WO2018230715A1 - Fuel pellets, system for utilizing biomass as fuel source, and method for producing biomass-derived fuel pellets - Google Patents

Fuel pellets, system for utilizing biomass as fuel source, and method for producing biomass-derived fuel pellets Download PDF

Info

Publication number
WO2018230715A1
WO2018230715A1 PCT/JP2018/022949 JP2018022949W WO2018230715A1 WO 2018230715 A1 WO2018230715 A1 WO 2018230715A1 JP 2018022949 W JP2018022949 W JP 2018022949W WO 2018230715 A1 WO2018230715 A1 WO 2018230715A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
raw material
fuel
carbonization
crushing
Prior art date
Application number
PCT/JP2018/022949
Other languages
French (fr)
Japanese (ja)
Inventor
圭介 合田
則次 藤本
寛之 高宮
Original Assignee
大王製紙株式会社
ダイオーエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大王製紙株式会社, ダイオーエンジニアリング株式会社 filed Critical 大王製紙株式会社
Priority to JP2018562374A priority Critical patent/JP6517455B1/en
Publication of WO2018230715A1 publication Critical patent/WO2018230715A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a fuel pellet made from biomass such as palm empty fruit bunch discarded at a palm product manufacturing plant, a biomass fuel conversion system, and a method for producing a biomass-derived fuel pellet.
  • biomass fuel that has been put into a mill (pulverizer) together with coal remains without being pulverized by a roller, it may prevent passage of air for conveyance As a result, the amount of pulverized material in the mill increases, which increases the pressure difference between the mill inlet and the mill, which hinders fuel supply.
  • One of the objects of the present invention is that the calorific value is large, it is difficult to deteriorate the boiler, and the co-firing rate, which is the ratio by the calorie conversion of the biomass to the total fuel used when co-firing biomass and other fuels, can be improved. It is to provide a fuel pellet, a biomass fuel conversion system, and a method for producing a biomass-derived fuel pellet.
  • the fuel pellet according to the first aspect of the present invention is characterized in that the content of a substance causing scale and / or a substance causing corrosion is reduced when a boiler is used.
  • the fuel pellet according to the second aspect of the present invention is characterized in that the calorific value is 20 MJ / kg or more.
  • the fuel pellet according to the third aspect of the present invention is characterized in that the biomass is a palm empty fruit bunch.
  • the substance causing the scale is at least one of sodium and potassium, and the substance causing the corrosion is at least chlorine. It is characterized by.
  • the sodium content is 0 mg / kg or more and 2000 mg / kg or less
  • the potassium content is 0 mg / kg or more and 2000 mg / kg or less
  • the chlorine content is 0 mg / kg or more and 1000 mg / kg or less.
  • the fuel pellet according to the sixth aspect of the present invention is characterized in that the moisture content is 0% or more and 10% or less.
  • the fuel pellet according to the seventh aspect of the present invention reduces the content of substances that cause scale in the raw material by washing the crushed raw material with room temperature water or hot water, Reduce the water content of the raw material with a reduced content of the causative substance, further crush the raw material with the reduced water content, granulate the crushed raw material into a fuel shape, and then carbonize
  • the co-firing rate which is the ratio of the biomass in terms of calorie conversion to the total fuel used when co-firing biomass and other fuels, is improved.
  • the biomass fuel conversion system includes a crushing device for crushing a raw material made of biomass so as to promote elution of substances that cause scale in the raw material, and crushing by the crushing device.
  • a cleaning device that reduces the content of the substance causing the scale in the raw material by washing the raw material with normal temperature water or warm water, and the content of the substance causing the scale in the cleaning device is
  • a drying device that reduces the moisture content of the reduced raw material, and a content of a substance that causes corrosion in the raw material whose moisture content is reduced by the drying device, further reducing the moisture content
  • the content of the substance causing corrosion is reduced in the granulator for granulating into the shape of the above, or in the raw material granulated by the granulator, the moisture content is further reduced
  • the carbonization apparatus heats the raw material in steam and semi-carbonizes it, or the frying apparatus heats the raw material in oil and carbonizes it. It is characterized by being.
  • the biomass fuel conversion system according to the tenth aspect of the present invention is characterized in that the carbonizing apparatus is a frying apparatus that heats and carbonizes a raw material in oil.
  • the carbonization device heats the raw material in steam and semi-carbonizes it, and the fly that heats and carbonizes the raw material in oil.
  • a mixing device for mixing raw materials carbonized by the semi-carbonizing device and the frying device.
  • the method for producing a biomass-derived fuel pellet according to the twelfth aspect of the present invention includes a crushing step of crushing a raw material made of biomass so as to promote elution of substances that cause scale in the raw material,
  • the raw material crushed in the crushing process is washed with normal temperature water or warm water to reduce the content of the substance causing the scale in the raw material, and in the washing process, the substance causing the scale
  • the biomass-derived fuel pellet manufacturing method according to the thirteenth aspect of the present invention is characterized in that the carbonization step is a semi-carbonization step in which the raw material is heated and semi-carbonized.
  • the biomass-derived fuel pellet manufacturing method according to the fourteenth aspect of the present invention is characterized in that the carbonization step is a frying step in which the raw material is heated in oil and carbonized.
  • the carbonization step comprises heating a raw material in steam to semi-carbonize, and heating the raw material in oil. And a mixing step of mixing the raw materials carbonized by the semi-carbonizing step and the frying step.
  • the fuel pellet has a large calorific value, is difficult to deteriorate the boiler, and can improve the co-firing rate, which is a ratio in terms of the calorific value of biomass with respect to the total fuel used when co-firing biomass and other fuels.
  • a biomass fuel conversion system and a method for producing biomass-derived fuel pellets are provided.
  • FIG. 1A is a block diagram of the biomass fuel conversion system which concerns on 1st embodiment
  • FIG. 1C is a configuration diagram of a biomass fueling system according to the third embodiment
  • FIG. 1D is a configuration diagram of a biomass fueling system according to the fourth embodiment.
  • FIG. 2A is a flowchart showing a flow of a fuel pellet manufacturing method according to the present invention
  • FIG. 2A is a flowchart showing a flow of a first manufacturing method
  • FIG. 2B is a flowchart showing a flow of a second manufacturing method
  • FIG. 2D is a flowchart which shows the flow of a 4th manufacturing method.
  • It is a schematic diagram of the crusher which concerns on this Embodiment.
  • It is a schematic diagram of the grinder which concerns on this Embodiment.
  • It is a schematic diagram of the washing tank which concerns on this Embodiment.
  • It is a schematic diagram of the dryer which concerns on this Embodiment.
  • It is a schematic diagram of the carbonization apparatus system which concerns on this Embodiment.
  • It is a schematic diagram of the ring die type granulator which concerns on this Embodiment.
  • It is a schematic diagram of the fryer which concerns on this Embodiment.
  • FIG. 12A is a configuration diagram of a biomass fuel conversion system according to the fifth embodiment
  • FIG. 12B is a configuration of the biomass fuel conversion system according to the sixth embodiment
  • a block diagram and FIG. 12C are block diagrams of the biomass fuel conversion system which concerns on 7th embodiment.
  • FIG. 13A is a flowchart showing a flow of a fifth manufacturing method
  • FIG. 13B is a flowchart showing a flow of a sixth manufacturing method
  • FIG. 13C is a flowchart showing a flow of a fuel pellet manufacturing method according to the present invention.
  • FIG. 14A is a configuration diagram of a biomass fuel conversion system according to the eighth embodiment
  • FIG. 14B is a configuration of the biomass fuel conversion system according to the ninth embodiment
  • FIG. 14C is a configuration diagram of the biomass fueling system according to the tenth embodiment
  • FIG. 14D is a configuration diagram of the biomass fueling system according to the eleventh embodiment.
  • FIG. 15A is a flowchart showing the flow of the eighth manufacturing method
  • FIG. 15B is a flowchart showing the flow of the ninth manufacturing method
  • FIG. 15C is a flowchart showing the flow of the fuel pellet manufacturing method according to the present invention.
  • FIG. 15D is a flowchart showing the flow of the eleventh manufacturing method.
  • FIG. 16E is a configuration diagram of a biomass fuel conversion system according to the twelfth embodiment
  • FIG. 16F is a biomass fuel conversion according to the thirteenth embodiment. It is a block diagram of a system.
  • FIG. 17E is a flowchart showing a flow of a twelfth manufacturing method
  • FIG. 17F is a flowchart showing a flow of a thirteenth manufacturing method. .
  • the biomass used as the raw material for the fuel pellets of the present invention includes palm empty fruit bunches (EFB), palm palm shell (PKS), pulp fiber, palm palm pruned branches, palm palm old tree (trunk), or Falkata Shell, bark, pruned branch of Falkata, old Falkata tree, or Eucalyptus, Acacia, Abragiri, mangrove bark (bark), heartwood after wood chip acquisition, pruned branch, empty fruit bunch of banana, banana pruning Examples include wastes of branches, banana leaves, old banana trees or pineapples, tropical plants made of soybean grass, or wood wastes of wood fragments and bark. Further, the present specification by no means specifies the members shown in the claims to the members of the embodiments.
  • each element constituting the present invention may be configured such that a plurality of elements are configured by the same member and the plurality of elements are shared by one member. It can also be realized by sharing. (Raw materials 111, 211, 311, 411, 511, 611, 711, A11, B11, C11, D11, E11, F11)
  • the raw materials 111, 211, 311, 411, 511, 611, 711 are palm empty fruit bunches.
  • the raw materials A11, B11, C11, D11, E11, and F11 are palm palm foliage that generally has a higher water content than palm empty fruit bunches or the like.
  • Palm empty fruit bunch is used as a waste palm fruit discarded from the factory as an unused material. Palm empty fruit bunch has a hollow shape and is bulky, so if you want to use what is discarded as fuel as it is, there is a problem that it does not meet the transfer cost, sodium contained in palm empty fruit bunch, Potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, glass, etc., block boilers, etc., and chlorine, sulfur, etc. corrode water pipes, etc. It had been. Therefore, in the present embodiment, the above-mentioned substances are removed and pelletized to produce fuel pellets made from palm empty fruit bunches.
  • palm acid oil is used as the oil used in the frying device 226.
  • Biomass-derived fuel pellets 11, 21, 31, 41, 51, 61, 71 are respectively used for biomass-derived fuel pellets using biomass fueling systems 12, 22, 32, 42, 52, 62, 72 described later. Manufactured by manufacturing methods 13, 23, 33, 43, 53, 63, 73.
  • the biomass-derived fuel pellets 11 will be mainly described, and the biomass-derived fuel pellets 21, 31, 41, 51, 61, 71 are omitted from the description of the steps overlapping with the biomass-derived fuel pellets 11, and different steps. explain.
  • the biomass-derived fuel pellet 11 is made of palm empty fruit bunches and has a calorific value of 18 MJ / kg or more and 27 MJ / kg or less, more preferably 20 MJ / kg or more, and even more preferably 23 MJ / kg or more, sodium, Content of substances that cause scale when using boilers such as potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass, and content of substances that cause corrosion when using boilers such as chlorine and sulfur This is a fuel pellet with reduced fuel consumption.
  • Biomass-derived fuel pellets 11 are fuel pellets having a potassium content that causes a scale when using a boiler in a range of 0 mg / kg to 2000 mg / kg, more preferably 0 mg / kg to 1000 mg / kg. Further, the biomass-derived fuel pellet 11 is also a fuel pellet having a sodium content that causes a scale when using a boiler in the same manner as a fuel pellet of 0 mg / kg or more and 2000 mg / kg or less, more preferably 0 mg / kg or more and 1000 mg / kg or less. is there. When the content of both potassium and sodium exceeds 2000 mg / kg, it becomes easy to scale.
  • Biomass-derived fuel pellets 11 are fuel pellets having a chlorine content that causes corrosion when using a boiler in the range of 0 mg / kg to 1000 mg / kg, more preferably 0 mg / kg to 500 mg / kg. If the chlorine content exceeds 1000 mg / kg, corrosion tends to occur.
  • the biomass-derived fuel pellet 11 is a fuel pellet having a sulfur concentration that causes corrosion when using a boiler of 0% by mass or more and 0.20% by mass or less, more preferably 0% by mass or more and 0.10% by mass or less. . When the sulfur concentration exceeds 0.20% by mass, corrosion tends to occur.
  • the biomass-derived fuel pellets 51, 61, 71 reduce the content of substances that cause scale such as potassium in the raw material by washing the crushed raw material with normal temperature water or hot water, and cause the scale.
  • the water content of the raw material with a reduced content of the substance By reducing the water content of the raw material with a reduced content of the substance, further crushing the raw material with the reduced water content, granulating the crushed raw material into the shape of a fuel, and then carbonizing the mixture, This is a fuel pellet with an improved rate.
  • the size of the biomass-derived fuel pellet 11 is preferably ⁇ 5 mm to ⁇ 25 mm, more preferably ⁇ 6 mm to ⁇ 10 mm.
  • pellet size has preferable ⁇ 6 mm or more and ⁇ 10 mm or less.
  • the fuel pellets 11 and 21 can be used as fuel pellets as they are in an existing boiler. The pellets can be mixed or replaced.
  • the length of the biomass-derived fuel pellets 11 can be appropriately changed according to the specifications of the boiler and the like.
  • biomass-derived fuel pellets 11 will be described in detail in later-described biomass-derived fuel pellet manufacturing methods 13, 23, 33, and 43. (Biomass fuel conversion system 12 according to the first embodiment)
  • FIG. 1A shows a configuration of a biomass fuel conversion system 12 according to the first embodiment, which is a preferred embodiment of a biomass fuel conversion system according to the present invention.
  • the biomass fueling system 12 promotes elution of substances that cause scale such as sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass contained in the raw material 111.
  • the crushing apparatus 121 which makes the crushed material 112 by crushing the raw material 111 which consists of palm empty fruit bunches and crushing the fiber, and the causative substance of the scale contained in the crushed material 112 by washing the crushed material 112
  • the drying device 124 for reducing the moisture content of the washed product 113, and carbonizing the dried product 114 after reducing the moisture content by the drying device 124.
  • the carbonization device 126 to make the carbide 117 with reduced quality and increased heat per unit weight
  • the granulation device 128 to granulate the carbide 117 into the fuel shape to make the fuel pellet 11, and the heat quantity of the fuel pellet 11
  • a measuring / mixing device 129 that measures the fragility and the like and mixes the fuel pellets 11 so that the quality of the product becomes constant.
  • to promote the solute of the substance that causes the scale does not mean to promote the elution of all the substances that cause the scale.
  • reducing the substances that cause scale in the raw material does not mean reducing all the substances that cause scale, but when reducing at least one of the substances that cause scale. There is also a possibility. The same applies to substances that cause corrosion.
  • biomass fueling system will be described in detail in later-described biomass-derived fuel pellet manufacturing methods 13, 23, 33, and 43. (First production method 13 of biomass-derived fuel pellets)
  • biomass-derived fuel pellets 11, the biomass fueling system 12, and the first production method 13 for biomass-derived fuel pellets according to the present invention will be described in detail along the steps for producing biomass-derived fuel pellets.
  • FIG. 2A is a flowchart showing the flow of the first method 13 for producing biomass-derived fuel pellets according to the present invention
  • FIG. 3 is a schematic diagram of the crusher 1211 according to the present embodiment
  • FIG. 4 is a schematic diagram of the grinder 1212.
  • FIG. 5 is a schematic diagram of the washing tank 1221
  • FIG. 7 is a schematic diagram of the carbonizer system 1261
  • FIG. 8 is a schematic diagram of the ring die granulator 1281.
  • the 1st manufacturing method 13 of the biomass origin fuel pellet which concerns on this Embodiment is sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, glass etc. which are contained in the raw material 111
  • the crushing step 131 into the crushed material 112 By crushing the raw material 111 consisting of empty palm fruit bunches and crushing the fibers so as to promote the elution of the substance that causes the scale of the crushing, the crushing step 131 into the crushed material 112, and by washing the crushed material 112
  • the drying process 134 for reducing the water content of the cleaning product 113 to the dry product 114
  • the drying process 134 After reducing the moisture content, the dried product 114 is carbonized to further reduce the moisture content and be included in the dried product 114.
  • a carbonization step 136 for reducing the amount of substances that cause corrosion when using a boiler such as chlorine, sulfur, etc. and increasing the amount of heat per unit weight to a carbide 117, and granulating the carbide 117 into a fuel shape, and fuel pellets 11 and a measurement / mixing step 139 for measuring the heat quantity and brittleness of the fuel pellets 11 and mixing the fuel pellets 11 so that the quality of the product is constant.
  • the crushing device 121 is used to break the cell wall, so that the causative substance of scale such as potassium contained in a large amount in the palm empty fruit bunch as a raw material is easily eluted in the washing step 132. It is a pre-processing process for.
  • the raw material 111 uses a palm empty fruit bunch discarded as unused material from a factory or the like, and thus has a large volume.
  • the palm empty fruit bunch as a raw material is crushed to 5 mm to 50 mm, more preferably 10 mm to 20 mm (volume reduction) into a crushed material 112A by a crusher 1211 as described later.
  • the surfaces of the crushed materials 112A are compacted by a grinder 1212 as will be described later, and are rubbed together, whereby a large number of scratches are made on the surface of the crushed materials 112A.
  • the causative substance of the scale is eluted from the broken cell wall in the cleaning step 132. It can be removed in a short time.
  • the crushing device 121 used in the crushing step 131 is, for example, a crusher 1211 that shears the raw material 111 or a crusher 1212 that crushes the fibers by compacting and crushing the crushed materials 112A and destroys the fibers. it can.
  • a crusher 1211 for example, a crusher as shown in FIG. 3 can be used.
  • the grinder 1212 can use the grinder as shown, for example in FIG.
  • the crushing apparatus is not particularly limited as long as it is an apparatus capable of crushing, crushing, grinding, etc. For example, a uniaxial crusher, a biaxial crusher, a refiner, a hammer type crusher, a kneader, or the like can be used.
  • the crusher 1211 includes an inlet 1211A for feeding the raw material 111, a rotary blade 1211E and a fixed blade 1211F for crushing the fed raw material 111, and a rotor 1211D to which the rotary blade 1211E is attached.
  • a pusher 1211C that presses the raw material 111 against the rotor 1211D
  • a crushing chamber 1211B in which a fixed blade 1211F is attached
  • a screen 1211G that is provided with a plurality of holes and that passes only the crushed material 112A that is roughly crushed to a predetermined size or less.
  • a discharge port 1211H for discharging the roughly crushed crushed material 112A that has passed through the screen 1211G.
  • the raw material 111 is introduced into the crushing chamber 1211B from the inlet 1211A of the crusher 1211.
  • the charged raw material 111 is pressed against the rotor 1211D by the pusher 1211C.
  • the pressed raw material 111 is repeatedly crushed by the rotating blade 1211E attached to the rotor 1211D and the fixed blade 1211F attached in the crushing chamber 1211B until the size passes through the screen 1211G.
  • the crushed material 112A that has passed through the screen 1211G is discharged from the discharge port 1211H.
  • the size of the hole of the screen 1211G is ⁇ 50 mm.
  • the attritor 1212 includes an inlet 1212A for feeding the coarsely crushed crushed material 112A, a cylindrical portion 1212B for receiving the crushed material 112A, and an inputted crushed material 112A.
  • the rotating blade portion 1212D and the fixed blade portion 1212E for grinding the material, the spiral rotating body 1212C for transferring the crushed material 112A between the rotating blade portion 1212D and the fixed blade portion 1212E, and the ground crushed material 112B are discharged.
  • a discharge port 1212F a discharge port 1212F.
  • the crushed material 112A is introduced into the cylindrical portion 1212B from the inlet 1212A of the grinder 1212.
  • the charged crushed material 112A is pushed between the rotary blade portion 1212D and the fixed blade portion 1212E by the spiral rotating body 1212C. It is crushed by the rotating blade portion 1212D and the fixed blade portion 1212E.
  • the crushed crushed material 112B is discharged from the discharge port 1212F.
  • the ground crushed material 112B is referred to as a crushed material 112.
  • the crushing method is not limited to physical treatment, and may be any method that can break the cell wall, and may be freezing treatment, ultrasonic treatment, chemical treatment, microbial treatment, and the like.
  • the causative substance of the scale can be removed uniformly in the cleaning step described later, and in addition, it can be uniformly carbonized in the carbonization step described later. Therefore, the quality of the biomass-derived fuel pellet 11 can be made uniform. Further, by crushing finely, elution is possible even with low-temperature water. (Washing process 132)
  • the cleaning step 132 is a step for removing scale-causing substances such as potassium that are contained in the raw material and block the boiler or the like when the fuel pellet is used.
  • the crushed material 112 treated in the pulverized step 131 is immersed in water to elute scale-causing substances such as potassium contained in the crushed material 112 into water.
  • the water temperature is 20 ° C. or higher and 110 ° C. or lower, more preferably 50 ° C. or higher and 80 ° C. or lower.
  • the elution time varies depending on the crushing condition in the crushing step 131, the variety of the eggplant that is the raw material, and the mixing ratio. Therefore, it is desirable to perform sampling and measure the remaining amount of the causative substance of the scale with a measuring machine.
  • a cleaning tank 1221 can be used as the cleaning device 122 used in the cleaning step 132.
  • the cleaning tank 1221 has an input port 1221A for charging the crushed material 112, a cleaning chamber 1221B for cleaning the crushed material 112, an agitator 1221C for stirring the water in the cleaning chamber 1221B, A heating mechanism 1221D for heating water in the cleaning chamber 1221B and a discharge port 1221E for discharging the cleaning object 113 are provided.
  • the crushed material 112 is introduced into a cleaning chamber 1221B filled with water of about 80 ° C. from the inlet 1221A and immersed in water for several minutes to several days.
  • the washing tank 1221 can be equipped with a stirrer 1221C. By stirring, elution of the causative substance of the scale is promoted, and uniform removal can be performed.
  • the cleaning tank 1221 can include a heating mechanism 1221D, and elution of the causative substance of the scale is promoted by increasing the temperature of water in the cleaning chamber 1221B.
  • the heating mechanism 1221D is, for example, a pipe that is wound around the cleaning room and passes hot water discharged from the factory, and heat exchange is performed between the water in the cleaning room and the hot water in the pipe. Water in the cleaning chamber is heated.
  • the cleaned product 113 is discharged from the discharge port 1221E. Prior to the drying process, dehydration may be performed with a dehydrator such as a screw press (not shown).
  • the number of times of washing is not limited to once, and washing and dehydration may be performed multiple times.
  • a dehydration / cleaning device such as a tilt extractor (not shown) can be used.
  • the water used for the small amount of the causative substance of the scale may be reused for the one having the large amount of the causative substance of the scale.
  • Crushed and washed biomass-derived fuel pellets 11 can reduce the content of substances that cause scale when using a boiler.
  • the potassium content of the biomass-derived fuel pellets 11 is preferably 0 mg / kg or more and 2000 mg / kg or less, more preferably 0 mg / kg or more and 1000 mg / kg or less.
  • the drying step 134 is a step for reducing the energy required for carbonization in the carbonization step 136 by reducing the amount of water in the cleaning object 113 processed in the cleaning step 132.
  • the drying step 134 is an effective means of using a dryer 1241 that uses surplus energy such as waste heat in the factory, or natural drying such as sun drying. In order to dry naturally in a shorter time, it is effective to increase the surface area by using a cloth or a net.
  • the water content of the washed product 113 is less than 15% as a guide, but it is preferable to move to the carbonization step 136 in a state where the water content is further lowered from the viewpoint of energy saving and manufacturing cost.
  • drying device 124 used in the drying process 134 for example, a dryer 1241 or a drying system can be used.
  • the dryer 1241 is a device that is dried by high-temperature hot air such as a washing dryer. When such a dryer 1241 is used, it is preferable to use surplus energy in the factory.
  • the dryer 1241 is fixed and rotated inside the raw material inlet 1241A into which the cleaning product 113 is charged, the rotating shell 1241B that rotates the charged cleaning material 113, and the rotating shell 1241B.
  • a main pipe 1241C for sending hot air to the cleaning object 113, a heat source mechanism 1241E for heating outside air supplied from outside the system, a combustion fan 1241F for blowing outside air necessary for combustion in the heat source mechanism 1241E, and a heat source mechanism 1241E
  • a suction fan 1241G for sucking heated hot air into the rotary shell 1241B via the main pipe 1241C, a dust collector 1241H for separating particles such as dust from the exhaust gas in the rotary shell 1241B, and a dust collector 1241H.
  • Exhaust fan for discharging exhaust gas from which particles such as dust have been removed to the outside of the system It comprises a 1241I, and a dried product outlet 1241J for discharging dried product 114 was dried in a rotary shell 1241b. Further, the dryer 1241 is reused by supplying exhaust gas in a heated state after particles such as dust are removed by the dust collector 1241H to the heat source mechanism 1241E.
  • the cleaning product 113 is supplied from the raw material inlet 1241A, heated by the heat source mechanism 1241E while rotating in the rotary shell 1241B, and dried by being exposed to the hot air blown through the main pipe 1241C by the suction fan 1241G.
  • the dried product 114 having a moisture content of about 15% is discharged from the dried product outlet 1241J.
  • the carbonization step 136 is a step for carbonizing the dried product 114 processed in the drying step 134 to remove chlorine that causes corrosion when using the boiler and to increase calories per unit weight.
  • Carbonization of the hemicellulose at 200 ° C to 300 ° C which is the thermal decomposition temperature, is called trefaction (semi-carbonization). It retains a higher amount of heat and improves crushability and water resistance compared to carbonization at high temperatures. To do. On the other hand, carbonization at 300 ° C. or higher has an effect of reducing unnecessary components.
  • carbonization is a concept including semi-carbonization, and in the first embodiment, a method of semi-carbonization at 200 ° C. or more and less than 300 ° C. is described, and in the second embodiment, 300 ° C. or more. The method of carbonizing with will be described. (First example of carbonization process)
  • the dried product 114 is semi-carbonized.
  • the yield increases and the fuel pellet 11 with a large calorific value can be manufactured.
  • the dried product 114 dried in the drying step 134 is in water vapor at 200 ° C. or higher and 290 ° C. or lower, more preferably in water vapor at 220 ° C. or higher and 280 ° C. or lower, further preferably 230 ° C. or higher and 270 ° C. or lower. Heated in steam and semi-carbonized. If it is less than 200 ° C., it may not be semi-carbonized, and if it exceeds 290 ° C., cellulose is decomposed and the amount of heat decreases, which is not preferable. Since the carbonization temperature varies depending on the varieties of palms and the crushing size, it is appropriately changed.
  • the semi-carbonization time is preferably 60 minutes or less, and more preferably 40 minutes or less. This is because the long-time treatment may cause cellulose to be decomposed. However, about processing time, it is not limited to 60 minutes or less, It can change suitably with the kind and crushed size of palm.
  • the heating temperature does not need to be a constant temperature, and can be heated with various heat patterns such as gradually increasing the temperature.
  • a carbonization apparatus for example, a carbonization system 1261 as shown in FIG. 7 can be used.
  • the carbonization system 1261 heats the steam boiler 1261A that generates saturated steam at 100 ° C. and the saturated steam at 100 ° C. under a pressure greater than atmospheric pressure to generate steam at 100 ° C. or higher.
  • Heat exchange that lowers the temperature of the superheated steam generator 1261B, the carbonization furnace 1261C that carbonizes the dried product 114 with superheated steam, the cyclone 1261D that removes dust discharged from the carbonization furnace 1261C, and the gas discharged from the carbonization furnace 1261C 1261E, a cooling tower 1261F for cooling the cooling water for cooling the heat exchanger 1261E, and a scrubber 1261G for cleaning, adsorbing, and discharging unnecessary gases such as hydrogen chloride and hydrocarbons discharged from the carbonization furnace 1261C. ing.
  • the dried product 114 dried in the drying step 134 is charged from the charging port of the carbonization furnace 1261C.
  • Steam steam 1261A generates saturated steam at 100 ° C.
  • the generated steam is sent to superheated steam generator 1261B to generate 250 ° C. superheated steam.
  • superheated steam is sent from the superheated steam generator 1261B to the carbonization furnace 1261C whose inlet is closed.
  • the dried product 114 is heated by a superheated steam in a carbonization furnace 1261C maintained at about 250 ° C. for about 30 minutes to become a carbide 117.
  • the dried product 114 is carbonized at 300 ° C. or higher.
  • the dried product 114 dried in the drying step 134 is heated using a carbonization system 1261 at a heating steam of 700 ° C. and a furnace temperature of 400 ° C. to be carbonized.
  • a carbonization system 1261 Heating steam of 700 ° C. and a furnace temperature of 400 ° C. to be carbonized.
  • the granulation step 138 is a step for forming the carbide 117 carbonized in the carbonization step 136 into pellets that are easy to transport and use.
  • Examples of the granulator 128 include a ring die type granulator 1281 as shown in FIG. 8, a flat die type granulator, and a screw type granulator (as described in JP-A-63-214421). "Industrial waste compression molding equipment"), extrusion extruders, etc.
  • the ring die type granulator 1281 includes a charging port 1281A for charging carbides 117, a ring die 1281C having innumerable holes of approximately the diameter size of pellets, and a charged carbide 117 as a ring die.
  • the carbide 117 is charged from the charging port 1281A. Subsequently, the charged carbide 117 is transferred into the ring die 1281C by a pushing device 1281B provided below the charging port 1281A. The carbide 117 transferred to the inside of the ring die 1281C is caught between the press roll 1281D and the ring die 1281C, and is pushed out through a plurality of holes of ⁇ 6 mm or ⁇ 8 mm provided in the ring die 1281C. The extruded carbide 117 is pelletized by being cut into a certain size by the cutter 1281E, and discharged from the discharge port 1281F.
  • the pellet size is preferably ⁇ 5 mm or more and ⁇ 25 mm or less, more preferably ⁇ 6 mm or more and ⁇ 10 mm or less.
  • the biomass-derived fuel pellets 11 produced by this production method are easy to use with a general boiler, and in addition, are not easily broken during transportation. (Measurement / mixing step 139)
  • the measurement / mixing step 139 is a step for measuring the heat quantity, brittleness, etc. of the granulated fuel pellets and mixing them based on the measurement data to make the product quality constant.
  • Main measurement items are the remaining amount of substances that cause scales such as potassium, the remaining amount of substances that cause corrosion when using boilers such as chlorine, and the calorific value per unit weight.
  • the blending ratio can be appropriately changed according to the type of the specification boiler based on the measurement data.
  • Biomass-derived fuel pellets use palm empty fruit bunches that are discarded as unused materials from factories or the like as raw material 111, so it is difficult to keep the quality of raw material 111 constant due to various factors such as varieties and individual differences, Variations appear. Due to the variation in the raw material 111, the components and properties of the manufactured fuel pellets 11 are different. Therefore, measurement is performed for predetermined items, and the fuel pellets 11 are mixed based on the measurement data. By measuring and mixing, biomass-derived fuel pellets 11 with stable quality can be provided. (Biomass fuel conversion system 22 according to the second embodiment)
  • FIG. 1B shows a configuration of the biomass fuel conversion system according to the second embodiment, which is a preferred embodiment of the biomass fuel conversion system according to the present invention.
  • the biomass fuel conversion system 22 promotes the elution of substances that cause scale such as sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass contained in the raw material 211.
  • the crushing device 221 that makes the crushed material 212 by crushing the raw material 211 made of palm empty fruit bunches and crushing the fibers, and the causative substance of the scale contained in the crushed material 212 by washing the crushed material 212
  • the drying device 224 that reduces the water content of the cleaning material 213 and reduces the water content of the cleaning material 213, and the drying device 224.
  • a frying device 226 that reduces the substances that cause corrosion when using the llar and increases the amount of heat per unit weight to make the carbide 217, and a granulating device that granulates the carbide 217 into a fuel shape and makes the fuel pellet 21 228 and a measurement / mixing device 229 that measures the heat quantity and brittleness of the fuel pellet 21 and mixes the fuel pellet 21 so that the quality of the product becomes constant.
  • biomass fuel conversion system 22 Details of the biomass fuel conversion system 22 will be described in a biomass-derived fuel pellet manufacturing method 23 described later. (Second production method 23 of biomass-derived fuel pellets)
  • FIG. 2B is a flowchart showing the flow of the second method for producing biomass-derived fuel pellets according to the present invention
  • FIG. 9 is a schematic diagram of the fly device 226 according to the present embodiment.
  • the second manufacturing method 23 of the biomass-derived fuel pellets is the same as the process described in the manufacturing method 13 of the biomass-derived fuel pellets except for the carbonization step 236 and the granulation step 238, and is crushed.
  • Step 231, washing step 232, drying step 234, measurement / mixing step 239 correspond to crushing step 131, washing step 132, drying step 134, measurement / mixing step 139, respectively.
  • the dried product 214 dried in the drying step 234 is, in the oil of 120 ° C. or more and 300 ° C. or less, more preferably in the oil of 140 ° C. or more and 200 ° C. or less, more preferably 150 ° C. by the frying device 226. It is heated in oil at 170 ° C. or lower and carbonized. If it is less than 120 degreeC, processing time may take too much, and when it exceeds 300 degreeC, since a cellulose will decompose
  • the carbonization temperature can be set as appropriate because it varies depending on the variety of palm and the crushing size.
  • the carbonization time is preferably from 10 minutes to 90 minutes, more preferably from 20 minutes to 60 minutes, and further preferably from 50 minutes to 70 minutes. This is because if it is less than 10 minutes, hemicellulose that is not decomposed may remain, and if it exceeds 90 minutes, cellulose may be decomposed. However, about processing time, it is not limited to 10 minutes or more and 90 minutes or less, It can set suitably with the kind of palm, and crushing size.
  • the heating temperature does not need to be a constant temperature, and can be heated with various heat patterns such as gradually increasing the temperature.
  • the frying device 226 includes an oil tank 2261A for putting oil and a warmer 2261B for heating the oil stretched in the oil tank.
  • the heating method may be such that the dried product 214 in the basket is immersed in the heated oil for a certain period of time, or a method in which the conveyor on which the dried product 214 is placed moves in the oil. More efficient operation is possible by connecting the outlet of the drying device 224 directly to the charging port of the basket or conveyor.
  • the fully carbonized carbide 217 is degreased on a net or separated into excess oil using a centrifuge or a press and adjusted to a suitable oil amount.
  • the appropriate amount of oil is such that the oil does not separate when granulating in the granulation step 238, and is appropriately adjusted according to the degree of compression in the granulation step 238.
  • the granulation step 238 can use the same method and apparatus as the granulation step 138.
  • the pellet size is preferably from ⁇ 5 mm to ⁇ 25 mm, and more preferably from ⁇ 6 mm to ⁇ 10 mm.
  • FIG. 1C shows a preferred embodiment of the biomass fuel conversion system according to the present invention, and shows the configuration of the biomass fuel conversion system according to the third embodiment.
  • the biomass fuel system 32 promotes the elution of substances that cause scale such as sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass contained in the raw material 311.
  • the primary crushed material 311 made of palm empty fruit bunches is crushed, and the primary crushed material 312 is washed into the primary crushed material 312, and the primary crushed material 312 is included in the primary crushed material 312.
  • the causative substance of the scale is reduced, the cleaning device 322 that makes the cleaning product 313, the drying device 324 that reduces the moisture content of the cleaning product 313 to make the dry product 314, and the moisture content is reduced by the drying device 324.
  • Secondary crushing device 325 for crushing dried product 314 to a size suitable for carbonization and granulation, and secondary crushing by secondary crushing device 325
  • Carbonizer 326 for increasing carbide 317, granulator 328 for granulating carbide 317 into fuel shape and fuel pellet 31, and measuring heat quantity and brittleness of fuel pellet 31, etc., product quality Is provided with a measuring / mixing device 329 for mixing the fuel pellets 31 so as to be constant.
  • FIG. 2C shows a flowchart showing the flow of the third method for producing biomass-derived fuel pellets according to the present invention.
  • the third method 33 for producing biomass-derived fuel pellets performs a primary crushing step 331 instead of the crushing step 131, and performs a secondary crushing step 335 before the carbonization step 336.
  • the other steps are the same as those described in the method 13 for producing biomass-derived fuel pellets, and the washing step 332, the drying step 334, the granulation step 338, the measurement / mixing step 339 are the washing step 132 and the drying step, respectively.
  • 134 corresponds to the granulation step 138 and the measurement / mixing step 139.
  • the primary crushing step 331 is substantially the same as the crushing step 131.
  • the raw material 311 mainly considers the easiness of elution of substances that cause scale such as potassium. Shredded to size. (Secondary crushing step 335)
  • the dried product 314 is crushed to a size optimized for the carbonization and granulation step. (Carbonization process 336)
  • the carbonization step 336 is the same as the carbonization step 136. (Biomass fuel conversion system 42 according to the fourth embodiment)
  • FIG. 1D shows a preferred embodiment of the biomass fuel conversion system according to the present invention, and shows the configuration of the biomass fuel conversion system according to the fourth embodiment.
  • the biomass fueling system 42 promotes elution of substances that cause scale such as sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass contained in the raw material 411.
  • the primary crushed material 411 made of palm empty fruit bunches is crushed, and the primary crushed material 412 is washed by crushing the fibers to form the primary crushed material 412, and the primary crushed material 412 is included in the primary crushed material 412.
  • the causative substance of the scale is reduced, the cleaning device 422 that makes the cleaning product 413, the drying device 424 that reduces the moisture content of the cleaning product 413 to make the dry product 414, and the moisture content is reduced by the drying device 424.
  • a carbonization device 426 that reduces the substances that cause corrosion when using a boiler and increases the amount of heat per unit weight to a carbide 417; a secondary crushing device 427 that crushes the carbide 417 into a size suitable for granulation; The carbonized material 418 crushed by the secondary crushing device 427 is granulated into a fuel shape, and the granulation device 428 for making the fuel pellet 41 and the heat quantity, brittleness, etc. of the fuel pellet 41 are measured, and the product quality is constant.
  • a measuring / mixing device 429 for mixing the fuel pellets 41 is provided.
  • FIG. 2D shows a flowchart showing the flow of the fourth method for producing biomass-derived fuel pellets according to the present invention.
  • the fourth production method 43 for biomass-derived fuel pellets performs a primary crushing step 431 instead of the crushing step 131, and a secondary crushing step 437 is performed after the refracting step 436.
  • the other steps are the same as the steps described in the biomass-derived fuel pellet production method 13, and the washing step 432, the drying step 434, the granulation step 438, the measurement / mixing step 439 are respectively the washing step 132 and the drying step.
  • 134 corresponds to the granulation step 138 and the measurement / mixing step 139.
  • the primary crushing step 431 is the same as the primary crushing step 331. (Traffication process 436)
  • the dried product 414 whose moisture content has been reduced by the drying device 424 is semi-carbonized at 200 to 300 ° C. which is the thermal decomposition temperature of hemicellulose.
  • the specific method and the apparatus used are the same as the semi-carbonization in the carbonization step 136 except that the carbonization temperature is limited to 200 ° C to 300 ° C.
  • the carbide 417 can maintain a high amount of heat, and the friability and water resistance are improved. (Secondary crushing step 437)
  • the carbide 417 is crushed to a size that facilitates granulation.
  • the carbide 417 has improved crushability due to the trellising step 436, and can be crushed even with a smaller crusher than the secondary crusher in the third embodiment. Therefore, manufacturing energy and cost can be suppressed. (Removal test for scale-causing substances)
  • Example 2 which was washed in the washing step. Washing was repeated three times by using a badge-type washing tank, adding water, stirring for about 10 minutes, and then draining.
  • the content of the scale-causing substance was measured by flame atomic absorption spectrometry after dry decomposition for potassium and sodium, and calculated in terms of dry sample. Moreover, about chlorine, it measured with the ion chromatograph using the combustion pipe
  • a 300 kg palm empty fruit bunch was roughly crushed using a ⁇ 50 screen in a crusher as shown in FIG. 3. Then, it grind
  • Example 2 the sample carbonized in the carbonization process 136 is also produced, and after the carbonization process of Example 1 by the above-mentioned measuring method. The content of scale-causing substances was also calculated. (Example 2)
  • FIG. 3 A 460 kg empty palm fruit bunch was roughly crushed using a rotor rotary blade and a ⁇ 50 screen in a crusher as shown in FIG. 3.
  • the photograph of the raw material after this rough crushing is shown in FIG.
  • the empty palm fruit bunch of Example 2 had a fiber length of about 30 to 70 mm, and the fiber was unwound. Thereafter, washing was performed three times, and the content of the scale-causing substance after the washing step of Example 2 was calculated by the measurement method described above. (Calorie measurement)
  • Table 1 shows the content of scale-causing substances in the empty palm bunch of Example 1 and Example 2 after washing.
  • the potassium content and the sodium content of the biomass-derived fuel pellets 11 are preferably 0 mg / kg or more and 2000 mg / kg or less, more preferably 0 mg / kg or more and 1000 mg / kg or less.
  • the value was extremely low after the cleaning step, and the value was within the required numerical range after the carbonization step.
  • the chlorine content of the biomass-derived fuel pellet 11 is preferably 0 mg / kg or more and 1000 mg / kg or less, more preferably 0 mg / kg or more and 500 mg / kg or less. After the cleaning process, the value was extremely low, and after the carbonization process, the value was within the required numerical range.
  • the biomass-derived fuel pellet is required to have a calorific value of 18 MJ / kg or more and 27 MJ / kg or less, more preferably 20 MJ / kg or more.
  • the calorific value of the pellet was measured as a calorific value of 20.4 MJ / kg.
  • the raw material is mainly granulated in the form of fuel in the manufacturing process and then carbonized, so that the total use fuel for the co-firing of biomass and other fuels is reduced.
  • the experiments show that the produced carbide has a high co-firing rate and can produce a large calorific value at a practical level. Show. (Biomass fuel conversion system 52 according to the fifth embodiment)
  • FIG. 12A shows a configuration of a biomass fuel conversion system according to the fifth embodiment, which is a preferred embodiment of the biomass fuel conversion system according to the present invention.
  • the biomass fueling system 52 promotes elution of substances that cause scale such as sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass contained in the raw material 511.
  • the crushing device 521 that crushes the raw material 511 made of palm empty fruit bunches and crushes the fibers to make the crushed material 512 and the causative substance of the scale contained in the crushed product 512 by washing the crushed product 512
  • a cleaning device 522 that reduces the water content of the cleaning product 513 by reducing the moisture content of the cleaning product 513, and a drying device 524 that reduces the water content by the drying device 524.
  • the dried product 514 having a reduced water content by 524 is granulated in the form of a fuel to form a granulated product 516 and a granulated product 516.
  • the fuel that further reduces the amount of heat per unit weight by reducing substances that cause corrosion when using boilers such as chlorine and sulfur contained in the granulated product 516
  • a carbonization device 526 that converts the pellets 51 and a measurement / mixing device 529 that measures the amount of heat and brittleness of the fuel pellets 51 and mixes the fuel pellets 51 so that the quality of the product is constant are provided.
  • grinding for crushing the fibers may be omitted, and measurement by the measurement / mixing device 529 may be omitted.
  • FIG. 13A shows a flowchart showing the flow of the fifth method for producing biomass-derived fuel pellets according to the present invention.
  • the fifth production method 53 for biomass-derived fuel pellets is similar to the crushing step 131 to the drying step 134 in the first production method 13 for biomass-derived fuel pellets, from the crushing step 531 to the drying step 534. is there.
  • the fifth production method 53 is different from the first production method 13 in that there is a granulation step 538 after the drying step 534 and then a carbonization step 536 is performed.
  • the measurement / mixing step 539 corresponds to the measurement / mixing step 139.
  • the washing product is washed and dehydrated by the washing step 532 using the dryer 1241 or the drying system, and the moisture content is about 40%. 513 is dried until the water content is about 15%.
  • the carbide 117 was granulated by the ring die type granulator 1281, but in the granulation step 538, the moisture decreased through the drying step 534 using the ring die type granulator.
  • the dried product 514 is preferably granulated to a size of ⁇ 5 mm to ⁇ 25 mm, more preferably ⁇ 6 mm to ⁇ 10 mm. (Carbonization process 536)
  • the carbonization step 136 there are a first example of a carbonization step for semi-carbonizing the dried product 114 and a second example of a carbonization step for carbonizing the dried product 114, which are appropriately used.
  • the granulated material 516 is semi-carbonized or carbonized.
  • the fuel pellets 51 are firmly solidified, so that the water resistance as fuel pellets is improved.
  • heat treatment in the form of the granulated product 516, it is possible to carbonize without burning even if the fiber burns.
  • FIG. 12B shows the configuration of the biomass fueling system according to the sixth embodiment, which is a preferred embodiment of the biomass fueling system according to the present invention.
  • the biomass fueling system 62 promotes elution of substances that cause scale such as sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass contained in the raw material 611.
  • the crushing device 621 that crushes the raw material 611 made of palm empty fruit bunches and crushes the fiber to crush the product 612, and the crushing product 612 is washed to cause the scale contained in the crushed product 612.
  • the dried product 614 whose water content is reduced by 624 is granulated into a fuel shape, and the granulated device 628 is made into a granulated product 616, and the granulated product 616 is converted into charcoal.
  • the pellets 616 containing the chlorine, sulfur and other substances that cause corrosion when using the boiler are reduced, and the amount of heat per unit weight is increased.
  • 61, and a measuring / mixing device 629 that measures the heat quantity and brittleness of the fuel pellet 61 and mixes the fuel pellet 61 so that the quality of the product is constant.
  • FIG. 13B shows a flowchart showing the flow of the sixth method for producing biomass-derived fuel pellets according to the present invention.
  • the sixth production method 63 for biomass-derived fuel pellets is the same as the process described in the fifth production method 53 for biomass-derived fuel pellets except for the carbonization step 636, and the crushing step 631.
  • the cleaning process 632, the drying process 634, the granulation process 638, and the measurement / mixing process 639 correspond to the crushing process 531, the cleaning process 532, the drying process 534, the granulation process 538, and the measurement / mixing process 539, respectively.
  • Carbonization step 636 Carbonization step 636
  • the granulated product 516 is semi-carbonized or carbonized by blowing steam and heating the granulated product 516.
  • the granulated product 616 is carbonized by the frying device 626.
  • the details of the carbonization step 636 are the same as those of the carbonization step 236, and thus will be omitted.
  • FIG. 12C shows a configuration of the biomass fuel conversion system according to the seventh embodiment, which is a preferred embodiment of the biomass fuel conversion system according to the present invention.
  • the biomass fuel conversion system 72 promotes elution of substances that cause scale such as sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass contained in the raw material 711.
  • the primary crushed product 712 is made by crushing the raw material 711 made of palm empty fruit bunches and grinding the fibers, thereby cleaning the primary crushed product 712 and the primary crushed product 712.
  • the causative substance of the scale is reduced, the cleaning device 722 that makes the cleaning product 713, the drying device 724 that reduces the moisture content of the cleaning product 713 to make the dry product 714, and the moisture content is reduced by the drying device 724.
  • the dried product 714 is crushed to a size suitable for granulation, and is crushed by a secondary crushing device 725 to make a secondary crushed product 715 and a secondary crushing device 725.
  • a secondary crushing device 725 By granulating the secondary crushed material 715 into the shape of fuel to make the granulated material 716 and carbonizing the granulated material 716, the moisture content is further reduced and the granulated material 716 includes a carbonizer 726 that reduces the amount of substances that cause corrosion when using a boiler such as chlorine and sulfur and increases the amount of heat per unit weight to fuel pellet 71, and the amount of heat and brittleness of fuel pellet 71. And a measurement / mixing device 729 for mixing the fuel pellets 71 so that the quality of the product becomes constant. (Seventh manufacturing method 73 of biomass-derived fuel pellets)
  • FIG. 13C shows a flowchart showing the flow of the seventh method for producing biomass-derived fuel pellets according to the present invention.
  • the seventh method 73 for producing biomass-derived fuel pellets performs a secondary crushing step 735 between the drying step 534 and the granulation step 538 in the fifth method 53 for producing biomass-derived fuel pellets.
  • processes other than the secondary crushing process 735 are the same as the processes described in the fifth method 53 for producing biomass-derived fuel pellets, and include a crushing process 731, a cleaning process 732, a drying process 734, a granulation process 738, and a carbonization process.
  • 736 and the measurement / mixing process 739 correspond to the crushing process 531, the cleaning process 532, the drying process 534, the granulation process 538, the carbonization process 536, and the measurement / mixing process 539, respectively.
  • the secondary crushing step 735 secondary crushing is performed on the dried product 714 whose moisture content has been reduced by the drying step 734. Since the size of the hole provided in the ring die of the ring die type granulator used in the granulation step 738 performed thereafter is ⁇ 6 mm or ⁇ 8 mm, the secondary crushing step is performed so that the hole can be easily inserted and compressed. In 735, it is pulverized to a fiber length of about 10 mm. The pulverized secondary crushed material 715 is granulated in the granulation step 738 and then carbonized in the carbonization step 736, whereby the uniformly carbonized biomass-derived fuel pellets 71 are obtained.
  • the biomass-derived fuel pellets 71 are finely pulverized and then firmly solidified, the biomass-derived fuel pellets 71 have high water resistance and excellent pulverizability, so that biomass for all fuels used when co-firing other fuels is used. It is possible to improve the mixed firing rate, which is a ratio in terms of calorie conversion. (Evaluation test of mixed firing rate)
  • test of grindability was performed.
  • the test is prepared by collecting the sample by the specified method and air-drying, or pre-pulverizing the reduced product to a predetermined size or less, and then pulverizing and screening to a predetermined size. This is the test sample.
  • HGI Hard Glove Grinding Index
  • Biomass-derived fuel pellets 71 of the seventh example were prepared, and HGI, which is a grindability index of the biomass-derived fuel pellets 71, was obtained by the test method described above. (Evaluation of mixed firing rate)
  • the HGI of the biomass-derived fuel pellet 71 of the seventh example was 44. This value is a large value compared to the standard HGI values for various fuel pellets: 16 for wood chips, 14 for raw material PKS (palm palm shell), 25 for PKS, 22 for wood pellets. . This indicates that the biomass-derived fuel pellets 71 of the seventh embodiment are more easily pulverized than the various fuel pellets. At least, according to the biomass-derived fuel pellets 71 of the seventh embodiment, the mixed combustion rate is improved. Turned out to be. (Calorie measurement)
  • the higher calorific value of the biomass-derived fuel pellet 71 of the seventh example was measured with a bomb calorimeter. (Evaluation of calories)
  • the biomass-derived fuel pellet is required to have a calorific value of 18 MJ / kg or more and 27 MJ / kg or less, more preferably 20 MJ / kg or more.
  • the calorific value of the pellet 71 was measured as a calorific value of 22.1 MJ / kg.
  • the fuel pellet has a large calorific value and can improve the co-firing rate, which is the ratio of the biomass in terms of calorie conversion to the total fuel used when co-firing biomass and other fuels. Can provide. (Biomass fuel conversion system 82 according to the eighth embodiment)
  • FIG. 14A shows a configuration of a biomass fuel conversion system according to the eighth embodiment, which is a preferred embodiment of the biomass fuel conversion system according to the present invention.
  • the biomass fuel conversion system A2 promotes elution of substances that cause scale such as sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass contained in the raw material A11.
  • the pressing device A30 to be the pressed product A19 and the compressed product A19 are washed to reduce the causative substances of the scale contained in the pressed product A19
  • biomass fuel conversion system A2 The details of the biomass fuel conversion system A2 will be described in a method A3 for producing biomass bunch-derived fuel pellets described later. (Eighth production method A3 of biomass-derived fuel pellets)
  • the eighth method A3 for producing palm empty fruit bunch-derived fuel pellets according to the present invention includes sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass contained in the raw material A11.
  • the moisture content is further reduced, and boilers such as chlorine and sulfur contained in the dried product A14
  • the steps other than the pressing step A40 are the same as the steps described in the first method 13 for producing biomass-derived fuel pellets, and the washing step A32, the drying step A34, the carbonization step A36, the granulation step A3A, the measurement and mixing step A39 are These correspond to the cleaning step 132, the drying step 134, the carbonization step 136, the granulation step 138, and the measurement / mixing step 139, respectively.
  • the cleaning step A32 the pressed product A19 may be cleaned in multiple stages.
  • the raw material A11 is squeezed by the squeezing device A30, the plant cells in the raw material A11 are destroyed, a certain amount of water contained in the raw material A11 is removed, and the cause of scale such as potassium in the raw material A11 Elution of the substance is promoted. At this stage, it is desirable that the moisture contained in the raw material A11 is reduced by 40% or more in mass.
  • the pressing device A30 for example, a known screw-type pressing machine, a hydraulic press machine, or the like can be used. (Biomass fuel conversion system B2 according to the ninth embodiment)
  • the biomass fuel conversion system B2 promotes elution of substances that cause scale such as sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass contained in the raw material B11.
  • the pressing device B30 that makes the compressed product B19 and the compressed product B19 are washed to reduce the causative substances of the scale contained in the compressed product B19, and wash it.
  • a cleaning device B22 to make the product B13, a drying device B24 to reduce the moisture content of the cleaning product B13 to make the dried product B14, and a moisture content to be reduced by the drying device B24 after reducing the moisture content by the drying device B24 Granulate the dried product B14 having decreased in the form of fuel into a granulated product B16, and carbonize the granulated product B16 As a result, the fuel pellet B1 further reduces the moisture content, reduces substances that cause corrosion when using a boiler such as chlorine and sulfur, and increases the amount of heat per unit weight.
  • a carbonizing device B26, and a measuring / mixing device B29 that measures the amount of heat and brittleness of the fuel pellet B1 and mixes the fuel pellet B1 so that the quality of the product is constant. Note that the measurement itself by the measurement / mixing device B29 may be omitted.
  • the ninth production method B3 of the biomass-derived fuel pellet is similar to the compression step A40 to the drying step A34 in the eighth production method A83 of the biomass-derived fuel pellet, from the pressing step B40 to the drying step B34. is there.
  • the ninth production method B3 is different from the eighth production method A3 in that there is a granulation step B38 after the drying step B34, followed by a carbonization step B36.
  • the measurement / mixing step B39 corresponds to the measurement / mixing step A39.
  • the biomass fuel conversion system C2 promotes elution of substances that cause scale such as sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass contained in the raw material C11.
  • the crushing device C21 that makes the crushed material C12 by crushing the raw material C11 made of palm empty fruit bunches
  • the pressing device C30 that makes the compressed product C19 by squeezing the crushed material C12, and the compressed product C19 are washed.
  • the causative substance of the scale contained in the pressed product C19 is reduced, the cleaning device C22 to make the cleaning product C13, the drying device C24 to reduce the moisture content of the cleaning product C13 to the dry product C14, and the drying After the moisture content is reduced by the device C24, the moisture content is further reduced by carbonizing the dried product C4.
  • the carbonized device 826 that reduces the substances that cause corrosion when using boilers such as chlorine and sulfur contained in the dried product C4, and converts the carbonized component C17 into a carbide C17 with an increased amount of heat per unit weight;
  • a granulating device C28 for granulating the fuel pellets C1 and a measuring / mixing device C29 for measuring the heat quantity and brittleness of the fuel pellets C1 and mixing the fuel pellets C1 so that the quality of the product is constant. I have. Note that the measurement itself by the measurement / mixing device C29 may be omitted.
  • the tenth production method C3 of the palm empty fruit bun derived fuel pellet according to the present invention includes sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass contained in the raw material C11.
  • the crushing process C31 which makes the crushed material C12 by crushing the raw material C11 and the pressing process C40 which makes the squeezed product C19 by squeezing the crushed material C12 so as to promote the elution of the substances causing the scale such as
  • the causative substance of the scale contained in the compressed product C19 is reduced, and the cleaning process C32 to make the cleaning product C13, and the moisture content of the cleaning product C13 is reduced to make the dry product C14.
  • the moisture content is further reduced by carbonizing the dried product C14.
  • Carbonization process C36 which reduces the substance which causes corrosion at the time of boiler use, such as chlorine and sulfur contained in dry matter C14, and makes carbon C17 which increased the calorie
  • the pressing step C40, the washing step C32, the drying step C34, the carbonization step C36, the granulation step C38, the measurement and mixing step C39 are the same as in the eighth production method 83 for biomass-derived fuel pellets, respectively.
  • the crushing step C31 the raw material C11 is crushed by the crushing device C21 so as to have a size suitable for processing by the pressing device C30.
  • the crushed material C19 generated in the crushing step C31 is supplied to the pressing step C40.
  • This crushing device C21 is the same as the crushing device 121 of the biomass fuel conversion system 12 according to the first embodiment. (Biomass fuel conversion system D2 according to the eleventh embodiment)
  • the biomass fuel conversion system D2 promotes elution of substances that cause scale such as sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass contained in the raw material D11.
  • crushing raw material D11 consisting of palm empty fruit bunches, crushing fibers, crushing device D21 to crushed material D12, squeezing crushed material D12, squeezing device D30 to squeezed product D19
  • the causative substance of the scale contained in the compressed product D19 is reduced, and the cleaning device D22 that makes the cleaned product D13, and the moisture content of the cleaned product D13 is reduced to the dry product D14.
  • the dried product D4 is granulated in the form of fuel, thereby forming the granulated product D1.
  • the moisture content is further reduced, and substances contained in the granulated product D16 that cause corrosion when using boilers such as chlorine and sulfur.
  • a carbonizer D26 that reduces and increases the amount of heat per unit weight of fuel pellets D1, and measures the amount of heat and brittleness of the fuel pellets D1, and mixes the fuel pellets D1 so that the quality of the product is constant -It has a mixing device D29. Note that the measurement itself by the measurement / mixing device D29 may be omitted.
  • FIG. 15D is a flowchart showing the flow of the eleventh method for producing palm empty fruit bunch-derived fuel pellets according to the present invention.
  • the crushing step D31 to the drying step D34 are dried from the crushing step C31 in the tenth production method C3 for biomass-derived fuel pellets. Same as step C34.
  • the eleventh production method D3 is different from the tenth production method C3 in that there is a granulation step D36 after the drying step D34, and then a carbonization step D38 is performed.
  • the measurement / mixing step D39 corresponds to the measurement / mixing step C39.
  • the biomass fuel conversion system E2 heats the raw material E11 made of palm palm stems and leaves to make a heated product E11a that is easy to process, and sodium, potassium contained in the raw material E11, Squeezing device E19 by squeezing raw material E11 made of palm palm leaves so as to promote elution of substances that cause scale such as phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, glass, etc.
  • the causative substance of the scale contained in the compressed product E19 is reduced, and the cleaning device E22 to make the cleaned product E13, and the moisture content of the cleaned product E13 is reduced to reduce the dried product E14.
  • the drying device E24 and the drying device E24 to reduce the water content and then carbonize the dried product E14. This further reduces the moisture content, reduces substances that cause corrosion when using boilers such as chlorine and sulfur contained in the dried product E14, and carbonizes the carbonized product E17 with an increased amount of heat per unit weight.
  • the device E26, the granulating device E28 which granulates the carbide E17 into the shape of the fuel, and makes the fuel pellet E1, and the fuel pellet E1 measures the heat quantity and brittleness of the fuel pellet E1 so that the quality of the product becomes constant.
  • a measuring / mixing device E29 a measuring / mixing device E29. Note that the measurement itself by the measurement / mixing device E29 may be omitted.
  • the twelfth production method E3 of biomass-derived fuel pellets according to the present invention includes the steps from the washing step E32 to the granulation step E38 in the eighth production method A3 of biomass-derived fuel pellets shown in FIG. 14A. This is the same as the washing step A32 to the granulation step A38.
  • the twelfth manufacturing method E3 there is a heating step E40A before the pressing step E40, and the heating step E40A heats the raw material E11 to obtain a heated item E11a, and the pressing step E40 presses the heated item E11a.
  • the measurement / mixing step E39 corresponds to the measurement / mixing step A39.
  • the heating device E30A for example, a steamer, a known dryer that blows hot air, or the like can be used, and the raw material E11 is heated and softened to easily squeeze out moisture from the raw material E11.
  • the raw material is heated by, for example, storing the raw material in a container maintained at a temperature of 100 degrees Celsius to 200 degrees Celsius for 10 minutes to 1 hour.
  • the biomass fueling system F2 includes a heating device E30A that makes a heated material E11a easy to process by heating a raw material F11 made of palm palm foliage, and sodium, potassium, and phosphorus contained in the raw material F11.
  • Squeezing device F30 to squeeze the raw material F11 made of palm palm foliage so as to promote elution of substances that cause scale such as zinc, lead, copper, aluminum, calcium, sulfur, glass, etc.
  • cleaning apparatus F22 which reduces the causative substance of the scale contained in the pressing material F19 by wash
  • the dried product F14 is granulated in the shape of fuel to produce a granulated product F16, and the granulated product F16 is carbonized to further reduce the moisture content and to be contained in the granulated product F16.
  • the carbonization device F26 that reduces the substances that cause corrosion when using boilers such as chlorine and sulfur and increases the amount of heat per unit weight to the fuel pellet F1, and measures the heat amount and brittleness of the fuel pellet F1
  • a measurement / mixing device F29 for mixing the fuel pellets F1 so that the quality of the product is constant. Note that the measurement itself by the measurement / mixing device F29 may be omitted.
  • the thirteenth production method F3 of biomass-derived fuel pellets according to the present invention includes a washing process F32 to a granulation process F38 in the ninth production method B3 of biomass-derived fuel pellets shown in FIG. 14B. This is the same as the washing step B32 to the granulation step B38.
  • the thirteenth manufacturing method F3 has a heating step F40A before the pressing step F40, and heats the raw material F11 in the heating step F40A to obtain a heating item F11a, and the pressing step F40 presses the heating item E11a. It is different from Nine manufacturing method B3.
  • the measurement / mixing step F39 corresponds to the measurement / mixing step B39.
  • carbonization apparatuses A26, B26, C26 for carbonizing a raw material with superheated steam, D26, E26, and F26 can be replaced with those similar to the carbonization apparatus 226 in the second embodiment.
  • the eighth to thirteenth production methods A3, B3, C3, D3, E3, and F3 each include a carbonization step of carbonizing the raw material in high-temperature oil.
  • the drying apparatuses A24, C24, and E24 and the carbonization apparatuses A26, C26, and E26 are connected to the third embodiment. It can replace with the drying apparatus 334, the secondary crushing apparatus 335, and the carbonization apparatus 336 in the biomass fuel conversion system 32 which concerns on embodiment.
  • the method for producing biomass-derived fuel pellets includes a secondary crushing step in which the dried product is crushed to a size suitable for granulation by a secondary crushing device and then carbonized between the drying step and the carbonization step. It becomes.
  • the carbonization apparatuses A26, C26, and E26 and the granulation apparatuses A28, C28, and E28 are The carbonization apparatus 426, the secondary crushing apparatus 427, and the granulation apparatus 428 in the biomass fuel system 42 according to the fourth embodiment can be replaced.
  • the biomass-derived fuel pellet manufacturing method includes a secondary crushing step of crushing the carbide to a size suitable for granulation by a secondary crushing device between the carbonization step and the granulation step.
  • the drying devices B24, D24, and F24 and the granulating devices B28, D28, and F28 are replaced with the first one. It can replace with the drying apparatus 734, the secondary crushing apparatus 735, and the carbonization apparatus 736 in the biomass fuel conversion system 72 which concerns on seven embodiment.
  • the method for producing biomass-derived fuel pellets includes a secondary crushing step of crushing the dried product to a size suitable for granulation by a secondary crushing device between the drying step and the granulation step.
  • a biomass-derived fuel pellet, a biomass fuel conversion system, and a biomass-derived fuel pellet manufacturing method according to the present invention fuel a palm empty fruit bunch that has been treated as waste in a palm product manufacturing factory or the like. Applicable to usage.
  • washing device 624 ... drying device, 628 ... granulating device, 626 ... carbonization device, 629 ... measuring / mixing device 63 ... sixth manufacturing method 631 of biomass-derived fuel pellets ... crushing step, 632 ... washing Step, 634 ... Drying step, 638 ... Granulation step, 636 ... Carbonization step, 639 ... Measurement / mixing step 72 ... Biomass Materialization system 721 ... primary crushing device, 722 ... cleaning device, 724 ... drying device, 725 ... secondary crushing device, 728 ... granulating device, 726 ... carbonization device, 729 ... measuring / mixing device 73 ... biomass-derived fuel pellets Seventh manufacturing method 731 ... primary crushing step, 732 ...
  • Measuring Mixing device D3 Eleventh production method of biomass-derived fuel pellets
  • D31 crushing step
  • D40 pressing step
  • D32 washing step
  • D34 ... drying step
  • D38 ... granulating step
  • D36 carbonizing step
  • D39 ... measuring Mixing step
  • E2 ... Biomass fuel system
  • E30A Heating device
  • E22 ... Cleaning device
  • E26 ... Carbonization device
  • E29 Measuring / mixing device
  • E29 Measuring / Mixer
  • E3 Twelfth manufacturing method for biomass-derived fuel pellets
  • E40A heating step

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Provided are: biomass-derived fuel pellets which have a high calorific value and rarely deteriorate boilers; a system for utilizing a biomass as a fuel source; and a method for producing biomass-derived fuel pellets. The following steps are included: a crushing step 131 of crushing a raw material 111 composed of palm empty fruit bunches in such a manner that the elution of potassium from the raw material 111 can be promoted, and then mashing the resultant fibers; a washing step 132 of washing a crushed product 112 produced by the crushing in the crushing step 131 with warm water to remove potassium from the crushed product 112; a drying step 134 of reducing the water content in a washed product 113 from which potassium has been removed in the washing step 132 to produce a dried product 114; a carbonization step 136 of removing chlorine from the dried product 114 in which the water content has been reduced in the drying step 134 to further reduce the water content, thereby carbonizing the dried product 114; and a granulation step 138 of granulating a carbonized product 117 that has been treated in the carbonization step 136 in the form of a fuel.

