WO2018225486A1 - Air-conditioning device for vehicles - Google Patents

Air-conditioning device for vehicles Download PDF

Info

Publication number
WO2018225486A1
WO2018225486A1 PCT/JP2018/019424 JP2018019424W WO2018225486A1 WO 2018225486 A1 WO2018225486 A1 WO 2018225486A1 JP 2018019424 W JP2018019424 W JP 2018019424W WO 2018225486 A1 WO2018225486 A1 WO 2018225486A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
refrigerant
air
radiator
heat
Prior art date
Application number
PCT/JP2018/019424
Other languages
French (fr)
Japanese (ja)
Inventor
竜 宮腰
耕平 山下
めぐみ 重田
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Publication of WO2018225486A1 publication Critical patent/WO2018225486A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to a heat pump type vehicle air conditioner that air-conditions a vehicle interior.
  • Hybrid vehicles and electric vehicles have come into widespread use due to the emergence of environmental problems in recent years.
  • an electric compressor that compresses and discharges the refrigerant
  • a radiator that is provided on the vehicle interior side to dissipate the refrigerant, and on the vehicle interior side
  • a heat absorber that absorbs the refrigerant and an outdoor heat exchanger that is provided outside the passenger compartment and dissipates or absorbs heat from the passenger compartment, dissipates the refrigerant discharged from the compressor in the radiator, and dissipates heat in the radiator
  • a heating mode that absorbs heat in the outdoor heat exchanger, a dehumidifying heating mode in which the refrigerant discharged from the compressor dissipates heat in the radiator, and the refrigerant dissipated in the radiator absorbs heat in the heat absorber and the outdoor heat exchanger,
  • the internal cycle mode in which the refrigerant discharged from the compressor is dissipated by a radiator, the
  • the target rotational speed of the compressor is calculated based on the pressure of the radiator, which is the pressure on the high pressure side of the refrigerant circuit, and in the dehumidifying heating mode, based on the temperature of the heat absorber.
  • the number of rotations of the compressor is controlled between a maximum number of rotations and a minimum number of rotations in a predetermined control so that the number of rotations becomes the same.
  • the target rotational speed when starting the compressor is the above-mentioned minimum rotational speed.
  • the target rotational speed is often the minimum rotational speed when the compressor is started in an environment where the outside air temperature is low due to the control by the temperature of the heat absorber.
  • the density of the refrigerant sucked into the compressor becomes small, and it becomes difficult to form a compression chamber particularly when the rotation speed is low.
  • the discharge pressure is difficult to increase.
  • the present invention has been made to solve the conventional technical problem, and provides an air conditioner for a vehicle that can eliminate the disadvantage that compression failure occurs when the compressor is started at a low outside air temperature. The purpose is to provide.
  • An air conditioner for a vehicle includes a compressor that compresses a refrigerant, and a control device that controls the rotational speed of the compressor to a predetermined target rotational speed.
  • An outside temperature sensor for detecting is provided. When the outside temperature is not more than a predetermined value at the time of starting the compressor, a compressor lower limit rotation speed limiting control is performed so that the target rotation speed of the compressor is not less than a predetermined lower limit rotation speed A1. It is characterized by doing.
  • the vehicle air conditioner according to a second aspect of the present invention is characterized in that, in the above invention, the control device has a minimum rotational speed A2 for control, and the lower limit rotational speed A1 is greater than the minimum rotational speed A2. To do.
  • a vehicle air conditioner according to each of the first and second aspects of the present invention, wherein the control device starts the compressor lower limit rotation until a predetermined time t1 elapses after the rotation speed of the compressor is set as the target rotation speed. The number limiting control is continued.
  • the control device changes the direction to increase the lower limit rotational speed A1 and / or to increase the predetermined time t1 as the outside air temperature is lower. It is characterized by.
  • a vehicle air conditioner that cools the air supplied to the vehicle interior by absorbing heat from the heat radiator that dissipates the refrigerant and heats the air supplied to the vehicle interior. And a heat exchanger that is provided outside the passenger compartment.
