JP5425192B2 - Propeller fan - Google Patents

Propeller fan Download PDF

Info

Publication number
JP5425192B2
JP5425192B2 JP2011511214A JP2011511214A JP5425192B2 JP 5425192 B2 JP5425192 B2 JP 5425192B2 JP 2011511214 A JP2011511214 A JP 2011511214A JP 2011511214 A JP2011511214 A JP 2011511214A JP 5425192 B2 JP5425192 B2 JP 5425192B2
Authority
JP
Japan
Prior art keywords
blade
camber
radius
chord
propeller fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011511214A
Other languages
Japanese (ja)
Other versions
JPWO2010125645A1 (en
Inventor
俊勝 新井
誠治 中島
仁 菊地
公宣 塩野入
克己 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2010125645A1 publication Critical patent/JPWO2010125645A1/en
Application granted granted Critical
Publication of JP5425192B2 publication Critical patent/JP5425192B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/307Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the tip of a rotor blade

Description

本発明は、換気扇やエアコン等に用いられるプロペラファンに関する。   The present invention relates to a propeller fan used for a ventilation fan, an air conditioner, or the like.

従来、回転軸に取り付けられるボスの外周部に複数枚の翼が設けられたプロペラファンにおいて、前記回転軸から任意の半径に沿って切断した前記翼の円筒断面において反り量が最大となる位置は、半径が大きくなるに従い翼の後縁側に位置されたプロペラファンが開示されている(例えば、特許文献1参照)。   Conventionally, in a propeller fan in which a plurality of blades are provided on the outer peripheral portion of a boss attached to a rotating shaft, the position where the amount of warpage becomes the maximum in the cylindrical cross section of the blade cut from the rotating shaft along an arbitrary radius is A propeller fan positioned on the trailing edge side of a blade as the radius increases is disclosed (see, for example, Patent Document 1).

また、駆動力を受けて回転するハブと、このハブの周囲に連結された翼とを具備する軸流ファンにおいて、前記翼は、薄肉翼で、かつ反りを備え、この反りは、最大キャンバが、翼弦長の5〜8%の範囲内に設けられるとともに、最大キャンバ位置が、翼弦長の20〜40%の範囲に設けられた軸流ファンが開示されている(例えば、特許文献2参照)。   Further, in the axial fan including a hub that rotates by receiving a driving force and blades connected to the periphery of the hub, the blades are thin-walled blades and have warpage. In addition, an axial fan is disclosed that is provided within a range of 5 to 8% of the chord length and has a maximum camber position within a range of 20 to 40% of the chord length (for example, Patent Document 2). reference).

特許3608038号公報Japanese Patent No. 3608038 特開平2−233899号公報JP-A-2-233899

しかしながら、上記従来の技術によれば、翼外縁に大きな翼外縁渦が発生する。そのため、送風−騒音特性が悪化する、という問題があった。   However, according to the conventional technique, a large blade outer edge vortex is generated at the blade outer edge. Therefore, there has been a problem that the air blowing-noise characteristics are deteriorated.

本発明は、上記に鑑みてなされたものであって、プロペラファンの翼外縁に発生する翼外縁渦を抑え、送風−騒音特性を改善したプロペラファンを得ることを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to obtain a propeller fan that suppresses a blade outer edge vortex generated at a blade outer edge of the propeller fan and has improved air blowing-noise characteristics.

上述した課題を解決し、目的を達成するために、本発明は、回転軸に嵌合されるハブと、前記ハブに放射状に設けられ回転軸方向に送風する複数の翼と、を備えるプロペラファンにおいて、前記回転軸から所定の半径までの前記翼の第1領域では、前記回転軸から任意の半径に沿って切断した前記翼の円筒断面における最大キャンバの稜線が、翼前縁から翼弦長の35%の位置にあり、前記所定の半径から翼外縁までの前記翼の第2領域では、前記回転軸から任意の半径に沿って切断した前記翼の円筒断面における最大キャンバの稜線が、前記所定の半径位置では前記第1領域の最大キャンバの稜線に接続し、半径が大きくなるのに比例して翼後縁側に位置、翼外縁において翼前縁から翼弦長の50%の位置にある、ことを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a propeller fan including a hub fitted to a rotating shaft and a plurality of blades provided radially on the hub for blowing air in the rotating shaft direction. In the first region of the blade from the rotation axis to a predetermined radius, the ridge line of the largest camber in the cylindrical section of the blade cut along the arbitrary radius from the rotation axis is the chord length from the blade leading edge. of it is in the 35% position, wherein in the second region of the wing from the given radius to blade edge, ridge of maximum camber in the cylindrical section of the blade taken along any radius from the axis of rotation, said in a predetermined radial position connected to the ridge line of maximum camber of the first region, in proportion to the radius increases located blade trailing edge side, the 50% position of the chord length from the leading edge at the wing edge It is characterized by that.

本発明にかかるプロペラファンは、翼外縁に発生する翼外縁渦を抑え、送風−騒音特性を改善することができる、という効果を奏する。   The propeller fan according to the present invention has an effect of suppressing the blade outer edge vortex generated at the blade outer edge and improving the blowing-noise characteristics.

