WO2018123636A1 - Vehicle air-conditioning apparatus - Google Patents

Vehicle air-conditioning apparatus Download PDF

Info

Publication number
WO2018123636A1
WO2018123636A1 PCT/JP2017/045010 JP2017045010W WO2018123636A1 WO 2018123636 A1 WO2018123636 A1 WO 2018123636A1 JP 2017045010 W JP2017045010 W JP 2017045010W WO 2018123636 A1 WO2018123636 A1 WO 2018123636A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
rotational speed
heating
refrigerant
capacity
Prior art date
Application number
PCT/JP2017/045010
Other languages
French (fr)
Japanese (ja)
Inventor
竜 宮腰
耕平 山下
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Publication of WO2018123636A1 publication Critical patent/WO2018123636A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3213Control means therefor for increasing the efficiency in a vehicle heat pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3248Cooling devices information from a variable is obtained related to pressure
    • B60H2001/325Cooling devices information from a variable is obtained related to pressure of the refrigerant at a compressing unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3288Additional heat source

Definitions

  • the present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle.
  • Hybrid vehicles and electric vehicles have come into widespread use due to the emergence of environmental problems in recent years.
  • an air conditioner that can be applied to such a vehicle, it is provided in a compressor that is supplied with power from a battery of the vehicle and compresses and discharges the refrigerant, and an air flow passage through which air supplied to the passenger compartment flows.
  • the refrigerant discharged from the compressor is provided with a radiator that dissipates the refrigerant, a heat absorber that is provided in the air flow passage to absorb the refrigerant, and an outdoor heat exchanger that is provided outside the vehicle cabin to dissipate or absorb the refrigerant.
  • Each mode of the dehumidifying heating and dehumidifying cooling modes for absorbing heat and the cooling mode for radiating the refrigerant discharged from the compressor in the outdoor heat exchanger and absorbing heat in the heat absorber. Have been developed which perform switching (for example, see Patent Document 1).
  • the heat medium-air heat exchanger (auxiliary heating device) of the heat medium circulation circuit is arranged in the air flow passage, and the heating capacity by the radiator is insufficient with respect to the required capacity in the heating mode.
  • the heat medium heated by the electric heater fed from the battery is circulated through the heat medium-air heat exchanger to heat the air supplied into the passenger compartment to compensate for the shortage.
  • the maximum heating capacity that the radiator can generate is estimated from the maximum rotation speed NCmax of the compressor, and the required capacity of the auxiliary heating device is calculated from the difference between the required heating capacity and the estimated value of the maximum heating capacity.
  • the vehicle air conditioner limits the rotation speed of the compressor based on the suction refrigerant temperature Ts, for example, and protects the compressor. Control is performed.
  • the compressor rotation speed is generally limited so that the suction refrigerant temperature Ts does not fall below a predetermined limit target value. In that case, the rotation speed of the compressor is set to the maximum rotation. It cannot be increased to several NCmax.
  • the heating capacity of the auxiliary heating apparatus is insufficient particularly at the initial stage of startup, and the start-up of the heating is delayed.
  • the present invention has been made to solve the related art technical problem, and also in a vehicle air conditioner that performs compressor speed limit control so that heating by an auxiliary heating device can be performed appropriately. The purpose is to do.
  • An air conditioner for a vehicle includes a compressor that compresses a refrigerant, a radiator that radiates the refrigerant and heats the air that is supplied to the vehicle interior, and is provided outside the vehicle compartment to absorb the refrigerant.
  • An outdoor heat exchanger and a control device are provided.
  • the control device dissipates the refrigerant discharged from the compressor with a radiator, depressurizes the dissipated refrigerant, and then absorbs heat with the outdoor heat exchanger.
  • the vehicle interior is heated, and the rotational speed limit control is performed to protect the compressor by limiting the rotational speed of the compressor, and an auxiliary heating device for heating the air supplied to the vehicle interior is provided.
  • the control device is characterized in that, considering the rotational speed limit control, the heating capacity by the radiator is supplemented by heating by the auxiliary heating device.
  • the control device is configured so that the suction refrigerant temperature or the suction refrigerant pressure of the compressor does not fall below a predetermined limit target value in the rotational speed restriction control.
  • the number of rotations is limited, or the compressor rotation number is limited so that the discharge refrigerant temperature or discharge refrigerant pressure of the compressor does not rise above a predetermined limit target value, and heat is released based on the maximum rotation number NCmax of the compressor.
  • HP maximum capacity estimated value Qmax which is an estimated value of the maximum heating capacity of the radiator
  • the required capacity TGQhtr of the auxiliary heating device is calculated from ⁇ Qmax, heating by the auxiliary heating device is executed, and based on the rotation speed of the compressor limited by the rotation speed limit control.
  • the maximum rotational speed NCmax is changed.
  • a vehicle air conditioner according to a third aspect of the present invention is characterized in that, in the above invention, the control device sets the actual rotational speed of the compressor to the maximum rotational speed NCmax when the rotational speed limiting control is being executed.
  • a vehicle air conditioner according to the second or third aspect of the present invention, wherein the control device is limited by the rotational speed limiting control based on the outside air temperature when the rotational speed limiting control is not executed.
  • the maximum value of the rotation speed of the compressor to be performed is estimated, and the estimated maximum value is set as the maximum rotation speed NCmax.
  • the vehicle air conditioner according to a fifth aspect of the present invention is the air conditioning apparatus for a vehicle according to the second to fourth aspects of the present invention, wherein the control device is configured such that the maximum rotational speed NCmax is based on the rotational speed of the compressor that is restricted by the rotational speed restriction control at the start of startup. It is characterized by changing.
  • the control device calculates an HP actual capacity Qhp which is a heating capacity actually generated by the radiator, and a difference between the required capacity TGQ and the HP actual capacity Qhp.
  • ⁇ Qhp TGQ ⁇ Qhp is calculated, and after the initial startup period has elapsed, the required capacity TGQhtr of the auxiliary heating device is obtained from ⁇ Qhp, and heating by the auxiliary heating device is executed.
  • a compressor that compresses a refrigerant, a radiator that heats air that radiates the refrigerant and is supplied to the vehicle interior, and an outdoor heat exchanger that is provided outside the vehicle cabin and absorbs heat from the refrigerant.
  • the control device radiates the refrigerant discharged from the compressor with a radiator, depressurizes the radiated refrigerant, and then absorbs heat with an outdoor heat exchanger.
  • an auxiliary heating device for heating the air to be supplied to the vehicle interior.
  • the controller supplements the shortage of the heating capacity by the radiator with the heating by the auxiliary heating device. Heating capacity, auxiliary heating device According without any trouble supplemented by heating, so that it is possible to realize a comfortable passenger compartment heating.
  • the control device limits the rotation speed of the compressor so that the suction refrigerant temperature or the suction refrigerant pressure of the compressor does not fall below a predetermined limit target value in the rotation speed limit control, or
  • the rotation speed of the compressor is limited so that the discharge refrigerant temperature or the discharge refrigerant pressure of the compressor does not exceed a predetermined limit target value
  • the capacity TGQhtr is calculated from ⁇ Qmax, heating by the auxiliary heating device is executed, and the maximum rotational speed NCmax is changed based on the rotational speed of the compressor limited by the rotational speed limiting control.
  • the maximum number of revolutions NCmax which is the basis for calculating the HP maximum capacity estimated value Qmax, is changed based on the number of revolutions of the compressor limited by the number of revolutions limiting control, and the auxiliary heating calculated from ⁇ Qmax
  • the required capacity TGQhtr of the apparatus is increased by that amount, and the reduced amount of the heating capacity of the radiator can be appropriately compensated.
  • the control device is executing the rotational speed limit control as in the invention of claim 3
  • the actual rotational speed of the compressor is set to the maximum rotational speed NCmax, so that the actual rotational speed limit control is actually performed.
  • the HP maximum capacity estimated value Qmax is calculated from the limited rotation speed of the compressor, and the required capacity TGQhtr of the auxiliary heating device can be accurately calculated.
  • the control device as in the invention of claim 4 estimates the maximum value of the rotational speed of the compressor restricted by the rotational speed restriction control based on the outside air temperature, and By setting the estimated maximum value as the maximum rotation speed NCmax, even when the rotation speed limitation control is started thereafter, the heating capacity by the auxiliary heating device can be complemented quickly.
  • the control device changes the maximum rotational speed NCmax based on the rotational speed of the compressor that is restricted by the rotational speed restriction control in the initial stage of startup as in the invention of claim 5, the vehicle interior heating is started.
  • the required capacity TGQhtr of the auxiliary heating device is obtained from ⁇ Qhp and heating by the auxiliary heating device is performed.
  • a shortage of the actual HP capacity Qhp, which is the heating capacity of the radiator that actually occurs, can be complemented by heating with the auxiliary heating device with respect to the capacity TGQ, realizing extremely comfortable interior heating. Will be able to.
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 as an embodiment of the present invention.
  • the vehicle of the embodiment to which the present invention is applied is an electric vehicle (EV) that does not have an engine (internal combustion engine), and travels by driving an electric motor for traveling with electric power charged in a battery.
  • the vehicle air conditioner 1 of the present invention is also driven by battery power. That is, the vehicle air conditioner 1 of the embodiment performs heating by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further operates in each operation mode such as dehumidifying heating, dehumidifying cooling, and cooling. Is selectively executed.
  • the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling. Furthermore, the present invention is also applicable to a normal automobile that runs on an engine.
  • the vehicle air conditioner 1 according to the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and is electrically powered by compressing a refrigerant and increasing pressure by being supplied with power from a vehicle battery.
  • An outdoor expansion valve (ECCV) 6 comprising an electronic expansion valve that decompresses and expands the refrigerant during heating, and an outdoor that functions as a radiator during cooling and performs heat exchange between the refrigerant and the outside air to function as an evaporator during heating
  • the outdoor heat exchanger 7 is provided outside the vehicle compartment, and the outdoor heat exchanger 7 is provided with an outdoor blower 15 for exchanging heat between the outside air and the refrigerant when the vehicle is stopped.
  • the outdoor heat exchanger 7 has a header portion 14 and a supercooling portion 16 in order on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 has an electromagnetic valve (open / close valve) 17 that is opened during cooling.
  • the outlet of the supercooling unit 16 is connected to the indoor expansion valve 8 via a check valve 18.
  • the header portion 14 and the supercooling portion 16 structurally constitute a part of the outdoor heat exchanger 7, and the check valve 18 has a forward direction on the indoor expansion valve 8 side.
  • the refrigerant pipe 13B between the check valve 18 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C exiting the evaporation capacity control valve 11 located on the outlet side of the heat absorber 9, and internal heat is generated by both.
  • the exchanger 19 is configured.
  • the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9 and passed through the evaporation capacity control valve 11.
  • the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched, and this branched refrigerant pipe 13D is downstream of the internal heat exchanger 19 via an electromagnetic valve (open / close valve) 21 that is opened during heating.
  • the refrigerant pipe 13C is connected in communication.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is branched in front of the outdoor expansion valve 6, and this branched refrigerant pipe 13F is a check valve via an electromagnetic valve (open / close valve) 22 that is opened during dehumidification. 18 is connected to the refrigerant pipe 13B on the downstream side. Further, in the air flow passage 3 on the air upstream side of the heat sink 9, each of the inside air suction port and the outside air suction port (represented by the suction port 25 in FIG. 1) is formed.
  • a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment.
  • an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
  • FIG. 1, 23 has shown the heat-medium circulation circuit as an auxiliary
  • This heat medium circulation circuit 23 is on the air upstream side of the radiator 4 with respect to the air flow in the circulation pump 30 constituting the circulation means, the heat medium heating electric heater (PTC heater) 35, and the air flow passage 3.
  • a heat medium-air heat exchanger 40 provided in the air flow passage 3 is provided, and these are sequentially connected in an annular shape by a heat medium pipe 23A.
  • the heat medium circulated in the heat medium circuit 23 for example, water, a refrigerant such as HFO-1234yf, a coolant, or the like is employed.
  • the circulation pump 30 is operated and the heat medium heating electric heater 35 is energized to generate heat, the heat medium (high temperature heat medium) heated by the heat medium heating electric heater 35 is converted into the heat medium-air heat exchanger 40.
  • the air that has passed through the radiator 4 in the air flow path 3 is heated.
  • the controller 32 determines that the heating capability of the radiator 4 is insufficient in the heating mode as will be described later, the heat medium heating electric heater 35 is energized to generate heat, and the circulation pump 30 is operated, whereby the heat medium circulation circuit 23.
  • the heating by the heat medium-air heat exchanger 40 is executed. That is, the heat medium-air heat exchanger 40 of the heat exchanger circulation circuit 23 serves as a so-called heater core, and complements heating in the passenger compartment.
  • An air mix damper 28 is provided in the air flow passage 3 on the air upstream side of the heat medium-air heat exchanger 40 and the radiator 4 to adjust the degree of flow of inside air and outside air to the radiator 4. . Further, in the air flow passage 3 on the downstream side of the radiator 4, foot, vent, and differential air outlets (represented by the air outlet 29 in FIG. 1) are formed. Is provided with a blower outlet switching damper 31 for switching and controlling the blowing of air from each of the blowout ports.
  • reference numeral 32 denotes a controller (ECU) as a control means constituted by a microcomputer, and an input from the controller 32 includes an outside air temperature sensor 33 for detecting the outside air temperature Tam of the vehicle, and a suction port 25.
  • ECU controller
  • An HVAC suction temperature sensor 36 for detecting the temperature sucked into the air flow passage 3
  • an inside air temperature sensor 37 for detecting the temperature of the air (inside air) in the passenger compartment
  • an inside air humidity sensor 38 for detecting the humidity of the air in the passenger compartment.
  • Temperature sensor 48 a heat absorber pressure sensor 49 for detecting the refrigerant pressure of the heat absorber 9 (the pressure of the refrigerant in the heat absorber 9 or the refrigerant that has exited the heat absorber 9), and a photo for detecting the amount of solar radiation into the passenger compartment, for example
  • a sensor-type solar radiation sensor 51 a vehicle speed sensor 52 for detecting the moving speed of the vehicle (vehicle speed VSP), an air-conditioning operation unit 53 for setting temperature and operation mode switching, and the temperature of the outdoor heat exchanger 7
  • the outputs of the outdoor heat exchanger temperature sensor 54 for detecting the refrigerant evaporating temperature TXO of the outdoor heat exchanger 7 and the outdoor heat exchanger pressure sensor 56 for detecting the refrigerant pressure of the outdoor heat exchanger 7 are connected.
  • the controller 32 may estimate it from the temperature of each part detected by another temperature sensor or the like, the air flow rate, and the like. Further, the input of the controller 32 further includes a heat medium heating electric heater temperature sensor 50 that detects the temperature of the heat medium heating electric heater 34 of the heat medium circulation circuit 23, and the temperature of the heat medium-air heat exchanger 40 (hereinafter, Each output of the heat medium-air heat exchanger temperature sensor 55 for detecting the auxiliary heater temperature Thtr) is also connected. Further, the controller 32 is also input with information on the remaining amount of the battery, which is the charge amount of the battery mounted on the vehicle.
  • the output of the controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the outlet switching damper 31, and the outdoor expansion.
  • the valve 6, the indoor expansion valve 8, the electromagnetic valves 22, 17, 21, the circulation pump 30, the heat medium heating electric heater 35, and the evaporation capacity control valve 11 are connected. And the controller 32 controls these based on the output of each sensor, and the setting input in the air-conditioning operation part 53.
  • the controller 32 is roughly divided into a heating mode, a dehumidifying heating mode, an internal cycle mode, a dehumidifying cooling mode, and a cooling mode, and executes them.
  • a heating mode When the heating mode is selected by the controller 32 or by manual operation on the air conditioning operation unit 53, the controller 32 opens the electromagnetic valve 21 and closes the electromagnetic valve 17 and the electromagnetic valve 22. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state where the air blown out from the indoor blower 27 is passed through the heat medium-air heat exchanger 40 and the radiator 4. .
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the heat medium-air heat exchanger 40 (the heat medium circulation circuit 23 is activated). In the case), it is heated by the high-temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied. The refrigerant liquefied in the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates, and pumps heat from the outside air that is ventilated by traveling or by the outdoor blower 15 (heat pump). Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13D and the electromagnetic valve 21, and after being gas-liquid separated there, the gas refrigerant is sucked into the compressor 2. repeat. Since the air heated by the heat medium-air heat exchanger 40 or the radiator 4 is blown out from the air outlet 29, the vehicle interior is thereby heated.
  • the controller 32 controls the rotational speed NC of the compressor 2 on the basis of the high pressure of the refrigerant circuit R detected by the discharge pressure sensor 42 or the radiator pressure sensor 47 (a radiator pressure PCI to be described later), and the radiator temperature sensor 46. Controls the opening degree of the outdoor expansion valve 6 based on the temperature of the radiator 4 (radiator temperature TCI) detected by, and controls the refrigerant subcooling degree SC at the outlet of the radiator 4.
  • (2) Dehumidification heating mode Next, in the dehumidifying and heating mode, the controller 32 opens the electromagnetic valve 22 in the heating mode.
  • the refrigerant evaporated in the heat absorber 9 merges with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and then repeats circulation sucked into the compressor 2 through the accumulator 12. . Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
  • the controller 32 controls the rotational speed NC of the compressor 2 based on the high pressure of the refrigerant circuit R detected by the discharge pressure sensor 42 or the radiator pressure sensor 47 and the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48.
  • the valve opening degree of the outdoor expansion valve 6 is controlled based on the (heat absorber temperature Te).
  • the controller 32 closes the outdoor expansion valve 6 in the state of the dehumidifying and heating mode (fully closed). That is, since this internal cycle mode can be said to be a state in which the outdoor expansion valve 6 is fully closed by the control of the outdoor expansion valve 6 in the dehumidifying and heating mode, the internal cycle mode can also be regarded as a part of the dehumidifying and heating mode.
  • the refrigerant evaporated in the heat absorber 9 flows through the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 through the accumulator 12.
  • the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidification heating is performed in the vehicle interior, but in this internal cycle mode, the air flow path on the indoor side 3, the refrigerant is circulated between the radiator 4 (heat radiation) and the heat absorber 9 (heat absorption) in the heat pump 3, so that heat is not pumped from the outside air, and the heat absorber 9 is used for the power consumption of the compressor 2. Heating capacity is displayed as much as the amount of heat absorbed is added.
  • the controller 32 controls the rotational speed NC of the compressor 2 based on the temperature of the heat absorber 9 or the high pressure of the refrigerant circuit R described above. At this time, the controller 32 controls the compressor 2 by selecting the lower one of the compressor target rotational speeds obtained from either calculation, depending on the temperature Te of the heat absorber 9 or the high pressure PCI. (4) Dehumidifying and cooling mode Next, in the dehumidifying and cooling mode, the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21 and the electromagnetic valve 22.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state where the air blown out from the indoor blower 27 is passed through the heat medium-air heat exchanger 40 and the radiator 4. .
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4 (the heat medium circulation circuit 40 is stopped). The refrigerant in 4 is deprived of heat by the air and cooled to condensate.
  • the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows into the header section 14 and the supercooling section 16 from the refrigerant pipe 13A through the electromagnetic valve 17. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 ⁇ / b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 ⁇ / b> C.
  • the air cooled and dehumidified by the heat absorber 9 is reheated (having a lower heat dissipation capacity than that during heating) in the process of passing through the radiator 4, thereby dehumidifying and cooling the vehicle interior. .
  • the controller 32 controls the rotational speed NC of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48, and expands outdoors based on the high pressure (radiator pressure PCI) of the refrigerant circuit R described above.
  • the valve opening degree of the valve 6 is controlled, and the refrigerant pressure of the radiator 4 (a radiator pressure PCI described later) is controlled.
  • the controller 32 fully opens the outdoor expansion valve 6 (the valve opening is the upper limit of control) in the dehumidifying and cooling mode state, and the air mix damper 28 is in a state where air is not passed through the radiator 4. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is not ventilated to the radiator 4, it only passes here, and the refrigerant exiting the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipe 13E.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully opened, the refrigerant flows into the outdoor heat exchanger 7 as it is, where it is cooled by air or by outside air ventilated by the outdoor blower 15 to be condensed and liquefied.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows into the header section 14 and the supercooling section 16 from the refrigerant pipe 13A through the electromagnetic valve 17. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled.
  • the refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 ⁇ / b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 ⁇ / b> C.
  • the air that has been cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from the outlet 29 without passing through the radiator 4, thereby cooling the vehicle interior.
  • the controller 32 controls the rotational speed NC of the compressor 2 based on the temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48. And the controller 32 selects and switches each said operation mode according to outside temperature or target blowing temperature.
  • Tset is the set temperature in the passenger compartment set by the air conditioning operation unit 53
  • Tin is the temperature of the passenger compartment air detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • this target blowing temperature TAO is so high that the outside temperature Tam is low, and it falls as the outside temperature Tam rises.
  • the controller 32 calculates a target radiator temperature TCO from the target outlet temperature TAO, and then calculates a target radiator pressure PCO that is a target value of the high pressure of the refrigerant circuit R based on the target radiator temperature TCO.
  • the controller 32 Based on the target radiator pressure PCO and the refrigerant pressure (radiator pressure, ie, high pressure of the refrigerant circuit R) PCI of the radiator 4 detected by the radiator pressure sensor 47, the controller 32 A high-pressure calculated rotational speed TGNChp, which is a target value for the rotational speed Nc, is calculated. That is, the high-pressure calculated rotation speed TGNChp is a compressor 2 for controlling the radiator pressure PCI (high pressure) to the target radiator pressure PCO (target value of high pressure) by the rotation speed Nc of the compressor 2. For example, in an environment where the outside air temperature Tam is low, the pressure of the refrigerant sucked into the compressor 2 decreases, and the suction refrigerant temperature Ts of the compressor 2 also decreases.
  • the controller 32 of the embodiment executes the rotation speed limit control described below.
  • the rotation speed limitation control of the embodiment limits (decreases) the rotation speed NC of the compressor 2 so that the suction refrigerant temperature Ts does not fall below a predetermined limit target value TGTs (for example, ⁇ 22 ° C. or the like) for low pressure protection. ) Protection control.
  • the controller 32 constantly monitors the suction refrigerant temperature Ts, and the difference (Ts ⁇ TGTs) between the suction refrigerant temperatures Ts, which is a detection value detected by the suction temperature sensor 45 from the limit target value TGTs, is predetermined.
  • the final value (after restriction) is selected by selecting the smaller value (MIN) of the value obtained by adding the previous gain to the value obtained by adding the previous high-pressure calculated rotation speed TGNChppst and the currently calculated high-pressure calculated rotation speed TGNChhp.
  • the rotation speed is determined as TGNChp.
  • a value obtained by multiplying the difference (Ts ⁇ TGTs) by a predetermined gain is always negative, and therefore the predetermined gain is added to the difference (Ts ⁇ TGTs).
  • the value obtained by adding the previous high-pressure calculated rotation speed TGNChppst to the multiplied value is lower than the previous high-pressure calculated rotation speed TGNChppst.
  • the value obtained by adding a predetermined gain to the difference (Ts ⁇ TGTs) and the previous high-pressure calculated rotational speed TGNChppst is smaller than the currently calculated high-pressure calculated rotational speed TGNChpp, the value is If it is larger, the currently calculated high-pressure calculated rotational speed TGNChp is selected. In any case, if the suction refrigerant temperature Ts is lower than the limit target value TGTs, the high-pressure calculated rotational speed TGNChp is reduced. become. Thereby, the controller 32 protects the compressor 2 by restricting the rotational speed NC of the compressor 2 so that the suction refrigerant temperature Ts does not fall below the restriction target value TGTs.
  • the controller 32 has two types of operation modes, an energy saving priority mode and a comfort priority mode, which will be described below in the embodiment, and a manual selection operation by the passenger using the air conditioning operation unit 53. Alternatively, these are switched and executed depending on the remaining battery level. First, when the passenger operates the air conditioning operation unit 53 to select the energy saving priority mode, or when the remaining battery level of the vehicle falls below a predetermined value, the controller 32 executes the energy saving priority mode described later.
  • the comfort priority mode described later is executed.
  • (6-4) Energy saving priority mode in heating mode the energy saving priority mode of the controller 32 described above will be described with reference to FIGS. 4 and 5.
  • the controller 32 operates the compressor 2 with the rotational speed NC of the compressor 2 as the maximum rotational speed NCmax that can be operated under the conditions, and the heating medium circulation due to the lack of heating capacity by the radiator 4 is circulated. It supplements with the heating by the circuit 23 (heat medium-air heat exchanger 40).
  • the rotational speed NC is limited, and the maximum operable rotational speed NCmax is also lowered.
  • step S3 the controller 32 determines that the required capacity TGQ (kW), which is the heating capacity of the radiator 4 required using the following formula (II), formula (III), and formula (IV), and that the radiator 4 is actually HP actual capacity Qhp (kW) which is the heating capacity generated in the heat generator, the radiator 4 and the heat medium circulation circuit 23 (including the heat medium-air heat exchanger 40 which is an auxiliary heating device; the same applies hereinafter).
  • TGQ (TCO ⁇ Te) ⁇ Cpa ⁇ real Ga ⁇ ⁇ aTe ⁇ 1.16 (II)
  • Qhp (TCI ⁇ Thtr) ⁇ Cpa ⁇ real Ga ⁇ (SW / 100) ⁇ ⁇ aTe ⁇ 1.16 (III)
  • Qtotal (TCI ⁇ Te) ⁇ Cpa ⁇ real Ga ⁇ (SW / 100) ⁇ ⁇ aTe ⁇ 1.16 (IV)
  • Te is the heat absorber temperature
  • Cpa is the constant pressure specific heat of air [kJ / m 3 K]
  • real Ga is the actual air volume of the air flowing through the air flow passage 3 (actual system air volume m 3 / S)
  • ⁇ aTe is the specific gravity of air
  • 1.16 is a coefficient for matching the units
  • NCmax is the maximum number of revolutions at which the compressor 2 can be operated under the conditions
  • Thtr is the temperature of the heat medium-air heat exchanger 40
  • the controller 32 calculates a difference ⁇ Qhp between the required capacity TGQ and the HP actual capacity Qhp and a difference ⁇ Qtotal between the required capacity TGQ and the overall capacity Qtotal using the following formulas (V) and (VI).
  • ⁇ Qhp TGQ ⁇ Qhp (V)
  • ⁇ Qtotal TGQ ⁇ Qtotal (VI)
  • the controller 32 determines whether or not the heat pump (compressor 2) is stopped due to frosting of the outdoor heat exchanger 7 in step S4. If the frost formation of the outdoor heat exchanger 7 increases, heat absorption from the outside air (heat pump) cannot be performed even when the compressor 2 of the refrigerant circuit R is operated, and the operation efficiency is significantly reduced.
  • the rotation speed limit control limitation by the suction refrigerant temperature Ts. Ts limit
  • the controller 32 proceeds to step S11.
  • the maximum rotational speed estimated value QmaxNCTam is an estimate of the maximum value of the rotational speed NC of the compressor 2 that is limited by the rotational speed limiting control from the outside air temperature Tam, assuming that the rotational speed limiting control is performed.
  • FIG. 5 is a graph showing the relationship between the outside air temperature Tam and the maximum rotational speed estimated value QmaxNCTam for this purpose. The graph of FIG.
  • the controller 32 limits the rotation speed NC of the compressor 2 so that the suction refrigerant temperature Ts of the compressor 2 does not fall below a predetermined value ( ⁇ 22 ° C. in the embodiment of the limit target value TGTs) by the rotation speed limit control.
  • a predetermined value ⁇ 22 ° C. in the embodiment of the limit target value TGTs
  • the suction refrigerant temperature Ts of the compressor 2 is strongly influenced by the outside air temperature Tam, the state of this restriction can be estimated from the outside air temperature Tam. Therefore, in the embodiment (FIG.
  • the controller 32 sets the maximum rotational speed estimated value QmaxNCTam to 7000 rpm (maximum rotational speed for control) until the outdoor air temperature Tam drops to ⁇ 10 ° C., and the outdoor air temperature Tam decreases from ⁇ 10 ° C. Accordingly, the maximum rotational speed estimated value QmaxNCTam is reduced to 3000 rpm when the outside air temperature Tam is ⁇ 20 ° C., for example. That is, this is presumed that the rotational speed limit control is performed (assumed to be performed) in an environment where the outside air temperature Tam is ⁇ 20 ° C., and the rotational speed NC of the compressor 2 can be increased only to 3000 rpm at the maximum. Is meant to do.
  • step S14 the controller 32 derives the maximum rotational speed estimated value QmaxNCTam at the time of the rotational speed restriction control from the graph of FIG. 5 based on the outside air temperature Tam, thereby limiting the rotational speed NC of the compressor 2 that is restricted by the rotational speed restriction control.
  • the controller 32 proceeds to step S11. Then, using the maximum rotational speed NCmax set in step S10 or step S14 in step S11, the HP maximum capacity estimated value Qmax that is the estimated value of the maximum heating capacity of the radiator 4 is calculated using the following formula (VII). calculate.
  • NCmax f (Tam, Ga, NCmax, Thtr-Te) (VII)
  • Te is the heat absorber temperature
  • Tam is the outside air temperature
  • Ga is the air volume of the air flowing through the air flow passage 3
  • Thtr is the auxiliary heater temperature which is the temperature of the heat medium-air heat exchanger 40.
  • NCmax is the maximum rotational speed at which the compressor 2 can be operated. This NCmax is a value that takes into consideration the rotational speed limit control in step S10 or step S14 described above, and therefore the HP calculated in step S11. The maximum capacity estimation value Qmax also decreases as NCmax decreases in the rotation speed limit control.
  • FIG. 3 shows the relationship between the above-described ability and the difference.
  • the controller 32 proceeds to step S12 and makes a determination based on actual ability.
  • the determination based on the actual capacity means that the rotational speed NC of the compressor 2 is the maximum rotational speed NCmax, the high pressure (radiator pressure PCI) of the refrigerant circuit R is stable, and ⁇ Qtotal is a predetermined value.
  • step S15 As (N) in step S12, and this time the determination based on the MAX ability is performed. This determination based on the MAX capacity is executed immediately after the start of the compressor 2 until the high pressure is stabilized (in the case of N in step S12).
  • a predetermined value a state where the maximum heating capacity (estimated value) of the radiator 4 is insufficient with respect to the required capacity TGQ
  • the predetermined time for example, 30 seconds
  • the heat medium heating electric heater 35 of the heat medium circulation circuit 23 is deenergized (PTC stop), and the required capacity TGQhtr of the heat medium circulation circuit 23 (auxiliary heating device) is made zero.
  • step S15 the maximum heating capacity (estimated value) of the radiator 4 with respect to the required capacity TGQ. ) Is insufficient) (Y)
  • the controller 32 proceeds to step S16, the F / F (feed forward) value Qaff of the required capacity TGQhtr of the heat medium circulation circuit 23 is set to ⁇ Qmax, and F / B ( Feedback) The value Qafb is set to zero.
  • step S8 the controller 32 calculates the required capacity TGQhtr of the heat medium circulation circuit 23.
  • step S8 the controller 32 calculates the required capacity TGQhtr of the heat medium circulation circuit 23 using the following formula (IX).
  • TGQhtr (Qaff + Qafb) / ⁇ (IX)
  • is the temperature efficiency (heater temperature efficiency) of the heat medium circulation circuit 23 (heat medium heating electric heater 35).
  • the difference ⁇ Qmax is a value that takes into account the rotational speed limit control.
  • step S12 the rotational speed NC of the compressor 2 is the maximum rotational speed NCmax, the high pressure (radiator pressure PCI) of the refrigerant circuit R is stable, and ⁇ Qtotal is equal to or greater than a predetermined value for a predetermined time.
  • step S13 sets the F / F value Qaff of the required capacity TGQhtr of the heat medium circuit 23 to ⁇ Qmax, and sets the F / B value Qafb to the required capacity TGQ and the HP actual capacity Qhp. Difference QQhp, the process proceeds to step S8, and the required capacity TGQhtr of the heat medium circulation circuit 23 is calculated.
  • the controller 32 sets the required capacity TGQhtr of the heat medium circulation circuit 23 to ( ⁇ Qmax + ⁇ Qhp) / ⁇ in step S8, and based on this required capacity TGQhtr
  • the energization of the heater 35 is controlled.
  • the difference ⁇ Qmax is a value that takes into account the rotational speed limiting control.
  • the required capacity TGQhtr of the heat medium circuit 23 is ( ⁇ Qmax + ⁇ Qhp) / ⁇ also increases and the amount of heat generated by the heat medium heating electric heater 35 also increases.
  • the controller 32 sets the required capacity TGQhtr of the heat medium circulation circuit 23 to ⁇ Qmax / ⁇ in step S8, and based on the required capacity TGQhtr The energization of the heating electric heater 35 is controlled. (6-5) Comfort priority mode in heating mode Next, the comfort priority mode of the controller 32 described above will be described with reference to FIGS. In the heating mode, when the energy saving priority mode is not selected by the passenger and the remaining battery level is equal to or higher than the predetermined value, the controller 32 executes the comfort priority mode as described above.
  • TGNCcomf MIN (TGNCcomfVSP, TGNCcomfBLV, TGNCcomf ⁇ TXO) (X)
  • the blower voltage BLV is the voltage of the indoor blower (blower fan) 27 and serves as an index indicating the amount of air flowing through the air flow passage 3.
  • the frost degree (frosting rate) is shown.
  • TGNCcomfVSP is the upper limit rotational speed of the compressor 2 calculated based on the vehicle speed.
  • a predetermined lower limit value TGNCcomfLo for example, about 3000 rpm
  • an upper limit value TGNCcomfHi For example, as the vehicle speed VSP increases from 20 km / h to 80 km / h (ie, as the running sound increases), the speed increases at a predetermined change rate between 70 km / h and 10 km / h. As it decreases to h, it is changed so as to decrease at a predetermined change rate (with hysteresis). Further, TGNCcomfBLV is the upper limit rotation speed of the compressor 2 calculated from the blower voltage. As shown in FIG.
  • the blower voltage between the predetermined lower limit value TGNCcomfLo and the upper limit value TGNCcomfHi depends on the blower voltage BLV.
  • the voltage BLV increases from 5 V to 14 V (that is, as the sound blown out by the indoor blower 27 increases)
  • the voltage BLV increases at a predetermined change rate, and decreases from 13 V to 4 V at a predetermined change rate. It changes so that it goes (with hysteresis).
  • TGNCcomf ⁇ TXO is the upper limit rotational speed of the compressor 2 calculated based on the degree of frost formation. As shown in FIG.
  • the TGNCcomf ⁇ TXO is between a predetermined lower limit value TGNCcomfLo and an upper limit value TGNCcomfHi according to the frost determination value ⁇ TXO.
  • the frosting determination value ⁇ TXO increases from, for example, 4 deg to 11 deg (that is, as the frosting of the outdoor heat exchanger 7 increases)
  • the frosting determination value ⁇ TXO decreases with a predetermined rate of change. It is changed so as to increase at the rate of change (with hysteresis).
  • the controller 32 determines the smallest value among the changed upper limit rotational speeds TGNCcomfVSP, TGNCcomfBLV, TGNCcomf ⁇ TXO as the upper limit rotational speed TGNCcomf of the compressor 2 in the comfort priority mode, using the equation (X).
  • the controller 32 calculates the target rotational speed TGNC of the compressor 2 in the comfort priority mode using the following formula (XI).
  • TGNC MIN (TGNCcomf, TGNChp) (XI)
  • the TGNChp is a high-pressure calculated rotational speed that is a target value of the rotational speed Nc of the compressor 2 calculated based on the target radiator pressure PCO and the radiator pressure PCI described above.
  • the controller 32 determines the smaller value of the above-described upper limit rotational speed TGNCcomf and high pressure calculated rotational speed TGNChp as the target rotational speed TGNC of the compressor 2, and sets the rotational speed NC of the compressor 2 to Control.
  • the high-pressure calculated rotational speed TGNChp is reduced. Therefore, during the rotational speed limiting control, the limited high-pressure calculated rotational speed TGNChp and the upper limit rotational speed TGNCcomf The smaller value is determined as the target rotational speed TGNC of the compressor 2. (6-5-2) Control of the heat medium circulation circuit 23 in the comfort priority mode Next, the controller 32 determines in step S18 in FIG.
  • step S7 whether or not a failure has occurred due to a failure in the heat pump (indicated by HP in FIG. 7) comprising the refrigerant circuit R of the vehicle air conditioner 1, and the failure is determined. If (N), the heat pump (compressor 2) is stopped in step S22, and the base value Qahtr of the required capacity TGQhtr of the heat medium circulation circuit 23 is set as the required capacity TGQ in step S23. If the failure is not determined in step S18 and is normal (Y), the process proceeds to step S19 to determine whether or not the operation mode of the vehicle air conditioner 1 is the current heating mode. If it transfers to another operation mode and it is heating mode (Y), it will progress to step S20.
  • step S20 the controller 32 determines the required capacity TGQ (kW), which is the heating capacity of the radiator 4 required by using the above-described formulas (II) and (III), and the heating actually generated by the radiator 4.
  • the HP actual capacity Qhp (kW), which is the capacity, is calculated. Further, the controller 32 calculates the difference ⁇ Qhp between the required capacity TGQ and the HP actual capacity Qhp using the above-described equation (V).
  • the controller 32 performs stop determination of the heat pump (compressor 2) due to frosting of the outdoor heat exchanger 7 in step S21 as in step S4 of FIG. 4, and the degree of frosting becomes a predetermined value or more.
  • step S22 a heat pump (compressor 2 of the refrigerant circuit R) is stopped.
  • step S21 a heat pump (compressor 2) is stopped
  • step S25 determines whether or not a predetermined time has elapsed since the activation of the heating mode. If the present time is the initial start of the heating mode and before a predetermined time has elapsed since the start, the process proceeds to step S26, and is the rotation speed limitation control (limitation by the suction refrigerant temperature Ts. Ts limitation) currently being executed? Judge whether or not.
  • the difference ⁇ Qmax between the required capacity TGQ and the HP maximum capacity estimated value Qmax also increases when Qmax is lowered in consideration of the rotational speed limit control.
  • the base value Qahtr of the required capacity TGQhtr of the heat medium circulation circuit 23 is set to ⁇ Qmax.
  • the controller 32 calculates the required capacity TGQhtr of the heat medium circulation circuit 23.
  • the controller 32 calculates the required capacity TGQhtr of the heat medium circulation circuit 23 using the following formula (XII).
  • step S25 the controller 32 proceeds from step S25 to step S31 and sets the base value Qahtr of the required capacity TGQhtr of the heat medium circulation circuit 23 to ⁇ Qhp.
  • step S24 the controller 32 calculates the required capacity TGQhtr of the heat medium circulation circuit 23.
  • step S24 the controller 32 calculates the required capacity TGQhtr of the heat medium circuit 23 using the above-described equation (XII).
  • the controller 32 proceeds to step S23 to set the base value Qahtr of the required capacity TGQhtr of the heat medium circulation circuit 23 as the required capacity TGQ, and proceeds to step S24.
  • the required capacity TGQhtr of the circulation circuit 23 is calculated.
  • a predetermined value for example, 100 W
  • the controller 32 has two types of modes, the energy saving priority mode and the comfort priority mode in the heating mode.
  • the compressor 2 is set to the maximum rotation speed NCmax, and the heating capacity by the radiator 4 is insufficient.
  • the heat medium circulation circuit 23 heat medium-air heat exchanger 40
  • the rotational speed NC of the compressor 2 is limited, and the heating capacity by the radiator 4 is insufficient. Since heat is supplemented by the circulation circuit 23, in the energy saving priority mode, the radiator 4 exhibits the maximum heating capacity and the shortage is supplemented by the heating by the heat medium circulation circuit 23.
  • the heating capacity of the radiator 4 is limited, and the heating capacity of the heating medium circulation circuit 23 is increased to increase the heating capacity at the start-up. And early, noise also reduced, also it is possible to suppress formation of frost on the outdoor heat exchanger 7.
  • the controller 32 considers the rotational speed limit control in the energy saving priority mode and the comfort priority mode of the heating mode, and the heating medium circulation circuit 23 compensates for the shortage of the heating capacity by the radiator 4.
  • the controller 32 limits the rotation speed NC of the compressor 2 so that the suction refrigerant temperature Ts of the compressor 2 does not fall below a predetermined limit target value TGTs.
  • An HP maximum capacity estimation value Qmax that is an estimated value of the maximum heating capacity of the radiator 4 is calculated based on the maximum rotation speed NCmax, and a required capacity TGQ that is a required heating capacity of the radiator 4 and an HP maximum capacity estimation value Qmax.
  • the controller 32 when the controller 32 is executing the rotational speed limit control, the actual rotational speed NC of the compressor 2 is set to the maximum rotational speed NCmax.
  • the HP maximum capacity estimated value Qmax is calculated from the rotational speed NC of the compressor 2 and the required capacity TGQhtr of the heat medium circulation circuit 23 can be accurately calculated.
  • the controller 32 performs the maximum rotation at the rotation speed limitation control which is the maximum value of the rotation speed NC of the compressor 2 that is limited by the rotation speed limitation control based on the outside air temperature Tam.
  • the number estimated value QmaxNCTam is estimated, and the estimated maximum rotation number estimated value QmaxNCTam is set to the maximum number of rotations NCmax, so that the heating medium circulation circuit 23 can quickly perform heating even when the rotation number limitation control is started thereafter. You will be able to complement your abilities.
  • the controller 32 changes the maximum rotational speed NCmax based on the rotational speed NC of the compressor 2 that is restricted by the rotational speed restriction control in the initial stage of startup. It is possible to speed up the start-up and improve comfort.
  • the shortage of the HP actual capacity Qhp, which is the capacity can be accurately supplemented by heating by the heat medium circulation circuit 23, and extremely comfortable heating in the vehicle interior can be realized.
  • the specific method of the rotation speed limitation control described in the embodiment and the determination method of the required capacity TGQhtr of the heat medium circulation circuit 23 in consideration thereof are not limited to these, and a range that does not depart from the gist of the present invention.
  • the rotational speed limit control is executed based on the suction refrigerant temperature Ts.
  • the present invention is not limited thereto, and the rotational speed NC of the compressor 2 is limited so that the suction refrigerant pressure Ps does not fall below a predetermined limit target value.
  • the present invention can also be applied to rotation speed control.
  • the present invention is also applied to the vehicle air conditioner 1 that executes the rotational speed limit control for limiting the rotational speed NC of the compressor 2 so that the discharged refrigerant temperature Td and the discharged refrigerant pressure Pd do not rise above a predetermined limit target value. It is valid. Further, in the embodiment, the present invention is applied to the vehicle air conditioner 1 that switches and executes each operation mode such as the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, and the cooling mode. The present invention is also effective for such a case.
  • auxiliary heating device is configured by the heat medium circulation circuit 23 in the embodiment, the present invention is not limited thereto, and a normal electric heater (PTC) may be provided in the air flow passage 3 to serve as the auxiliary heating device. Further, the configuration and each numerical value of the refrigerant circuit R described in the above embodiments are not limited thereto.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

The purpose of the present invention is to enable heating by an auxiliary heating device to be carried out appropriately, even in a vehicle air-conditioning device which performs control to limit rotational speed. Refrigerant discharged from the compressor 2 is made to radiate heat by means of a radiator 4, and after depressurization, is made to absorb heat by means of an outdoor heat exchanger 7, thereby heating the interior of the cabin. The operation of the compressor is limited on the basis of the intake refrigerant temperature Ts of the compressor, and control to limit rotational speed is performed to protect the compressor. The apparatus is equipped with an auxiliary heating apparatus for heating the air that is supplied to the interior of the cabin. A controller takes into account control to limit rotational speed and performs heating by means of an auxiliary heating device to supplement the lack of heating capacity by the radiator.