  • the control device dissipates the refrigerant discharged from the compressor with a radiator and decompresses the radiated refrigerant.
  • the vehicle interior is heated by absorbing heat with the heat exchanger, and a heating mode is calculated in which the target rotation speed of the compressor is calculated based on the pressure on the high pressure side, and the compressor lower limit rotation speed limit control is performed in this heating mode. It is characterized by performing.
  • an air conditioner for a vehicle that cools air supplied to the vehicle interior by absorbing heat from the heat radiator that dissipates the refrigerant and heats the air supplied to the vehicle interior.
  • the dehumidifying and heating mode for calculating the target rotational speed of the compressor is executed based on the above, and the compressor lower limit rotational speed limiting control is executed in the dehumidifying and heating mode.
  • a vehicle air conditioner according to any one of the first to fifth aspects of the present invention, wherein the refrigerant dissipates heat and heats the air supplied to the vehicle interior, and the refrigerant absorbs heat into the vehicle interior.
  • a heat absorber for cooling the air supplied to the vehicle and an outdoor heat exchanger provided outside the passenger compartment, and the control device causes the refrigerant discharged from the compressor to dissipate heat by the radiator and dissipates the refrigerant.
  • the vehicle interior is dehumidified and heated by absorbing heat only with the heat absorber or with this heat absorber and the outdoor heat exchanger, and the target of the compressor is based on the pressure on the high pressure side or the temperature of the heat absorber.
  • the dehumidifying and heating mode for calculating the rotation speed is executed, and the compressor lower limit rotation speed limiting control is executed in the dehumidifying and heating mode.
  • a vehicle air conditioner including a compressor that compresses a refrigerant and a control device that controls the rotational speed of the compressor to a predetermined target rotational speed
  • the control device detects an outside air temperature.
  • An outside air temperature sensor is provided, and when the compressor is started, if the outside air temperature is equal to or lower than a predetermined value, compressor lower limit rotation speed limitation control is performed so that the target rotation speed of the compressor is equal to or higher than a predetermined lower limit rotation speed A1 Therefore, for example, when the compressor is started in the heating mode or the dehumidifying heating mode as in claims 5 to 7, the target rotational speed of the compressor is forcibly set to a lower limit in an environment where the outside air temperature is a predetermined value or less.
  • the rotation speed is set to A1 or more. This eliminates or suppresses inconvenience that the compressor falls into a poorly compressed state when starting up in a low outside air temperature environment and the required ability cannot be exhibited, and the problem that noise and durability deteriorate. Will be able to.
  • the lower limit rotational speed A1 is a value larger than the minimum rotational speed A2 in the control of the compressor as in the second aspect of the invention. Then, after the start of the compressor, the control device continues the compressor lower limit rotation speed limit control until a predetermined time t1 elapses after the rotation speed of the compressor is set as the target rotation speed. Thus, it is possible to reliably eliminate the inconvenience caused by the compression failure state of the compressor.
  • the control device is changed to a direction in which the lower limit rotational speed A1 is increased and / or the predetermined time t1 is increased as the outside air temperature is lower as in the invention of claim 4, the minimum necessary The occurrence of inconvenience due to a change in the rotational speed of the compressor or a poorly compressed state of the compressor over time can be effectively eliminated.
  • FIG. 1 It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied (Example 1). It is a block diagram of the control apparatus of the air conditioning apparatus for vehicles of FIG. It is a schematic diagram of the airflow path of the vehicle air conditioner of FIG. It is a control block diagram regarding the compressor control in the heating mode of the heat pump controller of FIG. It is a control block diagram regarding the compressor control in the dehumidification heating mode of the heat pump controller of FIG. It is a control block diagram regarding auxiliary heater (auxiliary heating apparatus) control in the dehumidification heating mode of the heat pump controller of FIG.
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention.