Description

燃料ペレット、及び、バイオマス燃料化システム、並びに、バイオマス由来燃料ペレットの製造方法Fuel pellet, biomass fuel conversion system, and method for producing biomass-derived fuel pellet
 本発明は、例えばパーム製品製造工場で廃棄されるパーム空果房のようなバイオマスを原料とする燃料ペレット、及び、バイオマス燃料化システム、並びに、バイオマス由来燃料ペレットの製造方法に関する。 The present invention relates to a fuel pellet made from biomass such as palm empty fruit bunch discarded at a palm product manufacturing plant, a biomass fuel conversion system, and a method for producing a biomass-derived fuel pellet.
 従来、パームオイル製造工場において、パーム空果房のようなパームヤシ残渣の多くは、使用されず、廃棄されていた。そこで、特許文献1に開示されるような植物由来バイオマスの乾燥方法およびバイオマス燃料の製造方法が提案された。しかし、この製造方法によって製造された燃料に含まれるカリウムや塩素等は、ボイラーの配管を詰まらせたり、腐食させたりして、ボイラー設備の劣化を早めていた。 Conventionally, most palm palm residues such as palm empty fruit bunches are not used and discarded in palm oil manufacturing factories. Therefore, a method for drying plant-derived biomass and a method for producing biomass fuel as disclosed in Patent Document 1 have been proposed. However, potassium, chlorine, etc. contained in the fuel produced by this production method clogged or corroded the boiler piping, and accelerated the deterioration of the boiler equipment.
 また、廃棄物を再利用して製造された燃料ペレットの中には、発熱量が小さいために、発熱量の大きい他の燃料に混合しなければ使用できないものもあった。 Also, some of the fuel pellets produced by reusing the waste have a low calorific value, and some of them cannot be used unless they are mixed with other fuels having a large calorific value.
 他方で、バイオマスと他の燃料とを混焼する場合、例えば、石炭と共にミル(粉砕機)に投入されたバイオマス燃料がローラで粉砕されずに残ると、搬送用の空気の通過を妨げることが原因でミル内の粉砕物の保有量が増加し、それによってミル入口とミル内部の圧力差が増大し、燃料の供給に支障が出るという問題があった。 On the other hand, when biomass and other fuels are co-fired, for example, if biomass fuel that has been put into a mill (pulverizer) together with coal remains without being pulverized by a roller, it may prevent passage of air for conveyance As a result, the amount of pulverized material in the mill increases, which increases the pressure difference between the mill inlet and the mill, which hinders fuel supply.
特開2004-209462号公報JP 2004-209462 A
 本発明の目的の一は、発熱量が大きく、ボイラーを劣化させ難く、しかもバイオマスと他の燃料を混焼する際の全使用燃料に対するバイオマスの熱量換算による割合である混焼率を向上させることができる、燃料ペレット、及び、バイオマス燃料化システム、並びに、バイオマス由来燃料ペレットの製造方法を提供することにある。 One of the objects of the present invention is that the calorific value is large, it is difficult to deteriorate the boiler, and the co-firing rate, which is the ratio by the calorie conversion of the biomass to the total fuel used when co-firing biomass and other fuels, can be improved. It is to provide a fuel pellet, a biomass fuel conversion system, and a method for producing a biomass-derived fuel pellet.
 本発明の第1の側面に係る燃料ペレットは、ボイラー使用時にスケールの原因となる物質及び/又は腐食の原因となる物質の含有量を低減させたことを特徴としている。 The fuel pellet according to the first aspect of the present invention is characterized in that the content of a substance causing scale and / or a substance causing corrosion is reduced when a boiler is used.
 また、本発明の第2の側面に係る燃料ペレットは、発熱量が20MJ/kg以上であることを特徴としている。 The fuel pellet according to the second aspect of the present invention is characterized in that the calorific value is 20 MJ / kg or more.
 さらにまた、本発明の第3の側面に係る燃料ペレットは、前記バイオマスがパーム空果房であることを特徴としている。 Furthermore, the fuel pellet according to the third aspect of the present invention is characterized in that the biomass is a palm empty fruit bunch.
 さらにまた、本発明の第4の側面に係る燃料ペレットは、前記スケールの原因となる物質が、少なくともナトリウム、カリウムのいずれか一であり、前記腐食の原因となる物質が、少なくとも塩素であることを特徴としている。 Furthermore, in the fuel pellet according to the fourth aspect of the present invention, the substance causing the scale is at least one of sodium and potassium, and the substance causing the corrosion is at least chlorine. It is characterized by.
 さらにまた、本発明の第5の側面に係る燃料ペレットは、前記ナトリウムの含有量が、0mg/kg以上2000mg/kg以下であり、前記カリウムの含有量が、0mg/kg以上2000mg/kg以下であり、前記塩素の含有量が、0mg/kg以上1000mg/kg以下であることを特徴としている。 Furthermore, in the fuel pellet according to the fifth aspect of the present invention, the sodium content is 0 mg / kg or more and 2000 mg / kg or less, and the potassium content is 0 mg / kg or more and 2000 mg / kg or less. And the chlorine content is 0 mg / kg or more and 1000 mg / kg or less.
 さらにまた、本発明の第6の側面に係る燃料ペレットは、水分含有率が0%以上10%以下であることを特徴としている。 Furthermore, the fuel pellet according to the sixth aspect of the present invention is characterized in that the moisture content is 0% or more and 10% or less.
 さらにまた、本発明の第7の側面に係る燃料ペレットは、破砕された原料を常温水又は温水で洗浄することにより原料中の、スケールの原因となる物質の含有量を低減させ、該スケールの原因となる物質の含有量が低減した原料の水分含有率を低下させ、該水分含有率が低下した原料をさらに破砕し、該破砕された原料を燃料の形状に造粒した後、炭化することにより、バイオマスと他の燃料を混焼する際の全使用燃料に対するバイオマスの熱量換算による割合である混焼率を向上させたことを特徴としている。 Furthermore, the fuel pellet according to the seventh aspect of the present invention reduces the content of substances that cause scale in the raw material by washing the crushed raw material with room temperature water or hot water, Reduce the water content of the raw material with a reduced content of the causative substance, further crush the raw material with the reduced water content, granulate the crushed raw material into a fuel shape, and then carbonize Thus, it is characterized in that the co-firing rate, which is the ratio of the biomass in terms of calorie conversion to the total fuel used when co-firing biomass and other fuels, is improved.
 さらにまた、本発明の第8の側面に係るバイオマス燃料化システムは、バイオマスからなる原料を、原料中のスケールの原因となる物質の溶出を促すよう、破砕する破砕装置と、前記破砕装置により破砕された原料を、常温水又は温水で洗浄することにより原料中の、前記スケールの原因となる物質の含有量を低減させる洗浄装置と、前記洗浄装置で前記スケールの原因となる物質の含有量が低減した原料の水分含有率を低下させる乾燥装置と、前記乾燥装置により水分含有率の低下した原料中の、腐食の原因となる物質の含有量を低減させ、水分含有率をさらに低下させ、前記原料を炭化させる炭化装置、又は前記乾燥装置により水分含有率の低下した原料を燃料の形状に造粒する造粒装置と、前記炭化装置によって処理された原料を燃料の形状に造粒する造粒装置、又は前記造粒装置により造粒された原料中の、腐食の原因となる物質の含有量を低減させ、水分含有率をさらに低下させ、前記原料を炭化させる炭化装置とを備えることを特徴としている。 Furthermore, the biomass fuel conversion system according to the eighth aspect of the present invention includes a crushing device for crushing a raw material made of biomass so as to promote elution of substances that cause scale in the raw material, and crushing by the crushing device. A cleaning device that reduces the content of the substance causing the scale in the raw material by washing the raw material with normal temperature water or warm water, and the content of the substance causing the scale in the cleaning device is A drying device that reduces the moisture content of the reduced raw material, and a content of a substance that causes corrosion in the raw material whose moisture content is reduced by the drying device, further reducing the moisture content, A carbonizing device for carbonizing the raw material, or a granulating device for granulating a raw material having a reduced water content by the drying device into a fuel shape, and a raw material treated by the carbonizing device The content of the substance causing corrosion is reduced in the granulator for granulating into the shape of the above, or in the raw material granulated by the granulator, the moisture content is further reduced, and the raw material is carbonized. And a carbonizing device.
 さらにまた、本発明の第9の側面に係るバイオマス燃料化システムは、前記炭化装置が、原料を蒸気中で加熱し、半炭化させる半炭化装置又は原料を油中で加熱し、炭化させるフライ装置であることを特徴としている。 Furthermore, in the biomass fuel conversion system according to the ninth aspect of the present invention, the carbonization apparatus heats the raw material in steam and semi-carbonizes it, or the frying apparatus heats the raw material in oil and carbonizes it. It is characterized by being.
 さらにまた、本発明の第10の側面に係るバイオマス燃料化システムは、前記炭化装置が、原料を油中で加熱し、炭化させるフライ装置であることを特徴としている。 Furthermore, the biomass fuel conversion system according to the tenth aspect of the present invention is characterized in that the carbonizing apparatus is a frying apparatus that heats and carbonizes a raw material in oil.
 さらにまた、本発明の第11の側面に係るバイオマス燃料化システムは、前記炭化装置が、原料を蒸気中で加熱し、半炭化させる半炭化装置と、原料を油中で加熱し、炭化させるフライ装置とからなり、さらに、前記半炭化装置と前記フライ装置とにより炭化された原料を混ぜ合わせる混合装置を備えることを特徴としている。 Furthermore, in the biomass fuel conversion system according to the eleventh aspect of the present invention, the carbonization device heats the raw material in steam and semi-carbonizes it, and the fly that heats and carbonizes the raw material in oil. And a mixing device for mixing raw materials carbonized by the semi-carbonizing device and the frying device.
 さらにまた、本発明の第12の側面に係るバイオマス由来燃料ペレットの製造方法は、バイオマスからなる原料を、原料中の、スケールの原因となる物質の溶出を促すよう、破砕する破砕工程と、前記破砕工程により破砕された原料を、常温水又は温水で洗浄することにより原料中のスケールの原因となる物質の含有量を低減させる洗浄工程と、前記洗浄工程で、前記スケールの原因となる物質の含有量が低減した原料の水分含有率を低下させる乾燥工程と、前記乾燥工程により水分含有率の低下した原料中の、腐食の原因となる物質の含有量を低減させ、水分含有率をさらに低下させ、前記原料を炭化させる炭化工程、又は前記乾燥工程により水分含有率の低下した原料を燃料の形状に造粒する造粒工程と、前記炭化工程によって処理された原料を燃料の形状に造粒する造粒工程、又は前記造粒工程により造粒された原料中の、腐食の原因となる物質の含有量を低減させ、水分含有率をさらに低下させ、前記原料を炭化させる炭化工程とを含むことを特徴としている。 Furthermore, the method for producing a biomass-derived fuel pellet according to the twelfth aspect of the present invention includes a crushing step of crushing a raw material made of biomass so as to promote elution of substances that cause scale in the raw material, The raw material crushed in the crushing process is washed with normal temperature water or warm water to reduce the content of the substance causing the scale in the raw material, and in the washing process, the substance causing the scale A drying step for reducing the moisture content of the raw material whose content has been reduced, and a reduction in the content of substances that cause corrosion in the raw material whose moisture content has been reduced by the drying step, further reducing the moisture content A carbonization step for carbonizing the raw material, or a granulation step for granulating the raw material having a reduced water content by the drying step into a fuel shape, and the carbonization step. Granulating the raw material in the form of fuel, or reducing the content of substances that cause corrosion in the raw material granulated by the granulating step, further reducing the moisture content, And a carbonization step of carbonizing the raw material.
 さらにまた、本発明の第13の側面に係るバイオマス由来燃料ペレットの製造方法は、前記炭化工程が、原料を蒸気中で加熱し、半炭化させる半炭化工程であることを特徴としている。 Furthermore, the biomass-derived fuel pellet manufacturing method according to the thirteenth aspect of the present invention is characterized in that the carbonization step is a semi-carbonization step in which the raw material is heated and semi-carbonized.
 さらにまた、本発明の第14の側面に係るバイオマス由来燃料ペレットの製造方法は、前記炭化工程が、原料を油中で加熱し、炭化させるフライ工程であることを特徴としている。 Furthermore, the biomass-derived fuel pellet manufacturing method according to the fourteenth aspect of the present invention is characterized in that the carbonization step is a frying step in which the raw material is heated in oil and carbonized.
 さらにまた、本発明の第15の側面に係るバイオマス由来燃料ペレットの製造方法は、前記炭化工程が、原料を蒸気中で加熱し、半炭化させる半炭化工程と、原料を油中で加熱し、炭化させるフライ工程とからなり、さらに、前記半炭化工程と前記フライ工程とにより炭化された原料を混ぜ合わせる混合工程を含むことを特徴としている。 Furthermore, in the method for producing a biomass-derived fuel pellet according to the fifteenth aspect of the present invention, the carbonization step comprises heating a raw material in steam to semi-carbonize, and heating the raw material in oil. And a mixing step of mixing the raw materials carbonized by the semi-carbonizing step and the frying step.
 本発明によれば、発熱量が大きく、ボイラーを劣化させ難く、バイオマスと他の燃料を混焼する際の全使用燃料に対するバイオマスの熱量換算による割合である混焼率を向上させることができる、燃料ペレット、及び、バイオマス燃料化システム、並びに、バイオマス由来燃料ペレットの製造方法を提供できる。 According to the present invention, the fuel pellet has a large calorific value, is difficult to deteriorate the boiler, and can improve the co-firing rate, which is a ratio in terms of the calorific value of biomass with respect to the total fuel used when co-firing biomass and other fuels. And a biomass fuel conversion system and a method for producing biomass-derived fuel pellets.
本発明に係るバイオマス燃料化システムの好適な実施形態であって、図1Aは、第一実施形態に係るバイオマス燃料化システムの構成図、図1Bは、第二実施形態に係るバイオマス燃料化システムの構成図、図1Cは、第三実施形態に係るバイオマス燃料化システムの構成図、図1Dは、第四実施形態に係るバイオマス燃料化システムの構成図である。It is suitable embodiment of the biomass fuel conversion system which concerns on this invention, Comprising: FIG. 1A is a block diagram of the biomass fuel conversion system which concerns on 1st embodiment, FIG. 1B of the biomass fuel conversion system which concerns on 2nd embodiment FIG. 1C is a configuration diagram of a biomass fueling system according to the third embodiment, and FIG. 1D is a configuration diagram of a biomass fueling system according to the fourth embodiment. 本発明に係る燃料ペレットの製造方法の流れを示すフローチャートであって、図2Aは、第一製造方法の流れを示すフローチャート、図2Bは、第二製造方法の流れを示すフローチャート、図2Cは、第三製造方法の流れを示すフローチャート、図2Dは、第四製造方法の流れを示すフローチャートである。FIG. 2A is a flowchart showing a flow of a fuel pellet manufacturing method according to the present invention, FIG. 2A is a flowchart showing a flow of a first manufacturing method, FIG. 2B is a flowchart showing a flow of a second manufacturing method, and FIG. The flowchart which shows the flow of a 3rd manufacturing method, FIG. 2D is a flowchart which shows the flow of a 4th manufacturing method. 本実施の形態に係る破砕機の模式図である。It is a schematic diagram of the crusher which concerns on this Embodiment. 本実施の形態に係る摩砕機の模式図である。It is a schematic diagram of the grinder which concerns on this Embodiment. 本実施の形態に係る洗浄槽の模式図である。It is a schematic diagram of the washing tank which concerns on this Embodiment. 本実施の形態に係る乾燥機の模式図である。It is a schematic diagram of the dryer which concerns on this Embodiment. 本実施の形態に係る炭化装置システムの模式図である。It is a schematic diagram of the carbonization apparatus system which concerns on this Embodiment. 本実施の形態に係るリングダイ式造粒機の模式図である。It is a schematic diagram of the ring die type granulator which concerns on this Embodiment. 本実施の形態に係るフライヤーの模式図である。It is a schematic diagram of the fryer which concerns on this Embodiment. 摩砕後のパーム空果房の状態を示す写真である。It is a photograph which shows the state of the palm empty fruit bunch after grinding. 粗破砕後のパーム空果房の状態を示す写真である。It is a photograph which shows the state of the palm empty fruit bunch after rough crushing. 本発明に係るバイオマス燃料化システムの好適な実施形態であって、図12Aは、第五実施形態に係るバイオマス燃料化システムの構成図、図12Bは、第六実施形態に係るバイオマス燃料化システムの構成図、図12Cは、第七実施形態に係るバイオマス燃料化システムの構成図である。FIG. 12A is a configuration diagram of a biomass fuel conversion system according to the fifth embodiment, and FIG. 12B is a configuration of the biomass fuel conversion system according to the sixth embodiment. A block diagram and FIG. 12C are block diagrams of the biomass fuel conversion system which concerns on 7th embodiment. 本発明に係る燃料ペレットの製造方法の流れを示すフローチャートであって、図13Aは、第五製造方法の流れを示すフローチャート、図13Bは、第六製造方法の流れを示すフローチャート、図13Cは、第七製造方法の流れを示すフローチャートである。FIG. 13A is a flowchart showing a flow of a fifth manufacturing method, FIG. 13B is a flowchart showing a flow of a sixth manufacturing method, and FIG. 13C is a flowchart showing a flow of a fuel pellet manufacturing method according to the present invention. It is a flowchart which shows the flow of a 7th manufacturing method. 本発明に係るバイオマス燃料化システムの好適な実施形態であって、図14Aは、第八実施形態に係るバイオマス燃料化システムの構成図、図14Bは、第九実施形態に係るバイオマス燃料化システムの構成図、図14Cは、第十実施形態に係るバイオマス燃料化システムの構成図、図14Dは、第十一実施形態に係るバイオマス燃料化システムの構成図である。FIG. 14A is a configuration diagram of a biomass fuel conversion system according to the eighth embodiment, and FIG. 14B is a configuration of the biomass fuel conversion system according to the ninth embodiment. FIG. 14C is a configuration diagram of the biomass fueling system according to the tenth embodiment, and FIG. 14D is a configuration diagram of the biomass fueling system according to the eleventh embodiment. 本発明に係る燃料ペレットの製造方法の流れを示すフローチャートであって、図15Aは、第八製造方法の流れを示すフローチャート、図15Bは、第九製造方法の流れを示すフローチャート、図15Cは、第十製造方法の流れを示すフローチャート、図15Dは、第十一製造方法の流れを示すフローチャートである。FIG. 15A is a flowchart showing the flow of the eighth manufacturing method, FIG. 15B is a flowchart showing the flow of the ninth manufacturing method, and FIG. 15C is a flowchart showing the flow of the fuel pellet manufacturing method according to the present invention. FIG. 15D is a flowchart showing the flow of the eleventh manufacturing method. 本発明に係るバイオマス燃料化システムの好適な実施形態であって、図16Eは、第十二実施形態に係るバイオマス燃料化システムの構成図、図16Fは、第十三実施形態に係るバイオマス燃料化システムの構成図である。FIG. 16E is a configuration diagram of a biomass fuel conversion system according to the twelfth embodiment, and FIG. 16F is a biomass fuel conversion according to the thirteenth embodiment. It is a block diagram of a system. 本発明に係る燃料ペレットの製造方法の流れを示すフローチャートであって、図17Eは、第十二製造方法の流れを示すフローチャート、図17Fは、第十三製造方法の流れを示すフローチャート、である。FIG. 17E is a flowchart showing a flow of a twelfth manufacturing method, and FIG. 17F is a flowchart showing a flow of a thirteenth manufacturing method. .
 以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための燃料ペレット、及び、バイオマス燃料化システム、並びに、バイオマス由来燃料ペレットの製造方法を例示するものであって、本発明はそれらを以下のものに特定しない。例えば本発明の燃料ペレットの原料となるバイオマスとしては、パーム空果房(EFB)、パーム椰子の殻(PKS)、果肉ファイバー、パーム椰子の剪定枝、パーム椰子の古木(トランク)、又はファルカタの殻、樹皮(バーク)、ファルカタの剪定枝、ファルカタの古木、或いはユーカリ、アカシア、アブラギリ、マングローブの樹皮(バーク)、木質チップ取得後の心材、剪定枝、或いはバナナの空果房、バナナの剪定枝、バナナの葉、バナナの古木、又はパイナップル、大豆の草部分でなる熱帯植物の廃棄物、又は木片、木皮の木質系廃棄物等が挙げられる。また、本明細書は特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。
(原料111、211、311、411、511、611、711、A11,B11、C11、D11、E11、F11)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a fuel pellet for embodying the technical idea of the present invention, a biomass fuel conversion system, and a method for producing a biomass-derived fuel pellet. Does not identify them as: For example, the biomass used as the raw material for the fuel pellets of the present invention includes palm empty fruit bunches (EFB), palm palm shell (PKS), pulp fiber, palm palm pruned branches, palm palm old tree (trunk), or Falkata Shell, bark, pruned branch of Falkata, old Falkata tree, or Eucalyptus, Acacia, Abragiri, mangrove bark (bark), heartwood after wood chip acquisition, pruned branch, empty fruit bunch of banana, banana pruning Examples include wastes of branches, banana leaves, old banana trees or pineapples, tropical plants made of soybean grass, or wood wastes of wood fragments and bark. Further, the present specification by no means specifies the members shown in the claims to the members of the embodiments. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention unless otherwise specified, and are merely explanations. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are configured by the same member and the plurality of elements are shared by one member. It can also be realized by sharing.
( Raw materials 111, 211, 311, 411, 511, 611, 711, A11, B11, C11, D11, E11, F11)
 後述する第一実施形態から第七実施形態において、原料111、211、311、411、511、611、711はパーム空果房である。また第八実施形態から第十一実施形態では、原料A11,B11、C11、D11、E11、F11は、一般的にパーム空果房等に比べて水分含有量が多いパーム椰子の茎葉である。 In the first embodiment to the seventh embodiment described later, the raw materials 111, 211, 311, 411, 511, 611, 711 are palm empty fruit bunches. In the eighth embodiment to the eleventh embodiment, the raw materials A11, B11, C11, D11, E11, and F11 are palm palm foliage that generally has a higher water content than palm empty fruit bunches or the like.
 パーム空果房は、工場などから未利用材として廃棄されるパーム空果房が使用される。パーム空果房は、中空形状をしており、嵩高であるため、廃棄されるものをそのまま燃料として利用しようとすると、移送コストに見合わないという問題や、パーム空果房に含まれるナトリウム、カリウム、リン、亜鉛、鉛、銅、アルミニウム、カルシウム、硫黄、ガラス等が、ボイラー等を閉塞させ、塩素、硫黄等が、水管等の設備を腐食させるという問題があり、燃料の原料としては敬遠されていた。そこで、本実施形態では、前述の物質の除去を行い、ペレット化することにより、パーム空果房を原料とした燃料ペレットを製造する。 The palm empty fruit bunch is used as a waste palm fruit discarded from the factory as an unused material. Palm empty fruit bunch has a hollow shape and is bulky, so if you want to use what is discarded as fuel as it is, there is a problem that it does not meet the transfer cost, sodium contained in palm empty fruit bunch, Potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, glass, etc., block boilers, etc., and chlorine, sulfur, etc. corrode water pipes, etc. It had been. Therefore, in the present embodiment, the above-mentioned substances are removed and pelletized to produce fuel pellets made from palm empty fruit bunches.
 また、後述する炭化工程236において、フライ装置226で利用される油は、パーム酸油(Palm Acid Oil)が使用される。
(バイオマス由来燃料ペレット11、21、31、41、51、61、71)
Moreover, in the carbonization process 236 described later, palm acid oil is used as the oil used in the frying device 226.
(Biomass-derived fuel pellets 11, 21, 31, 41, 51, 61, 71)
 バイオマス由来燃料ペレット11、21、31、41、51、61、71は、それぞれ、後述するバイオマス燃料化システム12、22、32、42、52、62、72を使用して、バイオマス由来燃料ペレットの製造方法13、23、33、43、53、63、73により製造される。以降、主として、バイオマス由来燃料ペレット11について説明し、バイオマス由来燃料ペレット21、31、41、51、61、71については、バイオマス由来燃料ペレット11と重複する工程の説明を省略し、相違する工程を説明する。 Biomass-derived fuel pellets 11, 21, 31, 41, 51, 61, 71 are respectively used for biomass-derived fuel pellets using biomass fueling systems 12, 22, 32, 42, 52, 62, 72 described later. Manufactured by manufacturing methods 13, 23, 33, 43, 53, 63, 73. Hereinafter, the biomass-derived fuel pellets 11 will be mainly described, and the biomass-derived fuel pellets 21, 31, 41, 51, 61, 71 are omitted from the description of the steps overlapping with the biomass-derived fuel pellets 11, and different steps. explain.
 バイオマス由来燃料ペレット11は、パーム空果房よりなり、18MJ/kg以上27MJ/kg以下の発熱量、より好ましくは20MJ/kg以上、さらに好ましくは23MJ/kg以上の発熱量を有し、ナトリウム、カリウム、リン、亜鉛、鉛、銅、アルミニウム、カルシウム、硫黄、ガラス等のボイラー使用時にスケールの原因となる物質の含有量と、塩素、硫黄等のボイラー使用時に腐食の原因となる物質の含有率を低減させた燃料ペレットである。 The biomass-derived fuel pellet 11 is made of palm empty fruit bunches and has a calorific value of 18 MJ / kg or more and 27 MJ / kg or less, more preferably 20 MJ / kg or more, and even more preferably 23 MJ / kg or more, sodium, Content of substances that cause scale when using boilers such as potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass, and content of substances that cause corrosion when using boilers such as chlorine and sulfur This is a fuel pellet with reduced fuel consumption.
 バイオマス由来燃料ペレット11は、ボイラー使用時にスケールの原因となるカリウムの含有量が、0mg/kg以上2000mg/kg以下、より好ましくは、0mg/kg以上1000mg/kg以下の燃料ペレットである。また、バイオマス由来燃料ペレット11は、ボイラー使用時にスケールの原因となるナトリウムの含有量も同様に、0mg/kg以上2000mg/kg以下、より好ましくは、0mg/kg以上1000mg/kg以下の燃料ペレットである。カリウム、ナトリウムのいずれも含有量が2000mg/kgを越えるとスケールができやすくなる。 Biomass-derived fuel pellets 11 are fuel pellets having a potassium content that causes a scale when using a boiler in a range of 0 mg / kg to 2000 mg / kg, more preferably 0 mg / kg to 1000 mg / kg. Further, the biomass-derived fuel pellet 11 is also a fuel pellet having a sodium content that causes a scale when using a boiler in the same manner as a fuel pellet of 0 mg / kg or more and 2000 mg / kg or less, more preferably 0 mg / kg or more and 1000 mg / kg or less. is there. When the content of both potassium and sodium exceeds 2000 mg / kg, it becomes easy to scale.
 バイオマス由来燃料ペレット11は、ボイラー使用時に腐食の原因となる塩素の含有量が、0mg/kg以上1000mg/kg以下、より好ましくは、0mg/kg以上500mg/kg以下の燃料ペレットである。塩素の含有量が、1000mg/kgを越えると腐食が起こりやすくなる。 Biomass-derived fuel pellets 11 are fuel pellets having a chlorine content that causes corrosion when using a boiler in the range of 0 mg / kg to 1000 mg / kg, more preferably 0 mg / kg to 500 mg / kg. If the chlorine content exceeds 1000 mg / kg, corrosion tends to occur.
 また、バイオマス由来燃料ペレット11は、ボイラー使用時に腐食の原因となる硫黄濃度が0質量%以上0.20質量%以下、より好ましくは、0質量%以上0.10質量%以下の燃料ペレットである。硫黄濃度が0.20質量%を越えると腐食が起こりやすくなる。 Further, the biomass-derived fuel pellet 11 is a fuel pellet having a sulfur concentration that causes corrosion when using a boiler of 0% by mass or more and 0.20% by mass or less, more preferably 0% by mass or more and 0.10% by mass or less. . When the sulfur concentration exceeds 0.20% by mass, corrosion tends to occur.
 バイオマス由来燃料ペレット51、61、71は、破砕された原料を常温水又は温水で洗浄することにより原料中のカリウム等のスケールの原因となる物質の含有量を低減させ、該スケールの原因となる物質の含有量が低減した原料の水分含有率を低下させ、該水分含有率が低下した原料をさらに破砕し、該破砕された原料を燃料の形状に造粒した後、炭化することにより、混焼率を向上させた燃料ペレットである。ここで混焼率とは、バイオマスと他の燃料を混焼した際の全使用燃料に対するバイオマスの熱量換算による割合(混焼率=使用したバイオマスの熱換算量/(使用したバイオマスの熱換算量+使用した他の燃料の熱換算量))をいう。 The biomass-derived fuel pellets 51, 61, 71 reduce the content of substances that cause scale such as potassium in the raw material by washing the crushed raw material with normal temperature water or hot water, and cause the scale. By reducing the water content of the raw material with a reduced content of the substance, further crushing the raw material with the reduced water content, granulating the crushed raw material into the shape of a fuel, and then carbonizing the mixture, This is a fuel pellet with an improved rate. Here, the co-firing rate is the ratio by the calorie conversion of biomass to the total fuel used when co-firing biomass and other fuels (mixed firing rate = heat conversion amount of biomass used / (heat conversion amount of biomass used + used) This refers to the heat equivalent amount of other fuels)).
 バイオマス由来燃料ペレット11のサイズは、Φ5mm以上Φ25mm以下が好ましく、より好ましくはΦ6mm以上Φ10mm以下である。また、後述するバイオマス由来燃料ペレットの第二製造方法23(フライ装置226を用いて、油中炭化する方法)によってバイオマス由来燃料ペレット21を製造する場合、ペレットサイズは、Φ6mm以上Φ10mm以下が好ましい。例えば、バイオマス由来燃料ペレット11、21のサイズを木質ペレットのサイズ規格と同様のΦ6mm又はΦ8mmとすることで、既存のボイラーにおいて、当該燃料ペレット11、21をそのまま燃料ペレットとして使用でき、従来の燃料ペレットに、混合したり、代替したりすることが可能となる。 The size of the biomass-derived fuel pellet 11 is preferably Φ5 mm to Φ25 mm, more preferably Φ6 mm to Φ10 mm. Moreover, when manufacturing the biomass origin fuel pellet 21 by the 2nd manufacturing method 23 (method to carbonize in oil using the frying apparatus 226) of the biomass origin fuel pellet mentioned later, pellet size has preferable Φ6 mm or more and Φ10 mm or less. For example, by setting the size of the biomass-derived fuel pellets 11 and 21 to Φ6 mm or Φ8 mm, which is the same as the size standard of wood pellets, the fuel pellets 11 and 21 can be used as fuel pellets as they are in an existing boiler. The pellets can be mixed or replaced.
 また、バイオマス由来燃料ペレット11の長さは、ボイラー等の仕様に合わせ適宜変更できる。 Moreover, the length of the biomass-derived fuel pellets 11 can be appropriately changed according to the specifications of the boiler and the like.
 バイオマス由来燃料ペレット11については、後述するバイオマス由来燃料ペレットの製造方法13、23、33、43において詳細に説明する。
(第一実施形態に係るバイオマス燃料化システム12)
The biomass-derived fuel pellets 11 will be described in detail in later-described biomass-derived fuel pellet manufacturing methods 13, 23, 33, and 43.
(Biomass fuel conversion system 12 according to the first embodiment)
 本発明に係るバイオマス燃料化システムの好適な実施形態であって、第一実施形態に係るバイオマス燃料化システム12の構成を図1Aに示す。 FIG. 1A shows a configuration of a biomass fuel conversion system 12 according to the first embodiment, which is a preferred embodiment of a biomass fuel conversion system according to the present invention.
 図1Aに示すように、バイオマス燃料化システム12は、原料111に含まれるナトリウム、カリウム、リン、亜鉛、鉛、銅、アルミニウム、カルシウム、硫黄、ガラス等のスケールの原因となる物質の溶出を促すよう、パーム空果房からなる原料111を破砕し、繊維をすり潰すことにより、破砕物112にする破砕装置121と、破砕物112を洗浄することにより、破砕物112に含まれるスケールの原因物質を低減し、洗浄物113にする洗浄装置122と、洗浄物113の水分含有率を低下させる乾燥装置124と、乾燥装置124により水分含有率を低下させた後、乾燥物114を炭化させることにより、水分含有率をさらに低下させるとともに、乾燥物114に含まれる、塩素、硫黄等のボイラー使用時に腐食の原因となる物質を低減させ、単位重量あたりの熱量を増加させた炭化物117にする炭化装置126と、炭化物117を燃料の形状に造粒し、燃料ペレット11にする造粒装置128と、燃料ペレット11の熱量や脆さ等を計測し、製品の品質が一定になるよう燃料ペレット11を混合する計測・混合装置129とを備えている。なお、スケールの原因となる物質の溶質を促すとは、スケールの原因となる各種物質の全てに対して溶出を促すという意味ではない。また原料中のスケールの原因となる物質を低減するとは、スケールの原因となる各種物質の全てに対して低減するという意味ではなく、スケールの原因となる物質のうちの少なくとも一つを低減する場合もあり得る。また腐食の原因となる物質についても同様である。 As shown in FIG. 1A, the biomass fueling system 12 promotes elution of substances that cause scale such as sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass contained in the raw material 111. The crushing apparatus 121 which makes the crushed material 112 by crushing the raw material 111 which consists of palm empty fruit bunches and crushing the fiber, and the causative substance of the scale contained in the crushed material 112 by washing the crushed material 112 By reducing the water content of the washed product 113, the drying device 124 for reducing the moisture content of the washed product 113, and carbonizing the dried product 114 after reducing the moisture content by the drying device 124. In addition to further reducing the moisture content, it causes corrosion when using boilers such as chlorine and sulfur contained in the dried product 114 The carbonization device 126 to make the carbide 117 with reduced quality and increased heat per unit weight, the granulation device 128 to granulate the carbide 117 into the fuel shape to make the fuel pellet 11, and the heat quantity of the fuel pellet 11 And a measuring / mixing device 129 that measures the fragility and the like and mixes the fuel pellets 11 so that the quality of the product becomes constant. It should be noted that to promote the solute of the substance that causes the scale does not mean to promote the elution of all the substances that cause the scale. In addition, reducing the substances that cause scale in the raw material does not mean reducing all the substances that cause scale, but when reducing at least one of the substances that cause scale. There is also a possibility. The same applies to substances that cause corrosion.