Description

車両用空気調和装置Air conditioner for vehicles
 本発明は、車両の車室内を空調するヒートポンプ式の空気調和装置に関するものである。 The present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle.
 近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、車両のバッテリより給電されて冷媒を圧縮して吐出する圧縮機と、車室内に供給する空気が流通する空気流通路に設けられて冷媒を放熱させる放熱器と、空気流通路に設けられて冷媒を吸熱させる吸熱器と、車室外に設けられて冷媒を放熱又は吸熱させる室外熱交換器を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器において放熱させ、放熱器において放熱した冷媒を吸熱器において吸熱させる除湿暖房や除湿冷房モードと、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させる冷房モードの各モードを切り換えて実行するものが開発されている(例えば、特許文献1参照)。
 更に、特許文献1では空気流通路に熱媒体循環回路の熱媒体−空気熱交換器(補助加熱装置)を配置し、暖房モードのときの要求能力に対して放熱器による暖房能力が不足する場合、バッテリより給電される電気ヒータで加熱された熱媒体を熱媒体−空気熱交換器に循環させて車室内に供給される空気を加熱し、不足分を補完するようにしていた。
 また、この場合は圧縮機の最大回転数NCmaxから放熱器が発生可能な最大暖房能力を推定し、暖房の要求能力と最大暖房能力の推定値との差から補助加熱装置の要求能力を算出して熱媒体−空気熱交換器による補助加熱を行っていた。
Hybrid vehicles and electric vehicles have come into widespread use due to the emergence of environmental problems in recent years. As an air conditioner that can be applied to such a vehicle, it is provided in a compressor that is supplied with power from a battery of the vehicle and compresses and discharges the refrigerant, and an air flow passage through which air supplied to the passenger compartment flows. The refrigerant discharged from the compressor is provided with a radiator that dissipates the refrigerant, a heat absorber that is provided in the air flow passage to absorb the refrigerant, and an outdoor heat exchanger that is provided outside the vehicle cabin to dissipate or absorb the refrigerant. In the heat sink, the heating mode in which the refrigerant radiated in the radiator absorbs heat in the outdoor heat exchanger, and the refrigerant discharged from the compressor is radiated in the radiator, and the refrigerant radiated in the radiator is radiated in the heat absorber. Each mode of the dehumidifying heating and dehumidifying cooling modes for absorbing heat and the cooling mode for radiating the refrigerant discharged from the compressor in the outdoor heat exchanger and absorbing heat in the heat absorber. Have been developed which perform switching (for example, see Patent Document 1).
Furthermore, in patent document 1, the heat medium-air heat exchanger (auxiliary heating device) of the heat medium circulation circuit is arranged in the air flow passage, and the heating capacity by the radiator is insufficient with respect to the required capacity in the heating mode. The heat medium heated by the electric heater fed from the battery is circulated through the heat medium-air heat exchanger to heat the air supplied into the passenger compartment to compensate for the shortage.
In this case, the maximum heating capacity that the radiator can generate is estimated from the maximum rotation speed NCmax of the compressor, and the required capacity of the auxiliary heating device is calculated from the difference between the required heating capacity and the estimated value of the maximum heating capacity. Thus, auxiliary heating by a heat medium-air heat exchanger was performed.
特開2015−229370号公報JP2015-229370A
 ここで、特に外気温度が低い環境下では圧縮機に吸い込まれる冷媒の圧力が低下し、圧縮機の吸込冷媒温度Tsも低下する。このような状態では圧縮機に損傷を来す危険性があるため、車両用空気調和装置では例えば上記吸込冷媒温度Tsに基づいて圧縮機の回転数を制限し、圧縮機を保護する回転数制限制御が行われる。この場合の回転数制限制御では、一般的に吸込冷媒温度Tsが所定の制限目標値より下がらないように圧縮機の回転数が制限されるので、その場合には圧縮機の回転数を最大回転数NCmaxまで上げられなくなる。
 そのため、前述した如く補助加熱装置の要求能力を圧縮機の最大回転数NCmaxから推定した最大暖房能力から求めると、特に起動初期には補助加熱装置の暖房能力が不足し、暖房の立ち上がりが遅くなる問題があった。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、圧縮機の回転数制限制御を行う車両用空気調和装置においても、補助加熱装置による加熱を適切に行えるようにすることを目的とする。
Here, particularly in an environment where the outside air temperature is low, the pressure of the refrigerant sucked into the compressor is lowered, and the suction refrigerant temperature Ts of the compressor is also lowered. In such a state, since there is a risk of damaging the compressor, the vehicle air conditioner limits the rotation speed of the compressor based on the suction refrigerant temperature Ts, for example, and protects the compressor. Control is performed. In the rotation speed limit control in this case, the compressor rotation speed is generally limited so that the suction refrigerant temperature Ts does not fall below a predetermined limit target value. In that case, the rotation speed of the compressor is set to the maximum rotation. It cannot be increased to several NCmax.
Therefore, as described above, when the required capacity of the auxiliary heating device is obtained from the maximum heating capacity estimated from the maximum rotation number NCmax of the compressor, the heating capacity of the auxiliary heating apparatus is insufficient particularly at the initial stage of startup, and the start-up of the heating is delayed. There was a problem.
The present invention has been made to solve the related art technical problem, and also in a vehicle air conditioner that performs compressor speed limit control so that heating by an auxiliary heating device can be performed appropriately. The purpose is to do.
 本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、車室外に設けられて冷媒を吸熱させるための室外熱交換器と、制御装置とを備え、この制御装置は、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させることで車室内を暖房すると共に、圧縮機の回転数を制限して当該圧縮機を保護する回転数制限制御を実行するものであって、車室内に供給する空気を加熱するための補助加熱装置を備え、制御装置は、回転数制限制御を考慮し、放熱器による暖房能力が不足する分を補助加熱装置による加熱で補完することを特徴とする。
 請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、回転数制限制御において、圧縮機の吸込冷媒温度又は吸込冷媒圧力が所定の制限目標値より下がらないように圧縮機の回転数を制限し、若しくは、圧縮機の吐出冷媒温度又は吐出冷媒圧力が所定の制限目標値より上がらないように圧縮機の回転数を制限すると共に、圧縮機の最大回転数NCmaxに基づいて放熱器の最大暖房能力の推定値であるHP最大能力推定値Qmaxを算出し、要求される放熱器の暖房能力である要求能力TGQとHP最大能力推定値Qmaxとの差ΔQmax=TGQ−Qmaxを算出し、補助加熱装置の要求能力TGQhtrを、ΔQmaxから算出して補助加熱装置による加熱を実行し、回転数制限制御で制限される圧縮機の回転数に基づいて最大回転数NCmaxを変更することを特徴とする。
 請求項3の発明の車両用空気調和装置は、上記発明において制御装置は、回転数制限制御を実行しているときは、圧縮機の実際の回転数を最大回転数NCmaxとすることを特徴とする。
 請求項4の発明の車両用空気調和装置は、請求項2又は請求項3の発明において制御装置は、回転数制限制御を実行していないときは、外気温度に基づいて回転数制限制御で制限される圧縮機の回転数の最大値を推定し、当該推定された最大値を最大回転数NCmaxとすることを特徴とする。
 請求項5の発明の車両用空気調和装置は、請求項2乃至請求項4の発明において制御装置は、起動初期に回転数制限制御で制限される圧縮機の回転数に基づいて最大回転数NCmaxを変更することを特徴とする。
 請求項6の発明の車両用空気調和装置は、上記発明において制御装置は、放熱器が実際に発生する暖房能力であるHP実能力Qhpを算出し、要求能力TGQとHP実能力Qhpとの差ΔQhp=TGQ−Qhpを算出すると共に、起動初期の期間が経過した後は、補助加熱装置の要求能力TGQhtrを、ΔQhpから求めて補助加熱装置による加熱を実行することを特徴とする。
An air conditioner for a vehicle according to the present invention includes a compressor that compresses a refrigerant, a radiator that radiates the refrigerant and heats the air that is supplied to the vehicle interior, and is provided outside the vehicle compartment to absorb the refrigerant. An outdoor heat exchanger and a control device are provided. The control device dissipates the refrigerant discharged from the compressor with a radiator, depressurizes the dissipated refrigerant, and then absorbs heat with the outdoor heat exchanger. The vehicle interior is heated, and the rotational speed limit control is performed to protect the compressor by limiting the rotational speed of the compressor, and an auxiliary heating device for heating the air supplied to the vehicle interior is provided. The control device is characterized in that, considering the rotational speed limit control, the heating capacity by the radiator is supplemented by heating by the auxiliary heating device.
According to a second aspect of the present invention, there is provided an air conditioner for a vehicle according to the present invention, wherein the control device is configured so that the suction refrigerant temperature or the suction refrigerant pressure of the compressor does not fall below a predetermined limit target value in the rotational speed restriction control. The number of rotations is limited, or the compressor rotation number is limited so that the discharge refrigerant temperature or discharge refrigerant pressure of the compressor does not rise above a predetermined limit target value, and heat is released based on the maximum rotation number NCmax of the compressor. HP maximum capacity estimated value Qmax, which is an estimated value of the maximum heating capacity of the radiator, is calculated, and a difference ΔQmax = TGQ−Qmax between required capacity TGQ, which is the required heating capacity of the radiator, and HP maximum capacity estimated value Qmax is calculated. Then, the required capacity TGQhtr of the auxiliary heating device is calculated from ΔQmax, heating by the auxiliary heating device is executed, and based on the rotation speed of the compressor limited by the rotation speed limit control. And the maximum rotational speed NCmax is changed.
A vehicle air conditioner according to a third aspect of the present invention is characterized in that, in the above invention, the control device sets the actual rotational speed of the compressor to the maximum rotational speed NCmax when the rotational speed limiting control is being executed. To do.
According to a fourth aspect of the present invention, there is provided a vehicle air conditioner according to the second or third aspect of the present invention, wherein the control device is limited by the rotational speed limiting control based on the outside air temperature when the rotational speed limiting control is not executed. The maximum value of the rotation speed of the compressor to be performed is estimated, and the estimated maximum value is set as the maximum rotation speed NCmax.
The vehicle air conditioner according to a fifth aspect of the present invention is the air conditioning apparatus for a vehicle according to the second to fourth aspects of the present invention, wherein the control device is configured such that the maximum rotational speed NCmax is based on the rotational speed of the compressor that is restricted by the rotational speed restriction control at the start of startup. It is characterized by changing.
In the vehicle air conditioner according to the sixth aspect of the present invention, in the above invention, the control device calculates an HP actual capacity Qhp which is a heating capacity actually generated by the radiator, and a difference between the required capacity TGQ and the HP actual capacity Qhp. ΔQhp = TGQ−Qhp is calculated, and after the initial startup period has elapsed, the required capacity TGQhtr of the auxiliary heating device is obtained from ΔQhp, and heating by the auxiliary heating device is executed.
 本発明によれば、冷媒を圧縮する圧縮機と、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、車室外に設けられて冷媒を吸熱させるための室外熱交換器と、制御装置とを備え、この制御装置は、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させることで車室内を暖房すると共に、圧縮機の回転数を制限して当該圧縮機を保護する回転数制限制御を実行する車両用空気調和装置において、車室内に供給する空気を加熱するための補助加熱装置を設け、制御装置が、回転数制限制御を考慮し、放熱器による暖房能力が不足する分を補助加熱装置による加熱で補完するようにしたので、回転数制限制御が実行される際に目減りする放熱器の暖房能力を、補助加熱装置による加熱で支障無く補完し、快適な車室内暖房を実現することができるようになる。
 特に、請求項2の発明の如く制御装置が、回転数制限制御において、圧縮機の吸込冷媒温度又は吸込冷媒圧力が所定の制限目標値より下がらないように圧縮機の回転数を制限し、若しくは、圧縮機の吐出冷媒温度又は吐出冷媒圧力が所定の制限目標値より上がらないように圧縮機の回転数を制限すると共に、圧縮機の最大回転数NCmaxに基づいて放熱器の最大暖房能力の推定値であるHP最大能力推定値Qmaxを算出し、要求される放熱器の暖房能力である要求能力TGQとHP最大能力推定値Qmaxとの差ΔQmax=TGQ−Qmaxを算出し、補助加熱装置の要求能力TGQhtrを、ΔQmaxから算出して補助加熱装置による加熱を実行し、回転数制限制御で制限される圧縮機の回転数に基づいて最大回転数NCmaxを変更するようにすれば、HP最大能力推定値Qmaxの算出の根拠となる最大回転数NCmaxを回転数制限制御で制限される圧縮機の回転数に基づいて変更し、ΔQmaxから算出される補助加熱装置の要求能力TGQhtrをその分増大させて、放熱器の暖房能力の目減り分を適切に補うことができるようになる。
 この場合、請求項3の発明の如く制御装置が、回転数制限制御を実行しているときは、圧縮機の実際の回転数を最大回転数NCmaxとすることで、回転数制限制御で実際に制限されている圧縮機の回転数からHP最大能力推定値Qmaxの算出し、的確に補助加熱装置の要求能力TGQhtrを算出することができるようになる。
 一方、回転数制限制御を実行していないときには、請求項4の発明の如く制御装置が、外気温度に基づいて回転数制限制御で制限される圧縮機の回転数の最大値を推定し、当該推定された最大値を最大回転数NCmaxとすることで、その後回転数制限制御が開始される場合にも、迅速に補助加熱装置による暖房能力の補完を行うことができるようになる。
 特に、請求項5の発明の如く制御装置が、起動初期に回転数制限制御で制限される圧縮機の回転数に基づいて最大回転数NCmaxを変更するようにすれば、車室内暖房の立ち上がりを迅速化して、快適性を向上させることができるようになる。
 また、請求項6の発明の如く制御装置が、放熱器が実際に発生する暖房能力であるHP実能力Qhpを算出し、要求能力TGQとHP実能力Qhpとの差ΔQhp=TGQ−Qhpを算出すると共に、起動初期の期間が経過した後は、補助加熱装置の要求能力TGQhtrを、ΔQhpから求めて補助加熱装置による加熱を実行するようにすれば、起動初期の期間が経過した後は、要求能力TGQに対して、実際に発生する放熱器の暖房能力であるHP実能力Qhpの不足分を的確に補助加熱装置による加熱で補完することができるようになり、極めて快適な車室内暖房を実現することができるようになる。
According to the present invention, a compressor that compresses a refrigerant, a radiator that heats air that radiates the refrigerant and is supplied to the vehicle interior, and an outdoor heat exchanger that is provided outside the vehicle cabin and absorbs heat from the refrigerant. And a control device. The control device radiates the refrigerant discharged from the compressor with a radiator, depressurizes the radiated refrigerant, and then absorbs heat with an outdoor heat exchanger. In the vehicle air conditioner that performs the rotation speed limit control for limiting the rotation speed of the compressor and protecting the compressor while heating, an auxiliary heating device for heating the air to be supplied to the vehicle interior is provided, Considering the rotational speed limit control, the controller supplements the shortage of the heating capacity by the radiator with the heating by the auxiliary heating device. Heating capacity, auxiliary heating device According without any trouble supplemented by heating, so that it is possible to realize a comfortable passenger compartment heating.
In particular, as in the invention of claim 2, the control device limits the rotation speed of the compressor so that the suction refrigerant temperature or the suction refrigerant pressure of the compressor does not fall below a predetermined limit target value in the rotation speed limit control, or In addition, the rotation speed of the compressor is limited so that the discharge refrigerant temperature or the discharge refrigerant pressure of the compressor does not exceed a predetermined limit target value, and the maximum heating capacity of the radiator is estimated based on the maximum rotation speed NCmax of the compressor HP maximum capacity estimated value Qmax, which is a value, is calculated, and difference ΔQmax = TGQ-Qmax between required capacity TGQ, which is the required heating capacity of the radiator, and HP maximum capacity estimated value Qmax is calculated, and the requirement of the auxiliary heating device The capacity TGQhtr is calculated from ΔQmax, heating by the auxiliary heating device is executed, and the maximum rotational speed NCmax is changed based on the rotational speed of the compressor limited by the rotational speed limiting control. In addition, the maximum number of revolutions NCmax, which is the basis for calculating the HP maximum capacity estimated value Qmax, is changed based on the number of revolutions of the compressor limited by the number of revolutions limiting control, and the auxiliary heating calculated from ΔQmax The required capacity TGQhtr of the apparatus is increased by that amount, and the reduced amount of the heating capacity of the radiator can be appropriately compensated.
In this case, when the control device is executing the rotational speed limit control as in the invention of claim 3, the actual rotational speed of the compressor is set to the maximum rotational speed NCmax, so that the actual rotational speed limit control is actually performed. The HP maximum capacity estimated value Qmax is calculated from the limited rotation speed of the compressor, and the required capacity TGQhtr of the auxiliary heating device can be accurately calculated.
On the other hand, when the rotational speed restriction control is not being executed, the control device as in the invention of claim 4 estimates the maximum value of the rotational speed of the compressor restricted by the rotational speed restriction control based on the outside air temperature, and By setting the estimated maximum value as the maximum rotation speed NCmax, even when the rotation speed limitation control is started thereafter, the heating capacity by the auxiliary heating device can be complemented quickly.
In particular, if the control device changes the maximum rotational speed NCmax based on the rotational speed of the compressor that is restricted by the rotational speed restriction control in the initial stage of startup as in the invention of claim 5, the vehicle interior heating is started. It is possible to increase speed and improve comfort.
Further, as in the invention of claim 6, the control device calculates the HP actual capacity Qhp which is the heating capacity actually generated by the radiator, and calculates the difference ΔQhp = TGQ−Qhp between the required capacity TGQ and the HP actual capacity Qhp. At the same time, after the initial startup period has elapsed, the required capacity TGQhtr of the auxiliary heating device is obtained from ΔQhp and heating by the auxiliary heating device is performed. A shortage of the actual HP capacity Qhp, which is the heating capacity of the radiator that actually occurs, can be complemented by heating with the auxiliary heating device with respect to the capacity TGQ, realizing extremely comfortable interior heating. Will be able to.
本発明を適用した一実施形態の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied. 図1の車両用空気調和装置のコントローラの電気回路のブロック図である。It is a block diagram of the electric circuit of the controller of the vehicle air conditioner of FIG. 図1の車両用空気調和装置の空気流通路部分の拡大図である。It is an enlarged view of the air flow path part of the air conditioning apparatus for vehicles of FIG. 図2のコントローラによる暖房モードにおける省エネ優先モードを説明するフローチャートである。It is a flowchart explaining the energy saving priority mode in the heating mode by the controller of FIG. 外気温度Tamと回転数制限制御時の最大回転数推定値QmaxNCTamの関係を示すデータテーブルである。It is a data table which shows the relationship between outside temperature Tam and the maximum rotational speed estimated value QmaxNCTam at the time of rotational speed restriction control. 図2のコントローラによる暖房モードにおける快適優先モードでの上限回転数TGNCcomfの変更を説明する図である。It is a figure explaining the change of the upper limit rotation speed TGNCcomf in the comfort priority mode in the heating mode by the controller of FIG. 図2のコントローラによる暖房モードにおける快適優先モードを説明するフローチャートである。It is a flowchart explaining the comfort priority mode in the heating mode by the controller of FIG.
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。
 図1は本発明の一実施例としての車両用空気調和装置1の構成図を示している。この場合、本発明を適用する実施例の車両は、エンジン(内燃機関)を有さない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリの電力で駆動されるものである。
 即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房を行い、更に、除湿暖房や除湿冷房、冷房等の各運転モードを選択的に実行するものである。尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効である。更には、エンジンで走行する通常の自動車にも本発明は適用可能である。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、車両のバッテリより給電されて冷媒を圧縮し、昇圧する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられて圧縮機2から吐出された高温高圧の冷媒を車室内に放熱させる放熱器4と、暖房時に冷媒を減圧膨張させる電子膨張弁から成る室外膨張弁(ECCV)6と、冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電子膨張弁(機械式膨張弁でも良い)から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿暖房時に車室内外から冷媒に吸熱させる吸熱器9と、吸熱器9における蒸発能力を調整する蒸発能力制御弁11と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。
 尚、室外熱交換器7は車室外に設けられており、この室外熱交換器7には、車両の停止時に外気と冷媒とを熱交換させるための室外送風機15が設けられている。また、室外熱交換器7は冷媒下流側にヘッダー部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される電磁弁(開閉弁)17を介してヘッダー部14に接続され、過冷却部16の出口が逆止弁18を介して室内膨張弁8に接続されている。このヘッダー部14及び過冷却部16は構造的に室外熱交換器7の一部を構成しており、逆止弁18は室内膨張弁8側が順方向とされている。
 また、逆止弁18と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側に位置する蒸発能力制御弁11を出た冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出て蒸発能力制御弁11を経た低温の冷媒により冷却(過冷却)される構成とされている。
 また、室外熱交換器7から出た冷媒配管13Aは分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁(開閉弁)21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前で分岐しており、この分岐した冷媒配管13Fは除湿時に開放される電磁弁(開閉弁)22を介して逆止弁18の下流側の冷媒配管13Bに連通接続されている。
 また、吸熱器9の空気上流側における空気流通路3には、内気吸込口と外気吸込口の各吸込口(図1では代表して吸込口25で示す)が形成されており、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 また、図1において23は実施例の車両用空気調和装置1に設けられた補助加熱装置としての熱媒体循環回路を示している。この熱媒体循環回路23は循環手段を構成する循環ポンプ30と、熱媒体加熱電気ヒータ(PTCヒータ)35と、空気流通路3の空気の流れに対して、放熱器4の空気上流側となる空気流通路3内に設けられた熱媒体−空気熱交換器40とを備え、これらが熱媒体配管23Aにより順次環状に接続されている。尚、この熱媒体循環回路23内で循環される熱媒体としては、例えば水、HFO−1234yfのような冷媒、クーラント等が採用される。
 そして、循環ポンプ30が運転され、熱媒体加熱電気ヒータ35に通電されて発熱すると、この熱媒体加熱電気ヒータ35により加熱された熱媒体(高温の熱媒体)が熱媒体−空気熱交換器40に循環されるよう構成されており、これにより、空気流通路3の放熱器4を経た空気を加熱することになる。コントローラ32は、後述する如く暖房モードにおいて放熱器4による暖房能力が不足すると判断した場合、熱媒体加熱電気ヒータ35に通電して発熱させ、循環ポンプ30を運転することにより、熱媒体循環回路23の熱媒体−空気熱交換器40による加熱を実行する。即ち、この熱交換器循環回路23の熱媒体−空気熱交換器40が所謂ヒータコアとなり、車室内の暖房を補完する。係る熱媒体循環回路23を採用することで、搭乗者の電気的な安全性を向上させている。
 また、熱媒体−空気熱交換器40及び放熱器4の空気上流側における空気流通路3内には、内気や外気の放熱器4への流通度合いを調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、フット、ベント、デフの各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