  • a vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery. Yes (both not shown), the vehicle air conditioner 1 of the present invention is also driven by the power of the battery.
  • EV electric vehicle
  • an engine internal combustion engine
  • the vehicle air conditioner 1 of the embodiment performs a heating mode by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further includes a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, Each operation mode of the MAX cooling mode (the thickest cooling mode) and the auxiliary heater single mode is selectively executed.
  • the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
  • the vehicle air conditioner 1 performs air conditioning (heating, cooling, dehumidification, and ventilation) in a passenger compartment of an electric vehicle, and includes an electric (battery-driven) compressor 2 that compresses refrigerant.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G and is dissipated to dissipate the vehicle.
  • a radiator 4 as a heater for heating the air supplied to the room, an outdoor expansion valve 6 (pressure reducing device) composed of an electric valve that decompresses and expands the refrigerant during heating, and a heat radiator that is provided outside the vehicle compartment and is cooled.
  • An indoor expansion valve 8 comprising an outdoor heat exchanger 7 that performs heat exchange between the refrigerant and the outside air to function as an evaporator during heating, and an electric valve (may be mechanical) that decompresses and expands the refrigerant.
  • Decompressor and air
  • a heat absorber 9 that is provided in the passage 3 and absorbs heat from the outside of the vehicle interior during cooling and dehumidification to cool the air supplied to the vehicle interior and an accumulator 12 are sequentially connected by a refrigerant pipe 13.
  • the refrigerant circuit R is configured.
  • the refrigerant circuit R is filled with a predetermined amount of refrigerant and lubricating oil.
  • the compressor 2 of an Example is a scroll type compressor shown by the patent document 2 mentioned above.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15, and the outdoor blower 15 forcibly ventilates the outside air through the outdoor heat exchanger 7 to exchange heat between the outside air and the refrigerant. Thereby, the outside air is ventilated to the outdoor heat exchanger 7 even when the vehicle is stopped (that is, the vehicle speed is 0 km / h).
  • the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 sequentially on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is an electromagnetic as an on-off valve that is opened during cooling or dehumidification.
  • the refrigerant pipe 13 ⁇ / b> B on the refrigerant outlet side of the supercooling section 16 is connected to the refrigerant inlet side of the heat absorber 9 via the indoor expansion valve 8.
  • the receiver dryer part 14 and the supercooling part 16 structurally constitute a part of the outdoor heat exchanger 7.
  • the refrigerant pipe 13B between the supercooling unit 16 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C on the refrigerant outlet side of the heat absorber 9, and constitutes an internal heat exchanger 19 together.
  • the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9.
  • the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and this branched refrigerant pipe 13D exchanges internal heat via an electromagnetic valve 21 as an on-off valve that is opened in the heating mode.
  • the refrigerant pipe 13 ⁇ / b> C is connected to the downstream side of the vessel 19.
  • the electromagnetic valve 21 is connected to the refrigerant outlet side of the outdoor heat exchanger 7, and the refrigerant outlet side of the heat absorber 9 is connected to the refrigerant outlet side of the electromagnetic valve 21.
  • the refrigerant pipe 13 ⁇ / b> C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2.
  • the refrigerant pipe 13 ⁇ / b> E on the refrigerant outlet side of the radiator 4 is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
  • a refrigerant pipe 13G between the refrigerant discharge side of the compressor 2 and the refrigerant inlet side of the radiator 4 is an electromagnetic valve 30 (a flow path switching device is configured as an on-off valve that is closed during dehumidifying heating and MAX cooling described later. ) Is provided.
  • the refrigerant pipe 13G is branched into a bypass pipe 35 on the upstream side of the electromagnetic valve 30, and the bypass pipe 35 is an electromagnetic valve 40 as an on-off valve that is opened during dehumidifying heating and MAX cooling (also a flow path switching).
  • the bypass pipe 35 communicates the refrigerant discharge side of the compressor 2 and the refrigerant outlet side of the outdoor expansion valve 6, and is discharged from the compressor 2 when the electromagnetic valve 30 is closed and the electromagnetic valve 40 is opened.