図1は、一般的なプロペラファンを示す斜視図である。FIG. 1 is a perspective view showing a general propeller fan. 図2−1は、本発明の実施の形態1のプロペラファンの平面図である。FIG. 2-1 is a plan view of the propeller fan according to the first embodiment of the present invention. 図2−2は、実施の形態1の翼の第一領域の円筒断面図である。FIG. 2-2 is a cylindrical cross-sectional view of the first region of the wing of the first embodiment. 図3−1は、実施の形態1の翼の負圧面側の気流を模式的に示す斜視図である。FIG. 3A is a perspective view schematically showing an air flow on the suction surface side of the blade of the first embodiment. 図3−2は、図3−1のF−F線に沿う断面図である。3-2 is a cross-sectional view taken along line FF in FIG. 3-1. 図4−1は、図2−2の従来のキャンバCLDを有する翼の翼周りの気流を示す図である。FIG. 4A is a diagram illustrating an airflow around a wing of the wing having the conventional camber CLD of FIG. 2-2. 図4−2は、図2−2の実施の形態1のキャンバCLD´を有する翼の翼周りの気流を示す図である。FIG. 4B is a diagram illustrating an airflow around the blade of the blade having the camber CLD ′ according to the first embodiment illustrated in FIG. 図5は、図2−1に示す、実施の形態1の最大キャンバの稜線CL´を有する翼の比騒音特性と、従来の最大キャンバの稜線CLを有する翼の比騒音特性を比較して示す図である。FIG. 5 shows a comparison between the specific noise characteristic of the blade having the ridge line CL ′ of the maximum camber of the first embodiment shown in FIG. 2 and the specific noise characteristic of the blade having the ridge line CL of the conventional maximum camber. FIG. 図6は、実施の形態1の最大キャンバの稜線CL´を有する翼の翼内周部前縁側を波形に形成した実施の形態2の翼を有するプロペラファンを示す斜視図である。FIG. 6 is a perspective view showing a propeller fan having a blade according to the second embodiment in which the blade inner peripheral front edge side of the blade having the maximum camber ridge line CL ′ of the first embodiment is formed in a waveform. 図7は、図6に示す実施の形態2の翼の負圧面側の気流を模式的に示す斜視図である。FIG. 7 is a perspective view schematically showing an airflow on the suction surface side of the blade of the second embodiment shown in FIG. 図8は、実施の形態1の最大キャンバの稜線CL´を有する翼の翼内周部後縁側を波形に形成した実施の形態3の翼を有するプロペラファンを示す斜視図である。FIG. 8 is a perspective view showing a propeller fan having the blade of the third embodiment in which the blade inner peripheral trailing edge side of the blade having the maximum camber ridge line CL ′ of the first embodiment is formed in a waveform. 図9は、図8に示す実施の形態3の翼の負圧面側の気流を模式的に示す斜視図である。FIG. 9 is a perspective view schematically showing an air flow on the suction surface side of the blade of the third embodiment shown in FIG. 図10は、図6及び図8に示す翼の比騒音を示す図である。FIG. 10 is a diagram showing the specific noise of the blades shown in FIGS. 6 and 8. 図11は、翼外周側が気流の上流側に屈曲した翼を有するプロペラファンを示す斜視図である。FIG. 11 is a perspective view showing a propeller fan having a blade whose outer peripheral side is bent toward the upstream side of the airflow. 図12は、図11に示す翼の負圧面側の気流を模式的に示す斜視図である。12 is a perspective view schematically showing an air flow on the suction surface side of the blade shown in FIG. 図13は、図1に示すプロペラファンを回転軸に直交する平面に投影した平面図である。FIG. 13 is a plan view of the propeller fan shown in FIG. 1 projected onto a plane orthogonal to the rotation axis. 図14は、図13における各翼弦中心点Prの軌跡を、回転軸と0X軸とを含む垂直平面に半径Rで回転投影した図である。FIG. 14 is a diagram in which the trajectory of each chord center point Pr in FIG. 13 is rotationally projected with a radius R onto a vertical plane including the rotation axis and the 0X axis. 図15は、翼外周側が気流の上流側に屈曲した翼の翼弦中心線Pr1を示す図である。FIG. 15 is a diagram showing a chord centerline Pr1 of a blade whose outer peripheral side is bent toward the upstream side of the airflow. 図16は、翼外周側が気流の上流側に屈曲した翼の翼弦中心線Pr1の定義方法を示す図15と同様の図である。FIG. 16 is a view similar to FIG. 15 showing a method of defining the chord centerline Pr1 of the blade whose outer peripheral side is bent toward the upstream side of the airflow. 図17は、図2−1に示す、実施の形態1のキャンバの稜線CL´を有する翼であって、翼外周側が気流の上流側に屈曲した翼の負圧面側の気流を模式的に示す図である。FIG. 17 is a wing having the camber ridge line CL ′ of the first embodiment shown in FIG. 2A, schematically showing the airflow on the suction surface side of the wing with the blade outer peripheral side bent toward the upstream side of the airflow. FIG. 図18は、本発明の実施の形態4のプロペラファンの比騒音を示す図である。FIG. 18 is a diagram illustrating specific noise of the propeller fan according to the fourth embodiment of the present invention. 図19は、実施の形態4のプロペラファンのファン効率を示す図である。FIG. 19 is a diagram illustrating the fan efficiency of the propeller fan according to the fourth embodiment.

以下に、本発明にかかるプロペラファンの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a propeller fan according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は、一般的なプロペラファンを示す斜視図であり、図2−1は、本発明の実施の形態1のプロペラファンの平面図であり、図2−2は、実施の形態1の翼の第一領域の円筒断面図である。
Embodiment 1 FIG.
1 is a perspective view showing a general propeller fan, FIG. 2-1 is a plan view of the propeller fan according to the first embodiment of the present invention, and FIG. 2-2 is a blade according to the first embodiment. It is a cylindrical sectional view of the 1st field.

図1に示すプロペラファンは3枚翼であるが、本発明においては、翼の枚数は制限されず、他の複数の枚数であってもよい。以下の説明では、主に1枚の翼の形状について述べるが、他の翼の形状も同一の形状である。   The propeller fan shown in FIG. 1 has three blades. However, in the present invention, the number of blades is not limited and may be other plural numbers. In the following description, the shape of one wing is mainly described, but the shapes of the other wings are the same.

図1に示す、3次元立体形状を有する翼1が、図示しないモータに回転駆動されて回転軸3回りに回転方向Bの方向に回転する円柱状のハブ2の外周部に放射状に取付けられている。なお、ハブ2は円柱状であるが、板金を折り曲げて形成されたボスの外周部に、放射状に翼1を形成してもよい。翼1の回転によって気流の方向Aの気流が発生する。翼1の上流側の面が負圧面となり、下流側の面が正圧面となる。   A wing 1 having a three-dimensional solid shape shown in FIG. 1 is radially attached to the outer peripheral portion of a cylindrical hub 2 that is driven to rotate by a motor (not shown) and rotates about a rotation axis 3 in the direction of rotation B. Yes. Although the hub 2 is cylindrical, the wings 1 may be formed radially on the outer periphery of a boss formed by bending a sheet metal. The rotation of the blade 1 generates an airflow in the airflow direction A. The upstream surface of the blade 1 is a negative pressure surface, and the downstream surface is a positive pressure surface.

図1に示す翼1を回転軸3に直交する平面に投影すると、図2−1に示す翼1のような形状となる。図2−1に示す破線CLは、翼1の従来の最大キャンバの稜線(キャンバの頂点の軌跡)であり、翼1の翼前縁1bと翼後縁1cの中央に位置している。翼1のキャンバは、いずれの半径R1の円筒断面においても、図2−2に示す破線CLD(従来のキャンバ)のような円弧形状となっている。   When the blade 1 shown in FIG. 1 is projected onto a plane orthogonal to the rotation axis 3, a shape like the blade 1 shown in FIG. A broken line CL shown in FIG. 2A is a ridge line of the conventional maximum camber of the blade 1 (the locus of the top of the camber), and is located at the center of the blade leading edge 1b and the blade trailing edge 1c. The camber of the blade 1 has an arc shape like a broken line CLD (conventional camber) shown in FIG.

