WO2019155656A1 - Propeller, propeller designing method, propeller designing method program, and information storage medium - Google Patents

Propeller, propeller designing method, propeller designing method program, and information storage medium Download PDF

Info

Publication number
WO2019155656A1
WO2019155656A1 PCT/JP2018/027481 JP2018027481W WO2019155656A1 WO 2019155656 A1 WO2019155656 A1 WO 2019155656A1 JP 2018027481 W JP2018027481 W JP 2018027481W WO 2019155656 A1 WO2019155656 A1 WO 2019155656A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
propeller
line
rotor blade
axis
Prior art date
Application number
PCT/JP2018/027481
Other languages
French (fr)
Japanese (ja)
Inventor
嶋 英志
誠司 堤
圭一郎 藤本
Original Assignee
国立研究開発法人宇宙航空研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人宇宙航空研究開発機構 filed Critical 国立研究開発法人宇宙航空研究開発機構
Publication of WO2019155656A1 publication Critical patent/WO2019155656A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • B64C11/18Aerodynamic features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Definitions

  • the present invention relates to a propeller, a propeller design method, a propeller design method program, and an information storage medium.
  • Propellers are widely used in air supply and aircraft propulsion engines. Some propeller blades have a loop shape for the purpose of improving the efficiency of the propeller (see, for example, Patent Document 1).
  • the external force acting on the propeller in the air is mainly centrifugal force, and the loop shape cannot be maintained at the time of rotation with a lightweight configuration unless appropriate consideration is given to the centrifugal force. Furthermore, the propeller is also required to reduce noise.
  • an object of the present invention is to provide a propeller, a propeller design method, a propeller design method program, and an information storage medium that are configured to be lightweight, maintain a loop shape during rotation, and have a low noise. is there.
  • a propeller includes a rotating shaft and a rotating blade.
  • the rotor blade is connected around the rotation axis, and has a first rotor blade portion having a first blade upper surface and a first blade lower surface and having a receding angle, and has a second blade upper surface and a second blade lower surface and moves forward.
  • a second rotor blade having a corner The upper surface of the second blade is connected to the lower surface of the first blade, the lower surface of the second blade is connected to the upper surface of the first blade, and a loop shape is formed by the first rotating blade portion and the second rotating blade portion.
  • the rotor blade When the direction perpendicular to the axial direction of the rotating shaft and from the rotating shaft toward the tip of the loop shape is the first direction, and the direction orthogonal to the axial direction and the first direction is the second direction, the rotor blade is centered on the rotating shaft. At least a part of the center line of the rotor blade formed when the rotor blade is rotated, the tension acting in the first direction of the rotor blade and the centrifugal force are in harmony, and the rotor blade second A catenary shape in which the tension acting in the direction and the centrifugal force are harmonized.
  • At least a part of the catenary line shape in which the centrifugal force acting on the rotor blades during rotation and the tension in the rotor blades balance becomes a loop shape, so that the rotor blades are deformed by the centrifugal force. It becomes difficult.
  • the connecting portion where the first rotating blade portion is connected to the rotating shaft and the connecting portion where the second rotating blade portion is connected to the rotating shaft are shifted in the axial direction, and the first connecting portion is the second connecting portion. You may locate in the downstream of the flow direction of air rather than a connection location.
  • the second rotating blade portion is less likely to hit the weak region emitted by the first rotating blade portion, and the rotating blade tends to rotate efficiently without receiving a load.
  • the first rotating blade portion and the second rotating blade portion may have the same angle of attack with respect to a plane orthogonal to the rotation axis.
  • the magnitudes of the twisting force of the first rotating blade received from the air and the twisting force of the second rotating blade received from the air are substantially the same, and they are offset.
  • chord line and the camber line in the rotor blade may coincide with each other at the tip of the loop shape.
  • a plurality of rotor blades may be arranged around the rotation axis, and a plurality of rotor blades may be arranged at equal intervals.
  • Such propellers tend to exert large wind power because they have multiple rotor blades.
  • the rotor blade may be made of a flexible material.
  • a propeller As described above, according to the present invention, there are provided a propeller, a propeller design method, a propeller design method program, and an information storage medium that are light in weight, maintain a loop shape during rotation, and have a low noise.
  • FIG. 1A is a schematic top view showing an example of a propeller according to the present embodiment.
  • Fig. (B) is a schematic side view showing an example of a propeller according to the present embodiment. It is an example of the flowchart of the propeller design method which concerns on this embodiment. It is a schematic diagram which shows an example of the propeller design method which concerns on this embodiment.
  • FIG. 5A is a graph showing an example of a loop-shaped imaginary line projected onto the XY axis plane.
  • FIG. 5B is a graph showing an example of a loop-shaped virtual line projected on the YZ axis plane.
  • FIG. 1 is a schematic perspective view showing an example of a propeller according to the present embodiment.
  • FIG. 2A is a schematic top view showing an example of a propeller according to the present embodiment.
  • FIG. 2B is a schematic side view showing an example of a propeller according to the present embodiment.
  • the axial direction of the rotary shaft 10 is the Z-axis direction
  • the direction orthogonal to the Z-axis direction and from the rotary shaft 10 toward the tip 201 of the rotary blade 20 is the X-axis direction (first direction)
  • a direction orthogonal to the Z-axis direction and the X-axis direction is defined as a Y-axis direction (second direction).
  • the propeller 100 of the present embodiment includes a rotating shaft 10 and a pair of rotating blades 20 connected to the rotating shaft 10.
  • the pair of rotary blades 20 are arranged on a point target, for example, with the central axis 10c of the rotary shaft 10 as the center.
  • the pair of rotary blades 20 constitutes an 8-shaped blade.
  • the rotating shaft 10 is rotated counterclockwise about the central axis 10c by an external drive system (not shown), and the pair of rotary blades 20 are rotated counterclockwise about the rotating shaft 10.
  • the pair of rotor blades 20 is made of, for example, a polyamide-based resin and has light weight and flexibility.
  • Each of the pair of rotor blades 20 includes a rotor blade portion 21 (first rotor blade portion) and a rotor blade portion 22 (second rotor blade portion).
  • the rotary blade portion 21 has a blade upper surface 211 (first blade upper surface) and a blade lower surface 212 (first blade lower surface).
  • the rotary blade portion 22 has a blade upper surface 221 (second blade upper surface) and a blade lower surface (second blade lower surface) 222.
  • the rotary blade portion 21 has a receding angle that gradually recedes along a concentric circle with the rotating shaft 10 as the center.
  • the rotary blade portion 22 has an advance angle that gradually advances along a concentric circle centered on the rotary shaft 10.
  • a loop shape is formed by the rotary blade portion 21 and the rotary blade portion 22. That is, in the rotary blade 20, the distance between the rotary blade portion 21 and the rotary blade portion 22 gradually increases as the distance from the rotary shaft 10 increases, and the distance becomes narrow after the distance has once reached the maximum.
  • the rotary blade portion 21 and the rotary blade portion 22 that are divided into two branches from the rotary shaft 10 are connected at the tip 201 of the rotary blade 20.
  • the blade main surface is twisted back in the vicinity of the loop-shaped tip 201, the blade upper surface 221 is connected to the blade lower surface 212, and the blade lower surface 222 is connected to the blade upper surface 211.
  • the rotary blade portion 21 having the receding angle receives a torsional aerodynamic force (torsion moment), and the rotary blade portion 22 having the forward angle is twisted from the air. Receives increased aerodynamics.
  • the rotary blade portion 21 and the rotary blade portion 22 are connected by the tip 201 of the rotary blade 20. Further, on the XY axis plane, the center line 21L of the rotary blade part 21 and the center line 22L of the rotary blade part 22 are arranged line-symmetrically with respect to the central axis 20c of the rotary blade 20.
  • the torsional aerodynamic force and the torsional aerodynamic force cancel each other out in the rotor blade 20, and even if the rotor blade 20 has a thin and light structure, the rotor blade 20 is not deformed by aerodynamic force. It is hard to get up.
  • the rotary blade 21 and the rotary blade 22 have the same angle of attack with respect to an XY axis plane (rotary surface) orthogonal to the rotary shaft 10.
  • size of the torsional force of the rotary blade part 21 received from air and the torsional force of the rotary blade part 22 received from air become substantially the same, and they cancel.
  • the rotor blade can be made of a strong rigid body that is not subject to torsional deformation.
  • the rotor blade having such rigidity inevitably increases in weight and cannot be reduced in weight.
  • the centrifugal force acts on the rotor blade 20 more strongly than the aerodynamic force.
  • the propeller 100 is desired to have a configuration in which the rotor blade 20 is not easily deformed even by centrifugal force.
  • a suspended line shape in which a centrifugal force acting on the rotary blade 20 during rotation and a tension in the rotary blade 20 is balanced is introduced as a loop shape.
  • the shape of at least a part of the center lines 21L and 22L formed when the rotor blade 20 rotates about the rotation shaft 10 is at an arbitrary position of at least a part of the center lines 21L and 22L.
  • a tension acting in the X-axis direction and a centrifugal force acting in the X-axis direction are harmonized, and a tension line shape in which the tension acting in the Y-axis direction of the rotor blade 20 and the centrifugal force acting in the Y-axis direction are harmonized.
  • the propeller 100 has a lightweight structure in which a bending moment does not work.
  • connection location 11 (1st connection location) where the rotary blade part 21 was connected to the rotating shaft 10
  • connection location 12 (2nd connection location) where the rotary blade part 21 was connected to the rotary shaft 10
  • the connection location 11 is located downstream of the connection location 12 in the air flow direction.
  • the shape of at least a part of the loop-shaped center lines 21L and 22L formed when the rotary blade 20 rotates about the rotation shaft 10 is an arbitrary part of at least a part of the center lines 21L and 22L.
  • the tension acting in the X-axis direction of the rotor blade 20 and the centrifugal force acting in the X-axis direction are harmonized, and the suspension force in which the tension acting in the Y-axis direction of the rotor blade 20 and the centrifugal force acting in the Y-axis direction are harmonized.
  • FIG. 3 is an example of a flowchart of the propeller design method according to the present embodiment.
  • FIG. 4 is a schematic diagram illustrating an example of a propeller design method according to the present embodiment.
  • the radius R of the propeller 100, the diameter R1 of the rotating shaft 10 (hub) of the propeller 100, the airfoil (blade cross-sectional shape) at each radial position, the chord length, and the rotation plane are formed.
  • An angle (attack angle) is determined in advance (step S101). Establish the following differential equation.
  • FIG. 4 shows an example in which the rotary blade 21 is regarded as a cable.
  • a vector extending from the center axis 10c of the rotating shaft 10 to the center line 21L of the rotating blade portion 21 is represented by r.
  • the position parameter in the X-axis direction is x
  • the position parameter in the Y-axis direction is y
