WO2019193998A1 - State acquisition device, network system, and state processing device - Google Patents

State acquisition device, network system, and state processing device Download PDF

Info

Publication number
WO2019193998A1
WO2019193998A1 PCT/JP2019/012353 JP2019012353W WO2019193998A1 WO 2019193998 A1 WO2019193998 A1 WO 2019193998A1 JP 2019012353 W JP2019012353 W JP 2019012353W WO 2019193998 A1 WO2019193998 A1 WO 2019193998A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulsation
state
interval
communication interface
timing
Prior art date
Application number
PCT/JP2019/012353
Other languages
French (fr)
Japanese (ja)
Inventor
林 哲也
あずさ 中野
濱本 将樹
啓司 武田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2020511699A priority Critical patent/JPWO2019193998A1/en
Publication of WO2019193998A1 publication Critical patent/WO2019193998A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle

Definitions

  • the following disclosure relates to a technique for acquiring the mental state or physical state of an animal.
  • Patent Document 1 discloses a pulse wave diagnostic device and a pulse wave diagnostic device control method.
  • a photoelectric pulse wave detecting unit that detects a pulse wave by receiving transmitted light that has passed through an artery or scattered light scattered by an artery, and one beat of a pulse wave that is detected by the photoelectric pulse wave detecting unit.
  • the pulse wave is calculated for each beat by calculating the pulse wave amplitude for each pulse and using the point of the pulse wave amplitude on the orthogonal coordinate plane formed by the two pulse wave amplitudes calculated successively as Poincare coordinates.
  • a pulse wave diagnostic device characterized by calculating a width It is subjected.
  • An object of the present invention is to provide a state acquisition device, a network stem, or a state processing device that can be used.
  • a pulsation timing of a living body is measured based on a communication interface, an electrode, and a signal from the electrode, and information indicating the pulsation timing is transmitted to the state processing device via the communication interface.
  • a state acquisition device is provided.
  • a state acquisition device and a network system that can grasp the mental state or physical state of an animal more accurately than before or can grasp more efficiently than before. Or a state processing device is provided.
  • FIG. 1 is a diagram illustrating an overall configuration of a network system 1 according to a first embodiment. It is a figure which shows the function structure of the network system 1 concerning 1st Embodiment. It is a flowchart which shows the process sequence of the signal acquisition apparatus 500 concerning 1st Embodiment. It is an example of the electrocardiogram data and pulsation interval according to the first embodiment. It is a figure which shows the transmission data of the pulsation timing concerning 1st Embodiment. It is a flowchart which shows the process sequence for calculating the 1st autonomic nerve balance of the network system 1 concerning 1st Embodiment. It is a figure which shows the pulsation space
  • the Y X direction and the axis perpendicular to the axis
  • surface which shows the standard of the standard deviation regarding the Y X axis
  • vertical to Y X for every mental state or physical state of the dog concerning 1st Embodiment. It is a Poincare plot figure in the excitement state of the dog concerning a 1st embodiment.
  • surface which shows the standard of the product of and the ratio of standard deviation.
  • It is a flowchart which shows the 1st process sequence for calculating the respiration rate of the network system 1 concerning 1st Embodiment. It is a graph after the spline complementation of the relationship between the pulsation detection timing and the pulsation interval according to the first embodiment. It is an example of the power spectrum distribution concerning 1st Embodiment.
  • a dotted line shows the graph when all the data arrives.
  • FIG. 1 is a diagram showing an overall configuration of a network system 1 according to the present embodiment.
  • FIG. 2 is a diagram illustrating a functional configuration of the network system 1 according to the present embodiment.
  • the case where the state of the dog which has a respiratory arrhythmia is judged on behalf of an animal is demonstrated.
  • the network system 1 mainly includes electrodes 401, 402, and 403 for acquiring an electrocardiogram attached to a chest of a dog, and a signal acquisition device 500 as a state acquisition device for processing an electrocardiogram signal. And a communication terminal 300 as a state processing device capable of communicating with the signal acquisition device 500.
  • the electrodes 401, 402, and 403 for acquiring electrocardiograms are preferably attached to the chest and the like so as to sandwich the heart part.
  • the hair balls such as the paws of both front legs (or front legs and rear legs) are grown. There may be no place.
  • it is desirable that the hair is in a state of being trimmed, or has an electrode with a gel attached thereto, or a protrusion-like structure that contacts the skin even if hair is present. Or the form which induces an electrocardiogram through a capacitive material without contact in the state where hair exists is desirable. Thereby, even an animal whose epidermis such as a dog is covered with hair can obtain an electrocardiogram.
  • three electrodes 401, 402, and 403 are used. However, the number of electrodes may be two or more, and more electrodes may be used.
  • the network system 1 mainly includes the signal acquisition device 500 and the communication terminal 300.
  • FIG. 3 is a flowchart showing processing executed by the signal acquisition device 500 according to the present embodiment.
  • the signal acquisition device 500 includes an electrocardiogram preprocessing unit 511, a pulsation timing acquisition unit 512, and a transmission unit 560.
  • the electrocardiogram preprocessing unit 511 includes a filter and an amplifier.
  • the electrocardiogram preprocessing unit 511 converts the electrocardiogram signals sent from the electrodes 401, 402, and 403 into pulsation data as shown in FIG. 4 and delivers the pulsation data to the pulsation timing acquisition unit 512 (step S002). ).
  • the electrocardiogram preprocessing unit 511 includes a filter device such as a high-pass filter and a low-pass filter, an amplification device including an operational amplifier, an A / D conversion device that converts an electrocardiogram analog signal into a digital signal, and the like. Is included (step S004).
  • the filter device, the amplification device, and the like may be implemented by software.
  • the pulsation timing acquisition unit 512 is realized by, for example, a CPU (Central Processing Unit) 510 executing a memory program.
  • the pulsation timing acquisition unit 512 sequentially specifies the pulsation timing based on the electrocardiogram data. More specifically, the pulsation timing acquisition unit 512 detects an electrocardiographic peak signal (R wave) by a method such as threshold detection (step S006).
  • the pulsation timing acquisition unit 512 identifies the peak time of each electrocardiogram (step S008).
  • peak detection may be performed by derivation of a period using an autocorrelation function, a method using a rectangular wave correlation trigger, a method of detecting a plurality of feature points, or the like.
  • the pulsation timing is an absolute or relative time when the pulsation occurs.
  • the pulsation timing acquisition unit 512 continuously specifies the pulsation timing for the electrocardiogram signals that are continuously input.
  • the pulsation timing acquisition unit 512 transmits the time indicating the pulsation timing to the communication terminal 300 via the transmission unit 560 for each pulsation (step S010).
  • the transmission unit 560 is realized by a communication interface including an antenna, a connector, and the like, for example.
  • the CPU 510 for each predetermined time zone, a time stamp indicating the reference time of the predetermined time zone, and for each pulsation timing included in the predetermined time zone,
  • the detailed elapsed time from the reference time in a predetermined time zone is transmitted to the communication terminal 300 via the communication interface.
  • the length of the predetermined time zone is 1 second
  • the detailed elapsed time from the reference time in the predetermined time zone is indicated in msec.
  • the communication terminal 300 includes a reception unit 361, a beat interval acquisition unit 321, an analysis unit 311, a graph creation unit 312, a result output unit 313, a display 330, a data storage unit 322, and a transmission unit 362.
  • the reception unit 361 and the transmission unit 362 are realized by a communication interface 360 including an antenna, a connector, and the like, for example.
  • the receiving unit 361 receives data indicating the pulsation timing from the signal acquisition device 500 (step S100).
  • the pulsation interval acquisition unit 321 includes various types of memory 320 and stores data received from the signal acquisition device 500.
  • CPU 310 calculates the time between beats based on the beat timing received via communication interface 360 (step S102).
  • the CPU 310 sequentially accumulates pulsation intervals as a pulsation interval table (see FIG. 7) in the memory 320 (step S104).
  • the beat interval is calculated in units of msec (millisec), for example, as shown in the figure.
  • these data may be stored in the memory 320 of the communication terminal 300 or may be stored in another device accessible from the communication terminal 300.
  • the row of time in which 9 is written in the pulsation timings 1 and 2 indicates a time zone in which no pulsation was originally detected. This indicates a time zone in which there is no pulsation by inputting a numerical value of 9, and may be another numerical value or symbol.
  • the CPU 310 when data indicating the pulsation timing from the signal acquisition device 500 is lost for some reason, the CPU 310 performs various plots for a period during which the pulsation interval cannot be calculated, as will be described later. First, various plots are restarted after the period has elapsed. More specifically, it will be described later as a method for handling missing data.
  • the analysis unit 311, the graph creation unit 312, and the result output unit 313 are realized by the CPU 310 executing a program in the memory 320, for example.
  • the analysis unit 311 reads pulsation interval data from the pulsation interval acquisition unit 321 in a unit of time necessary for determining the state, for example, 1 minute, 10 minutes, 1 hour, etc.
  • a pulsation interval table of the interval RR (n) and the next pulsation interval RR (n + 1) is created (step S106).
  • the analysis unit 311 may specify an axis with the maximum variance by a method such as principal component analysis, and calculate a standard deviation regarding the axis and an axis perpendicular to the axis. Furthermore, the analysis unit 311 may calculate a standard deviation regarding the X axis and the Y axis without performing axis conversion.
  • the direction of large variance is the X-axis direction and the Y-axis direction
  • the standard deviation of the X-axis and the Y-axis is calculated without performing axis conversion, thereby evaluating the variation state of the beat interval plotted by Poincare plot. it can. In this case, since it is not necessary to perform axis conversion, the amount of calculation can be reduced.
  • the network system 1 may include a server that can communicate with the communication terminal 300.
  • the CPU 310 as the result output unit 313 accumulates the standard deviation and the relationship table in the data storage unit 322, or transmits the data to the server via the Internet by using the transmission unit 362.
  • the current output result can be used for grasping the short-term or long-term stress state of the observation target.
  • the graph creation unit 312 separately determines the pulsation interval RR (n) in the range used for calculating the standard deviation and the subsequent steps from the pulsation interval table of FIG.
  • the data with the pulsation interval RR (n + 1) is acquired, and Poincare plots as shown in FIGS. 10 to 13 are created.
  • the result output unit 313 displays the created Poincare plot on its own or an external output device such as a display.
  • the graph creation unit 312 may create and output a Poincare plot diagram after axis conversion using the result of step S108.
  • FIG. 10 is a Poincare plot in the excited state of the dog according to the present embodiment.
  • FIG. 11 is a Poincare plot in a state where the breathing is stable in the normal state of the dog according to the present embodiment.
  • FIG. 12 is a Poincare plot diagram in a normal state of the dog according to the present embodiment.
  • FIG. 13 is a Poincare plot in the resting state of the dog according to the present embodiment.
  • the size and shape of the distribution of the plot points of the Poincare plot is indirectly estimated based on the calculation result, and whether or not the plot is often observed or reduced in the central portion.
  • the mental state or physical state of the animal can be predicted.
  • the analysis part 311 calculates the standard deviation of the variation degree of a Poincare plot, ie, a pulsation interval, as a numerical value which shows autonomic balance. ⁇ Another form of numerical values for autonomic balance>
  • the product of the two standard deviations may be calculated as a numerical value indicating the autonomic balance.
  • FIG. 14 is a flowchart showing a processing procedure of the network system 1 according to the present embodiment. Steps S100 to S108 are the same as those in FIG. 6, and thus description thereof will not be repeated here.
  • the CPU 310 as the analysis unit 311 calculates the standard deviation for each axis after the axis conversion (step S110).
  • the analysis unit 311 may specify an axis that maximizes the variance, and calculate a standard deviation regarding the axis and an axis perpendicular to the axis.
  • the analysis part 311 calculates the product of these two standard deviations, the square root of a product, etc. as a numerical value which shows autonomic balance (step S112).
  • surface which shows the standard of the square root of etc. and the ratio of standard deviation.
  • the result output unit 313 accumulates the standard deviation, the product of the standard deviation, the square root of the product, the pulsation interval table, and the like in the data storage unit 322 or uses the transmission unit 362, and the like via the Internet. To the server 100. As a result, the current output result can be used for grasping the short-term or long-term stress state of the observation target.
  • the analysis unit 311 calculates a product of standard deviations of two axes, a square root of the product, or the like, but may calculate a product of standard deviations of three or more axes or a power root thereof. .
  • the CPU 310 performs the calculation shown in FIG. 12 for a predetermined period, for example, every few minutes, and accumulates the calculation result in the database of the memory 320 for creating a diagnostic graph to be described later. ⁇ Calculation method of respiratory rate>
  • the CPU 310 of the communication terminal 300 may calculate the respiration rate of the target animal in addition to the information indicating the autonomic nerve balance of the target animal.
  • CPU 310 of communication terminal 300 executes, for example, the following process by executing a program in memory 320.
  • CPU310 receives the time information which shows a pulsation timing from the signal acquisition apparatus 500 via the communication interface 360 (step S100).
  • CPU310 calculates the time between pulsations based on pulsation timing (step S102).
  • the CPU 310 sequentially accumulates pulsation intervals as a pulsation interval table (see FIG. 7) in the memory 320 (step S104).
  • these data may be stored in the memory 320 of the communication terminal 300 or may be stored in another device accessible from the communication terminal 300.
  • the CPU 310 mathematically interpolates (for example, spline interpolation) the relationship between the beat detection time for one minute and the beat interval as shown in FIG. 17 (step S206).
  • the CPU 310 performs frequency analysis of the obtained function as shown in FIG. 18 (step S208).
  • the CPU 310 specifies the maximum peak of the power spectrum in an arbitrary frequency range (for example, between 0.05 and 0.5 Hz) in the power spectrum distribution as shown in FIG. 18 obtained by the frequency analysis (step S210).
  • the CPU 310 determines that the state is “measurable”.
  • the RRI fluctuation after the spline interpolation of a dog in a relaxed state in an indoor quiet room is as shown in FIG.
  • the power spectrum distribution in this case is as shown in FIG. 19B, and the ratio of the maximum peak compared to the second largest peak has a magnitude (for example, three times) greater than an arbitrary threshold value.
  • the CPU 310 determines that the state is “measurable”.
  • the RRI fluctuation after spline interpolation in a dog that is not calm in an outdoor noisy environment is as shown in FIG.
  • the power spectrum distribution in this case is as shown in FIG. 20B, and the ratio of the maximum peak compared to the second largest peak has a magnitude (for example, three times) greater than an arbitrary threshold value. Therefore, the CPU 310 determines that the measurement is impossible.
  • step S206 When the CPU 310 determines that the state is “unmeasurable”, the processing from step S206 is repeated based on the beat interval that the signal acquisition device 500 has already acquired for another timing.
  • the CPU 310 detects various vital data when it is determined as “measurable state”. For example, the CPU 310 calculates the respiration rate by calculating the reciprocal with the maximum peak in an arbitrary frequency range (for example, a range of 0.05 to 0.5 Hz) in the frequency analysis as the respiration frequency.
  • an arbitrary frequency range for example, a range of 0.05 to 0.5 Hz
  • the CPU 310 displays the respiration rate per unit time and outputs sound via the display 330, the speaker 370, the communication interface 360 for transmitting data to the outside, and the like. Further, the CPU 310 performs the calculation shown in FIG. 16 for a predetermined period, for example, every few minutes, and accumulates the calculation result in the database of the memory 320 for creating various diagnostic graphs. ⁇ Handling of missing data>
  • the time information indicating the pulsation timing is sequentially sent from the signal acquisition device 500. Therefore, if data transmission for any given period fails, the CPU 310 of the communication terminal 300 For example, in step S104 of FIG. 6, step S104 of FIG. 14, or step S104 of FIG. 16, as shown in FIG. 21, the pulsation interval related to the predetermined period is invalidated, and The calculation of the beat interval is restarted from the later beat timing.
  • FIG. 32 shows an example of a pulsation interval array for plotting pulsation intervals before performing spline interpolation.
  • A is an array of beat intervals created from data without loss
  • (b) is a numerical value obtained by sequentially adding beat intervals from the beat timing data after data loss has occurred ( This is an array of pulsation intervals in which the deficit is corrected by calculating “accumulation time of pulsation intervals”.
  • the spline interpolation data array shown in FIG. 22 can be created by performing spline interpolation on this array and plotting it.
  • the CPU 110 creates an array in which the data loss is corrected as described above by the following method. For example, “2017/1/1 10:10:15” and “2017/1/1 10:10:16” in FIG.
  • the pulsation timing is 511 msec, and the time from the pulsation timing to “2017/1/1 10:10:15” of the next time is 489 msec.
  • X ⁇ + ⁇ + (1000-y) +1000 (z + 1) + ⁇
  • FIG. 22 When spline interpolation is performed on the array thus created and plotted, a diagram as shown in FIG. 22 is obtained. As shown in FIG. 22, the plotting is based on the pulsation interval array created after the calculation is resumed. Thereby, the deviation of the graph after spline complementation when data is missing from the graph after spline complementation when data is not missing can be reduced. Plotting on the graph does not necessarily mean that the graph is actually created, but means creating a two-dimensional array that can be plotted on various calculations and graphs.
  • step S104 of FIG. 6, step S104 of FIG. 14, and step S104 of FIG. 16 the CPU 310 cancels the beat interval even if the beat interval related during the predetermined period is invalidated as shown in FIG. I don't know the exact time to resume plotting. If the next pulsation interval is plotted as it is without leaving a predetermined period, as shown in FIG. 24, the graph after spline interpolation when data is missing, after spline interpolation when data is not missing The gap will be larger.
  • the signal acquisition device 500 has a time in seconds (hereinafter referred to as “second time”) possessed by a processor in the predetermined time period for each predetermined time period. , which is referred to as “reference time”) and a detailed elapsed time from the reference time in the predetermined time zone for each pulsation timing included in the predetermined time zone via the communication interface 300 was sent.
  • second time a time in seconds
  • reference time a time in seconds
  • the CPU 510 of the signal acquisition device 500 has a time stamp indicating a reference of the predetermined time zone and a predetermined time zone for each predetermined time zone.
  • the detailed current time for each included pulsation timing is transmitted to the communication terminal 300 via the communication interface.
  • the CPU 310 of the communication terminal 300 for example, in step S104 in FIG. 6, step S104 in FIG. 14, or step S104 in FIG. 16, beats related during the predetermined period as shown in FIG. The motion interval is invalidated, and the calculation of the beat interval is restarted from the beat timing after the predetermined period. Then, as shown in FIG. 22, the CPU 110 plots the pulsation interval after the restart of the calculation on various graphs based on the time of the pulsation timing. Thereby, the deviation of the graph after spline complementation when data is missing from the graph after spline complementation when data is not missing can be reduced.
  • the CPU 510 of the signal acquisition device 500 transmits a reference time at which the current measurement is started at the start of measurement, for example, 2017/1/1 10:10:00 in FIG.
  • a time stamp indicating the predetermined time zone and an elapsed time from the reference time at which the current measurement is started for each pulsation timing included in the predetermined time zone are communicated via a communication interface. You may transmit to 300.
  • the CPU 510 of the signal acquisition device 500 transmits the reference time at which the current measurement is started at the start of measurement, 2017/1/1 10:10:00 in FIG. 25, to the communication terminal 300, and for each pulsation timing.
  • the elapsed time from the reference time when the current measurement is started may be transmitted to the communication terminal 300 via the communication interface.
  • the CPU 510 for each predetermined time zone, a time stamp indicating the reference time of the predetermined time zone and a predetermined time for each pulsation timing included in the predetermined time zone.
  • the detailed elapsed time from the reference time of the band, the time stamp indicating the reference time of the previous predetermined time period, and the previous one for each pulsation timing included in the previous predetermined time period A detailed elapsed time (first predetermined period) from the reference time of the predetermined time zone, a time stamp indicating the reference time of the two previous predetermined time zones, and a predetermined time zone two previous times
  • the detailed elapsed time from the reference time in the two previous predetermined time zones for each included pulsation timing may be transmitted to the communication terminal 300 via the communication interface.
  • the information when transmitting the detailed elapsed time from the reference time of a plurality of predetermined time zones, the information may be transmitted at a predetermined time interval (second predetermined period) shorter than the predetermined time zone. .
  • a predetermined time interval second predetermined period
  • the CPU 310 of the communication terminal 300 determines, for example, the pulsation timing in the time zone in which data is lost in step S104 in FIG. 6, step S104 in FIG. 14, or step S104 in FIG. When receiving the data, it can be acquired retrospectively.
  • the signal acquisition device 500 includes a time stamp indicating the predetermined time period and a predetermined time period for each predetermined time period.
  • the detailed elapsed time from the start time of a predetermined time zone for each included pulsation timing is transmitted to the communication terminal 300 via the communication interface.
  • the CPU 510 of the signal acquisition device 500 may realize a pulsation interval acquisition unit 512B instead of the pulsation timing acquisition unit 512.
  • the pulsation interval obtaining unit 512B detects an electrocardiographic peak signal (R wave) by a method such as threshold detection, and calculates the interval (time) of each electrocardiographic peak.
  • the pulsation interval may be calculated by derivation of a period using an autocorrelation function or a method using a rectangular wave correlation trigger.
  • the pulsation interval obtaining unit 512B continuously calculates the pulsation interval for the electrocardiogram signals that are continuously input (step S008B in FIG. 28).
  • the pulsation interval acquisition unit 512B transmits the calculated pulsation interval and pulsation data itself to the communication terminal 300 via the transmission unit 560.
  • CPU310 of the communication terminal 300 performs the following processes, for example by executing the program of the memory 320.
  • the CPU 310 of the communication terminal 300 when transmission data from the signal acquisition device 500 is missing, the CPU 310 of the communication terminal 300, for example, step S104 in FIG. 6, step S104 in FIG. 14, or step S104 in FIG.
  • the beat interval related during the predetermined period is invalidated, and the beat interval after the predetermined period is used.
  • the CPU 510 resumes plotting the pulsation intervals on various graphs after the same time period as a predetermined time period for transmitting the pulsation timings collectively. Thereby, the deviation of the graph after spline complementation when data is missing from the graph after spline complementation when data is not missing can be reduced.
  • the signal acquisition device 500 acquires the pulsation timing and the pulsation interval based on the electrocardiogram signals from the electrodes 401, 402, and 403, and the communication terminal 300 determines from the pulsation interval.
  • Information for judging the state of the animal or information on the result of judging the state of the animal is calculated and output.
  • all or some of the roles of the one device may be played by another device or may be shared by a plurality of devices. Conversely, one device may play the role of all or part of the plurality of devices, or another device may play the role.
  • the server 100 may play the role of the communication terminal 300.
  • the server 100 is equipped with the function of the communication terminal 300 of the above embodiment.
  • the communication terminal 300 transmits necessary information such as a beat timing and a beat interval from the signal acquisition device 500 to the server 100 via a router, a carrier network, the Internet, or the like.
  • the server 100 calculates information for determining the animal state or information indicating the determination result of the animal state, and transmits the information to the communication terminal 300. It is conceivable that the communication terminal 300 outputs the final result information to a display or a speaker.
  • the reception unit 161 and the transmission unit 162 of the server 100 are realized by the communication interface 160 of the server 100.
  • the pulsation interval acquisition unit 121 and the data storage unit 122 are realized by the memory 120 of the server 100 or other devices accessible from the server 100.
  • the statistical processing unit 111, the graph creation unit 112, and the result output unit 113 are realized by the CPU 110 executing the program in the memory 120.
  • the signal acquisition device 500 transmits necessary information such as pulsation timing and pulsation interval to the server 100 via a router, a carrier network, the Internet, or the like.
  • the server 100 calculates information for determining the state of the animal or information on the determination result of the state of the animal, and transmits the information to the communication terminal 300 via the Internet, a carrier network, a router, or the like.
  • the communication terminal 300 outputs the final result information to a display or a speaker.
  • the signal acquisition device 500 and the communication terminal 300 may not be connected by a wireless LAN or a wired LAN.
  • the reception unit 161 and the transmission unit 162 of the server 100 are realized by the communication interface 160 of the server 100.
  • the pulsation interval acquisition unit 121 and the data storage unit 122 are realized by the memory 120 of the server 100 or other devices accessible from the server 100.
  • the statistical processing unit 111, the graph creation unit 112, and the result output unit 113 are realized by the CPU 110 executing the program in the memory 120.
  • the present disclosure can also be applied to a case where the present disclosure is achieved by supplying a program to a system or apparatus. Then, a storage medium (or memory) storing a program represented by software for achieving the present disclosure is supplied to the system or apparatus, and the computer (or CPU or MPU) of the system or apparatus stores it in the storage medium.
  • the effect of the present disclosure can also be enjoyed by reading and executing the program code.
  • the program code itself read from the storage medium realizes the functions of the above-described embodiments, and the storage medium storing the program code constitutes the present disclosure.
  • Network system 100 Server 110: CPU 111: Statistical processing unit 112: Graph creation unit 113: Result output unit 120: Memory 121: Beat interval acquisition unit 122: Data storage unit 160: Communication interface 161: Reception unit 162: Transmission unit 300: Communication terminal 310: CPU 311: Analysis unit 312: Graph creation unit 313: Result output unit 320: Memory 321: Beat interval acquisition unit 322: Data storage unit 330: Display 360: Communication interface 361: Reception unit 362: Transmission unit 370: Speaker 401: Electrode 402: Electrode 403: Electrode 500: Signal acquisition device 510: CPU 511: ECG pre-processing unit 512: Pulsation timing acquisition unit 512B: Pulsation interval acquisition unit 560: Transmission unit