 バイオマス燃料化システムについては後述するバイオマス由来燃料ペレットの製造方法13、23、33、43において詳細に説明する。
(バイオマス由来燃料ペレットの第一製造方法13)
The biomass fueling system will be described in detail in later-described biomass-derived fuel pellet manufacturing methods 13, 23, 33, and 43.
(First production method 13 of biomass-derived fuel pellets)
 本発明に係るバイオマス由来燃料ペレット11、及び、バイオマス燃料化システム12、バイオマス由来燃料ペレットの第一製造方法13について、バイオマス由来燃料ペレットの製造工程に沿って詳細に説明する。 The biomass-derived fuel pellets 11, the biomass fueling system 12, and the first production method 13 for biomass-derived fuel pellets according to the present invention will be described in detail along the steps for producing biomass-derived fuel pellets.
 本発明に係るバイオマス由来燃料ペレットの第一製造方法13の流れを示すフローチャートを図2Aに、本実施の形態に係る破砕機1211の模式図を図3に、摩砕機1212の模式図を図4に、洗浄槽1221の模式図を図5に、炭化装置システム1261の模式図を図7に、リングダイ式造粒機1281の模式図を図8に示す。 FIG. 2A is a flowchart showing the flow of the first method 13 for producing biomass-derived fuel pellets according to the present invention, FIG. 3 is a schematic diagram of the crusher 1211 according to the present embodiment, and FIG. 4 is a schematic diagram of the grinder 1212. FIG. 5 is a schematic diagram of the washing tank 1221, FIG. 7 is a schematic diagram of the carbonizer system 1261, and FIG. 8 is a schematic diagram of the ring die granulator 1281.
 図2Aに示すように、本実施の形態に係るバイオマス由来燃料ペレットの第一製造方法13は、原料111に含まれるナトリウム、カリウム、リン、亜鉛、鉛、銅、アルミニウム、カルシウム、硫黄、ガラス等のスケールの原因となる物質の溶出を促すよう、パーム空果房からなる原料111を破砕し、繊維をすり潰すことにより、破砕物112にする破砕工程131と、破砕物112を洗浄することにより、破砕物112に含まれるスケールの原因物質を低減し、洗浄物113にする洗浄工程132と、洗浄物113の水分含有率を低下させて乾燥物114にする乾燥工程134と、乾燥工程134により水分含有率を低下させた後、乾燥物114を炭化させることにより、水分含有率をさらに低下させるとともに、乾燥物114に含まれる、塩素、硫黄等のボイラー使用時に腐食の原因となる物質を低減させ、単位重量あたりの熱量を増加させた炭化物117にする炭化工程136と、炭化物117を燃料の形状に造粒し、燃料ペレット11にする造粒工程138と、燃料ペレット11の熱量や脆さ等を計測し、製品の品質が一定になるよう燃料ペレット11を混合する計測・混合工程139とからなる。
(破砕工程131)
As shown to FIG. 2A, the 1st manufacturing method 13 of the biomass origin fuel pellet which concerns on this Embodiment is sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, glass etc. which are contained in the raw material 111 By crushing the raw material 111 consisting of empty palm fruit bunches and crushing the fibers so as to promote the elution of the substance that causes the scale of the crushing, the crushing step 131 into the crushed material 112, and by washing the crushed material 112 The cleaning process 132 for reducing the causative substance of the scale contained in the crushed material 112 to make the cleaning product 113, the drying process 134 for reducing the water content of the cleaning product 113 to the dry product 114, and the drying process 134 After reducing the moisture content, the dried product 114 is carbonized to further reduce the moisture content and be included in the dried product 114. A carbonization step 136 for reducing the amount of substances that cause corrosion when using a boiler such as chlorine, sulfur, etc. and increasing the amount of heat per unit weight to a carbide 117, and granulating the carbide 117 into a fuel shape, and fuel pellets 11 and a measurement / mixing step 139 for measuring the heat quantity and brittleness of the fuel pellets 11 and mixing the fuel pellets 11 so that the quality of the product is constant.
(Crushing step 131)
 破砕工程131は、破砕装置121を使用して、細胞壁を破壊することによって、原料であるパーム空果房に多量に含まれるカリウム等のスケールの原因物質を、洗浄工程132において、溶出しやすくさせるための前処理工程である。 In the crushing step 131, the crushing device 121 is used to break the cell wall, so that the causative substance of scale such as potassium contained in a large amount in the palm empty fruit bunch as a raw material is easily eluted in the washing step 132. It is a pre-processing process for.
 原料111は、工場などから未利用材として廃棄されたパーム空果房を使用するため、容積が大きい。まず、破砕工程131では、後述するような破砕機1211により、原料であるパーム空果房は、5mm以上50mm以下、より好ましくは、10mm以上20mm以下に破砕されて(減容)破砕物112Aにされ、その後、後述するような摩砕機1212により、破砕物112Aの表面同士を圧密し、すり合せることにより、破砕物112A表面に多数の傷を入れる。破砕物112A表面に多数の傷を入れ、細胞壁を破壊するような処理をすると、洗浄工程132において、破壊された細胞壁から、スケールの原因物質が溶出するため、スケールの原因物質を、より多く、短時間で、取り除くことができる。 The raw material 111 uses a palm empty fruit bunch discarded as unused material from a factory or the like, and thus has a large volume. First, in the crushing step 131, the palm empty fruit bunch as a raw material is crushed to 5 mm to 50 mm, more preferably 10 mm to 20 mm (volume reduction) into a crushed material 112A by a crusher 1211 as described later. After that, the surfaces of the crushed materials 112A are compacted by a grinder 1212 as will be described later, and are rubbed together, whereby a large number of scratches are made on the surface of the crushed materials 112A. When a treatment is performed such that a large number of scratches are made on the surface of the crushed material 112A and the cell wall is destroyed, the causative substance of the scale is eluted from the broken cell wall in the cleaning step 132. It can be removed in a short time.
 破砕工程131に使用される破砕装置121は、例えば、原料111をせん断する破砕機1211や、破砕物112A同士を圧密し、すり合せることによって、繊維をすり潰し、繊維を破壊する摩砕機1212が利用できる。破砕機1211は、例えば、図3に示すような破砕機が使用できる。また、摩砕機1212は、例えば、図4に示すような摩砕機が使用できる。破砕装置は、破砕、粉砕、摩砕等ができる装置であれば、特に限定はされず、例えば、一軸破砕機、二軸破砕機、リファイナー、ハンマー型破砕機、ニーダー等を用いることができる。 The crushing device 121 used in the crushing step 131 is, for example, a crusher 1211 that shears the raw material 111 or a crusher 1212 that crushes the fibers by compacting and crushing the crushed materials 112A and destroys the fibers. it can. As the crusher 1211, for example, a crusher as shown in FIG. 3 can be used. Moreover, the grinder 1212 can use the grinder as shown, for example in FIG. The crushing apparatus is not particularly limited as long as it is an apparatus capable of crushing, crushing, grinding, etc. For example, a uniaxial crusher, a biaxial crusher, a refiner, a hammer type crusher, a kneader, or the like can be used.
 本実施の形態においては、破砕機1211で粗破砕後、摩砕機1212で摩砕する場合について説明する。なお、後処理工程の洗浄工程が洗浄槽等を用いたバッジ式の場合、粗破砕、破砕、粉砕、摩砕等の破砕工程での破砕の程度・態様、及び、スクリーンの態様によって、水捌け易さが変わってくることから、スケールの原因物質の溶出具合も影響を受ける。このような場合には、洗浄工程における水捌け易さを優先して、粉砕、摩砕等は行わず、粗破砕のみに留めてもよく、スクリーンサイズを原料の破砕サイズに応じて変更してもよい。 In the present embodiment, a case where coarse crushing with a crusher 1211 and then crushing with a crusher 1212 will be described. In addition, when the cleaning process of the post-treatment process is a badge type using a washing tank or the like, it is easy to drain depending on the degree and mode of crushing in the crushing process such as rough crushing, crushing, crushing, and grinding, and the mode of the screen. Because of this, the elution state of the causative substances of the scale is also affected. In such a case, priority is given to the ease of watering in the washing step, and pulverization, grinding, etc. are not performed, but only rough crushing may be performed, or the screen size may be changed according to the crushing size of the raw material. Good.
 まず、破砕機1211は、図3に示すように、原料111を投入する投入口1211Aと、投入された原料111を破砕する回転刃1211E及び固定刃1211Fと、回転刃1211Eが取り付けられたローター1211Dと、ローター1211Dに原料111を押しつけるプッシャー1211Cと、固定刃1211Fが取り付けられた破砕室1211Bと、複数の孔が設けられ、所定サイズ以下に粗破砕された破砕物112Aのみを通過させるスクリーン1211Gと、スクリーン1211Gを通過した粗破砕された破砕物112Aを排出する排出口1211Hとを備えている。 First, as shown in FIG. 3, the crusher 1211 includes an inlet 1211A for feeding the raw material 111, a rotary blade 1211E and a fixed blade 1211F for crushing the fed raw material 111, and a rotor 1211D to which the rotary blade 1211E is attached. A pusher 1211C that presses the raw material 111 against the rotor 1211D, a crushing chamber 1211B in which a fixed blade 1211F is attached, a screen 1211G that is provided with a plurality of holes and that passes only the crushed material 112A that is roughly crushed to a predetermined size or less. And a discharge port 1211H for discharging the roughly crushed crushed material 112A that has passed through the screen 1211G.
 原料111は、破砕機1211の投入口1211Aより、破砕室1211Bに投入される。投入された原料111は、プッシャー1211Cにより、ローター1211Dに押しつけられる。押しつけられた原料111は、ローター1211Dに取り付けられた回転刃1211Eと、破砕室1211B内に取り付けられた固定刃1211Fとで、スクリーン1211Gを通過するサイズになるまで、繰り返し破砕される。スクリーン1211Gを通過した破砕物112Aは排出口1211Hより排出される。なお、本実施の形態におけるスクリーン1211Gの孔のサイズはΦ50mmである。 The raw material 111 is introduced into the crushing chamber 1211B from the inlet 1211A of the crusher 1211. The charged raw material 111 is pressed against the rotor 1211D by the pusher 1211C. The pressed raw material 111 is repeatedly crushed by the rotating blade 1211E attached to the rotor 1211D and the fixed blade 1211F attached in the crushing chamber 1211B until the size passes through the screen 1211G. The crushed material 112A that has passed through the screen 1211G is discharged from the discharge port 1211H. In this embodiment, the size of the hole of the screen 1211G is Φ50 mm.
 続いて、摩砕機1212は、図4に示すように、粗破砕済みの破砕物112Aを投入する投入口1212Aと、投入された破砕物112Aを受ける筒状部1212Bと、投入された破砕物112Aを摩砕する回転刃部1212D及び固定刃部1212Eと、回転刃部1212D及び固定刃部1212Eの間へ破砕物112Aを移送する螺旋状回転体1212Cと、摩砕された破砕物112Bを排出する排出口1212Fとを備えている。 Subsequently, as shown in FIG. 4, the attritor 1212 includes an inlet 1212A for feeding the coarsely crushed crushed material 112A, a cylindrical portion 1212B for receiving the crushed material 112A, and an inputted crushed material 112A. The rotating blade portion 1212D and the fixed blade portion 1212E for grinding the material, the spiral rotating body 1212C for transferring the crushed material 112A between the rotating blade portion 1212D and the fixed blade portion 1212E, and the ground crushed material 112B are discharged. And a discharge port 1212F.
 破砕物112Aは、摩砕機1212の投入口1212Aより、筒状部1212Bに投入される。投入された破砕物112Aは、螺旋状回転体1212Cにより、回転刃部1212D及び固定刃部1212Eの間へ押し込まれる。回転刃部1212D及び固定刃部1212Eにより、すり潰される。すり潰された破砕物112Bは排出口1212Fより排出される。本実施の形態においては、摩砕済みの破砕物112Bを破砕物112とする。 The crushed material 112A is introduced into the cylindrical portion 1212B from the inlet 1212A of the grinder 1212. The charged crushed material 112A is pushed between the rotary blade portion 1212D and the fixed blade portion 1212E by the spiral rotating body 1212C. It is crushed by the rotating blade portion 1212D and the fixed blade portion 1212E. The crushed crushed material 112B is discharged from the discharge port 1212F. In the present embodiment, the ground crushed material 112B is referred to as a crushed material 112.
 なお、破砕方法は、物理的処理に限られず、細胞壁を破壊できるような方法であればよく、凍結処理、超音波処理、化学処理、微生物処理などでもよい。 Note that the crushing method is not limited to physical treatment, and may be any method that can break the cell wall, and may be freezing treatment, ultrasonic treatment, chemical treatment, microbial treatment, and the like.
 破砕工程において、原料111を均一に破砕することで、後述する洗浄工程において、スケールの原因物質が均一に除去でき、加えて、後述する炭化工程において、均一に炭化できる。よって、バイオマス由来燃料ペレット11の品質を均一にできる。また、細かく破砕することにより、低温の水でも溶出が可能である。
(洗浄工程132)
By crushing the raw material 111 uniformly in the crushing step, the causative substance of the scale can be removed uniformly in the cleaning step described later, and in addition, it can be uniformly carbonized in the carbonization step described later. Therefore, the quality of the biomass-derived fuel pellet 11 can be made uniform. Further, by crushing finely, elution is possible even with low-temperature water.
(Washing process 132)
 洗浄工程132は、原料中に含まれ、燃料ペレット使用時にボイラー等を閉塞させるカリウム等のスケールの原因物質を除去するための工程である。 The cleaning step 132 is a step for removing scale-causing substances such as potassium that are contained in the raw material and block the boiler or the like when the fuel pellet is used.
 洗浄工程132では、破砕工程131で処理された破砕物112を、水に浸すことで破砕物112中に含まれるカリウム等のスケールの原因物質を水中に溶出させる。水の温度は、20℃以上110℃以下、より好ましくは、50℃以上80℃以下の水である。熱水を用いることで、スケールの原因物質の溶出時間を短縮し、溶出割合を増やすことができる。水温の調整には、工場の廃熱利用が有効である。 In the washing step 132, the crushed material 112 treated in the pulverized step 131 is immersed in water to elute scale-causing substances such as potassium contained in the crushed material 112 into water. The water temperature is 20 ° C. or higher and 110 ° C. or lower, more preferably 50 ° C. or higher and 80 ° C. or lower. By using hot water, the elution time of the causative substance of the scale can be shortened and the elution rate can be increased. The use of waste heat from the factory is effective for adjusting the water temperature.
 溶出時間は、破砕工程131における破砕具合や原料である椰子の品種、混合比率により、異なるため、サンプリング等を行い、スケールの原因物質の残存量を測定機で計測して決めることが望ましい。 The elution time varies depending on the crushing condition in the crushing step 131, the variety of the eggplant that is the raw material, and the mixing ratio. Therefore, it is desirable to perform sampling and measure the remaining amount of the causative substance of the scale with a measuring machine.
 洗浄工程132に使用される洗浄装置122は、例えば、洗浄槽1221が利用できる。 As the cleaning device 122 used in the cleaning step 132, for example, a cleaning tank 1221 can be used.
 図5に示すように、洗浄槽1221は、破砕物112を投入する投入口1221Aを有し、破砕物112を洗浄する洗浄室1221Bと、洗浄室1221B内の水を撹拌する撹拌機1221Cと、洗浄室1221B内の水を加温する加温機構1221Dと、洗浄物113を排出する排出口1221Eとを備えている。 As shown in FIG. 5, the cleaning tank 1221 has an input port 1221A for charging the crushed material 112, a cleaning chamber 1221B for cleaning the crushed material 112, an agitator 1221C for stirring the water in the cleaning chamber 1221B, A heating mechanism 1221D for heating water in the cleaning chamber 1221B and a discharge port 1221E for discharging the cleaning object 113 are provided.
 破砕物112は、投入口1221Aから、80℃程度の水が張られた洗浄室1221Bに投入され、数分から数日間、水に浸される。洗浄槽1221は、攪拌機1221Cを備えることができ、撹拌により、スケールの原因物質の溶出が促進されるとともに、均一な除去ができる。また、洗浄槽1221は、加温機構1221Dを備えることができ、洗浄室1221B内の水の温度が上昇することにより、スケールの原因物質の溶出が促進される。加温機構1221Dは、例えば、洗浄室の周囲に巻き付けられ、工場から排出される熱水を通す配管などで、洗浄室内の水と、配管内の熱水とで熱交換が行われることにより、洗浄室内の水が加温される。洗浄された洗浄物113は、排出口1221Eより排出される。乾燥工程移行前に、スクリュープレス(図示せず)などの脱水機で、脱水してもよい。 The crushed material 112 is introduced into a cleaning chamber 1221B filled with water of about 80 ° C. from the inlet 1221A and immersed in water for several minutes to several days. The washing tank 1221 can be equipped with a stirrer 1221C. By stirring, elution of the causative substance of the scale is promoted, and uniform removal can be performed. In addition, the cleaning tank 1221 can include a heating mechanism 1221D, and elution of the causative substance of the scale is promoted by increasing the temperature of water in the cleaning chamber 1221B. The heating mechanism 1221D is, for example, a pipe that is wound around the cleaning room and passes hot water discharged from the factory, and heat exchange is performed between the water in the cleaning room and the hot water in the pipe. Water in the cleaning chamber is heated. The cleaned product 113 is discharged from the discharge port 1221E. Prior to the drying process, dehydration may be performed with a dehydrator such as a screw press (not shown).
 洗浄回数は、1回に限られず、洗浄・脱水を複数回行ってもよい。例えば、傾斜エキストラクター(図示せず)のような脱水・洗浄装置が利用できる。また、スケールの原因物質の残存量が少ないものに使用した水は、スケールの原因物質の残存量が多いものに再利用してもよい。 The number of times of washing is not limited to once, and washing and dehydration may be performed multiple times. For example, a dehydration / cleaning device such as a tilt extractor (not shown) can be used. Further, the water used for the small amount of the causative substance of the scale may be reused for the one having the large amount of the causative substance of the scale.
 破砕・洗浄処理されたバイオマス由来燃料ペレット11は、ボイラー使用時にスケールの原因となる物質の含有量を低くできる。 Crushed and washed biomass-derived fuel pellets 11 can reduce the content of substances that cause scale when using a boiler.
 バイオマス由来燃料ペレット11のカリウム含有量は、好ましくは、0mg/kg以上2000mg/kg以下であり、より好ましくは0mg/kg以上1000mg/kg以下である。 The potassium content of the biomass-derived fuel pellets 11 is preferably 0 mg / kg or more and 2000 mg / kg or less, more preferably 0 mg / kg or more and 1000 mg / kg or less.
 破砕工程131、及び、洗浄工程132により、原料となるパーム空果房に多量に含まれるカリウム等のスケールの原因物質を効率的に除くことができる。よって、燃料ペレットを使用する際に、ボイラー等の設備を閉塞させるスケールの原因物質を低減させた燃料ペレットが製造できる。
(乾燥工程134)
By the crushing step 131 and the washing step 132, scale-causing substances such as potassium contained in a large amount in the raw palm empty fruit bunch can be efficiently removed. Therefore, when using fuel pellets, it is possible to manufacture fuel pellets with reduced scale-causing substances that block boilers and other equipment.
(Drying step 134)
 乾燥工程134は、洗浄工程132で処理された洗浄物113中の水分量を減らし、炭化工程136での炭化に要するエネルギーを下げるための工程である。 The drying step 134 is a step for reducing the energy required for carbonization in the carbonization step 136 by reducing the amount of water in the cleaning object 113 processed in the cleaning step 132.
 乾燥工程134は、工場内の廃熱など余剰エネルギーを利用した乾燥機1241を使用するか、天日干しなどの自然乾燥が有効な手段である。自然乾燥で、より短時間に乾燥させるためには、布や網を利用して、表面積を増やすことが有効である。乾燥工程134は、洗浄物113の水分含有率15%未満が目安となるが、省エネ、製造コストの面から、水分含有率がより低下した状態で炭化工程136に移行することが好ましい。 The drying step 134 is an effective means of using a dryer 1241 that uses surplus energy such as waste heat in the factory, or natural drying such as sun drying. In order to dry naturally in a shorter time, it is effective to increase the surface area by using a cloth or a net. In the drying step 134, the water content of the washed product 113 is less than 15% as a guide, but it is preferable to move to the carbonization step 136 in a state where the water content is further lowered from the viewpoint of energy saving and manufacturing cost.
 乾燥工程134に使用される乾燥装置124は、例えば、乾燥機1241や、乾燥システムが利用できる。 As the drying device 124 used in the drying process 134, for example, a dryer 1241 or a drying system can be used.
 まず、乾燥機1241は、洗濯乾燥機のような高温の熱風により、乾燥させる装置である。このような乾燥機1241の使用にあたっては、工場内の余剰エネルギーの利用が好ましい。 First, the dryer 1241 is a device that is dried by high-temperature hot air such as a washing dryer. When such a dryer 1241 is used, it is preferable to use surplus energy in the factory.
 図6に示すように、乾燥機1241は、例えば、洗浄物113を投入する原料入口1241Aと、投入された洗浄物113を回転させる回転シェル1241Bと、回転シェル1241Bの内側に固定され、回転する洗浄物113に熱風を送る主管1241Cと、系外から供給される外気を加熱する熱源機構1241Eと、熱源機構1241Eにおける燃焼に必要な外気を送風するための燃焼ファン1241Fと、熱源機構1241Eにて加熱された熱風を、主管1241Cを介して回転シェル1241B内に吸い込むための吸込ファン1241Gと、回転シェル1241B内の排気ガスから粉塵などの粒子を分離する集塵装置1241Hと、集塵装置1241Hにて粉塵などの粒子が取り除かれた排気ガスを系外へ排出するための排気ファン1241Iと、回転シェル1241B内で乾燥した乾燥物114を排出する乾燥品出口1241Jとを備えている。また、乾燥機1241は、集塵装置1241Hにて粉塵などの粒子が取り除かれ、加熱状態にある排気ガスを、熱源機構1241Eに供給することで再利用している。 As shown in FIG. 6, for example, the dryer 1241 is fixed and rotated inside the raw material inlet 1241A into which the cleaning product 113 is charged, the rotating shell 1241B that rotates the charged cleaning material 113, and the rotating shell 1241B. A main pipe 1241C for sending hot air to the cleaning object 113, a heat source mechanism 1241E for heating outside air supplied from outside the system, a combustion fan 1241F for blowing outside air necessary for combustion in the heat source mechanism 1241E, and a heat source mechanism 1241E A suction fan 1241G for sucking heated hot air into the rotary shell 1241B via the main pipe 1241C, a dust collector 1241H for separating particles such as dust from the exhaust gas in the rotary shell 1241B, and a dust collector 1241H. Exhaust fan for discharging exhaust gas from which particles such as dust have been removed to the outside of the system It comprises a 1241I, and a dried product outlet 1241J for discharging dried product 114 was dried in a rotary shell 1241b. Further, the dryer 1241 is reused by supplying exhaust gas in a heated state after particles such as dust are removed by the dust collector 1241H to the heat source mechanism 1241E.
 洗浄物113は、原料入口1241Aから投入され、回転シェル1241B内で回転しながら、熱源機構1241Eで加熱され、吸込ファン1241Gによって、主管1241Cを介して送風された熱風に晒されることで乾燥し、水分含有率が15%程度となった乾燥物114として乾燥品出口1241Jから排出される。 The cleaning product 113 is supplied from the raw material inlet 1241A, heated by the heat source mechanism 1241E while rotating in the rotary shell 1241B, and dried by being exposed to the hot air blown through the main pipe 1241C by the suction fan 1241G. The dried product 114 having a moisture content of about 15% is discharged from the dried product outlet 1241J.
 乾燥工程134により、水分を多量に含んでいる洗浄物113中の水分量を減らし、炭化工程136での炭化に要するエネルギーを下げることができる。
(炭化工程136)
By the drying step 134, the amount of water in the washed product 113 containing a large amount of water can be reduced, and the energy required for carbonization in the carbonization step 136 can be reduced.
(Carbonization process 136)
 炭化工程136は、乾燥工程134で処理された乾燥物114を炭化させることにより、ボイラー使用時に腐食の原因となる塩素を除去し、単位重量当たりのカロリーを増やすための工程である。 The carbonization step 136 is a step for carbonizing the dried product 114 processed in the drying step 134 to remove chlorine that causes corrosion when using the boiler and to increase calories per unit weight.
 ヘミセルロースの熱分解温度である200℃から300℃での炭化は、トレファクション(半炭化)と呼ばれ、高温域での炭化に比べ、高熱量が保持されるとともに、破砕性や耐水性が向上する。一方、300℃以上での炭化には、不要成分を低減する効果がある。本明細書では、「炭化」の用語を、半炭化を含む概念とし、第一実施例では、200℃以上300℃未満で、半炭化する方法について説明し、第二実施例では、300℃以上で炭化する方法について説明する。
(炭化工程の第一実施例)
Carbonization of the hemicellulose at 200 ° C to 300 ° C, which is the thermal decomposition temperature, is called trefaction (semi-carbonization). It retains a higher amount of heat and improves crushability and water resistance compared to carbonization at high temperatures. To do. On the other hand, carbonization at 300 ° C. or higher has an effect of reducing unnecessary components. In this specification, the term “carbonization” is a concept including semi-carbonization, and in the first embodiment, a method of semi-carbonization at 200 ° C. or more and less than 300 ° C. is described, and in the second embodiment, 300 ° C. or more. The method of carbonizing with will be described.
(First example of carbonization process)
 炭化工程136の第一実施例では、乾燥させた乾燥物114を、半炭化させる。半炭化することにより、収率が増え、発熱量の大きい燃料ペレット11を製造できる。 In the first example of the carbonization step 136, the dried product 114 is semi-carbonized. By semi-carbonizing, the yield increases and the fuel pellet 11 with a large calorific value can be manufactured.
 炭化工程136において、乾燥工程134で乾燥された乾燥物114は、200℃以上290℃以下の水蒸気中、より好ましくは220℃以上280℃以下の水蒸気中、さらに好ましくは230℃以上270℃以下の水蒸気中で加熱され、半炭化される。200℃未満では半炭化できない場合があり、290℃を超えるとセルロースが分解され、熱量が低下してしまうため好ましくない。炭化温度は、ヤシの品種や破砕サイズによって変動するため、適宜変更する。 In the carbonization step 136, the dried product 114 dried in the drying step 134 is in water vapor at 200 ° C. or higher and 290 ° C. or lower, more preferably in water vapor at 220 ° C. or higher and 280 ° C. or lower, further preferably 230 ° C. or higher and 270 ° C. or lower. Heated in steam and semi-carbonized. If it is less than 200 ° C., it may not be semi-carbonized, and if it exceeds 290 ° C., cellulose is decomposed and the amount of heat decreases, which is not preferable. Since the carbonization temperature varies depending on the varieties of palms and the crushing size, it is appropriately changed.
 半炭化処理時間は、60分以下が好ましく、40分以下がより好ましい。長時間の処理は、セルロースが分解される可能性があるためである。ただし、処理時間については、60分以下に限定されず、ヤシの品種や破砕サイズによって適宜変更できる。また、加熱温度は、一定温度である必要はなく、徐々に温度を高くするなど、各種ヒートパターンで加熱することができる。 The semi-carbonization time is preferably 60 minutes or less, and more preferably 40 minutes or less. This is because the long-time treatment may cause cellulose to be decomposed. However, about processing time, it is not limited to 60 minutes or less, It can change suitably with the kind and crushed size of palm. The heating temperature does not need to be a constant temperature, and can be heated with various heat patterns such as gradually increasing the temperature.
 このような炭化装置としては、例えば、図7に示すような炭化システム1261が利用できる。 As such a carbonization apparatus, for example, a carbonization system 1261 as shown in FIG. 7 can be used.
 炭化システム1261は、図7に示すように、100℃の飽和水蒸気を発生させる蒸気ボイラー1261Aと、100℃の飽和水蒸気をさらに大気圧より大きな圧力下で加熱し、100℃以上の水蒸気を発生させる過熱蒸気発生装置1261Bと、過熱蒸気によって乾燥物114を炭化させる炭化炉1261Cと、炭化炉1261Cから排出されるゴミを取り除くサイクロン1261Dと、炭化炉1261Cから排出された気体等の温度を下げる熱交換器1261Eと、熱交換器1261Eを冷やす冷却水を冷却する冷却塔1261Fと、炭化炉1261Cから排出される塩化水素、炭化水素等の不要なガスを洗浄、吸着し、排出するスクラバー1261Gとを備えている。 The carbonization system 1261, as shown in FIG. 7, heats the steam boiler 1261A that generates saturated steam at 100 ° C. and the saturated steam at 100 ° C. under a pressure greater than atmospheric pressure to generate steam at 100 ° C. or higher. Heat exchange that lowers the temperature of the superheated steam generator 1261B, the carbonization furnace 1261C that carbonizes the dried product 114 with superheated steam, the cyclone 1261D that removes dust discharged from the carbonization furnace 1261C, and the gas discharged from the carbonization furnace 1261C 1261E, a cooling tower 1261F for cooling the cooling water for cooling the heat exchanger 1261E, and a scrubber 1261G for cleaning, adsorbing, and discharging unnecessary gases such as hydrogen chloride and hydrocarbons discharged from the carbonization furnace 1261C. ing.
 まず、乾燥工程134で乾燥された乾燥物114は、炭化炉1261Cの投入口から投入される。蒸気ボイラー1261Aにより、100℃の飽和水蒸気を発生させ、発生した水蒸気を過熱蒸気発生装置1261Bに送り、250℃の過熱蒸気を発生させる。続いて、過熱蒸気発生装置1261Bから投入口を閉じた炭化炉1261Cに過熱蒸気を送る。乾燥物114は、過熱蒸気によって、約250℃に維持された炭化炉1261Cで、約30分間加熱され、炭化物117となる。炭化炉1261Cから排出された蒸気等は、サイクロン1261Dに送られ、ゴミなどが取り除かれた後、スクラバー1261Gに送られ、不要なガスが洗浄された後、スクラバー1261Gの排出口より排出される。炭化物117は、発火温度以下に放熱された後、排出口より、排出される。 First, the dried product 114 dried in the drying step 134 is charged from the charging port of the carbonization furnace 1261C. Steam steam 1261A generates saturated steam at 100 ° C., and the generated steam is sent to superheated steam generator 1261B to generate 250 ° C. superheated steam. Subsequently, superheated steam is sent from the superheated steam generator 1261B to the carbonization furnace 1261C whose inlet is closed. The dried product 114 is heated by a superheated steam in a carbonization furnace 1261C maintained at about 250 ° C. for about 30 minutes to become a carbide 117. Steam or the like discharged from the carbonization furnace 1261C is sent to the cyclone 1261D, and after dust and the like are removed, it is sent to the scrubber 1261G. After unnecessary gas is washed, it is discharged from the outlet of the scrubber 1261G. The carbide 117 is discharged from the discharge port after being radiated below the ignition temperature.
 なお、熱交換器1261Eを、熱回収が可能な装置にすることにより、廃熱が利用できるため、省エネである。また、水蒸気中での炭化を例に説明したが、水蒸気中に限定されず、5容量%以下の低酸素雰囲気、又は、不活性ガス雰囲気下で炭化してもよい。
(炭化工程の第二実施例)
In addition, since waste heat can be utilized by making the heat exchanger 1261E the apparatus which can collect heat | fever, it is energy-saving. Moreover, although carbonization in water vapor | steam was demonstrated to the example, it is not limited to water vapor | steam, You may carbonize in 5% or less of low oxygen atmosphere or inert gas atmosphere.
(Second example of carbonization process)
 炭化工程136の第二実施例では、乾燥させた乾燥物114を、300℃以上で炭化させる。 In the second embodiment of the carbonization step 136, the dried product 114 is carbonized at 300 ° C. or higher.
 炭化工程136では、例えば、乾燥工程134で乾燥された乾燥物114を、炭化システム1261を用いて、加熱蒸気700℃、炉内温度400℃で加熱し、炭化させる。
(造粒工程138)
In the carbonization step 136, for example, the dried product 114 dried in the drying step 134 is heated using a carbonization system 1261 at a heating steam of 700 ° C. and a furnace temperature of 400 ° C. to be carbonized.
(Granulation step 138)
 造粒工程138は、炭化工程136で炭化された炭化物117を、運搬や使用が容易なペレットに成形するための工程である。 The granulation step 138 is a step for forming the carbide 117 carbonized in the carbonization step 136 into pellets that are easy to transport and use.
 造粒装置128としては、図8に示すようなリングダイ方式の造粒機1281や、フラットダイ方式の造粒装置、スクリュー方式の造粒装置(特開昭63-214421に記載されているような「産業廃棄物の圧縮成型装置」)、押し出し式エキストルーダ等がある。 Examples of the granulator 128 include a ring die type granulator 1281 as shown in FIG. 8, a flat die type granulator, and a screw type granulator (as described in JP-A-63-214421). "Industrial waste compression molding equipment"), extrusion extruders, etc.
 例えば、リングダイ式造粒機1281によって、造粒する場合について、図8に基づいて、説明する。 For example, the case of granulating with a ring die granulator 1281 will be described with reference to FIG.
 リングダイ式造粒機1281は、図8に示すように、炭化物117を投入する投入口1281Aと、ペレットの略直径サイズの無数の孔を有するリングダイ1281Cと、投入された炭化物117をリングダイ1281Cの内部へ押し込む押し込み装置1281Bと、リングダイ1281Cの内部から外部へ炭化物117を押し出すプレスロール1281Dと、押し出された炭化物117を一定のサイズにカットするカッター1281Eと、燃料ペレット11を排出する排出口1228Fとを備えている。 As shown in FIG. 8, the ring die type granulator 1281 includes a charging port 1281A for charging carbides 117, a ring die 1281C having innumerable holes of approximately the diameter size of pellets, and a charged carbide 117 as a ring die. A pushing device 1281B for pushing into the inside of 1281C, a press roll 1281D for pushing out the carbide 117 from the inside of the ring die 1281C, a cutter 1281E for cutting the pushed carbide 117 into a certain size, and an exhaust for discharging the fuel pellets 11 And an outlet 1228F.