実施の形態1の翼1では、最大キャンバの稜線CL´を、所定の半径R2を境に、半径R2より内周側では最大キャンバの稜線をCL1´に位置させ、半径R2より外周側では最大キャンバの稜線をCL2´に位置させるようにしている。すなわち、半径R2より内周側では、翼1の翼前縁1bと翼後縁1cの中央に位置する従来の最大キャンバの稜線CLよりも翼前縁1b側に、最大キャンバの稜線CL1´が位置し、図2−2に示す実線CLD´(実施の形態1のキャンバ)のような非円弧形状となっている。   In the blade 1 of the first embodiment, the ridge line CL ′ of the maximum camber is positioned at the rim line of the maximum camber at CL1 ′ on the inner periphery side from the radius R2 with the predetermined radius R2 as the boundary, and the maximum camber ridgeline CL2 on the outer periphery side from the radius R2. The ridge line of the camber is positioned at CL2 ′. That is, on the inner peripheral side from the radius R2, the ridge line CL1 ′ of the maximum camber is closer to the blade leading edge 1b than the ridge line CL of the conventional maximum camber located at the center of the blade leading edge 1b and the blade trailing edge 1c of the blade 1. It has a non-arc shape like the solid line CLD ′ (the camber of the first embodiment) shown in FIG.

図3−1は、実施の形態1の翼の負圧面側の気流を模式的に示す斜視図であり、図3−2は、図3−1のF−F線に沿う断面図である。翼1が回転方向Bの方向に回転すると、気流の方向Aに空気が流れる。翼1の負圧面1fと正圧面1gとの間には圧力差が生じ、図3−2に示すように、翼外縁1dにおいて、正圧面1g側から負圧面1f側に向かう漏れ流れ及び翼外縁渦Gが発生する。一方、翼内周側には、ほぼ負圧面1fに沿った翼内周流れEが生じている。このように、実施の形態1のプロペラファン91の負圧面1f側の気流は、大別すると、翼外周流れDと翼内周流れEの形態の異なる2つの気流となる。   FIG. 3A is a perspective view schematically showing an air flow on the suction surface side of the blade according to the first embodiment, and FIG. 3B is a cross-sectional view taken along line FF in FIG. When the blade 1 rotates in the direction of rotation B, air flows in the direction A of the airflow. A pressure difference is generated between the suction surface 1f and the pressure surface 1g of the blade 1, and, as shown in FIG. 3-2, the leakage flow from the pressure surface 1g side to the suction surface 1f side and the blade outer edge at the blade outer edge 1d. A vortex G is generated. On the other hand, a blade inner peripheral flow E substantially along the suction surface 1f is generated on the blade inner peripheral side. As described above, the airflow on the suction surface 1f side of the propeller fan 91 according to the first embodiment is roughly divided into two airflows having different forms of the blade outer peripheral flow D and the blade inner peripheral flow E.

図4−1は、図2−2の従来のキャンバCLDを有する翼の翼周りの気流を示す図であり、図4−2は、図2−2の実施の形態1のキャンバCLD´を有する翼の翼周りの気流を示す図である。   FIG. 4A is a diagram illustrating the airflow around the blade of the wing having the conventional camber CLD of FIG. 2B. FIG. 4B includes the camber CLD ′ of the first embodiment of FIG. It is a figure which shows the airflow around the wing | blade of a wing | blade.

図4−1に示すように、翼1が、回転方向Bに向って回転すると、翼前縁1bから翼後縁1cに向かう流れが生じる。最大キャンバの稜線CLを有する従来のキャンバCLDにおける負圧面気流Hは、翼後縁1cに近づくに従って不安定となって渦が発生し、翼後縁1cでは、圧力面気流と合流して大きな翼後縁渦Jが発生する。このような、負圧面気流H中の渦や翼後縁渦Jにより、騒音が発生する。   As shown in FIG. 4A, when the blade 1 rotates in the rotation direction B, a flow from the blade leading edge 1b toward the blade trailing edge 1c is generated. The suction surface airflow H in the conventional camber CLD having the ridgeline CL of the maximum camber becomes unstable and vortex is generated as it approaches the blade trailing edge 1c. A trailing edge vortex J is generated. Such vortices in the suction surface airflow H and blade trailing edge vortices J generate noise.

一方、図4−2に示すように、最大キャンバの稜線CL´を有する実施の形態1のキャンバCLD´における負圧面気流H´は、翼前縁1bから流入する空気が、従来のキャンバCLDよりも負圧面1fに沿うように流れ、渦の発生が抑えられ、翼後縁1cで発生する翼後縁渦J´の規模も小さくなり、従来のキャンバCLDを有する翼に比べ、騒音は小さくなる。   On the other hand, as shown in FIG. 4B, the negative pressure surface airflow H ′ in the camber CLD ′ of the first embodiment having the maximum camber ridge line CL ′ is such that the air flowing from the blade leading edge 1 b is more than the conventional camber CLD. Also flows along the suction surface 1f, the generation of vortices is suppressed, the size of the blade trailing edge vortex J 'generated at the blade trailing edge 1c is reduced, and the noise is reduced as compared with a blade having a conventional camber CLD. .

以上のように、翼1の形状を、キャンバCLD´のような形状とすることにより、負圧面気流H´の乱れが小さくなって騒音が小さくなるが、図3−1に示すように、プロペラファン91では、翼外周流れDにおいて大きな翼外縁渦Gが生じるため、翼内周流れEとは流れの状態が大きく異なる。そのため、翼外周部のキャンバを一様にキャンバCLD´とすると、翼外縁渦Gが大きく変化し、送風−騒音特性が悪化する場合がある。   As described above, the wing 1 is shaped like the camber CLD ′, so that the disturbance of the suction surface air flow H ′ is reduced and the noise is reduced. However, as shown in FIG. In the fan 91, since a large blade outer edge vortex G is generated in the blade outer peripheral flow D, the flow state is significantly different from the blade inner peripheral flow E. For this reason, if the camber on the outer periphery of the blade is uniformly the camber CLD ′, the blade outer edge vortex G may change greatly, and the blower-noise characteristics may deteriorate.