 次に、図2において32はマイクロコンピュータから構成された制御手段としてのコントローラ(ECU)であり、このコントローラ32の入力には車両の外気温度Tamを検出する外気温度センサ33と、吸込口25から空気流通路3に吸い込まれる温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力Pdを検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度Tdを検出する吐出温度センサ43と、圧縮機2の吸込冷媒温度Tsを検出する吸込温度センサ45と、圧縮機2の吸込冷媒圧力Psを検出する吸込圧力センサ44と、放熱器4の温度TCI(放熱器4自体の温度、又は、放熱器4にて加熱された当該放熱器4の下流側の空気の温度)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力PCI(放熱器4内、又は、放熱器4を出た冷媒の圧力)を検出する放熱器圧力センサ47と、吸熱器9の温度Te(吸熱器9自体、又は、吸熱器9にて冷却された空気の温度)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速VSP)を検出するための車速センサ52と、温度や運転モードの切り換えを設定するための空調操作部53と、室外熱交換器7の温度(室外熱交換器7の冷媒の蒸発温度TXO)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力を検出する室外熱交換器圧力センサ56の各出力が接続されている。
 尚、放熱器温度TCIを放熱器4の下流側の空気温度とする場合には、他の温度センサ等が検出する各部の温度や通風量等からコントローラ32が推定するようにしても良い。
 また、コントローラ32の入力には更に、熱媒体循環回路23の熱媒体加熱電気ヒータ34の温度を検出する熱媒体加熱電気ヒータ温度センサ50と、熱媒体−空気熱交換器40の温度(以下、補助ヒータ温度Thtrと称する)を検出する熱媒体−空気熱交換器温度センサ55の各出力も接続されている。更に、コントローラ32には車両に搭載された前記バッテリの充電量であるバッテリ残量に関する情報も入力される。
 一方、コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、各電磁弁22、17、21と、循環ポンプ30と、熱媒体加熱電気ヒータ35と、蒸発能力制御弁11が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御する。
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。コントローラ32は実施例では大きく分けて暖房モードと、除湿暖房モードと、内部サイクルモードと、除湿冷房モードと、冷房モードの各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れについて説明する。
 (1)暖房モード
 コントローラ32により或いは空調操作部53へのマニュアル操作により暖房モードが選択されると、コントローラ32は電磁弁21を開放し、電磁弁17、電磁弁22を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が熱媒体−空気熱交換器40及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は熱媒体−空気熱交換器40により加熱された後(熱媒体循環回路23が作動している場合)、放熱器4内の高温冷媒により加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は冷媒配管13Eを経て室外膨張弁6に至り、そこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる(ヒートポンプ)。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13D及び電磁弁21を経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。熱媒体−空気熱交換器40や放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。
 コントローラ32は吐出圧力センサ42又は放熱器圧力センサ47が検出する冷媒回路Rの高圧圧力(後述する放熱器圧力PCI)に基づいて圧縮機2の回転数NCを制御すると共に、放熱器温度センサ46が検出する放熱器4の温度(放熱器温度TCI)に基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度SCを制御する。
 (2)除湿暖房モード
 次に、除湿暖房モードでは、コントローラ32は上記暖房モードの状態において電磁弁22を開放する。これにより、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部が分流され、電磁弁22を経て冷媒配管13F及び13Bより内部熱交換器19を経て室内膨張弁8に至るようになる。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cにて冷媒配管13Dからの冷媒と合流した後、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。
 コントローラ32は吐出圧力センサ42又は放熱器圧力センサ47が検出する冷媒回路Rの高圧圧力に基づいて圧縮機2の回転数NCを制御すると共に、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて室外膨張弁6の弁開度を制御する。
 (3)内部サイクルモード
 次に、内部サイクルモードでは、コントローラ32は上記除湿暖房モードの状態において室外膨張弁6を閉じる(全閉)。即ち、この内部サイクルモードは除湿暖房モードにおける室外膨張弁6の制御で当該室外膨張弁6を全閉とした状態と云えるので、内部サイクルモードは除湿暖房モードの一部と捕らえることもできる。
 但し、室外膨張弁6が閉じられることにより、室外熱交換器7への冷媒の流入は阻止されるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は電磁弁22を経て冷媒配管13Fに全て流れるようになる。そして、冷媒配管13Fを流れる冷媒は冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを流れ、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになるが、この内部サイクルモードでは室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力に吸熱器9での吸熱量が加算された分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房モードに比較すると除湿能力は高いが、暖房能力は低くなる。
 また、コントローラ32は吸熱器9の温度、又は、前述した冷媒回路Rの高圧圧力に基づいて圧縮機2の回転数NCを制御する。このとき、コントローラ32は吸熱器9の温度Teによるか高圧圧力PCIによるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。
 (4)除湿冷房モード
 次に、除湿冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21、電磁弁22を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が熱媒体−空気熱交換器40及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され(熱媒体循環回路40は停止)、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てヘッダー部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。
 コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度に基づいて圧縮機2の回転数NCを制御すると共に、前述した冷媒回路Rの高圧圧力(放熱器圧力PCI)に基づいて室外膨張弁6の弁開度を制御し、放熱器4の冷媒圧力(後述する放熱器圧力PCI)を制御する。
 (5)冷房モード
 次に、冷房モードでは、コントローラ32は上記除湿冷房モードの状態において室外膨張弁6を全開(弁開度を制御上限)とし、エアミックスダンパ28は放熱器4に空気が通風されない状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されないので、ここは通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。
 このとき室外膨張弁6は全開であるので冷媒はそのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てヘッダー部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過すること無く吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度Teに基づいて圧縮機2の回転数NCを制御する。そして、コントローラ32は、外気温度や目標吹出温度に応じて上記各運転モードを選択し、切り換えていくものである。
 (6)暖房モードでの圧縮機、及び、熱媒体循環回路の制御
 次に、図3~図7を用いて前述した暖房モードにおけるコントローラ32の圧縮機2及び熱媒体循環回路23の制御について説明する。
 (6−1)高圧圧力による圧縮機の目標回転数(高圧算出回転数TGNChp)の算出
 コントローラ32は下記式(I)から目標吹出温度TAOを算出する。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気温度の目標値である。
 TAO=(Tset−Tin)×K+Tbal(f(Tset、SUN、Tam))
                                  ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
 コントローラ32はこの目標吹出温度TAOから目標放熱器温度TCOを算出し、次に、この目標放熱器温度TCOに基づき、冷媒回路Rの高圧圧力の目標値である目標放熱器圧力PCOを算出する。そして、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力。即ち、冷媒回路Rの高圧圧力)PCIとに基づき、コントローラ32は圧縮機2の回転数Ncの目標値である高圧算出回転数TGNChpを算出している。
 即ち、この高圧算出回転数TGNChpは、圧縮機2の回転数Ncにより放熱器圧力PCI(高圧圧力)を目標放熱器圧力PCO(高圧圧力の目標値)となるように制御するための圧縮機2の目標回転数であるが、例えば、外気温度Tamが低い環境下では圧縮機2に吸い込まれる冷媒の圧力が低下し、圧縮機2の吸込冷媒温度Tsも低下する。このような状態では圧縮機2の吸込と吐出の圧力差が過大となり、損傷を来す危険性があるため、実施例のコントローラ32は、以下に説明する回転数制限制御を実行している。
 (6−2)吸込冷媒温度Tsによる回転数制限制御
 即ち、実施例のコントローラ32は吸込温度センサ45が検出する吸込冷媒温度Tsに基づき、圧縮機2の回転数制限制御を実行する。実施例の回転数制限制御とは、吸込冷媒温度Tsが低圧保護のための所定の制限目標値TGTs(例えば、−22℃等)より下がらないように圧縮機2の回転数NCを制限(低下)する保護制御である。
 実施例の場合、コントローラ32は常時吸込冷媒温度Tsを監視しており、上記制限目標値TGTsからの吸込温度センサ45が検出する検出値である吸込冷媒温度Tsの差(Ts−TGTs)に所定のゲインをかけた値に前回の高圧算出回転数TGNChppstを加えた値と、今回算出された高圧算出回転数TGNChpのうちの小さい方(MIN)を選択して最終的(制限後)の高圧算出回転数TGNChpとして決定する。
 即ち、吸込冷媒温度Tsが制限目標値TGTsより低くなった場合、差(Ts−TGTs)に所定のゲインをかけた値は必ずマイナスになるので、この差(Ts−TGTs)に所定のゲインをかけた値に前回の高圧算出回転数TGNChppstを加えた値は当該前回の高圧算出回転数TGNChppstより低くなる。そして、この差(Ts−TGTs)に所定のゲインをかけた値に前回の高圧算出回転数TGNChppstを加えた値が、今回算出された高圧算出回転数TGNChpよりも小さいときは当該値が、また、大きいときは今回算出された高圧算出回転数TGNChpが選択されるので、何れにしても吸込冷媒温度Tsが制限目標値TGTsよりも低くなった場合には、高圧算出回転数TGNChpは低くなることになる。
 これにより、コントローラ32は吸込冷媒温度Tsが制限目標値TGTsより下がらないように圧縮機2の回転数NCを制限することで圧縮機2を保護する。従って、この回転数制限制御により回転数NCが制限されると、その分、放熱器4の暖房能力は目減りするかたちとなる。
 (6−3)省エネ優先モードと快適優先モードの切換
 また、この暖房モードにおいてコントローラ32は、実施例では以下に説明する省エネ優先モードと快適優先モードの二種類の運転モードを有しており、空調操作部53を使用した搭乗者のマニュアル選択操作により、又は、バッテリ残量により、これらを切り換えて実行するように構成されている。
 先ず、コントローラ32は搭乗者が空調操作部53を操作して省エネ優先モードを選択した場合、又は、車両のバッテリ残量が所定値未満に低下した場合、後述する省エネ優先モードを実行する。そして、搭乗者により省エネ優先モードが選択されておらず、バッテリ残量が所定値以上である場合は、後述する快適優先モードを実行する。
 (6−4)暖房モードでの省エネ優先モード
 以下、図4及び図5を参照しながら上述したコントローラ32の省エネ優先モードについて説明する。コントローラ32は省エネ優先モードでは、圧縮機2の回転数NCを、その条件下で運転可能な最大回転数NCmaxとして圧縮機2を運転し、放熱器4による暖房能力が不足する分を熱媒体循環回路23(熱媒体−空気熱交換器40)による加熱で補完する。但し、前述した如く回転数制限制御では回転数NCは制限され、運転可能な最大回転数NCmaxも低くなる。コントローラ32はこの回転数NCが制限された分を考慮して放熱器4による暖房能力を補完するが、これについては後に詳述する。
 即ち、コントローラ32は図4のステップS1で車両用空気調和装置1の冷媒回路Rから成るヒートポンプ(図4ではHPで示す)に故障が生じて故障判定されていないか否か判断し、故障(N)している場合にはステップS5でヒートポンプ(圧縮機2)を停止する。また、ステップS6で後述するHP最大能力推定値Qmaxを零(Qmax=0)とする。
 ステップS1で故障判定されておらず、正常の場合(Y)はステップS2に進み、車両用空気調和装置1の運転モードは現在暖房モードか否か判断し、暖房モード以外(N)の場合は他の運転モードに移行し、暖房モード(Y)であればステップS3に進む。このステップS3でコントローラ32は、下記式(II)、式(III)、式(IV)を用いて要求される放熱器4の暖房能力である要求能力TGQ(kW)と、放熱器4が実際に発生する暖房能力であるHP実能力Qhp(kW)と、放熱器4と熱媒体循環回路23(補助加熱装置である熱媒体−空気熱交換器40を含む。以下、同じ)が実際に発生する全体の暖房能力である全体能力Qtotal(kW)を算出する。
 TGQ=(TCO−Te)×Cpa×実Ga×γaTe×1.16  ・・ (II)
 Qhp=(TCI−Thtr)×Cpa×実Ga×(SW/100)×γaTe
        ×1.16                   ・・ (III)
 Qtotal=(TCI−Te)×Cpa×実Ga×(SW/100)×γaTe
         ×1.16                   ・・ (IV)
 尚、Teは吸熱器温度、Cpaは空気の定圧比熱[kJ/m・K]、実Gaは空気流通路3を流通する空気の実際の風量(実システム風量m/s)、γaTeは空気比重、1.16は単位を合わせるための係数、NCmaxはその条件下で圧縮機2を運転可能な最大回転数、Thtrは熱媒体−空気熱交換器40の温度である補助ヒータ温度、TCIは放熱器温度(この場合は前述した放熱器4の下流側の空気温度とする)、SWはエアミックスダンパ28の開度である。
 更に、コントローラ32は、下記式(V)、式(VI)を用いて要求能力TGQとHP実能力Qhpとの差ΔQhpと、要求能力TGQと全体能力Qtotalの差ΔQtotalを算出する。
 ΔQhp=TGQ−Qhp                    ・・ (V)
 ΔQtotal=TGQ−Qtotal              ・・ (VI)
 次に、コントローラ32はステップS4で室外熱交換器7の着霜などによるヒートポンプ(圧縮機2)の停止判定を行う。室外熱交換器7の着霜が増大すると、冷媒回路Rの圧縮機2を運転しても外気からの吸熱(ヒートポンプ)ができなくなると共に、運転効率も著しく低下する。コントローラ32はステップS4で無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseと現在の冷媒蒸発温度TXOとの差である着霜判定値ΔTXO(ΔTXO=TXObase−TXO)に基づいて室外熱交換器7の着霜度合い(着霜率)を算出し、この着霜度合いが所定値以上となった場合(Y、HP停止)、ステップS5に進んでヒートポンプ(冷媒回路Rの圧縮機2)を停止する。
 ステップS4でヒートポンプ(圧縮機2)の停止する判定がなされていない場合(N、HP稼働)、コントローラ32は圧縮機2の回転数NCをその条件下で運転可能な最大回転数NCmaxとして圧縮機2を運転すると共に、ステップS9に進み、現在前述した回転数制限制御(吸込冷媒温度Tsによる制限。Ts制限)を実行しているか否か判断する。そして、現在回転数制限制御を実行している場合(Ts制限中)、ステップS10に進み、最大回転数NCmaxを現時点での圧縮機2の実際の回転数NCとする(NCmax=実NC)。即ち、この時点では回転数制限制御が行われているので、圧縮機2の実際の回転数NCは低下している。従って、最大回転数NCmaxもその分低くなる。その後、コントローラ32はステップS11に進む。
 一方、ステップS9で現在回転数制限制御を実行していない場合、コントローラ32はステップS14に進み、最大回転数NCmaxを回転数制限制御時の最大回転数推定値QmaxNCTamとする(NCmax=QmaxNCTam)。この最大回転数推定値QmaxNCTamとは、前述した回転数制限制御が行われたと想定した場合に、当該回転数制限制御で制限される圧縮機2の回転数NCの最大値を外気温度Tamから推定した値であり、そのための外気温度Tamと最大回転数推定値QmaxNCTamとの関係を示すグラフを図5に示す。尚、図5のグラフはデータテーブルとしてコントローラ32が保持している。
 図5のグラフ(データテーブル)で横軸は外気温度センサ33が検出する外気温度Tam、縦軸は上記最大回転数推定値QmaxNCTamを示している。前述した如くコントローラ32は回転数制限制御で圧縮機2の吸込冷媒温度Tsが所定値(制限目標値TGTsの実施例では−22℃)より下がらないように圧縮機2の回転数NCを制限しているが、圧縮機2の吸込冷媒温度Tsは外気温度Tamの影響を強く受けるので、この制限の様子は外気温度Tamから推定することができる。
 そこで、コントローラ32は実施例(図5)では外気温度Tamが−10℃に下がるまでは最大回転数推定値QmaxNCTamを7000rpm(制御上の最大回転数)とし、外気温度Tamが−10℃より低下するに従って図5に示す所定の傾き(一次関数)で低下させ、例えば外気温度Tamが−20℃では最大回転数推定値QmaxNCTamを3000rpmまで下げる。即ち、これは外気温度Tamが−20℃の環境では回転数制限制御が行われることで(行われると想定して)、圧縮機2の回転数NCは最大でも3000rpmまでしか上げられないと推定することを意味している。
 コントローラ32はステップS14で図5のグラフから外気温度Tamに基づいて回転数制限制御時の最大回転数推定値QmaxNCTamを導出することで回転数制限制御で制限される圧縮機2の回転数NCの最大値を推定し、NCmaxをこの最大回転数推定値QmaxNCTamとする(NCmax=Ts制限回転数推定値QmaxNCTam)。即ち、外気温度Tamが低い環境下では回転数制限制御が直ぐに行われることになるので、この後回転数制限制御が行われても良いように、最大回転数NCmaxを下げておくことになる。
 上記ステップS10、ステップS14で圧縮機2の最大回転数NCmaxを実際の回転数NCか回転数制限制御時の最大回転数推定値QmaxNCTamに設定した後、コントローラ32はステップS11に進む。そして、このステップS11でステップS10やステップS14で設定された最大回転数NCmaxを用いて、下記式(VII)を用いて放熱器4の最大暖房能力の推定値であるHP最大能力推定値Qmaxを計算する。
 Qmax=f(Tam、Ga、NCmax、Thtr−Te)   ・・ (VII)
 尚、Teは吸熱器温度、Tamは外気温度、Gaは空気流通路3を流通する空気の風量、Thtrは熱媒体−空気熱交換器40の温度である補助ヒータ温度である。そして、NCmaxは圧縮機2を運転可能な最大回転数であるが、このNCmaxは前述したステップS10やステップS14で回転数制限制御を考慮した値となっているため、ステップS11で算出されるHP最大能力推定値Qmaxも、回転数制限制御でNCmaxが低くなる分、小さくなる。
 そして、下記式(VIII)を用いて要求能力TGQとHP最大能力推定値Qmaxとの差ΔQmaxを算出する。
 ΔQmax=TGQ−Qmax                 ・・(VIII)
 図3にはこれら以上の能力と差の関係が示されているが、前述した如く回転数制限制御を考慮してQmaxが低くなった場合には、この差ΔQmaxは大きくなることになる。
 そして、コントローラ32はステップS12に進み、実能力による判定を行う。この実能力による判定とは、実施例では圧縮機2の回転数NCが最大回転数NCmaxであること、冷媒回路Rの高圧圧力(放熱器圧力PCI)が安定していること、ΔQtotalが所定値以上であること、の全ての条件が成立した状態が所定時間(例えば、30秒など)経過しているか否かの判定であり、今は圧縮機2の起動直後であるものとすると、コントローラ32はステップS12で(N)としてステップS15に進み、今度はMAX能力による判定を行う。
 このMAX能力による判定とは、圧縮機2の起動直後から高圧圧力が安定するまで実行されるもので(ステップS12でNの場合)、実施例では要求能力TGQとHP最大能力推定値Qmaxとの差ΔQmax(=TGQ−Qmax)が所定値以上(要求能力TGQに対して放熱器4の最大暖房能力(推定値)が不足している状態)であるか否かの判定であり、所定値未満である状態が所定時間(例えば、30秒など)継続している場合、即ち、放熱器4の最大暖房能力(推定値)が要求能力TGQを満足しているか、殆ど不足していない場合は(N)、ステップS17に進んで熱媒体循環回路23の熱媒体加熱電気ヒータ35を非通電とし(PTC停止)、熱媒体循環回路23(補助加熱装置)の要求能力TGQhtrを零とする。
 圧縮機2の起動時にステップS15で要求能力TGQとHP最大能力推定値Qmaxとの差ΔQmax(=TGQ−Qmax)が所定値以上(要求能力TGQに対して放熱器4の最大暖房能力(推定値)が不足している状態)である場合(Y)、コントローラ32はステップS16に進み、熱媒体循環回路23の要求能力TGQhtrのF/F(フィードフォワード)値QaffをΔQmaxとし、F/B(フィードバック)値Qafbを零とする。
 次に、ステップS8に進み、コントローラ32は熱媒体循環回路23の要求能力TGQhtrを演算する。このステップS8でコントローラ32は、下記式(IX)を用いて熱媒体循環回路23の要求能力TGQhtrを算出する。
 TGQhtr=(Qaff+Qafb)/Φ            ・・ (IX)
 尚、Φは熱媒体循環回路23(熱媒体加熱電気ヒータ35)の温度効率(ヒータ温度効率)である。
 また、圧縮機2が最大回転数NCmaxになった後に、ステップS12で要求能力TGQと全体能力Qtotalの差ΔQtotalが所定値未満となり(N)、ステップS15に進んで要求能力TGQとHP最大能力推定値Qmaxとの差ΔQmaxが所定値以上である場合も、コントローラ32はステップS16からステップS8に進んで上記式(IX)により熱媒体循環回路23の要求能力TGQhtrを算出する。即ち、ステップS16ではQaff=ΔQmax、Qafb=0であるので、コントローラ32はステップS8で熱媒体循環回路23の要求能力TGQhtrをΔQmax/Φとし、この要求能力TGQhtrに基づいて熱媒体加熱電気ヒータ35の通電を制御する。
 前述した如く差ΔQmaxは回転数制限制御を考慮した値となり、Qmaxが低くなっている場合には、差ΔQmaxは大きくなり、それにより熱媒体循環回路23の要求能力TGQhtrであるΔQmax/Φも大きくなって、熱媒体加熱電気ヒータ35の発熱量も大きくなる。
 一方、ステップS12で圧縮機2の回転数NCが最大回転数NCmaxであり、冷媒回路Rの高圧圧力(放熱器圧力PCI)が安定しており、ΔQtotalが所定値以上である状態が所定時間経過している場合(Y)、コントローラ32はステップS13に進んで熱媒体循環回路23の要求能力TGQhtrのF/F値QaffをΔQmaxとし、F/B値Qafbを要求能力TGQとHP実能力Qhpとの差ΔQhpとし、ステップS8に進んで熱媒体循環回路23の要求能力TGQhtrの演算を行う。即ち、ステップS13ではQaff=ΔQmax、Qafb=Qhpであるので、コントローラ32はステップS8で熱媒体循環回路23の要求能力TGQhtrを(ΔQmax+ΔQhp)/Φとし、この要求能力TGQhtrに基づいて熱媒体加熱電気ヒータ35の通電を制御する。
 この場合も、差ΔQmaxは回転数制限制御を考慮した値となり、Qmaxが低くなっている場合には、差ΔQmaxは大きくなり、それにより熱媒体循環回路23の要求能力TGQhtrである(ΔQmax+ΔQhp)/Φも大きくなって、熱媒体加熱電気ヒータ35の発熱量も大きくなる。
 尚、ステップS5でヒートポンプ(圧縮機2)を停止した場合、コントローラ32はステップS6でHP最大能力推定値Qmaxを零(Qmax=0)とした後、ステップS7に進んで熱媒体循環回路23の要求能力TGQhtrのF/F値QaffをΔQmax(=要求能力TGQ)とし、F/B値Qafbを零とし、ステップS8に進んで熱媒体循環回路23の要求能力TGQhtrの演算を行う。即ち、ステップS7ではQaff=ΔQmax(=TGQ)、Qafb=0であるので、コントローラ32はステップS8で熱媒体循環回路23の要求能力TGQhtrをΔQmax/Φとし、この要求能力TGQhtrに基づいて熱媒体加熱電気ヒータ35の通電を制御する。
 (6−5)暖房モードでの快適優先モード
 次に、図6及び図7を参照しながら前述したコントローラ32の快適優先モードについて説明する。暖房モードにおいて、搭乗者により省エネ優先モードが選択されておらず、且つ、バッテリ残量が所定値以上である場合は、コントローラ32は前述したように快適優先モードを実行する。
 (6−5−1)快適優先モードでの圧縮機2の回転数制御
 この快適優先モードでは、コントローラ32は圧縮機2の回転数NCを制限し、制限された回転数NCで放熱器4による暖房能力が不足する分を、熱媒体循環回路23(熱媒体−空気熱交換器40)による加熱で補完する。先ず、図6を用いてこの快適優先モードにおける圧縮機2の回転数NCの制限動作について説明する。
 コントローラ32は、車速センサ52が検出する車両の車速VSPと、ブロワ電圧BLVと、前述した着霜判定値ΔTXOに基づき、下記式(X)を用いて快適優先モードにおける圧縮機2の上限回転数TGNCcomfを算出する。
 TGNCcomf=MIN(TGNCcomfVSP、TGNCcomfBLV、
              TGNCcomfΔTXO)     ・・(X)
 このうち、ブロワ電圧BLVは室内送風機(ブロワファン)27の電圧であり、空気流通路3を流通する空気の風量を示す指標となる。また、着霜判定値ΔTXOは無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseと現在の冷媒蒸発温度TXOとの差(ΔTXO=TXObase−TXO)であり、室外熱交換器7の着霜度合い(着霜率)を示している。
 また、TGNCcomfVSPは車速により算出される圧縮機2の上限回転数であり、図6(a)に示されるように車速VSPに応じ、所定の下限値TGNCcomfLo(例えば、3000rpm程度)と上限値TGNCcomfHi(例えば、7000rpm程度)の間で、車速VSPが例えば20km/hから80km/hまで上昇するに従って(即ち、走行音が大きくなるに従って)所定の変化率で高くしていき、70km/hから10km/hまで低下するに従って所定の変化率で低くしていくように変更される(ヒステリシス有り)。
 また、TGNCcomfBLVはブロワ電圧により算出される圧縮機2の上限回転数であり、図6(b)に示されるようにブロワ電圧BLVに応じ、所定の下限値TGNCcomfLoと上限値TGNCcomfHiの間で、ブロワ電圧BLVが例えば5Vから14Vまで上昇するに従って(即ち、室内送風機27による吹出音が大きくなるに従って)所定の変化率で高くしていき、13Vから4Vまで低下するに従って所定の変化率で低くしていくように変更される(ヒステリシス有り)。
 また、TGNCcomfΔTXOは着霜度合いにより算出される圧縮機2の上限回転数であり、図6(c)に示されるように着霜判定値ΔTXOに応じ、所定の下限値TGNCcomfLoと上限値TGNCcomfHiの間で、着霜判定値ΔTXOが例えば4degから11degまで高くなるに従って(即ち、室外熱交換器7の着霜が多くなるに従って)所定の変化率で低くしていき、10degから3degまで低くなるに従って所定の変化率で高くしていくように変更される(ヒステリシス有り)。
 コントローラ32は前記式(X)を用い、これら変更された各上限回転数TGNCcomfVSP、TGNCcomfBLV、TGNCcomfΔTXOのうちの最も小さい値を快適優先モードにおける圧縮機2の上限回転数TGNCcomfとして決定する。
 次に、コントローラ32は下記式(XI)を用い、快適優先モードにおける圧縮機2の目標回転数TGNCを算出する。
 TGNC=MIN(TGNCcomf、TGNChp)       ・・ (XI)
 上記TGNChpは、前述した目標放熱器圧力PCOと放熱器圧力PCIとに基づいて算出された圧縮機2の回転数Ncの目標値である高圧算出回転数である。即ち、コントローラ32は、快適優先モードでは前述した上限回転数TGNCcomfと高圧算出回転数TGNChpのうちの小さい方の値を圧縮機2の目標回転数TGNCとして決定し、圧縮機2の回転数NCを制御する。
 尚、前述した如く回転数制限制御が実行されているときは高圧算出回転数TGNChpが低下することになるので、回転数制限制御中はこの制限された高圧算出回転数TGNChpと上限回転数TGNCcomfのうちの小さい方の値が圧縮機2の目標回転数TGNCとして決定されることになる。
 (6−5−2)快適優先モードでの熱媒体循環回路23の制御
 次に、コントローラ32は図7のステップS18で車両用空気調和装置1の冷媒回路Rから成るヒートポンプ(図7でもHPで示す)に故障が生じて故障判定されていないか否か判断し、故障(N)している場合にはステップS22でヒートポンプ(圧縮機2)を停止し、ステップS23で熱媒体循環回路23の要求能力TGQhtrのベース値Qahtrを要求能力TGQとする。ステップS18で故障判定されておらず、正常の場合(Y)はステップS19に進み、車両用空気調和装置1の運転モードは現在暖房モードか否か判断し、暖房モード以外(N)の場合は他の運転モードに移行し、暖房モード(Y)であればステップS20に進む。
 このステップS20でコントローラ32は、前述した式(II)と式(III)を用いて要求される放熱器4の暖房能力である要求能力TGQ(kW)と、放熱器4が実際に発生する暖房能力であるHP実能力Qhp(kW)を算出する。更に、コントローラ32は、前述した式(V)を用いて要求能力TGQとHP実能力Qhpとの差ΔQhpを算出する。
 次に、コントローラ32はステップS21で図4のステップS4と同様に室外熱交換器7の着霜などによるヒートポンプ(圧縮機2)の停止判定を行い、着霜度合いが所定値以上となった場合(Y、HP停止)、ステップS22に進んでヒートポンプ(冷媒回路Rの圧縮機2)を停止する。一方、ステップS21でヒートポンプ(圧縮機2)の停止する判定がなされていない場合(N、HP稼働)、コントローラ32はステップS25に進み、暖房モードの起動から所定時間経過前か否か判断する。
 現在が暖房モードの起動初期であり、起動から所定時間経過する前であるときは、ステップS26に進み、現在前述した回転数制限制御(吸込冷媒温度Tsによる制限。Ts制限)を実行しているか否か判断する。そして、現在回転数制限制御を実行している場合(Ts制限中)、ステップS27に進み、最大回転数NCmaxを現時点での圧縮機2の実際の回転数NCとする(NCmax=実NC)。即ち、この時点では回転数制限制御が行われているので、圧縮機2の実際の回転数NCは低下している。従って、最大回転数NCmaxもその分低くなる。その後、コントローラ32はステップS28に進む。
 一方、ステップS26で現在回転数制限制御を実行していない場合、コントローラ32はステップS30に進み、最大回転数NCmaxを前述した回転数制限制御時の最大回転数推定値QmaxNCTamとする。コントローラ32はこのステップS30でも図5のグラフから外気温度Tamに基づいて最大回転数推定値QmaxNCTamを導出することで回転数制限制御で制限される圧縮機2の回転数NCの最大値を推定し、NCmaxをこの回転数制限制御時の最大回転数推定値QmaxNCTamとする(NCmax=Ts制限回転数推定値QmaxNCTam)。即ち、前述と同様に、この後回転数制限制御が行われても良いように、最大回転数NCmaxを下げておく。
 上記ステップS27、ステップS30で圧縮機2の最大回転数NCmaxを実際の回転数NCか回転数制限制御時の最大回転数推定値QmaxNCTamに設定した後、コントローラ32はステップS28に進む。そして、このステップS28でステップS27やステップS30で設定された最大回転数NCmaxを用いて、前述した式(VII)から放熱器4の最大暖房能力の推定値であるHP最大能力推定値Qmaxを計算する。また、前述した式(VIII)を用いて要求能力TGQとHP最大能力推定値Qmaxとの差ΔQmax(=TGQ−Qmax)も計算する。
 この場合もNCmaxは前述したステップS27やステップS30で回転数制限制御を考慮した値となっているため、ステップS28で算出されるHP最大能力推定値Qmaxも、回転数制限制御でNCmaxが低くなる分、小さくなる。また、要求能力TGQとHP最大能力推定値Qmaxとの差ΔQmaxも回転数制限制御を考慮してQmaxが低くなった場合には、大きくなることになる。
 次に、ステップS29に進み、熱媒体循環回路23の要求能力TGQhtrのベース値QahtrをΔQmaxとする。次に、ステップS24に進み、コントローラ32は熱媒体循環回路23の要求能力TGQhtrを演算する。このステップS24でコントローラ32は、下記式(XII)を用いて熱媒体循環回路23の要求能力TGQhtrを算出する。
 TGQhtr=Qahtr/Φ                 ・・(XII)
 即ち、ステップS29ではQahtr=ΔQmaxであるので、コントローラ32はステップS24で熱媒体循環回路23の要求能力TGQhtrをΔQmax/Φとし、この要求能力TGQhtrに基づいて熱媒体加熱電気ヒータ35の通電を制御する。この場合も、差ΔQmaxは回転数制限制御を考慮した値となり、Qmaxが低くなっている場合には、差ΔQmaxは大きくなり、それにより熱媒体循環回路23の要求能力TGQhtrであるΔQmax/Φも大きくなって、熱媒体加熱電気ヒータ35の発熱量も大きくなる。
 一方、暖房モードの起動初期の期間が経過した後は、コントローラ32はステップS25からステップS31に進み、熱媒体循環回路23の要求能力TGQhtrのベース値QahtrをΔQhpとする。次に、ステップS24に進み、コントローラ32は熱媒体循環回路23の要求能力TGQhtrを演算する。このステップS24でコントローラ32は、前述した式(XII)を用いて熱媒体循環回路23の要求能力TGQhtrを算出する。即ち、ステップS31ではQahtr=ΔQhpであるので、コントローラ32はステップS24で熱媒体循環回路23の要求能力TGQhtrをΔQhp/Φとし、この要求能力TGQhtrに基づいて熱媒体加熱電気ヒータ35の通電を制御する。
 他方、ステップS22でヒートポンプ(圧縮機2)を停止した場合、コントローラ32はステップS23に進んで熱媒体循環回路23の要求能力TGQhtrのベース値Qahtrを要求能力TGQとし、ステップS24に進んで熱媒体循環回路23の要求能力TGQhtrの演算を行う。即ち、ステップS23ではQahtr=要求能力TGQであるので、コントローラ32はステップS24で熱媒体循環回路23の要求能力TGQhtrをTGQ/Φとし、この要求能力TGQhtrに基づいて熱媒体加熱電気ヒータ35の通電を制御する。
 尚、このステップS24では算出された要求能力TGQhtrが所定値(例えば、100W)より小さい場合、コントローラ32は熱媒体循環回路23(熱媒体加熱電気ヒータ35)による加熱による変化が小さい(殆ど意味が無い)ものと判断して熱媒体循環回路23を停止(熱媒体加熱電気ヒータ35と循環ポンプ30を非通電)する。
 実施例ではコントローラ32が暖房モードにおいて省エネ優先モードと快適優先モードの二種類のモードを有し、省エネ優先モードでは圧縮機2を最大回転数NCmaxとし、放熱器4による暖房能力が不足する分を熱媒体循環回路23(熱媒体−空気熱交換器40)による加熱で補完すると共に、快適優先モードでは圧縮機2の回転数NCを制限し、放熱器4による暖房能力が不足する分を熱媒体循環回路23による加熱で補完するようにしているので、省エネ優先モードでは、放熱器4に最大限の暖房能力を発揮させて不足分を熱媒体循環回路23による加熱で補完することで消費電力の削減を図り、快適優先モードでは放熱器4による暖房能力を制限し、熱媒体循環回路23による加熱を増大させて起動時などの暖房能力の立ち上がりを早くし、騒音も低減し、室外熱交換器7への着霜も抑制することができるようになる。即ち、搭乗者の好みや車両の状況に応じて省エネを優先した車室内暖房を行うか、快適性を優先した車室内暖房を行うかを切り換えられるようになり、快適性と消費電力の削減を両立させた車室内暖房を実現することが可能となる。
 以上詳述した如く本発明によれば、コントローラ32は暖房モードの省エネ優先モード及び快適優先モードにおいて回転数制限制御を考慮し、放熱器4による暖房能力が不足する分を熱媒体循環回路23による加熱で補完するようにしたので、回転数制限制御が実行される際に目減りする放熱器4の暖房能力を、熱媒体循環回路23による加熱で支障無く補完し、快適な車室内暖房を実現することができるようになる。
 特に、実施例ではコントローラ32が回転数制限制御において、圧縮機2の吸込冷媒温度Tsが所定の制限目標値TGTsより下がらないように圧縮機2の回転数NCを制限すると共に、圧縮機2の最大回転数NCmaxに基づいて放熱器4の最大暖房能力の推定値であるHP最大能力推定値Qmaxを算出し、要求される放熱器4の暖房能力である要求能力TGQとHP最大能力推定値Qmaxとの差ΔQmax=TGQ−Qmaxを算出し、熱媒体循環回路23の要求能力TGQhtrを、ΔQmaxから算出して熱媒体循環回路23による加熱を実行し、回転数制限制御で制限される圧縮機2の回転数NCに基づいて最大回転数NCmaxを変更するようにしているので、HP最大能力推定値Qmaxの算出の根拠となる最大回転数NCmaxを回転数制限制御で制限される圧縮機2の回転数NCに基づいて変更し、ΔQmaxから算出される熱媒体循環回路23の要求能力TGQhtrをその分増大させて、放熱器4の暖房能力の目減り分を適切に補うことができるようになる。
 この場合、実施例ではコントローラ32が、回転数制限制御を実行しているときは、圧縮機2の実際の回転数NCを最大回転数NCmaxとしているので、回転数制限制御で実際に制限されている圧縮機2の回転数NCからHP最大能力推定値Qmaxの算出し、的確に熱媒体循環回路23の要求能力TGQhtrを算出することができるようになる。
 また、回転数制限制御を実行していないときには、コントローラ32は外気温度Tamに基づいて回転数制限制御で制限される圧縮機2の回転数NCの最大値である回転数制限制御時の最大回転数推定値QmaxNCTamを推定し、当該推定された最大回転数推定値QmaxNCTamを最大回転数NCmaxとすることで、その後回転数制限制御が開始される場合にも、迅速に熱媒体循環回路23による暖房能力の補完を行うことができるようになる。
 特に、実施例では快適優先モードで、コントローラ32は起動初期に回転数制限制御で制限される圧縮機2の回転数NCに基づいて最大回転数NCmaxを変更するようにしているので、車室内暖房の立ち上がりを迅速化して、快適性を向上させることができるようになる。
 また、実施例では起動初期の期間が経過した後は、熱媒体循環回路23の要求能力TGQhtrを、放熱器4が実際に発生する暖房能力であるHP実能力Qhpと要求能力TGQとの差ΔQhp(=TGQ−Qhp)から求めて熱媒体循環回路23による加熱を実行するようにしたので、起動初期の期間が経過した後は、要求能力TGQに対して、実際に発生する放熱器4の暖房能力であるHP実能力Qhpの不足分を的確に熱媒体循環回路23による加熱で補完することができるようになり、極めて快適な車室内暖房を実現することができるようになる。
 尚、実施例で説明した回転数制限制御の具体的手法やそれを考慮した熱媒体循環回路23の要求能力TGQhtrの決定手法は、それらに限られるものでは無く、本発明の趣旨を逸脱しない範囲で種々変更可能である。
 特に、実施例では吸込冷媒温度Tsに基づいて回転数制限制御を実行したが、それに限らず、吸込冷媒圧力Psが所定の制限目標値より下がらないように圧縮機2の回転数NCを制限する回転数制御についても適用可能である。更に、吐出冷媒温度Tdや吐出冷媒圧力Pdが所定の制限目標値より上がらないように圧縮機2の回転数NCを制限する回転数制限制御を実行する車両用空気調和装置1にも本発明は有効である。
 また、実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モード等の各運転モードを切り換えて実行する車両用空気調和装置1について本発明を適用したが、それに限らず、暖房モードのみ行うものにも本発明は有効である。
 更に、実施例では熱媒体循環回路23にて補助加熱装置を構成したが、それに限らず、通常の電気ヒータ(PTC)を空気流通路3に設けて補助加熱装置としてもよい。また、上記各実施例で説明した冷媒回路Rの構成や各数値についても、それらに限定されるものでは無い。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 as an embodiment of the present invention. In this case, the vehicle of the embodiment to which the present invention is applied is an electric vehicle (EV) that does not have an engine (internal combustion engine), and travels by driving an electric motor for traveling with electric power charged in a battery. The vehicle air conditioner 1 of the present invention is also driven by battery power.
That is, the vehicle air conditioner 1 of the embodiment performs heating by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further operates in each operation mode such as dehumidifying heating, dehumidifying cooling, and cooling. Is selectively executed. The present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling. Furthermore, the present invention is also applicable to a normal automobile that runs on an engine.