  • the position parameter in the Z-axis direction is z.
  • the angular velocity at which the rotary blade portion 21 rotates around the central axis 10c of the rotary shaft 10 is ⁇
  • the material density of the rotary blade 20 is ⁇
  • the linear density of the rotary blade 20 is ⁇ line
  • S be the area of the blade cross-section definition plane 21w of the rotary blade section 21 and ⁇ be the angle between the blade cross-section definition plane 21w and the line direction of the cable (center line 21L).
  • the blade cross-section definition plane 21w is a plane that is parallel to the rotation axis 10 and arranged orthogonally.
  • a minute volume v portion with a dot
  • v S ⁇ h
  • ds the differential amount of the length along the line direction of the cable
  • h ds ⁇ sin ⁇
  • the linear density ⁇ line in the ds direction is expressed by ⁇ ⁇ S ⁇ sin ⁇ .
  • ds corresponds to an integration step value, which will be described later, and is set to ds ⁇ 0.01R (step S102).
  • T is a tension acting in the rotary blade portion 21.
  • the left sides of (1), (2), and (3) are forces acting per unit length of the X-axis, Y-axis, and Z-axis, and correspond to fx, fy, and fz.
  • the tension T z in the Z-axis direction is set as an initial value in advance.
  • R is a distance from the central axis 10c of the rotation axis 10 to the loop-shaped tip 201 on the XY axis plane.
  • T z is a tension acting in the Z-axis direction.
  • Let (x, y, z) (0, 0, 0) be the end point in line integration.
  • the linear density ⁇ line material density in the direction along the loop-shaped line of the rotor blade 20 is set to a desired value. A value is set (step S106).
  • the rotor blade goes back to the front of step S106 and takes into consideration the airfoil (blade cross-sectional shape), blade chord length, and the angle formed by the rotating surface.
  • the operation of setting the line density ⁇ line of 20 to a desired value is repeated. Thereby, a loop-shaped imaginary line is obtained.
  • FIG. 5A is a graph showing an example of a loop-shaped imaginary line projected onto the XY axis plane.
  • FIG. 5B is a graph showing an example of a loop-shaped imaginary line projected onto the YZ axis plane.
  • Q 0 and T z when Q 0 and T z are regarded as tension parameters, Q 0 and T z have a degree of freedom. From Q 0 and T z to a desired value in the Y-axis direction or the Z-axis direction by the Newton iteration method or the like. The shape of the cable (swelling in the Y-axis direction or Z-axis direction) can be determined.
  • step S109 when Q 0 is set large, the angle ⁇ formed by the X-axis direction and the cable line direction can be set large, and by setting Q 0 small, the angle ⁇ can be set small.
  • step S110 After determining whether the angle ⁇ is the target value (step S109), if the angle ⁇ is not the target value, Q 0 is corrected by the Newton method (step S110), and before step S104. Going back, the corrected Q 0 becomes the initial value, and the integration by the Runge-Kutta method is performed again.
  • the center line 21L of the rotor blade 21 and the center line 22L of the rotor blade 22 are arranged symmetrically with respect to the center axis 20c, the first miracle of the center line 21L is obtained after obtaining the miracle.
  • the virtual line of the center line 22L of the rotor blade 22 is also determined.
  • At least a part of the loop-shaped imaginary line derived from the differential equation is set as the center lines 21L and 22L of the rotor blade 20.
  • step S 111 After displacement amount Z 1 is made a determination whether the target value (step S 111), when the deviation amount Z 1 is not a target value, due Newton method, is corrected displacement amount Z 1 (step S112 ), the deviation amount Z 1 fixed becomes the initial value, integration by Runge-Kutta method is performed again.
  • the desired displacement amount Z 1 it is preferable to set at equal intervals as possible wake region emanating from a plurality of rotor blades.
  • FIG. 6 is a schematic diagram of a wake region generated by a general rotor blade.
  • spiral wake region WR generated by friction between the rotating blade BL and air or the like in the wake of the rotating blade BL (the wake of the rotation direction R) during rotation.
  • each rotor blade be arranged so as to avoid a wake region that arises from the rotor blade that rotates first.
  • each rotor blade is arranged so that the wake area interval in the Z-axis direction is L / B, each rotor blade is less likely to hit the wake area during rotation.
  • each of the pair of rotor blades 20 includes two pairs of rotor blade portions 21 and 22, the blades are substantially four blades. Therefore, the optimum value of the wake area interval in the Z-axis direction is L / 4.
  • Propeller 100 is not limited to two pairs of rotary blades 21 and 22, if they have a B 'group of the rotating wings, the optimum value of Z 1 is expressed by the following equation.
  • the wake interval differs depending on the position from the central axis 10c.
  • the wake region interval is optimized so that the width of the rotary wing part 21 (rotary wing part 22) becomes the maximum (position 70% of the distance R from the central axis 10c).
  • the shift amount (Z 1 ) may be determined based on the tension parameter T z .
  • the bulges (the magnitude of ⁇ ) of the center lines 21L and 22L and the shift amount Z 1 of the center lines 21L and 22L are determined using (Q 0 , T z ).
  • the above design procedure is automatically executed by a computer program using a computer. Further, the propeller design method program is stored in an information storage medium such as a hard disk, an optical disk, a USB memory, or a memory card.
  • the sections are arranged along the center line.
  • FIG. 7 is a schematic diagram showing the concept of a method for determining the cross section of the rotor blade.
  • FIG. 7 also shows a coordinate system (inside the broken line) when the rotary blade 21 is viewed toward the vector r.
  • the rotor blade 20 is determined by arranging two-dimensional blade cross sections along the center lines 21L and 22L.
  • the blade cross section is defined as a two-dimensional shape in the X''Y '' axis plane using the X '' axis, which is the air flow direction in the blade cross section, and the Y '' axis perpendicular to the X '' axis.
  • the in this embodiment the blade cross section is defined by the unit vector x ′, y ′ after the blade cross section is rotated on the X ”Y” axis plane by a predetermined torsion angle ⁇ and rotated by ⁇ . 20s is introduced.
  • x ′ is defined as a unit vector that is perpendicular to the vector r and has an angle ⁇ with the propeller rotation plane (XY plane). Note that the X ′′ axis is parallel to the XY plane.
  • l ′ be a unit vector indicating the direction of the center line 21L.
  • y ′ is defined as follows. Note that an axis parallel to the unit vector x ′ is an X ′ axis, and an axis parallel to the unit vector y ′ is a Y ′ axis.
  • the blade section defining section 20s is determined using the unit vectors x ′ and y ′, and the blade section defining section 20s is arranged so that the center of gravity of the blade section defining section 20s passes through the center lines 21L and 22L (step S113).
  • the cross-sectional shape of the rotor blade 20 having a loop shape is determined. That is, by using the unit vector x ′ orthogonal to the vector r and the unit vector y ′ orthogonal to the unit vector x ′ and the unit vector l ′, even if the rotor blade 20 draws a loop shape, the center line 21L , 22L and the cross section perpendicular to 22L is determined by (x ′, y ′).
  • n ′ is a normal vector of the blade cross section defining cross section 20s.
  • 8 (a) to 8 (e) are schematic diagrams showing the concept of a method for correcting the camber line of the blade cross section definition cross section.
  • the camber C of the blade cross section defining cross section 20s includes a camber line CL (line obtained by averaging the lines of the blade upper surface and the blade lower surface) and the chord line (blade cross section defining cross section 20s). The distance from the leading edge to the trailing edge).
  • the distance from the camber line CL to the blade upper surface is the thickness t / 2
  • the distance from the camber line CL to the blade lower surface is the thickness t / 2.
  • the line on the blade upper surface of the blade cross section defining section 20s is C (x ′) + t / 2
  • the line on the blade lower surface of the blade cross section defining section 20s is C (x ′) ⁇ t / 2.
  • the distance from 0 on the X ′ axis to the intersection of the X ′ axis and the camber line CL corresponds to the chord length.
  • the inner product of the vector r and the normal vector n ′ of the blade cross section defining cross section 20s is multiplied by C (x) to correct the camber along the center line (step S114).
  • the local velocity of the transverse wave running in the rotor blade 20 is a cable
  • the shape stability of the rotor blade 20 is similar to the shape stability of the jump rope when the jump rope is rotated, the shape stability of the lasso, and the like. For example, even if a jumping rope jumps to the ground and deforms greatly, it immediately returns to its original shape. Therefore, the rotary blade 20 can be made of a material that maintains a suspended shape when rotating, even if it is not suspended when not rotating (for example, when stationary).
  • the propeller 100 can significantly reduce high-frequency sound from the analysis result by the FW & H (Ffowcs. Williams-Hawkings) equation.
  • the waves may strengthen in some places, but at low frequencies, the wavelength is sufficiently long compared to the size of the propeller. As a result, even if the angle is different, the phase does not change greatly and is canceled over a wide range.
  • the Fourier component of aerodynamic sound generated from a propeller having B rotor blades and an angular frequency ⁇ can be expressed as follows in a complex number display.
  • a propeller that rotates synchronously while maintaining the phase difference of the angle ⁇ can be regarded as rotating at a time shifted by ⁇ / ⁇ , so its Fourier component is
  • n m ⁇ l + j and 0 ⁇ j ⁇ m ⁇ 1 (j: remainder when n is divided by integer m)
  • FIG. 9 is a schematic perspective view showing a propeller of a first modified example of the present embodiment.
  • a propeller 101 shown in FIG. 9 includes a cylindrical duct member 30 in addition to the propeller 100.
  • the propeller 100 is provided in the duct member 30.
  • the central axis 10 c of the propeller 100 coincides with the central axis 30 c of the duct member 30.
  • FIG. 10 is a schematic perspective view showing a propeller of a second modified example of the present embodiment.
  • the number of the rotary blades 20 is not limited to two around the rotary shaft 10 and may be three or more.
  • three rotor blades 20 are arranged at equal intervals.
  • the wind power generated by the propeller 102 increases as compared to the propeller 100 due to the increase in the number of the rotor blades 20.
  • FIG. 11 is a schematic perspective view showing a propeller of a third modified example of the present embodiment.
  • connection location 11 and the connection location 12 in the Z-axis direction are smaller than that of the propeller 100.
  • the connection location 11 and the connection location 12 are located on the same XY axis plane.
  • the rotary blade 20 is designed based on a catenary line in which centrifugal force and tension are balanced, so that the loop shape is maintained during rotation.
  • FIG. 12 is a schematic perspective view showing a propeller of a fourth modified example of the present embodiment.
  • a part of the loop shape may be a rigid body part.
  • the rotor blade 20 is less susceptible to the bending moment.
  • an extending portion 204 that also functions as a counterweight is provided near the tip portion 201.
  • FIG. 13 is a schematic perspective view showing a propeller of a fifth modification of the present embodiment.
  • the rigid body portion may be a flat portion 205 like a propeller 105 shown in FIG. With such a configuration, the propeller 105 has the same effect as the propeller 104. Furthermore, when the propeller 105 is attached to the duct member 30, since the tip portion 201 is configured by the flat portion 205, the shape affinity with the duct member 30 is improved.
  • FIG. 14 is a schematic perspective view showing a propeller of a sixth modified example of the present embodiment.
  • FIG. 14 shows the periphery of the rotating shaft 10.
  • the rigid body portion may be provided not near the tip portion 201 of the rotary blade 20 but near the rotating shaft 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