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Educational Technology (AREA)
  • Developmental Disabilities (AREA)
  • Child & Adolescent Psychology (AREA)
  • Social Psychology (AREA)
  • Psychology (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

Provided is a state acquisition device (500) provided with a communication interface (560), electrodes (401, 402, 403), and a processor (510) for measuring a pulse timing of a living body on the basis of signals from the electrodes (401, 402, 403) and transmitting information indicating the pulse timing to a state processing device (300) via the communication interface (560).

Description

状態取得装置、ネットワークシステム、および状態処理装置Status acquisition device, network system, and status processing device
 以下の開示は、動物の精神的状態または肉体的状態を取得するための技術に関する。 The following disclosure relates to a technique for acquiring the mental state or physical state of an animal.
 従来から、動物の精神的または肉体的な状態を取得するための技術が知られている。例えば、特許第5160586号明細書(特許文献1)には、脈波診断装置及び脈波診断装置制御方法が開示されている。特許文献1によると、動脈を透過した透過光又は動脈で散乱された散乱光を受光して脈波を検出する光電脈波検出部と、前記光電脈波検出部の検出する脈波の1拍ごとの脈波振幅を算出し、連続して算出された2つの前記脈波振幅同士で形成される直交座標平面上での前記脈波振幅の点をポアンカレ座標として1拍ごとに算出する脈波振幅ポアンカレ算出部と、前記脈波振幅ポアンカレ算出部の算出する脈波振幅のポアンカレ座標の最大及び最小の変化幅を算出する脈波振幅分布算出部と、を備え、前記脈波振幅分布算出部は、前記脈波振幅ポアンカレ算出部の算出する脈波振幅のポアンカレ座標上のY=X+a及びY=X-aで表される2本の直線で規定された範囲内での最大及び最小の変化幅を算出することを特徴とする脈波診断装置が提供される。 Conventionally, techniques for acquiring the mental or physical state of an animal are known. For example, Japanese Patent No. 5160586 (Patent Document 1) discloses a pulse wave diagnostic device and a pulse wave diagnostic device control method. According to Patent Document 1, a photoelectric pulse wave detecting unit that detects a pulse wave by receiving transmitted light that has passed through an artery or scattered light scattered by an artery, and one beat of a pulse wave that is detected by the photoelectric pulse wave detecting unit. The pulse wave is calculated for each beat by calculating the pulse wave amplitude for each pulse and using the point of the pulse wave amplitude on the orthogonal coordinate plane formed by the two pulse wave amplitudes calculated successively as Poincare coordinates. An amplitude Poincare calculation unit; and a pulse wave amplitude distribution calculation unit that calculates a maximum and minimum change width of Poincare coordinates of the pulse wave amplitude calculated by the pulse wave amplitude Poincare calculation unit, the pulse wave amplitude distribution calculation unit Is the maximum and minimum changes within the range defined by two straight lines represented by Y = X + a and Y = X−a on the Poincare coordinates of the pulse wave amplitude calculated by the pulse wave amplitude Poincare calculation unit A pulse wave diagnostic device characterized by calculating a width It is subjected.
特許第5160586号明細書Japanese Patent No. 5160586
 動物の精神的または肉体的な状態を従来よりも正確に把握したり、あるいは従来よりも効率的に把握したりすることができる技術が求められている。本開示は、かかる問題を解決するためになされたものであり、その目的は、動物の精神的状態または肉体的状態を従来よりも正確に把握したり、あるいは従来よりも効率的に把握したりすることができる状態取得装置、ネットワークステム、または状態処理装置を提供することにある。 There is a need for a technology that can more accurately grasp the mental or physical state of an animal than before or more efficiently than before. The present disclosure has been made to solve such a problem, and the purpose of the present disclosure is to grasp the mental state or physical state of an animal more accurately than in the past or more efficiently than in the past. An object of the present invention is to provide a state acquisition device, a network stem, or a state processing device that can be used.
 本開示の一態様に従うと、通信インターフェイスと、電極と、電極からの信号に基づいて生体の拍動タイミングを計測し、当該拍動タイミングを示す情報を通信インターフェイスを介して状態処理装置に送信するためのプロセッサとを備える、状態取得装置が提供される。 According to one aspect of the present disclosure, a pulsation timing of a living body is measured based on a communication interface, an electrode, and a signal from the electrode, and information indicating the pulsation timing is transmitted to the state processing device via the communication interface. A state acquisition device is provided.
 以上のように、本開示によれば、動物の精神的状態または肉体的状態を従来よりも正確に把握したり、あるいは従来よりも効率的に把握したりすることができる状態取得装置、ネットワークステム、または状態処理装置が提供される。 As described above, according to the present disclosure, a state acquisition device and a network system that can grasp the mental state or physical state of an animal more accurately than before or can grasp more efficiently than before. Or a state processing device is provided.
第1の実施の形態にかかるネットワークシステム1の全体構成を示す図である。1 is a diagram illustrating an overall configuration of a network system 1 according to a first embodiment. 第1の実施の形態にかかるネットワークシステム1の機能構成を示す図である。It is a figure which shows the function structure of the network system 1 concerning 1st Embodiment. 第1の実施の形態にかかる信号取得装置500の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the signal acquisition apparatus 500 concerning 1st Embodiment. 第1の実施の形態にかかる心電データと拍動間隔との例である。It is an example of the electrocardiogram data and pulsation interval according to the first embodiment. 第1の実施の形態にかかる拍動タイミングの送信データを示す図である。It is a figure which shows the transmission data of the pulsation timing concerning 1st Embodiment. 第1の実施の形態にかかるネットワークシステム1の第1の自律神経バランスを算出するための処理手順を示すフローチャートである。It is a flowchart which shows the process sequence for calculating the 1st autonomic nerve balance of the network system 1 concerning 1st Embodiment. 第1の実施の形態にかかる拍動間隔テーブルを示す図である。It is a figure which shows the pulsation space | interval table concerning 1st Embodiment. 第1の実施の形態にかかる拍動間隔R-R(n)とその次の拍動間隔R-R(n+1)との拍動間隔テーブルからY=X方向とそれに垂直な方向の軸への変換を示すイメージ図である。From the pulsation interval table of the pulsation interval RR (n) and the next pulsation interval RR (n + 1) according to the first embodiment, the Y = X direction and the axis perpendicular to the axis It is an image figure which shows conversion. 第1の実施の形態にかかる犬の精神的状態または肉体的状態毎の、Y=X軸に関する標準偏差と、Y=Xと垂直な軸に関する標準偏差との目安を示す表である。It is a table | surface which shows the standard of the standard deviation regarding the Y = X axis | shaft and the standard deviation regarding the axis | shaft perpendicular | vertical to Y = X for every mental state or physical state of the dog concerning 1st Embodiment. 第1の実施の形態にかかる犬の興奮状態におけるポアンカレプロット図である。It is a Poincare plot figure in the excitement state of the dog concerning a 1st embodiment. 第1の実施の形態にかかる犬の通常状態で呼吸が安定している状態におけるポアンカレプロット図である。It is a Poincare plot figure in the state where breathing is stable in the normal state of the dog concerning a 1st embodiment. 第1の実施の形態にかかる犬の通常状態におけるポアンカレプロット図である。It is a Poincare plot figure in the normal state of the dog concerning 1st Embodiment. 第1の実施の形態にかかる犬の安静状態におけるポアンカレプロット図である。It is a Poincare plot figure in the resting state of the dog concerning 1st Embodiment. 第1の実施の形態にかかるネットワークシステム1の第2の自律神経バランスを算出するための処理手順を示すフローチャートである。It is a flowchart which shows the process sequence for calculating the 2nd autonomic nerve balance of the network system 1 concerning 1st Embodiment. 第1の実施の形態にかかる犬の精神的または肉体的状態毎の、Y=X軸に関する標準偏差と、Y=Xと垂直な軸に関する標準偏差と、第2の自律神経バランスとしての標準偏差の積と、標準偏差の比との目安を示す表である。The standard deviation about the Y = X axis, the standard deviation about the axis perpendicular to Y = X, and the standard deviation as the second autonomic balance for each mental or physical state of the dog according to the first embodiment It is a table | surface which shows the standard of the product of and the ratio of standard deviation. 第1の実施の形態にかかるネットワークシステム1の呼吸数を算出するための第1の処理手順を示すフローチャートである。It is a flowchart which shows the 1st process sequence for calculating the respiration rate of the network system 1 concerning 1st Embodiment. 第1の実施の形態にかかる拍動検出タイミングと拍動間隔との関係のスプライン補完後のグラフである。It is a graph after the spline complementation of the relationship between the pulsation detection timing and the pulsation interval according to the first embodiment. 第1の実施の形態にかかるパワースペクトル分布の例である。It is an example of the power spectrum distribution concerning 1st Embodiment. 第1の実施の形態にかかる犬の安静時におけるスプライン補間後のRRI変動とパワースペクトル分布との例である。It is an example of RRI fluctuation and power spectrum distribution after spline interpolation when the dog according to the first embodiment is at rest. 第1の実施の形態にかかる犬の興奮時におけるスプライン補間後のRRI変動とパワースペクトル分布との例である。It is an example of RRI fluctuation and power spectrum distribution after spline interpolation during dog excitement according to the first embodiment. 拍動タイミングを送信する場合の、送受信データが欠損した場合のデータの取り扱いを示す、拍動間隔テーブルを示す図である。It is a figure which shows the pulsation interval table which shows the handling of data when transmission / reception data are missing when transmitting pulsation timing. 拍動タイミングを送信する場合の、拍動検出タイミングと拍動間隔との関係のスプライン補完後のグラフとパワースペクトル分布のグラフとを示す図面である。なお、点線が、データが全て届いた場合のグラフを示す。It is drawing which shows the graph after spline complementation of the relationship between a pulsation detection timing and a pulsation interval, and the graph of power spectrum distribution in the case of transmitting pulsation timing. In addition, a dotted line shows the graph when all the data arrives. 拍動間隔を送信する場合の、送受信データが欠損した場合のデータの取り扱いを示す、拍動間隔テーブルを示す図である。It is a figure which shows the pulsation interval table which shows the handling of data when transmission / reception data are missing when transmitting pulsation intervals. 拍動間隔を送信する場合の、拍動検出タイミングと拍動間隔との関係のスプライン補完後のグラフとパワースペクトル分布のグラフとを示す図面である。なお、点線が、データが全て届いた場合のグラフを示す。It is drawing which shows the graph after spline complementation of the relationship between a pulsation detection timing and a pulsation interval, and the graph of power spectrum distribution in the case of transmitting a pulsation interval. In addition, a dotted line shows the graph when all the data arrives. 第2の実施の形態にかかる拍動タイミングの送信データを示す図である。It is a figure which shows the transmission data of the pulsation timing concerning 2nd Embodiment. 第3の実施の形態にかかる拍動タイミングの送信データを示す図である。It is a figure which shows the transmission data of the pulsation timing concerning 3rd Embodiment. 第4の実施の形態にかかるネットワークシステム1の機能構成を示す図である。It is a figure which shows the function structure of the network system 1 concerning 4th Embodiment. 第4の実施の形態にかかる信号取得装置500の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the signal acquisition apparatus 500 concerning 4th Embodiment. 第4の実施の形態にかかるネットワークシステム1の呼吸数を算出するための処理手順を示すフローチャートである。It is a flowchart which shows the process sequence for calculating the respiration rate of the network system 1 concerning 4th Embodiment. 第5の実施の形態にかかる第1のネットワークシステム1の機能構成を示す図である。It is a figure which shows the function structure of the 1st network system 1 concerning 5th Embodiment. 第5の実施の形態にかかる第2のネットワークシステム1の機能構成を示す図である。It is a figure which shows the function structure of the 2nd network system 1 concerning 5th Embodiment. 第1の実施の形態にかかるスプライン補間を行う前の拍動間隔のプロット用拍動間隔配列の一例である。It is an example of the pulsation interval arrangement | sequence for plotting of the pulsation intervals before performing the spline interpolation concerning 1st Embodiment.
 以下、図面を参照しつつ、本開示の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
 <第1の実施の形態>
 <ネットワークシステムの全体構成>
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following description, the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
<First Embodiment>
<Overall configuration of network system>
 まず、図1および図2を参照して、本実施の形態にかかるネットワークシステム1の全体構成について説明する。図1は、本実施の形態にかかるネットワークシステム1の全体構成を示す図である。図2は、本実施の形態にかかるネットワークシステム1の機能構成を示す図である。なお、以下では、動物を代表して、呼吸性の不整脈を有する犬の状態を判断する場合について説明する。 First, the overall configuration of the network system 1 according to the present embodiment will be described with reference to FIG. 1 and FIG. FIG. 1 is a diagram showing an overall configuration of a network system 1 according to the present embodiment. FIG. 2 is a diagram illustrating a functional configuration of the network system 1 according to the present embodiment. In addition, below, the case where the state of the dog which has a respiratory arrhythmia is judged on behalf of an animal is demonstrated.
 本実施の形態にかかるネットワークシステム1は、主に、犬の胸部に取り付けられる心電取得用の電極401,402,403と、心電信号を処理するための状態取得装置としての信号取得装置500と、信号取得装置500と通信可能な状態処理装置としての通信端末300とを含む。 The network system 1 according to the present embodiment mainly includes electrodes 401, 402, and 403 for acquiring an electrocardiogram attached to a chest of a dog, and a signal acquisition device 500 as a state acquisition device for processing an electrocardiogram signal. And a communication terminal 300 as a state processing device capable of communicating with the signal acquisition device 500.
 心電取得用の電極401,402,403は、胸部等において、心臓部を挟むような位置に取り付けることが望ましく、例えば、両前足(または、前足と後ろ足)の肉球部など毛の生えていない場所であってもよい。また、毛を刈った状態であるか、ゲルなどが付着した電極、あるいは、突起状の構造を持ち、毛があっても皮膚と接触する構成であることが望ましい。あるいは、毛がある状態で、非接触で容量性材料を介して心電を誘導する形態が望ましい。それにより、犬等の表皮が毛に覆われた動物であっても心電を取得することが可能となる。本実施の形態においては、3個の電極401,402,403を使用する構成としているが、電極は、2個以上であればよく、さらに、多くの電極を使用する構成としてもよい。
 <ネットワークシステムの機能構成と処理手順>