The vehicle air conditioner 1 according to the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and is electrically powered by compressing a refrigerant and increasing pressure by being supplied with power from a vehicle battery. A compressor 2 of the type, and a radiator 4 provided in the air flow passage 3 of the HVAC unit 10 through which air in the passenger compartment is circulated to dissipate high-temperature and high-pressure refrigerant discharged from the compressor 2 into the passenger compartment, An outdoor expansion valve (ECCV) 6 comprising an electronic expansion valve that decompresses and expands the refrigerant during heating, and an outdoor that functions as a radiator during cooling and performs heat exchange between the refrigerant and the outside air to function as an evaporator during heating A heat exchanger 7, an indoor expansion valve 8 comprising an electronic expansion valve (which may be a mechanical expansion valve) that expands the refrigerant under reduced pressure, and a refrigerant that is provided in the air flow passage 3 from outside the vehicle interior during cooling and dehumidifying heating. Heat absorber to absorb heat When, the evaporation capacity control valve 11 for adjusting the evaporating ability in the heat sink 9, an accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
The outdoor heat exchanger 7 is provided outside the vehicle compartment, and the outdoor heat exchanger 7 is provided with an outdoor blower 15 for exchanging heat between the outside air and the refrigerant when the vehicle is stopped. The outdoor heat exchanger 7 has a header portion 14 and a supercooling portion 16 in order on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 has an electromagnetic valve (open / close valve) 17 that is opened during cooling. The outlet of the supercooling unit 16 is connected to the indoor expansion valve 8 via a check valve 18. The header portion 14 and the supercooling portion 16 structurally constitute a part of the outdoor heat exchanger 7, and the check valve 18 has a forward direction on the indoor expansion valve 8 side.
Further, the refrigerant pipe 13B between the check valve 18 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C exiting the evaporation capacity control valve 11 located on the outlet side of the heat absorber 9, and internal heat is generated by both. The exchanger 19 is configured. Thus, the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9 and passed through the evaporation capacity control valve 11.
Further, the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched, and this branched refrigerant pipe 13D is downstream of the internal heat exchanger 19 via an electromagnetic valve (open / close valve) 21 that is opened during heating. The refrigerant pipe 13C is connected in communication. Further, the refrigerant pipe 13E on the outlet side of the radiator 4 is branched in front of the outdoor expansion valve 6, and this branched refrigerant pipe 13F is a check valve via an electromagnetic valve (open / close valve) 22 that is opened during dehumidification. 18 is connected to the refrigerant pipe 13B on the downstream side.
Further, in the air flow passage 3 on the air upstream side of the heat sink 9, each of the inside air suction port and the outside air suction port (represented by the suction port 25 in FIG. 1) is formed. 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment. Yes. Furthermore, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
Moreover, in FIG. 1, 23 has shown the heat-medium circulation circuit as an auxiliary | assistant heating apparatus provided in the vehicle air conditioner 1 of the Example. This heat medium circulation circuit 23 is on the air upstream side of the radiator 4 with respect to the air flow in the circulation pump 30 constituting the circulation means, the heat medium heating electric heater (PTC heater) 35, and the air flow passage 3. A heat medium-air heat exchanger 40 provided in the air flow passage 3 is provided, and these are sequentially connected in an annular shape by a heat medium pipe 23A. As the heat medium circulated in the heat medium circuit 23, for example, water, a refrigerant such as HFO-1234yf, a coolant, or the like is employed.
When the circulation pump 30 is operated and the heat medium heating electric heater 35 is energized to generate heat, the heat medium (high temperature heat medium) heated by the heat medium heating electric heater 35 is converted into the heat medium-air heat exchanger 40. Thus, the air that has passed through the radiator 4 in the air flow path 3 is heated. When the controller 32 determines that the heating capability of the radiator 4 is insufficient in the heating mode as will be described later, the heat medium heating electric heater 35 is energized to generate heat, and the circulation pump 30 is operated, whereby the heat medium circulation circuit 23. The heating by the heat medium-air heat exchanger 40 is executed. That is, the heat medium-air heat exchanger 40 of the heat exchanger circulation circuit 23 serves as a so-called heater core, and complements heating in the passenger compartment. By adopting such a heat medium circulation circuit 23, the passenger's electrical safety is improved.
An air mix damper 28 is provided in the air flow passage 3 on the air upstream side of the heat medium-air heat exchanger 40 and the radiator 4 to adjust the degree of flow of inside air and outside air to the radiator 4. . Further, in the air flow passage 3 on the downstream side of the radiator 4, foot, vent, and differential air outlets (represented by the air outlet 29 in FIG. 1) are formed. Is provided with a blower outlet switching damper 31 for switching and controlling the blowing of air from each of the blowout ports.
Next, in FIG. 2, reference numeral 32 denotes a controller (ECU) as a control means constituted by a microcomputer, and an input from the controller 32 includes an outside air temperature sensor 33 for detecting the outside air temperature Tam of the vehicle, and a suction port 25. An HVAC suction temperature sensor 36 for detecting the temperature sucked into the air flow passage 3, an inside air temperature sensor 37 for detecting the temperature of the air (inside air) in the passenger compartment, and an inside air humidity sensor 38 for detecting the humidity of the air in the passenger compartment. , Indoor CO to detect the carbon dioxide concentration in the passenger compartment 2 Concentration sensor 39, blowout temperature sensor 41 that detects the temperature of air blown into the vehicle interior from the blowout port 29, discharge pressure sensor 42 that detects the discharge refrigerant pressure Pd of the compressor 2, and discharge refrigerant of the compressor 2 The discharge temperature sensor 43 that detects the temperature Td, the suction temperature sensor 45 that detects the suction refrigerant temperature Ts of the compressor 2, the suction pressure sensor 44 that detects the suction refrigerant pressure Ps of the compressor 2, and the temperature of the radiator 4 A radiator temperature sensor 46 that detects TCI (the temperature of the radiator 4 itself or the temperature of the air on the downstream side of the radiator 4 heated by the radiator 4), and the refrigerant pressure PCI (radiation of the radiator 4) A pressure sensor 47 for detecting the pressure of the refrigerant exiting the radiator 4 or the pressure of the refrigerant exiting the radiator 4 and the temperature Te of the heat absorber 9 (the heat absorber 9 itself or the air cooled by the heat absorber 9). Temperature sensor) 48, a heat absorber pressure sensor 49 for detecting the refrigerant pressure of the heat absorber 9 (the pressure of the refrigerant in the heat absorber 9 or the refrigerant that has exited the heat absorber 9), and a photo for detecting the amount of solar radiation into the passenger compartment, for example A sensor-type solar radiation sensor 51, a vehicle speed sensor 52 for detecting the moving speed of the vehicle (vehicle speed VSP), an air-conditioning operation unit 53 for setting temperature and operation mode switching, and the temperature of the outdoor heat exchanger 7 The outputs of the outdoor heat exchanger temperature sensor 54 for detecting the refrigerant evaporating temperature TXO of the outdoor heat exchanger 7 and the outdoor heat exchanger pressure sensor 56 for detecting the refrigerant pressure of the outdoor heat exchanger 7 are connected. Yes.
When the radiator temperature TCI is set as the air temperature downstream of the radiator 4, the controller 32 may estimate it from the temperature of each part detected by another temperature sensor or the like, the air flow rate, and the like.
Further, the input of the controller 32 further includes a heat medium heating electric heater temperature sensor 50 that detects the temperature of the heat medium heating electric heater 34 of the heat medium circulation circuit 23, and the temperature of the heat medium-air heat exchanger 40 (hereinafter, Each output of the heat medium-air heat exchanger temperature sensor 55 for detecting the auxiliary heater temperature Thtr) is also connected. Further, the controller 32 is also input with information on the remaining amount of the battery, which is the charge amount of the battery mounted on the vehicle.
On the other hand, the output of the controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the outlet switching damper 31, and the outdoor expansion. The valve 6, the indoor expansion valve 8, the electromagnetic valves 22, 17, 21, the circulation pump 30, the heat medium heating electric heater 35, and the evaporation capacity control valve 11 are connected. And the controller 32 controls these based on the output of each sensor, and the setting input in the air-conditioning operation part 53. FIG.
Next, the operation of the vehicle air conditioner 1 having the above-described configuration will be described. In the embodiment, the controller 32 is roughly divided into a heating mode, a dehumidifying heating mode, an internal cycle mode, a dehumidifying cooling mode, and a cooling mode, and executes them. First, the refrigerant flow in each operation mode will be described.
(1) Heating mode
When the heating mode is selected by the controller 32 or by manual operation on the air conditioning operation unit 53, the controller 32 opens the electromagnetic valve 21 and closes the electromagnetic valve 17 and the electromagnetic valve 22. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state where the air blown out from the indoor blower 27 is passed through the heat medium-air heat exchanger 40 and the radiator 4. . Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the heat medium-air heat exchanger 40 (the heat medium circulation circuit 23 is activated). In the case), it is heated by the high-temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.
The refrigerant liquefied in the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, is decompressed there, and then flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates, and pumps heat from the outside air that is ventilated by traveling or by the outdoor blower 15 (heat pump). Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13D and the electromagnetic valve 21, and after being gas-liquid separated there, the gas refrigerant is sucked into the compressor 2. repeat. Since the air heated by the heat medium-air heat exchanger 40 or the radiator 4 is blown out from the air outlet 29, the vehicle interior is thereby heated.
The controller 32 controls the rotational speed NC of the compressor 2 on the basis of the high pressure of the refrigerant circuit R detected by the discharge pressure sensor 42 or the radiator pressure sensor 47 (a radiator pressure PCI to be described later), and the radiator temperature sensor 46. Controls the opening degree of the outdoor expansion valve 6 based on the temperature of the radiator 4 (radiator temperature TCI) detected by, and controls the refrigerant subcooling degree SC at the outlet of the radiator 4.
(2) Dehumidification heating mode
Next, in the dehumidifying and heating mode, the controller 32 opens the electromagnetic valve 22 in the heating mode. As a result, a part of the condensed refrigerant flowing through the refrigerant pipe 13E via the radiator 4 is diverted to reach the indoor expansion valve 8 via the electromagnetic valve 22 and the refrigerant pipes 13F and 13B via the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 merges with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and then repeats circulation sucked into the compressor 2 through the accumulator 12. . Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
The controller 32 controls the rotational speed NC of the compressor 2 based on the high pressure of the refrigerant circuit R detected by the discharge pressure sensor 42 or the radiator pressure sensor 47 and the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48. The valve opening degree of the outdoor expansion valve 6 is controlled based on the (heat absorber temperature Te).
(3) Internal cycle mode
Next, in the internal cycle mode, the controller 32 closes the outdoor expansion valve 6 in the state of the dehumidifying and heating mode (fully closed). That is, since this internal cycle mode can be said to be a state in which the outdoor expansion valve 6 is fully closed by the control of the outdoor expansion valve 6 in the dehumidifying and heating mode, the internal cycle mode can also be regarded as a part of the dehumidifying and heating mode.
However, since the inflow of the refrigerant to the outdoor heat exchanger 7 is blocked by closing the outdoor expansion valve 6, the condensed refrigerant flowing through the refrigerant pipe 13E via the radiator 4 passes through the electromagnetic valve 22 to the refrigerant pipe 13F. Everything starts to flow. And the refrigerant | coolant which flows through the refrigerant | coolant piping 13F reaches the indoor expansion valve 8 through the internal heat exchanger 19 from the refrigerant | coolant piping 13B. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 flows through the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidification heating is performed in the vehicle interior, but in this internal cycle mode, the air flow path on the indoor side 3, the refrigerant is circulated between the radiator 4 (heat radiation) and the heat absorber 9 (heat absorption) in the heat pump 3, so that heat is not pumped from the outside air, and the heat absorber 9 is used for the power consumption of the compressor 2. Heating capacity is displayed as much as the amount of heat absorbed is added. Since the entire amount of the refrigerant flows through the heat absorber 9 that exhibits the dehumidifying action, the dehumidifying capacity is higher than that in the dehumidifying and heating mode, but the heating capacity is lowered.
Further, the controller 32 controls the rotational speed NC of the compressor 2 based on the temperature of the heat absorber 9 or the high pressure of the refrigerant circuit R described above. At this time, the controller 32 controls the compressor 2 by selecting the lower one of the compressor target rotational speeds obtained from either calculation, depending on the temperature Te of the heat absorber 9 or the high pressure PCI.
(4) Dehumidifying and cooling mode
Next, in the dehumidifying and cooling mode, the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21 and the electromagnetic valve 22. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state where the air blown out from the indoor blower 27 is passed through the heat medium-air heat exchanger 40 and the radiator 4. . Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4 (the heat medium circulation circuit 40 is stopped). The refrigerant in 4 is deprived of heat by the air and cooled to condensate.
The refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows into the header section 14 and the supercooling section 16 from the refrigerant pipe 13A through the electromagnetic valve 17. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 </ b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 </ b> C. The air cooled and dehumidified by the heat absorber 9 is reheated (having a lower heat dissipation capacity than that during heating) in the process of passing through the radiator 4, thereby dehumidifying and cooling the vehicle interior. .
The controller 32 controls the rotational speed NC of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48, and expands outdoors based on the high pressure (radiator pressure PCI) of the refrigerant circuit R described above. The valve opening degree of the valve 6 is controlled, and the refrigerant pressure of the radiator 4 (a radiator pressure PCI described later) is controlled.
(5) Cooling mode
Next, in the cooling mode, the controller 32 fully opens the outdoor expansion valve 6 (the valve opening is the upper limit of control) in the dehumidifying and cooling mode state, and the air mix damper 28 is in a state where air is not passed through the radiator 4. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is not ventilated to the radiator 4, it only passes here, and the refrigerant exiting the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipe 13E.
At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant flows into the outdoor heat exchanger 7 as it is, where it is cooled by air or by outside air ventilated by the outdoor blower 15 to be condensed and liquefied. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows into the header section 14 and the supercooling section 16 from the refrigerant pipe 13A through the electromagnetic valve 17. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled.
The refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 </ b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 </ b> C. The air that has been cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from the outlet 29 without passing through the radiator 4, thereby cooling the vehicle interior. In this cooling mode, the controller 32 controls the rotational speed NC of the compressor 2 based on the temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48. And the controller 32 selects and switches each said operation mode according to outside temperature or target blowing temperature.
(6) Control of compressor and heating medium circulation circuit in heating mode
Next, control of the compressor 2 and the heat medium circulation circuit 23 of the controller 32 in the heating mode described above will be described with reference to FIGS.
(6-1) Calculation of compressor target rotation speed (high pressure calculation rotation speed TGNChp) by high pressure
The controller 32 calculates the target blowing temperature TAO from the following formula (I). This target blowing temperature TAO is a target value of the air temperature blown out from the blowout port 29 into the vehicle interior.
TAO = (Tset−Tin) × K + Tbal (f (Tset, SUN, Tam))
.. (I)
Here, Tset is the set temperature in the passenger compartment set by the air conditioning operation unit 53, Tin is the temperature of the passenger compartment air detected by the inside air temperature sensor 37, K is a coefficient, Tbal is the set temperature Tset, and the solar radiation sensor 51 detects This is a balance value calculated from the amount of solar radiation SUN to be performed and the outside air temperature Tam detected by the outside air temperature sensor 33. And generally this target blowing temperature TAO is so high that the outside temperature Tam is low, and it falls as the outside temperature Tam rises.
The controller 32 calculates a target radiator temperature TCO from the target outlet temperature TAO, and then calculates a target radiator pressure PCO that is a target value of the high pressure of the refrigerant circuit R based on the target radiator temperature TCO. Based on the target radiator pressure PCO and the refrigerant pressure (radiator pressure, ie, high pressure of the refrigerant circuit R) PCI of the radiator 4 detected by the radiator pressure sensor 47, the controller 32 A high-pressure calculated rotational speed TGNChp, which is a target value for the rotational speed Nc, is calculated.
That is, the high-pressure calculated rotation speed TGNChp is a compressor 2 for controlling the radiator pressure PCI (high pressure) to the target radiator pressure PCO (target value of high pressure) by the rotation speed Nc of the compressor 2. For example, in an environment where the outside air temperature Tam is low, the pressure of the refrigerant sucked into the compressor 2 decreases, and the suction refrigerant temperature Ts of the compressor 2 also decreases. In such a state, since the pressure difference between the suction and discharge of the compressor 2 becomes excessive and there is a risk of causing damage, the controller 32 of the embodiment executes the rotation speed limit control described below.
