Alternatively, as shown in FIG. 44, these determinations may be combined. That is, CPU 310 determines whether or not Dt exceeds 150% of Dref (step S436B). When Dt exceeds 150% of Dref, CPU 110 causes the display 330 and the speaker to output the fact that the section Et is not adopted because there is too much noise (step S446B). Conversely, if Dt is less than 150% of Dref, it is determined whether Dt is 70% or less of Dref (step S436C). When Dt is 70% or less of Dref, CPU 110 causes the display 330 and the speaker to output the fact that the section Et is not adopted because the voltage value is too low (step S446B). Conversely, when Dt exceeds 70% of Dref, the CPU 310 can adopt Et (step S442).
<Tenth Embodiment>
 第7から第9の実施の形態に関しても、それらの1つの装置の全部または一部の役割が、別の装置によって担われてもよいし、複数の装置によって分担されてもよい。逆に、それら複数の装置の全部または一部の役割を、1つの装置が担ってもよいし、別の装置が担ってもよい。 Also regarding the seventh to ninth embodiments, all or a part of the roles of the one device may be played by another device or may be shared by a plurality of devices. Conversely, one device may play the role of all or part of the plurality of devices, or another device may play the role.
 具体的には、図45に示すように、上記の各種の判定を信号処理装置500のCPU510が実行してもよい。すなわち、CPU510が、図25、図26、図39~図44などの処理を実行し、図38のような表示を信号処理装置500のディスプレイ530や診断端末300のディスプレイ330に出力させたりしてもよい。あるいは、CPU510は、エラーと判定した場合に、信号処理装置500のライト531や診断端末300のライト331を赤色に光らせたり、正常と判定した場合に、信号処理装置500のライト531や診断端末300のライト331を緑色に光らせたりしてもよい。あるいは、CPU510は、信号処理装置500のスピーカ532や診断端末300のスピーカ332に判定結果を出力させたりしてもよい。たとえば、図1に示すように、信号処理装置500が、犬などの動物に着せるためのウェアラブル端末であって、当該ウェアラブル端末において正常にデータが取得できているかの判断を実行し、図46や図47に示すように、当該ウェアラブル端末のディスプレイ530やライト531やスピーカ532がエラー情報などを出力してもよい。 Specifically, as shown in FIG. 45, the CPU 510 of the signal processing device 500 may execute the above various determinations. That is, the CPU 510 executes the processing of FIG. 25, FIG. 26, FIG. 39 to FIG. 44, and outputs the display as shown in FIG. 38 to the display 530 of the signal processing device 500 and the display 330 of the diagnostic terminal 300. Also good. Alternatively, when the CPU 510 determines that an error has occurred, the light 531 of the signal processing device 500 and the light 331 of the diagnostic terminal 300 shine red, or when it is determined to be normal, the light 531 of the signal processing device 500 and the diagnostic terminal 300 The light 331 may be lit in green. Alternatively, the CPU 510 may cause the speaker 532 of the signal processing device 500 or the speaker 332 of the diagnostic terminal 300 to output the determination result. For example, as shown in FIG. 1, the signal processing device 500 is a wearable terminal for wearing on an animal such as a dog, and determines whether data can be normally acquired in the wearable terminal. As shown in FIG. 47, the display 530, the light 531 and the speaker 532 of the wearable terminal may output error information and the like.
 より具体的には、図46および図47に示すように、信号処理装置500は、犬などの動物に着せるための装具(例えばウエア、ハーネスなど)に備えられる。なお、装具に対して信号処理装置500は、ホックやボタン、ケーブルなどによって脱着可能に構成されていてもよい。なお、電極401,402,403を前記装具に固定し、信号処理装置500を脱着できるように構成する場合、信号処理装置500は、ホックやボタン、ケーブルを介して電極401,402,403と電気的に接続する。信号処理装置500は、ホックやボタン、ケーブルで接続されていた装具から脱着することで、電極401、402、403と電気的に絶縁する。このような構成を備えることで、当該装具の洗濯時には信号処理装置500を外し、装具を洗濯することが可能となる。さらに別の方法では、電極401,402,403も前記装具から脱着可能に構成することも可能である。この場合は、電極401,402,403を面ファスナー、ボタン、フックなどにより装具に装着し、併せて、信号処理装置500も前記装具に接続することによって、全体としてウェアラブル端末として構成することが可能となる。