そこで、実施の形態1のプロペラファン91では、図2−1に示すように、翼1の最大キャンバの稜線CL´をCL1´とCL2´の形態の異なる稜線とし、最大キャンバの稜線CL1´を、翼前縁1bから翼弦長の50%以内に位置させ、翼外周部の最大キャンバの稜線CL2´を、最大キャンバの稜線CL1´に接続する位置から半径が大きくなるに従い翼後縁1c側に位置させ、翼外縁1dにおいて翼弦長の50%以内に位置させるようにする。図2−1に示す符号CLtは、翼外縁における最大キャンバ位置であり、符号CLbは、従来の翼の翼内縁における最大キャンバ位置であり、符号CLb´は、実施の形態1の翼の翼内縁における最大キャンバ位置である。   Therefore, in the propeller fan 91 of the first embodiment, as shown in FIG. 2A, the ridge line CL ′ of the maximum camber of the blade 1 is set to a ridge line having different forms of CL1 ′ and CL2 ′, and the ridge line CL1 ′ of the maximum camber is used. The blade is positioned within 50% of the blade chord length from the blade leading edge 1b, and the blade trailing edge 1c side as the radius increases from the position where the ridge line CL2 'of the largest camber outer peripheral portion is connected to the ridge line CL1' of the largest camber And located within 50% of the chord length at the blade outer edge 1d. Reference sign CLt shown in FIG. 2A is the maximum camber position at the blade outer edge, reference sign CLb is the maximum camber position at the blade inner edge of the conventional blade, and reference sign CLb ′ is the blade inner edge of the blade of the first embodiment. Is the maximum camber position.

図5は、図2−1に示す、実施の形態1の最大キャンバの稜線CL´を有する翼の比騒音特性と、従来の最大キャンバの稜線CLを有する翼の比騒音特性を比較して示す図である。図5に示す実施の形態1の最大キャンバの稜線CL´は、翼内縁1eから翼の半径R2=0.675×Rt(Rtは翼外縁半径)までの第1領域では、翼前縁1bから翼弦長の35%の位置に位置させ、R2=0.675×Rtから翼外縁1dまでの第2領域では、翼前縁1bから翼弦長の35%の位置から半径が大きくなるに従い翼後縁1c側に位置させ、翼外縁1dにおいて翼弦長の50%の位置に位置させている。比較に用いた従来の翼は、翼前縁1bから翼弦長の50%の位置に最大キャンバの稜線CLが位置する翼である。   FIG. 5 shows a comparison between the specific noise characteristic of the blade having the ridge line CL ′ of the maximum camber of the first embodiment shown in FIG. 2 and the specific noise characteristic of the blade having the ridge line CL of the conventional maximum camber. FIG. In the first region from the blade inner edge 1e to the blade radius R2 = 0.675 × Rt (Rt is the blade outer edge radius), the ridge line CL ′ of the maximum camber of the first embodiment shown in FIG. 5 is from the blade leading edge 1b. In the second region from R2 = 0.675 × Rt to the blade outer edge 1d in the second region from the blade leading edge 1b to the blade chord length, the radius increases from 35% of the blade chord length. It is located on the trailing edge 1c side, and is located at a position of 50% of the chord length on the blade outer edge 1d. The conventional blade used for comparison is a blade in which the ridge line CL of the maximum camber is located at a position of 50% of the chord length from the blade leading edge 1b.

なお、比騒音Kは、次の式で定義される。
=SPL−10Log(Q・P 2.5
Q :風量[m/min]
:全圧[Pa]
SPL :騒音特性(A補正後)[dB]
The specific noise KT is defined by the following equation.
K T = SPL A -10Log (Q · P T 2.5)
Q: Air volume [m 3 / min]
P T : Total pressure [Pa]
SPL A : Noise characteristics (after A correction) [dB]

図5は、縦軸が比騒音を示し、破線で示す1目盛が1[dBA]の差を表しており、横軸が風量を示している。図5に示すように、実施の形態1の最大キャンバの稜線CL´を有する翼の方が、最大−1[dBA]程度騒音が低い。   In FIG. 5, the vertical axis represents specific noise, one scale indicated by a broken line represents a difference of 1 [dBA], and the horizontal axis represents the air volume. As shown in FIG. 5, the blade having the maximum camber ridge line CL ′ of the first embodiment has a noise level of about −1 [dBA] at maximum.

実施の形態2.
図6は、実施の形態1の最大キャンバの稜線CL´を有する翼の翼内周部前縁側を波形21mに形成した実施の形態2の翼21を有するプロペラファン92を示す斜視図である。翼前縁21bの波形を最大波形とし、翼中央部に向って徐々に小波形とする。
Embodiment 2. FIG.
FIG. 6 is a perspective view showing a propeller fan 92 having the blade 21 of the second embodiment in which the blade inner peripheral front edge side of the blade having the maximum camber ridge line CL ′ of the first embodiment is formed in a waveform 21 m. The waveform of the blade leading edge 21b is set to the maximum waveform, and gradually decreases toward the blade center.

図7は、図6に示す実施の形態2の翼21の負圧面側の気流を模式的に示す斜視図である。図7に示すように、翼前縁21bに流入する空気に、翼21の波形21mにより縦渦を発生させ、翼内周流れEを、さらに乱れの少ない気流E2とし、気流の乱れに起因する騒音を低減することができる。   FIG. 7 is a perspective view schematically showing the airflow on the suction surface side of the blade 21 of the second embodiment shown in FIG. As shown in FIG. 7, a vertical vortex is generated in the air flowing into the blade leading edge 21b by the waveform 21m of the blade 21, and the blade inner circumferential flow E is changed to an air flow E2 with less turbulence, resulting from the turbulence of the air flow. Noise can be reduced.

実施の形態3.
図8は、実施の形態1の最大キャンバの稜線CL´を有する翼の翼内周部後縁側を波形31nに形成した実施の形態3の翼31を有するプロペラファン93を示す斜視図である。翼後縁31cの波形を最大波形とし、翼中央部に向って徐々に小波形とする。
Embodiment 3 FIG.
FIG. 8 is a perspective view showing a propeller fan 93 having the blade 31 of the third embodiment in which the trailing edge side of the inner peripheral portion of the blade having the ridge line CL ′ of the maximum camber of the first embodiment is formed in a waveform 31n. The waveform of the blade trailing edge 31c is set to the maximum waveform, and gradually decreases toward the center of the blade.

図9は、図8に示す実施の形態3の翼31の負圧面側の気流を模式的に示す斜視図である。図9に示すように、翼後縁31cに発生する渦による空気の乱れを、翼31の波形31nにより発生させた縦渦によって低減させ、さらに乱れの少ない気流E3とし、気流の乱れに起因する騒音を低減することができる。   FIG. 9 is a perspective view schematically showing the airflow on the suction surface side of the blade 31 of the third embodiment shown in FIG. As shown in FIG. 9, the turbulence of the air due to the vortex generated at the blade trailing edge 31c is reduced by the vertical vortex generated by the waveform 31n of the wing 31 to obtain a less turbulent air flow E3, resulting in the turbulence of the air flow. Noise can be reduced.

図10は、図6及び図8に示す翼21、31の比騒音を示す図である。図10に示すように、風量が大きい領域では、翼内周側を波形とした翼21、31の方が、最大−0.5[dBA]程度騒音が低い。   FIG. 10 is a diagram illustrating the specific noise of the blades 21 and 31 illustrated in FIGS. 6 and 8. As shown in FIG. 10, in the region where the air volume is large, the blades 21 and 31 having a waveform on the inner peripheral side of the blade have a lower noise level by about −0.5 [dBA] at the maximum.