(6-2) Speed limit control based on the suction refrigerant temperature Ts
That is, the controller 32 according to the embodiment executes the rotational speed limit control of the compressor 2 based on the suction refrigerant temperature Ts detected by the suction temperature sensor 45. The rotation speed limitation control of the embodiment limits (decreases) the rotation speed NC of the compressor 2 so that the suction refrigerant temperature Ts does not fall below a predetermined limit target value TGTs (for example, −22 ° C. or the like) for low pressure protection. ) Protection control.
In the case of the embodiment, the controller 32 constantly monitors the suction refrigerant temperature Ts, and the difference (Ts−TGTs) between the suction refrigerant temperatures Ts, which is a detection value detected by the suction temperature sensor 45 from the limit target value TGTs, is predetermined. The final value (after restriction) is selected by selecting the smaller value (MIN) of the value obtained by adding the previous gain to the value obtained by adding the previous high-pressure calculated rotation speed TGNChppst and the currently calculated high-pressure calculated rotation speed TGNChhp. The rotation speed is determined as TGNChp.
That is, when the suction refrigerant temperature Ts becomes lower than the limit target value TGTs, a value obtained by multiplying the difference (Ts−TGTs) by a predetermined gain is always negative, and therefore the predetermined gain is added to the difference (Ts−TGTs). The value obtained by adding the previous high-pressure calculated rotation speed TGNChppst to the multiplied value is lower than the previous high-pressure calculated rotation speed TGNChppst. When the value obtained by adding a predetermined gain to the difference (Ts−TGTs) and the previous high-pressure calculated rotational speed TGNChppst is smaller than the currently calculated high-pressure calculated rotational speed TGNChpp, the value is If it is larger, the currently calculated high-pressure calculated rotational speed TGNChp is selected. In any case, if the suction refrigerant temperature Ts is lower than the limit target value TGTs, the high-pressure calculated rotational speed TGNChp is reduced. become.
Thereby, the controller 32 protects the compressor 2 by restricting the rotational speed NC of the compressor 2 so that the suction refrigerant temperature Ts does not fall below the restriction target value TGTs. Therefore, when the rotation speed NC is limited by the rotation speed limitation control, the heating capacity of the radiator 4 is reduced accordingly.
(6-3) Switching between energy-saving priority mode and comfort priority mode
Further, in this heating mode, the controller 32 has two types of operation modes, an energy saving priority mode and a comfort priority mode, which will be described below in the embodiment, and a manual selection operation by the passenger using the air conditioning operation unit 53. Alternatively, these are switched and executed depending on the remaining battery level.
First, when the passenger operates the air conditioning operation unit 53 to select the energy saving priority mode, or when the remaining battery level of the vehicle falls below a predetermined value, the controller 32 executes the energy saving priority mode described later. If the energy saving priority mode is not selected by the passenger and the remaining battery level is equal to or greater than the predetermined value, the comfort priority mode described later is executed.
(6-4) Energy saving priority mode in heating mode
Hereinafter, the energy saving priority mode of the controller 32 described above will be described with reference to FIGS. 4 and 5. In the energy saving priority mode, the controller 32 operates the compressor 2 with the rotational speed NC of the compressor 2 as the maximum rotational speed NCmax that can be operated under the conditions, and the heating medium circulation due to the lack of heating capacity by the radiator 4 is circulated. It supplements with the heating by the circuit 23 (heat medium-air heat exchanger 40). However, as described above, in the rotational speed limit control, the rotational speed NC is limited, and the maximum operable rotational speed NCmax is also lowered. The controller 32 supplements the heating capability of the radiator 4 in consideration of the limited number of revolutions NC, which will be described in detail later.
That is, the controller 32 determines in step S1 in FIG. 4 whether or not a failure has occurred in the heat pump (indicated by HP in FIG. 4) including the refrigerant circuit R of the vehicle air conditioner 1, and the failure has not been determined. If N), the heat pump (compressor 2) is stopped in step S5. In step S6, the HP maximum capacity estimated value Qmax, which will be described later, is set to zero (Qmax = 0).
If the failure is not determined in step S1 and is normal (Y), the process proceeds to step S2, and it is determined whether or not the operation mode of the vehicle air conditioner 1 is the current heating mode. If it transfers to another operation mode and it is heating mode (Y), it will progress to step S3. In this step S3, the controller 32 determines that the required capacity TGQ (kW), which is the heating capacity of the radiator 4 required using the following formula (II), formula (III), and formula (IV), and that the radiator 4 is actually HP actual capacity Qhp (kW) which is the heating capacity generated in the heat generator, the radiator 4 and the heat medium circulation circuit 23 (including the heat medium-air heat exchanger 40 which is an auxiliary heating device; the same applies hereinafter). The total capacity Qtotal (kW), which is the total heating capacity, is calculated.
TGQ = (TCO−Te) × Cpa × real Ga × γaTe × 1.16 (II)
Qhp = (TCI−Thtr) × Cpa × real Ga × (SW / 100) × γaTe
× 1.16 (III)
Qtotal = (TCI−Te) × Cpa × real Ga × (SW / 100) × γaTe
× 1.16 (IV)
Te is the heat absorber temperature, Cpa is the constant pressure specific heat of air [kJ / m 3 K], real Ga is the actual air volume of the air flowing through the air flow passage 3 (actual system air volume m 3 / S), γaTe is the specific gravity of air, 1.16 is a coefficient for matching the units, NCmax is the maximum number of revolutions at which the compressor 2 can be operated under the conditions, and Thtr is the temperature of the heat medium-air heat exchanger 40 A certain auxiliary heater temperature, TCI, is the radiator temperature (in this case, the air temperature downstream of the radiator 4 described above), and SW is the opening of the air mix damper 28.
Further, the controller 32 calculates a difference ΔQhp between the required capacity TGQ and the HP actual capacity Qhp and a difference ΔQtotal between the required capacity TGQ and the overall capacity Qtotal using the following formulas (V) and (VI).
ΔQhp = TGQ−Qhp (V)
ΔQtotal = TGQ−Qtotal (VI)
Next, the controller 32 determines whether or not the heat pump (compressor 2) is stopped due to frosting of the outdoor heat exchanger 7 in step S4. If the frost formation of the outdoor heat exchanger 7 increases, heat absorption from the outside air (heat pump) cannot be performed even when the compressor 2 of the refrigerant circuit R is operated, and the operation efficiency is significantly reduced. Based on the frosting determination value ΔTXO (ΔTXO = TXObase−TXO), which is the difference between the refrigerant evaporation temperature TXObase of the outdoor heat exchanger 7 and the current refrigerant evaporation temperature TXO at the time of no frosting in step S4, the controller 32 When the degree of frost formation (frost formation rate) of the exchanger 7 is calculated and the degree of frost formation exceeds a predetermined value (Y, HP stopped), the process proceeds to step S5 and the heat pump (the compressor 2 of the refrigerant circuit R) To stop.
When it is not determined in step S4 that the heat pump (compressor 2) is stopped (N, HP operation), the controller 32 sets the rotation speed NC of the compressor 2 as the maximum rotation speed NCmax operable under the conditions. 2, the process proceeds to step S9, and it is determined whether or not the rotation speed limit control (limitation by the suction refrigerant temperature Ts. Ts limit) is currently being executed. If the current rotation speed limit control is being executed (Ts is being limited), the process proceeds to step S10, where the maximum rotation speed NCmax is set to the actual rotation speed NC of the compressor 2 at the present time (NCmax = actual NC). That is, at this time, since the rotational speed limit control is performed, the actual rotational speed NC of the compressor 2 is decreased. Accordingly, the maximum rotational speed NCmax is also lowered accordingly. Thereafter, the controller 32 proceeds to step S11.
On the other hand, when the current rotation speed limit control is not being executed in step S9, the controller 32 proceeds to step S14, and sets the maximum rotation speed NCmax to the maximum rotation speed estimated value QmaxNCTam during the rotation speed limit control (NCmax = QmaxNCTam). The maximum rotational speed estimated value QmaxNCTam is an estimate of the maximum value of the rotational speed NC of the compressor 2 that is limited by the rotational speed limiting control from the outside air temperature Tam, assuming that the rotational speed limiting control is performed. FIG. 5 is a graph showing the relationship between the outside air temperature Tam and the maximum rotational speed estimated value QmaxNCTam for this purpose. The graph of FIG. 5 is held by the controller 32 as a data table.
In the graph (data table) of FIG. 5, the horizontal axis indicates the outside air temperature Tam detected by the outside air temperature sensor 33, and the vertical axis indicates the maximum rotational speed estimated value QmaxNCTam. As described above, the controller 32 limits the rotation speed NC of the compressor 2 so that the suction refrigerant temperature Ts of the compressor 2 does not fall below a predetermined value (−22 ° C. in the embodiment of the limit target value TGTs) by the rotation speed limit control. However, since the suction refrigerant temperature Ts of the compressor 2 is strongly influenced by the outside air temperature Tam, the state of this restriction can be estimated from the outside air temperature Tam.
Therefore, in the embodiment (FIG. 5), the controller 32 sets the maximum rotational speed estimated value QmaxNCTam to 7000 rpm (maximum rotational speed for control) until the outdoor air temperature Tam drops to −10 ° C., and the outdoor air temperature Tam decreases from −10 ° C. Accordingly, the maximum rotational speed estimated value QmaxNCTam is reduced to 3000 rpm when the outside air temperature Tam is −20 ° C., for example. That is, this is presumed that the rotational speed limit control is performed (assumed to be performed) in an environment where the outside air temperature Tam is −20 ° C., and the rotational speed NC of the compressor 2 can be increased only to 3000 rpm at the maximum. Is meant to do.
In step S14, the controller 32 derives the maximum rotational speed estimated value QmaxNCTam at the time of the rotational speed restriction control from the graph of FIG. 5 based on the outside air temperature Tam, thereby limiting the rotational speed NC of the compressor 2 that is restricted by the rotational speed restriction control. The maximum value is estimated, and NCmax is set as the maximum rotational speed estimated value QmaxNCTam (NCmax = Ts limit rotational speed estimated value QmaxNCTam). That is, since the rotational speed limit control is performed immediately under an environment where the outside air temperature Tam is low, the maximum rotational speed NCmax is lowered so that the rotational speed limit control may be performed thereafter.
After the maximum rotational speed NCmax of the compressor 2 is set to the actual rotational speed NC or the maximum rotational speed estimated value QmaxNCTam during the rotational speed limiting control in the above steps S10 and S14, the controller 32 proceeds to step S11. Then, using the maximum rotational speed NCmax set in step S10 or step S14 in step S11, the HP maximum capacity estimated value Qmax that is the estimated value of the maximum heating capacity of the radiator 4 is calculated using the following formula (VII). calculate.
Qmax = f (Tam, Ga, NCmax, Thtr-Te) (VII)
Note that Te is the heat absorber temperature, Tam is the outside air temperature, Ga is the air volume of the air flowing through the air flow passage 3, and Thtr is the auxiliary heater temperature which is the temperature of the heat medium-air heat exchanger 40. NCmax is the maximum rotational speed at which the compressor 2 can be operated. This NCmax is a value that takes into consideration the rotational speed limit control in step S10 or step S14 described above, and therefore the HP calculated in step S11. The maximum capacity estimation value Qmax also decreases as NCmax decreases in the rotation speed limit control.
Then, a difference ΔQmax between the required capacity TGQ and the HP maximum capacity estimated value Qmax is calculated using the following formula (VIII).
ΔQmax = TGQ−Qmax (VVIII)
FIG. 3 shows the relationship between the above-described ability and the difference. As described above, when Qmax is lowered in consideration of the rotational speed limiting control, the difference ΔQmax is increased.
Then, the controller 32 proceeds to step S12 and makes a determination based on actual ability. In this embodiment, the determination based on the actual capacity means that the rotational speed NC of the compressor 2 is the maximum rotational speed NCmax, the high pressure (radiator pressure PCI) of the refrigerant circuit R is stable, and ΔQtotal is a predetermined value. It is a determination as to whether or not a predetermined time (for example, 30 seconds) has elapsed when all of the above conditions are satisfied. Advances to step S15 as (N) in step S12, and this time the determination based on the MAX ability is performed.
This determination based on the MAX capacity is executed immediately after the start of the compressor 2 until the high pressure is stabilized (in the case of N in step S12). In the embodiment, the required capacity TGQ and the HP maximum capacity estimated value Qmax are This is a determination as to whether or not the difference ΔQmax (= TGQ−Qmax) is equal to or greater than a predetermined value (a state where the maximum heating capacity (estimated value) of the radiator 4 is insufficient with respect to the required capacity TGQ), and is less than the predetermined value When the state is continued for a predetermined time (for example, 30 seconds), that is, when the maximum heating capacity (estimated value) of the radiator 4 satisfies the required capacity TGQ or is almost insufficient ( N) Proceeding to step S17, the heat medium heating electric heater 35 of the heat medium circulation circuit 23 is deenergized (PTC stop), and the required capacity TGQhtr of the heat medium circulation circuit 23 (auxiliary heating device) is made zero.
When the compressor 2 is started, the difference ΔQmax (= TGQ−Qmax) between the required capacity TGQ and the HP maximum capacity estimated value Qmax is greater than or equal to a predetermined value in step S15 (the maximum heating capacity (estimated value) of the radiator 4 with respect to the required capacity TGQ. ) Is insufficient) (Y), the controller 32 proceeds to step S16, the F / F (feed forward) value Qaff of the required capacity TGQhtr of the heat medium circulation circuit 23 is set to ΔQmax, and F / B ( Feedback) The value Qafb is set to zero.
Next, the process proceeds to step S8, where the controller 32 calculates the required capacity TGQhtr of the heat medium circulation circuit 23. In step S8, the controller 32 calculates the required capacity TGQhtr of the heat medium circulation circuit 23 using the following formula (IX).
TGQhtr = (Qaff + Qafb) / Φ (IX)
Here, Φ is the temperature efficiency (heater temperature efficiency) of the heat medium circulation circuit 23 (heat medium heating electric heater 35).
After the compressor 2 reaches the maximum rotational speed NCmax, the difference ΔQtotal between the required capacity TGQ and the overall capacity Qtotal becomes less than a predetermined value (N) in step S12, and the process proceeds to step S15 to estimate the required capacity TGQ and the HP maximum capacity. Even when the difference ΔQmax from the value Qmax is equal to or larger than the predetermined value, the controller 32 proceeds from step S16 to step S8 and calculates the required capacity TGQhtr of the heat medium circuit 23 by the above formula (IX). That is, since Qaff = ΔQmax and Qafb = 0 in step S16, the controller 32 sets the required capacity TGQhtr of the heat medium circulation circuit 23 to ΔQmax / Φ in step S8, and based on this required capacity TGQhtr, the heating medium heating electric heater 35 Control energization.
As described above, the difference ΔQmax is a value that takes into account the rotational speed limit control. When Qmax is low, the difference ΔQmax increases, and as a result, ΔQmax / Φ that is the required capacity TGQhtr of the heat medium circulation circuit 23 also increases. Thus, the heat generation amount of the heat medium heating electric heater 35 is also increased.
On the other hand, in step S12, the rotational speed NC of the compressor 2 is the maximum rotational speed NCmax, the high pressure (radiator pressure PCI) of the refrigerant circuit R is stable, and ΔQtotal is equal to or greater than a predetermined value for a predetermined time. If (Y), the controller 32 proceeds to step S13, sets the F / F value Qaff of the required capacity TGQhtr of the heat medium circuit 23 to ΔQmax, and sets the F / B value Qafb to the required capacity TGQ and the HP actual capacity Qhp. Difference QQhp, the process proceeds to step S8, and the required capacity TGQhtr of the heat medium circulation circuit 23 is calculated. That is, since Qaff = ΔQmax and Qafb = Qhp in step S13, the controller 32 sets the required capacity TGQhtr of the heat medium circulation circuit 23 to (ΔQmax + ΔQhp) / Φ in step S8, and based on this required capacity TGQhtr The energization of the heater 35 is controlled.
In this case as well, the difference ΔQmax is a value that takes into account the rotational speed limiting control. When Qmax is low, the difference ΔQmax increases, and thus the required capacity TGQhtr of the heat medium circuit 23 is (ΔQmax + ΔQhp) / Φ also increases and the amount of heat generated by the heat medium heating electric heater 35 also increases.
When the heat pump (compressor 2) is stopped in step S5, the controller 32 sets the HP maximum capacity estimated value Qmax to zero (Qmax = 0) in step S6, and then proceeds to step S7 to proceed to the heat medium circulation circuit 23. The F / F value Qaff of the required capacity TGQhtr is set to ΔQmax (= required capacity TGQ), the F / B value Qafb is set to zero, the process proceeds to step S8, and the required capacity TGQhtr of the heat medium circulation circuit 23 is calculated. That is, since Qaff = ΔQmax (= TGQ) and Qafb = 0 in step S7, the controller 32 sets the required capacity TGQhtr of the heat medium circulation circuit 23 to ΔQmax / Φ in step S8, and based on the required capacity TGQhtr The energization of the heating electric heater 35 is controlled.
(6-5) Comfort priority mode in heating mode
Next, the comfort priority mode of the controller 32 described above will be described with reference to FIGS. In the heating mode, when the energy saving priority mode is not selected by the passenger and the remaining battery level is equal to or higher than the predetermined value, the controller 32 executes the comfort priority mode as described above.
(6-5-1) Rotational speed control of the compressor 2 in the comfort priority mode