 まず、炭化物117は、投入口1281Aから投入される。続いて、投入された炭化物117は、投入口1281A下方に設けられた押し込み装置1281Bによって、リングダイ1281Cの内部に移送される。リングダイ1281C内部に移送された炭化物117は、プレスロール1281Dとリングダイ1281Cの間に噛み込まれ、リングダイ1281Cに多数設けられたΦ6mm又はΦ8mmの孔から外部へ押し出される。押し出された炭化物117は、カッター1281Eで一定サイズにカットされることにより、ペレット化されて、排出口1281Fから排出される。 First, the carbide 117 is charged from the charging port 1281A. Subsequently, the charged carbide 117 is transferred into the ring die 1281C by a pushing device 1281B provided below the charging port 1281A. The carbide 117 transferred to the inside of the ring die 1281C is caught between the press roll 1281D and the ring die 1281C, and is pushed out through a plurality of holes of Φ6 mm or Φ8 mm provided in the ring die 1281C. The extruded carbide 117 is pelletized by being cut into a certain size by the cutter 1281E, and discharged from the discharge port 1281F.
 ペレットサイズは、Φ5mm以上Φ25mm以下が好ましく、より好ましくはΦ6mm以上Φ10mm以下である。 The pellet size is preferably Φ5 mm or more and Φ25 mm or less, more preferably Φ6 mm or more and Φ10 mm or less.
 本製造方法により製造されたバイオマス由来燃料ペレット11は、一般的なボイラーで使用し易く、加えて、運搬の際に崩れにくい。
(計測・混合工程139)
The biomass-derived fuel pellets 11 produced by this production method are easy to use with a general boiler, and in addition, are not easily broken during transportation.
(Measurement / mixing step 139)
 計測・混合工程139は、造粒された燃料ペレットの熱量や脆さ等を計測し、計測データを元に混合することで製品の品質を一定にするため工程である。 The measurement / mixing step 139 is a step for measuring the heat quantity, brittleness, etc. of the granulated fuel pellets and mixing them based on the measurement data to make the product quality constant.
 主な計測項目としては、カリウム等のスケールの原因となる物質の残存量、塩素等のボイラー使用時に腐食の原因となる物質の残存量、単位重量あたりの発熱量などである。配合割合は、計測データに基づき、仕様ボイラーの種類に合わせ適宜変更することができる。 Main measurement items are the remaining amount of substances that cause scales such as potassium, the remaining amount of substances that cause corrosion when using boilers such as chlorine, and the calorific value per unit weight. The blending ratio can be appropriately changed according to the type of the specification boiler based on the measurement data.
 バイオマス由来燃料ペレットは、工場などから未利用材として廃棄されるパーム空果房を原料111として使用するため、品種や個体差などさまざまな要因により、原料111の品質を一定に保つことは難しく、バラツキがでる。この原料111のバラツキによって、製造された燃料ペレット11の成分、性質などに違いがでるため、所定の項目について、計測を行い、計測データに基づき、燃料ペレット11を混合する。計測し、混合することで、品質の安定したバイオマス由来燃料ペレット11を提供できる。
(第二実施形態に係るバイオマス燃料化システム22)
Biomass-derived fuel pellets use palm empty fruit bunches that are discarded as unused materials from factories or the like as raw material 111, so it is difficult to keep the quality of raw material 111 constant due to various factors such as varieties and individual differences, Variations appear. Due to the variation in the raw material 111, the components and properties of the manufactured fuel pellets 11 are different. Therefore, measurement is performed for predetermined items, and the fuel pellets 11 are mixed based on the measurement data. By measuring and mixing, biomass-derived fuel pellets 11 with stable quality can be provided.
(Biomass fuel conversion system 22 according to the second embodiment)
 本発明に係るバイオマス燃料化システムの好適な実施形態であって、第二実施形態に係るバイオマス燃料化システムの構成を図1Bに示す。 FIG. 1B shows a configuration of the biomass fuel conversion system according to the second embodiment, which is a preferred embodiment of the biomass fuel conversion system according to the present invention.
 図1Bに示すように、バイオマス燃料化システム22は、原料211に含まれるナトリウム、カリウム、リン、亜鉛、鉛、銅、アルミニウム、カルシウム、硫黄、ガラス等のスケールの原因となる物質の溶出を促すよう、パーム空果房からなる原料211を破砕し、繊維をすり潰すことにより、破砕物212にする破砕装置221と、破砕物212を洗浄することにより、破砕物212に含まれるスケールの原因物質を低減し、洗浄物213にする洗浄装置222と、洗浄物213の水分含有率を低下させて乾燥物214にする乾燥装置224と、乾燥装置224により水分含有率を低下させた後、油中で加温することにより、乾燥物214を炭化させ、水分含有率をさらに低下させるとともに、乾燥物214に含まれる、塩素、硫黄等のボイラー使用時に腐食の原因となる物質を低減させ、単位重量あたりの熱量を増加させた炭化物217にするフライ装置226と、炭化物217を燃料の形状に造粒し、燃料ペレット21にする造粒装置228と、燃料ペレット21の熱量や脆さ等を計測し、製品の品質が一定になるよう燃料ペレット21を混合する計測・混合装置229とを備えている。 As shown in FIG. 1B, the biomass fuel conversion system 22 promotes the elution of substances that cause scale such as sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass contained in the raw material 211. The crushing device 221 that makes the crushed material 212 by crushing the raw material 211 made of palm empty fruit bunches and crushing the fibers, and the causative substance of the scale contained in the crushed material 212 by washing the crushed material 212 In the oil after the water content is reduced by the drying device 224, the drying device 224 that reduces the water content of the cleaning material 213 and reduces the water content of the cleaning material 213, and the drying device 224. Is heated to cause carbonization of the dried product 214, further reducing the moisture content, and the chlorine, sulfur, etc. contained in the dried product 214. A frying device 226 that reduces the substances that cause corrosion when using the llar and increases the amount of heat per unit weight to make the carbide 217, and a granulating device that granulates the carbide 217 into a fuel shape and makes the fuel pellet 21 228 and a measurement / mixing device 229 that measures the heat quantity and brittleness of the fuel pellet 21 and mixes the fuel pellet 21 so that the quality of the product becomes constant.
 バイオマス燃料化システム22についての詳細については、後述するバイオマス由来燃料ペレットの製造方法23において説明する。
(バイオマス由来燃料ペレットの第二製造方法23)
Details of the biomass fuel conversion system 22 will be described in a biomass-derived fuel pellet manufacturing method 23 described later.
(Second production method 23 of biomass-derived fuel pellets)
 本発明に係るバイオマス由来燃料ペレットの第二製造方法の流れを示すフローチャートを図2Bに、本実施の形態に係るフライ装置226の模式図を図9に示す。 FIG. 2B is a flowchart showing the flow of the second method for producing biomass-derived fuel pellets according to the present invention, and FIG. 9 is a schematic diagram of the fly device 226 according to the present embodiment.
 バイオマス由来燃料ペレットの第二製造方法23は、図2Bに示すように、炭化工程236及び造粒工程238以外の工程は、バイオマス由来燃料ペレットの製造方法13に記載の工程と同様であり、破砕工程231・洗浄工程232・乾燥工程234・計測・混合工程239は、それぞれ、破砕工程131・洗浄工程132・乾燥工程134・計測・混合工程139に対応する。
(炭化工程236)
As shown in FIG. 2B, the second manufacturing method 23 of the biomass-derived fuel pellets is the same as the process described in the manufacturing method 13 of the biomass-derived fuel pellets except for the carbonization step 236 and the granulation step 238, and is crushed. Step 231, washing step 232, drying step 234, measurement / mixing step 239 correspond to crushing step 131, washing step 132, drying step 134, measurement / mixing step 139, respectively.
(Carbonization process 236)
 炭化工程236において、乾燥工程234で乾燥された乾燥物214は、フライ装置226により、120℃以上300℃以下の油中、より好ましくは140℃以上200℃以下の油中、さらに好ましくは150℃以上170℃以下の油中で加熱され、炭化される。120℃未満では処理時間がかかりすぎる場合があり、300℃を超えるとセルロースが分解され、熱量が低下してしまうため好ましくない。炭化温度は、ヤシの品種や破砕サイズによって変動するため、適宜設定できる。 In the carbonization step 236, the dried product 214 dried in the drying step 234 is, in the oil of 120 ° C. or more and 300 ° C. or less, more preferably in the oil of 140 ° C. or more and 200 ° C. or less, more preferably 150 ° C. by the frying device 226. It is heated in oil at 170 ° C. or lower and carbonized. If it is less than 120 degreeC, processing time may take too much, and when it exceeds 300 degreeC, since a cellulose will decompose | disassemble and heat amount will fall, it is unpreferable. The carbonization temperature can be set as appropriate because it varies depending on the variety of palm and the crushing size.
 炭化処理時間は、10分以上90分以下が好ましく、より好ましくは20分以上60分以下、さらに50分以上70分以下が最適である。10分未満であると分解されないヘミセルロースが残る可能性があり、90分を超えるとセルロースが分解される可能性があるからである。ただし、処理時間については、10分以上90分以下に限定されず、ヤシの品種や破砕サイズによって適宜設定できる。また、加熱温度は、一定温度である必要はなく、徐々に温度を高くするなど、各種ヒートパターンで加熱することができる。 The carbonization time is preferably from 10 minutes to 90 minutes, more preferably from 20 minutes to 60 minutes, and further preferably from 50 minutes to 70 minutes. This is because if it is less than 10 minutes, hemicellulose that is not decomposed may remain, and if it exceeds 90 minutes, cellulose may be decomposed. However, about processing time, it is not limited to 10 minutes or more and 90 minutes or less, It can set suitably with the kind of palm, and crushing size. The heating temperature does not need to be a constant temperature, and can be heated with various heat patterns such as gradually increasing the temperature.
 このようなフライ装置226としては、図9に示すようなフライヤー2261が用いられる。フライ装置226は、油をいれる油槽2261Aと、油槽内に張られた油を加温する加温機2261Bを備えている。均一に炭化するために、撹拌装置や移動装置を備えてもよい。 As such a fly device 226, a flyer 2261 as shown in FIG. 9 is used. The frying device 226 includes an oil tank 2261A for putting oil and a warmer 2261B for heating the oil stretched in the oil tank. In order to carbonize uniformly, you may provide a stirring apparatus and a moving apparatus.
 加熱方法は、カゴに入れられた乾燥物214を加熱した油中に一定時間浸すようにしてもよいし、乾燥物214を乗せたコンベアが油中を移動するような方法でもよい。カゴもしくはコンベアの投入口に乾燥装置224の出口を直結させることで、より効率的な運転が可能である。 The heating method may be such that the dried product 214 in the basket is immersed in the heated oil for a certain period of time, or a method in which the conveyor on which the dried product 214 is placed moves in the oil. More efficient operation is possible by connecting the outlet of the drying device 224 directly to the charging port of the basket or conveyor.
 十分に炭化された炭化物217は、網上で油切りされ、または、遠心分離機、若しくは、圧搾機を使用して、余分な油分を分離し、適した油量に調整される。適した油量とは、造粒工程238で造粒する際に油分が分離しない程度であり、造粒工程238での圧縮度合いに合わせて適宜調整される。
(造粒工程238)
The fully carbonized carbide 217 is degreased on a net or separated into excess oil using a centrifuge or a press and adjusted to a suitable oil amount. The appropriate amount of oil is such that the oil does not separate when granulating in the granulation step 238, and is appropriately adjusted according to the degree of compression in the granulation step 238.
(Granulation step 238)
 造粒工程238は、造粒工程138と同様の方法、装置が利用できる。 The granulation step 238 can use the same method and apparatus as the granulation step 138.
 ペレットサイズは、φ5mm以上φ25mm以下が好ましく、より好ましくはΦ6mm以上Φ10mm以下である。
(第三実施形態に係るバイオマス燃料化システム32)
The pellet size is preferably from φ5 mm to φ25 mm, and more preferably from φ6 mm to φ10 mm.
(Biomass fuel conversion system 32 according to the third embodiment)
 本発明に係るバイオマス燃料化システムの好適な実施形態であって、第三実施形態に係るバイオマス燃料化システムの構成を図1Cに示す。 FIG. 1C shows a preferred embodiment of the biomass fuel conversion system according to the present invention, and shows the configuration of the biomass fuel conversion system according to the third embodiment.
 図1Cに示すように、バイオマス燃料化システム32は、原料311に含まれるナトリウム、カリウム、リン、亜鉛、鉛、銅、アルミニウム、カルシウム、硫黄、ガラス等のスケールの原因となる物質の溶出を促すよう、パーム空果房からなる原料311を破砕し、繊維をすり潰すことにより、一次破砕物312にする一次破砕装置321と、一次破砕物312を洗浄することにより、一次破砕物312に含まれるスケールの原因物質を低減し、洗浄物313にする洗浄装置322と、洗浄物313の水分含有率を低下させて乾燥物314にする乾燥装置324と、乾燥装置324により水分含有率を低下させた乾燥物314を炭化及び造粒に適したサイズに破砕する二次破砕装置325と、二次破砕装置325によって破砕された二次破砕物315を炭化させることにより、水分含有率をさらに低下させるとともに、二次破砕物315に含まれる、塩素、硫黄等のボイラー使用時に腐食の原因となる物質を低減させ、単位重量あたりの熱量を増加させた炭化物317にする炭化装置326と、炭化物317を燃料の形状に造粒し、燃料ペレット31にする造粒装置328と、燃料ペレット31の熱量や脆さ等を計測し、製品の品質が一定になるよう燃料ペレット31を混合する計測・混合装置329とを備えている。 As shown in FIG. 1C, the biomass fuel system 32 promotes the elution of substances that cause scale such as sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass contained in the raw material 311. The primary crushed material 311 made of palm empty fruit bunches is crushed, and the primary crushed material 312 is washed into the primary crushed material 312, and the primary crushed material 312 is included in the primary crushed material 312. The causative substance of the scale is reduced, the cleaning device 322 that makes the cleaning product 313, the drying device 324 that reduces the moisture content of the cleaning product 313 to make the dry product 314, and the moisture content is reduced by the drying device 324. Secondary crushing device 325 for crushing dried product 314 to a size suitable for carbonization and granulation, and secondary crushing by secondary crushing device 325 By carbonizing the product 315, the moisture content is further reduced, and substances that cause corrosion when using boilers such as chlorine and sulfur contained in the secondary crushed material 315 are reduced, and the amount of heat per unit weight is reduced. Carbonizer 326 for increasing carbide 317, granulator 328 for granulating carbide 317 into fuel shape and fuel pellet 31, and measuring heat quantity and brittleness of fuel pellet 31, etc., product quality Is provided with a measuring / mixing device 329 for mixing the fuel pellets 31 so as to be constant.
 バイオマス燃料化システム32についての詳細については、後述するバイオマス由来燃料ペレットの第三製造方法33において説明する。
(バイオマス由来燃料ペレットの第三製造方法33)
Details of the biomass fuel system 32 will be described in a third method 33 for producing biomass-derived fuel pellets, which will be described later.
(Third production method 33 of biomass-derived fuel pellets)
 本発明に係るバイオマス由来燃料ペレットの第三製造方法の流れを示すフローチャートを図2Cに示す。 FIG. 2C shows a flowchart showing the flow of the third method for producing biomass-derived fuel pellets according to the present invention.
 バイオマス由来燃料ペレットの第三製造方法33は、図2Cに示すように、破砕工程131の代わりに、一次破砕工程331を行い、炭化工程336の前に、二次破砕工程335を行う。その他の工程は、バイオマス由来燃料ペレットの製造方法13に記載の工程と同様であり、洗浄工程332・乾燥工程334・造粒工程338・計測・混合工程339は、それぞれ、洗浄工程132・乾燥工程134・造粒工程138・計測・混合工程139に対応する。
(一次破砕工程331)
As shown in FIG. 2C, the third method 33 for producing biomass-derived fuel pellets performs a primary crushing step 331 instead of the crushing step 131, and performs a secondary crushing step 335 before the carbonization step 336. The other steps are the same as those described in the method 13 for producing biomass-derived fuel pellets, and the washing step 332, the drying step 334, the granulation step 338, the measurement / mixing step 339 are the washing step 132 and the drying step, respectively. 134 corresponds to the granulation step 138 and the measurement / mixing step 139.
(Primary crushing step 331)
 一次破砕工程331は、破砕工程131と略同様である。 The primary crushing step 331 is substantially the same as the crushing step 131.
 炭化、造粒工程に最適化した破砕は、二次破砕工程335で行われるため、この工程では、原料311は、カリウム等のスケールの原因となる物質の溶出のしやすさを主に考慮したサイズに破砕される。
(二次破砕工程335)
Since crushing optimized for the carbonization and granulation process is performed in the secondary crushing process 335, in this process, the raw material 311 mainly considers the easiness of elution of substances that cause scale such as potassium. Shredded to size.
(Secondary crushing step 335)
 二次破砕工程335では、乾燥物314は、炭化、造粒工程に最適化したサイズに破砕される。
(炭化工程336)
In the secondary crushing step 335, the dried product 314 is crushed to a size optimized for the carbonization and granulation step.
(Carbonization process 336)
 炭化工程336は、炭化工程136と同様である。
(第四実施形態に係るバイオマス燃料化システム42)
The carbonization step 336 is the same as the carbonization step 136.
(Biomass fuel conversion system 42 according to the fourth embodiment)
 本発明に係るバイオマス燃料化システムの好適な実施形態であって、第四実施形態に係るバイオマス燃料化システムの構成を図1Dに示す。 FIG. 1D shows a preferred embodiment of the biomass fuel conversion system according to the present invention, and shows the configuration of the biomass fuel conversion system according to the fourth embodiment.
 図1Dに示すように、バイオマス燃料化システム42は、原料411に含まれるナトリウム、カリウム、リン、亜鉛、鉛、銅、アルミニウム、カルシウム、硫黄、ガラス等のスケールの原因となる物質の溶出を促すよう、パーム空果房からなる原料411を破砕し、繊維をすり潰すことにより、一次破砕物412にする一次破砕装置421と、一次破砕物412を洗浄することにより、一次破砕物412に含まれるスケールの原因物質を低減し、洗浄物413にする洗浄装置422と、洗浄物413の水分含有率を低下させて乾燥物414にする乾燥装置424と、乾燥装置424により水分含有率を低下させた後、乾燥物414を炭化させることにより、水分含有率をさらに低下させるとともに、乾燥物414に含まれる、塩素、硫黄等のボイラー使用時に腐食の原因となる物質を低減させ、単位重量あたりの熱量を増加させた炭化物417にする炭化装置426と、炭化物417を造粒に適したサイズに破砕する二次破砕装置427と、二次破砕装置427によって破砕された炭化物418を燃料の形状に造粒し、燃料ペレット41にする造粒装置428と、燃料ペレット41の熱量や脆さ等を計測し、製品の品質が一定になるよう燃料ペレット41を混合する計測・混合装置429とを備えている。 As shown in FIG. 1D, the biomass fueling system 42 promotes elution of substances that cause scale such as sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass contained in the raw material 411. The primary crushed material 411 made of palm empty fruit bunches is crushed, and the primary crushed material 412 is washed by crushing the fibers to form the primary crushed material 412, and the primary crushed material 412 is included in the primary crushed material 412. The causative substance of the scale is reduced, the cleaning device 422 that makes the cleaning product 413, the drying device 424 that reduces the moisture content of the cleaning product 413 to make the dry product 414, and the moisture content is reduced by the drying device 424. After that, by carbonizing the dried product 414, the moisture content is further reduced, and chlorine, sulfur, etc. contained in the dried product 414 A carbonization device 426 that reduces the substances that cause corrosion when using a boiler and increases the amount of heat per unit weight to a carbide 417; a secondary crushing device 427 that crushes the carbide 417 into a size suitable for granulation; The carbonized material 418 crushed by the secondary crushing device 427 is granulated into a fuel shape, and the granulation device 428 for making the fuel pellet 41 and the heat quantity, brittleness, etc. of the fuel pellet 41 are measured, and the product quality is constant. A measuring / mixing device 429 for mixing the fuel pellets 41 is provided.
 バイオマス燃料化システム42についての詳細については、後述するバイオマス由来燃料ペレットの製造方法43において説明する。
(バイオマス由来燃料ペレットの第四製造方法43)
Details of the biomass fuel system 42 will be described in a biomass-derived fuel pellet manufacturing method 43 described later.
(Fourth production method 43 of biomass-derived fuel pellets)
 本発明に係るバイオマス由来燃料ペレットの第四製造方法の流れを示すフローチャートを図2Dに示す。 FIG. 2D shows a flowchart showing the flow of the fourth method for producing biomass-derived fuel pellets according to the present invention.
 バイオマス由来燃料ペレットの第四製造方法43は、図2Dに示すように、破砕工程131の代わりに、一次破砕工程431を行い、トレファクション工程436の後に、二次破砕工程437が行われる。その他の工程は、バイオマス由来燃料ペレットの製造方法13に記載の工程と同様であり、洗浄工程432・乾燥工程434・造粒工程438・計測・混合工程439は、それぞれ、洗浄工程132・乾燥工程134・造粒工程138・計測・混合工程139に対応する。
(一次破砕工程431)
As shown in FIG. 2D, the fourth production method 43 for biomass-derived fuel pellets performs a primary crushing step 431 instead of the crushing step 131, and a secondary crushing step 437 is performed after the refracting step 436. The other steps are the same as the steps described in the biomass-derived fuel pellet production method 13, and the washing step 432, the drying step 434, the granulation step 438, the measurement / mixing step 439 are respectively the washing step 132 and the drying step. 134 corresponds to the granulation step 138 and the measurement / mixing step 139.
(Primary crushing step 431)
 一次破砕工程431は、一次破砕工程331と同じである。
(トレファクション工程436)
The primary crushing step 431 is the same as the primary crushing step 331.
(Traffication process 436)
 トレファクション工程436では、ヘミセルロースの熱分解温度である200℃から300℃で乾燥装置424により水分含有率を低下させた乾燥物414を半炭化する。具体的な方法、及び使用装置は、炭化温度が200℃から300℃に限定される点を除き、炭化工程136における半炭化と同じである。 In the refracting step 436, the dried product 414 whose moisture content has been reduced by the drying device 424 is semi-carbonized at 200 to 300 ° C. which is the thermal decomposition temperature of hemicellulose. The specific method and the apparatus used are the same as the semi-carbonization in the carbonization step 136 except that the carbonization temperature is limited to 200 ° C to 300 ° C.
 トレファクションを行うことにより、炭化物417は、高熱量を保持でき、破砕性や耐水性が向上する。
(二次破砕工程437)
By performing the torrefaction, the carbide 417 can maintain a high amount of heat, and the friability and water resistance are improved.
(Secondary crushing step 437)
 二次破砕工程437では、炭化物417を造粒しやすいサイズに破砕する。 In the secondary crushing step 437, the carbide 417 is crushed to a size that facilitates granulation.
 炭化物417は、トレファクション工程436により、破砕性が向上しており、第三実施形態における二次破砕機に比べ、小型の破砕機でも破砕できる。よって、製造エネルギー、コストを抑えることができる。
(スケール原因物質の除去試験)
The carbide 417 has improved crushability due to the trellising step 436, and can be crushed even with a smaller crusher than the secondary crusher in the third embodiment. Therefore, manufacturing energy and cost can be suppressed.
(Removal test for scale-causing substances)
 製造された燃料ペレットにおいて、スケール原因物質となるナトリウム、カリウム、及び、腐食の原因となる塩素が適切に除去されているかを評価するため、前記スケール原因物質の除去試験を行った。
(試験方法)
In order to evaluate whether or not sodium, potassium, which is a cause of scale, and chlorine, which is a cause of corrosion, were appropriately removed from the produced fuel pellets, a removal test of the scale cause substance was performed.
(Test method)
 洗浄工程後のパーム空果房と炭化工程後のパーム空果房に対して、前記スケール原因物質の含有量を計測した。サンプルは、図3に示すような破砕機で粗破砕後、図4に示すような摩砕機で摩砕した後、洗浄工程にて洗浄を行った実施例1と、図3に示すような破砕機で粗破砕後、洗浄工程にて洗浄を行った実施例2との二種類用意した。洗浄は、バッジ式の洗浄槽を用いて、水を投入し、10分程度撹拌し、その後排水する作業を3回繰り返した。スケール原因物質の含有量は、カリウム及びナトリウムについては、乾式分解後、フレーム原子吸光法により測定し、乾燥サンプル換算にて算出した。また、塩素については、燃焼管式空気法を用いて、イオンクロマトグラフにより測定し、乾式サンプル換算にて算出した。
(実施例1)
The scale causative substance content was measured for the empty palm bunch after the washing step and the empty palm bunch after the carbonization step. The sample was roughly crushed with a crusher as shown in FIG. 3, then was crushed with a grinder as shown in FIG. 4, and then washed in the washing step, and crushed as shown in FIG. 3. After roughly crushing with a machine, two types were prepared: Example 2 which was washed in the washing step. Washing was repeated three times by using a badge-type washing tank, adding water, stirring for about 10 minutes, and then draining. The content of the scale-causing substance was measured by flame atomic absorption spectrometry after dry decomposition for potassium and sodium, and calculated in terms of dry sample. Moreover, about chlorine, it measured with the ion chromatograph using the combustion pipe | tube type | formula air method, and computed it by dry type conversion.
(Example 1)
 300kgのパーム空果房を、図3に示すような破砕機において、φ50のスクリーンを用いて、粗破砕を実施した。その後、図4に示すような摩砕機で摩砕した。この摩砕後のパーム空果房の写真を図10に示す。この図に示すように、実施例1のパーム空果房は、繊維長が30~70mm程度となり、繊維が縮れた状態となった。その後、3回の洗浄を行い、前述の測定方法により、実施例1の洗浄工程後のスケール原因物質の含有量を算出した。また、実施例1のパーム空果房については、乾燥工程134にて乾燥させた後、炭化工程136にて炭化させたサンプルも作製し、前述の測定方法により、実施例1の炭化工程後のスケール原因物質の含有量も算出した。
(実施例2)
A 300 kg palm empty fruit bunch was roughly crushed using a φ50 screen in a crusher as shown in FIG. 3. Then, it grind | pulverized with the grinder as shown in FIG. The photograph of the palm empty fruit bunch after this grinding is shown in FIG. As shown in this figure, the empty palm fruit bunch of Example 1 had a fiber length of about 30 to 70 mm, and the fibers were in a crimped state. Thereafter, washing was performed three times, and the content of the scale-causing substance after the washing step of Example 1 was calculated by the measurement method described above. Moreover, about the palm empty fruit bunch of Example 1, after making it dry in the drying process 134, the sample carbonized in the carbonization process 136 is also produced, and after the carbonization process of Example 1 by the above-mentioned measuring method. The content of scale-causing substances was also calculated.
(Example 2)
 460kgのパーム空果房を、図3に示すような破砕機において、ローター回転刃とφ50のスクリーンを用いて、粗破砕した。この粗破砕後の原料の写真を図11に示す。この図に示すように、実施例2のパーム空果房は、繊維長が30~70mm程度となり、繊維が解れた状態となった。その後、3回の洗浄を行い、前述の測定方法により、実施例2の洗浄工程後のスケール原因物質の含有量を算出した。
(カロリーの測定)
A 460 kg empty palm fruit bunch was roughly crushed using a rotor rotary blade and a φ50 screen in a crusher as shown in FIG. 3. The photograph of the raw material after this rough crushing is shown in FIG. As shown in this figure, the empty palm fruit bunch of Example 2 had a fiber length of about 30 to 70 mm, and the fiber was unwound. Thereafter, washing was performed three times, and the content of the scale-causing substance after the washing step of Example 2 was calculated by the measurement method described above.
(Calorie measurement)
 実施例1のパーム空果房を乾燥工程134にて乾燥させた後、炭化工程136にて炭化して作製したサンプルの高位発熱量をボンブ熱量計によって測定した。
(評価)
After the palm empty fruit bunch of Example 1 was dried in the drying step 134, the high calorific value of the sample produced by carbonizing in the carbonization step 136 was measured with a bomb calorimeter.
(Evaluation)
 表1は、洗浄後の、実施例1及び実施例2のパーム空果房のスケール原因物質の含有量を示している。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the content of scale-causing substances in the empty palm bunch of Example 1 and Example 2 after washing.
Figure JPOXMLDOC01-appb-T000001
 前述したように、バイオマス由来燃料ペレット11のカリウム含有量及びナトリウム含有量は、いずれも、好ましくは、0mg/kg以上2000mg/kg以下であり、より好ましくは0mg/kg以上1000mg/kg以下であることが要求されるところ、表1に示すように、洗浄工程後は極めて低い値となり、炭化工程後は、要求される数値範囲内の値となった。また、バイオマス由来燃料ペレット11の塩素含有量は、好ましくは、0mg/kg以上1000mg/kg以下であり、より好ましくは0mg/kg以上500mg/kg以下であることが要求されるところ、同様に、洗浄工程後は極めて低い値となり、炭化工程後は、要求される数値範囲内の値となった。さらに、バイオマス由来燃料ペレットは、18MJ/kg以上27MJ/kg以下の発熱量、より好ましくは20MJ/kg以上の発熱量を有することが要求されるところ、実施例1のパーム空果房由来の燃料ペレットの発熱量は20.4MJ/kgの発熱量と計測された。 As described above, the potassium content and the sodium content of the biomass-derived fuel pellets 11 are preferably 0 mg / kg or more and 2000 mg / kg or less, more preferably 0 mg / kg or more and 1000 mg / kg or less. However, as shown in Table 1, the value was extremely low after the cleaning step, and the value was within the required numerical range after the carbonization step. Further, the chlorine content of the biomass-derived fuel pellet 11 is preferably 0 mg / kg or more and 1000 mg / kg or less, more preferably 0 mg / kg or more and 500 mg / kg or less. After the cleaning process, the value was extremely low, and after the carbonization process, the value was within the required numerical range. Further, the biomass-derived fuel pellet is required to have a calorific value of 18 MJ / kg or more and 27 MJ / kg or less, more preferably 20 MJ / kg or more. The calorific value of the pellet was measured as a calorific value of 20.4 MJ / kg.
 以上のことから、本実施の形態によれば、ボイラー使用時にスケールの原因となる物質の含有量を低くでき、実用レベルの発熱量を有する燃料ペレットを提供できる。 From the above, according to the present embodiment, it is possible to reduce the content of substances that cause scale when using a boiler, and to provide fuel pellets having a heat generation amount at a practical level.
 第一実施形態乃至第四実施形態においては、主として、破砕工程や洗浄工程を工夫することで、パーム空果房からなる原料から、効率良く、ボイラー使用時にスケールの原因となる物質を溶出し得る種々のシステム及び製造方法を示すと共に、実験によって、製造される炭化物は、ボイラー使用時にスケールの原因となる物質の含有量が低く、実用レベルの大きな発熱量が得られることを示した。 In the first embodiment to the fourth embodiment, by mainly devising a crushing process and a washing process, a substance that causes scale can be efficiently eluted from a raw material made of palm empty fruit bunches when using a boiler. In addition to showing various systems and manufacturing methods, experiments have shown that the carbide produced has a low content of substances that cause scale when the boiler is used, and a large calorific value at a practical level can be obtained.
 ここからは、第五実施形態乃至第七実施形態において、主として、製造過程において原料を燃料の形状に造粒した後、炭化することにより、バイオマスと他の燃料を混焼する際の全使用燃料に対するバイオマスの熱量換算による割合である混焼率を向上させ得る種々のシステム及び製造方法を示すと共に、実験によって、製造される炭化物は、当該混焼率が高く、実用レベルの大きな発熱量が得られることを示す。
(第五実施形態に係るバイオマス燃料化システム52)
From here, in the fifth embodiment to the seventh embodiment, the raw material is mainly granulated in the form of fuel in the manufacturing process and then carbonized, so that the total use fuel for the co-firing of biomass and other fuels is reduced. In addition to showing various systems and manufacturing methods that can improve the co-firing rate, which is the ratio of biomass in terms of calorific value, the experiments show that the produced carbide has a high co-firing rate and can produce a large calorific value at a practical level. Show.
(Biomass fuel conversion system 52 according to the fifth embodiment)
 本発明に係るバイオマス燃料化システムの好適な実施形態であって、第五実施形態に係るバイオマス燃料化システムの構成を図12Aに示す。 FIG. 12A shows a configuration of a biomass fuel conversion system according to the fifth embodiment, which is a preferred embodiment of the biomass fuel conversion system according to the present invention.