実施の形態4.
図11は、翼外周側が気流の上流側に屈曲した翼を有するプロペラファンを示す斜視図であり、図12は、図11に示す翼の負圧面側の気流を模式的に示す斜視図である。図11及び図12に示す翼外周側が気流の上流側に屈曲した翼を有するプロペラファンは、翼外縁負圧面で発生する翼外縁渦を弱め、翼外縁渦に起因する騒音を低減することができるが、翼外周側が気流の上流側に屈曲していることにより、翼の回転によって生じる昇圧成分が、一部、負圧面側に漏れ、若干、ファン効率が低下している。
Embodiment 4 FIG.
11 is a perspective view showing a propeller fan having a blade whose outer peripheral side is bent toward the upstream side of the airflow, and FIG. 12 is a perspective view schematically showing an airflow on the suction surface side of the blade shown in FIG. . The propeller fan having a blade whose outer peripheral side is bent toward the upstream side of the air flow shown in FIGS. 11 and 12 can weaken the blade outer edge vortex generated on the blade outer edge negative pressure surface and reduce noise caused by the blade outer edge vortex. However, since the outer peripheral side of the blade is bent toward the upstream side of the airflow, the pressure increase component generated by the rotation of the blade partially leaks to the negative pressure surface side, and the fan efficiency is slightly reduced.

また、図1及び図11に示すような翼の騒音源は、翼外縁に発生する翼外縁渦に起因するものと、翼負圧面流れの乱れに起因するものと、翼後縁渦に起因するものがある。翼外周側が気流の上流側に屈曲した翼では、翼外縁渦に起因する騒音の割合が小さくなり、相対的に、翼内周流れから発生する騒音の割合が大きくなる。そのため、翼内周流れを改善し、翼外周流れに影響を及ぼさない翼の形状を検討する必要がある。   The blade noise sources as shown in FIGS. 1 and 11 are caused by the blade outer edge vortex generated at the blade outer edge, the blade suction surface flow turbulence, and the blade trailing edge vortex. There is something. In a blade whose outer peripheral side is bent toward the upstream side of the airflow, the proportion of noise caused by the blade outer edge vortex is reduced, and the proportion of noise generated from the inner peripheral flow is relatively increased. Therefore, it is necessary to improve the inner peripheral flow of the blade and to examine the shape of the blade that does not affect the outer peripheral flow of the blade.

翼外周側が気流の上流側に屈曲した翼においても、図2−1に示すような最大キャンバの稜線CL´を形成することにより、翼外周流れに影響を与えず、翼外縁渦に起因する騒音を低減し、翼内周流れを改善して更なる低騒音化を図り、ファン効率を向上させることができる。   Even in a blade whose outer peripheral side is bent to the upstream side of the airflow, by forming a ridge line CL ′ of the maximum camber as shown in FIG. 2A, noise caused by the outer edge vortex without affecting the peripheral flow of the blade. Can be reduced, the flow inside the blade can be improved, noise can be further reduced, and fan efficiency can be improved.

図13は、図1に示すプロペラファンを回転軸に直交する平面に投影した平面図であり、図14は、図13における各翼弦中心点Prの軌跡を、回転軸と0X軸とを含む垂直平面に半径Rで回転投影した図であり、図15は、翼外周側が気流の上流側に屈曲した翼の翼弦中心線Pr1を示す図であり、図16は、翼外周側が気流の上流側に屈曲した翼の翼弦中心線Pr1の定義方法を示す図15と同様の図である。   13 is a plan view in which the propeller fan shown in FIG. 1 is projected onto a plane orthogonal to the rotation axis, and FIG. 14 shows the trajectory of each chord center point Pr in FIG. 13 including the rotation axis and the 0X axis. FIG. 15 is a diagram showing the blade chord centerline Pr1 of the blade whose outer peripheral side is bent toward the upstream side of the airflow, and FIG. 16 is a diagram showing the blade outer peripheral side upstream of the airflow. FIG. 16 is a view similar to FIG. 15 showing a method of defining a chord centerline Pr1 of a wing bent sideways.

図13〜図16を参照して、翼外周側が気流の上流側に屈曲した翼の形状の定義について説明する。図1に示す翼1を回転軸3に直交する平面Sc(図14参照)に投影すると、図13に示す翼1の形状となる。図13に示す点Pbは、ハブ2の外周における翼前縁1bから翼後縁1cまでの翼弦中心点(中点)を示す。   With reference to FIGS. 13 to 16, the definition of the shape of a blade whose outer peripheral side is bent toward the upstream side of the airflow will be described. When the blade 1 shown in FIG. 1 is projected onto a plane Sc (see FIG. 14) orthogonal to the rotation axis 3, the shape of the blade 1 shown in FIG. 13 is obtained. A point Pb shown in FIG. 13 indicates a chord center point (middle point) from the blade leading edge 1 b to the blade trailing edge 1 c on the outer periphery of the hub 2.

同様に、Ptは、翼外縁1dにおける翼前縁1bから翼後縁1cまでの翼弦中心点(中点)を示す。図13に示す線Prは、ハブの翼弦中心点Pbから翼外縁の翼弦中心点Ptまでの任意の半径Rにおける各翼弦中心点の軌跡(翼弦中心線)を示す。   Similarly, Pt indicates the chord center point (midpoint) from the blade leading edge 1b to the blade trailing edge 1c at the blade outer edge 1d. A line Pr shown in FIG. 13 indicates a locus (chord chord centerline) of each chord center point at an arbitrary radius R from the chord center point Pb of the hub to the chord center point Pt of the outer edge of the blade.

図14は、図13におけるハブの翼弦中心点Pbから翼外縁の翼弦中心点Ptまでの各翼弦中心点の軌跡(翼弦中心線)、すなわち翼弦中心点Pb−Pr−Ptについて、任意の半径Rにおける各翼弦中心点Prを、回転軸3と0X軸とを含む垂直平面に半径Rで回転投影した各翼弦中心点Prの軌跡(翼弦中心線)を示す図である。   FIG. 14 shows the trajectory (blade chord center line) of each chord center point from the chord center point Pb of the hub to the chord center point Pt of the outer edge of FIG. 13, that is, the chord center point Pb-Pr-Pt. FIG. 5 is a diagram showing a locus (chord chord centerline) of each chord center point Pr obtained by rotating and projecting each chord center point Pr at an arbitrary radius R on the vertical plane including the rotation axis 3 and the 0X axis at the radius R. is there.