 <第11の実施の形態>
More specifically, as shown in FIGS. 46 and 47, the signal processing device 500 is provided in an appliance (for example, a wear, a harness, etc.) for wearing on an animal such as a dog. Note that the signal processing device 500 may be configured to be detachable with respect to the appliance by hooks, buttons, cables, or the like. When the electrodes 401, 402, and 403 are fixed to the appliance and the signal processing device 500 is configured to be detachable, the signal processing device 500 is electrically connected to the electrodes 401, 402, and 403 via hooks, buttons, and cables. Connect. The signal processing device 500 is electrically insulated from the electrodes 401, 402, and 403 by detaching from the equipment connected by hooks, buttons, and cables. By providing such a configuration, it is possible to remove the signal processing device 500 and wash the brace when washing the brace. In yet another method, the electrodes 401, 402, 403 can also be configured to be removable from the appliance. In this case, the electrodes 401, 402, and 403 are attached to the appliance by means of hook-and-loop fasteners, buttons, hooks, and the like, and the signal processing device 500 is also connected to the appliance so that it can be configured as a wearable terminal as a whole. It becomes.
<Eleventh embodiment>
 上記の実施の形態では、フラット判定およびノイズ判定(図25のS422以降)において、「直近t秒」の「心電データEt」を参照していたが、この「直近t秒」は同じでなくてもよい。フラット判定およびノイズ判定において参照期間が異なる例を図48に示す。 In the above embodiment, the “electrocardiogram data Et” of “most recent t seconds” is referred to in the flat determination and the noise determination (after S422 in FIG. 25), but this “most recent t seconds” is not the same. May be. FIG. 48 shows an example in which the reference periods are different in flat determination and noise determination.
 図48は、図25のS410およびS436でそれぞれ評価のために使用する期間が異なる例である。まず、フラット判定のために、直近s秒の心電データEs(第3の期間)を取得し(S402B)、Esにおける最大値Emを取得する(S404B)。図26に示したフラット判定処理では、EtのかわりにEsを使用し、同図面はEtをEsと読み替えることにより、両判定処理において使用する期間を異なったものとすることが可能となる。 48 is an example in which the periods used for evaluation in S410 and S436 in FIG. 25 are different. First, for flat determination, electrocardiogram data Es (third period) in the latest s seconds are acquired (S402B), and the maximum value Em in Es is acquired (S404B). In the flat determination process shown in FIG. 26, Es is used instead of Et, and in the same drawing, Et can be read as Es, so that periods used in both determination processes can be made different.
 これにより、フラット判定およびノイズ判定において、それぞれ最適な期間を選択し、より正確な判定を行うことが可能となる。
 <その他の応用例>
Thereby, in the flat determination and the noise determination, it is possible to select an optimum period and perform a more accurate determination.
<Other application examples>
 本開示は、システム或いは装置にプログラムを供給することによって達成される場合にも適用できることはいうまでもない。そして、本開示を達成するためのソフトウェアによって表されるプログラムを格納した記憶媒体(あるいはメモリ)を、システム或いは装置に供給し、そのシステム或いは装置のコンピュータ(又はCPUやMPU)が記憶媒体に格納されたプログラムコードを読出し実行することによっても、本開示の効果を享受することが可能となる。 Needless to say, the present disclosure can also be applied to a case where the present disclosure is achieved by supplying a program to a system or apparatus. Then, a storage medium (or memory) storing a program represented by software for achieving the present disclosure is supplied to the system or apparatus, and the computer (or CPU or MPU) of the system or apparatus stores it in the storage medium. The effect of the present disclosure can also be enjoyed by reading and executing the program code.