 図12Aに示すように、バイオマス燃料化システム52は、原料511に含まれるナトリウム、カリウム、リン、亜鉛、鉛、銅、アルミニウム、カルシウム、硫黄、ガラス等のスケールの原因となる物質の溶出を促すよう、パーム空果房からなる原料511を破砕し、繊維をすり潰すことにより、破砕物512にする破砕装置521と、破砕物512を洗浄することにより、破砕物512に含まれるスケールの原因物質を低減し、洗浄物513にする洗浄装置522と、洗浄物513の水分含有率を低下させて乾燥物514にする乾燥装置524と、乾燥装置524により水分含有率を低下させた後、乾燥装置524により水分含有率が低下した乾燥物514を燃料の形状に造粒し、造粒物516にする造粒装置528と、造粒物516を炭化させることにより、水分含有率をさらに低下させるとともに、造粒物516に含まれる、塩素、硫黄等のボイラー使用時に腐食の原因となる物質を低減させ、単位重量あたりの熱量を増加させた燃料ペレット51にする炭化装置526と、燃料ペレット51の熱量や脆さ等を計測し、製品の品質が一定になるよう燃料ペレット51を混合する計測・混合装置529とを備えている。なお、破砕装置521において、繊維をすり潰す摩砕は省略してもよく、また、計測・混合装置529による計測自体を省略してもよい。 As shown in FIG. 12A, the biomass fueling system 52 promotes elution of substances that cause scale such as sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass contained in the raw material 511. The crushing device 521 that crushes the raw material 511 made of palm empty fruit bunches and crushes the fibers to make the crushed material 512 and the causative substance of the scale contained in the crushed product 512 by washing the crushed product 512 A cleaning device 522 that reduces the water content of the cleaning product 513 by reducing the moisture content of the cleaning product 513, and a drying device 524 that reduces the water content by the drying device 524. The dried product 514 having a reduced water content by 524 is granulated in the form of a fuel to form a granulated product 516 and a granulated product 516. By reducing the moisture content, the fuel that further reduces the amount of heat per unit weight by reducing substances that cause corrosion when using boilers such as chlorine and sulfur contained in the granulated product 516 A carbonization device 526 that converts the pellets 51 and a measurement / mixing device 529 that measures the amount of heat and brittleness of the fuel pellets 51 and mixes the fuel pellets 51 so that the quality of the product is constant are provided. In the crushing device 521, grinding for crushing the fibers may be omitted, and measurement by the measurement / mixing device 529 may be omitted.
 バイオマス燃料化システム52についての詳細については、後述するバイオマス由来燃料ペレットの第五製造方法53において説明する。
(バイオマス由来燃料ペレットの第五製造方法53)
Details of the biomass fueling system 52 will be described in a fifth method 53 for producing biomass-derived fuel pellets described later.
(Fifth production method 53 of biomass-derived fuel pellets)
 本発明に係るバイオマス由来燃料ペレットの第五製造方法の流れを示すフローチャートを図13Aに示す。 FIG. 13A shows a flowchart showing the flow of the fifth method for producing biomass-derived fuel pellets according to the present invention.
 バイオマス由来燃料ペレットの第五製造方法53は、図13Aに示すように、破砕工程531から乾燥工程534までが、バイオマス由来燃料ペレットの第一製造方法13における破砕工程131から乾燥工程134と同様である。第五製造方法53は、乾燥工程534の後に、造粒工程538があって、その後に、炭化工程536を行う点で、第一製造方法13と異なっている。計測・混合工程539は、計測・混合工程139に対応している。
(乾燥工程534)
As shown in FIG. 13A, the fifth production method 53 for biomass-derived fuel pellets is similar to the crushing step 131 to the drying step 134 in the first production method 13 for biomass-derived fuel pellets, from the crushing step 531 to the drying step 534. is there. The fifth production method 53 is different from the first production method 13 in that there is a granulation step 538 after the drying step 534 and then a carbonization step 536 is performed. The measurement / mixing step 539 corresponds to the measurement / mixing step 139.
(Drying step 534)
 乾燥工程534では、第一製造方法13の乾燥工程134のように、乾燥機1241や乾燥システムを利用して、洗浄工程532により、洗浄・脱水され、水分含有率が40%程度含まれる洗浄物513を水分含有量が15%程度となるまで乾燥させる。 In the drying step 534, as in the drying step 134 of the first manufacturing method 13, the washing product is washed and dehydrated by the washing step 532 using the dryer 1241 or the drying system, and the moisture content is about 40%. 513 is dried until the water content is about 15%.
 このように、造粒工程538の前工程で、乾燥物514に水分を例えば15%程度含ませておくことは、造粒工程538において乾燥物514を圧縮しやすく、固めやすいため、造粒しやすいというメリットがある。また、炭化工程536においては、ほぼ無酸素状態となるよう水蒸気を送風して造粒物516を加熱するところ、造粒物516の繊維が水分を含んでいるので、その水分が気化して水蒸気となるので、遮へいして造粒物516に熱風を送ることで一部は燃焼するものの大半は炭化させることができる。
(造粒工程538)
As described above, it is easy to compress and harden the dried product 514 in the granulation step 538 by including about 15% of moisture in the dried product 514 in the previous step of the granulation step 538. There is a merit that it is easy. Further, in the carbonization step 536, when the granulated product 516 is heated by blowing steam so as to be almost oxygen-free, since the fibers of the granulated product 516 contain moisture, the moisture is vaporized and vaporized. Therefore, most of what is partly combusted can be carbonized by shielding it and sending hot air to the granulated product 516.
(Granulation step 538)
 造粒工程138では、リングダイ式造粒機1281にて、炭化物117を造粒したが、造粒工程538においては、リングダイ式造粒機を用いて、乾燥工程534を経て水分が低下した乾燥物514を好ましくはφ5mm以上φ25mm以下、より好ましくはΦ6mm以上Φ10mm以下のサイズに造粒する。
(炭化工程536)
In the granulation step 138, the carbide 117 was granulated by the ring die type granulator 1281, but in the granulation step 538, the moisture decreased through the drying step 534 using the ring die type granulator. The dried product 514 is preferably granulated to a size of φ5 mm to φ25 mm, more preferably φ6 mm to φ10 mm.
(Carbonization process 536)
 炭化工程136では、乾燥させた乾燥物114を半炭化させる炭化工程の第一実施例と、乾燥させた乾燥物114を炭化させる炭化工程の第二実施例とがあり、適宜使い分けるが、炭化工程536においては、造粒物516を半炭化又は炭化させる。造粒物516の状態で炭化させることにより、燃料ペレット51がしっかりと固まるので、燃料ペレットとしての耐水性が向上する。また、造粒物516の形態で熱処理を行うことで、繊維では燃焼してしまうような場合であっても、燃焼させずに炭化させることも可能である。
(第六実施形態に係るバイオマス燃料化システム62)
In the carbonization step 136, there are a first example of a carbonization step for semi-carbonizing the dried product 114 and a second example of a carbonization step for carbonizing the dried product 114, which are appropriately used. In 536, the granulated material 516 is semi-carbonized or carbonized. By carbonizing in the state of the granulated material 516, the fuel pellets 51 are firmly solidified, so that the water resistance as fuel pellets is improved. Further, by performing heat treatment in the form of the granulated product 516, it is possible to carbonize without burning even if the fiber burns.
(Biomass fuel conversion system 62 according to the sixth embodiment)
 本発明に係るバイオマス燃料化システムの好適な実施形態であって、第六実施形態に係るバイオマス燃料化システムの構成を図12Bに示す。 FIG. 12B shows the configuration of the biomass fueling system according to the sixth embodiment, which is a preferred embodiment of the biomass fueling system according to the present invention.
 図12Bに示すように、バイオマス燃料化システム62は、原料611に含まれるナトリウム、カリウム、リン、亜鉛、鉛、銅、アルミニウム、カルシウム、硫黄、ガラス等のスケールの原因となる物質の溶出を促すよう、パーム空果房からなる原料611を破砕し、繊維をすり潰すことにより、破砕物612にする破砕装置621と、破砕物612を洗浄することにより、破砕物612に含まれるスケールの原因物質を低減し、洗浄物613にする洗浄装置622と、洗浄物613の水分含有率を低下させて乾燥物614にする乾燥装置624と、乾燥装置624により水分含有率を低下させた後、乾燥装置624により水分含有率が低下した乾燥物614を燃料の形状に造粒し、造粒物616にする造粒装置628と、造粒物616を炭化させることにより、水分含有率をさらに低下させるとともに、造粒物616に含まれる、塩素、硫黄等のボイラー使用時に腐食の原因となる物質を低減させ、単位重量あたりの熱量を増加させた燃料ペレット61にする炭化装置626と、燃料ペレット61の熱量や脆さ等を計測し、製品の品質が一定になるよう燃料ペレット61を混合する計測・混合装置629とを備えている。
(バイオマス由来燃料ペレットの第六製造方法63)
As shown in FIG. 12B, the biomass fueling system 62 promotes elution of substances that cause scale such as sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass contained in the raw material 611. The crushing device 621 that crushes the raw material 611 made of palm empty fruit bunches and crushes the fiber to crush the product 612, and the crushing product 612 is washed to cause the scale contained in the crushed product 612. A cleaning device 622 for reducing the water content of the cleaning product 613, a drying device 624 for reducing the water content of the cleaning product 613 to a dry product 614, and a drying device for reducing the water content by the drying device 624. The dried product 614 whose water content is reduced by 624 is granulated into a fuel shape, and the granulated device 628 is made into a granulated product 616, and the granulated product 616 is converted into charcoal. By further reducing the moisture content, the pellets 616 containing the chlorine, sulfur and other substances that cause corrosion when using the boiler are reduced, and the amount of heat per unit weight is increased. 61, and a measuring / mixing device 629 that measures the heat quantity and brittleness of the fuel pellet 61 and mixes the fuel pellet 61 so that the quality of the product is constant.
(Sixth production method 63 of biomass-derived fuel pellets)
 本発明に係るバイオマス由来燃料ペレットの第六製造方法の流れを示すフローチャートを図13Bに示す。 FIG. 13B shows a flowchart showing the flow of the sixth method for producing biomass-derived fuel pellets according to the present invention.
 バイオマス由来燃料ペレットの第六製造方法63は、図13Bに示すように、炭化工程636以外の工程は、バイオマス由来燃料ペレットの第五製造方法53に記載の工程と同様であり、破砕工程631・洗浄工程632・乾燥工程634・造粒工程638・計測・混合工程639は、それぞれ、破砕工程531・洗浄工程532・乾燥工程534・造粒工程538・計測・混合工程539に対応する。
(炭化工程636)
As shown in FIG. 13B, the sixth production method 63 for biomass-derived fuel pellets is the same as the process described in the fifth production method 53 for biomass-derived fuel pellets except for the carbonization step 636, and the crushing step 631. The cleaning process 632, the drying process 634, the granulation process 638, and the measurement / mixing process 639 correspond to the crushing process 531, the cleaning process 532, the drying process 534, the granulation process 538, and the measurement / mixing process 539, respectively.
(Carbonization step 636)
 炭化工程536では、水蒸気を送風して造粒物516を加熱することで、造粒物516を半炭化又は炭化させるが、炭化工程636においては、造粒物616をフライ装置626により炭化させる。炭化工程636の詳細は、炭化工程236と同様であるので省略する。
(第七実施形態に係るバイオマス燃料化システム72)
In the carbonization step 536, the granulated product 516 is semi-carbonized or carbonized by blowing steam and heating the granulated product 516. In the carbonization step 636, the granulated product 616 is carbonized by the frying device 626. The details of the carbonization step 636 are the same as those of the carbonization step 236, and thus will be omitted.
(Biomass fuel conversion system 72 according to the seventh embodiment)
 本発明に係るバイオマス燃料化システムの好適な実施形態であって、第七実施形態に係るバイオマス燃料化システムの構成を図12Cに示す。 FIG. 12C shows a configuration of the biomass fuel conversion system according to the seventh embodiment, which is a preferred embodiment of the biomass fuel conversion system according to the present invention.
 図12Cに示すように、バイオマス燃料化システム72は、原料711に含まれるナトリウム、カリウム、リン、亜鉛、鉛、銅、アルミニウム、カルシウム、硫黄、ガラス等のスケールの原因となる物質の溶出を促すよう、パーム空果房からなる原料711を破砕し、繊維をすり潰すことにより、一次破砕物712にする一次破砕装置721と、一次破砕物712を洗浄することにより、一次破砕物712に含まれるスケールの原因物質を低減し、洗浄物713にする洗浄装置722と、洗浄物713の水分含有率を低下させて乾燥物714にする乾燥装置724と、乾燥装置724により水分含有率を低下させた乾燥物714を造粒に適したサイズに破砕し、二次破砕物715にする二次破砕装置725と、二次破砕装置725により破砕された二次破砕物715を燃料の形状に造粒し、造粒物716にする造粒装置728と、造粒物716を炭化させることにより、水分含有率をさらに低下させるとともに、造粒物716に含まれる、塩素、硫黄等のボイラー使用時に腐食の原因となる物質を低減させ、単位重量あたりの熱量を増加させた燃料ペレット71にする炭化装置726と、燃料ペレット71の熱量や脆さ等を計測し、製品の品質が一定になるよう燃料ペレット71を混合する計測・混合装置729とを備えている。
(バイオマス由来燃料ペレットの第七製造方法73)
As shown in FIG. 12C, the biomass fuel conversion system 72 promotes elution of substances that cause scale such as sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass contained in the raw material 711. The primary crushed product 712 is made by crushing the raw material 711 made of palm empty fruit bunches and grinding the fibers, thereby cleaning the primary crushed product 712 and the primary crushed product 712. The causative substance of the scale is reduced, the cleaning device 722 that makes the cleaning product 713, the drying device 724 that reduces the moisture content of the cleaning product 713 to make the dry product 714, and the moisture content is reduced by the drying device 724. The dried product 714 is crushed to a size suitable for granulation, and is crushed by a secondary crushing device 725 to make a secondary crushed product 715 and a secondary crushing device 725. By granulating the secondary crushed material 715 into the shape of fuel to make the granulated material 716 and carbonizing the granulated material 716, the moisture content is further reduced and the granulated material 716 includes a carbonizer 726 that reduces the amount of substances that cause corrosion when using a boiler such as chlorine and sulfur and increases the amount of heat per unit weight to fuel pellet 71, and the amount of heat and brittleness of fuel pellet 71. And a measurement / mixing device 729 for mixing the fuel pellets 71 so that the quality of the product becomes constant.
(Seventh manufacturing method 73 of biomass-derived fuel pellets)
 本発明に係るバイオマス由来燃料ペレットの第七製造方法の流れを示すフローチャートを図13Cに示す。 FIG. 13C shows a flowchart showing the flow of the seventh method for producing biomass-derived fuel pellets according to the present invention.
 バイオマス由来燃料ペレットの第七製造方法73は、図13Cに示すように、バイオマス由来燃料ペレットの第五製造方法53において、乾燥工程534と造粒工程538の間で、二次破砕工程735を行う。したがって、二次破砕工程735以外の工程は、バイオマス由来燃料ペレットの第五製造方法53に記載の工程と同様であり、破砕工程731・洗浄工程732・乾燥工程734・造粒工程738・炭化工程736・計測・混合工程739は、それぞれ、破砕工程531・洗浄工程532・乾燥工程534・造粒工程538・炭化工程536・計測・混合工程539に対応する。
(二次破砕工程735)
As shown in FIG. 13C, the seventh method 73 for producing biomass-derived fuel pellets performs a secondary crushing step 735 between the drying step 534 and the granulation step 538 in the fifth method 53 for producing biomass-derived fuel pellets. . Therefore, processes other than the secondary crushing process 735 are the same as the processes described in the fifth method 53 for producing biomass-derived fuel pellets, and include a crushing process 731, a cleaning process 732, a drying process 734, a granulation process 738, and a carbonization process. 736 and the measurement / mixing process 739 correspond to the crushing process 531, the cleaning process 532, the drying process 534, the granulation process 538, the carbonization process 536, and the measurement / mixing process 539, respectively.
(Secondary crushing step 735)
 二次破砕工程735では、乾燥工程734によって水分含有率が低下した乾燥物714に対して、二次破砕を行う。この後に行う造粒工程738で利用するリングダイ式造粒機のリングダイに多数設けられた孔のサイズがΦ6mm又はΦ8mmであるため、その孔に入りやすく圧縮しやすいように、二次破砕工程735では、10mm前後の繊維の長さに粉砕する。この粉砕した二次破砕物715を造粒工程738にて造粒後に炭化工程736にて炭化することで、均一に炭化されたバイオマス由来燃料ペレット71が得られる。また、このバイオマス由来燃料ペレット71は、細かく粉砕されてから、しっかりと固められているため、高い耐水性を有すると共に、粉砕性に優れるため、他の燃料を混焼する際の全使用燃料に対するバイオマスの熱量換算による割合である混焼率を向上させることができる。
(混焼率の評価試験)
In the secondary crushing step 735, secondary crushing is performed on the dried product 714 whose moisture content has been reduced by the drying step 734. Since the size of the hole provided in the ring die of the ring die type granulator used in the granulation step 738 performed thereafter is Φ6 mm or Φ8 mm, the secondary crushing step is performed so that the hole can be easily inserted and compressed. In 735, it is pulverized to a fiber length of about 10 mm. The pulverized secondary crushed material 715 is granulated in the granulation step 738 and then carbonized in the carbonization step 736, whereby the uniformly carbonized biomass-derived fuel pellets 71 are obtained. In addition, since the biomass-derived fuel pellets 71 are finely pulverized and then firmly solidified, the biomass-derived fuel pellets 71 have high water resistance and excellent pulverizability, so that biomass for all fuels used when co-firing other fuels is used. It is possible to improve the mixed firing rate, which is a ratio in terms of calorie conversion.
(Evaluation test of mixed firing rate)
 製造されたバイオマス由来燃料ペレット71において、他の燃料を混焼する際の全使用燃料に対するバイオマスの熱量換算による割合である混焼率を評価するための試験を行った。
(試験方法)
In the produced biomass-derived fuel pellets 71, a test was conducted to evaluate the co-firing rate, which is a ratio of biomass in terms of calorific value with respect to the total fuel used when co-firing other fuels.
(Test method)
 粉砕性が優れる場合、高い混焼率が得られ、粉砕性が劣る場合、混焼率が低くなる相関があるので、混焼率を評価するに当たり、粉砕性を評価することで、混焼率も評価することができる。 When the grindability is excellent, a high mixed firing rate is obtained, and when the grindability is inferior, there is a correlation that the mixed firing rate is low, so when evaluating the mixed firing rate, the mixed firing rate should be evaluated by evaluating the grindability. Can do.
 JIS M 8801に準拠して、粉砕性の評価試験を行った。試験は、試料を所定の方法で採取し気乾するか、又は縮分したものを所定の大きさ以下に予備粉砕してから、更に所定の大きさになるように粉砕、ふるい分けをして調製したものを供試試料とする。 In accordance with JIS M 8801, an evaluation test of grindability was performed. The test is prepared by collecting the sample by the specified method and air-drying, or pre-pulverizing the reduced product to a predetermined size or less, and then pulverizing and screening to a predetermined size. This is the test sample.
 この供試試料を所定の試験機で粉砕した後、所定のふるいでふるい分け、ふるい下の質量をはかり、所定の実験式によって求めた値をHGI(ハードグローブ粉砕指数)として表す。 After pulverizing this test sample with a predetermined testing machine, sieving with a predetermined sieve and measuring the mass under the sieve, the value obtained by a predetermined empirical formula is expressed as HGI (Hard Glove Grinding Index).
 第七実施例のバイオマス由来燃料ペレット71を作成し、上記の試験方法によって、このバイオマス由来燃料ペレット71の粉砕性指数であるHGIを求めた。
(混焼率の評価)
Biomass-derived fuel pellets 71 of the seventh example were prepared, and HGI, which is a grindability index of the biomass-derived fuel pellets 71, was obtained by the test method described above.
(Evaluation of mixed firing rate)
 第七実施例のバイオマス由来燃料ペレット71のHGIは、44という値となった。この値は、各種燃料ペレットの標準的なHGIの値である、木質チップの16、原料PKS(パーム椰子殻)の14、PKSの25、木質ペレットの22、と比較して、大きな値である。このことは、第七実施例のバイオマス由来燃料ペレット71は、各種燃料ペレットよりも粉砕しやすいことを示しており、少なくとも、第七実施例のバイオマス由来燃料ペレット71によれば、混焼率が向上することが判明した。
(カロリーの測定)
The HGI of the biomass-derived fuel pellet 71 of the seventh example was 44. This value is a large value compared to the standard HGI values for various fuel pellets: 16 for wood chips, 14 for raw material PKS (palm palm shell), 25 for PKS, 22 for wood pellets. . This indicates that the biomass-derived fuel pellets 71 of the seventh embodiment are more easily pulverized than the various fuel pellets. At least, according to the biomass-derived fuel pellets 71 of the seventh embodiment, the mixed combustion rate is improved. Turned out to be.
(Calorie measurement)
 第七実施例のバイオマス由来燃料ペレット71の高位発熱量をボンブ熱量計によって測定した。
(カロリーの評価)
The higher calorific value of the biomass-derived fuel pellet 71 of the seventh example was measured with a bomb calorimeter.
(Evaluation of calories)
 前述したように、バイオマス由来燃料ペレットは、18MJ/kg以上27MJ/kg以下の発熱量、より好ましくは20MJ/kg以上の発熱量を有することが要求されるところ、第七実施例のバイオマス由来燃料ペレット71の発熱量は22.1MJ/kgの発熱量と計測された。 As described above, the biomass-derived fuel pellet is required to have a calorific value of 18 MJ / kg or more and 27 MJ / kg or less, more preferably 20 MJ / kg or more. The calorific value of the pellet 71 was measured as a calorific value of 22.1 MJ / kg.
 以上のことから、本実施の形態によれば、発熱量が大きく、バイオマスと他の燃料を混焼する際の全使用燃料に対するバイオマスの熱量換算による割合である混焼率を向上させることができる燃料ペレットを提供できる。
(第八実施形態に係るバイオマス燃料化システム82)
From the above, according to the present embodiment, the fuel pellet has a large calorific value and can improve the co-firing rate, which is the ratio of the biomass in terms of calorie conversion to the total fuel used when co-firing biomass and other fuels. Can provide.
(Biomass fuel conversion system 82 according to the eighth embodiment)
 本発明に係るバイオマス燃料化システムの好適な実施形態であって、第八実施形態に係るバイオマス燃料化システムの構成を図14Aに示す。 FIG. 14A shows a configuration of a biomass fuel conversion system according to the eighth embodiment, which is a preferred embodiment of the biomass fuel conversion system according to the present invention.
 図14Aに示すように、バイオマス燃料化システムA2は、原料A11に含まれるナトリウム、カリウム、リン、亜鉛、鉛、銅、アルミニウム、カルシウム、硫黄、ガラス等のスケールの原因となる物質の溶出を促すよう、パーム椰子の茎葉からなる原料A11を圧搾することにより、圧搾物A19にする圧搾装置A30と、圧搾物A19を洗浄することにより、圧搾物A19に含まれるスケールの原因物質を低減し、洗浄物A13にする洗浄装置A22と、洗浄物A13の水分含有率を低下させて乾燥物A14にする乾燥装置A24と、乾燥装置A24により水分含有率を低下させた後、乾燥物A14を炭化させることにより、水分含有率をさらに低下させるとともに、乾燥物A14に含まれる、塩素、硫黄等のボイラー使用時に腐食の原因となる物質を低減させ、単位重量あたりの熱量を増加させた炭化物A17にする炭化装置A26と、炭化物A17を燃料の形状に造粒し、燃料ペレットA1にする造粒装置A28と、燃料ペレットA1の熱量や脆さ等を計測し、製品の品質が一定になるよう燃料ペレットA1を混合する計測・混合装置A29とを備えている。なお、計測・混合装置A29による計測自体を省略してもよい。 As shown in FIG. 14A, the biomass fuel conversion system A2 promotes elution of substances that cause scale such as sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass contained in the raw material A11. By pressing the raw material A11 made of palm palm stems and leaves, the pressing device A30 to be the pressed product A19 and the compressed product A19 are washed to reduce the causative substances of the scale contained in the pressed product A19 Cleaning device A22 to make the product A13, Drying device A24 to reduce the moisture content of the cleaning product A13 to make the dried product A14, After reducing the moisture content by the drying device A24, carbonize the dried product A14 As a result, the moisture content is further reduced, and corrosion of the boiler, such as chlorine and sulfur, contained in the dried product A14 is reduced. A carbonization device A26 for reducing the causative substance and increasing the amount of heat per unit weight to form a carbide A17, a granulation device A28 for granulating the carbide A17 into a fuel shape to form a fuel pellet A1, and a fuel pellet It includes a measuring / mixing device A29 that measures the amount of heat and brittleness of A1 and mixes the fuel pellets A1 so that the quality of the product is constant. Note that the measurement itself by the measurement / mixing apparatus A29 may be omitted.
 バイオマス燃料化システムA2についての詳細については、後述するバイオマス房由来燃料ペレットの製造方法A3において説明する。
(バイオマス由来燃料ペレットの第八製造方法A3)
The details of the biomass fuel conversion system A2 will be described in a method A3 for producing biomass bunch-derived fuel pellets described later.
(Eighth production method A3 of biomass-derived fuel pellets)
 本発明に係るパーム空果房由来燃料ペレットの第八製造方法A3は、図15Aに示すように、原料A11に含まれるナトリウム、カリウム、リン、亜鉛、鉛、銅、アルミニウム、カルシウム、硫黄、ガラス等のスケールの原因となる物質の溶出を促すよう、パーム空果房からなる原料A11を圧搾し、圧搾物A19にする圧搾工程A40と、圧搾物A19を洗浄することにより、圧搾物A19に含まれるスケールの原因物質を低減し、洗浄物A13にする洗浄工程A32と、洗浄物A13の水分含有率を低下させて乾燥物A14にする乾燥工程A34と、乾燥工程A34により水分含有率を低下させた後、乾燥物A14を炭化させることにより、水分含有率をさらに低下させるとともに、乾燥物A14に含まれる、塩素、硫黄等のボイラー使用時に腐食の原因となる物質を低減させ、単位重量あたりの熱量を増加させた炭化物A17にする炭化工程A36と、炭化物A17を燃料の形状に造粒し、燃料ペレットA1にする造粒工程A38と、燃料ペレットA1の熱量や脆さ等を計測し、製品の品質が一定になるよう燃料ペレットA1を混合する計測・混合工程A39とからなる。 As shown in FIG. 15A, the eighth method A3 for producing palm empty fruit bunch-derived fuel pellets according to the present invention includes sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass contained in the raw material A11. Compressed raw material A11 made of palm empty fruit bunches to promote elution of substances that cause scales such as pressing step A40 into compressed product A19, and washing compressed product A19, included in compressed product A19 Reducing the causative substances of the scale to be washed A13, reducing the moisture content of the washed product A13 by reducing the moisture content of the washed product A13, and reducing the moisture content by the drying step A34 After that, by carbonizing the dried product A14, the moisture content is further reduced, and boilers such as chlorine and sulfur contained in the dried product A14 A carbonization step A36 for reducing the amount of substances that cause corrosion during use and increasing the amount of heat per unit weight to form a carbide A17, and a granulation step A38 for granulating the carbide A17 into a fuel shape to form a fuel pellet A1. And a measurement / mixing step A39 for measuring the heat quantity and brittleness of the fuel pellet A1 and mixing the fuel pellet A1 so that the quality of the product is constant.
 圧搾工程A40以外の工程は、バイオマス由来燃料ペレットの第一製造方法13に記載の工程と同様であり、洗浄工程A32・乾燥工程A34・炭化工程A36・造粒工程A3A・計測・混合工程A39は、それぞれ、洗浄工程132・乾燥工程134・炭化工程136・造粒工程138・計測・混合工程139に対応する。なお洗浄工程A32では、圧搾物A19を複数段階に分けて洗浄してもよい。 The steps other than the pressing step A40 are the same as the steps described in the first method 13 for producing biomass-derived fuel pellets, and the washing step A32, the drying step A34, the carbonization step A36, the granulation step A3A, the measurement and mixing step A39 are These correspond to the cleaning step 132, the drying step 134, the carbonization step 136, the granulation step 138, and the measurement / mixing step 139, respectively. In the cleaning step A32, the pressed product A19 may be cleaned in multiple stages.
 圧搾工程A40において、原料A11は圧搾装置A30により圧搾されて、原料A11中の植物細胞が破壊され、原料A11に含まれる水分が一定量除去されると共に、原料A11中のカリウム等のスケールの原因物質の溶出が促される。この段階で原料A11に含まれる水分が、質量において40%以上減少するのが望ましい。圧搾装置A30は、例えば公知のスクリュー式の圧搾機、油圧プレス機等を用いることができる。
(第九実施形態に係るバイオマス燃料化システムB2)
In the squeezing step A40, the raw material A11 is squeezed by the squeezing device A30, the plant cells in the raw material A11 are destroyed, a certain amount of water contained in the raw material A11 is removed, and the cause of scale such as potassium in the raw material A11 Elution of the substance is promoted. At this stage, it is desirable that the moisture contained in the raw material A11 is reduced by 40% or more in mass. As the pressing device A30, for example, a known screw-type pressing machine, a hydraulic press machine, or the like can be used.
(Biomass fuel conversion system B2 according to the ninth embodiment)
 図14Bに示すように、バイオマス燃料化システムB2は、原料B11に含まれるナトリウム、カリウム、リン、亜鉛、鉛、銅、アルミニウム、カルシウム、硫黄、ガラス等のスケールの原因となる物質の溶出を促すよう、パーム椰子の茎葉からなる原料B11を圧搾することにより、圧搾物B19にする圧搾装置B30と、圧搾物B19を洗浄することにより、圧搾物B19に含まれるスケールの原因物質を低減し、洗浄物B13にする洗浄装置B22と、洗浄物B13の水分含有率を低下させて乾燥物B14にする乾燥装置B24と、乾燥装置B24により水分含有率を低下させた後、乾燥装置B24により水分含有率が低下した乾燥物B14を燃料の形状に造粒し、造粒物B16にする造粒装置B28と、造粒物B16を炭化させることにより、水分含有率をさらに低下させるとともに、造粒物B16に含まれる、塩素、硫黄等のボイラー使用時に腐食の原因となる物質を低減させ、単位重量あたりの熱量を増加させた燃料ペレットB1にする炭化装置B26と、燃料ペレットB1の熱量や脆さ等を計測し、製品の品質が一定になるよう燃料ペレットB1を混合する計測・混合装置B29とを備えている。なお、計測・混合装置B29による計測自体を省略してもよい。 As shown in FIG. 14B, the biomass fuel conversion system B2 promotes elution of substances that cause scale such as sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass contained in the raw material B11. By pressing the raw material B11 made of palm palm stalks and leaves, the pressing device B30 that makes the compressed product B19 and the compressed product B19 are washed to reduce the causative substances of the scale contained in the compressed product B19, and wash it. A cleaning device B22 to make the product B13, a drying device B24 to reduce the moisture content of the cleaning product B13 to make the dried product B14, and a moisture content to be reduced by the drying device B24 after reducing the moisture content by the drying device B24 Granulate the dried product B14 having decreased in the form of fuel into a granulated product B16, and carbonize the granulated product B16 As a result, the fuel pellet B1 further reduces the moisture content, reduces substances that cause corrosion when using a boiler such as chlorine and sulfur, and increases the amount of heat per unit weight. A carbonizing device B26, and a measuring / mixing device B29 that measures the amount of heat and brittleness of the fuel pellet B1 and mixes the fuel pellet B1 so that the quality of the product is constant. Note that the measurement itself by the measurement / mixing device B29 may be omitted.
 バイオマス燃料化システムB2についての詳細については、後述するバイオマス房由来燃料ペレットの製造方法B3において説明する。
(バイオマス由来燃料ペレットの第九製造方法B3)
Details of the biomass fuel conversion system B2 will be described in a method B3 for producing a biomass bunch-derived fuel pellet described later.
(Ninth production method B3 of biomass-derived fuel pellets)
 バイオマス由来燃料ペレットの第九製造方法B3は、図15Bに示すように、圧搾工程B40から乾燥工程B34までが、バイオマス由来燃料ペレットの第八製造方法A83における圧搾工程A40から乾燥工程A34と同様である。第九製造方法B3は乾燥工程B34後に造粒工程B38があって、その後に、炭化工程B36を行う点で、第八製造方法A3と異なっている。計測・混合工程B39は、計測・混合工程A39に対応している。
(第十実施形態に係るバイオマス燃料化システムC2)
As shown in FIG. 15B, the ninth production method B3 of the biomass-derived fuel pellet is similar to the compression step A40 to the drying step A34 in the eighth production method A83 of the biomass-derived fuel pellet, from the pressing step B40 to the drying step B34. is there. The ninth production method B3 is different from the eighth production method A3 in that there is a granulation step B38 after the drying step B34, followed by a carbonization step B36. The measurement / mixing step B39 corresponds to the measurement / mixing step A39.
(Biomass fuel conversion system C2 according to the tenth embodiment)
 図14Cに示すように、バイオマス燃料化システムC2は、原料C11に含まれるナトリウム、カリウム、リン、亜鉛、鉛、銅、アルミニウム、カルシウム、硫黄、ガラス等のスケールの原因となる物質の溶出を促すよう、パーム空果房からなる原料C11を破砕することにより、破砕物C12にする破砕装置C21と、破砕物C12を圧搾することにより、圧搾物C19にする圧搾装置C30と、圧搾物C19を洗浄することにより、圧搾物C19に含まれるスケールの原因物質を低減し、洗浄物C13にする洗浄装置C22と、洗浄物C13の水分含有率を低下させて乾燥物C14にする乾燥装置C24と、乾燥装置C24により水分含有率を低下させた後、乾燥物C4を炭化させることにより、水分含有率をさらに低下させるとともに、乾燥物C4に含まれる、塩素、硫黄等のボイラー使用時に腐食の原因となる物質を低減させ、単位重量あたりの熱量を増加させた炭化物C17にする炭化装置826と、炭化物C17を燃料の形状に造粒し、燃料ペレットC1にする造粒装置C28と、燃料ペレットC1の熱量や脆さ等を計測し、製品の品質が一定になるよう燃料ペレットC1を混合する計測・混合装置C29とを備えている。なお、計測・混合装置C29による計測自体を省略してもよい。 As shown in FIG. 14C, the biomass fuel conversion system C2 promotes elution of substances that cause scale such as sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass contained in the raw material C11. The crushing device C21 that makes the crushed material C12 by crushing the raw material C11 made of palm empty fruit bunches, the pressing device C30 that makes the compressed product C19 by squeezing the crushed material C12, and the compressed product C19 are washed. By doing, the causative substance of the scale contained in the pressed product C19 is reduced, the cleaning device C22 to make the cleaning product C13, the drying device C24 to reduce the moisture content of the cleaning product C13 to the dry product C14, and the drying After the moisture content is reduced by the device C24, the moisture content is further reduced by carbonizing the dried product C4. The carbonized device 826 that reduces the substances that cause corrosion when using boilers such as chlorine and sulfur contained in the dried product C4, and converts the carbonized component C17 into a carbide C17 with an increased amount of heat per unit weight; A granulating device C28 for granulating the fuel pellets C1 and a measuring / mixing device C29 for measuring the heat quantity and brittleness of the fuel pellets C1 and mixing the fuel pellets C1 so that the quality of the product is constant. I have. Note that the measurement itself by the measurement / mixing device C29 may be omitted.