The electrodes 401, 402, and 403 for acquiring electrocardiograms are preferably attached to the chest and the like so as to sandwich the heart part. For example, the hair balls such as the paws of both front legs (or front legs and rear legs) are grown. There may be no place. In addition, it is desirable that the hair is in a state of being trimmed, or has an electrode with a gel attached thereto, or a protrusion-like structure that contacts the skin even if hair is present. Or the form which induces an electrocardiogram through a capacitive material without contact in the state where hair exists is desirable. Thereby, even an animal whose epidermis such as a dog is covered with hair can obtain an electrocardiogram. In this embodiment, three electrodes 401, 402, and 403 are used. However, the number of electrodes may be two or more, and more electrodes may be used.
<Functional configuration and processing procedure of network system>
 次に、本実施の形態にかかるネットワークシステム1の機能構成と処理手順とについて説明する。ネットワークシステム1は、上述した通り、主に、信号取得装置500と通信端末300とを含む。 Next, the functional configuration and processing procedure of the network system 1 according to the present embodiment will be described. As described above, the network system 1 mainly includes the signal acquisition device 500 and the communication terminal 300.
 まず、図2および図3を参照して、信号取得装置500の構成と処理とについて説明する。なお、図3は、本実施の形態にかかる信号取得装置500が実行する処理を示すフローチャートである。信号取得装置500は、心電前処理部511と拍動タイミング取得部512と送信部560を含む。 First, the configuration and processing of the signal acquisition device 500 will be described with reference to FIGS. FIG. 3 is a flowchart showing processing executed by the signal acquisition device 500 according to the present embodiment. The signal acquisition device 500 includes an electrocardiogram preprocessing unit 511, a pulsation timing acquisition unit 512, and a transmission unit 560.
 心電前処理部511は、フィルタや増幅器を含む。心電前処理部511は、電極401,402,403から送られている心電信号を、図4に示すような拍動データに変換して、拍動タイミング取得部512に受け渡す(ステップS002)。 The electrocardiogram preprocessing unit 511 includes a filter and an amplifier. The electrocardiogram preprocessing unit 511 converts the electrocardiogram signals sent from the electrodes 401, 402, and 403 into pulsation data as shown in FIG. 4 and delivers the pulsation data to the pulsation timing acquisition unit 512 (step S002). ).
 より詳細には、心電前処理部511には、ハイパスフィルタ、ローパスフィルタなどのフィルタ装置、オペアンプなどから構成される増幅装置、心電のアナログ信号をデジタル信号に変換するA/D変換装置等が含まれる(ステップS004)。尚、フィルタ装置、増幅装置などは、ソフトウェアにより実装される形態であってもよい。また、A/D変換装置においては、拍動と拍動の間の時間間隔(以下、「拍動間隔」と称する)のゆらぎ量の差異が判別できる周期と精度でのサンプリングを行うことが望ましい。すなわち、A/D変換の周波数が、25Hz以上の周波数で取得することが望ましい。例えば、本実施の形態においては、100Hzでの心電信号のサンプリングを行っている。サンプリングの周波数を高めることにより、拍動間隔の揺らぎ量を正確に把握することが可能となる。 More specifically, the electrocardiogram preprocessing unit 511 includes a filter device such as a high-pass filter and a low-pass filter, an amplification device including an operational amplifier, an A / D conversion device that converts an electrocardiogram analog signal into a digital signal, and the like. Is included (step S004). The filter device, the amplification device, and the like may be implemented by software. Further, in the A / D conversion device, it is desirable to perform sampling with a period and accuracy capable of discriminating a difference in fluctuation amount of a time interval between beats (hereinafter referred to as “beat interval”). . That is, it is desirable that the A / D conversion frequency be acquired at a frequency of 25 Hz or more. For example, in the present embodiment, sampling of an electrocardiogram signal at 100 Hz is performed. By increasing the sampling frequency, it is possible to accurately grasp the fluctuation amount of the beat interval.
 拍動タイミング取得部512は、例えばCPU(Central Processing Unit)510が
メモリのプログラムを実行することによって実現される。拍動タイミング取得部512は、心電データに基づいて、拍動のタイミングを逐次特定する。より詳細には、拍動タイミング取得部512は、閾値検出などの方法により、心電のピーク信号(R波)を検出する(ステップS006)。拍動タイミング取得部512は、各心電のピークの時刻を特定する(ステップS008)。拍動間隔の算出方法として、上記の他に、自己相関関数を用いた周期の導出や、矩形波相関トリガを用いる方法、特徴点を複数検出する方法などによるピーク検出で行ってもよい。なお、言うまでもないが、拍動タイミングとは拍動が発生した絶対的または相対的な時刻である。
The pulsation timing acquisition unit 512 is realized by, for example, a CPU (Central Processing Unit) 510 executing a memory program. The pulsation timing acquisition unit 512 sequentially specifies the pulsation timing based on the electrocardiogram data. More specifically, the pulsation timing acquisition unit 512 detects an electrocardiographic peak signal (R wave) by a method such as threshold detection (step S006). The pulsation timing acquisition unit 512 identifies the peak time of each electrocardiogram (step S008). As a method for calculating the beat interval, in addition to the above, peak detection may be performed by derivation of a period using an autocorrelation function, a method using a rectangular wave correlation trigger, a method of detecting a plurality of feature points, or the like. Needless to say, the pulsation timing is an absolute or relative time when the pulsation occurs.
 本実施の形態においては、拍動タイミング取得部512は、連続して入力される心電信号に対して連続して拍動タイミングの特定を実行する。拍動タイミング取得部512は、拍動毎に、拍動タイミングを示す時刻を、送信部560を介して通信端末300に送信する(ステップS010)。なお、送信部560は、例えば、アンテナやコネクタなどを含む通信インターフェイスによって実現される。 In the present embodiment, the pulsation timing acquisition unit 512 continuously specifies the pulsation timing for the electrocardiogram signals that are continuously input. The pulsation timing acquisition unit 512 transmits the time indicating the pulsation timing to the communication terminal 300 via the transmission unit 560 for each pulsation (step S010). The transmission unit 560 is realized by a communication interface including an antenna, a connector, and the like, for example.
 より詳細には、CPU510は、図5に示すように、所定の時間帯毎に、当該所定の時間帯の基準時刻を示すタイムスタンプと、当該所定の時間帯に含まれる拍動タイミング毎の、所定の時間帯の基準時刻からの詳細な経過時間とを通信インターフェイスを介して通信端末300に送信する。本実施の形態においては、所定の時間帯の長さは1秒間であって、所定の時間帯の基準時刻からの詳細な経過時間はmsecで示される。 More specifically, as shown in FIG. 5, the CPU 510, for each predetermined time zone, a time stamp indicating the reference time of the predetermined time zone, and for each pulsation timing included in the predetermined time zone, The detailed elapsed time from the reference time in a predetermined time zone is transmitted to the communication terminal 300 via the communication interface. In the present embodiment, the length of the predetermined time zone is 1 second, and the detailed elapsed time from the reference time in the predetermined time zone is indicated in msec.
 次に、図2および図6を参照して、通信端末300の構成と処理について説明する。なお、図6は、本実施の形態にかかる通信端末300が実行する処理を示すフローチャートである。通信端末300は、受信部361、拍動間隔取得部321、解析部311と、グラフ作成部312と、結果出力部313と、ディスプレイ330と、データ記憶部322と、送信部362とを含む。 Next, the configuration and processing of the communication terminal 300 will be described with reference to FIG. 2 and FIG. FIG. 6 is a flowchart illustrating processing executed by the communication terminal 300 according to the present embodiment. The communication terminal 300 includes a reception unit 361, a beat interval acquisition unit 321, an analysis unit 311, a graph creation unit 312, a result output unit 313, a display 330, a data storage unit 322, and a transmission unit 362.
 まず、受信部361と送信部362は、例えば、アンテナやコネクタなどを含む通信インターフェイス360によって実現される。受信部361は、信号取得装置500からの拍動タイミングを示すデータを受信する(ステップS100)。 First, the reception unit 361 and the transmission unit 362 are realized by a communication interface 360 including an antenna, a connector, and the like, for example. The receiving unit 361 receives data indicating the pulsation timing from the signal acquisition device 500 (step S100).
 拍動間隔取得部321は各種のメモリ320などによって構成され、信号取得装置500から受信したデータを格納する。本実施の形態においては、CPU310が、通信インターフェイス360を介して受信した拍動タイミングに基づいて拍動と拍動の間の時間を計算する(ステップS102)。CPU310は、拍動間隔を拍動間隔テーブル(図7参照。)として逐次メモリ320に蓄積していく(ステップS104)。本実施の形態においては、拍動間隔は、例えば、図に示すようにmsec(ミリセック)の単位で計算される。ただし、これらのデータは、通信端末300のメモリ320に記憶されてもよいし、通信端末300からアクセス可能な他の装置に記憶されてもよい。なお、図7において拍動タイミング1及び2に9が記入されている時刻の行は、もともと拍動が検出されていない時間帯示すものである。これは、拍動が無い時間帯を仮に9の数値を入力して示すものであり、その他の数値や記号であってもよい。 The pulsation interval acquisition unit 321 includes various types of memory 320 and stores data received from the signal acquisition device 500. In the present embodiment, CPU 310 calculates the time between beats based on the beat timing received via communication interface 360 (step S102). The CPU 310 sequentially accumulates pulsation intervals as a pulsation interval table (see FIG. 7) in the memory 320 (step S104). In the present embodiment, the beat interval is calculated in units of msec (millisec), for example, as shown in the figure. However, these data may be stored in the memory 320 of the communication terminal 300 or may be stored in another device accessible from the communication terminal 300. In FIG. 7, the row of time in which 9 is written in the pulsation timings 1 and 2 indicates a time zone in which no pulsation was originally detected. This indicates a time zone in which there is no pulsation by inputting a numerical value of 9, and may be another numerical value or symbol.
 なお、本実施の形態においては、CPU310は、何らかの原因によって信号取得装置500からの拍動タイミングを示すデータが欠損した場合、後述する通り、拍動間隔が計算できない期間に関しては各種のプロットを行わず、当該期間を経過したところから各種のプロットを再開する。より詳細には、欠損データの取り扱い方法として後述する。 In the present embodiment, when data indicating the pulsation timing from the signal acquisition device 500 is lost for some reason, the CPU 310 performs various plots for a period during which the pulsation interval cannot be calculated, as will be described later. First, various plots are restarted after the period has elapsed. More specifically, it will be described later as a method for handling missing data.
 解析部311と、グラフ作成部312と、結果出力部313とは、例えばCPU310がメモリ320のプログラムを実行することによって実現される。解析部311は、一定時間単位、例えば、1分、10分、1時間など、状態を判定するために必要な時間単位で、拍動間隔取得部321から拍動間隔データを読み出して、拍動間隔R-R(n)とその次の拍動間隔R-R(n+1)との拍動間隔テーブルを作成する(ステップS106)。 The analysis unit 311, the graph creation unit 312, and the result output unit 313 are realized by the CPU 310 executing a program in the memory 320, for example. The analysis unit 311 reads pulsation interval data from the pulsation interval acquisition unit 321 in a unit of time necessary for determining the state, for example, 1 minute, 10 minutes, 1 hour, etc. A pulsation interval table of the interval RR (n) and the next pulsation interval RR (n + 1) is created (step S106).
 解析部311は、図8に示すように、拍動間隔R-R(n)とその次の拍動間隔R-R(n+1)との拍動間隔テーブルからY=X方向とそれに垂直な方向の軸への変換を行う(ステップS108)。 As shown in FIG. 8, the analysis unit 311 calculates the Y = X direction and the direction perpendicular thereto from the pulsation interval table of the pulsation interval RR (n) and the next pulsation interval RR (n + 1). Is converted into an axis (step S108).
 解析部311は、軸の変換を行った後のそれぞれの軸を構成する数値列に関する標準偏差を算出する(ステップS110)。なお、解析部311は、Y=X軸に関する標準偏差だけを算出してもよいし、Y=Xと垂直な軸に関する標準偏差だけを算出してもよいし、両方を算出してもよい。図9は、犬の精神状態または肉体的状態毎の、Y=X軸に関する標準偏差と、Y=Xと垂直な軸に関する標準偏差との目安を示す表である。 The analysis unit 311 calculates the standard deviation regarding the numerical sequence constituting each axis after the axis conversion (step S110). Note that the analysis unit 311 may calculate only the standard deviation about the Y = X axis, may calculate only the standard deviation about the axis perpendicular to Y = X, or may calculate both. FIG. 9 is a table showing a standard deviation of the standard deviation on the Y = X axis and the standard deviation on the axis perpendicular to Y = X for each mental state or physical state of the dog.
 なお、解析部311は、主成分分析などの方法により分散が最大になる軸を特定し、当該軸と当該軸に垂直な軸に関する標準偏差を算出してもよい。さらには、解析部311は、軸変換を行わずに、X軸とY軸に関する標準偏差を算出するものであってもよい。分散の大きい方向がX軸方向とY軸方向である場合には、軸変換を行わなくとも、X軸とY軸の標準偏差を算出することで、ポアンカレプロットした拍動間隔のばらつき状態を評価できる。この場合、軸変換を行う必要が無いために、計算量を低減することができる。 Note that the analysis unit 311 may specify an axis with the maximum variance by a method such as principal component analysis, and calculate a standard deviation regarding the axis and an axis perpendicular to the axis. Furthermore, the analysis unit 311 may calculate a standard deviation regarding the X axis and the Y axis without performing axis conversion. When the direction of large variance is the X-axis direction and the Y-axis direction, the standard deviation of the X-axis and the Y-axis is calculated without performing axis conversion, thereby evaluating the variation state of the beat interval plotted by Poincare plot. it can. In this case, since it is not necessary to perform axis conversion, the amount of calculation can be reduced.
 結果出力部313は、例えば、自身の、あるいは外部の、ディスプレイ330やスピーカなどの出力装置に、標準偏差を表示させたり、音声メッセージを出力させたりする(ステップS114)。より詳細には、結果出力部313は、Y=X軸に関する標準偏差だけを出力させてもよいし、Y=Xと垂直な軸に関する標準偏差だけを出力させてもよいし、両方を出力させてもよいし、大きい方だけを出力させてもよいし、小さい方だけを出力させてもよい。 The result output unit 313 displays the standard deviation or outputs a voice message on its own or external output device such as the display 330 or the speaker, for example (step S114). More specifically, the result output unit 313 may output only the standard deviation regarding the Y = X axis, may output only the standard deviation regarding the axis perpendicular to Y = X, or may output both. Alternatively, only the larger one may be output, or only the smaller one may be output.