[Problem] To provide a propeller which is configured to be lightweight, maintains a loop shape during rotation, and has low noise, a propeller designing method, a propeller designing method program, and an information storage medium. [Solution] A propeller comprising a rotating blade connected around a rotating shaft, and including: a first rotating blade portion which includes a first blade upper surface and a first blade lower surface and has a sweepback angle; and a second rotating blade portion which includes a second blade upper surface and a second blade lower surface and has an advance angle. The second blade upper surface is continuous with the first blade lower surface. The second blade lower surface is continuous with the first blade upper surface. The first rotating blade portion and the second rotating blade portion form a loop shape. When the rotating blade rotates about the rotating shaft, at least a part of a central line of the rotating blade has a shape, formed in at least a partial arbitrary position, corresponding to the shape of a catenary line such that a tension and a centrifugal force acting in a first direction of the rotating blade are balanced, and such that a tension and a centrifugal force acting in a second direction of the rotating blade are balanced.

Description

プロペラ、プロペラの設計方法、プロペラ設計方法プログラム及び情報記憶媒体Propeller, propeller design method, propeller design method program, and information storage medium
 本発明は、プロペラ、プロペラの設計方法、プロペラ設計方法プログラム及び情報記憶媒体に関する。 The present invention relates to a propeller, a propeller design method, a propeller design method program, and an information storage medium.
 プロペラは、空気中での送空気、航空機の推進機関などで幅広く用いられている。プロペラの効率の改良を目的として、プロペラの羽根をループ状にするものがある(例えば、特許文献1参照)。 Propellers are widely used in air supply and aircraft propulsion engines. Some propeller blades have a loop shape for the purpose of improving the efficiency of the propeller (see, for example, Patent Document 1).
特表2016-507410号公報Special table 2016-507410 gazette
 しかしながら、空気中のプロペラに働く外力は、主に遠心力であり、遠心力への対応を適切に考慮しなければ、軽量な構成で回転時にループ形状を維持することはできない。さらに、プロペラには、低騒音化も要求される。 However, the external force acting on the propeller in the air is mainly centrifugal force, and the loop shape cannot be maintained at the time of rotation with a lightweight configuration unless appropriate consideration is given to the centrifugal force. Furthermore, the propeller is also required to reduce noise.
 以上のような事情に鑑み、本発明の目的は、軽量に構成され、回転時にループ形状を維持し、低騒音のプロペラ、プロペラの設計方法、プロペラ設計方法プログラム及び情報記憶媒体を提供することにある。 In view of the circumstances as described above, an object of the present invention is to provide a propeller, a propeller design method, a propeller design method program, and an information storage medium that are configured to be lightweight, maintain a loop shape during rotation, and have a low noise. is there.
 上記目的を達成するため、本発明の一形態に係るプロペラは、回転軸と、回転翼とを具備する。回転翼は、回転軸の周りに接続され、第1翼上面と第1翼下面とを有し後退角を有する第1回転翼部と、第2翼上面と第2翼下面とを有し前進角を有する第2回転翼部とを有する。第2翼上面は、第1翼下面と連なり、第2翼下面は、第1翼上面と連なり、第1回転翼部と第2回転翼部とによってループ形状が形成される。回転軸の軸方向に直交し回転軸からループ形状の先端に向かう方向を第1方向とし、軸方向及び第1方向に直交する方向を第2方向とした場合、回転翼が回転軸を中心に回転したときに形成される回転翼の中心線の少なくとも一部の形状が少なくとも一部の任意の位置において、回転翼の第1方向に働く張力と遠心力とが調和し、回転翼の第2方向に働く張力と遠心力とが調和した懸垂線形状となる。 In order to achieve the above object, a propeller according to an embodiment of the present invention includes a rotating shaft and a rotating blade. The rotor blade is connected around the rotation axis, and has a first rotor blade portion having a first blade upper surface and a first blade lower surface and having a receding angle, and has a second blade upper surface and a second blade lower surface and moves forward. A second rotor blade having a corner. The upper surface of the second blade is connected to the lower surface of the first blade, the lower surface of the second blade is connected to the upper surface of the first blade, and a loop shape is formed by the first rotating blade portion and the second rotating blade portion. When the direction perpendicular to the axial direction of the rotating shaft and from the rotating shaft toward the tip of the loop shape is the first direction, and the direction orthogonal to the axial direction and the first direction is the second direction, the rotor blade is centered on the rotating shaft. At least a part of the center line of the rotor blade formed when the rotor blade is rotated, the tension acting in the first direction of the rotor blade and the centrifugal force are in harmony, and the rotor blade second A catenary shape in which the tension acting in the direction and the centrifugal force are harmonized.
 このようなプロペラによれば、回転時に回転翼に働く遠心力と、回転翼内の張力とがつり合った懸垂線形状の少なくとも一部がループ形状となるので、遠心力によって回転翼が変形しにくくなる。 According to such a propeller, at least a part of the catenary line shape in which the centrifugal force acting on the rotor blades during rotation and the tension in the rotor blades balance becomes a loop shape, so that the rotor blades are deformed by the centrifugal force. It becomes difficult.
 上記のプロペラにおいては、第1回転翼部が回転軸に接続された接続箇所と、第2回転翼部が回転軸に接続された接続箇所とが軸方向においてずれ、第1接続箇所が第2接続箇所よりも空気の流れ方向の下流側に位置してもよい。 In the above-described propeller, the connecting portion where the first rotating blade portion is connected to the rotating shaft and the connecting portion where the second rotating blade portion is connected to the rotating shaft are shifted in the axial direction, and the first connecting portion is the second connecting portion. You may locate in the downstream of the flow direction of air rather than a connection location.
 このようなプロペラによれば、第2回転翼部は、第1回転翼部が放つウィーク領域に当たりにくくなり、回転翼が負荷を受けずに効率よく回転する傾向にある。 According to such a propeller, the second rotating blade portion is less likely to hit the weak region emitted by the first rotating blade portion, and the rotating blade tends to rotate efficiently without receiving a load.
 上記のプロペラにおいては、回転軸に直交する平面に対し、第1回転翼部と第2回転翼部とが同じ迎角を有してもよい。 In the above-described propeller, the first rotating blade portion and the second rotating blade portion may have the same angle of attack with respect to a plane orthogonal to the rotation axis.
 このようなプロペラによれば、空気から受ける第1回転翼部のねじれ力と、空気から受ける第2回転翼部のねじれ力との大きさが略同じになって、それらが相殺される。これにより、回転時に回転翼が変形しにくくなる傾向にある。 According to such a propeller, the magnitudes of the twisting force of the first rotating blade received from the air and the twisting force of the second rotating blade received from the air are substantially the same, and they are offset. Thereby, it exists in the tendency for a rotary blade to become difficult to deform | transform at the time of rotation.
 上記のプロペラにおいては、ループ形状の先端において、回転翼における翼弦線とキャンバーラインとが一致してもよい。 In the above-described propeller, the chord line and the camber line in the rotor blade may coincide with each other at the tip of the loop shape.
 このようなプロペラによれば、回転翼の先端付近では、揚力が生じず、その幅が狭くなっても変形しにくくなる傾向にある。 According to such a propeller, no lift is generated in the vicinity of the tip of the rotor blade, and it tends to be difficult to be deformed even if its width is narrowed.
 上記のプロペラにおいては、回転翼は、回転軸の周りに複数配置され、複数の回転翼が等間隔に配置されてもよい。 In the above propeller, a plurality of rotor blades may be arranged around the rotation axis, and a plurality of rotor blades may be arranged at equal intervals.
 このようなプロペラによれば、複数の回転翼を持つことから大きな風力を発揮する傾向にある。 Such propellers tend to exert large wind power because they have multiple rotor blades.
 上記のプロペラにおいては、回転翼は、可撓性を有する材料で構成されてもよい。 In the above propeller, the rotor blade may be made of a flexible material.
 このようなプロペラによれば、回転中に回転翼が衝撃によって変形しても、回転翼が元の形状に復元する傾向にある。 According to such a propeller, even if the rotor blade is deformed by impact during rotation, the rotor blade tends to be restored to its original shape.
 以上述べたように、本発明によれば、軽量に構成され、回転時にループ形状を維持し、低騒音のプロペラ、プロペラの設計方法、プロペラ設計方法プログラム及び情報記憶媒体が提供される。 As described above, according to the present invention, there are provided a propeller, a propeller design method, a propeller design method program, and an information storage medium that are light in weight, maintain a loop shape during rotation, and have a low noise.
本実施形態に係るプロペラの一例を示す模式的斜視図である。It is a typical perspective view showing an example of a propeller concerning this embodiment. 図(a)は、本実施形態に係るプロペラの一例を示す模式的上面図である。 図(b)は、本実施形態に係るプロペラの一例を示す模式的側面図である。FIG. 1A is a schematic top view showing an example of a propeller according to the present embodiment. Fig. (B) is a schematic side view showing an example of a propeller according to the present embodiment. 本実施形態に係るプロペラ設計方法のフローチャートの一例である。It is an example of the flowchart of the propeller design method which concerns on this embodiment. 本実施形態に係るプロペラ設計方法の一例を示す模式図である。It is a schematic diagram which shows an example of the propeller design method which concerns on this embodiment. 図(a)は、XY軸平面に投影したループ形状の仮想線の一例を示すグラフ図である。図(b)は、YZ軸平面に投影したループ形状の仮想線の一例を示すグラフ図である。FIG. 5A is a graph showing an example of a loop-shaped imaginary line projected onto the XY axis plane. FIG. 5B is a graph showing an example of a loop-shaped virtual line projected on the YZ axis plane. 一般的な回転翼が発するウェーク領域の模式図である。It is a schematic diagram of the wake area | region which a general rotor blade emits. 回転翼の断面を決定する方法の概念を示す模式図である。It is a schematic diagram which shows the concept of the method of determining the cross section of a rotary blade. 翼断面定義断面のキャンバーラインを修正する方法の概念を示す模式図である。It is a schematic diagram which shows the concept of the method of correcting the camber line of a blade cross section definition cross section. 本実施形態の第1変形例のプロペラを示す模式的斜視図である。It is a typical perspective view which shows the propeller of the 1st modification of this embodiment. 本実施形態の第2変形例のプロペラを示す模式的斜視図である。It is a typical perspective view which shows the propeller of the 2nd modification of this embodiment. 本実施形態の第3変形例のプロペラを示す模式的斜視図である。It is a typical perspective view which shows the propeller of the 3rd modification of this embodiment. 本実施形態の第4変形例のプロペラを示す模式的斜視図である。It is a typical perspective view which shows the propeller of the 4th modification of this embodiment. 本実施形態の第5変形例のプロペラを示す模式的斜視図である。It is a typical perspective view which shows the propeller of the 5th modification of this embodiment. 本実施形態の第6変形例のプロペラを示す模式的斜視図である。It is a typical perspective view which shows the propeller of the 6th modification of this embodiment.
 以下、図面を参照しながら、本発明の実施形態を説明する。各図面には、XYZ軸座標が導入される場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each drawing, XYZ axis coordinates may be introduced.
 (プロペラの概要) (Outline of propeller)
 図1は、本実施形態に係るプロペラの一例を示す模式的斜視図である。
 図2(a)は、本実施形態に係るプロペラの一例を示す模式的上面図である。
 図2(b)は、本実施形態に係るプロペラの一例を示す模式的側面図である。
FIG. 1 is a schematic perspective view showing an example of a propeller according to the present embodiment.
FIG. 2A is a schematic top view showing an example of a propeller according to the present embodiment.
FIG. 2B is a schematic side view showing an example of a propeller according to the present embodiment.
 本実施形態では、XYZ軸座標として、回転軸10の軸方向をZ軸方向、Z軸方向に直交し回転軸10から回転翼20の先端201に向かう方向をX軸方向(第1方向)、Z軸方向及びX軸方向に直交する方向をY軸方向(第2方向)とする。 In the present embodiment, as the XYZ axis coordinates, the axial direction of the rotary shaft 10 is the Z-axis direction, the direction orthogonal to the Z-axis direction and from the rotary shaft 10 toward the tip 201 of the rotary blade 20 is the X-axis direction (first direction), A direction orthogonal to the Z-axis direction and the X-axis direction is defined as a Y-axis direction (second direction).
 本実施形態のプロペラ100は、回転軸10と、回転軸10に接続された一対の回転翼20とを具備する。一対の回転翼20は、回転軸10の中心軸10cを中心に、例えば、点対象に配置される。プロペラ100は、一対の回転翼20によって8字形状の翼が構成される。回転軸10は、図示しない外部駆動系によって、中心軸10cを軸として反時計回りに回転し、一対の回転翼20が回転軸10を中心に反時計回りに回転する。一対の回転翼20は、例えは、ポリアミド系樹脂等により構成され、軽量且つ可撓性を有する。 The propeller 100 of the present embodiment includes a rotating shaft 10 and a pair of rotating blades 20 connected to the rotating shaft 10. The pair of rotary blades 20 are arranged on a point target, for example, with the central axis 10c of the rotary shaft 10 as the center. In the propeller 100, the pair of rotary blades 20 constitutes an 8-shaped blade. The rotating shaft 10 is rotated counterclockwise about the central axis 10c by an external drive system (not shown), and the pair of rotary blades 20 are rotated counterclockwise about the rotating shaft 10. The pair of rotor blades 20 is made of, for example, a polyamide-based resin and has light weight and flexibility.