 この場合、記憶媒体から読出されたプログラムコード自体が前述した実施の形態の機能を実現することになり、そのプログラムコードを記憶した記憶媒体は本開示を構成することになる。 In this case, the program code itself read from the storage medium realizes the functions of the above-described embodiments, and the storage medium storing the program code constitutes the present disclosure.
 また、コンピュータが読出したプログラムコードを実行することにより、前述した実施の形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、コンピュータ上で稼動しているOS(オペレーティングシステム)などが実際の処理の一部または全部を行い、その処理によって前述した実施の形態の機能が実現される場合も含まれることは言うまでもない。 Further, by executing the program code read by the computer, not only the functions of the above-described embodiments are realized, but also an OS (operating system) running on the computer based on the instruction of the program code However, it is needless to say that a case where the function of the above-described embodiment is realized by performing part or all of the actual processing and the processing is included.
 さらに、記憶媒体から読み出されたプログラムコードが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わる他の記憶媒体に書き込まれた後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPUなどが実際の処理の一部または全部を行い、その処理によって前述した実施の形態の機能が実現される場合も含まれることは言うまでもない。 Furthermore, after the program code read from the storage medium is written to another storage medium provided in the function expansion board inserted into the computer or the function expansion unit connected to the computer, based on the instruction of the program code, It goes without saying that the CPU of the function expansion board or function expansion unit performs part or all of the actual processing and the functions of the above-described embodiments are realized by the processing.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present disclosure is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1     :情報処理システム
100   :サーバ
110   :CPU
111   :統計処理部
112   :グラフ作成部
113   :結果出力部
120   :メモリ
121   :拍動間隔記憶部
122   :データ記憶部
160   :通信インターフェイス
161   :受信部
162   :送信部
300   :診断端末(情報処理装置)
310   :CPU
311   :統計処理部
312   :グラフ作成部
313   :結果出力部
320   :メモリ
321   :拍動間隔記憶部
321A  :対応関係テーブル
322   :データ記憶部
330   :ディスプレイ
331   :ライト
332   :スピーカ
360   :通信インターフェイス
361   :受信部
362   :送信部
370   :スピーカ
401   :電極
402   :電極
403   :電極
500   :信号処理装置
501   :簡易信号処理装置
511   :心電前処理部
512   :拍動間隔算出部
530   :ディスプレイ
531   :ライト
532   :スピーカ
560   :送信部
570   :簡易心電前処理部
1: Information processing system 100: Server 110: CPU
111: statistical processing unit 112: graph creation unit 113: result output unit 120: memory 121: pulsation interval storage unit 122: data storage unit 160: communication interface 161: reception unit 162: transmission unit 300: diagnostic terminal (information processing apparatus) )
310: CPU
311: Statistical processing unit 312: Graph creation unit 313: Result output unit 320: Memory 321: Beat interval storage unit 321A: Correspondence table 322: Data storage unit 330: Display 331: Light 332: Speaker 360: Communication interface 361: Receiver 362: Transmitter 370: Speaker 401: Electrode 402: Electrode 403: Electrode 500: Signal processor 501: Simple signal processor 511: Electrocardiogram preprocessor 512: Pulsation interval calculator 530: Display 531: Light 532 : Speaker 560: Transmission unit 570: Simple electrocardiogram preprocessing unit