 標準偏差を計算することにより、拍動間隔R-R(n)とその次の拍動間隔R-R(n+1)とをそれぞれ軸としてポアンカレプロットした拍動間隔のばらつき状態が評価できる。 By calculating the standard deviation, it is possible to evaluate the variation state of the beat interval obtained by Poincare plot with the beat interval R−R (n) and the next beat interval R−R (n + 1) as axes.
 なお、本実施の形態にかかるネットワークシステム1は、通信端末300が通信可能なサーバを含む形態であってもよい。その場合、結果出力部313としてのCPU310は、標準偏差や関係テーブルなどデータ記憶部322に蓄積したり、送信部362を利用することによって、インターネットなどを介してサーバに送信したりする。これによって、今回の出力結果を観察対象の短期または長期のストレス状態の把握などに利用することができる。 The network system 1 according to the present embodiment may include a server that can communicate with the communication terminal 300. In that case, the CPU 310 as the result output unit 313 accumulates the standard deviation and the relationship table in the data storage unit 322, or transmits the data to the server via the Internet by using the transmission unit 362. As a result, the current output result can be used for grasping the short-term or long-term stress state of the observation target.
 本実施の形態においては、ステップS108とは別に、同時にグラフ作成部312は、図7の拍動間隔テーブルから、標準偏差の計算に使用した範囲の拍動間隔R-R(n)とその次の拍動間隔R-R(n+1)とのデータを取得して、図10~図13に示すようなポアンカレプロット図を作成する。 In the present embodiment, separately from step S108, the graph creation unit 312 simultaneously determines the pulsation interval RR (n) in the range used for calculating the standard deviation and the subsequent steps from the pulsation interval table of FIG. The data with the pulsation interval RR (n + 1) is acquired, and Poincare plots as shown in FIGS. 10 to 13 are created.
 そして、結果出力部313は、作成されたポアンカレプロット図を、自身の、または外部の、ディスプレイなどの出力装置に表示させる。なお、グラフ作成部312は、ステップS108の結果を利用して、軸変換後のポアンカレプロット図を作成して出力してもよい。 Then, the result output unit 313 displays the created Poincare plot on its own or an external output device such as a display. Note that the graph creation unit 312 may create and output a Poincare plot diagram after axis conversion using the result of step S108.
 ここで、ポアンカレプロット図に関して説明する。図10は、本実施の形態にかかる犬の興奮状態におけるポアンカレプロット図である。図11は、本実施の形態にかかる犬の通常状態で呼吸が安定している状態におけるポアンカレプロット図である。図12は、本実施の形態にかかる犬の通常状態におけるポアンカレプロット図である。図13は、本実施の形態にかかる犬の安静状態におけるポアンカレプロット図である。 Here, the Poincare plot will be explained. FIG. 10 is a Poincare plot in the excited state of the dog according to the present embodiment. FIG. 11 is a Poincare plot in a state where the breathing is stable in the normal state of the dog according to the present embodiment. FIG. 12 is a Poincare plot diagram in a normal state of the dog according to the present embodiment. FIG. 13 is a Poincare plot in the resting state of the dog according to the present embodiment.
 まず、例えば犬などの呼吸性の不整脈を有する動物の場合、図10のような興奮状態においては、心拍数が上昇し(拍動間隔は短くなる)、拍動間隔の揺らぎは小さくなり、プロットの点が一定の場所に集まるような状態になる。 First, in the case of an animal having a respiratory arrhythmia such as a dog, in an excited state as shown in FIG. 10, the heart rate increases (beat interval is shortened), and the fluctuation of the beat interval becomes small. It will be in the state where these points gather in a certain place.
 そして、図11のような呼吸が安定している通常の状態においては、心拍数が安静状態ほどは少なくない(プロットの点の広がりが安静状態ほど大きくない)が、プロット点の分布の中心にプロットが少ない(穴の空白)領域が存在する。このような形状になるのは、犬の心拍が呼吸の影響を大きく受けるため、拍動変動が周期的に変化することが原因と考えられる(呼吸性不整脈)。そのため、リラックスした緩やかな拍動ではないが、呼吸が安定して行われているため、空白の存在する状態になると考えられる。 In the normal state where the breathing is stable as shown in FIG. 11, the heart rate is not as small as the resting state (the spread of the plotted points is not as large as the resting state), but at the center of the distribution of the plotted points. There are areas with few plots (hole blanks). The reason for this shape is thought to be that the fluctuation of the pulsation changes periodically (respiratory arrhythmia) because the heartbeat of the dog is greatly affected by respiration. Therefore, although it is not a relaxed and gentle pulsation, it is considered that there is a blank space because breathing is performed stably.
 そして、図12のような通常状態においては、拍動に揺らぎがみられ、ばらつきは大きくなる(プロット点が広がる)が、プロット点が散乱している状態となる。 In the normal state as shown in FIG. 12, the pulsation fluctuates and the variation becomes large (the plot points are widened), but the plot points are scattered.
 そして、図13の安静状態においては、犬がリラックスしているために拍動の間隔が大きくなり、さらに呼吸性不整脈の影響を大きく受けるために、プロット点の広がりが大きくなると共に、円形や四角形に近い形状や、三角形に近い形状となる。そのいずれの形状においても、安静状態ではポアンカレプロットのプロット点の分布の中心部に空白部分が見られる形状となる。 In the resting state of FIG. 13, the interval between pulsations increases because the dog is relaxed, and further, the spread of the plot points increases, and the circular or rectangular shape increases due to the large influence of respiratory arrhythmia. It becomes a shape close to or a shape close to a triangle. In any of the shapes, in a resting state, a blank portion can be seen at the center of the distribution of plot points of the Poincare plot.
 このように、本実施の形態においては、算出結果に基づいて間接的に、ポアンカレプロットのプロット点の分布の広がりの大きさや形状、中心部にプロットが多くみられるか少なくみられるかを予想することができ、その結果、動物の精神的状態または肉体的状態を予想することができる。そして、上述した通り、解析部311は、自律神経バランスを示す数値として、ポアンカレプロットのバラツキ具合すなわち拍動間隔の標準偏差を算出するものである。
 <自律神経バランスの数値に関する別の形態>
As described above, in the present embodiment, the size and shape of the distribution of the plot points of the Poincare plot is indirectly estimated based on the calculation result, and whether or not the plot is often observed or reduced in the central portion. As a result, the mental state or physical state of the animal can be predicted. And as above-mentioned, the analysis part 311 calculates the standard deviation of the variation degree of a Poincare plot, ie, a pulsation interval, as a numerical value which shows autonomic balance.
<Another form of numerical values for autonomic balance>
 上記の実施の形態においては、通信端末300が、ポアンカレプロットのY=Xの軸に沿った標準偏差またはY=Xと垂直な軸に沿った標準偏差を出力するものであった。しかしながら、自律神経バランスを示す数値として、それら2つの標準偏差の積を算出してもよい。以下では、図14を参照して、本実施の形態にかかるネットワークシステム1の処理手順について説明する。 In the above embodiment, the communication terminal 300 outputs the standard deviation along the Y = X axis of the Poincare plot or the standard deviation along the axis perpendicular to Y = X. However, the product of the two standard deviations may be calculated as a numerical value indicating the autonomic balance. Below, with reference to FIG. 14, the process sequence of the network system 1 concerning this Embodiment is demonstrated.
 図14は、本実施の形態にかかるネットワークシステム1の処理手順を示すフローチャートである。ステップS100~ステップS108は、図6のものと同様であるため、ここでは説明を繰り返さない。 FIG. 14 is a flowchart showing a processing procedure of the network system 1 according to the present embodiment. Steps S100 to S108 are the same as those in FIG. 6, and thus description thereof will not be repeated here.
 解析部311としてのCPU310は、軸の変換を行った後のそれぞれの軸に関する標準偏差を算出する(ステップS110)。なお、解析部311は、分散が最大になる軸を特定し、当該軸と当該軸に垂直な軸に関する標準偏差を算出してもよい。 The CPU 310 as the analysis unit 311 calculates the standard deviation for each axis after the axis conversion (step S110). The analysis unit 311 may specify an axis that maximizes the variance, and calculate a standard deviation regarding the axis and an axis perpendicular to the axis.
 そして、解析部311は、自律神経バランスを示す数値として、それらの2つの標準偏差の積や積の平方根などを計算する(ステップS112)。 And the analysis part 311 calculates the product of these two standard deviations, the square root of a product, etc. as a numerical value which shows autonomic balance (step S112).
 結果出力部313は、例えば、通信端末300の、または外部の、ディスプレイやスピーカなどの出力装置に、標準偏差の積や積の平方根などを表示させたり、音声メッセージを出力させたりする(ステップS114)。より詳細には、結果出力部313は、Y=X軸に関する標準偏差と、Y=-Xの軸に関する標準偏差と、両者の積や積の平方根などとを出力させてもよい。 The result output unit 313 displays the product of the standard deviation, the square root of the product, or the like, or outputs a voice message on an output device such as a display or a speaker of the communication terminal 300 or outside (step S114). ). More specifically, the result output unit 313 may output a standard deviation with respect to the Y = X axis, a standard deviation with respect to the Y = −X axis, the product of both, the square root of the product, and the like.
 図15は、犬の精神状態または肉体的状態毎の、Y=X軸に関する標準偏差と、Y=Xと垂直な軸に関する標準偏差と、自律神経バランスを示す数値としての標準偏差の積や積の平方根などと、標準偏差の比との目安を示す表である。 FIG. 15 shows the product or product of the standard deviation on the Y = X axis, the standard deviation on the axis perpendicular to Y = X, and the standard deviation as a numerical value indicating the autonomic balance for each mental state or physical state of the dog. It is a table | surface which shows the standard of the square root of etc. and the ratio of standard deviation.
 標準偏差の積を計算することにより、拍動間隔R-R(n)とその次の拍動間隔R-R(n+1)とをそれぞれ軸としてポアンカレプロットした拍動間隔の分布の広がりの大きさや形状、一様に分散している、中心に空白がある等のばらつき状態が評価できる。また、縦横比が同じで大きさのみ変化している状態や分布の広がり面積が同じで中心部のばらつき状態が異なる場合などに有効にばらつき状態を評価できる。 By calculating the product of the standard deviation, the size of the spread of the beat interval distribution obtained by Poincare plot with the beat interval R−R (n) and the next beat interval R−R (n + 1) as axes, respectively, Variations such as shape, uniform dispersion, and blank at the center can be evaluated. In addition, it is possible to effectively evaluate the variation state when the aspect ratio is the same and only the size is changed, or when the distribution spread area is the same and the variation state of the central portion is different.
 この場合も、結果出力部313は、標準偏差や標準偏差の積や積の平方根や拍動間隔テーブルなどをデータ記憶部322に蓄積したり、送信部362を利用することによって、インターネットなどを介してサーバ100に送信したりする。これによって、今回の出力結果を観察対象の短期または長期のストレス状態の把握などに利用することができる。 Also in this case, the result output unit 313 accumulates the standard deviation, the product of the standard deviation, the square root of the product, the pulsation interval table, and the like in the data storage unit 322 or uses the transmission unit 362, and the like via the Internet. To the server 100. As a result, the current output result can be used for grasping the short-term or long-term stress state of the observation target.
 解析部311は、2つの軸の標準偏差の積や積の平方根などを計算するものであるが、3つ以上の軸の標準偏差の積やその累乗根などを計算するものであってもよい。 The analysis unit 311 calculates a product of standard deviations of two axes, a square root of the product, or the like, but may calculate a product of standard deviations of three or more axes or a power root thereof. .
 CPU310は、所定の期間たとえば数分間毎の図12に示す計算を行い、当該計算結果を後述する診断グラフ作成のためにメモリ320のデータベースに蓄積していく。
 <呼吸数の計算方法>
The CPU 310 performs the calculation shown in FIG. 12 for a predetermined period, for example, every few minutes, and accumulates the calculation result in the database of the memory 320 for creating a diagnostic graph to be described later.
<Calculation method of respiratory rate>
 本実施の形態にかかる通信端末300のCPU310は、対象となる動物の自律神経バランスを示す情報に加えて、当該対象となる動物の呼吸数を計算してもよい。図16を参照して、通信端末300のCPU310は、メモリ320のプログラムを実行することによって、たとえば以下の処理を実行する。 The CPU 310 of the communication terminal 300 according to the present embodiment may calculate the respiration rate of the target animal in addition to the information indicating the autonomic nerve balance of the target animal. Referring to FIG. 16, CPU 310 of communication terminal 300 executes, for example, the following process by executing a program in memory 320.
 CPU310は、通信インターフェイス360を介して信号取得装置500から拍動タイミングを示す時刻情報を受信する(ステップS100)。CPU310は、拍動タイミングに基づいて拍動と拍動の間の時間を計算する(ステップS102)。CPU310は、拍動間隔を拍動間隔テーブル(図7参照。)として逐次メモリ320に蓄積していく(ステップS104)。ただし、これらのデータは、通信端末300のメモリ320に記憶されてもよいし、通信端末300からアクセス可能な他の装置に記憶されてもよい。 CPU310 receives the time information which shows a pulsation timing from the signal acquisition apparatus 500 via the communication interface 360 (step S100). CPU310 calculates the time between pulsations based on pulsation timing (step S102). The CPU 310 sequentially accumulates pulsation intervals as a pulsation interval table (see FIG. 7) in the memory 320 (step S104). However, these data may be stored in the memory 320 of the communication terminal 300 or may be stored in another device accessible from the communication terminal 300.
 CPU310は、図17に示すように、1分間の拍動検出時刻と拍動間隔の関係を数学的に補間(例えばスプライン補間)する(ステップS206)。 The CPU 310 mathematically interpolates (for example, spline interpolation) the relationship between the beat detection time for one minute and the beat interval as shown in FIG. 17 (step S206).
 そして、CPU310は、図18に示すように得られた関数の周波数解析を行う(ステップS208)。CPU310は、周波数解析で得られた図18のようなパワースペクトル分布のなかで、任意の周波数範囲(例えば0.05~0.5Hzの間)においてパワースペクトルの最大のピークを特定する(ステップS210)。ここでは一例として、CPU310は、2番目に大きいピークに比べた最大のピークの割合が、任意の閾値以上の大きさ(例えば3倍)を有する場合には、「測定可能状態」と判別する。 Then, the CPU 310 performs frequency analysis of the obtained function as shown in FIG. 18 (step S208). The CPU 310 specifies the maximum peak of the power spectrum in an arbitrary frequency range (for example, between 0.05 and 0.5 Hz) in the power spectrum distribution as shown in FIG. 18 obtained by the frequency analysis (step S210). ). Here, as an example, if the ratio of the maximum peak compared to the second largest peak has a magnitude (for example, three times) equal to or greater than an arbitrary threshold, the CPU 310 determines that the state is “measurable”.