  • the flowed refrigerant is caused to flow directly into the outdoor heat exchanger 7 without flowing through the radiator 4 and the outdoor expansion valve 6.
  • the bypass pipe 45, the electromagnetic valve 30, and the electromagnetic valve 40 constitute a bypass device 45. Since the bypass device 45 is configured by the bypass pipe 35, the electromagnetic valve 30, and the electromagnetic valve 40, the refrigerant discharged from the compressor 2 is not allowed to flow to the radiator 4 and the outdoor expansion valve 6 as described later.
  • the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment. Yes.
  • an indoor blower for supplying the introduced inside air or outside air (air supplied into the vehicle interior) to the air flow passage 3 and ventilating the heat absorber 9.
  • an indoor blower for supplying the introduced inside air or outside air (air supplied into the vehicle interior) to the air flow passage 3 and ventilating the heat absorber 9.
  • 23 is an auxiliary heater as an auxiliary heating device provided in the vehicle air conditioner 1 of the embodiment.
  • the auxiliary heater 23 of the embodiment is composed of a PTC heater which is an electric heater, and is in the air flow passage 3 which is on the windward side (air upstream side) of the radiator 4 with respect to the air flow in the air flow passage 3. Is provided.
  • the auxiliary heater 23 When the auxiliary heater 23 is energized and generates heat, the air in the air flow passage 3 flowing into the radiator 4 through the heat absorber 9 is heated.
  • the auxiliary heater 23 serves as a so-called heater core, which heats or complements the passenger compartment.
  • the air flow passage 3 on the leeward side (air downstream side) from the heat absorber 9 of the HVAC unit 10 is partitioned by a partition wall 10A, and a heating heat exchange passage 3A and a bypass passage 3B that bypasses it are formed.
  • the radiator 4 and the auxiliary heater 23 described above are disposed in the heating heat exchange passage 3A.
  • the air (inside air or outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is supplemented into the air flow passage 3 on the windward side of the auxiliary heater 23.
  • An air mix damper 28 is provided for adjusting the rate of ventilation through the heating heat exchange passage 3A in which the heater 23 and the radiator 4 are disposed.
  • the HVAC unit 10 on the leeward side of the radiator 4 includes a FOOT (foot) outlet 29A (first outlet) and a VENT (vent) outlet 29B (FOOT outlet 29A).
  • FOOT outlet 29A For the outlet and the DEF outlet 29C, first outlets) and DEF (def) outlets 29C (second outlets) are formed.
  • the FOOT air outlet 29A is an air outlet for blowing air under the feet in the passenger compartment, and is at the lowest position.
  • the VENT outlet 29B is an outlet for blowing out air near the driver's chest and face in the passenger compartment, and is located above the FOOT outlet 29A.
  • the DEF air outlet 29C is an air outlet for blowing air to the inner surface of the windshield of the vehicle, and is located at the highest position above the other air outlets 29A and 29B.
  • the FOOT air outlet 29A, the VENT air outlet 29B, and the DEF air outlet 29C are respectively provided with a FOOT air outlet damper 31A, a VENT air outlet damper 31B, and a DEF air outlet damper 31C that control the amount of air blown out. It has been.
  • FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment.
  • the control device 11 includes an air-conditioning controller 20 and a heat pump controller 32 each of which is a microcomputer that is an example of a computer including a processor, and these include a CAN (Controller Area Network) and a LIN (Local Interconnect Network). Is connected to a vehicle communication bus 65.
  • the compressor 2 and the auxiliary heater 23 are also connected to the vehicle communication bus 65, and the air conditioning controller 20, the heat pump controller 32, the compressor 2 and the auxiliary heater 23 are configured to transmit and receive data via the vehicle communication bus 65.
  • the air conditioning controller 20 is an upper controller that controls the air conditioning of the vehicle interior of the vehicle.