 一対の回転翼20のそれぞれは、回転翼部21(第1回転翼部)と、回転翼部22(第2回転翼部)とを有する。回転翼部21は、翼上面211(第1翼上面)と、翼下面212(第1翼下面)とを有する。回転翼部22は、翼上面221(第2翼上面)と、翼下面(第2翼下面)222とを有する。回転翼部21は、回転軸10を中心とする同心円に沿って徐々に後退する後退角を有する。回転翼部22は、回転軸10を中心とする同心円に沿って徐々に前進する前進角を有する。 Each of the pair of rotor blades 20 includes a rotor blade portion 21 (first rotor blade portion) and a rotor blade portion 22 (second rotor blade portion). The rotary blade portion 21 has a blade upper surface 211 (first blade upper surface) and a blade lower surface 212 (first blade lower surface). The rotary blade portion 22 has a blade upper surface 221 (second blade upper surface) and a blade lower surface (second blade lower surface) 222. The rotary blade portion 21 has a receding angle that gradually recedes along a concentric circle with the rotating shaft 10 as the center. The rotary blade portion 22 has an advance angle that gradually advances along a concentric circle centered on the rotary shaft 10.
 回転翼20においては、回転翼部21と回転翼部22とによってループ形状が形成される。すなわち、回転翼20においては、回転軸10から離れるほど、回転翼部21と回転翼部22との間の距離が徐々に広がり、該距離が一旦最大となった後に該距離が狭くなる。回転軸10から二股に分かれた回転翼部21と回転翼部22とは、回転翼20の先端201において接続されている。また、回転翼20においては、翼主面がループ形状の先端201付近でねじり返され、翼上面221が翼下面212と連なり、翼下面222が翼上面211と連なっている。 In the rotary blade 20, a loop shape is formed by the rotary blade portion 21 and the rotary blade portion 22. That is, in the rotary blade 20, the distance between the rotary blade portion 21 and the rotary blade portion 22 gradually increases as the distance from the rotary shaft 10 increases, and the distance becomes narrow after the distance has once reached the maximum. The rotary blade portion 21 and the rotary blade portion 22 that are divided into two branches from the rotary shaft 10 are connected at the tip 201 of the rotary blade 20. In the rotary blade 20, the blade main surface is twisted back in the vicinity of the loop-shaped tip 201, the blade upper surface 221 is connected to the blade lower surface 212, and the blade lower surface 222 is connected to the blade upper surface 211.
 プロペラ100では、回転翼20が回転することにより、回転翼部21の翼上面211付近と翼下面212付近とに圧力差が生じ、回転翼部22の翼上面221付近と翼下面222付近とに圧力差が生じる。これにより、回転翼20に揚力が生まれ、プロペラ100は、空気が流れる方向とは逆の方向に移動する。 In the propeller 100, when the rotor blade 20 rotates, a pressure difference is generated between the blade upper surface 211 and the blade lower surface 212 near the rotor blade 21, and the blade surface 22 near the blade upper surface 221 and the blade lower surface 222. A pressure difference occurs. As a result, lift is generated in the rotor blade 20, and the propeller 100 moves in a direction opposite to the direction in which air flows.
 但し、回転翼20に揚力が生まれるのと同時に、後退角を持つ回転翼部21は、空気からねじり下げの空気力(ねじりモーメント)を受け、前進角を持つ回転翼部22は、空気からねじり上げの空気力を受ける。 However, at the same time as the lift force is generated in the rotary blade 20, the rotary blade portion 21 having the receding angle receives a torsional aerodynamic force (torsion moment), and the rotary blade portion 22 having the forward angle is twisted from the air. Receives increased aerodynamics.
 しかし、プロペラ100では、回転翼部21と、回転翼部22とが回転翼20の先端201で繋がれている。また、XY軸平面では、回転翼部21の中心線21Lと、回転翼部22の中心線22Lとが回転翼20の中心軸20cに対して、線対称に配置されている。これにより、回転翼20内でねじり上げの空気力とねじり下げの空気力とが互いに相殺され、回転翼20が細長く軽量な構成であったとしても、回転翼20においては、空気力による変形が起きにくくなっている。 However, in the propeller 100, the rotary blade portion 21 and the rotary blade portion 22 are connected by the tip 201 of the rotary blade 20. Further, on the XY axis plane, the center line 21L of the rotary blade part 21 and the center line 22L of the rotary blade part 22 are arranged line-symmetrically with respect to the central axis 20c of the rotary blade 20. Thus, the torsional aerodynamic force and the torsional aerodynamic force cancel each other out in the rotor blade 20, and even if the rotor blade 20 has a thin and light structure, the rotor blade 20 is not deformed by aerodynamic force. It is hard to get up.
 例えば、回転軸10に直交するXY軸平面(回転面)に対し、回転翼部21と回転翼部22とは、同じ迎角を有している。これにより、空気から受ける回転翼部21のねじれ力と、空気から受ける回転翼部22のねじれ力との大きさが略同じになって、それらが相殺される。 For example, the rotary blade 21 and the rotary blade 22 have the same angle of attack with respect to an XY axis plane (rotary surface) orthogonal to the rotary shaft 10. Thereby, the magnitude | size of the torsional force of the rotary blade part 21 received from air and the torsional force of the rotary blade part 22 received from air become substantially the same, and they cancel.
 なお、回転翼をねじり変形を受けないような強い剛体で構成することも可能である。しかし、このような剛性を備えた回転翼は、必然的に重量が増し、軽量化を図ることができない。 It should be noted that the rotor blade can be made of a strong rigid body that is not subject to torsional deformation. However, the rotor blade having such rigidity inevitably increases in weight and cannot be reduced in weight.
 また、空気中でプロペラ100が回転すると、回転翼20には空気力よりも遠心力が強く働く。プロペラ100においては、遠心力によっても回転翼20が変形しにくくなるような構成が望まれる。本実施形態に係るプロペラ100では、回転時に回転翼20に働く遠心力と、回転翼20内の張力とがつり合った懸垂線形状をループ形状として導入する。 Further, when the propeller 100 rotates in the air, the centrifugal force acts on the rotor blade 20 more strongly than the aerodynamic force. The propeller 100 is desired to have a configuration in which the rotor blade 20 is not easily deformed even by centrifugal force. In the propeller 100 according to the present embodiment, a suspended line shape in which a centrifugal force acting on the rotary blade 20 during rotation and a tension in the rotary blade 20 is balanced is introduced as a loop shape.
 例えば、回転翼20が回転軸10を中心に回転したときに形成される中心線21L、22Lの少なくとも一部の形状が中心線21L、22Lの少なくとも一部の任意の位置において、回転翼20のX軸方向に働く張力とX軸方向に働く遠心力とが調和するとともに、回転翼20のY軸方向に働く張力とY軸方向に働く遠心力とが調和した懸垂線形状となる。これにより、プロペラ100は、曲げモーメントが働かない軽量な構造を持つことになる。 For example, the shape of at least a part of the center lines 21L and 22L formed when the rotor blade 20 rotates about the rotation shaft 10 is at an arbitrary position of at least a part of the center lines 21L and 22L. A tension acting in the X-axis direction and a centrifugal force acting in the X-axis direction are harmonized, and a tension line shape in which the tension acting in the Y-axis direction of the rotor blade 20 and the centrifugal force acting in the Y-axis direction are harmonized. Thereby, the propeller 100 has a lightweight structure in which a bending moment does not work.
 また、プロペラ100においては、回転翼部21が回転軸10に接続された接続箇所11(第1接続箇所)と、回転翼部21が回転軸10に接続された接続箇所12(第2接続箇所)とが回転軸10の軸方向にずれている。さらに、プロペラ100においては、回転方向Rにおいて、後退角を持つ回転翼部21の後方に前進角を持つ回転翼部22が配置されている。すなわち、接続箇所11は、接続箇所12よりも空気の流れ方向の下流側に位置している。これにより、回転時には、回転翼部21が放つウィーク領域が回転翼部22の下方に位置することになり、回転翼部22が回転翼部21が放つウィーク領域に当たりにくい構成になる。 Moreover, in the propeller 100, the connection location 11 (1st connection location) where the rotary blade part 21 was connected to the rotating shaft 10, and the connection location 12 (2nd connection location) where the rotary blade part 21 was connected to the rotary shaft 10 were used. Are displaced in the axial direction of the rotary shaft 10. Further, in the propeller 100, in the rotation direction R, a rotary blade portion 22 having an advancing angle is disposed behind the rotary blade portion 21 having a receding angle. That is, the connection location 11 is located downstream of the connection location 12 in the air flow direction. As a result, during rotation, the weak region emitted by the rotary blade portion 21 is positioned below the rotary blade portion 22, and the rotary blade portion 22 is less likely to hit the weak region emitted by the rotary blade portion 21.
 (回転翼形状の決定) (Determination of rotor blade shape)
 本実施形態では、回転翼20が回転軸10を中心に回転したときに形成されるループ形状の中心線21L、22Lの少なくとも一部の形状が、中心線21L、22Lの少なくとも一部の任意の位置において、回転翼20のX軸方向に働く張力とX軸方向に働く遠心力とが調和するとともに、回転翼20のY軸方向に働く張力とY軸方向に働く遠心力とが調和した懸垂線形状から採用される。 In the present embodiment, the shape of at least a part of the loop-shaped center lines 21L and 22L formed when the rotary blade 20 rotates about the rotation shaft 10 is an arbitrary part of at least a part of the center lines 21L and 22L. At the position, the tension acting in the X-axis direction of the rotor blade 20 and the centrifugal force acting in the X-axis direction are harmonized, and the suspension force in which the tension acting in the Y-axis direction of the rotor blade 20 and the centrifugal force acting in the Y-axis direction are harmonized. Adopted from line shape.
 例えば、回転翼部21、22の中心線21L、22Lを求めるために、回転翼20に働く遠心力と、回転翼20内の張力とが調和した微分方程式を立てて、微分方程式を積分することにより、中心線21L、22Lのループ形状を求める。 For example, in order to obtain the centerlines 21L and 22L of the rotor blades 21 and 22, a differential equation in which the centrifugal force acting on the rotor blade 20 and the tension in the rotor blade 20 are harmonized is established and the differential equation is integrated. Thus, the loop shapes of the center lines 21L and 22L are obtained.
 図3は、本実施形態に係るプロペラ設計方法のフローチャートの一例である。
 図4は、本実施形態に係るプロペラ設計方法の一例を示す模式図である。
FIG. 3 is an example of a flowchart of the propeller design method according to the present embodiment.
FIG. 4 is a schematic diagram illustrating an example of a propeller design method according to the present embodiment.
 まず、図3に示すように、プロペラ100の半径R、プロペラ100の回転軸10(ハブ)の直径R1、半径位置毎の翼型(翼断面形状)、翼弦長、及び回転面とのなす角(迎角)を予め決定する(ステップS101)。以下の微分方程式を立てる。 First, as shown in FIG. 3, the radius R of the propeller 100, the diameter R1 of the rotating shaft 10 (hub) of the propeller 100, the airfoil (blade cross-sectional shape) at each radial position, the chord length, and the rotation plane are formed. An angle (attack angle) is determined in advance (step S101). Establish the following differential equation.
 例えば、図4には、回転翼部21をケーブルに見立てた例が示されている。ここで、XY軸平面において、回転軸10の中心軸10cから回転翼部21の中心線21Lにまで延びるベクトルをrとする。また、X軸方向における位置パラメータをx、Y軸方向における位置パラメータをy、Z軸方向における位置パラメータをzとする。 For example, FIG. 4 shows an example in which the rotary blade 21 is regarded as a cable. Here, in the XY axis plane, a vector extending from the center axis 10c of the rotating shaft 10 to the center line 21L of the rotating blade portion 21 is represented by r. Further, the position parameter in the X-axis direction is x, the position parameter in the Y-axis direction is y, and the position parameter in the Z-axis direction is z.
 さらに、回転翼部21が回転軸10の中心軸10cの周りを回転する角速度をω、回転翼20の材料密度をρ、回転翼20の線密度をρline、ベクトルrに対して垂直に切断された回転翼部21の翼断面定義平面21wの面積をS、翼断面定義平面21wとケーブルの線方向(中心線21L)とがなす角度をξとする。翼断面定義平面21wは、回転軸10に対して平行であり、直交に配置された面である。 Further, the angular velocity at which the rotary blade portion 21 rotates around the central axis 10c of the rotary shaft 10 is ω, the material density of the rotary blade 20 is ρ, the linear density of the rotary blade 20 is ρ line , and it is cut perpendicular to the vector r. Let S be the area of the blade cross-section definition plane 21w of the rotary blade section 21 and ξ be the angle between the blade cross-section definition plane 21w and the line direction of the cable (center line 21L). The blade cross-section definition plane 21w is a plane that is parallel to the rotation axis 10 and arranged orthogonally.
 ここで、面積Sを持つ翼断面定義平面21wと、高さhとからなる微小体積v(ドットが付された部分)は、v=S・hで表され、微小体積vの重量は、ρ・v(=ρ・S・h)で表される。さらに、ケーブルの線方向に沿った長さの微分量をdsとした場合、hは、ds・sinξで表される。これにより、ds方向の線密度ρlineは、ρ・S・sinξで表される。なお、dsは、後述する積分の刻み値に相当し、ds<0.01Rに設定される(ステップS102)。 Here, a minute volume v (portion with a dot) composed of a blade cross-section definition plane 21w having an area S and a height h is represented by v = S · h, and the weight of the minute volume v is ρ • v (= ρ · S · h). Furthermore, when the differential amount of the length along the line direction of the cable is ds, h is expressed by ds · sinξ. Thereby, the linear density ρ line in the ds direction is expressed by ρ · S · sinξ. Note that ds corresponds to an integration step value, which will be described later, and is set to ds <0.01R (step S102).
 次に、デカルト座標(x、y、z)における張力と遠心力のつり合いから、次の常微分方程式が立てられる。ここで、Tは、回転翼部21内に働く張力である。 Next, from the balance of tension and centrifugal force at Cartesian coordinates (x, y, z), the following ordinary differential equation is established. Here, T is a tension acting in the rotary blade portion 21.
Figure JPOXMLDOC01-appb-M000014
     ・・・(1)
Figure JPOXMLDOC01-appb-M000014
... (1)
Figure JPOXMLDOC01-appb-M000015
     ・・・(2)
Figure JPOXMLDOC01-appb-M000015
... (2)
Figure JPOXMLDOC01-appb-M000016
     ・・・(3)
Figure JPOXMLDOC01-appb-M000016
... (3)
Figure JPOXMLDOC01-appb-M000017
     ・・・(4)
Figure JPOXMLDOC01-appb-M000017
... (4)
Figure JPOXMLDOC01-appb-M000018
     ・・・(5)
Figure JPOXMLDOC01-appb-M000018
... (5)
 ここで、(1)、(2)、(3)のそれぞれの左辺は、X軸、Y軸、Z軸の単位長さ当たりに働く力であり、fx、fy、fzに相当する。 Here, the left sides of (1), (2), and (3) are forces acting per unit length of the X-axis, Y-axis, and Z-axis, and correspond to fx, fy, and fz.
 また、上記(3)式から、Z軸方向に張力Tについては、事前に、初期値として、 Further, from the above equation (3), the tension T z in the Z-axis direction is set as an initial value in advance.
Figure JPOXMLDOC01-appb-M000019