図14に示すように、回転軸3と0X軸とを含む垂直平面に回転投影された翼弦中心線Pr(各翼弦中心点Prの軌跡)は、ハブ2の翼弦中心点Pbから翼外縁の翼弦中心点Ptまで、気流の上流側に傾斜する前傾角δzが、回転軸3に直交する平面Scと一定角度を成す線として表すことができる。   As shown in FIG. 14, the chord centerline Pr (the trajectory of each chord center point Pr) that is rotationally projected onto a vertical plane including the rotation axis 3 and the 0X axis is the blade chord center point Pb of the hub 2. The forward tilt angle δz that is inclined to the upstream side of the airflow up to the chord center point Pt of the outer edge can be represented as a line that forms a certain angle with the plane Sc that is orthogonal to the rotation axis 3.

図15に破線で示す翼弦中心線Prは、図14に示す、前傾角δzが一定角度の翼1の翼弦中心点の軌跡であり、翼外周部が気流の上流側に屈曲した翼の翼弦中心点の軌跡を表す翼弦中心線Pr1は、ハブの翼弦中心点Pbから翼外縁の翼弦中心点Ptまでの領域で前傾角一定の場合の翼弦中心線Prと、ハブの翼弦中心点Pbを通り回転軸3に直交する0X軸(前傾角=0°)とに挟まれた領域内に位置している。   The chord centerline Pr indicated by a broken line in FIG. 15 is a locus of the chord center point of the wing 1 having a forward tilt angle δz shown in FIG. 14, and the wing outer periphery is bent toward the upstream side of the airflow. The chord center line Pr1 representing the trajectory of the chord center point is the chord center line Pr when the forward tilt angle is constant in the region from the chord center point Pb of the hub to the chord center point Pt of the outer edge of the hub. It is located in a region sandwiched between the 0X axis (forward tilt angle = 0 °) passing through the chord center point Pb and orthogonal to the rotation axis 3.

翼弦中心線Prと翼弦中心線Pr1とは、ハブの翼弦中心点Pbと翼外縁の翼弦中心点Ptとが同一位置にあり、翼外縁の翼弦中心点Ptの平面Scからの距離は、Hとなっている。   The chord centerline Pr and the chord centerline Pr1 are such that the chord center point Pb of the hub and the chord center point Pt of the blade outer edge are at the same position, and the chord center point Pt of the blade outer edge from the plane Sc of the chord center point Pt. The distance is H.

図16に、翼外周部が、気流Aの上流側に屈曲した実施の形態4の翼の各翼弦中心点Pr2の軌跡と前傾角を示す。回転軸3から任意の半径Rでの翼弦中心点をPr2とし、翼弦中心線Pr1上に位置する翼弦中心点Pr2の、回転軸3に直交する平面Scからの距離をLsとする。   FIG. 16 shows the trajectory and forward tilt angle of each chord center point Pr2 of the blade of the fourth embodiment in which the blade outer periphery is bent toward the upstream side of the airflow A. A chord center point at an arbitrary radius R from the rotation axis 3 is Pr2, and a distance from the plane Sc perpendicular to the rotation axis 3 of the chord center point Pr2 located on the chord centerline Pr1 is Ls.

図16に示す実施の形態4の翼41は、ハブ2(半径Rb)から径方向中間部の屈曲点Pwまでの第1領域は、一定の第1前傾角δzwで上流側に傾斜させ、屈曲点Pwから翼外縁までの第2領域は、前記第1領域よりもさらに上流側に傾斜させている。   In the wing 41 of the fourth embodiment shown in FIG. 16, the first region from the hub 2 (radius Rb) to the bending point Pw in the radial intermediate portion is inclined to the upstream side at a constant first forward inclination angle δzw. The second region from the point Pw to the blade outer edge is inclined further upstream than the first region.

翼弦中心線Pr1上の屈曲点Pwの半径をRw、翼外縁における翼弦中心点Ptとハブ2の外周における翼弦中心点Pbとを結ぶ線Prの上流側への傾斜角である第2前傾角をδztとする。第1前傾角δzwは、次の式で表わされる。
δzw=tan−1(Ls/(R−Rb))
(Rb<R≦Rw)
The radius of the bending point Pw on the chord center line Pr1 is Rw, and the second inclination angle is the upstream angle of the line Pr connecting the chord center point Pt on the outer edge of the blade and the chord center point Pb on the outer periphery of the hub 2. Let the forward tilt angle be δzt. The first forward tilt angle δzw is expressed by the following equation.
δzw = tan −1 (Ls / (R−Rb))
(Rb <R ≦ Rw)

屈曲点Pwから翼外縁(半径Rt)までの間の第2領域における任意の半径Rでの翼弦中心点Pr2に対応する傾斜角δzdは、下記に示すように、半径Rのn次関数(1≦n)になるように形成する。
δzd=α(R−Rb)+δzw
α=(δzt−δzw)/(Rt−Rw)
(Rw<R≦Rt)
なお、上記の傾斜角δzdを半径Rのn次関数(1≦n)とせずに、第2領域における翼弦中心線Pr1を、一定の前傾角で直線状に上流側に傾斜させるようにしてもよい。
The inclination angle δzd corresponding to the chord center point Pr2 at an arbitrary radius R in the second region between the bending point Pw and the blade outer edge (radius Rt) is an n-order function of the radius R ( 1 ≦ n).
δzd = α (R−Rb) n + δzw
α = (δzt−δzw) / (Rt−Rw) n
(Rw <R ≦ Rt)
It should be noted that the chord center line Pr1 in the second region is linearly inclined upstream at a certain forward tilt angle without using the tilt angle δzd as an n-order function (1 ≦ n) of the radius R. Also good.

図17は、図2−1に示す、実施の形態1の最大キャンバの稜線CL´を有する翼であって、翼外周部が気流の上流側に屈曲した翼41の、翼負圧面側の気流を模式的に示す図である。図17に示すように、実施の形態4の翼41によれば、翼外周流れ及び翼内周流れを同時に改善し、送風−騒音特性を改善することができる。   FIG. 17 is a wing having the ridge line CL ′ of the maximum camber of the first embodiment shown in FIG. 2A, and the airflow on the blade suction surface side of the wing 41 whose outer peripheral portion is bent toward the upstream side of the airflow. FIG. As shown in FIG. 17, according to the blade 41 of the fourth embodiment, the blade outer peripheral flow and the blade inner peripheral flow can be improved at the same time, and the blower-noise characteristics can be improved.