  • the input of the air conditioning controller 20 detects an outside air temperature sensor 33 that detects the outside air temperature (Tam) of the vehicle and an outside air humidity.
  • An outside air humidity sensor 34 an HVAC suction temperature sensor 36 that detects the temperature of the air (suction air temperature Tas) that is sucked into the air flow passage 3 from the suction port 25 and flows into the heat sink 9, and the air in the vehicle interior (inside air)
  • An indoor air temperature sensor 37 that detects the temperature of the vehicle (indoor temperature Tin)
  • an indoor air humidity sensor 38 that detects the humidity of the air in the vehicle interior
  • an indoor CO that detects the carbon dioxide concentration in the vehicle interior 2
  • Concentration sensor 39 and the temperature of the air blown into the passenger compartment A blowout temperature sensor 41 to detect, a discharge pressure sensor 42 to detect the discharge refrigerant pressure (discharge pressure Pd) of the compressor 2, for example, a photosensor type solar radiation sensor 51 for detecting the amount of solar radiation into the passenger compartment,
  • Each output of the vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle and an air conditioning (air conditioner) operation unit 53 for setting the set temperature and switching of the operation mode are connected
  • the output of the air conditioning controller 20 is connected to an outdoor fan 15, an indoor fan 27, a suction switching damper 26, an air mix damper 28, and air outlet dampers 31A to 31C, which are controlled by the air conditioning controller 20. Is done.
  • the heat pump controller 32 is a controller that mainly controls the refrigerant circuit R.
  • the input of the heat pump controller 32 includes a discharge temperature sensor 43 that detects a refrigerant temperature discharged from the compressor 2 and a suction refrigerant pressure of the compressor 2.
  • a heat absorber pressure sensor 49 that detects the temperature of the auxiliary heater 23 (auxiliary heater temperature Tptc), and a refrigerant temperature at the outlet of the outdoor heat exchanger 7.
  • the output is connected.
  • the output of the heat pump controller 32 includes an outdoor expansion valve 6, an indoor expansion valve 8, an electromagnetic valve 30 (for reheating), an electromagnetic valve 17 (for cooling), an electromagnetic valve 21 (for heating), and an electromagnetic valve 40 (bypass).
  • the compressor 2 and the auxiliary heater 23 each have a built-in controller, and the controllers of the compressor 2 and the auxiliary heater 23 send and receive data to and from the heat pump controller 32 via the vehicle communication bus 65. Be controlled.
  • the heat pump controller 32 and the air conditioning controller 20 transmit / receive data to / from each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting input by the air conditioning operation unit 53.
  • the outside air temperature sensor 33, the discharge pressure sensor 42, the vehicle speed sensor 52, the volumetric air volume Ga of air flowing into the air flow passage 3 (calculated by the air conditioning controller 20), and the air volume ratio SW The output from the air conditioning controller 53 is transmitted from the air conditioning controller 20 to the heat pump controller 32 via the vehicle communication bus 65, and is used for control by the heat pump controller 32.
  • the control device 11 has each operation mode of heating mode, dehumidifying heating mode, dehumidifying cooling mode, cooling mode, MAX cooling mode (maximum cooling mode), and auxiliary heater single mode. Switch and execute.
  • Heating mode When the heating mode is selected by the heat pump controller 32 (auto mode) or the manual operation (manual mode) to the air conditioning operation unit 53, the heat pump controller 32 opens the electromagnetic valve 21 (for heating) and the electromagnetic valve 17 (cooling). Close). Further, the electromagnetic valve 30 (for reheating) is opened, and the electromagnetic valve 40 (for bypass) is closed. Then, the compressor 2 is operated.
  • the air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating.
  • the auxiliary heater 23 and the radiator 4 are ventilated, but the air volume may be adjusted.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the airflow passage 3 is passed through the radiator 4, the air in the airflow passage 3 is converted into the high-temperature refrigerant in the radiator 4 (when the auxiliary heater 23 operates, the auxiliary heater 23 and the radiator 4.