Claims (17)

  1.  複数の電極と、
     前記複数の電極を介して取得される、第1の期間の電位差の分散または標準偏差と、前記第1の期間よりも前の期間を含む第2の期間の電位差の分散または標準偏差と、に基づいて、所定の条件が満たされているかを判定する第1判定手段を有するプロセッサと、を備える、情報処理装置。
    A plurality of electrodes;
    The variance or standard deviation of the potential difference in the first period and the variance or standard deviation of the potential difference in the second period including the period before the first period, which are obtained through the plurality of electrodes. And a processor having first determination means for determining whether a predetermined condition is satisfied based on the information processing apparatus.
  2.  前記第1判定手段は、前記第1の期間の電位差の分散または標準偏差と、前記第2の期間の電位差の分散または標準偏差とが、所定の割合以上異なる場合または所定の値以上異なる場合に、前記所定の条件が満たされているとする、請求項1に記載の情報処理装置。 The first determination means is configured when the variance or standard deviation of the potential difference in the first period differs from the variance or standard deviation of the potential difference in the second period by a predetermined ratio or more than a predetermined value. The information processing apparatus according to claim 1, wherein the predetermined condition is satisfied.
  3.  前記第2の期間は、前記第1の期間よりも長い、請求項1または2に記載の情処理装置。 The information processing apparatus according to claim 1 or 2, wherein the second period is longer than the first period.
  4.  前記プロセッサは、前記複数の電極を介して取得される、第3の期間の電位差の分散または標準偏差を所定の閾値と比較し、
     前記第3の期間の電位差が前記所定の閾値より大きい場合、前記所定の条件が満たされていると判定する第2判定手段を有する、請求項1から3のいずれか一項に記載の情報処理装置。
    The processor compares the variance or standard deviation of the potential difference in the third period obtained through the plurality of electrodes with a predetermined threshold value,
    4. The information processing according to claim 1, further comprising: a second determination unit configured to determine that the predetermined condition is satisfied when the potential difference in the third period is greater than the predetermined threshold. 5. apparatus.
  5.  前記第2判定手段は、前記第1判定手段よりも先に行う、請求項4に記載の情報処理装置。 The information processing apparatus according to claim 4, wherein the second determination unit is performed before the first determination unit.
  6.  前記第3の期間は、前記第1の期間と同一期間である、請求項4または5に記載の情報処理装置。 The information processing apparatus according to claim 4 or 5, wherein the third period is the same period as the first period.
  7.  前記プロセッサは、前記所定の条件が満たされている場合に第1結果を出力し、
    前記所定の条件が満たされていない場合に第2結果を出力する、請求項1から6のいずれか一項に記載の情報処理装置。
    The processor outputs a first result when the predetermined condition is satisfied;
    The information processing apparatus according to any one of claims 1 to 6, wherein a second result is output when the predetermined condition is not satisfied.
  8.  前記プロセッサは、前記第1結果または前記第2結果を出力する出力手段をさらに備える、
     請求項7に記載の情報処理装置。
    The processor further comprises output means for outputting the first result or the second result,
    The information processing apparatus according to claim 7.
  9.  前記出力手段は、表示装置に表示させる手段であって、
     前記出力手段は、前記第2結果を前記表示装置に表示させる、請求項7に記載の情報処理装置。
    The output means is means for displaying on a display device,
    The information processing apparatus according to claim 7, wherein the output unit displays the second result on the display device.
  10.  前記出力手段は、前記第1結果と前記第2結果とを並列または重畳で、前記表示装置に表示させる、請求項7に記載の情報処理装置。 The information processing apparatus according to claim 7, wherein the output unit displays the first result and the second result on the display device in parallel or in a superimposed manner.
  11.  前記出力手段は、前記第1結果を前記第2結果と異なる表示形態で、前記表示装置に表示させる、請求項7に記載の情報処理装置。 The information processing apparatus according to claim 7, wherein the output means displays the first result on the display device in a display form different from the second result.