 バイオマス燃料化システムC2についての詳細については、後述するバイオマス房由来燃料ペレットの製造方法C3において説明する。
(バイオマス由来燃料ペレットの第十製造方法C3)
The details of the biomass fuel conversion system C2 will be described in a method C3 for producing a biomass bunch-derived fuel pellet described later.
(Tenth production method C3 of biomass-derived fuel pellets)
 本発明に係るパーム空果房由来燃料ペレットの第十製造方法C3は、図15Cに示すように、原料C11に含まれるナトリウム、カリウム、リン、亜鉛、鉛、銅、アルミニウム、カルシウム、硫黄、ガラス等のスケールの原因となる物質の溶出を促すよう、原料C11を破砕することにより、破砕物C12にする破砕工程C31と、破砕物C12を圧搾することにより、圧搾物C19にする圧搾工程C40と、圧搾物C19を洗浄することにより、圧搾物C19に含まれるスケールの原因物質を低減し、洗浄物C13にする洗浄工程C32と、洗浄物C13の水分含有率を低下させて乾燥物C14にする乾燥工程C34と、乾燥工程C34により水分含有率を低下させた後、乾燥物C14を炭化させることにより、水分含有率をさらに低下させるとともに、乾燥物C14に含まれる、塩素、硫黄等のボイラー使用時に腐食の原因となる物質を低減させ、単位重量あたりの熱量を増加させた炭化物C17にする炭化工程C36と、炭化物C17を燃料の形状に造粒し、燃料ペレットC1にする造粒工程C38と、燃料ペレットC1の熱量や脆さ等を計測し、製品の品質が一定になるよう燃料ペレットC1を混合する計測・混合工程C39とからなる。破砕工程C31で原料を破砕して圧搾工程C39に供給することにより、圧搾工程C39における圧搾装置C30により圧搾処理がし易くなり能率が上がる。 As shown in FIG. 15C, the tenth production method C3 of the palm empty fruit bun derived fuel pellet according to the present invention includes sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass contained in the raw material C11. The crushing process C31 which makes the crushed material C12 by crushing the raw material C11 and the pressing process C40 which makes the squeezed product C19 by squeezing the crushed material C12 so as to promote the elution of the substances causing the scale such as By washing the compressed product C19, the causative substance of the scale contained in the compressed product C19 is reduced, and the cleaning process C32 to make the cleaning product C13, and the moisture content of the cleaning product C13 is reduced to make the dry product C14. After reducing the moisture content in the drying step C34 and the drying step C34, the moisture content is further reduced by carbonizing the dried product C14. Carbonization process C36 which reduces the substance which causes corrosion at the time of boiler use, such as chlorine and sulfur contained in dry matter C14, and makes carbon C17 which increased the calorie | heat amount per unit weight, and carbide C17 as fuel Granulation step C38 to form fuel pellets C1 and measurement / mixing step C39 of measuring the heat quantity and brittleness of the fuel pellets C1 and mixing the fuel pellets C1 so that the product quality is constant It consists of. By crushing the raw material in the crushing step C31 and supplying it to the pressing step C39, the pressing device C30 in the pressing step C39 facilitates the pressing process and the efficiency is increased.
 第十製造方法C3では、圧搾工程C40・洗浄工程C32・乾燥工程C34・炭化工程C36・造粒工程C38・計測・混合工程C39は、それぞれ、バイオマス由来燃料ペレットの第八製造方法83と同様であり、破砕工程C31では、原料C11を圧搾装置C30により処理するのに適した大きさになるように、破砕装置C21により破砕する。破砕工程C31で生じた破砕物C19は圧搾工程C40へ供給される。この破砕装置C21は、第一実施形態に係るバイオマス燃料化システム12の破砕装置121と同様のものである。
(第十一実施形態に係るバイオマス燃料化システムD2)
In the tenth production method C3, the pressing step C40, the washing step C32, the drying step C34, the carbonization step C36, the granulation step C38, the measurement and mixing step C39 are the same as in the eighth production method 83 for biomass-derived fuel pellets, respectively. Yes, in the crushing step C31, the raw material C11 is crushed by the crushing device C21 so as to have a size suitable for processing by the pressing device C30. The crushed material C19 generated in the crushing step C31 is supplied to the pressing step C40. This crushing device C21 is the same as the crushing device 121 of the biomass fuel conversion system 12 according to the first embodiment.
(Biomass fuel conversion system D2 according to the eleventh embodiment)
 図14Dに示すように、バイオマス燃料化システムD2は、原料D11に含まれるナトリウム、カリウム、リン、亜鉛、鉛、銅、アルミニウム、カルシウム、硫黄、ガラス等のスケールの原因となる物質の溶出を促すよう、パーム空果房からなる原料D11を破砕し、繊維をすり潰すことにより、破砕物D12にする破砕装置D21と、破砕物D12を圧搾することにより、圧搾物D19にする圧搾装置D30と、圧搾物D19を洗浄することにより、圧搾物D19に含まれるスケールの原因物質を低減し、洗浄物D13にする洗浄装置D22と、洗浄物D13の水分含有率を低下させて乾燥物D14にする乾燥装置D24と、乾燥装置D24により水分含有率を低下させた後、乾燥物D4を燃料の形状に造粒することにより、造粒物D16にする造粒装置D28と、造粒物D16を炭化させることにより、水分含有率をさらに低下させるとともに、造粒物D16に含まれる、塩素、硫黄等のボイラー使用時に腐食の原因となる物質を低減させ、単位重量あたりの熱量を増加させた燃料ペレットD1にする炭化装置D26と、燃料ペレットD1の熱量や脆さ等を計測し、製品の品質が一定になるよう燃料ペレットD1を混合する計測・混合装置D29とを備えている。なお、計測・混合装置D29による計測自体を省略してもよい。 As shown in FIG. 14D, the biomass fuel conversion system D2 promotes elution of substances that cause scale such as sodium, potassium, phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, and glass contained in the raw material D11. Like, crushing raw material D11 consisting of palm empty fruit bunches, crushing fibers, crushing device D21 to crushed material D12, squeezing crushed material D12, squeezing device D30 to squeezed product D19, By cleaning the compressed product D19, the causative substance of the scale contained in the compressed product D19 is reduced, and the cleaning device D22 that makes the cleaned product D13, and the moisture content of the cleaned product D13 is reduced to the dry product D14. After the moisture content is reduced by the device D24 and the drying device D24, the dried product D4 is granulated in the form of fuel, thereby forming the granulated product D1. By granulating the granulating device D28 and the granulated product D16, the moisture content is further reduced, and substances contained in the granulated product D16 that cause corrosion when using boilers such as chlorine and sulfur. A carbonizer D26 that reduces and increases the amount of heat per unit weight of fuel pellets D1, and measures the amount of heat and brittleness of the fuel pellets D1, and mixes the fuel pellets D1 so that the quality of the product is constant -It has a mixing device D29. Note that the measurement itself by the measurement / mixing device D29 may be omitted.
 バイオマス燃料化システムD2についての詳細については、後述するバイオマス房由来燃料ペレットの製造方法D3において説明する。
(バイオマス由来燃料ペレットの第十一製造方法D3)
Details of the biomass fuel conversion system D2 will be described in a method for producing biomass bunch-derived fuel pellets D3 described later.
(Eleventh production method D3 of biomass-derived fuel pellets)
 本発明に係るパーム空果房由来燃料ペレットの第十一製造方法の流れを示すフローチャートを図15Dに示す。 FIG. 15D is a flowchart showing the flow of the eleventh method for producing palm empty fruit bunch-derived fuel pellets according to the present invention.
 本発明に係るバイオマス由来燃料ペレットの第十一製造方法D3は、図15Dに示すように、破砕工程D31から乾燥工程D34までが、バイオマス由来燃料ペレットの第十製造方法C3における破砕工程C31から乾燥工程C34と同様である。第十一製造方法D3は、乾燥工程D34後に造粒工程D36があって、その後に、炭化工程D38を行う点で、第十製造方法C3と異なっている。計測・混合工程D39は、計測・混合工程C39に対応している。
(第十二実施形態に係るバイオマス燃料化システムE2)
In the eleventh production method D3 for biomass-derived fuel pellets according to the present invention, as shown in FIG. 15D, the crushing step D31 to the drying step D34 are dried from the crushing step C31 in the tenth production method C3 for biomass-derived fuel pellets. Same as step C34. The eleventh production method D3 is different from the tenth production method C3 in that there is a granulation step D36 after the drying step D34, and then a carbonization step D38 is performed. The measurement / mixing step D39 corresponds to the measurement / mixing step C39.
(Biomass fuel conversion system E2 according to the twelfth embodiment)
 図16Eに示すように、バイオマス燃料化システムE2は、パーム椰子の茎葉からなる原料E11を加熱することにより、加工しやすい加熱物E11aにする加熱装置E30Aと、原料E11に含まれるナトリウム、カリウム、リン、亜鉛、鉛、銅、アルミニウム、カルシウム、硫黄、ガラス等のスケールの原因となる物質の溶出を促すよう、パーム椰子の茎葉からなる原料E11を圧搾することにより、圧搾物E19にする圧搾装置E30と、圧搾物E19を洗浄することにより、圧搾物E19に含まれるスケールの原因物質を低減し、洗浄物E13にする洗浄装置E22と、洗浄物E13の水分含有率を低下させて乾燥物E14にする乾燥装置E24と、乾燥装置E24により水分含有率を低下させた後、乾燥物E14を炭化させることにより、水分含有率をさらに低下させるとともに、乾燥物E14に含まれる、塩素、硫黄等のボイラー使用時に腐食の原因となる物質を低減させ、単位重量あたりの熱量を増加させた炭化物E17にする炭化装置E26と、炭化物E17を燃料の形状に造粒し、燃料ペレットE1にする造粒装置E28と、燃料ペレットE1の熱量や脆さ等を計測し、製品の品質が一定になるよう燃料ペレットE1を混合する計測・混合装置E29とを備えている。なお、計測・混合装置E29による計測自体を省略してもよい。 As shown in FIG. 16E, the biomass fuel conversion system E2 heats the raw material E11 made of palm palm stems and leaves to make a heated product E11a that is easy to process, and sodium, potassium contained in the raw material E11, Squeezing device E19 by squeezing raw material E11 made of palm palm leaves so as to promote elution of substances that cause scale such as phosphorus, zinc, lead, copper, aluminum, calcium, sulfur, glass, etc. By cleaning E30 and the compressed product E19, the causative substance of the scale contained in the compressed product E19 is reduced, and the cleaning device E22 to make the cleaned product E13, and the moisture content of the cleaned product E13 is reduced to reduce the dried product E14. The drying device E24 and the drying device E24 to reduce the water content and then carbonize the dried product E14. This further reduces the moisture content, reduces substances that cause corrosion when using boilers such as chlorine and sulfur contained in the dried product E14, and carbonizes the carbonized product E17 with an increased amount of heat per unit weight. The device E26, the granulating device E28 which granulates the carbide E17 into the shape of the fuel, and makes the fuel pellet E1, and the fuel pellet E1 measures the heat quantity and brittleness of the fuel pellet E1 so that the quality of the product becomes constant. And a measuring / mixing device E29. Note that the measurement itself by the measurement / mixing device E29 may be omitted.
 バイオマス燃料化システムE2の詳細については、後述するバイオマス房由来燃料ペレットの製造方法E3において説明する。
(バイオマス由来燃料ペレットの第十二製造方法E3)
The details of the biomass fuel conversion system E2 will be described in a biomass batter-derived fuel pellet manufacturing method E3 described later.
(Twelfth production method E3 of biomass-derived fuel pellets)
 本発明に係るバイオマス由来燃料ペレットの第十二製造方法E3は、図17Eに示すように、洗浄工程E32から造粒工程E38までが、図14Aに示すバイオマス由来燃料ペレットの第八製造方法A3における洗浄工程A32から造粒工程A38と同様である。第十二製造方法E3は、圧搾工程E40の前に加熱工程E40Aがあり、加熱工程E40Aで原料E11を加熱することにより加熱物E11aとし、圧搾工程E40は加熱物E11aを圧搾する点で、第八製造方法A3と異なっている。計測・混合工程E39は、計測・混合工程A39に対応している。 As shown in FIG. 17E, the twelfth production method E3 of biomass-derived fuel pellets according to the present invention includes the steps from the washing step E32 to the granulation step E38 in the eighth production method A3 of biomass-derived fuel pellets shown in FIG. 14A. This is the same as the washing step A32 to the granulation step A38. In the twelfth manufacturing method E3, there is a heating step E40A before the pressing step E40, and the heating step E40A heats the raw material E11 to obtain a heated item E11a, and the pressing step E40 presses the heated item E11a. Eight different from the manufacturing method A3. The measurement / mixing step E39 corresponds to the measurement / mixing step A39.
 加熱装置E30Aは、例えば蒸し器、熱風を吹き付ける公知のドライヤー等を用いることができ、原料E11を加熱して柔らかくし、原料E11から水分を絞り出し易くする。原料の加熱は、例えば温度が摂氏100度から摂氏200度に保たれた容器中に原料を10分から1時間収容することで行う。
(第十三実施形態に係るバイオマス燃料化システムF2)
As the heating device E30A, for example, a steamer, a known dryer that blows hot air, or the like can be used, and the raw material E11 is heated and softened to easily squeeze out moisture from the raw material E11. The raw material is heated by, for example, storing the raw material in a container maintained at a temperature of 100 degrees Celsius to 200 degrees Celsius for 10 minutes to 1 hour.
(Biomass fuel conversion system F2 according to the thirteenth embodiment)
 図16Fに示すように、バイオマス燃料化システムF2は、パーム椰子の茎葉からなる原料F11を加熱することで加工しやすい加熱物E11aにする加熱装置E30Aと、原料F11に含まれるナトリウム、カリウム、リン、亜鉛、鉛、銅、アルミニウム、カルシウム、硫黄、ガラス等のスケールの原因となる物質の溶出を促すよう、パーム椰子の茎葉からなる原料F11を圧搾することにより、圧搾物F19にする圧搾装置F30と、圧搾物F19を洗浄することにより、圧搾物F19に含まれるスケールの原因物質を低減し、洗浄物F13にする洗浄装置F22と、洗浄物F13の水分含有率を低下させて乾燥物F14にする乾燥装置F24と、乾燥装置F24により水分含有率を低下させた後、乾燥装置F24により水分含有率が低下した乾燥物F14を燃料の形状に造粒し、造粒物F16にする造粒装置F28と、造粒物F16を炭化させることにより、水分含有率をさらに低下させるとともに、造粒物F16に含まれる、塩素、硫黄等のボイラー使用時に腐食の原因となる物質を低減させ、単位重量あたりの熱量を増加させた燃料ペレットF1にする炭化装置F26と、燃料ペレットF1の熱量や脆さ等を計測し、製品の品質が一定になるよう燃料ペレットF1を混合する計測・混合装置F29とを備えている。なお、計測・混合装置F29による計測自体を省略してもよい。
(バイオマス由来燃料ペレットの第十三製造方法F3)
As shown in FIG. 16F, the biomass fueling system F2 includes a heating device E30A that makes a heated material E11a easy to process by heating a raw material F11 made of palm palm foliage, and sodium, potassium, and phosphorus contained in the raw material F11. Squeezing device F30 to squeeze the raw material F11 made of palm palm foliage so as to promote elution of substances that cause scale such as zinc, lead, copper, aluminum, calcium, sulfur, glass, etc. And the washing | cleaning apparatus F22 which reduces the causative substance of the scale contained in the pressing material F19 by wash | cleaning the pressing material F19, and makes the drying material F14 reduce the moisture content rate of the cleaning material F13. After the moisture content is lowered by the drying device F24 and the drying device F24, the moisture content is lowered by the drying device F24. The dried product F14 is granulated in the shape of fuel to produce a granulated product F16, and the granulated product F16 is carbonized to further reduce the moisture content and to be contained in the granulated product F16. The carbonization device F26 that reduces the substances that cause corrosion when using boilers such as chlorine and sulfur and increases the amount of heat per unit weight to the fuel pellet F1, and measures the heat amount and brittleness of the fuel pellet F1 And a measurement / mixing device F29 for mixing the fuel pellets F1 so that the quality of the product is constant. Note that the measurement itself by the measurement / mixing device F29 may be omitted.
(13th manufacturing method F3 of biomass-derived fuel pellet)
 本発明に係るバイオマス由来燃料ペレットの第十三製造方法F3は、図17Fに示すように、洗浄工程F32から造粒工程F38までが、図14Bに示すバイオマス由来燃料ペレットの第九製造方法B3における洗浄工程B32から造粒工程B38と同様である。第十三製造方法F3は、圧搾工程F40の前に加熱工程F40Aがあり、加熱工程F40Aで原料F11を加熱することにより加熱物F11aとし、圧搾工程F40は加熱物E11aを圧搾する点で、第九製造方法B3と異なっている。計測・混合工程F39は、計測・混合工程B39に対応している。 As shown in FIG. 17F, the thirteenth production method F3 of biomass-derived fuel pellets according to the present invention includes a washing process F32 to a granulation process F38 in the ninth production method B3 of biomass-derived fuel pellets shown in FIG. 14B. This is the same as the washing step B32 to the granulation step B38. The thirteenth manufacturing method F3 has a heating step F40A before the pressing step F40, and heats the raw material F11 in the heating step F40A to obtain a heating item F11a, and the pressing step F40 presses the heating item E11a. It is different from Nine manufacturing method B3. The measurement / mixing step F39 corresponds to the measurement / mixing step B39.
 本発明によれば、第八実施形態から第十三実施形態に係るバイオマス燃料化システムA2、B2、C2、D2、E2、F2において、過熱水蒸気により原料を炭化する炭化装置A26、B26、C26、D26、E26、F26を、第二実施形態における炭化装置226と同様のものに替えることができる。この場合、第八から第十三製造方法A3、B3、C3、D3、E3、F3は、それぞれ高温の油中で原料を炭化する炭化工程を含むものとなる。 According to the present invention, in the biomass fueling systems A2, B2, C2, D2, E2, and F2 according to the eighth embodiment to the thirteenth embodiment, carbonization apparatuses A26, B26, C26 for carbonizing a raw material with superheated steam, D26, E26, and F26 can be replaced with those similar to the carbonization apparatus 226 in the second embodiment. In this case, the eighth to thirteenth production methods A3, B3, C3, D3, E3, and F3 each include a carbonization step of carbonizing the raw material in high-temperature oil.
 また、第八実施形態、第十実施形態、第十二実施形態に係るバイオマス燃料化システムA2、C2、E2において、乾燥装置A24、C24、E24と、炭化装置A26、C26、E26を、第三実施形態係るバイオマス燃料化システム32における、乾燥装置334と、二次破砕装置335と、炭化装置336とに替えることができる。この場合、バイオマス由来燃料ペレットの製造方法は、乾燥工程と炭化工程との間に、乾燥物を二次破砕装置により造粒に適したサイズに破砕してから炭化する二次破砕工程を含むものとなる。
 さらに、第八実施形態、第十実施形態、第十二実施形態に係るバイオマス燃料化システムA2、C2、E2において、炭化装置A26、C26、E26と、造粒装置A28、C28、E28を、第四実施形態係るバイオマス燃料化システム42における、炭化装置426と、二次破砕装置427と、造粒装置428に替えことができる。この場合、バイオマス由来燃料ペレットの製造方法は、炭化工程と造粒工程との間に、炭化物を二次破砕装置により造粒に適したサイズに破砕する二次破砕工程を含むものとなる。
Further, in the biomass fuelization systems A2, C2, and E2 according to the eighth embodiment, the tenth embodiment, and the twelfth embodiment, the drying apparatuses A24, C24, and E24 and the carbonization apparatuses A26, C26, and E26 are connected to the third embodiment. It can replace with the drying apparatus 334, the secondary crushing apparatus 335, and the carbonization apparatus 336 in the biomass fuel conversion system 32 which concerns on embodiment. In this case, the method for producing biomass-derived fuel pellets includes a secondary crushing step in which the dried product is crushed to a size suitable for granulation by a secondary crushing device and then carbonized between the drying step and the carbonization step. It becomes.
Further, in the biomass fuelization systems A2, C2, and E2 according to the eighth embodiment, the tenth embodiment, and the twelfth embodiment, the carbonization apparatuses A26, C26, and E26 and the granulation apparatuses A28, C28, and E28 are The carbonization apparatus 426, the secondary crushing apparatus 427, and the granulation apparatus 428 in the biomass fuel system 42 according to the fourth embodiment can be replaced. In this case, the biomass-derived fuel pellet manufacturing method includes a secondary crushing step of crushing the carbide to a size suitable for granulation by a secondary crushing device between the carbonization step and the granulation step.
 また、第九実施形態、第十一実施形態、第十三実施形態に係るバイオマス燃料化システムB2、D2、F2において、乾燥装置B24、D24、F24と、造粒装置B28、D28、F28を第七実施形態係るバイオマス燃料化システム72における、乾燥装置734と、二次破砕装置735と、炭化装置736に替えることができる。この場合、バイオマス由来燃料ペレットの製造方法は、乾燥工程と造粒工程との間に、乾燥物を二次破砕装置により造粒に適したサイズに破砕する二次破砕工程を含むものとなる。 Further, in the biomass fuel systems B2, D2, and F2 according to the ninth embodiment, the eleventh embodiment, and the thirteenth embodiment, the drying devices B24, D24, and F24 and the granulating devices B28, D28, and F28 are replaced with the first one. It can replace with the drying apparatus 734, the secondary crushing apparatus 735, and the carbonization apparatus 736 in the biomass fuel conversion system 72 which concerns on seven embodiment. In this case, the method for producing biomass-derived fuel pellets includes a secondary crushing step of crushing the dried product to a size suitable for granulation by a secondary crushing device between the drying step and the granulation step.
 本発明に係るバイオマス由来燃料ペレット、及び、バイオマス燃料化システム、並びに、バイオマス由来燃料ペレットの製造方法は、パーム製品の製造工場などで、廃棄物として処理されていたパーム空果房を燃料化する用途に適用できる。 A biomass-derived fuel pellet, a biomass fuel conversion system, and a biomass-derived fuel pellet manufacturing method according to the present invention fuel a palm empty fruit bunch that has been treated as waste in a palm product manufacturing factory or the like. Applicable to usage.
11…バイオマス由来燃料ペレット
111…原料、112…破砕物、113…洗浄物、114…乾燥物
12…バイオマス燃料化システム
121…破砕装置:1211…破砕機、1211A…投入口、1211B…破砕室、1211C…プッシャー、1211D…ローター、1211E…回転刃、1211F…固定刃、1211G…スクリーン、1211H…排出口、1212…摩砕機、1212A…投入口、1212B…ハウジング、1212C…ローター、1212D…排出口
122…洗浄装置:1221…洗浄槽、1221A…投入口、1221B…洗浄室、1221C…撹拌機、1221D…加温機構、1221E…排出口
124…乾燥装置:1241…乾燥機、1241A…原料入口、1241B…回転シェル、1241C…主管、1241D…熱風吹込管、1241E…熱源機構、1241F…燃焼ファン、1241G…吸込ファン、1241H…集塵装置、1241I…排気ファン、1241J…乾燥品出口
126…炭化装置:1261…炭化システム、1261A…蒸気ボイラー、1261B…過熱蒸気発生装置、1261C…炭化炉、1261D…サイクロン、1261E…熱交換器、1261F…冷却塔、1261G…スクラバー
128…造粒装置:1281…リングダイ式造粒機、1281A…投入口、1281B…押し込み装置、1281C…リングダイ、1281D…プレスロール、1281E…カッター、1281F…排出口
129…計測・混合装置
13…バイオマス由来燃料ペレットの第一製造方法
131…破砕工程、132…洗浄工程、134…乾燥工程、136…炭化工程、138…造粒工程、139…計測・混合工程
22…バイオマス燃料化システム
226…フライ装置:2261…フライヤー、2261A…油槽、2261B…加温機
228…造粒装置
23…バイオマス由来燃料ペレットの第二製造方法
236…炭化工程、238…造粒工程
32…バイオマス燃料化システム
321…一次破砕装置、325…二次破砕装置、326…炭化装置
33…バイオマス由来燃料ペレットの第三製造方法
331…一次破砕工程、335…二次破砕工程、336…トレファクション工程
42…バイオマス燃料化システム
421…一次破砕装置、426…炭化装置、427…二次破砕装置
43…バイオマス由来燃料ペレットの第四製造方法
431…一次破砕工程、436…トレファクション工程、437…二次破砕工程
51…バイオマス由来燃料ペレット
52…バイオマス燃料化システム
521…破砕装置、522…洗浄装置、524…乾燥装置、526…炭化装置、528…造粒装置、529…計測・混合装置
53…バイオマス由来燃料ペレットの第五製造方法
531…破砕工程、532…洗浄工程、534…乾燥工程、538…造粒工程、536…炭化工程、539…計測・混合工程
62…バイオマス燃料化システム
621…破砕装置、622…洗浄装置、624…乾燥装置、628…造粒装置、626…炭化装置、629…計測・混合装置
63…バイオマス由来燃料ペレットの第六製造方法
631…破砕工程、632…洗浄工程、634…乾燥工程、638…造粒工程、636…炭化工程、639…計測・混合工程
72…バイオマス燃料化システム
721…一次破砕装置、722…洗浄装置、724…乾燥装置、725…二次破砕装置、728…造粒装置、726…炭化装置、729…計測・混合装置
73…バイオマス由来燃料ペレットの第七製造方法
731…一次破砕工程、732…洗浄工程、734…乾燥工程、735…二次破砕工程、738…造粒工程、736…炭化工程、739…計測・混合工程
A2…バイオマス燃料化システム
A30…圧搾装置、A22…洗浄装置、A24…乾燥装置、A26…炭化装置、A28…造粒装置、A29…計測・混合装置、A29…計測・混合装置
A3…バイオマス由来燃料ペレットの第八製造方法
A40…圧搾工程、A32…洗浄工程、A34…乾燥工程、A36…炭化工程、A38…造粒工程、A39…計測・混合工程
B2…バイオマス燃料化システム
B30…圧搾装置、B22…洗浄装置、B24…乾燥装置、B28…造粒装置、B26…炭化装置、B29…計測・混合装置、B29…計測・混合装置
B3…バイオマス由来燃料ペレットの第九製造方法
B40…圧搾工程、B32…洗浄工程、B34…乾燥工程、B38…造粒工程、B36…炭化工程、B39…計測・混合工程
C2…バイオマス燃料化システム
C21…破砕装置、C30…圧搾装置、C22…洗浄装置、C24…乾燥装置、C26…炭化装置、C28…造粒装置、C29…計測・混合装置、C29…計測・混合装置
C3…バイオマス由来燃料ペレットの第十製造方法
C31…破砕工程、C40…圧搾工程、C32…洗浄工程、C34…乾燥工程、C36…炭化工程、C38…造粒工程、C39…計測・混合工程
D2…バイオマス燃料化システム
D21…破砕装置、D30…圧搾装置、D22…洗浄装置、D24…乾燥装置、D28…造粒装置、D26…炭化装置、D29…計測・混合装置、D29…計測・混合装置
D3…バイオマス由来燃料ペレットの第十一製造方法
D31…破砕工程、D40…圧搾工程、D32…洗浄工程、D34…乾燥工程、D38…造粒工程、D36…炭化工程、D39…計測・混合工程
E2…バイオマス燃料化システム
E30A…加熱装置、E30…圧搾装置、E22…洗浄装置、E24…乾燥装置、E28…造粒装置、E26…炭化装置、E29…計測・混合装置、E29…計測・混合装置
E3…バイオマス由来燃料ペレットの第十二製造方法
E40A…加熱工程、E40…圧搾工程、E32…洗浄工程、E34…乾燥工程、E36…炭化工程、E38…造粒工程、E39…計測・混合工程
F2…バイオマス燃料化システム
F30A…破砕装置、F30…圧搾装置、F22…洗浄装置、F24…乾燥装置、F28…造粒装置、F26…炭化装置、F29…計測・混合装置、F29…計測・混合装置
F3…バイオマス由来燃料ペレットの第十三製造方法
F40A…加熱工程、F40…圧搾工程、F32…洗浄工程、F34…乾燥工程、F38…造粒工程、F36…炭化工程、F39…計測・混合工程
DESCRIPTION OF SYMBOLS 11 ... Biomass origin fuel pellet 111 ... Raw material, 112 ... Crushed material, 113 ... Washed material, 114 ... Dry matter 12 ... Biomass fuel conversion system 121 ... Crushing device: 1211 ... Crusher, 1211A ... Input port, 1211B ... Crushing chamber, 1211C ... Pusher, 1211D ... Rotor, 1211E ... Rotating blade, 1211F ... Fixed blade, 1211G ... Screen, 1211H ... Discharge port, 1212 ... Milling machine, 1212A ... Input port, 1212B ... Housing, 1212C ... Rotor, 1212D ... Discharge port 122 ... Cleaning device: 1221 ... Cleaning tank, 1221A ... Input port, 1221B ... Cleaning chamber, 1221C ... Stirrer, 1221D ... Heating mechanism, 1221E ... Discharge port 124 ... Drying device: 1241 ... Dryer, 1241A ... Raw material inlet, 1241B ... Rotating shell, 1241C ... Main pipe, 241D ... Hot air blowing pipe, 1241E ... Heat source mechanism, 1241F ... Combustion fan, 1241G ... Suction fan, 1241H ... Dust collector, 1241I ... Exhaust fan, 1241J ... Dry product outlet 126 ... Carbonization device: 1261 ... Carbonization system, 1261A ... Steam Boiler, 1261B ... superheated steam generator, 1261C ... carbonization furnace, 1261D ... cyclone, 1261E ... heat exchanger, 1261F ... cooling tower, 1261G ... scrubber 128 ... granulator: 1281 ... ring die granulator, 1281A ... input Mouth, 1281B ... Pushing device, 1281C ... Ring die, 1281D ... Press roll, 1281E ... Cutter, 1281F ... Discharge port 129 ... Measurement / mixing device 13 ... First manufacturing method of biomass-derived fuel pellets 131 ... Fracturing step, 132 ... Washing Process, 134 ... dry Process 136 ... Carbonization process, 138 ... Granulation process, 139 ... Measurement / mixing process 22 ... Biomass fuel conversion system 226 ... Fly device: 2261 ... Flyer, 2261A ... Oil tank, 2261B ... Heating machine 228 ... Granulation device 23 ... Second production method of biomass-derived fuel pellets 236 ... carbonization step, 238 ... granulation step 32 ... biomass fueling system 321 ... primary crushing device, 325 ... secondary crushing device, 326 ... carbonization device 33 ... first of biomass-derived fuel pellets Three manufacturing methods 331 ... primary crushing step, 335 ... secondary crushing step, 336 ... trefaction step 42 ... biomass fueling system 421 ... primary crushing device, 426 ... carbonization device, 427 ... secondary crushing device 43 ... biomass-derived fuel pellets 4th manufacturing method 431 ... primary crushing step, 436 ... trefaction step, 4 37 ... Secondary crushing step 51 ... Biomass-derived fuel pellet 52 ... Biomass fuel conversion system 521 ... Crushing device, 522 ... Cleaning device, 524 ... Drying device, 526 ... Carbonization device, 528 ... Granulation device, 529 ... Measurement / mixing device 53 ... Fifth production method of biomass-derived fuel pellets 531 ... Crushing step, 532 ... Cleaning step, 534 ... Drying step, 538 ... Granulation step, 536 ... Carbonization step, 539 ... Measurement / mixing step 62 ... Biomass fuel conversion system 621 ... crushing device, 622 ... washing device, 624 ... drying device, 628 ... granulating device, 626 ... carbonization device, 629 ... measuring / mixing device 63 ... sixth manufacturing method 631 of biomass-derived fuel pellets ... crushing step, 632 ... washing Step, 634 ... Drying step, 638 ... Granulation step, 636 ... Carbonization step, 639 ... Measurement / mixing step 72 ... Biomass Materialization system 721 ... primary crushing device, 722 ... cleaning device, 724 ... drying device, 725 ... secondary crushing device, 728 ... granulating device, 726 ... carbonization device, 729 ... measuring / mixing device 73 ... biomass-derived fuel pellets Seventh manufacturing method 731 ... primary crushing step, 732 ... washing step, 734 ... drying step, 735 ... secondary crushing step, 738 ... granulation step, 736 ... carbonization step, 739 ... measurement / mixing step A2 ... biomass fuel system A30 ... Squeezing device, A22 ... Cleaning device, A24 ... Drying device, A26 ... Carbonization device, A28 ... Granulating device, A29 ... Measuring / mixing device, A29 ... Measuring / mixing device A3 ... Eighth production method of biomass-derived fuel pellets A40 ... pressing process, A32 ... washing process, A34 ... drying process, A36 ... carbonization process, A38 ... granulation process, A39 ... measurement / mixing process B2 ... Iomas fueling system B30 ... pressing device, B22 ... cleaning device, B24 ... drying device, B28 ... granulating device, B26 ... carbonizing device, B29 ... measuring / mixing device, B29 ... measuring / mixing device B3 ... of biomass-derived fuel pellets Ninth production method B40 ... pressing step, B32 ... washing step, B34 ... drying step, B38 ... granulating step, B36 ... carbonization step, B39 ... measuring / mixing step C2 ... biomass fueling system C21 ... crushing device, C30 ... pressing Equipment, C22 ... cleaning equipment, C24 ... drying equipment, C26 ... carbonization equipment, C28 ... granulating equipment, C29 ... measurement / mixing equipment, C29 ... measurement / mixing equipment C3 ... tenth production method of biomass-derived fuel pellets C31 ... crushing Step, C40 ... Pressing step, C32 ... Washing step, C34 ... Drying step, C36 ... Carbonization step, C38 ... Granulation step, C39 ... Measurement -Mixing process D2 ... Biomass fuel system D21 ... Crushing device, D30 ... Squeezing device, D22 ... Cleaning device, D24 ... Drying device, D28 ... Granulating device, D26 ... Carbonization device, D29 ... Measuring / mixing device, D29 ... Measuring Mixing device D3: Eleventh production method of biomass-derived fuel pellets D31: crushing step, D40: pressing step, D32 ... washing step, D34 ... drying step, D38 ... granulating step, D36 ... carbonizing step, D39 ... measuring Mixing step E2 ... Biomass fuel system E30A ... Heating device, E30 ... Squeezing device, E22 ... Cleaning device, E24 ... Drying device, E28 ... Granulating device, E26 ... Carbonization device, E29 ... Measuring / mixing device, E29 ... Measuring / Mixer E3 ... Twelfth manufacturing method for biomass-derived fuel pellets E40A ... heating step, E40 ... pressing step, E32 ... washing step, E3 ... drying process, E36 ... carbonization process, E38 ... granulation process, E39 ... measurement / mixing process F2 ... biomass fueling system F30A ... crushing device, F30 ... pressing device, F22 ... cleaning device, F24 ... drying device, F28 ... production Granule device, F26 ... carbonization device, F29 ... measurement / mixing device, F29 ... measurement / mixing device F3 ... 13th manufacturing method of biomass-derived fuel pellets F40A ... heating step, F40 ... squeezing step, F32 ... washing step, F34 ... Drying step, F38 ... granulation step, F36 ... carbonization step, F39 ... measurement / mixing step