     ・・・(6)
 が導かれる。
Figure JPOXMLDOC01-appb-M000019

... (6)
Is guided.
 上記(1)~(6)式から、適切な初期値を決めることにより、次の連立常微分方程式を立てて、例えば、Runge-Kutta法を用いて、ループ形状を求める。 From the above formulas (1) to (6), by determining an appropriate initial value, the following simultaneous ordinary differential equation is established, and the loop shape is obtained using, for example, the Runge-Kutta method.
Figure JPOXMLDOC01-appb-M000020
     ・・・(7)
Figure JPOXMLDOC01-appb-M000020
... (7)
Figure JPOXMLDOC01-appb-M000021
     ・・・(8)
Figure JPOXMLDOC01-appb-M000021
... (8)
Figure JPOXMLDOC01-appb-M000022
     ・・・(9)
Figure JPOXMLDOC01-appb-M000022
... (9)
Figure JPOXMLDOC01-appb-M000023
     ・・・(10)
Figure JPOXMLDOC01-appb-M000023
(10)
Figure JPOXMLDOC01-appb-M000024
     ・・・(11)
Figure JPOXMLDOC01-appb-M000024
(11)
Figure JPOXMLDOC01-appb-M000025
     ・・・(12)
Figure JPOXMLDOC01-appb-M000025
(12)
 例えば、RをXY軸平面における回転軸10の中心軸10cからループ形状の先端201までの距離とする。また、TをZ軸方向に働く張力とする。(x、y、z)=(R、0、0)の位置を線積分の始点の初期値(s=0)とする。(x、y、z)=(0、0、0)を線積分における終点とする。Q(初期値)をs=0でのY軸方向に働く張力とする(ステップS103)。ここで、線積分の初期条件を For example, R is a distance from the central axis 10c of the rotation axis 10 to the loop-shaped tip 201 on the XY axis plane. Further, T z is a tension acting in the Z-axis direction. The position of (x, y, z) = (R, 0, 0) is the initial value (s = 0) of the starting point of line integration. Let (x, y, z) = (0, 0, 0) be the end point in line integration. Q 0 (initial value) is a tension acting in the Y-axis direction at s = 0 (step S103). Where the initial condition for line integration is
Figure JPOXMLDOC01-appb-M000026