  12.  前記出力手段は、スピーカに出力させる手段であって、
     前記プロセッサは、前記第1結果として、音声を前記スピーカに出力させる、請求項7に記載の情報処理装置。
    The output means is means for outputting to a speaker,
    The information processing apparatus according to claim 7, wherein the processor causes the speaker to output sound as the first result.
  13.  前記出力手段は、ランプに点灯させる手段であって、
     前記プロセッサは、前記第1結果として前記ランプを点灯させる、請求項7に記載の情報処理装置。
    The output means is means for lighting a lamp,
    The information processing apparatus according to claim 7, wherein the processor turns on the lamp as the first result.
  14.  複数の電極と、
     前記複数の電極の測定結果を処理するプロセッサと、前記測定結果を出力する出力部と、を備え、
     前記プロセッサは、前記複数の電極を介して取得される、第1の期間の電位差の分散または標準偏差と、前記第1の期間よりも前の期間を含む第2の期間の電位差の分散または標準偏差と、に基づいて、所定の条件が満たされている場合に前記出力部に第1結果を出力させ、所定の条件が満たされていない場合に前記出力部に第2結果を出力させるウェアラブル端末。
    A plurality of electrodes;
    A processor for processing the measurement results of the plurality of electrodes, and an output unit for outputting the measurement results,
    The processor obtains a variance or standard deviation of a potential difference in a first period and a variance or standard of a potential difference in a second period including a period before the first period, which are obtained through the plurality of electrodes. Based on the deviation, a wearable terminal that causes the output unit to output a first result when a predetermined condition is satisfied, and causes the output unit to output a second result when the predetermined condition is not satisfied .
  15.  前記出力部は、音声を出力するスピーカであり、
     前記プロセッサは、前記所定の条件が満たされている場合に前記スピーカに前記第1結果として音声を出力させる、請求項14に記載のウェアラブル端末。
    The output unit is a speaker that outputs sound;
    The wearable terminal according to claim 14, wherein the processor causes the speaker to output a sound as the first result when the predetermined condition is satisfied.
  16.  前記出力部は、発光体を含むランプであり、
     前記プロセッサは、前記所定の条件が満たされている場合に前記ランプに前記第1結果として点灯または点滅させる、請求項14に記載のウェアラブル端末。
    The output unit is a lamp including a light emitter,
    The wearable terminal according to claim 14, wherein the processor causes the lamp to light or blink as the first result when the predetermined condition is satisfied.
  17.  通信インターフェイスと、
     前記通信インターフェイスを介して、複数の電極に測定された電位差の推移を取得し、第1の期間の電位差の分散または標準偏差と、前記第1の期間よりも前の期間を含む第2の期間の電位差の分散または標準偏差と、に基づいて、所定の条件が満たされているかを判断する第1判定手段を有するプロセッサと、を備え、
     前記プロセッサは、前記所定の条件が満たされている場合に第1結果を出力し、前記所定の条件が満たされていない場合に第2結果を出力する、情報処理装置。
    A communication interface;
    A transition of a potential difference measured at a plurality of electrodes is acquired via the communication interface, and a second period including a variance or standard deviation of the potential difference in the first period and a period before the first period. A processor having first determination means for determining whether a predetermined condition is satisfied based on the variance or standard deviation of the potential difference of
    The information processing apparatus, wherein the processor outputs a first result when the predetermined condition is satisfied, and outputs a second result when the predetermined condition is not satisfied.
PCT/JP2019/015391 2018-04-11 2019-04-09 Information processing device and wearable terminal WO2019198691A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020513271A JPWO2019198691A1 (en) 2018-04-11 2019-04-09 Information processing equipment and wearable terminals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-075841 2018-04-11
JP2018075841 2018-04-11