  • the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump.
  • the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13A, the electromagnetic valve 21 and the refrigerant pipe 13D, and is separated into gas and liquid there. Repeated circulation inhaled.
  • the air heated by the radiator 4 (when the auxiliary heater 23 is operated, the auxiliary heater 23 and the radiator 4) is blown out from the outlets 29A to 29C, so that the vehicle interior is heated. become.
  • the heat pump controller 32 calculates the target radiator pressure PCO (target value of the radiator pressure PCI) from the target heater temperature TCO (target value of the radiator temperature TCI) calculated by the air conditioning controller 20 from the target outlet temperature TAO, and this target.
  • the number of revolutions NC of the compressor 2 is controlled based on the radiator pressure PCO and the refrigerant pressure of the radiator 4 detected by the radiator pressure sensor 47 (radiator pressure PCI. Pressure on the high pressure side of the refrigerant circuit R) to radiate heat.
  • the heating by the vessel 4 is controlled.
  • the heat pump controller 32 opens the outdoor expansion valve 6 based on the refrigerant temperature (radiator temperature TCI) of the radiator 4 detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47.
  • the degree of supercooling of the refrigerant at the outlet of the radiator 4 is controlled.
  • the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23.
  • the energization of the auxiliary heater 23 is controlled. Thereby, comfortable vehicle interior heating is realized and frost formation of the outdoor heat exchanger 7 is also suppressed.
  • the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air flowing through the air flow passage 3 is vented to the auxiliary heater 23 before the radiator 4.
  • the auxiliary heater 23 when the auxiliary heater 23 is disposed on the air downstream side of the radiator 4, when the auxiliary heater 23 is configured by a PTC heater as in the embodiment, the temperature of the air flowing into the auxiliary heater 23 is determined by the radiator. 4, the resistance value of the PTC heater increases, the current value also decreases, and the heat generation amount decreases. However, by arranging the auxiliary heater 23 on the air upstream side of the radiator 4, Thus, the capacity of the auxiliary heater 23 composed of the PTC heater can be sufficiently exhibited.
  • the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21.
  • the air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating.
  • the auxiliary heater 23 and the radiator 4 are ventilated, but the air volume is also adjusted.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, the refrigerant flows directly into the outdoor heat exchanger 7 without flowing into the radiator 4 and the outdoor expansion valve 6.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
  • the air blown out from the indoor blower 27 by the heat absorption action at this time is cooled, and moisture in the air condenses and adheres to the heat absorber 9, so that the air in the air flow passage 3 is cooled, and Dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
  • the valve opening degree of the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent inconvenience that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. It becomes.
  • the heat pump controller 32 energizes the auxiliary heater 23 to generate heat.
  • the air cooled and dehumidified by the heat absorber 9 is further heated in the process of passing through the auxiliary heater 23 and the temperature rises, so that the dehumidifying heating in the passenger compartment is performed.
  • the heat pump controller 32 is a compressor based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and a target heat absorber temperature TEO that is a target value of the heat absorber temperature Te calculated by the air conditioning controller 20.
  • the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 50 and the above-described target heater temperature TCO (in this case, the target value of the auxiliary heater temperature Tptc) is used.
  • the air temperature of the air blown out from the outlets 29A to 29C by the heating by the auxiliary heater 23 while appropriately cooling and dehumidifying the air in the heat absorber 9 is controlled. Prevent the decline accurately. As a result, it is possible to control the temperature to an appropriate heating temperature while dehumidifying the air blown into the vehicle interior, and it is possible to realize comfortable and efficient dehumidification heating in the vehicle interior.
  • the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air heated by the auxiliary heater 23 passes through the radiator 4.
  • the refrigerant is supplied to the radiator 4. Therefore, the disadvantage that the radiator 4 absorbs heat from the air heated by the auxiliary heater 23 is also eliminated. That is, the temperature of the air blown out into the vehicle compartment by the radiator 4 is suppressed, and the COP is improved.