     ・・・(13)
Figure JPOXMLDOC01-appb-M000026


(13)
Figure JPOXMLDOC01-appb-M000027
     ・・・(14)
 と置く(ステップS104、ステップS105)。
Figure JPOXMLDOC01-appb-M000027
(14)
(Step S104, Step S105).
 また、ループ形状の対称性から、s=0では、dx/ds=0と置くことができる。さらに、翼型(翼断面形状)、翼弦長、及び回転面とのなす角を考慮して、回転翼20の線密度ρline(ループ形状の線に沿った方向の材料密度)を所望の値に設定する(ステップS106)。 Further, from the symmetry of the loop shape, dx / ds = 0 can be set when s = 0. Further, in consideration of the airfoil (blade cross-sectional shape), the chord length, and the angle formed with the rotating surface, the linear density ρ line (material density in the direction along the loop-shaped line) of the rotor blade 20 is set to a desired value. A value is set (step S106).
 これら(6)~(12)の連立常微分方程式を例えば、Runge-Kutta法を用いて、sについて始点から終点まで線積分し、XY軸平面におけるxとyとの関係を求める。例えば、この積分では、ds分の長さだけが積分される(ステップS107)。次に、終点の位置(到達位置)が回転軸10の直径R1より内側にあるか否かの判断がなされる(ステップS108)。終点の位置が回転軸10に到達したら、積分は終了とする。仮に、終点の位置が回転軸10の直径R1より内側でない場合は、ステップS106の前まで遡り、翼型(翼断面形状)、翼弦長、及び回転面とのなす角を考慮した、回転翼20の線密度ρlineを所望の値に設定する動作が繰り返される。これにより、ループ形状の仮想線が求まる。 These simultaneous ordinary differential equations (6) to (12) are line-integrated from the start point to the end point for s using, for example, the Runge-Kutta method, and the relationship between x and y on the XY axis plane is obtained. For example, in this integration, only the length corresponding to ds is integrated (step S107). Next, it is determined whether or not the end point position (arrival position) is inside the diameter R1 of the rotating shaft 10 (step S108). When the position of the end point reaches the rotation axis 10, the integration is finished. If the position of the end point is not inside the diameter R1 of the rotating shaft 10, the rotor blade goes back to the front of step S106 and takes into consideration the airfoil (blade cross-sectional shape), blade chord length, and the angle formed by the rotating surface. The operation of setting the line density ρ line of 20 to a desired value is repeated. Thereby, a loop-shaped imaginary line is obtained.
 図5(a)は、XY軸平面に投影したループ形状の仮想線の一例を示すグラフ図である。図5(b)は、YZ軸平面に投影したループ形状の仮想線の一例を示すグラフ図である。 FIG. 5A is a graph showing an example of a loop-shaped imaginary line projected onto the XY axis plane. FIG. 5B is a graph showing an example of a loop-shaped imaginary line projected onto the YZ axis plane.
 ここで、Q、Tを張力パラメータと見立てると、Q、Tには自由度があり、Q、TからNewton反復法等によって、Y軸方向またはZ軸方向における、所望のケーブルの形状(Y軸方向またはZ軸方向の膨らみ)を決めることができる。 Here, when Q 0 and T z are regarded as tension parameters, Q 0 and T z have a degree of freedom. From Q 0 and T z to a desired value in the Y-axis direction or the Z-axis direction by the Newton iteration method or the like. The shape of the cable (swelling in the Y-axis direction or Z-axis direction) can be determined.
 例えば、図5(a)に示すように、Qを大きく設定すると、X軸方向とケーブルの線方向とがなす角度θを大きく設定することができ、Qを小さく設定することにより、角度θを小さく設定することができる。角度θが目的値であるか否かの判断がなされた後(ステップS109)、角度θが目的値でない場合には、Newton法により、Qが修正されて(ステップS110)、ステップS104の前に遡り、修正されたQが初期値となって、Runge-Kutta法による積分が再び行われる。 For example, as shown in FIG. 5A, when Q 0 is set large, the angle θ formed by the X-axis direction and the cable line direction can be set large, and by setting Q 0 small, the angle θ can be set small. After determining whether the angle θ is the target value (step S109), if the angle θ is not the target value, Q 0 is corrected by the Newton method (step S110), and before step S104. Going back, the corrected Q 0 becomes the initial value, and the integration by the Runge-Kutta method is performed again.
 また、回転翼部21の中心線21Lと回転翼部22の中心線22Lとは、中心軸20cを中心に線対称に配置されていることから、中心線21Lの奇跡を求めた後、第1象限に描いた仮想線とX軸線対称となる線を第4象限に描くことにより、回転翼部22の中心線22Lの仮想線も決定する。 Further, since the center line 21L of the rotor blade 21 and the center line 22L of the rotor blade 22 are arranged symmetrically with respect to the center axis 20c, the first miracle of the center line 21L is obtained after obtaining the miracle. By drawing a virtual line drawn in the quadrant and a line that is symmetrical with the X axis in the fourth quadrant, the virtual line of the center line 22L of the rotor blade 22 is also determined.
 本実施形態では、微分方程式から導かれたループ形状の仮想線の少なくとも一部を回転翼20の中心線21L、22Lとする。 In the present embodiment, at least a part of the loop-shaped imaginary line derived from the differential equation is set as the center lines 21L and 22L of the rotor blade 20.
 一方、図5(b)に示すように、Tを調整することにより、Z軸方向における中心線21Lと中心線22Lとのずれ量(シフト量)Zを調整することができる。例えば、Tzを大きく設定することにより、Z軸方向における中心線21Lと中心線22Lとのずれ量Zを大きく設定することができる。また、Tを小さく設定することにより、Z軸方向における中心線21Lと中心線22Lとのずれ量Zを小さく設定することができる。ずれ量Zが目的値であるか否かの判断がなされた後(ステップS111)、ずれ量Zが目的値でない場合には、Newton法により、ずれ量Zが修正されて(ステップS112)、修正されたずれ量Zが初期値となって、Runge-Kutta法による積分が再び行われる。 On the other hand, as shown in FIG. 5B, by adjusting T z , it is possible to adjust the shift amount (shift amount) Z 1 between the center line 21L and the center line 22L in the Z-axis direction. For example, by setting a large Tz, it is possible to set large displacement amount Z 1 between the center line 21L and the center line 22L in the Z-axis direction. Further, by setting smaller the T z, it can be set small displacement amount Z 1 between the center line 21L and the center line 22L in the Z-axis direction. After displacement amount Z 1 is made a determination whether the target value (step S 111), when the deviation amount Z 1 is not a target value, due Newton method, is corrected displacement amount Z 1 (step S112 ), the deviation amount Z 1 fixed becomes the initial value, integration by Runge-Kutta method is performed again.
 ここで、所望のずれ量Zとしては、複数の回転翼から発するウェーク領域ができる限り等間隔となるように設定されることが望ましい。 Here, the desired displacement amount Z 1, it is preferable to set at equal intervals as possible wake region emanating from a plurality of rotor blades.
 図6は、一般的な回転翼が発するウェーク領域の模式図である。 FIG. 6 is a schematic diagram of a wake region generated by a general rotor blade.
 一般的に、回転中の回転翼BLの後流(回転方向Rの後流)には、回転翼BLと空気との摩擦等によって生じた渦状のウェーク領域WRが存在する場合がある。 Generally, there may be a spiral wake region WR generated by friction between the rotating blade BL and air or the like in the wake of the rotating blade BL (the wake of the rotation direction R) during rotation.
 ウェーク領域WRでは、空気の速度エネルギーが減少し、回転方向Rにおいて、先の回転翼が発したウェーク領域が後から来る回転翼に当たると、後から来る回転翼にとっては負荷になる。従って、各回転翼は、先に回転する回転翼から生じるウェーク領域を避けるように、配置されることが望ましい。 In the wake region WR, the velocity energy of the air decreases, and in the rotation direction R, when the wake region generated by the previous rotor blade hits the rotor blade that comes later, it becomes a load for the rotor blade that comes later. Therefore, it is desirable that each rotor blade be arranged so as to avoid a wake region that arises from the rotor blade that rotates first.
 例えば、回転翼における空気の流れの平均速度をVとすると、1つの回転翼が一周する間の空気の移動距離Lは、 For example, if the average velocity of the air flow in the rotor blade is V, the air travel distance L during one round of the rotor blade is
Figure JPOXMLDOC01-appb-M000028
      ・・・(15)
 で表される。
Figure JPOXMLDOC01-appb-M000028
(15)
It is represented by
 従って、プロペラにおける回転翼の枚数がBのとき、Z軸方向におけるウェーク領域間隔がL/Bとなるように、各回転翼を配置すれば、回転時に各回転翼がウェーク領域に当たりにくくなる。 Accordingly, when the number of rotor blades in the propeller is B, if each rotor blade is arranged so that the wake area interval in the Z-axis direction is L / B, each rotor blade is less likely to hit the wake area during rotation.
 例えば、プロペラ100においては、一対の回転翼20のそれぞれが2組の回転翼部21、22を有するので、実質的に4枚翼となる。従って、Z軸方向におけるウェーク領域間隔の最適値はL/4となる。 For example, in the propeller 100, since each of the pair of rotor blades 20 includes two pairs of rotor blade portions 21 and 22, the blades are substantially four blades. Therefore, the optimum value of the wake area interval in the Z-axis direction is L / 4.
 複数の回転翼BLが回転方向Rに一定角度で配置されている場合には(4枚の回転翼BLならば、π/2間隔)、複数の回転翼BLのそれぞれをZ軸方向においてずらすことなく(ずれ量Z=0)、複数の回転翼BLをXY軸平面に配置することにより、最適ウェーク間隔で、4枚の回転翼の場合に、L/4が保たれる。 When the plurality of rotor blades BL are arranged at a constant angle in the rotation direction R (in the case of four rotor blades BL, an interval of π / 2), each of the plurality of rotor blades BL is shifted in the Z-axis direction. Without (shift amount Z 1 = 0), by arranging the plurality of rotor blades BL on the XY axis plane, L / 4 is maintained in the case of four rotor blades with the optimum wake interval.
 一方、複数の回転翼BLが回転方向Rで同じ位置にあるときに、ウェーク領域間隔をL/Bにするには、複数の回転翼BLのそれぞれをZ軸方向にL/Bだけずらす必要がある。 On the other hand, when the plurality of rotor blades BL are at the same position in the rotation direction R, in order to set the wake region interval to L / B, it is necessary to shift each of the plurality of rotor blades BL by L / B in the Z-axis direction. is there.
 回転翼BLのXY軸平面における間隔が、その中間の角度φ(rad)の場合には、Zの最適値は、次式で表される。ここで、0<φ<π/2とする。 Intervals in the XY-axis plane of the rotor blades BL is the case of the intermediate angle phi (rad), the optimal value of Z 1 is expressed by the following equation. Here, 0 <φ <π / 2.
Figure JPOXMLDOC01-appb-M000029
     ・・・(16)
Figure JPOXMLDOC01-appb-M000029
... (16)
 プロペラ100が2組の回転翼部21、22とは限らず、B'組の回転翼部を持つ場合には、Zの最適値は、次式で表される。 Propeller 100 is not limited to two pairs of rotary blades 21 and 22, if they have a B 'group of the rotating wings, the optimum value of Z 1 is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000030
     ・・・(17)
Figure JPOXMLDOC01-appb-M000030
... (17)
 直線翼とは異なり、回転翼20が曲線で構成されているプロペラ100では、ウェーク間隔が中心軸10cからの位置で異なる。このため、本実施形態では、回転翼部21(回転翼部22)の幅が最大となる位置(中心軸10cから距離Rの70%の位置)でウェーク領域間隔が最適になるように、ずれ量(Z)を定める。例えば、ずれ量(Z)は、張力パラメータTに基づいて決定してもよい。 Unlike the straight blade, in the propeller 100 in which the rotary blade 20 is configured by a curve, the wake interval differs depending on the position from the central axis 10c. For this reason, in the present embodiment, the wake region interval is optimized so that the width of the rotary wing part 21 (rotary wing part 22) becomes the maximum (position 70% of the distance R from the central axis 10c). Determine the amount (Z 1 ). For example, the shift amount (Z 1 ) may be determined based on the tension parameter T z .
 このように、中心線21L、22Lの膨らみ(θの大きさ)と、中心線21L、22Lのずれ量Zは、(Q、T)を用いて決定される。また、上記の設計手順は、コンピュータを用いてコンピュータープログラムによって自動的に実行される。さらに、このプロペラ設計方法プログラムは、ハードディスク、光ディスク、USBメモリ、メモリーカード等の情報記憶媒体に記憶される。 Thus, the bulges (the magnitude of θ) of the center lines 21L and 22L and the shift amount Z 1 of the center lines 21L and 22L are determined using (Q 0 , T z ). The above design procedure is automatically executed by a computer program using a computer. Further, the propeller design method program is stored in an information storage medium such as a hard disk, an optical disk, a USB memory, or a memory card.
 次に、ループ形状の中心線が決定した後、中心線に沿って断面を並べていく。 Next, after determining the center line of the loop shape, the sections are arranged along the center line.
 図7は、回転翼の断面を決定する方法の概念を示す模式図である。図7には、ベクトルrに向かって、回転翼部21を目視した場合の座標系(破線内)も表示されている。 FIG. 7 is a schematic diagram showing the concept of a method for determining the cross section of the rotor blade. FIG. 7 also shows a coordinate system (inside the broken line) when the rotary blade 21 is viewed toward the vector r.
 中心線21L、22Lが決定された後、中心線21L、22Lに沿って2次元の翼断面を並べることで、回転翼20が決定される。 After the center lines 21L and 22L are determined, the rotor blade 20 is determined by arranging two-dimensional blade cross sections along the center lines 21L and 22L.
 翼断面は、翼断面における空気の流れ方向であるX''軸と、X''軸に直交するY''軸とを用いて、X''Y''軸平面における2次元形状として定義される。本実施形態では、翼断面を定められたねじり角α分、X''Y''軸平面で回転し、α分だけ回転した後の単位ベクトルx'、y'によって決定される翼断面定義断面20sが導入される。 The blade cross section is defined as a two-dimensional shape in the X''Y '' axis plane using the X '' axis, which is the air flow direction in the blade cross section, and the Y '' axis perpendicular to the X '' axis. The In this embodiment, the blade cross section is defined by the unit vector x ′, y ′ after the blade cross section is rotated on the X ”Y” axis plane by a predetermined torsion angle α and rotated by α. 20s is introduced.
 例えば、x'をベクトルrに垂直で、プロペラ回転面(XY平面)となす角がαの単位ベクトルとして定義する。なお、X''軸は、XY平面に平行である。次に、中心線21Lの方向を示す単位ベクトルをl'とする。さらに、x'及びl'に垂直な単位ベクトルをy'として次のように定義する。なお、単位ベクトルx'に平行な軸をX'軸、単位ベクトルy'に平行な軸をY'軸とする。 For example, x ′ is defined as a unit vector that is perpendicular to the vector r and has an angle α with the propeller rotation plane (XY plane). Note that the X ″ axis is parallel to the XY plane. Next, let l ′ be a unit vector indicating the direction of the center line 21L. Further, a unit vector perpendicular to x ′ and l ′ is defined as y ′ as follows. Note that an axis parallel to the unit vector x ′ is an X ′ axis, and an axis parallel to the unit vector y ′ is a Y ′ axis.
Figure JPOXMLDOC01-appb-M000031
     ・・・(18)
Figure JPOXMLDOC01-appb-M000031
... (18)
 この単位ベクトルx'、y'を用いて翼断面定義断面20sを決定し、翼断面定義断面20sの重心が中心線21L、22Lを通るように翼断面定義断面20sを配置する(ステップS113)。これにより、ループ形状をした回転翼20の断面形状が決定される。すなわち、ベクトルrに直交する単位ベクトルx'と、単位ベクトルx'及び単位ベクトルl'に直交する単位ベクトルy'とを用いることにより、回転翼20がループ形状を描いたとしても、中心線21L、22Lと直交する断面が(x'、y')によって決定される。なお、n'は、翼断面定義断面20sの法線ベクトルである。 The blade section defining section 20s is determined using the unit vectors x ′ and y ′, and the blade section defining section 20s is arranged so that the center of gravity of the blade section defining section 20s passes through the center lines 21L and 22L (step S113). Thereby, the cross-sectional shape of the rotor blade 20 having a loop shape is determined. That is, by using the unit vector x ′ orthogonal to the vector r and the unit vector y ′ orthogonal to the unit vector x ′ and the unit vector l ′, even if the rotor blade 20 draws a loop shape, the center line 21L , 22L and the cross section perpendicular to 22L is determined by (x ′, y ′). Note that n ′ is a normal vector of the blade cross section defining cross section 20s.
 次に、単位ベクトルx'、y'を用いて作成した翼断面定義断面20sのキャンバーラインの修正を行う。 Next, the camber line of the blade cross section defining cross section 20s created using the unit vectors x ′ and y ′ is corrected.