Claims (15)

  1.  バイオマスから、ボイラー使用時にスケールの原因となる物質及び/又は腐食の原因となる物質の含有量を低減させた燃料ペレット。 Fuel pellets with reduced content of substances that cause scale and / or substances that cause corrosion when using boilers.
  2.  請求項1に記載の燃料ペレットであって、
     前記バイオマスは、発熱量が20MJ/kg以上である燃料ペレット。
    The fuel pellet according to claim 1,
    The biomass is a fuel pellet having a calorific value of 20 MJ / kg or more.
  3.  請求項1又は請求項2に記載の燃料ペレットであって、
     前記バイオマスがパーム空果房である燃料ペレット。
    The fuel pellet according to claim 1 or 2, wherein
    The fuel pellet whose said biomass is a palm empty fruit bunch.
  4.  請求項1~3のいずれか一に記載の燃料ペレットであって、
     前記スケールの原因となる物質は、少なくともナトリウム、カリウムのいずれか一であり、前記腐食の原因となる物質は、少なくとも塩素である燃料ペレット。
    The fuel pellet according to any one of claims 1 to 3,
    The scale-causing substance is at least one of sodium and potassium, and the corrosion-causing substance is at least chlorine.
  5.  請求項4に記載の燃料ペレットであって、
     前記ナトリウムの含有量は、0mg/kg以上2000mg/kg以下であり、前記カリウムの含有量は、0mg/kg以上2000mg/kg以下であり、前記塩素の含有量は、0mg/kg以上1000mg/kg以下である燃料ペレット。
    The fuel pellet according to claim 4,
    The sodium content is 0 mg / kg or more and 2000 mg / kg or less, the potassium content is 0 mg / kg or more and 2000 mg / kg or less, and the chlorine content is 0 mg / kg or more and 1000 mg / kg. Fuel pellets that are:
  6.  請求項1~5のいずれか一に記載の燃料ペレットであって、
     水分含有率が0%以上10%以下である燃料ペレット。
    A fuel pellet according to any one of claims 1 to 5,
    Fuel pellets having a moisture content of 0% or more and 10% or less.
  7.  請求項1~6のいずれか一に記載の燃料ペレットであって、
     破砕された原料を常温水又は温水で洗浄することにより原料中の、スケールの原因となる物質の含有量を低減させ、該スケールの原因となる物質の含有量が低減した原料の水分含有率を低下させ、該水分含有率が低下した原料をさらに破砕し、該破砕された原料を燃料の形状に造粒した後、炭化することにより、バイオマスと他の燃料を混焼する際の全使用燃料に対するバイオマスの熱量換算による割合である混焼率を向上させた燃料ペレット。
    The fuel pellet according to any one of claims 1 to 6,
    By washing the crushed raw material with normal temperature water or hot water, the content of the substance causing the scale in the raw material is reduced, and the moisture content of the raw material with the reduced content of the substance causing the scale is reduced. The raw material with reduced water content is further crushed, and after the crushed raw material is granulated into a fuel shape and carbonized, the biomass is mixed with other fuels for all fuels used. Fuel pellets that improve the co-firing rate, which is the ratio of biomass in terms of calorific value.
  8.  バイオマスからなる原料を、原料中のスケールの原因となる物質の溶出を促すよう、破砕する破砕装置と、
     前記破砕装置により破砕された原料を、常温水又は温水で洗浄することにより原料中の、前記スケールの原因となる物質の含有量を低減させる洗浄装置と、
     前記洗浄装置で前記スケールの原因となる物質の含有量が低減した原料の水分含有率を低下させる乾燥装置と、
     前記乾燥装置により水分含有率の低下した原料中の、腐食の原因となる物質の含有量を低減させ、水分含有率をさらに低下させ、前記原料を炭化させる炭化装置、又は前記乾燥装置により水分含有率の低下した原料を燃料の形状に造粒する造粒装置と、
     前記炭化装置によって処理された原料を燃料の形状に造粒する造粒装置、又は前記造粒装置により造粒された原料中の、腐食の原因となる物質の含有量を低減させ、水分含有率をさらに低下させ、前記原料を炭化させる炭化装置と、
    を備えるバイオマス燃料化システム。
    A crushing device for crushing a raw material made of biomass so as to promote elution of substances that cause scale in the raw material;
    A cleaning device that reduces the content of the substance causing the scale in the raw material by cleaning the raw material crushed by the crushing device with normal temperature water or warm water,
    A drying device for reducing the moisture content of the raw material in which the content of the substance causing the scale is reduced in the cleaning device;
    In the raw material whose moisture content has been reduced by the drying device, the content of substances that cause corrosion is reduced, the moisture content is further reduced, and the moisture content is reduced by carbonization, or the drying device contains moisture. A granulator for granulating the raw material having a reduced rate into a fuel shape;
    A granulating device for granulating the raw material treated by the carbonization device into a fuel shape, or a content of a substance causing corrosion in the raw material granulated by the granulating device, and a moisture content Further reducing the carbonization of the raw material,
    A biomass fueling system comprising:
  9.  請求項8に記載のバイオマス燃料化システムであって、
     前記炭化装置は、原料を蒸気中で加熱し、半炭化させる半炭化装置又は原料を油中で加熱し、炭化させるフライ装置であるバイオマス燃料化システム。
    A biomass fuel conversion system according to claim 8,
    The carbonization apparatus is a biomass fuel conversion system that is a semi-carbonization apparatus that heats a raw material in steam and semi-carbonizes it or a frying apparatus that heats and carbonizes the raw material in oil.
  10.  請求項8に記載のパーム空果房燃料化システムであって、
     前記炭化装置は、原料を油中で加熱し、炭化させるフライ装置であるパーム空果房燃料
    化システム。
    The palm empty fruit bunch fueling system according to claim 8,
    The carbonization device is a palm empty fruit bunch fueling system that is a frying device that heats a raw material in oil and carbonizes it.
  11.  請求項8に記載のバイオマス燃料化システムであって、
     前記炭化装置は、原料を蒸気中で加熱し、半炭化させる半炭化装置と、原料を油中で加熱し、炭化させるフライ装置とからなり、さらに、
     前記半炭化装置と前記フライ装置とにより炭化された原料を混ぜ合わせる混合装置を備えるバイオマス燃料化システム。
    A biomass fuel conversion system according to claim 8,
    The carbonization apparatus comprises a semi-carbonization apparatus for heating and semi-carbonizing the raw material in steam, and a frying apparatus for heating and carbonizing the raw material in oil,
    A biomass fuel conversion system comprising a mixing device for mixing raw materials carbonized by the semi-carbonizing device and the frying device.
  12.  バイオマスからなる原料を、原料中の、スケールの原因となる物質の溶出を促すよう、破砕する破砕工程と、
     前記破砕工程により破砕された原料を、常温水又は温水で洗浄することにより原料中の前記スケールの原因となる物質の含有量を低減させる洗浄工程と、
     前記洗浄工程で、前記スケールの原因となる物質の含有量が低減した原料の水分含有率を低下させる乾燥工程と、
     前記乾燥工程により水分含有率の低下した原料中の、腐食の原因となる物質の含有量を低減させ、水分含有率をさらに低下させ、前記原料を炭化させる炭化工程、又は前記乾燥工程により水分含有率の低下した原料を燃料の形状に造粒する造粒工程と、
     前記炭化工程によって処理された原料を燃料の形状に造粒する造粒工程、又は前記造粒工程により造粒された原料中の、腐食の原因となる物質の含有量を低減させ、水分含有率をさらに低下させ、前記原料を炭化させる炭化工程と、
    を含むバイオマス由来燃料ペレットの製造方法。
    A crushing step of crushing a raw material made of biomass so as to promote elution of a substance that causes scale in the raw material;
    A cleaning step of reducing the content of the substance causing the scale in the raw material by washing the raw material crushed by the crushing step with normal temperature water or warm water,
    In the washing step, a drying step for reducing the moisture content of the raw material in which the content of the substance causing the scale is reduced;
    In the raw material whose moisture content has been reduced by the drying step, the content of substances that cause corrosion is reduced, the moisture content is further reduced, and the moisture content is reduced by carbonization, or the moisture content is obtained by the drying step. A granulation step of granulating the raw material having a reduced rate into a fuel shape;
    A granulation step for granulating the raw material treated by the carbonization step into a fuel shape, or a content of a substance causing corrosion in the raw material granulated by the granulation step, and a moisture content Further reducing the carbonization of the raw material,
    Of producing biomass-derived fuel pellets.
  13.  請求項12に記載のバイオマス由来燃料ペレットの製造方法であって、
     前記炭化工程は、原料を蒸気中で加熱し、半炭化させる半炭化工程であるバイオマス由来燃料ペレットの製造方法。
    A method for producing a biomass-derived fuel pellet according to claim 12,
    The said carbonization process is a manufacturing method of the biomass origin fuel pellet which is a semi-carbonization process which heats a raw material in steam and semi-carbonizes.
  14.  請求項12に記載のバイオマス由来燃料ペレットの製造方法であって、
     前記炭化工程は、原料を油中で加熱し、炭化させるフライ工程であるバイオマス由来燃料ペレットの製造方法。
    A method for producing a biomass-derived fuel pellet according to claim 12,
    The said carbonization process is a manufacturing method of the biomass origin fuel pellet which is a frying process which heats a raw material in oil and carbonizes.
  15.  請求項12に記載のバイオマス由来燃料ペレットの製造方法であって、
     前記炭化工程は、原料を蒸気中で加熱し、半炭化させる半炭化工程と、原料を油中で加熱し、炭化させるフライ工程とからなり、さらに、
     前記半炭化工程と前記フライ工程とにより炭化された原料を混ぜ合わせる混合工程を含むバイオマス由来燃料ペレットの製造方法。
    A method for producing a biomass-derived fuel pellet according to claim 12,
    The carbonization step consists of a semi-carbonization step in which the raw material is heated in steam and semi-carbonized, and a frying step in which the raw material is heated in oil and carbonized, and
    A method for producing biomass-derived fuel pellets, comprising a mixing step of mixing raw materials carbonized in the semi-carbonizing step and the frying step.
PCT/JP2018/022949 2017-06-15 2018-06-15 Fuel pellets, system for utilizing biomass as fuel source, and method for producing biomass-derived fuel pellets WO2018230715A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018562374A JP6517455B1 (en) 2017-06-15 2018-06-15 Fuel pellet, biomass fueling system, and method for producing biomass-derived fuel pellet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017117913 2017-06-15
JP2017-117913 2017-06-15
JP2017-229845 2017-11-30
JP2017229845 2017-11-30