In this comfort priority mode, the controller 32 restricts the rotational speed NC of the compressor 2, and the heat capacity of the radiator 4 at the restricted rotational speed NC is reduced by the heat medium circulation circuit 23 (heat medium-air heat). Supplemented by heating with exchanger 40). First, the operation of limiting the rotational speed NC of the compressor 2 in the comfort priority mode will be described with reference to FIG.
The controller 32 uses the following formula (X) based on the vehicle speed VSP detected by the vehicle speed sensor 52, the blower voltage BLV, and the frosting determination value ΔTXO, and the upper limit rotation speed of the compressor 2 in the comfort priority mode. TGNCcomf is calculated.
TGNCcomf = MIN (TGNCcomfVSP, TGNCcomfBLV,
TGNCcomfΔTXO) (X)
Among these, the blower voltage BLV is the voltage of the indoor blower (blower fan) 27 and serves as an index indicating the amount of air flowing through the air flow passage 3. Further, the frosting determination value ΔTXO is a difference between the refrigerant evaporation temperature TXObase of the outdoor heat exchanger 7 and the current refrigerant evaporation temperature TXO (ΔTXO = TXObase−TXO) at the time of no frosting. The frost degree (frosting rate) is shown.
TGNCcomfVSP is the upper limit rotational speed of the compressor 2 calculated based on the vehicle speed. As shown in FIG. 6A, a predetermined lower limit value TGNCcomfLo (for example, about 3000 rpm) and an upper limit value TGNCcomfHi ( For example, as the vehicle speed VSP increases from 20 km / h to 80 km / h (ie, as the running sound increases), the speed increases at a predetermined change rate between 70 km / h and 10 km / h. As it decreases to h, it is changed so as to decrease at a predetermined change rate (with hysteresis).
Further, TGNCcomfBLV is the upper limit rotation speed of the compressor 2 calculated from the blower voltage. As shown in FIG. 6B, the blower voltage between the predetermined lower limit value TGNCcomfLo and the upper limit value TGNCcomfHi depends on the blower voltage BLV. For example, as the voltage BLV increases from 5 V to 14 V (that is, as the sound blown out by the indoor blower 27 increases), the voltage BLV increases at a predetermined change rate, and decreases from 13 V to 4 V at a predetermined change rate. It changes so that it goes (with hysteresis).
TGNCcomfΔTXO is the upper limit rotational speed of the compressor 2 calculated based on the degree of frost formation. As shown in FIG. 6C, the TGNCcomfΔTXO is between a predetermined lower limit value TGNCcomfLo and an upper limit value TGNCcomfHi according to the frost determination value ΔTXO. Thus, as the frosting determination value ΔTXO increases from, for example, 4 deg to 11 deg (that is, as the frosting of the outdoor heat exchanger 7 increases), the frosting determination value ΔTXO decreases with a predetermined rate of change. It is changed so as to increase at the rate of change (with hysteresis).
The controller 32 determines the smallest value among the changed upper limit rotational speeds TGNCcomfVSP, TGNCcomfBLV, TGNCcomfΔTXO as the upper limit rotational speed TGNCcomf of the compressor 2 in the comfort priority mode, using the equation (X).
Next, the controller 32 calculates the target rotational speed TGNC of the compressor 2 in the comfort priority mode using the following formula (XI).
TGNC = MIN (TGNCcomf, TGNChp) (XI)
The TGNChp is a high-pressure calculated rotational speed that is a target value of the rotational speed Nc of the compressor 2 calculated based on the target radiator pressure PCO and the radiator pressure PCI described above. That is, in the comfort priority mode, the controller 32 determines the smaller value of the above-described upper limit rotational speed TGNCcomf and high pressure calculated rotational speed TGNChp as the target rotational speed TGNC of the compressor 2, and sets the rotational speed NC of the compressor 2 to Control.
As described above, when the rotational speed limit control is being executed, the high-pressure calculated rotational speed TGNChp is reduced. Therefore, during the rotational speed limiting control, the limited high-pressure calculated rotational speed TGNChp and the upper limit rotational speed TGNCcomf The smaller value is determined as the target rotational speed TGNC of the compressor 2.
(6-5-2) Control of the heat medium circulation circuit 23 in the comfort priority mode
Next, the controller 32 determines in step S18 in FIG. 7 whether or not a failure has occurred due to a failure in the heat pump (indicated by HP in FIG. 7) comprising the refrigerant circuit R of the vehicle air conditioner 1, and the failure is determined. If (N), the heat pump (compressor 2) is stopped in step S22, and the base value Qahtr of the required capacity TGQhtr of the heat medium circulation circuit 23 is set as the required capacity TGQ in step S23. If the failure is not determined in step S18 and is normal (Y), the process proceeds to step S19 to determine whether or not the operation mode of the vehicle air conditioner 1 is the current heating mode. If it transfers to another operation mode and it is heating mode (Y), it will progress to step S20.
In step S20, the controller 32 determines the required capacity TGQ (kW), which is the heating capacity of the radiator 4 required by using the above-described formulas (II) and (III), and the heating actually generated by the radiator 4. The HP actual capacity Qhp (kW), which is the capacity, is calculated. Further, the controller 32 calculates the difference ΔQhp between the required capacity TGQ and the HP actual capacity Qhp using the above-described equation (V).
Next, the controller 32 performs stop determination of the heat pump (compressor 2) due to frosting of the outdoor heat exchanger 7 in step S21 as in step S4 of FIG. 4, and the degree of frosting becomes a predetermined value or more. (Y, HP stop), it progresses to step S22 and a heat pump (compressor 2 of the refrigerant circuit R) is stopped. On the other hand, when it is not determined in step S21 that the heat pump (compressor 2) is stopped (N, HP operation), the controller 32 proceeds to step S25 and determines whether or not a predetermined time has elapsed since the activation of the heating mode.
If the present time is the initial start of the heating mode and before a predetermined time has elapsed since the start, the process proceeds to step S26, and is the rotation speed limitation control (limitation by the suction refrigerant temperature Ts. Ts limitation) currently being executed? Judge whether or not. If the current rotational speed limit control is being executed (Ts is being limited), the process proceeds to step S27, where the maximum rotational speed NCmax is set as the actual rotational speed NC of the compressor 2 at the present time (NCmax = actual NC). That is, at this time, since the rotational speed limit control is performed, the actual rotational speed NC of the compressor 2 is decreased. Accordingly, the maximum rotational speed NCmax is also lowered accordingly. Thereafter, the controller 32 proceeds to step S28.
On the other hand, if the current rotation speed limit control is not being executed in step S26, the controller 32 proceeds to step S30 and sets the maximum rotation speed NCmax to the maximum rotation speed estimated value QmaxNCTam at the time of the rotation speed limit control described above. The controller 32 also estimates the maximum value of the rotational speed NC of the compressor 2 limited by the rotational speed limiting control by deriving the maximum rotational speed estimated value QmaxNCTam from the graph of FIG. , NCmax is set to a maximum rotational speed estimated value QmaxNCTam at the time of the rotational speed limiting control (NCmax = Ts limited rotational speed estimated value QmaxNCTam). That is, as described above, the maximum rotational speed NCmax is lowered so that the rotational speed restriction control may be performed thereafter.
After the maximum rotational speed NCmax of the compressor 2 is set to the actual rotational speed NC or the maximum rotational speed estimated value QmaxNCTam during the rotational speed limit control in the steps S27 and S30, the controller 32 proceeds to step S28. In step S28, the maximum rotation speed NCmax set in step S27 or step S30 is used to calculate the HP maximum capacity estimated value Qmax that is the estimated value of the maximum heating capacity of the radiator 4 from the above-described equation (VII). To do. Further, the difference ΔQmax (= TGQ−Qmax) between the required capacity TGQ and the HP maximum capacity estimated value Qmax is also calculated using the above-described formula (VIII).
In this case as well, NCmax is a value that takes into account the rotational speed limit control in step S27 and step S30 described above, and therefore the HP maximum capacity estimated value Qmax calculated in step S28 also decreases in NCmax by the rotational speed limit control. Minutes get smaller. Further, the difference ΔQmax between the required capacity TGQ and the HP maximum capacity estimated value Qmax also increases when Qmax is lowered in consideration of the rotational speed limit control.
Next, proceeding to step S29, the base value Qahtr of the required capacity TGQhtr of the heat medium circulation circuit 23 is set to ΔQmax. Next, proceeding to step S24, the controller 32 calculates the required capacity TGQhtr of the heat medium circulation circuit 23. In step S24, the controller 32 calculates the required capacity TGQhtr of the heat medium circulation circuit 23 using the following formula (XII).
TGQhtr = Qahtr / Φ (XII)
That is, since Qahtr = ΔQmax in step S29, the controller 32 sets the required capacity TGQhtr of the heat medium circulation circuit 23 to ΔQmax / Φ in step S24, and controls the energization of the heat medium heating electric heater 35 based on the required capacity TGQhtr. To do. Also in this case, the difference ΔQmax is a value that takes into account the rotational speed limit control. When Qmax is low, the difference ΔQmax is increased, and thus ΔQmax / Φ that is the required capacity TGQhtr of the heat medium circulation circuit 23 is also obtained. As the temperature increases, the amount of heat generated by the heat medium heating electric heater 35 also increases.
On the other hand, after the initial startup period of the heating mode has elapsed, the controller 32 proceeds from step S25 to step S31 and sets the base value Qahtr of the required capacity TGQhtr of the heat medium circulation circuit 23 to ΔQhp. Next, proceeding to step S24, the controller 32 calculates the required capacity TGQhtr of the heat medium circulation circuit 23. In step S24, the controller 32 calculates the required capacity TGQhtr of the heat medium circuit 23 using the above-described equation (XII). That is, since Qahtr = ΔQhp in step S31, the controller 32 sets the required capacity TGQhtr of the heat medium circulation circuit 23 to ΔQhp / Φ in step S24, and controls the energization of the heat medium heating electric heater 35 based on the required capacity TGQhtr. To do.
On the other hand, when the heat pump (compressor 2) is stopped in step S22, the controller 32 proceeds to step S23 to set the base value Qahtr of the required capacity TGQhtr of the heat medium circulation circuit 23 as the required capacity TGQ, and proceeds to step S24. The required capacity TGQhtr of the circulation circuit 23 is calculated. That is, since Qahtr = required capacity TGQ in step S23, the controller 32 sets the required capacity TGQhtr of the heat medium circulation circuit 23 to TGQ / Φ in step S24, and the energization of the heat medium heating electric heater 35 is performed based on the required capacity TGQhtr. To control.
If the calculated required capacity TGQhtr in step S24 is smaller than a predetermined value (for example, 100 W), the controller 32 has little change due to heating by the heat medium circulation circuit 23 (heat medium heating electric heater 35) (mostly meanings). The heat medium circulation circuit 23 is stopped (the heat medium heating electric heater 35 and the circulation pump 30 are de-energized).
In the embodiment, the controller 32 has two types of modes, the energy saving priority mode and the comfort priority mode in the heating mode. In the energy saving priority mode, the compressor 2 is set to the maximum rotation speed NCmax, and the heating capacity by the radiator 4 is insufficient. While supplemented by heating by the heat medium circulation circuit 23 (heat medium-air heat exchanger 40), in the comfort priority mode, the rotational speed NC of the compressor 2 is limited, and the heating capacity by the radiator 4 is insufficient. Since heat is supplemented by the circulation circuit 23, in the energy saving priority mode, the radiator 4 exhibits the maximum heating capacity and the shortage is supplemented by the heating by the heat medium circulation circuit 23. In the comfort priority mode, the heating capacity of the radiator 4 is limited, and the heating capacity of the heating medium circulation circuit 23 is increased to increase the heating capacity at the start-up. And early, noise also reduced, also it is possible to suppress formation of frost on the outdoor heat exchanger 7. In other words, depending on the passenger's preference and the situation of the vehicle, it is possible to switch between heating in the vehicle with priority on energy saving or heating in the vehicle with priority on comfort, reducing comfort and power consumption. It is possible to achieve both vehicle interior heating.
As described above in detail, according to the present invention, the controller 32 considers the rotational speed limit control in the energy saving priority mode and the comfort priority mode of the heating mode, and the heating medium circulation circuit 23 compensates for the shortage of the heating capacity by the radiator 4. Since the heating is complemented, the heating capacity of the radiator 4 that is reduced when the rotation speed limit control is executed is complemented without any trouble by the heating by the heat medium circulation circuit 23, thereby realizing comfortable vehicle interior heating. Will be able to.
In particular, in the embodiment, in the rotation speed limit control, the controller 32 limits the rotation speed NC of the compressor 2 so that the suction refrigerant temperature Ts of the compressor 2 does not fall below a predetermined limit target value TGTs. An HP maximum capacity estimation value Qmax that is an estimated value of the maximum heating capacity of the radiator 4 is calculated based on the maximum rotation speed NCmax, and a required capacity TGQ that is a required heating capacity of the radiator 4 and an HP maximum capacity estimation value Qmax. The compressor 2 that is calculated by calculating the difference ΔQmax = TGQ−Qmax, calculating the required capacity TGQhtr of the heat medium circulation circuit 23 from ΔQmax, and performing the heating by the heat medium circulation circuit 23 and being limited by the rotation speed limit control. Since the maximum rotational speed NCmax is changed based on the rotational speed NC of the maximum rotational speed NC, which is the basis for calculating the HP maximum capacity estimation value Qmax. max is changed based on the rotational speed NC of the compressor 2 limited by the rotational speed limiting control, and the required capacity TGQhtr of the heat medium circulation circuit 23 calculated from ΔQmax is increased by that amount, so that the heating capacity of the radiator 4 is increased. It will be possible to properly compensate for the loss of eyes.
In this case, in the embodiment, when the controller 32 is executing the rotational speed limit control, the actual rotational speed NC of the compressor 2 is set to the maximum rotational speed NCmax. The HP maximum capacity estimated value Qmax is calculated from the rotational speed NC of the compressor 2 and the required capacity TGQhtr of the heat medium circulation circuit 23 can be accurately calculated.
Further, when the rotation speed limitation control is not being executed, the controller 32 performs the maximum rotation at the rotation speed limitation control which is the maximum value of the rotation speed NC of the compressor 2 that is limited by the rotation speed limitation control based on the outside air temperature Tam. The number estimated value QmaxNCTam is estimated, and the estimated maximum rotation number estimated value QmaxNCTam is set to the maximum number of rotations NCmax, so that the heating medium circulation circuit 23 can quickly perform heating even when the rotation number limitation control is started thereafter. You will be able to complement your abilities.
In particular, in the embodiment, in the comfort priority mode, the controller 32 changes the maximum rotational speed NCmax based on the rotational speed NC of the compressor 2 that is restricted by the rotational speed restriction control in the initial stage of startup. It is possible to speed up the start-up and improve comfort.
Further, in the embodiment, after the initial startup period has elapsed, the required capacity TGQhtr of the heat medium circulation circuit 23 is set to the difference ΔQhp between the HP actual capacity Qhp that is the heating capacity actually generated by the radiator 4 and the required capacity TGQ. (= TGQ−Qhp) is obtained by performing the heating by the heat medium circulation circuit 23. Therefore, after the initial startup period has elapsed, the heating of the radiator 4 that actually occurs with respect to the required capacity TGQ. The shortage of the HP actual capacity Qhp, which is the capacity, can be accurately supplemented by heating by the heat medium circulation circuit 23, and extremely comfortable heating in the vehicle interior can be realized.
In addition, the specific method of the rotation speed limitation control described in the embodiment and the determination method of the required capacity TGQhtr of the heat medium circulation circuit 23 in consideration thereof are not limited to these, and a range that does not depart from the gist of the present invention. Various changes can be made.
In particular, in the embodiment, the rotational speed limit control is executed based on the suction refrigerant temperature Ts. However, the present invention is not limited thereto, and the rotational speed NC of the compressor 2 is limited so that the suction refrigerant pressure Ps does not fall below a predetermined limit target value. The present invention can also be applied to rotation speed control. Furthermore, the present invention is also applied to the vehicle air conditioner 1 that executes the rotational speed limit control for limiting the rotational speed NC of the compressor 2 so that the discharged refrigerant temperature Td and the discharged refrigerant pressure Pd do not rise above a predetermined limit target value. It is valid.
Further, in the embodiment, the present invention is applied to the vehicle air conditioner 1 that switches and executes each operation mode such as the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, and the cooling mode. The present invention is also effective for such a case.
Furthermore, although the auxiliary heating device is configured by the heat medium circulation circuit 23 in the embodiment, the present invention is not limited thereto, and a normal electric heater (PTC) may be provided in the air flow passage 3 to serve as the auxiliary heating device. Further, the configuration and each numerical value of the refrigerant circuit R described in the above embodiments are not limited thereto.
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 17、20、21、22 電磁弁
 23 熱媒体循環回路(補助加熱装置)
 30 循環ポンプ
 32 コントローラ(制御手段)
 35 熱媒体加熱電気ヒータ(電気ヒータ)
 40 熱媒体−空気熱交換器(補助加熱装置)
 45 吸込温度センサ
 R 冷媒回路
DESCRIPTION OF SYMBOLS 1 Vehicle air conditioner 2 Compressor 3 Air flow path 4 Radiator 6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve 9 Heat absorber 17, 20, 21, 22 Electromagnetic valve 23 Heat-medium circulation circuit (auxiliary heating device) )
30 Circulating pump 32 Controller (control means)
35 Heating medium heating electric heater (electric heater)
40 Heat medium-air heat exchanger (auxiliary heating device)
45 Suction temperature sensor R Refrigerant circuit