 図8(a)~図8(e)は、翼断面定義断面のキャンバーラインを修正する方法の概念を示す模式図である。 8 (a) to 8 (e) are schematic diagrams showing the concept of a method for correcting the camber line of the blade cross section definition cross section.
 翼断面定義断面20sのキャンバーCは、図8(a)に示すように、キャンバーラインCL(翼上面の線と翼下面の線を平均した線)と、翼弦線(翼断面定義断面20sの前縁から後縁に引かれた線)との距離で示される。本実施形態では、X'軸が翼弦線に相当する。従って、キャンバーCは、X'軸からのキャンバーラインCL上の任意点との距離になる。従って、キャンバーCは、x'の関数となり、C=C(x')で表せる。なお、キャンバーラインCLから翼上面までの距離を厚みt/2、キャンバーラインCLから翼下面までの距離を厚みt/2とする。これにより、翼断面定義断面20sの翼上面のラインは、C(x')+t/2となり、翼断面定義断面20sの翼下面のラインは、C(x')-t/2となる。なお、X'軸における0からX'軸とキャンバーラインCLとの交点までの距離が翼弦長に相当する。 As shown in FIG. 8A, the camber C of the blade cross section defining cross section 20s includes a camber line CL (line obtained by averaging the lines of the blade upper surface and the blade lower surface) and the chord line (blade cross section defining cross section 20s). The distance from the leading edge to the trailing edge). In the present embodiment, the X ′ axis corresponds to the chord line. Therefore, the camber C is a distance from an arbitrary point on the camber line CL from the X ′ axis. Therefore, the camber C becomes a function of x ′ and can be expressed by C = C (x ′). The distance from the camber line CL to the blade upper surface is the thickness t / 2, and the distance from the camber line CL to the blade lower surface is the thickness t / 2. As a result, the line on the blade upper surface of the blade cross section defining section 20s is C (x ′) + t / 2, and the line on the blade lower surface of the blade cross section defining section 20s is C (x ′) − t / 2. The distance from 0 on the X ′ axis to the intersection of the X ′ axis and the camber line CL corresponds to the chord length.
 本実施形態では、ベクトルrと、翼断面定義断面20sの法線ベクトルn'との内積をC(x)に乗じてキャンバーを中心線に沿って修正する(ステップS114)。修正後のキャンバーは、C=(r・n')・C(x)で表される。 In this embodiment, the inner product of the vector r and the normal vector n ′ of the blade cross section defining cross section 20s is multiplied by C (x) to correct the camber along the center line (step S114). The corrected camber is represented by C = (r · n ′) · C (x).
 例えば、図8(b)に示す回転翼20の位置P1では、rとn'とが略同じ向きなり、(r・n')が「1」になる。これにより、キャンバーラインは、修正されず、C=C(x)になる(図8(c))。一方、回転翼20の位置P2では、rとn'とが直交し、(r・n')が「0」になる。これにより、キャンバーは、「0」になる(図8(d))。すなわち、ループ形状の先端201では、キャンバーが直線となって、回転翼20における翼弦線とキャンバーラインとが一致する。これにより、回転翼20の先端部201付近では、揚力が生じず、その幅が狭くなっても変形しにくくなる。さらに、回転翼20の位置P3では、(r・n')がおよそ「-1」になり、キャンバーは、位置P1におけるキャンバーがX'軸を中心に線対称に配置した形状になる(図8(e))。 For example, at the position P1 of the rotor blade 20 shown in FIG. 8B, r and n ′ are substantially in the same direction, and (r · n ′) is “1”. As a result, the camber line is not corrected and C = C (x) (FIG. 8C). On the other hand, at the position P2 of the rotary blade 20, r and n ′ are orthogonal to each other and (r · n ′) is “0”. As a result, the camber becomes “0” (FIG. 8D). That is, at the tip 201 of the loop shape, the camber is a straight line, and the chord line and the camber line in the rotary blade 20 coincide. As a result, no lift is generated in the vicinity of the tip 201 of the rotor blade 20, and it is difficult to deform even if its width is narrowed. Further, at the position P3 of the rotor blade 20, (r · n ′) is approximately “−1”, and the camber has a shape in which the camber at the position P1 is arranged symmetrically about the X ′ axis (FIG. 8). (E)).
 また、上記の中心線に沿った断面の並べ方、キャンバーの修正もコンピュータを用いてコンピュータープログラムによって自動的に実行される。さらに、このプログラムも情報記憶媒体に記憶される。 Also, how to arrange the sections along the center line and the correction of the camber are automatically executed by a computer program using a computer. Further, this program is also stored in the information storage medium.
 また、回転翼20をケーブルと仮定すると、回転翼20内に走る横波の局所速度は Also, assuming that the rotor blade 20 is a cable, the local velocity of the transverse wave running in the rotor blade 20 is
Figure JPOXMLDOC01-appb-M000032
     ・・・(19)
 で与えられる。遠心力による応力は、密度に比例することから、横波の速度は周速に比例し、振動数は回転数に比例する。従って、ある回転数で安定であれば、どの速度でも形状は、安定である。
Figure JPOXMLDOC01-appb-M000032
... (19)
Given in. Since the stress due to the centrifugal force is proportional to the density, the speed of the transverse wave is proportional to the peripheral speed, and the frequency is proportional to the rotational speed. Therefore, the shape is stable at any speed as long as it is stable at a certain rotational speed.
 例えば、回転翼20の形状安定性は、縄跳びを回転したときの縄跳びの形状安定性、投げ縄の形状安定性等に類似する。例えば、回転する縄跳びは、地面に当たり大きく変形しても、即座に元の形状に復帰する。従って、回転翼20は、非回転時(例えば、静止時)に懸垂形状でなくとも、回転時に懸垂形状を維持する材料で構成されることも可能である。 For example, the shape stability of the rotor blade 20 is similar to the shape stability of the jump rope when the jump rope is rotated, the shape stability of the lasso, and the like. For example, even if a jumping rope jumps to the ground and deforms greatly, it immediately returns to its original shape. Therefore, the rotary blade 20 can be made of a material that maintains a suspended shape when rotating, even if it is not suspended when not rotating (for example, when stationary).
 また、プロペラ100は、F-W&H(Ffowcs. Williams-Hawkings)方程式による解析結果により、高周波音を大幅に低減できることが示されている。 Further, it is shown that the propeller 100 can significantly reduce high-frequency sound from the analysis result by the FW & H (Ffowcs. Williams-Hawkings) equation.
 一方、基本周波数に近い低周波音は、位相差同期回転によって低減することができる。これは、位相差を持って同方向に同期回転するプロペラから発生する波の干渉により空力音をキャンセルするものであり、等間隔に配置された回転翼がB枚のときに、基本角振動数がB倍となることと原理的に同じである。 On the other hand, low frequency sound close to the fundamental frequency can be reduced by phase difference synchronous rotation. This cancels aerodynamic sound by the interference of waves generated from a propeller that rotates synchronously in the same direction with a phase difference. When the number of rotor blades arranged at equal intervals is B, the basic angular frequency Is in principle the same as increasing B times.
 但し、波の干渉を用いるので、場所によっては、波が強めあう場合もあるものの、低周波ではプロペラのサイズに比べて波長が十分長い。これにより、角度が違っても位相は、大きくは変わらず、広い範囲でキャンセルされる。 However, since wave interference is used, the waves may strengthen in some places, but at low frequencies, the wavelength is sufficiently long compared to the size of the propeller. As a result, even if the angle is different, the phase does not change greatly and is canceled over a wide range.
 例えば、回転翼がB枚、角振動数ωのプロペラから発生する空力音のフーリエ成分は、複素数表示で次のように現せる。 For example, the Fourier component of aerodynamic sound generated from a propeller having B rotor blades and an angular frequency ω can be expressed as follows in a complex number display.
Figure JPOXMLDOC01-appb-M000033
     ・・・(20)
Figure JPOXMLDOC01-appb-M000033
... (20)
 ここで、iは虚数単位である。 Where i is an imaginary unit.
 これに対し、角度φの位相差を保って同期回転するプロペラは、時刻がφ/ωだけずれて回転するとみなせるので、そのフーリエ成分は、 In contrast, a propeller that rotates synchronously while maintaining the phase difference of the angle φ can be regarded as rotating at a time shifted by φ / ω, so its Fourier component is
Figure JPOXMLDOC01-appb-M000034
     ・・・(21)
 となる。
Figure JPOXMLDOC01-appb-M000034
(21)
It becomes.
 m枚の回転翼が等間隔の位相差を持つとすると、 Suppose that m rotor blades have a phase difference of equal intervals.
Figure JPOXMLDOC01-appb-M000035
     ・・・(22)
 である。
Figure JPOXMLDOC01-appb-M000035
(22)
It is.
 従って、合成音のフーリエ成分は; Therefore, the Fourier component of the synthesized sound is:
Figure JPOXMLDOC01-appb-M000036
     ・・・(23)
 である。
Figure JPOXMLDOC01-appb-M000036
... (23)
It is.
 ここでn=m・l+j、0≦j≦m-1と表すと(j:nを整数mで除算したときの余り)、 Where n = m · l + j and 0 ≦ j ≦ m−1 (j: remainder when n is divided by integer m)
Figure JPOXMLDOC01-appb-M000037
     ・・・(24)
 となる。
Figure JPOXMLDOC01-appb-M000037
... (24)
It becomes.
 右辺の第2項はj=0の場合以外は、0となるので、mの整数倍の高調波以外は、キャンセルされる。すなわち、プロペラ100から発せられる音は、極めて小さくなる。 Since the second term on the right side is 0 except when j = 0, all the harmonics other than integer multiples of m are canceled. That is, the sound emitted from the propeller 100 is extremely small.
 (変形例1) (Modification 1)
 図9は、本実施形態の第1変形例のプロペラを示す模式的斜視図である。 FIG. 9 is a schematic perspective view showing a propeller of a first modified example of the present embodiment.
 図9に示すプロペラ101は、プロペラ100のほかに、円筒形のダクト部材30を具備する。プロペラ100は、ダクト部材30内に設けられる。プロペラ100の中心軸10cは、ダクト部材30の中心軸30cに一致する。 A propeller 101 shown in FIG. 9 includes a cylindrical duct member 30 in addition to the propeller 100. The propeller 100 is provided in the duct member 30. The central axis 10 c of the propeller 100 coincides with the central axis 30 c of the duct member 30.
 このような構成であれば、プロペラ100が回転したときに、プロペラ100から発せられる気流がダクト部材30の中心軸30cの方向に整流される。これにより、風力のエネルギー効率が増加する。また、ダクト部材30がプロペラ100を包囲することにより、プロペラ100から発せられる音の漏れが抑制される。 With such a configuration, when the propeller 100 rotates, the air flow generated from the propeller 100 is rectified in the direction of the central axis 30c of the duct member 30. This increases the energy efficiency of the wind power. Further, since the duct member 30 surrounds the propeller 100, leakage of sound emitted from the propeller 100 is suppressed.
 (変形例2) (Modification 2)
 図10は、本実施形態の第2変形例のプロペラを示す模式的斜視図である。 FIG. 10 is a schematic perspective view showing a propeller of a second modified example of the present embodiment.
 回転翼20は、回転軸10の周りに2個とは限らず、3個以上配置されてもよい。例えば、図10に示すプロペラ102では、3個の回転翼20が等間隔に配置されている。 The number of the rotary blades 20 is not limited to two around the rotary shaft 10 and may be three or more. For example, in the propeller 102 shown in FIG. 10, three rotor blades 20 are arranged at equal intervals.
 このような構成であれば、回転翼20の数が増加したことにより、プロペラ102が発する風力がプロペラ100に比べて増加する。 With such a configuration, the wind power generated by the propeller 102 increases as compared to the propeller 100 due to the increase in the number of the rotor blades 20.
 (変形例3) (Modification 3)
 図11は、本実施形態の第3変形例のプロペラを示す模式的斜視図である。 FIG. 11 is a schematic perspective view showing a propeller of a third modified example of the present embodiment.
 図11に示すプロペラ103においては、Z軸方向における、接続箇所11と接続箇所12とのずれがプロペラ100に比べて小さい。例えば、接続箇所11と接続箇所12とは、同じXY軸平面に位置する。 In the propeller 103 shown in FIG. 11, the displacement between the connection location 11 and the connection location 12 in the Z-axis direction is smaller than that of the propeller 100. For example, the connection location 11 and the connection location 12 are located on the same XY axis plane.
 このような構成であっても、回転翼20は、遠心力と張力とがつり合った懸垂線を基に設計されているので、回転時にはループ形状が維持される。 Even in such a configuration, the rotary blade 20 is designed based on a catenary line in which centrifugal force and tension are balanced, so that the loop shape is maintained during rotation.
 (変形例4) (Modification 4)
 図12は、本実施形態の第4変形例のプロペラを示す模式的斜視図である。 FIG. 12 is a schematic perspective view showing a propeller of a fourth modified example of the present embodiment.
 本実施形態では、懸垂線形状をループ形状の中心線の少なくとも一部に適用することから、ループ形状の一部を剛体部としてもよい。このような剛体部がループ形状に一部に含まれることにより、回転翼20は、曲げモーメントの影響をより受けにくくなる。例えば、図12に示すプロペラ104では、先端部201付近にカウンターウェイトとしても機能する延在部204が設けられている。 In this embodiment, since the suspended line shape is applied to at least a part of the center line of the loop shape, a part of the loop shape may be a rigid body part. By including such a rigid body part in the loop shape, the rotor blade 20 is less susceptible to the bending moment. For example, in the propeller 104 shown in FIG. 12, an extending portion 204 that also functions as a counterweight is provided near the tip portion 201.
 (変形例5) (Modification 5)
 図13は、本実施形態の第5変形例のプロペラを示す模式的斜視図である。 FIG. 13 is a schematic perspective view showing a propeller of a fifth modification of the present embodiment.
 剛体部については、図13に示すプロペラ105のように、平坦部205としてもよい。このような構成であれば、プロペラ105は、プロペラ104と同じ効果を奏する。さらに、プロペラ105をダクト部材30に取り付けた場合、先端部201が平坦部205で構成されているので、ダクト部材30との形状親和性が向上する。 The rigid body portion may be a flat portion 205 like a propeller 105 shown in FIG. With such a configuration, the propeller 105 has the same effect as the propeller 104. Furthermore, when the propeller 105 is attached to the duct member 30, since the tip portion 201 is configured by the flat portion 205, the shape affinity with the duct member 30 is improved.
 (変形例6) (Modification 6)
 図14は、本実施形態の第6変形例のプロペラを示す模式的斜視図である。 FIG. 14 is a schematic perspective view showing a propeller of a sixth modified example of the present embodiment.
 図14には、回転軸10の周辺が示されている。剛体部は、回転翼20の先端部201付近でなく、回転軸10近傍に設けてもよい。このような構成であれば、断面積が大きく剛性の高い回転翼20の根元部分が剛体部となり、回転翼20の機械的強度が増加する。 FIG. 14 shows the periphery of the rotating shaft 10. The rigid body portion may be provided not near the tip portion 201 of the rotary blade 20 but near the rotating shaft 10. With such a configuration, the root portion of the rotor blade 20 having a large cross-sectional area and high rigidity becomes a rigid body portion, and the mechanical strength of the rotor blade 20 increases.
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。各実施形態は、独立の形態とは限らず、技術的に可能な限り複合させることができる。 As mentioned above, although embodiment of this invention was described, this invention is not limited only to the above-mentioned embodiment, Of course, a various change can be added. Each embodiment is not necessarily an independent form, and can be combined as much as technically possible.
 10…回転軸
 10c…中心軸
 11、12…接続箇所
 20…回転翼
 20c、30c…中心軸
 21、22…回転翼部
 21L、22L…中心線
 21w…翼断面定義平面
 20s…翼断面定義断面
 30…ダクト部材
 100、101、102、103、104、105…プロペラ
 201…先端
 204…延在部
 205、206…平坦部
 211、221…翼上面
 212、222…翼下面
DESCRIPTION OF SYMBOLS 10 ... Rotary shaft 10c ... Center axis 11, 12 ... Connection location 20 ... Rotary blade 20c, 30c ... Central shaft 21, 22 ... Rotary blade part 21L, 22L ... Center line 21w ... Blade cross-section definition plane 20s ... Blade cross-section definition cross-section 30 ... Duct member 100, 101, 102, 103, 104, 105 ... Propeller 201 ... Tip 204 ... Extension part 205, 206 ... Flat part 211, 221 ... Blade upper surface 212, 222 ... Blade lower surface