Publications (1)

Publication Number Publication Date
WO2018230715A1 true WO2018230715A1 (en) 2018-12-20

Family

ID=64659247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022949 WO2018230715A1 (en) 2017-06-15 2018-06-15 Fuel pellets, system for utilizing biomass as fuel source, and method for producing biomass-derived fuel pellets

Country Status (2)

Country Link
JP (2) JP6517455B1 (en)
WO (1) WO2018230715A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094432A (en) * 2017-11-22 2019-06-20 三菱重工業株式会社 Production plant of biomass fuel, production plant system, production method of biomass fuel, and biomass fuel
WO2020059737A1 (en) * 2018-09-20 2020-03-26 日本製紙株式会社 Method for producing solid fuel
JP2020183471A (en) * 2019-05-07 2020-11-12 株式会社エム・アイ・エス Manufacturing apparatus of semi-carbonized fuel using wood bark as raw material
KR102205450B1 (en) * 2020-12-11 2021-01-25 주식회사 원천환경기술 Solid fuelization system and method using excrement of livestock as the main row material
KR20210047600A (en) * 2019-10-22 2021-04-30 한국에너지기술연구원 Open-type high-Ash fusion temperature Kenaf fueling system that does not require heating energy using room temperature water

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023166428A1 (en) * 2022-03-02 2023-09-07 Szetech Engineering Sdn. Bhd. An improved process of reducing oil palm empty fruit bunch (efb)
JP7482168B2 (en) 2022-03-30 2024-05-13 瀬戸 元 Methods for processing plant material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045084A (en) * 2006-08-21 2008-02-28 Kensho Ito Carbonized product of waste wood and/or waste bamboo, method for treating waste wood and/or waste bamboo and waste oil and treating apparatus
JP2012122026A (en) * 2010-12-10 2012-06-28 Jfe Engineering Corp Pretreatment method for empty fruit bunch of elaeis guineensis, and burning and heat recovery method therefor
JP2012153790A (en) * 2011-01-26 2012-08-16 Jfe Engineering Corp Apparatus and method for pretreating grass biomass
JP2015229751A (en) * 2014-06-06 2015-12-21 住友商事株式会社 Plant-based biomass solid fuel and production method thereof
JP2016125030A (en) * 2015-01-08 2016-07-11 株式会社日立製作所 Plant biofuel improving method, system and producing method
WO2017014028A1 (en) * 2015-07-23 2017-01-26 太平洋セメント株式会社 Method for producing biomass fuel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1990399A1 (en) 2007-10-22 2008-11-12 Constantijn W.H.H. Cox Method for the treatment of the empty fruit bunch (EFB) material of palm oil trees, particulate torrefied EFB product and use of such product as auxiliary fuel in a power plant
KR101352442B1 (en) 2009-04-22 2014-01-16 제이에프이 엔지니어링 가부시키가이샤 Method for washing biomass, method for producing biomass charcoal and method for operating vertical furnace
JP4849650B1 (en) 2011-04-12 2012-01-11 Jfe商事株式会社 Method for treating tropical plant waste or woody waste and recycling method
MY194667A (en) * 2014-10-07 2022-12-12 Mitsubishi Ube Cement Corp Biomass solid fuel
WO2016056354A1 (en) * 2014-10-10 2016-04-14 株式会社Ihi環境エンジニアリング Fuel production method using wooden biomass

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045084A (en) * 2006-08-21 2008-02-28 Kensho Ito Carbonized product of waste wood and/or waste bamboo, method for treating waste wood and/or waste bamboo and waste oil and treating apparatus
JP2012122026A (en) * 2010-12-10 2012-06-28 Jfe Engineering Corp Pretreatment method for empty fruit bunch of elaeis guineensis, and burning and heat recovery method therefor
JP2012153790A (en) * 2011-01-26 2012-08-16 Jfe Engineering Corp Apparatus and method for pretreating grass biomass
JP2015229751A (en) * 2014-06-06 2015-12-21 住友商事株式会社 Plant-based biomass solid fuel and production method thereof
JP2016125030A (en) * 2015-01-08 2016-07-11 株式会社日立製作所 Plant biofuel improving method, system and producing method
WO2017014028A1 (en) * 2015-07-23 2017-01-26 太平洋セメント株式会社 Method for producing biomass fuel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094432A (en) * 2017-11-22 2019-06-20 三菱重工業株式会社 Production plant of biomass fuel, production plant system, production method of biomass fuel, and biomass fuel
WO2020059737A1 (en) * 2018-09-20 2020-03-26 日本製紙株式会社 Method for producing solid fuel
JPWO2020059737A1 (en) * 2018-09-20 2021-08-30 日本製紙株式会社 Solid fuel manufacturing method
JP2020183471A (en) * 2019-05-07 2020-11-12 株式会社エム・アイ・エス Manufacturing apparatus of semi-carbonized fuel using wood bark as raw material
JP7213514B2 (en) 2019-05-07 2023-01-27 株式会社エム・アイ・エス Semi-carbonized fuel production equipment using wood bark as raw material
KR20210047600A (en) * 2019-10-22 2021-04-30 한국에너지기술연구원 Open-type high-Ash fusion temperature Kenaf fueling system that does not require heating energy using room temperature water
KR102270504B1 (en) 2019-10-22 2021-06-29 한국에너지기술연구원 Open-type high-Ash fusion temperature Kenaf fueling system that does not require heating energy using room temperature water
KR102205450B1 (en) * 2020-12-11 2021-01-25 주식회사 원천환경기술 Solid fuelization system and method using excrement of livestock as the main row material

Also Published As

Publication number Publication date
JPWO2018230715A1 (en) 2019-06-27
JP6517455B1 (en) 2019-05-22
JP7134127B2 (en) 2022-09-09
JP2019147961A (en) 2019-09-05

Similar Documents

Publication Publication Date Title
WO2018230715A1 (en) Fuel pellets, system for utilizing biomass as fuel source, and method for producing biomass-derived fuel pellets
JP6684298B2 (en) Solid fuel manufacturing method and solid fuel
KR20050097520A (en) Method and device for producing fuels from compressed biomass and use of said fuels
Jasinskas et al. Fibrous hemp (Felina 32, USO 31, Finola) and fibrous nettle processing and usage of pressed biofuel for energy purposes
GB2545103A (en) Biofuel
JP2009102468A (en) Fuel pellet
Olugbade et al. Fuel developed from rice bran briquettes and palm kernel shells
Fadele et al. Characterisation of briquettes from forest wastes: optimisation approach.
Kimutai et al. Investigation of physical and combustion properties of briquettes from cashew nut shell and cassava binder
KR101096650B1 (en) Manufacturing method of briquette consisting of vegetable matter
Abakr et al. Experimental evaluation of a conical-screw briquetting machine for the briquetting of carbonized cotton stalks in Sudan
Gageanu et al. Experimental research on influence of recipes used on quality of biomass pellets
JP2011140610A (en) Method for producing composite fuel
JP2008284531A (en) Process for producing dry pellets by effectively using high water content biomass
Tumuluru Biomass Densification: Systems, Particle Binding, Process Conditions, Quality Attributes, Conversion Performance, and International Standards
Emmanuel et al. Development and Characterization of Agro-Allied Rice Husks and Groundnut Shell Waste Briquettes
Zulueta et al. The Use of Saba Banana (Musa acuminata× M. balbisiana) Peel as a Charcoal Substitute
Namadi et al. Construction of a moulder and production of biomass briquette from bagasse for use as a fuel
RU81728U1 (en) LINE FOR PRODUCING GRANULATED BIOFUEL
Popescu et al. Determination of the Calorific Power of Densified Solid Biofuels.
Talero et al. Use of Colombian oil palm wastes for pellets production: reduction of the process energy consumption by modifying moisture content
Niedziółka et al. Assessment of quality and energy of solid biofuel production
Elsisi et al. Production the briquettes from mixture of agricultural residues and evaluation its physical, mechanical and combustion properties
Tenu et al. Researches regarding evaluation of energy consumption for manufacturing of pellets from vine pruning residues
Shuma et al. Loose biomass briquettes production process in Maphophe village of Limpopo province of South Africa

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018562374

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818875

Country of ref document: EP

Kind code of ref document: A1