Publications (1)

Publication Number Publication Date
WO2019198691A1 true WO2019198691A1 (en) 2019-10-17

Family

ID=68164062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015391 WO2019198691A1 (en) 2018-04-11 2019-04-09 Information processing device and wearable terminal

Country Status (2)

Country Link
JP (1) JPWO2019198691A1 (en)
WO (1) WO2019198691A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001000407A (en) * 1999-06-21 2001-01-09 Shimadzu Corp Measureing apparatus for signals from living bodies
WO2014208343A1 (en) * 2013-06-26 2014-12-31 京都府公立大学法人 Method and apparatus for assessment of depth of anesthesia, and use
KR101649445B1 (en) * 2015-03-17 2016-08-18 포항공과대학교 산학협력단 Non-contact type electrocardiogram measure system and electrocardiogram measure method using the same
WO2017060804A1 (en) * 2015-10-05 2017-04-13 Tata Consultancy Services Limited Method and system for pre-processing of an eeg signal for cognitive load measurement
US20170105643A1 (en) * 2015-06-23 2017-04-20 Shenzhen Institutes Of Advanced Technology Chinese Academy Of Sciences Gpu-based parallel electrocardiogram signal analysis method, computer readable storage medium and device
WO2017135116A1 (en) * 2016-02-04 2017-08-10 日本電信電話株式会社 Biological signal processing method and biological signal processing device
JP2017192607A (en) * 2016-04-22 2017-10-26 ユニオンツール株式会社 Automatic electrocardiogram analysis apparatus
JP2018000224A (en) * 2016-06-27 2018-01-11 公立大学法人会津大学 Respiration detection device, respiration detection method, and program for respiration detection
WO2018055782A1 (en) * 2016-09-20 2018-03-29 シャープ株式会社 State acquisition computer, state acquisition method, and information processing system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001000407A (en) * 1999-06-21 2001-01-09 Shimadzu Corp Measureing apparatus for signals from living bodies
WO2014208343A1 (en) * 2013-06-26 2014-12-31 京都府公立大学法人 Method and apparatus for assessment of depth of anesthesia, and use
KR101649445B1 (en) * 2015-03-17 2016-08-18 포항공과대학교 산학협력단 Non-contact type electrocardiogram measure system and electrocardiogram measure method using the same
US20170105643A1 (en) * 2015-06-23 2017-04-20 Shenzhen Institutes Of Advanced Technology Chinese Academy Of Sciences Gpu-based parallel electrocardiogram signal analysis method, computer readable storage medium and device
WO2017060804A1 (en) * 2015-10-05 2017-04-13 Tata Consultancy Services Limited Method and system for pre-processing of an eeg signal for cognitive load measurement
WO2017135116A1 (en) * 2016-02-04 2017-08-10 日本電信電話株式会社 Biological signal processing method and biological signal processing device
JP2017192607A (en) * 2016-04-22 2017-10-26 ユニオンツール株式会社 Automatic electrocardiogram analysis apparatus
JP2018000224A (en) * 2016-06-27 2018-01-11 公立大学法人会津大学 Respiration detection device, respiration detection method, and program for respiration detection
WO2018055782A1 (en) * 2016-09-20 2018-03-29 シャープ株式会社 State acquisition computer, state acquisition method, and information processing system

Also Published As

Publication number Publication date
JPWO2019198691A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
US20210186371A1 (en) Method and apparatus for assessing respiratory distress
AU736060B2 (en) Method and apparatus for arbitrating to obtain best estimates for blood constituent values and rejecting harmonics
US20170042471A1 (en) Monitoring of sleep phenomena
WO2018055996A1 (en) Computer, method for acquiring respiration rate, and information processing system
US10765374B2 (en) Methods and apparatus for adaptable presentation of sensor data
CN110582228A (en) Method and apparatus for determining the health status of an infant
JP2014171660A (en) Atrial fibrillation analyzation equipment, atrial fibrillation analysis system, atrial fibrillation analysis method and program
US11617545B2 (en) Methods and systems for adaptable presentation of sensor data
WO2018055782A1 (en) State acquisition computer, state acquisition method, and information processing system
KR102562817B1 (en) Electronic device for measuring blood pressure and operating method thereof
KR20200050530A (en) System for measuring blood vessel health and method thereof
WO2019198691A1 (en) Information processing device and wearable terminal
US20180263558A1 (en) A physiological monitoring kit with usb drive
JP2019103750A (en) Information processing device, information processing program, server, and information processing method
WO2019193998A1 (en) State acquisition device, network system, and state processing device
US20200323478A1 (en) Information processing device, state acquisition program, server, and information processing method
WO2019107267A1 (en) Information processing device, program, server, and information processing method
US11259719B2 (en) Vital sign information recording system, vital sign information analyzer, and vital sign information display method
JP2006061416A (en) Biopotential sensing system
CN114126487A (en) Monitoring method, monitoring device, monitoring equipment and computer readable storage medium
WO2020195403A1 (en) Harness for measuring biometric information and biometric information processing system
US20210287808A1 (en) Condition information generation device, condition information generation method and computer-readable medium
JP2019136162A (en) Electrocardiographic device
US20240148263A1 (en) Portable heart monitor
US20240016422A1 (en) Biometric information computing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785258

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020513271

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19785258

Country of ref document: EP

Kind code of ref document: A1