Claims (11)

  1.  回転軸と、
     前記回転軸の周りに接続され、第1翼上面と第1翼下面とを有し後退角を有する第1回転翼部と、第2翼上面と第2翼下面とを有し前進角を有する第2回転翼部とを有し、前記第2翼上面が前記第1翼下面と連なり、前記第2翼下面が前記第1翼上面と連なり、前記第1回転翼部と前記第2回転翼部とによってループ形状が形成された回転翼と
     を具備し、
     前記回転軸の軸方向に直交し前記回転軸から前記ループ形状の先端に向かう方向を第1方向とし、前記軸方向及び前記第1方向に直交する方向を第2方向とした場合、
     前記回転翼が前記回転軸を中心に回転したときに形成される前記回転翼の中心線の少なくとも一部の形状が前記少なくとも一部の任意の位置において、前記回転翼の前記第1方向に働く張力と遠心力とが調和し、前記回転翼の前記第2方向に働く張力と遠心力とが調和した懸垂線形状となる
     プロペラ。
    A rotation axis;
    Connected around the rotating shaft, having a first rotating blade portion having a first blade upper surface and a first blade lower surface and having a receding angle, and having a second blade upper surface and a second blade lower surface and having a forward angle. A second rotor blade portion, the second blade upper surface is connected to the first blade lower surface, the second blade lower surface is connected to the first blade upper surface, the first rotor blade and the second rotor blade And a rotor blade having a loop shape formed by the portion,
    When the first direction is a direction perpendicular to the axial direction of the rotation axis and toward the tip of the loop shape from the rotation axis, and the second direction is a direction orthogonal to the axial direction and the first direction,
    The shape of at least a part of the center line of the rotary blade formed when the rotary blade rotates about the rotary shaft acts in the first direction of the rotary blade at any position of the at least part. A propeller having a catenary line shape in which tension and centrifugal force are harmonized, and tension and centrifugal force acting in the second direction of the rotor blade are harmonized.
  2.  請求項1に記載のプロペラであって、
     前記第1回転翼部が前記回転軸に接続された接続箇所と、前記第2回転翼部が前記回転軸に接続された接続箇所とが前記軸方向においてずれ、
     前記第1接続箇所が前記第2接続箇所よりも空気の流れ方向の下流側に位置している
     プロペラ。
    The propeller according to claim 1,
    The connection location where the first rotary blade portion is connected to the rotary shaft and the connection location where the second rotary blade portion is connected to the rotary shaft are displaced in the axial direction,
    The propeller, wherein the first connection location is located downstream of the second connection location in the air flow direction.
  3.  請求項1または2に記載のプロペラであって、
     前記回転軸に直交する平面に対し、前記第1回転翼部と前記第2回転翼部とが同じ迎角を有している
     プロペラ。
    The propeller according to claim 1 or 2,
    The propeller, wherein the first rotating blade portion and the second rotating blade portion have the same angle of attack with respect to a plane orthogonal to the rotation axis.
  4.  請求項1~3のいずれか1つに記載のプロペラであって、
     前記ループ形状の前記先端において、前記回転翼における翼弦線とキャンバーラインとが一致している
     プロペラ。
    A propeller according to any one of claims 1 to 3,
    The propeller in which the chord line and the camber line in the rotary blade coincide with each other at the tip of the loop shape.
  5.  請求項1~4のいずれか1つに記載のプロペラであって、
     前記回転翼は、前記回転軸の周りに複数配置され、前記複数の前記回転翼が等間隔に配置されている
     プロペラ。
    The propeller according to any one of claims 1 to 4,
    A plurality of the rotating blades are arranged around the rotating shaft, and the plurality of rotating blades are arranged at equal intervals.
  6.  請求項1~5のいずれか1つに記載のプロペラであって、
     前記回転翼は、可撓性を有する材料で構成されている
     プロペラ。
    A propeller according to any one of claims 1 to 5,
    The rotor blade is a propeller made of a flexible material.
  7.  回転軸と、前記回転軸の周りに接続され、第1翼上面と第1翼下面とを有し後退角を有する第1回転翼部と、第2翼上面と第2翼下面とを有し前進角を有する第2回転翼部とを有し、前記第2翼上面が前記第1翼下面に連なり、前記第2翼下面が前記第1翼上面に連なり、前記第1回転翼部と前記第2回転翼部とによってループ形状が形成された回転翼とを具備するプロペラの設計方法であって、
     前記回転軸の軸方向をZ軸方向、前記Z軸方向に直交し前記回転軸から前記ループ形状の先端に向かう方向をX軸方向、前記Z軸方向及び前記X軸方向に直交する方向をY軸方向とした場合、
     前記回転翼が前記回転軸を中心に回転したときに形成される前記回転翼の中心線の少なくとも一部の形状を前記少なくとも一部の任意の位置において、前記回転翼の前記第X方向に働く張力と前記第X方向に働く遠心力とが調和し、前記回転翼の前記第Y方向に働く張力と前記第Y方向に働く遠心力とが調和した懸垂線形状とする
     プロペラの設計方法。
    A rotating shaft, a first rotating blade portion connected around the rotating shaft and having a first blade upper surface and a first blade lower surface and having a receding angle; a second blade upper surface and a second blade lower surface; A second rotating blade portion having an advancing angle, wherein the second blade upper surface is connected to the first blade lower surface, the second blade lower surface is connected to the first blade upper surface, and the first rotating blade portion and the A propeller design method comprising a rotor blade having a loop shape formed by a second rotor blade portion,
    The axial direction of the rotation axis is the Z-axis direction, the direction orthogonal to the Z-axis direction and from the rotation axis toward the tip of the loop shape is the X-axis direction, and the direction orthogonal to the Z-axis direction and the X-axis direction is Y If it is axial,
    The shape of at least a part of the center line of the rotor blade formed when the rotor blade rotates about the rotation axis acts in the X direction of the rotor blade at any position of the at least part. A method for designing a propeller, in which tension and a centrifugal force acting in the X direction are harmonized, and a suspension line shape in which a tension acting in the Y direction and a centrifugal force acting in the Y direction of the rotor blade are harmonized.
  8.  請求項7に記載のプロペラの設計方法であって、
     (a)xを前記X軸方向における位置パラメータ、yを前記Y軸方向における位置パラメータ、zを前記Z軸方向における位置パラメータ、前記回転翼が前記回転軸の周りを回転する角速度をω、前記回転翼の材料密度をρ、前記回転翼の線密度をρline、前記回転軸に対して平行且つ直交する方向に切断された前記回転翼の翼断面定義平面の面積をS、前記翼断面定義平面と前記ループ形状の線方向とがなす角度をξ、前記回転翼内に働く張力をTとして、
    Figure JPOXMLDOC01-appb-M000001
     ・・・(A1)
    Figure JPOXMLDOC01-appb-M000002
     ・・・(A2)
    Figure JPOXMLDOC01-appb-M000003
     ・・・(A3)
    Figure JPOXMLDOC01-appb-M000004
     ・・・(A4)
    Figure JPOXMLDOC01-appb-M000005
     ・・・(A5)
     の常微分方程式を立てるステップと、
     (b)上記(A1)~(A5)式から、TをZ軸方向に働く張力とし、
    Figure JPOXMLDOC01-appb-M000006
     ・・・(A7)
    Figure JPOXMLDOC01-appb-M000007
     ・・・(A8)
    Figure JPOXMLDOC01-appb-M000008
     ・・・(A9)
    Figure JPOXMLDOC01-appb-M000009
     ・・・(A10)
    Figure JPOXMLDOC01-appb-M000010
     ・・・(A11)
    Figure JPOXMLDOC01-appb-M000011
     ・・・(A12)
     の連立常微分方程式を立てるステップと、
     (c)Rを前記回転軸の中心軸から前記ループ形状の前記先端までの距離とし、(x、y、z)=(R、0、0)を線積分における始点(s=0)とし、(x、y、z)=(0、0、0)を線積分における終点とし、Qを前記始点における前記Y軸方向における張力とし、初期条件として、
    Figure JPOXMLDOC01-appb-M000012
     ・・・(A13)
    Figure JPOXMLDOC01-appb-M000013
     ・・・(A14)
     を用い、Runge-Kutta法を用いて、上記(A7)~(A12)の連立常微分方程式をsについて前記始点から前記終点まで線積分し、XY軸平面におけるxとyとの関係を求めることにより、前記ループ形状の仮想線を決定するステップと、
     (d)前記仮想線の少なくとも一部を前記回転翼の中心線として採用するステップと
     を有するプロペラの設計方法。
    A method for designing a propeller according to claim 7,
    (A) x is a positional parameter in the X-axis direction, y is a positional parameter in the Y-axis direction, z is a positional parameter in the Z-axis direction, ω is an angular velocity at which the rotating blade rotates around the rotational axis, The material density of the rotor blade is ρ, the linear density of the rotor blade is ρ line , the area of the blade cross-section definition plane of the rotor blade cut in a direction parallel to and orthogonal to the rotation axis is S, and the blade cross-section definition Assuming that the angle formed by the plane and the line direction of the loop shape is ξ, the tension acting in the rotor blade is T,
    Figure JPOXMLDOC01-appb-M000001
    ... (A1)
    Figure JPOXMLDOC01-appb-M000002
    ... (A2)
    Figure JPOXMLDOC01-appb-M000003
    ... (A3)
    Figure JPOXMLDOC01-appb-M000004
    ... (A4)
    Figure JPOXMLDOC01-appb-M000005
    ... (A5)
    Establishing an ordinary differential equation of
    (B) From the above formulas (A1) to (A5), T z is a tension acting in the Z-axis direction,
    Figure JPOXMLDOC01-appb-M000006
    ... (A7)
    Figure JPOXMLDOC01-appb-M000007
    ... (A8)
    Figure JPOXMLDOC01-appb-M000008
    ... (A9)
    Figure JPOXMLDOC01-appb-M000009
    ... (A10)
    Figure JPOXMLDOC01-appb-M000010
    ... (A11)
    Figure JPOXMLDOC01-appb-M000011
    ... (A12)
    Establishing a simultaneous ordinary differential equation of
    (C) R is a distance from the central axis of the rotation axis to the tip of the loop shape, and (x, y, z) = (R, 0, 0) is a starting point (s = 0) in line integration, (X, y, z) = (0, 0, 0) is the end point in line integration, Q 0 is the tension in the Y-axis direction at the start point, and the initial condition is
    Figure JPOXMLDOC01-appb-M000012
    ... (A13)
    Figure JPOXMLDOC01-appb-M000013
    ... (A14)
    Using the Runge-Kutta method, the above-mentioned simultaneous ordinary differential equations (A7) to (A12) are line-integrated from the start point to the end point with respect to s, and the relationship between x and y on the XY axis plane is obtained. To determine the loop-shaped virtual line,
    (D) adopting at least a part of the imaginary line as a center line of the rotor blade.
  9.  請求項7または8に記載のプロペラの設計方法であって、
     前記第1回転翼部が前記回転軸に接続された接続箇所と、前記第2回転翼部が前記回転軸に接続された接続箇所との前記軸方向におけるずれ量を前記Tに基づいて決定する
     プロペラの設計方法。
    A method for designing a propeller according to claim 7 or 8,
    A shift amount in the axial direction between a connection location where the first rotary blade portion is connected to the rotary shaft and a connection location where the second rotary blade portion is connected to the rotary shaft is determined based on the T z. Propeller design method.
  10.  請求項8または9におけるプロペラの設計方法をコンピュータに実行させるプロペラ設計方法プログラム。 A propeller design method program for causing a computer to execute the propeller design method according to claim 8 or 9.
  11.  請求項10におけるプロペラ設計方法プログラムを記憶させた情報記憶媒体。 An information storage medium storing the propeller design method program according to claim 10.
PCT/JP2018/027481 2018-02-08 2018-07-23 Propeller, propeller designing method, propeller designing method program, and information storage medium WO2019155656A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-021270 2018-02-08
JP2018021270A JP6979205B2 (en) 2018-02-08 2018-02-08 Propeller, propeller design method, propeller design method program and information storage medium

Publications (1)

Publication Number Publication Date
WO2019155656A1 true WO2019155656A1 (en) 2019-08-15

Family

ID=67548228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027481 WO2019155656A1 (en) 2018-02-08 2018-07-23 Propeller, propeller designing method, propeller designing method program, and information storage medium

Country Status (2)

Country Link
JP (1) JP6979205B2 (en)
WO (1) WO2019155656A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114104266A (en) * 2021-12-17 2022-03-01 亿航智能设备(广州)有限公司 Screw, power component and aircraft
DE102021004136A1 (en) 2021-08-09 2023-02-09 Friedrich B. Grimm Device for a rotary wing vehicle or for a rotary wing turbine
GB2615531A (en) * 2022-02-09 2023-08-16 Leybold Gmbh Rotor and vacuum pump

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188403A (en) * 2000-12-19 2002-07-05 Y & Y:Kk Hydraulic equipment
JP2003503643A (en) * 1999-07-06 2003-01-28 ルドルフ バンアッシュ, Rotor with branched rotor blades
US20040009063A1 (en) * 2002-07-12 2004-01-15 Polacsek Ronald R. Oscillating system entraining axial flow devices
JP2006063932A (en) * 2004-08-30 2006-03-09 Akira Miyanishi Wind mill
JP2016502034A (en) * 2013-01-04 2016-01-21 イヴァン ペルヌYvan PERRENOUD Spiral turbine blade
JP2016222242A (en) * 2012-12-10 2016-12-28 シャロウ エンジニアリング リミティド ライアビリティ カンパニー propeller

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503643A (en) * 1999-07-06 2003-01-28 ルドルフ バンアッシュ, Rotor with branched rotor blades
JP2002188403A (en) * 2000-12-19 2002-07-05 Y & Y:Kk Hydraulic equipment
US20040009063A1 (en) * 2002-07-12 2004-01-15 Polacsek Ronald R. Oscillating system entraining axial flow devices
JP2006063932A (en) * 2004-08-30 2006-03-09 Akira Miyanishi Wind mill
JP2016222242A (en) * 2012-12-10 2016-12-28 シャロウ エンジニアリング リミティド ライアビリティ カンパニー propeller
JP2016502034A (en) * 2013-01-04 2016-01-21 イヴァン ペルヌYvan PERRENOUD Spiral turbine blade

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021004136A1 (en) 2021-08-09 2023-02-09 Friedrich B. Grimm Device for a rotary wing vehicle or for a rotary wing turbine
WO2023016901A1 (en) 2021-08-09 2023-02-16 Friedrich Grimm Rotary-wing vehicle, and rotary-wing turbine
DE102021004136B4 (en) 2021-08-09 2023-03-09 Friedrich B. Grimm Device for a rotary wing vehicle or for a rotary wing turbine
CN114104266A (en) * 2021-12-17 2022-03-01 亿航智能设备(广州)有限公司 Screw, power component and aircraft
GB2615531A (en) * 2022-02-09 2023-08-16 Leybold Gmbh Rotor and vacuum pump
GB2615531B (en) * 2022-02-09 2024-04-24 Leybold Gmbh Rotor and vacuum pump

Also Published As

Publication number Publication date
JP6979205B2 (en) 2021-12-08
JP2019138195A (en) 2019-08-22

Similar Documents

Publication Publication Date Title
WO2019155656A1 (en) Propeller, propeller designing method, propeller designing method program, and information storage medium
JP6068792B2 (en) Wings
JP3043593B2 (en) Helicopter counter-torque device with ducted rotor and commutating stator and phase modulation of rotor blades
US20120195767A1 (en) Blade for a helicopter anti-torque device
US20210291962A1 (en) Variable pitch bladed disc
JP3043594B2 (en) Counter torque device having duct type rotor and commutation stator and inclined commutation blade
JP3170470B2 (en) Rotor blades for rotary wing aircraft
EP3282120B1 (en) Wind turbine blade, wind turbine rotor, wind turbine power generating apparatus, and method of mounting vortex generator
JP3982261B2 (en) Turbine blade
US9394911B2 (en) Axial flow fan
JP3189251B2 (en) Rotor blades for rotary wing aircraft
US10315757B2 (en) Propeller blade beta twist
US20130323065A1 (en) Fan rotor blade and fan
RU2639462C2 (en) Fan blade for aircraft turbojet engine with bent profile in leg sections
JP7157157B2 (en) Aircraft propulsion device and method of manufacturing the same
JP6604981B2 (en) Axial blower impeller and axial blower
JP5425192B2 (en) Propeller fan
EP3431750B1 (en) Method for determining arrangement position of vortex generator on wind turbine blade, method for producing wind turbine blade assembly, and wind turbine blade assembly
JP5593976B2 (en) Propeller fan
JP6101240B2 (en) Rear edge side panel
KR101290479B1 (en) Wind turbine rotor designing method, wind turbine rotor design support device, wind turbine rotor design support program and wind turbine rotor
US8376694B1 (en) Systems and methods to generate propulsor side forces
JPH08104296A (en) Main wing of supersonic aircraft
JP2020507034A (en) Windmill blades, windmill rotors and wind turbines
EP3623638B1 (en) Propeller fan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904843

Country of ref document: EP

Kind code of ref document: A1