 より詳細には、例えば、屋内の静かな部屋でリラックスしている状態の犬のスプライン補間後のRRI変動は、図19(a)に示すようなものとなる。この場合のパワースペクトル分布は、図19(b)に示すようなものとなり、2番目に大きいピークに比べた最大のピークの割合が、任意の閾値以上の大きさ(例えば3倍)を有するため、CPU310は、「測定可能状態」と判別する。 More specifically, for example, the RRI fluctuation after the spline interpolation of a dog in a relaxed state in an indoor quiet room is as shown in FIG. The power spectrum distribution in this case is as shown in FIG. 19B, and the ratio of the maximum peak compared to the second largest peak has a magnitude (for example, three times) greater than an arbitrary threshold value. The CPU 310 determines that the state is “measurable”.
 逆に、例えば、屋外の騒がしい環境で落ち着きがない状態の犬のスプライン補間後のRRI変動は、図20(a)に示すようなものとなる。この場合のパワースペクトル分布は、図20(b)に示すようなものとなり、2番目に大きいピークに比べた最大のピークの割合が、任意の閾値以上の大きさ(例えば3倍)を有さないため、CPU310は、「測定不可能状態」と判別する。 Conversely, for example, the RRI fluctuation after spline interpolation in a dog that is not calm in an outdoor noisy environment is as shown in FIG. The power spectrum distribution in this case is as shown in FIG. 20B, and the ratio of the maximum peak compared to the second largest peak has a magnitude (for example, three times) greater than an arbitrary threshold value. Therefore, the CPU 310 determines that the measurement is impossible.
 CPU310は、「測定不可能状態」と判別した場合は、別のタイミングに関して、信号取得装置500が既に取得している拍動間隔に基づいて、ステップS206からの処理を繰り返す。 When the CPU 310 determines that the state is “unmeasurable”, the processing from step S206 is repeated based on the beat interval that the signal acquisition device 500 has already acquired for another timing.
 CPU310は、「測定可能状態」と判別した場合に、各種のバイタルデータを検出する。たとえば、CPU310は、周波数解析における任意の周波数範囲(例えば0.05~0.5Hzの範囲)における最大ピークを呼吸の周波数として、逆数を計算することによって呼吸数を算出する。 CPU 310 detects various vital data when it is determined as “measurable state”. For example, the CPU 310 calculates the respiration rate by calculating the reciprocal with the maximum peak in an arbitrary frequency range (for example, a range of 0.05 to 0.5 Hz) in the frequency analysis as the respiration frequency.
 CPU310は、ディスプレイ330、スピーカ370、外部へデータを送信するための通信インターフェイス360などを介して、単位時間当たりの呼吸数を表示したり、音声出力したりする。また、CPU310は、所定の期間たとえば数分間毎の図16に示す計算を行い、当該計算結果を各種の診断グラフ作成のためにメモリ320のデータベースに蓄積していく。
 <欠損データの取り扱い方法>
The CPU 310 displays the respiration rate per unit time and outputs sound via the display 330, the speaker 370, the communication interface 360 for transmitting data to the outside, and the like. Further, the CPU 310 performs the calculation shown in FIG. 16 for a predetermined period, for example, every few minutes, and accumulates the calculation result in the database of the memory 320 for creating various diagnostic graphs.
<Handling of missing data>
 本実施の形態においては、信号取得装置500から拍動タイミングを示す時刻情報が順次送られてくるので、もし仮にいずれかの所定期間のデータの送信に失敗した場合に、通信端末300のCPU310は、たとえば、図6のステップS104や、図14のステップS104や、図16のステップS104において、図21に示すように、当該所定期間の間に関係する拍動間隔を無効とし、当該所定期間の後の拍動タイミングから拍動間隔の計算を再開する。 In the present embodiment, the time information indicating the pulsation timing is sequentially sent from the signal acquisition device 500. Therefore, if data transmission for any given period fails, the CPU 310 of the communication terminal 300 For example, in step S104 of FIG. 6, step S104 of FIG. 14, or step S104 of FIG. 16, as shown in FIG. 21, the pulsation interval related to the predetermined period is invalidated, and The calculation of the beat interval is restarted from the later beat timing.
 図32にスプライン補間を行う前の拍動間隔のプロット用拍動間隔配列の一例を示す。(a)は欠損無しのデータから作成された拍動間隔の配列であり、(b)は、データの欠損が生じた後、拍動タイミングデータから拍動間隔を順に加算していった数値(以下、「拍動間隔累積時間」と称する)を計算し、欠損を修正した拍動間隔の配列である。本配列に対してスプライン補間を行い、プロットすることで図22示すスプライン補間データ配列の作成が可能となる。 FIG. 32 shows an example of a pulsation interval array for plotting pulsation intervals before performing spline interpolation. (A) is an array of beat intervals created from data without loss, and (b) is a numerical value obtained by sequentially adding beat intervals from the beat timing data after data loss has occurred ( This is an array of pulsation intervals in which the deficit is corrected by calculating “accumulation time of pulsation intervals”. The spline interpolation data array shown in FIG. 22 can be created by performing spline interpolation on this array and plotting it.
 CPU110は、上記のようにデータの欠損を修正した配列を下記の方法で作成する。例えば、図21における“2017/1/1 10:10:15”と“2017/1/1 10:10:16”をデータが欠損している個所とする。データが欠損している個所の直前の時刻である“2017/1/1 10:10:14”までの拍動間隔累積時間は14378msecであり、“2017/1/1 10:10:14”における拍動タイミングが511msecであり、拍動タイミングから次の時刻の“2017/1/1 10:10:15”までの時間は、489msecである。次に、欠損個所は2秒間であることで、2000msecを経過する。そして、“2017/1/1 10:10:17”の拍動は206msecの時に発生するため、“10:10:17”の拍動間隔累積時間は14378+1217+489+2000+206=18290で求めることができる。 The CPU 110 creates an array in which the data loss is corrected as described above by the following method. For example, “2017/1/1 10:10:15” and “2017/1/1 10:10:16” in FIG. The accumulated pulsation interval time until “2017/1/11010: 10: 14”, which is the time immediately before the location where the data is missing, is 14378 msec, and in “2017/1/1 10:10:14” The pulsation timing is 511 msec, and the time from the pulsation timing to “2017/1/1 10:10:15” of the next time is 489 msec. Next, since the missing portion is 2 seconds, 2000 msec elapses. Since the pulsation of “2017/1/1 10:10:17” occurs at 206 msec, the accumulated pulsation time of “10:10:17” can be obtained by 14378 + 1217 + 489 + 2000 + 206 = 18290.
 即ち、欠損個所の次に計算可能な拍動間隔データに対する拍動累積時間をXとすれば、α:欠損前までの拍動間隔累積時間と、β:欠損前の拍動間隔と、Y:欠損前の拍動タイミングから次の秒までの時間と、Z:計算できない時間秒と、γ:欠損後に受信できた拍動タイミングまでの時間と、を用いて、以下の式でXを算出することができる。
X=α+β+(1000-y)+1000(z+1)+γ
That is, if the accumulated pulse time for the beat interval data that can be calculated next to the missing portion is X, α: the accumulated beat interval time before the loss, β: the beat interval before the loss, and Y: X is calculated by the following formula using the time from the pulsation timing before loss to the next second, Z: time seconds that cannot be calculated, and γ: time until pulsation timing that can be received after loss. be able to.
X = α + β + (1000-y) +1000 (z + 1) + γ
 こうして作成された配列に対してスプライン補間を行いプロットを行うと図22に示すような図となる。図22に示すように、計算再開後に作成した拍動間隔配列に基づいてプロットする。これによって、データ欠損時のスプライン補完後のグラフの、データが欠損しなかった場合のスプライン補完後のグラフとのズレを、小さくすることができる。なお、グラフにプロットするとは必ずしも実際にグラフを作成することを意味するものではなく、各種計算やグラフにプロット可能な2次元配列を作成することを意味する。 When spline interpolation is performed on the array thus created and plotted, a diagram as shown in FIG. 22 is obtained. As shown in FIG. 22, the plotting is based on the pulsation interval array created after the calculation is resumed. Thereby, the deviation of the graph after spline complementation when data is missing from the graph after spline complementation when data is not missing can be reduced. Plotting on the graph does not necessarily mean that the graph is actually created, but means creating a two-dimensional array that can be plotted on various calculations and graphs.
 参考までに、信号取得装置500から拍動間隔を示す時刻情報が順次送られてくる場合は、もし仮にいずれかの所定期間のデータの送信に失敗した場合に、通信端末300は、たとえば、図6のステップS104や、図14のステップS104や、図16のステップS104において、CPU310は、図23に示すように、当該所定期間の間に関係する拍動間隔を無効としても、拍動間隔のプロットを再開すべき正確な時刻がわからない。仮に、所定期間を空けずに、次の拍動間隔をそのままプロットすると、図24に示すように、データ欠損時のスプライン補完後のグラフの、データが欠損しなかった場合のスプライン補完後のグラフとのズレが、大きくなってしまう。
 <第2の実施の形態>
For reference, when time information indicating the beat interval is sequentially sent from the signal acquisition device 500, if the transmission of data for any given period fails, the communication terminal 300, for example, In step S104 of FIG. 6, step S104 of FIG. 14, and step S104 of FIG. 16, the CPU 310 cancels the beat interval even if the beat interval related during the predetermined period is invalidated as shown in FIG. I don't know the exact time to resume plotting. If the next pulsation interval is plotted as it is without leaving a predetermined period, as shown in FIG. 24, the graph after spline interpolation when data is missing, after spline interpolation when data is not missing The gap will be larger.
<Second Embodiment>
 上記の実施の形態にかかるネットワークシステム1においては、信号取得装置500は、図5に示すように、所定の時間帯毎に、当該所定の時間帯のプロセッサが持っている秒単位の時刻(以下、「基準時刻」と称する)を示すタイムスタンプと、当該所定の時間帯に含まれる拍動タイミング毎の、所定の時間帯の基準時刻からの詳細な経過時間とを通信インターフェイスを介して通信端末300に送信するものであった。 In the network system 1 according to the above embodiment, as shown in FIG. 5, the signal acquisition device 500 has a time in seconds (hereinafter referred to as “second time”) possessed by a processor in the predetermined time period for each predetermined time period. , Which is referred to as “reference time”) and a detailed elapsed time from the reference time in the predetermined time zone for each pulsation timing included in the predetermined time zone via the communication interface 300 was sent.
 しかしながら、本実施の形態においては、信号取得装置500のCPU510は、図25に示すように、所定の時間帯毎に、当該所定の時間帯の基準を示すタイムスタンプと、当該所定の時間帯に含まれる拍動タイミング毎の、詳細な現在の時刻とを通信インターフェイスを介して通信端末300に送信する。 However, in the present embodiment, as shown in FIG. 25, the CPU 510 of the signal acquisition device 500 has a time stamp indicating a reference of the predetermined time zone and a predetermined time zone for each predetermined time zone. The detailed current time for each included pulsation timing is transmitted to the communication terminal 300 via the communication interface.
 この場合も、通信端末300のCPU310は、たとえば、図6のステップS104や、図14のステップS104や、図16のステップS104において、図21に示すように、当該所定期間の間に関係する拍動間隔を無効とし、当該所定期間の後の拍動タイミングから拍動間隔の計算を再開する。そして、CPU110は、図22に示すように、計算再開後の拍動間隔を、拍動タイミングの時刻に基づいて、各種グラフにプロットする。これによって、データ欠損時のスプライン補完後のグラフの、データが欠損しなかった場合のスプライン補完後のグラフとのズレを、小さくすることができる。 Also in this case, the CPU 310 of the communication terminal 300, for example, in step S104 in FIG. 6, step S104 in FIG. 14, or step S104 in FIG. 16, beats related during the predetermined period as shown in FIG. The motion interval is invalidated, and the calculation of the beat interval is restarted from the beat timing after the predetermined period. Then, as shown in FIG. 22, the CPU 110 plots the pulsation interval after the restart of the calculation on various graphs based on the time of the pulsation timing. Thereby, the deviation of the graph after spline complementation when data is missing from the graph after spline complementation when data is not missing can be reduced.
 なお、信号取得装置500のCPU510は、測定開始時に今回の測定が開始された基準時刻、たとえば図25における2017/1/1 10:10:00、を通信端末300に送信し、所定の時間帯毎に、当該所定の時間帯を示すタイムスタンプと、当該所定の時間帯に含まれる拍動タイミング毎の、今回の測定が開始された基準時刻からの経過時間とを通信インターフェイスを介して通信端末300に送信してもよい。 Note that the CPU 510 of the signal acquisition device 500 transmits a reference time at which the current measurement is started at the start of measurement, for example, 2017/1/1 10:10:00 in FIG. Each time a time stamp indicating the predetermined time zone and an elapsed time from the reference time at which the current measurement is started for each pulsation timing included in the predetermined time zone are communicated via a communication interface. You may transmit to 300.
 あるいは、信号取得装置500のCPU510は、測定開始時に今回の測定が開始された基準時刻、図25における2017/1/1 10:10:00、を通信端末300に送信し、拍動タイミング毎の、今回の測定が開始された基準時刻からの経過時間とを通信インターフェイスを介して通信端末300に送信してもよい。
 <第3の実施の形態>
Alternatively, the CPU 510 of the signal acquisition device 500 transmits the reference time at which the current measurement is started at the start of measurement, 2017/1/1 10:10:00 in FIG. 25, to the communication terminal 300, and for each pulsation timing. The elapsed time from the reference time when the current measurement is started may be transmitted to the communication terminal 300 via the communication interface.
<Third Embodiment>
 あるいは、CPU510は、図26に示すように、所定の時間帯毎に、当該所定の時間帯の基準時刻を示すタイムスタンプと、当該所定の時間帯に含まれる拍動タイミング毎の、所定の時間帯の基準時刻からの詳細な経過時間と、1つ前の所定の時間帯の基準時刻を示すタイムスタンプと、当該1つ前の所定の時間帯に含まれる拍動タイミング毎の、1つ前の所定の時間帯の基準時刻からの詳細な経過時間(第1の所定期間)  と、2つ前の所定の時間帯の基準時刻を示すタイムスタンプと、当該2つ前の所定の時間帯に含まれる拍動タイミング毎の、2つ前の所定の時間帯の基準時刻からの詳細な経過時間と、を通信インターフェイスを介して通信端末300に送信してもよい。さらには、複数の所定の時間帯の基準時刻からの詳細な経過時間を送信する場合は、前記所定時間帯よりも短い所定の時間間隔(第2の所定期間)で情報を送信してもよい。これにより、遡った時間のデータ合わせて送信する場合であっても、所定の時間間隔で拍動タイミングを受信し続けることが可能となる。 Alternatively, as shown in FIG. 26, the CPU 510, for each predetermined time zone, a time stamp indicating the reference time of the predetermined time zone and a predetermined time for each pulsation timing included in the predetermined time zone. The detailed elapsed time from the reference time of the band, the time stamp indicating the reference time of the previous predetermined time period, and the previous one for each pulsation timing included in the previous predetermined time period A detailed elapsed time (first predetermined period) from the reference time of the predetermined time zone, a time stamp indicating the reference time of the two previous predetermined time zones, and a predetermined time zone two previous times The detailed elapsed time from the reference time in the two previous predetermined time zones for each included pulsation timing may be transmitted to the communication terminal 300 via the communication interface. Furthermore, when transmitting the detailed elapsed time from the reference time of a plurality of predetermined time zones, the information may be transmitted at a predetermined time interval (second predetermined period) shorter than the predetermined time zone. . As a result, even when the data of the retroactive time is transmitted together, it is possible to continue receiving the pulsation timing at a predetermined time interval.