図18は、本発明の実施の形態4のプロペラファンの比騒音を示す図であり、図19は、実施の形態4のプロペラファンのファン効率を示す図である。実施の形態4のプロペラファンの翼41は、翼内縁からR=0.675×Rtの第1領域では、翼前縁から翼弦長の35%の位置に最大キャンバの稜線CL´が位置し、R=0.675×Rtから翼外縁までの第2領域では、最大キャンバの稜線CL´が、翼弦長の35%の位置から翼外縁で翼弦長の50%の位置に配置される。   FIG. 18 is a diagram illustrating specific noise of the propeller fan according to the fourth embodiment of the present invention, and FIG. 19 is a diagram illustrating fan efficiency of the propeller fan according to the fourth embodiment. In the first region of R = 0.675 × Rt from the blade inner edge, the maximum camber ridgeline CL ′ is located 35% of the chord length from the blade leading edge in the propeller fan blade 41 of the fourth embodiment. In the second region from R = 0.675 × Rt to the blade outer edge, the ridge line CL ′ of the maximum camber is arranged from the position of 35% of the chord length to the position of 50% of the chord length at the blade outer edge. .

なお、比較に用いた従来の最大キャンバの稜線CLを有する翼は、翼前縁から翼弦長の50%の位置に最大キャンバの稜線CLが位置し、屈曲点半径をRw=0.7×Rtとし、屈曲点Pwから翼外縁(半径Rt)までの第2領域における任意の半径Rでの翼弦中心点Pr2に対応する傾斜角δzdを、半径Rの2次関数により決定し、また、翼外縁の翼弦線中心点Ptにおける翼弦中心線Pr1の接線15の傾斜角がδzs=45°である(図16参照)。図18は、風量Qと比騒音Kの関係を実験的に求めた結果を示し、図19は、風量Qとファン効率Eの関係を実験的に求めた結果を示す。In the blade having the ridge line CL of the conventional maximum camber used for comparison, the ridge line CL of the maximum camber is located at a position of 50% of the chord length from the blade leading edge, and the bending point radius is Rw = 0.7 × Rt, an inclination angle δzd corresponding to the chord center point Pr2 at an arbitrary radius R in the second region from the bending point Pw to the blade outer edge (radius Rt) is determined by a quadratic function of the radius R, and The inclination angle of the tangent line 15 of the chord line center line Pr1 at the chord line center point Pt of the wing outer edge is δzs = 45 ° (see FIG. 16). Figure 18 shows the result of obtaining a relation between air volume Q and the specific noise K T experimentally, Figure 19 shows the results obtained experimentally the relationship between the air volume Q and the fan efficiency E T.

図17及び図18に示すように、実施の形態4のプロペラファン94は、翼外周部が気流の上流側に屈曲した従来のプロペラファンに比べ、実用上の範囲では、比騒音Kが低減(−1dBA)され、かつ、ファン効率Eが改善(最大+2〜3ポイント程度)されている。As shown in FIGS. 17 and 18, the propeller fan 94 according to the fourth embodiment has a specific noise KT reduced in a practical range as compared with a conventional propeller fan whose blade outer peripheral portion is bent toward the upstream side of the airflow. (-1DBA) is, and the fan efficiency E T is improved (about up to + 2-3 points).

なお、ファン効率Eは、次の式で定義される。
=(P・Q)/(60・P
Q :風量[m/min]
:全圧[Pa]
:軸動力[W]
Incidentally, the fan efficiency E T is defined by the following equation.
E T = (P T · Q) / (60 · P W )
Q: Air volume [m 3 / min]
P T : Total pressure [Pa]
P W : Shaft power [W]

以上のように、本発明にかかるプロペラファンは、換気扇やエアコン等に適している。   As described above, the propeller fan according to the present invention is suitable for a ventilation fan, an air conditioner, and the like.

1、21、31、41 翼
1b、21b 翼前縁
1c、31c 翼後縁
1d 翼外縁
1e 翼内縁
1f 負圧面
1g 正圧面
21m、31n 波形
2 ハブ
3 回転軸
A 気流の方向
B 回転方向
R1 翼第1領域における任意の半径
R2 翼第1領域と翼第2領域の境界半径
CL 従来の翼の最大キャンバの稜線
CL´ 実施の形態1の翼の最大キャンバの稜線
CLD 従来の翼のキャンバ
CLD´ 実施の形態1の翼のキャンバ
CL1´ 実施の形態1の翼第1領域の最大キャンバの稜線
CL2´ 実施の形態1の翼第2領域の最大キャンバの稜線
CLt 翼外縁における最大キャンバ位置
CLb 従来の翼の翼内縁における最大キャンバ位置
CLb´ 実施の形態1の翼の翼内縁における最大キャンバ位置
D 翼外周流れ
E 翼内周流れ
E2、E3 気流
G 翼外縁渦
H 従来の翼の負圧面流れ
H´ 実施の形態1の翼の負圧面流れ
J 従来の翼の翼後縁渦
J´ 実施の形態1の翼の翼後縁渦
91、92、93、94 プロペラファン
1, 21, 31, 41 Blade 1b, 21b Blade leading edge 1c, 31c Blade trailing edge 1d Blade outer edge 1e Blade inner edge 1f Negative pressure surface 1g Pressure surface 21m, 31n Waveform 2 Hub 3 Rotating shaft A Airflow direction B Rotation direction R1 Blade Arbitrary radius in the first region R2 Boundary radius between the blade first region and the blade second region CL Edge of the maximum camber of the conventional blade CL 'Edge of the maximum camber of the blade according to the first embodiment CLD Conventional camber of the blade CLD' Blade camber CL1 ′ of the first embodiment Maximum camber ridgeline CL2 ′ of the first blade region of the first embodiment CL2 ′ Maximum camber ridgeline of the second blade region of the first embodiment CLt Maximum camber position at the blade outer edge CLb Conventional Maximum camber position at the blade inner edge of the blade CLb 'Maximum camber position at the blade inner edge of the blade according to Embodiment 1 D Blade outer flow E Blade inner flow E2, E3 Airflow G Outer edge vortex H Conventional blade suction surface flow H ′ Embodiment 1 suction surface flow J Conventional blade wing trailing edge vortex J ′ Embodiment 1 blade trailing edge vortex 91, 92, 93, 94 Propeller Fan

Claims (3)