  • the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is opened and the electromagnetic valve 40 is closed. Then, the compressor 2 is operated.
  • the air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating.
  • the auxiliary heater 23 and the radiator 4 are ventilated, but the air volume is also adjusted.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air.
  • the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified. The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
  • the heat pump controller 32 does not energize the auxiliary heater 23, so that the air that has been cooled and dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 (the heat dissipation capability is lower than that during heating). Is done. As a result, dehumidifying and cooling in the passenger compartment is performed.
  • the heat pump controller 32 determines the temperature of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO (transmitted from the air conditioning controller 20) that is the target value.
  • the rotational speed NC is controlled.
  • the heat pump controller 32 calculates the target radiator pressure PCO from the target heater temperature TCO described above, and the target radiator pressure PCO and the refrigerant pressure (radiator pressure PCI) of the radiator 4 detected by the radiator pressure sensor 47. Based on the high pressure of the refrigerant circuit R), the valve opening degree of the outdoor expansion valve 6 is controlled, and heating by the radiator 4 is controlled. (4) Cooling mode Next, in the cooling mode, the heat pump controller 32 fully opens the opening degree of the outdoor expansion valve 6 in the dehumidifying and cooling mode. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized.
  • the air-conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 is blown from the indoor blower 27 and the air in the air flow passage 3 that has passed through the heat absorber 9 is used as the auxiliary heater 23 in the heating heat exchange passage 3A. And it is set as the state which adjusts the ratio ventilated by the heat radiator 4.
  • FIG. 1 the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30, and the refrigerant exiting the radiator 4 passes through the refrigerant pipe 13E and the outdoor expansion valve 6.
  • the refrigerant passes through it and flows into the outdoor heat exchanger 7 as it is, where it is cooled by air or by outside air that is ventilated by the outdoor blower 15 and condensed. Liquefaction.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16.
  • the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19.
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
  • the air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. Further, moisture in the air condenses and adheres to the heat absorber 9.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through. Air that has been cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from each of the air outlets 29A to 29C (partly passes through the radiator 4 to exchange heat), thereby cooling the vehicle interior. Will be done.
  • the heat pump controller 32 uses the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the above-described target heat absorber temperature TEO which is the target value of the compressor 2. The number of revolutions NC is controlled.
  • MAX cooling mode maximum cooling mode
  • the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized.
  • the air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 is blown from the indoor blower 27 and the air in the air flow passage 3 passing through the heat absorber 9 is used as an auxiliary heater for the heating heat exchange passage 3 ⁇ / b> A. 23 and the rate of ventilation through the radiator 4 are adjusted. Accordingly, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E.
  • the refrigerant flows directly into the outdoor heat exchanger 7 without flowing into the radiator 4 and the outdoor expansion valve 6.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16.
  • the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. In addition, since moisture in the air condenses and adheres to the heat absorber 9, the air in the air flow passage 3 is dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, similarly, it is possible to suppress or prevent the disadvantage that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. . Thereby, the fall of a refrigerant
  • the high-temperature refrigerant flows through the radiator 4 in the cooling mode described above, direct heat conduction from the radiator 4 to the HVAC unit 10 occurs not a little, but in this MAX cooling mode, the refrigerant flows into the radiator 4. Therefore, the air in the air flow passage 3 from the heat absorber 9 is not heated by the heat transmitted from the radiator 4 to the HVAC unit 10. Therefore, powerful cooling of the passenger compartment is performed, and particularly in an environment where the outside air temperature Tam is high, the passenger compartment can be quickly cooled to realize comfortable air conditioning in the passenger compartment.
  • the heat pump controller 32 is also connected to the compressor based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO, which is the target value. 2 is controlled.
  • (6) Auxiliary heater single mode Note that the control device 11 of the embodiment stops the compressor 2 and the outdoor blower 15 of the refrigerant circuit R and energizes the auxiliary heater 23 when, for example, excessive frost formation occurs in the outdoor heat exchanger 7.