 この場合は、通信端末300のCPU310は、たとえば、図6のステップS104や、図14のステップS104や、図16のステップS104において、データが欠損した時間帯の拍動タイミングを、次の時間帯のデータを受信する際に、遡って取得することができる。
 <第4の実施の形態>
In this case, the CPU 310 of the communication terminal 300 determines, for example, the pulsation timing in the time zone in which data is lost in step S104 in FIG. 6, step S104 in FIG. 14, or step S104 in FIG. When receiving the data, it can be acquired retrospectively.
<Fourth embodiment>
 上記の実施の形態にかかるネットワークシステム1においては、信号取得装置500は、図5に示すように、所定の時間帯毎に、当該所定の時間帯を示すタイムスタンプと、当該所定の時間帯に含まれる拍動タイミング毎の、所定の時間帯の開始時刻からの詳細な経過時間とを通信インターフェイスを介して通信端末300に送信するものであった。 In the network system 1 according to the above embodiment, as shown in FIG. 5, the signal acquisition device 500 includes a time stamp indicating the predetermined time period and a predetermined time period for each predetermined time period. The detailed elapsed time from the start time of a predetermined time zone for each included pulsation timing is transmitted to the communication terminal 300 via the communication interface.
 しかしながら、図27に示すように、信号取得装置500のCPU510は、拍動タイミング取得部512の代わりに、拍動間隔取得部512Bを実現してもよい。より詳細には、拍動間隔取得部512Bは、閾値検出などの方法により、心電のピーク信号(R波)を検出し、各心電のピークの間隔(時間)を算出する。拍動間隔の算出方法として、上記の他に、自己相関関数を用いた周期の導出や矩形波相関トリガを用いる方法などで行ってもよい。 However, as shown in FIG. 27, the CPU 510 of the signal acquisition device 500 may realize a pulsation interval acquisition unit 512B instead of the pulsation timing acquisition unit 512. More specifically, the pulsation interval obtaining unit 512B detects an electrocardiographic peak signal (R wave) by a method such as threshold detection, and calculates the interval (time) of each electrocardiographic peak. In addition to the above, the pulsation interval may be calculated by derivation of a period using an autocorrelation function or a method using a rectangular wave correlation trigger.
 本実施の形態においては、拍動間隔取得部512Bは、連続して入力される心電信号に対して連続して拍動間隔の算出を実行する(図28のステップS008B)。拍動間隔取得部512Bは、算出した拍動間隔や拍動データ自体を、送信部560を介して通信端末300に送信する。 In the present embodiment, the pulsation interval obtaining unit 512B continuously calculates the pulsation interval for the electrocardiogram signals that are continuously input (step S008B in FIG. 28). The pulsation interval acquisition unit 512B transmits the calculated pulsation interval and pulsation data itself to the communication terminal 300 via the transmission unit 560.
 そして、図29に示すように、通信端末300のCPU310は、メモリ320のプログラムを実行することによって、たとえば以下の処理を実行する。すなわち、CPU310は、通信インターフェイス360を介して信号取得装置500から拍動間隔を示す情報を受信する(ステップS202)。そして、CPU310は、拍動間隔を拍動間隔テーブルとして逐次メモリ320に蓄積していく(ステップS204)。 And as shown in FIG. 29, CPU310 of the communication terminal 300 performs the following processes, for example by executing the program of the memory 320. FIG. That is, the CPU 310 receives information indicating the beat interval from the signal acquisition device 500 via the communication interface 360 (step S202). Then, the CPU 310 sequentially accumulates pulsation intervals as a pulsation interval table in the memory 320 (step S204).
 本実施の形態においては、信号取得装置500からの送信データの欠損している場合、通信端末300のCPU310は、たとえば、図6のステップS104や、図14のステップS104や、図16のステップS104において、当該所定期間の間に関係する拍動間隔を無効とし、当該所定期間の後の拍動間隔を利用する。たとえば、CPU510は、拍動タイミングをまとめて送信するための所定の時間帯の期間と同じ時間だけ空けて、拍動間隔の各種グラフへのプロットを再開する。これによって、データ欠損時のスプライン補完後のグラフの、データが欠損しなかった場合のスプライン補完後のグラフとのズレを、小さくすることができる。
 <第5の実施の形態>
In the present embodiment, when transmission data from the signal acquisition device 500 is missing, the CPU 310 of the communication terminal 300, for example, step S104 in FIG. 6, step S104 in FIG. 14, or step S104 in FIG. In, the beat interval related during the predetermined period is invalidated, and the beat interval after the predetermined period is used. For example, the CPU 510 resumes plotting the pulsation intervals on various graphs after the same time period as a predetermined time period for transmitting the pulsation timings collectively. Thereby, the deviation of the graph after spline complementation when data is missing from the graph after spline complementation when data is not missing can be reduced.
<Fifth embodiment>
 上記の実施の形態にかかるネットワークシステム1は、電極401,402,403からの心電信号に基づいて信号取得装置500が拍動タイミングや拍動間隔を取得し、通信端末300が拍動間隔から動物の状態を判断するための情報または動物の状態の判定結果の情報を算出して出力するものであった。しかしながら、それらの1つの装置の全部または一部の役割が、別の装置によって担われてもよいし、複数の装置によって分担されてもよい。逆に、それら複数の装置の全部または一部の役割を、1つの装置が担ってもよいし、別の装置が担ってもよい。 In the network system 1 according to the above embodiment, the signal acquisition device 500 acquires the pulsation timing and the pulsation interval based on the electrocardiogram signals from the electrodes 401, 402, and 403, and the communication terminal 300 determines from the pulsation interval. Information for judging the state of the animal or information on the result of judging the state of the animal is calculated and output. However, all or some of the roles of the one device may be played by another device or may be shared by a plurality of devices. Conversely, one device may play the role of all or part of the plurality of devices, or another device may play the role.
 例えば、図30に示すように、通信端末300の役割をサーバ100が担ってもよい。この場合は、サーバ100が、上記の実施の形態の通信端末300の機能を搭載することになる。例えば、通信端末300が信号取得装置500からの拍動タイミングや拍動間隔などの必要な情報をルータやキャリア網やインターネットなどを介してサーバ100に送信する。サーバ100が動物の状態を判断するための情報または動物の状態の判定結果を示す情報を算出し、当該情報を通信端末300に送信する。通信端末300が最終的な結果の情報をディスプレイやスピーカに出力することが考えられる。 For example, as shown in FIG. 30, the server 100 may play the role of the communication terminal 300. In this case, the server 100 is equipped with the function of the communication terminal 300 of the above embodiment. For example, the communication terminal 300 transmits necessary information such as a beat timing and a beat interval from the signal acquisition device 500 to the server 100 via a router, a carrier network, the Internet, or the like. The server 100 calculates information for determining the animal state or information indicating the determination result of the animal state, and transmits the information to the communication terminal 300. It is conceivable that the communication terminal 300 outputs the final result information to a display or a speaker.
 なお、この場合は、当然に、サーバ100の受信部161や送信部162は、サーバ100の通信インターフェイス160によって実現される。そして、拍動間隔取得部121やデータ記憶部122は、サーバ100のメモリ120またはサーバ100からアクセス可能な他の装置などによって実現される。統計処理部111やグラフ作成部112や結果出力部113は、CPU110がメモリ120のプログラムを実行することによって実現される。 In this case, as a matter of course, the reception unit 161 and the transmission unit 162 of the server 100 are realized by the communication interface 160 of the server 100. The pulsation interval acquisition unit 121 and the data storage unit 122 are realized by the memory 120 of the server 100 or other devices accessible from the server 100. The statistical processing unit 111, the graph creation unit 112, and the result output unit 113 are realized by the CPU 110 executing the program in the memory 120.
 あるいは、図31に示すように、信号取得装置500が拍動タイミングや拍動間隔などの必要な情報をルータやキャリア網やインターネットなどを介してサーバ100に送信する。サーバ100が動物の状態を判断するための情報または動物の状態の判定結果の情報を算出して、当該情報をインターネットやキャリア網やルータなどを介して通信端末300に送信する。通信端末300が最終的な結果の情報をディスプレイやスピーカに出力する。この場合は、信号取得装置500と通信端末300とは無線LANまたは有線LANで接続されていなくてもよい。 Alternatively, as shown in FIG. 31, the signal acquisition device 500 transmits necessary information such as pulsation timing and pulsation interval to the server 100 via a router, a carrier network, the Internet, or the like. The server 100 calculates information for determining the state of the animal or information on the determination result of the state of the animal, and transmits the information to the communication terminal 300 via the Internet, a carrier network, a router, or the like. The communication terminal 300 outputs the final result information to a display or a speaker. In this case, the signal acquisition device 500 and the communication terminal 300 may not be connected by a wireless LAN or a wired LAN.
 なお、この場合も、当然に、サーバ100の受信部161や送信部162は、サーバ100の通信インターフェイス160によって実現される。そして、拍動間隔取得部121やデータ記憶部122は、サーバ100のメモリ120またはサーバ100からアクセス可能な他の装置などによって実現される。統計処理部111やグラフ作成部112や結果出力部113は、CPU110がメモリ120のプログラムを実行することによって実現される。
 <その他の応用例>
In this case, as a matter of course, the reception unit 161 and the transmission unit 162 of the server 100 are realized by the communication interface 160 of the server 100. The pulsation interval acquisition unit 121 and the data storage unit 122 are realized by the memory 120 of the server 100 or other devices accessible from the server 100. The statistical processing unit 111, the graph creation unit 112, and the result output unit 113 are realized by the CPU 110 executing the program in the memory 120.
<Other application examples>
 本開示は、システム或いは装置にプログラムを供給することによって達成される場合にも適用できることはいうまでもない。そして、本開示を達成するためのソフトウェアによって表されるプログラムを格納した記憶媒体(あるいはメモリ)を、システム或いは装置に供給し、そのシステム或いは装置のコンピュータ(又はCPUやMPU)が記憶媒体に格納されたプログラムコードを読出し実行することによっても、本開示の効果を享受することが可能となる。 Needless to say, the present disclosure can also be applied to a case where the present disclosure is achieved by supplying a program to a system or apparatus. Then, a storage medium (or memory) storing a program represented by software for achieving the present disclosure is supplied to the system or apparatus, and the computer (or CPU or MPU) of the system or apparatus stores it in the storage medium. The effect of the present disclosure can also be enjoyed by reading and executing the program code.
 この場合、記憶媒体から読出されたプログラムコード自体が前述した実施の形態の機能を実現することになり、そのプログラムコードを記憶した記憶媒体は本開示を構成することになる。 In this case, the program code itself read from the storage medium realizes the functions of the above-described embodiments, and the storage medium storing the program code constitutes the present disclosure.
 また、コンピュータが読出したプログラムコードを実行することにより、前述した実施の形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、コンピュータ上で稼動しているOS(オペレーティングシステム)などが実際の処理の一部または全部を行い、その処理によって前述した実施の形態の機能が実現される場合も含まれることは言うまでもない。 Further, by executing the program code read by the computer, not only the functions of the above-described embodiments are realized, but also an OS (operating system) running on the computer based on the instruction of the program code However, it is needless to say that a case where the function of the above-described embodiment is realized by performing part or all of the actual processing and the processing is included.
 さらに、記憶媒体から読み出されたプログラムコードが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わる他の記憶媒体に書き込まれた後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPUなどが実際の処理の一部または全部を行い、その処理によって前述した実施の形態の機能が実現される場合も含まれることは言うまでもない。 Furthermore, after the program code read from the storage medium is written to another storage medium provided in the function expansion board inserted into the computer or the function expansion unit connected to the computer, based on the instruction of the program code, It goes without saying that the CPU of the function expansion board or function expansion unit performs part or all of the actual processing and the functions of the above-described embodiments are realized by the processing.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present disclosure is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1     :ネットワークシステム
100   :サーバ
110   :CPU
111   :統計処理部
112   :グラフ作成部
113   :結果出力部
120   :メモリ
121   :拍動間隔取得部
122   :データ記憶部
160   :通信インターフェイス
161   :受信部
162   :送信部
300   :通信端末
310   :CPU
311   :解析部
312   :グラフ作成部
313   :結果出力部
320   :メモリ
321   :拍動間隔取得部
322   :データ記憶部
330   :ディスプレイ
360   :通信インターフェイス
361   :受信部
362   :送信部
370   :スピーカ
401   :電極
402   :電極
403   :電極
500   :信号取得装置
510   :CPU
511   :心電前処理部
512   :拍動タイミング取得部
512B  :拍動間隔取得部
560   :送信部
1: Network system 100: Server 110: CPU
111: Statistical processing unit 112: Graph creation unit 113: Result output unit 120: Memory 121: Beat interval acquisition unit 122: Data storage unit 160: Communication interface 161: Reception unit 162: Transmission unit 300: Communication terminal 310: CPU
311: Analysis unit 312: Graph creation unit 313: Result output unit 320: Memory 321: Beat interval acquisition unit 322: Data storage unit 330: Display 360: Communication interface 361: Reception unit 362: Transmission unit 370: Speaker 401: Electrode 402: Electrode 403: Electrode 500: Signal acquisition device 510: CPU
511: ECG pre-processing unit 512: Pulsation timing acquisition unit 512B: Pulsation interval acquisition unit 560: Transmission unit