回転軸に嵌合されるハブと、前記ハブに放射状に設けられ回転軸方向に送風する複数の翼と、を備えるプロペラファンにおいて、
前記回転軸から所定の半径までの前記翼の第1領域では、前記回転軸から任意の半径に沿って切断した前記翼の円筒断面における最大キャンバの稜線が、翼前縁から翼弦長の35%の位置にあり、
前記所定の半径から翼外縁までの前記翼の第2領域では、前記回転軸から任意の半径に沿って切断した前記翼の円筒断面における最大キャンバの稜線が、前記所定の半径位置では前記第1領域の最大キャンバの稜線に接続し、半径が大きくなるのに比例して翼後縁側に位置、翼外縁において翼前縁から翼弦長の50%の位置にある、ことを特徴とするプロペラファン。
In a propeller fan comprising: a hub that is fitted to a rotation shaft; and a plurality of blades that are provided radially on the hub and blows air in the direction of the rotation shaft.
In the first region of the wing from the rotation axis to a predetermined radius, the ridge line of the largest camber in the cylindrical cross section of the wing cut along the arbitrary radius from the rotation axis is a chord length of 35 from the blade leading edge. % Position ,
In the second region of the blade from the predetermined radius to the blade outer edge, the ridge line of the largest camber in the cylindrical cross section of the blade cut along the arbitrary radius from the rotation axis is the first camber at the predetermined radius position. Propeller connected to the ridge line of the largest camber in the region, located on the trailing edge side of the blade in proportion to the increase in radius, and located at 50% of the chord length from the leading edge of the blade at the outer edge of the blade fan.
翼内周前縁側又は翼内周後縁側を波形に形成したことを特徴とする請求項1に記載のプロペラファン。   The propeller fan according to claim 1, wherein the blade inner circumferential leading edge side or the blade inner circumferential trailing edge side is formed in a corrugated shape. 翼外周側が気流の上流側に屈曲していることを特徴とする請求項1に記載のプロペラファン。   The propeller fan according to claim 1, wherein the blade outer peripheral side is bent toward the upstream side of the airflow.
JP2011511214A 2009-04-28 2009-04-28 Propeller fan Active JP5425192B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058369 WO2010125645A1 (en) 2009-04-28 2009-04-28 Propeller fan

Publications (2)

Publication Number Publication Date
JPWO2010125645A1 JPWO2010125645A1 (en) 2012-10-25
JP5425192B2 true JP5425192B2 (en) 2014-02-26

Family

ID=43031812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011511214A Active JP5425192B2 (en) 2009-04-28 2009-04-28 Propeller fan

Country Status (5)

Country Link
JP (1) JP5425192B2 (en)
KR (1) KR101251130B1 (en)
CN (1) CN102341603B (en)
TW (1) TWI400391B (en)
WO (1) WO2010125645A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104145118B (en) 2012-04-10 2016-08-24 夏普株式会社 Propeller fan, fluid delivery system and molding die
CN103629156B (en) * 2013-11-28 2015-10-28 浙江亿利达风机股份有限公司 A kind of central air conditioner outdoor unit but axial-flow blower of low-noise high-efficiency
WO2018123519A1 (en) 2016-12-28 2018-07-05 ダイキン工業株式会社 Propeller fan
JP6414268B2 (en) * 2016-12-28 2018-10-31 ダイキン工業株式会社 Propeller fan
CN106903875A (en) * 2017-03-16 2017-06-30 青岛科技大学 A kind of 3D printing small-sized screw plasticizing apparatus
JP6373439B1 (en) * 2017-03-31 2018-08-15 テラル株式会社 Axial fan
JP6428833B2 (en) * 2017-04-14 2018-11-28 ダイキン工業株式会社 Propeller fan
EP3613994B1 (en) * 2017-04-19 2021-05-26 Mitsubishi Electric Corporation Propeller fan and air-conditioning device outdoor unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818097U (en) * 1981-07-30 1983-02-03 日産デイ−ゼル工業株式会社 internal combustion engine cooling fan
JPH0264300A (en) * 1988-08-31 1990-03-05 Hitachi Ltd Blade for fan
JPH02233899A (en) * 1989-03-06 1990-09-17 Nippondenso Co Ltd Axial fan
JP2001227498A (en) * 2000-02-14 2001-08-24 Hitachi Ltd Propeller fan
JP2003184792A (en) * 2001-12-21 2003-07-03 Daikin Ind Ltd Blower

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2086337U (en) * 1990-12-04 1991-10-09 况荣春 Fan vane type with wide gas flow
US6129528A (en) * 1998-07-20 2000-10-10 Nmb Usa Inc. Axial flow fan having a compact circuit board and impeller blade arrangement
JP2002021787A (en) * 2000-07-05 2002-01-23 Fujitsu General Ltd Impeller of axial blower
JP4606054B2 (en) * 2004-04-20 2011-01-05 三菱電機株式会社 Axial fan
EP2131041B1 (en) * 2007-03-27 2018-08-22 Mitsubishi Electric Corporation Sirocco fan and air conditioner
JP4818184B2 (en) * 2007-04-09 2011-11-16 三菱電機株式会社 Propeller fan

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818097U (en) * 1981-07-30 1983-02-03 日産デイ−ゼル工業株式会社 internal combustion engine cooling fan
JPH0264300A (en) * 1988-08-31 1990-03-05 Hitachi Ltd Blade for fan
JPH02233899A (en) * 1989-03-06 1990-09-17 Nippondenso Co Ltd Axial fan
JP2001227498A (en) * 2000-02-14 2001-08-24 Hitachi Ltd Propeller fan
JP2003184792A (en) * 2001-12-21 2003-07-03 Daikin Ind Ltd Blower

Also Published As

Publication number Publication date
TW201038825A (en) 2010-11-01
KR101251130B1 (en) 2013-04-05
CN102341603B (en) 2014-09-24
WO2010125645A1 (en) 2010-11-04
KR20110104548A (en) 2011-09-22
CN102341603A (en) 2012-02-01
JPWO2010125645A1 (en) 2012-10-25
TWI400391B (en) 2013-07-01

Similar Documents

Publication Publication Date Title
JP5425192B2 (en) Propeller fan
CN103339385B (en) The propeller with adjustable wing chord length for blower fan
JP5549772B2 (en) Propeller fan and air conditioner equipped with the same
EP2570677B1 (en) Axial flow blower
EP2175141A1 (en) Propeller fan
JP5689538B2 (en) Outdoor cooling unit for vehicle air conditioner
AU2003207098A1 (en) Fan
JP6604981B2 (en) Axial blower impeller and axial blower
JP4818184B2 (en) Propeller fan
TWI658215B (en) Propeller fan and axial fan
JP2010121615A (en) Serial axial flow fan
WO2019150567A1 (en) Axial flow fan
JP2007113474A (en) Blower
JP2011074817A (en) Axial fan
JP5593976B2 (en) Propeller fan
JP4818310B2 (en) Axial blower
KR100858395B1 (en) Axial Fan
JP4712714B2 (en) Centrifugal multi-blade fan
JP2008157113A (en) Blower
JP4973623B2 (en) Centrifugal compressor impeller
JP4492060B2 (en) Blower impeller
JP2010275986A (en) Fan and axial flow blower
JP2013209884A (en) Axial-flow blower
JP4572617B2 (en) Blower impeller for air conditioning
JP2022056022A (en) Propeller fan

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131126

R150 Certificate of patent or registration of utility model

Ref document number: 5425192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250