Claims (6)

  1.  冷媒を圧縮する圧縮機と、
     冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、
     車室外に設けられて冷媒を吸熱させるための室外熱交換器と、
     制御装置とを備え、
     該制御装置は、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させることで前記車室内を暖房すると共に、前記圧縮機の回転数を制限して当該圧縮機を保護する回転数制限制御を実行する車両用空気調和装置において、
     前記車室内に供給する空気を加熱するための補助加熱装置を備え、
     前記制御装置は、前記回転数制限制御を考慮し、前記放熱器による暖房能力が不足する分を前記補助加熱装置による加熱で補完することを特徴とする車両用空気調和装置。
    A compressor for compressing the refrigerant;
    A radiator for heating the air supplied to the passenger compartment by dissipating the refrigerant;
    An outdoor heat exchanger provided outside the passenger compartment to absorb heat from the refrigerant;
    A control device,
    The control device radiates the refrigerant discharged from the compressor with the radiator, depressurizes the radiated refrigerant, heats the vehicle interior by absorbing heat with the outdoor heat exchanger, and In the vehicle air conditioner for executing the rotational speed restriction control for restricting the rotational speed of the compressor and protecting the compressor,
    An auxiliary heating device for heating the air supplied to the vehicle interior;
    In consideration of the rotation speed limitation control, the control device supplements the heating capacity of the radiator by a heating by the auxiliary heating device.
  2.  前記制御装置は、前記回転数制限制御において、前記圧縮機の吸込冷媒温度又は吸込冷媒圧力が所定の制限目標値より下がらないように前記圧縮機の回転数を制限し、若しくは、前記圧縮機の吐出冷媒温度又は吐出冷媒圧力が所定の制限目標値より上がらないように前記圧縮機の回転数を制限すると共に、
     前記圧縮機の最大回転数NCmaxに基づいて前記放熱器の最大暖房能力の推定値であるHP最大能力推定値Qmaxを算出し、
     要求される前記放熱器の暖房能力である要求能力TGQと前記HP最大能力推定値Qmaxとの差ΔQmax=TGQ−Qmaxを算出し、
     前記補助加熱装置の要求能力TGQhtrを、前記ΔQmaxから算出して前記補助加熱装置による加熱を実行し、
     前記回転数制限制御で制限される前記圧縮機の回転数に基づいて前記最大回転数NCmaxを変更することを特徴とする請求項1に記載の車両用空気調和装置。
    In the rotation speed limitation control, the control device limits the rotation speed of the compressor so that the suction refrigerant temperature or the suction refrigerant pressure of the compressor does not fall below a predetermined limit target value, or the compressor Limiting the number of revolutions of the compressor so that the discharge refrigerant temperature or the discharge refrigerant pressure does not rise above a predetermined limit target value;
    An HP maximum capacity estimated value Qmax, which is an estimated value of the maximum heating capacity of the radiator, is calculated based on the maximum rotational speed NCmax of the compressor,
    Calculating the difference ΔQmax = TGQ−Qmax between the required capacity TGQ, which is the required heating capacity of the radiator, and the HP maximum capacity estimated value Qmax;
    The required capacity TGQhtr of the auxiliary heating device is calculated from the ΔQmax, and heating by the auxiliary heating device is performed,
    2. The vehicle air conditioner according to claim 1, wherein the maximum rotational speed NCmax is changed based on a rotational speed of the compressor that is restricted by the rotational speed restriction control.
  3.  前記制御装置は、前記回転数制限制御を実行しているときは、前記圧縮機の実際の回転数を前記最大回転数NCmaxとすることを特徴とする請求項2に記載の車両用空気調和装置。 3. The vehicle air conditioner according to claim 2, wherein the control device sets the actual rotational speed of the compressor to the maximum rotational speed NCmax when the rotational speed restriction control is being executed. .
  4.  前記制御装置は、前記回転数制限制御を実行していないときは、外気温度に基づいて前記回転数制限制御で制限される前記圧縮機の回転数の最大値を推定し、当該推定された最大値を前記最大回転数NCmaxとすることを特徴とする請求項2又は請求項3に記載の車両用空気調和装置。 The control device estimates the maximum value of the rotation speed of the compressor limited by the rotation speed limit control based on the outside air temperature when the rotation speed limit control is not being executed, and the estimated maximum The vehicle air conditioner according to claim 2 or 3, wherein the value is the maximum rotational speed NCmax.
  5.  前記制御装置は、起動初期に前記回転数制限制御で制限される前記圧縮機の回転数に基づいて前記最大回転数NCmaxを変更することを特徴とする請求項2乃至請求項4のうちの何れかに記載の車両用空気調和装置。 5. The control device according to claim 2, wherein the controller changes the maximum rotational speed NCmax based on a rotational speed of the compressor that is limited by the rotational speed limiting control at an initial stage of startup. A vehicle air conditioner according to claim 1.
  6.  前記制御装置は、
     前記放熱器が実際に発生する暖房能力であるHP実能力Qhpを算出し、
     前記要求能力TGQと前記HP実能力Qhpとの差ΔQhp=TGQ−Qhpを算出すると共に、
     起動初期の期間が経過した後は、前記補助加熱装置の要求能力TGQhtrを、前記ΔQhpから求めて前記補助加熱装置による加熱を実行することを特徴とする請求項5に記載の車両用空気調和装置。
    The control device includes:
    HP actual capacity Qhp which is the heating capacity actually generated by the radiator is calculated,
    A difference ΔQhp = TGQ−Qhp between the required capacity TGQ and the HP actual capacity Qhp is calculated,
    6. The vehicle air conditioner according to claim 5, wherein after the initial startup period has elapsed, the required capacity TGQhtr of the auxiliary heating device is obtained from the ΔQhp, and heating by the auxiliary heating device is executed. .
PCT/JP2017/045010 2016-12-27 2017-12-08 Vehicle air-conditioning apparatus WO2018123636A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016253679A JP2018103879A (en) 2016-12-27 2016-12-27 Vehicular air-conditioning system
JP2016-253679 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018123636A1 true WO2018123636A1 (en) 2018-07-05