Claims (11)

  1.  通信インターフェイスと、
     電極と、
     前記電極からの信号に基づいて生体の拍動タイミングを計測し、当該拍動タイミングを示す情報を前記通信インターフェイスを介して送信する第1のプロセッサとを備える、状態取得装置。
    A communication interface;
    Electrodes,
    A state acquisition apparatus comprising: a first processor that measures a pulsation timing of a living body based on a signal from the electrode and transmits information indicating the pulsation timing via the communication interface.
  2.  前記第1のプロセッサは、所定の期間の基準時刻と、当該所定の期間内における前記拍動タイミング毎の前記基準時刻からの経過時間と、を前記通信インターフェイスを介して送信する、請求項1に記載の状態取得装置。 The first processor transmits a reference time of a predetermined period and an elapsed time from the reference time for each pulsation timing within the predetermined period via the communication interface. The state acquisition device described.
  3.  前記第1のプロセッサは、所定の期間内における前記拍動タイミング毎の時刻を前記通信インターフェイスを介して送信する、請求項1に記載の状態取得装置。 The state acquisition device according to claim 1, wherein the first processor transmits a time at each pulsation timing within a predetermined period via the communication interface.
  4.  前記第1のプロセッサは、所定の期間内における前記拍動タイミング毎の基準時刻からの経過時間を前記通信インターフェイスを介して送信する、請求項1に記載の状態取得装置。 The state acquisition device according to claim 1, wherein the first processor transmits an elapsed time from a reference time for each pulsation timing within a predetermined period via the communication interface.
  5.  前記第1のプロセッサは、複数の拍動タイミングそれぞれを示す複数の情報を、複数回重複させて、前記通信インターフェイスを介して送信する、請求項1から4のいずれか1項に記載の状態取得装置。 The state acquisition according to any one of claims 1 to 4, wherein the first processor transmits a plurality of pieces of information indicating each of a plurality of pulsation timings through the communication interface by overlapping a plurality of times. apparatus.
  6.  前記第1のプロセッサは、第1の所定期間内における複数の拍動タイミングそれぞれを示す複数の情報を、前記通信インターフェイスを介して、前記第1の所定期間よりも短い第2の所定期間毎に送信する、請求項5に記載の状態取得装置。 The first processor receives a plurality of pieces of information indicating a plurality of pulsation timings within a first predetermined period for each second predetermined period shorter than the first predetermined period via the communication interface. The state acquisition device according to claim 5, which transmits.
  7.  通信するための通信インターフェイスと、
     前記通信インターフェイスを介して請求項1から6のいずれか1項に記載の状態取得装置に送信された拍動タイミングおよび拍動間隔を受信し、前記拍動間隔に関する配列を作成する第2のプロセッサとを備える、状態処理装置。
    A communication interface for communicating;
    The 2nd processor which receives the pulsation timing and pulsation interval which were transmitted to the state acquisition device of any one of Claim 1 to 6 via the said communication interface, and produces the arrangement | sequence regarding the said pulsation interval A state processing apparatus.
  8.  前記第2のプロセッサは、前記複数の拍動タイミングを示す情報が欠損している個所を有する場合、前記個所を所定時間空けて、前記拍動間隔に関する配列を作成する、請求項7に記載の状態処理装置。 The said 2nd processor creates the arrangement | sequence regarding the said pulsation interval, leaving | separating the said part for a predetermined time, when there exists the location where the information which shows these several pulsation timings is missing. State processing device.
  9.  前記第2のプロセッサは、前記個所の直前および直後の前記複数の拍動タイミングを示す情報に基づいて、前記個所を所定時間空けて、拍動間隔に関する配列を作成する、請求項8に記載の状態処理装置。 9. The array according to claim 8, wherein the second processor creates an array related to a beat interval by spacing the positions for a predetermined time based on information indicating the plurality of beat timings immediately before and after the places. State processing device.
  10.  前記第2のプロセッサは、前記個所の直前の拍動タイミングを示す情報と、前記個所の経過時間と、前記個所の直後の拍動タイミングを示す情報とに基づいて、前記所定時間を計算する、請求項8または9に記載の状態処理装置。 The second processor calculates the predetermined time based on information indicating a pulsation timing immediately before the location, an elapsed time of the location, and information indicating a pulsation timing immediately after the location. The state processing device according to claim 8 or 9.
  11.  請求項1から6のいずれか1項に記載の状態取得装置と、
     請求項7から10のいずれか1項に記載の状態処理装置と、  
     前記状態取得装置と前記状態処理装置との間で送受信を行う通信手段と、を備えるネットワークシステム。
    The state acquisition device according to any one of claims 1 to 6,
    A state processing device according to any one of claims 7 to 10,
    A network system comprising: communication means for performing transmission / reception between the state acquisition device and the state processing device.
PCT/JP2019/012353 2018-04-04 2019-03-25 State acquisition device, network system, and state processing device WO2019193998A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020511699A JPWO2019193998A1 (en) 2018-04-04 2019-03-25 Status acquisition device, network system, and status processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-072545 2018-04-04
JP2018072545 2018-04-04

Publications (1)

Publication Number Publication Date
WO2019193998A1 true WO2019193998A1 (en) 2019-10-10

Family

ID=68100508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012353 WO2019193998A1 (en) 2018-04-04 2019-03-25 State acquisition device, network system, and state processing device

Country Status (2)

Country Link
JP (1) JPWO2019193998A1 (en)
WO (1) WO2019193998A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022201639A1 (en) * 2021-03-25 2022-09-29 株式会社日立物流 Biological data evaluation server, biological data evaluation system, and biological data evaluation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512946B1 (en) * 1999-06-23 2003-01-28 Biotronik Mess Und Therapiegerate Gmbh & Co. Ingenieurburo Berlin Method of detecting cardiac interval signals in cardiologic devices
JP2016022165A (en) * 2014-07-18 2016-02-08 エヌ・ティ・ティ・コミュニケーションズ株式会社 Electrocardiogram component detection system, electrocardiogram component detection method and computer program
JP2016120063A (en) * 2014-12-25 2016-07-07 東芝情報システム株式会社 Drowsiness estimation device and drowsiness estimation program
JP2016165383A (en) * 2015-03-10 2016-09-15 公立大学法人首都大学東京 Biological signal analysis system, method, and program
WO2018055996A1 (en) * 2016-09-20 2018-03-29 シャープ株式会社 Computer, method for acquiring respiration rate, and information processing system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512946B1 (en) * 1999-06-23 2003-01-28 Biotronik Mess Und Therapiegerate Gmbh & Co. Ingenieurburo Berlin Method of detecting cardiac interval signals in cardiologic devices
JP2016022165A (en) * 2014-07-18 2016-02-08 エヌ・ティ・ティ・コミュニケーションズ株式会社 Electrocardiogram component detection system, electrocardiogram component detection method and computer program
JP2016120063A (en) * 2014-12-25 2016-07-07 東芝情報システム株式会社 Drowsiness estimation device and drowsiness estimation program
JP2016165383A (en) * 2015-03-10 2016-09-15 公立大学法人首都大学東京 Biological signal analysis system, method, and program
WO2018055996A1 (en) * 2016-09-20 2018-03-29 シャープ株式会社 Computer, method for acquiring respiration rate, and information processing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022201639A1 (en) * 2021-03-25 2022-09-29 株式会社日立物流 Biological data evaluation server, biological data evaluation system, and biological data evaluation method

Also Published As

Publication number Publication date
JPWO2019193998A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
WO2018055996A1 (en) Computer, method for acquiring respiration rate, and information processing system
CN111065323A (en) Device and method for determining the blood pressure of a subject
KR20160074482A (en) Heart monitoring system
AU2014248464A1 (en) Ear-related devices implementing sensors to acquire physiological characteristics
JP2013540454A (en) Virtual world operation device and method utilizing biological information
US10765374B2 (en) Methods and apparatus for adaptable presentation of sensor data
WO2018055782A1 (en) State acquisition computer, state acquisition method, and information processing system
JP2018082931A (en) Arousal level processing method and arousal level processing apparatus
WO2019193998A1 (en) State acquisition device, network system, and state processing device
WO2015115114A1 (en) Blood pressure measurement system and pulse wave sensor
JP2020188963A (en) Electrocardiographic waveform estimation device
US9826911B2 (en) Wearable device and determination method thereof
WO2019198691A1 (en) Information processing device and wearable terminal
JP2019103750A (en) Information processing device, information processing program, server, and information processing method
WO2019107266A1 (en) Information processing device, state acquisition program, server, and information processing method
WO2019107267A1 (en) Information processing device, program, server, and information processing method
US20220323023A1 (en) Method for determining respiratory rate
WO2020218195A1 (en) Biological information processing system and biological information acquisition method
US20220211286A1 (en) Methods and apparatus for dynamically identifying and selecting the best photoplethysmography sensor channel during monitoring
WO2020195403A1 (en) Harness for measuring biometric information and biometric information processing system
JP2021137250A (en) Biological information processing device, biological information processing system, and biological information processing method
TWI775711B (en) Method and system of detecting specific physiological syndrome related to hyperactivity of liver-fire/heart-fire based on hemodynamic analysis and stringy pulse
US9826909B2 (en) Neurogenic baroreflex sensitivity measurement device, neurogenic baroreflex sensitivity measurement program and neurogenic baroreflex sensitivity measurement method
KR101519960B1 (en) Integrated multiple electrodes for 12 channel ECG measurement and method of 12 channel ECG measurement using the same
KR101809468B1 (en) Biosignal monitoring system using multi-channel sensor patch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19780612

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020511699

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19780612

Country of ref document: EP

Kind code of ref document: A1