Family

ID=62708162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045010 WO2018123636A1 (en) 2016-12-27 2017-12-08 Vehicle air-conditioning apparatus

Country Status (2)

Country Link
JP (1) JP2018103879A (en)
WO (1) WO2018123636A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113165479A (en) * 2018-11-16 2021-07-23 三电汽车空调系统株式会社 Air conditioner for vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7221767B2 (en) * 2019-04-04 2023-02-14 サンデン株式会社 Vehicle air conditioner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116526A (en) * 1991-10-30 1993-05-14 Zexel Corp Control device for air-conditioning device having electric heater
JPH0966736A (en) * 1995-06-23 1997-03-11 Denso Corp Air conditioner for vehicle
JPH11301256A (en) * 1998-04-20 1999-11-02 Denso Corp Air conditioner
US6209331B1 (en) * 1998-11-12 2001-04-03 Daimlerchrysler Corporation Air handling controller for HVAC system for electric vehicles
US6367272B1 (en) * 1999-12-29 2002-04-09 General Motors Corporation Compressor capacity control system and method
JP2015123828A (en) * 2013-12-26 2015-07-06 株式会社デンソー Vehicle air conditioner
JP2015229370A (en) * 2014-06-03 2015-12-21 サンデンホールディングス株式会社 Air-conditioning system for vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116526A (en) * 1991-10-30 1993-05-14 Zexel Corp Control device for air-conditioning device having electric heater
JPH0966736A (en) * 1995-06-23 1997-03-11 Denso Corp Air conditioner for vehicle
JPH11301256A (en) * 1998-04-20 1999-11-02 Denso Corp Air conditioner
US6209331B1 (en) * 1998-11-12 2001-04-03 Daimlerchrysler Corporation Air handling controller for HVAC system for electric vehicles
US6367272B1 (en) * 1999-12-29 2002-04-09 General Motors Corporation Compressor capacity control system and method
JP2015123828A (en) * 2013-12-26 2015-07-06 株式会社デンソー Vehicle air conditioner
JP2015229370A (en) * 2014-06-03 2015-12-21 サンデンホールディングス株式会社 Air-conditioning system for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113165479A (en) * 2018-11-16 2021-07-23 三电汽车空调系统株式会社 Air conditioner for vehicle

Also Published As

Publication number Publication date
JP2018103879A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP7095848B2 (en) Vehicle air conditioner
JP6997558B2 (en) Vehicle air conditioner
JP6590551B2 (en) Air conditioner for vehicles
JP6418779B2 (en) Air conditioner for vehicles
JP6339419B2 (en) Air conditioner for vehicles
JP6619572B2 (en) Air conditioner for vehicles
JP6607638B2 (en) Air conditioner for vehicles
JP6795725B2 (en) Vehicle air conditioner
WO2014192741A1 (en) Vehicular air-conditioning device
JP6353328B2 (en) Air conditioner for vehicles
JP6963405B2 (en) Vehicle air conditioner
WO2016203943A1 (en) Vehicular air-conditioning device
JP6571430B2 (en) Air conditioner for vehicles
WO2019155905A1 (en) Vehicle air-conditioning apparatus
WO2018123636A1 (en) Vehicle air-conditioning apparatus
WO2018079121A1 (en) Vehicle air-conditioning device
WO2018110211A1 (en) Vehicle air-conditioning device
CN110740889B (en) Air conditioner for vehicle
CN109661317B (en) Air conditioner for vehicle
WO2018225486A1 (en) Air-conditioning device for vehicles
WO2018110212A1 (en) Vehicle air-conditioning apparatus
WO2018123634A1 (en) Vehicular air conditioning device
WO2020179492A1 (en) Vehicle air conditioner
JP6853036B2 (en) Vehicle air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886221

Country of ref document: EP

Kind code of ref document: A1