  • the auxiliary heater single mode for heating the passenger compartment with only 23 is provided.
  • the heat pump controller 32 controls energization (heat generation) of the auxiliary heater 23 based on the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 50 and the target heater temperature TCO described above.
  • the air conditioning controller 20 operates the indoor blower 27, and the air mix damper 28 passes the air in the air flow passage 3 blown out from the indoor blower 27 to the auxiliary heater 23 of the heat exchange passage 3A for heating, and the air volume is reduced. The state to be adjusted. Since the air heated by the auxiliary heater 23 is blown into the vehicle interior from each of the air outlets 29A to 29C, the vehicle interior is thereby heated. (7) Switching operation mode
  • the air conditioning controller 20 calculates the target blowing temperature TAO described above from the following formula (I).
  • This target blowing temperature TAO is a target value of the temperature of the air blown into the passenger compartment.
  • TAO (Tset ⁇ Tin) ⁇ K + Tbal (f (Tset, SUN, Tam)) .. (I)
  • Tset is a set temperature in the passenger compartment set by the air conditioning operation unit 53
  • Tin is a room temperature detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is a set temperature Tset
  • SUN is a balance value calculated from the outside air temperature Tam detected by the outside air temperature sensor 33.
  • this target blowing temperature TAO is so high that the outside temperature Tam is low, and it falls as the outside temperature Tam rises.
  • the heat pump controller 32 determines which one of the above operation modes based on the outside air temperature Tam (detected by the outside air temperature sensor 33) transmitted from the air conditioning controller 20 via the vehicle communication bus 65 and the target outlet temperature TAO. The operation mode is selected and each operation mode is transmitted to the air conditioning controller 20 via the vehicle communication bus 65.
  • the heat pump controller 32 after startup, the outside air temperature Tam, the humidity in the vehicle interior, the target blowing temperature TAO, the heating temperature TH (the temperature of the air on the leeward side of the radiator 4), the target heater temperature TCO, By switching each operation mode based on parameters such as the endothermic temperature Te, the target endothermic temperature TEO, whether there is a dehumidification request in the passenger compartment, the heating mode accurately according to the environmental conditions and the necessity of dehumidification, Dehumidifying heating mode, dehumidifying cooling mode, cooling mode, MAX cooling mode and auxiliary heater single mode are switched to control the temperature of the air blown into the passenger compartment to the target outlet temperature TAO, realizing comfortable and efficient passenger compartment air conditioning To do.
  • FIG. 4 is a control block diagram of the heat pump controller 32 that determines the target rotational speed (compressor target rotational speed) TGNCh of the compressor 2 for heating mode.
  • the target supercooling degree TGSC that is the target value of the supercooling degree SC at the outlet of the radiator 4
  • the target heater that is the target value of the temperature of the radiator 4 described above.
  • TCO transmitted from the air conditioning controller 20
  • the target radiator pressure PCO that is the target value of the pressure of the radiator 4
  • the F / F manipulated variable TGNChff of the compressor target rotational speed is calculated.
  • the above-mentioned TH for calculating the air volume ratio SW is the temperature of the leeward air of the radiator 4 (hereinafter referred to as the heating temperature)
  • the heat pump controller 32 calculates the first-order lag calculation formula (II) shown below. presume.
  • TH (INTL ⁇ TH0 + Tau ⁇ THz) / (Tau + INTL) (II)
  • INTL is the calculation cycle (constant)
  • Tau is the time constant of the primary delay
  • TH0 is the steady value of the heating temperature TH in the steady state before the primary delay calculation
  • THz is the previous value of the heating temperature TH.
  • the target radiator pressure PCO is calculated by the target value calculator 59 based on the target subcooling degree TGSC and the target heater temperature TCO. Further, the F / B (feedback) manipulated variable calculation unit 60 performs the compressor target rotation based on the target radiator pressure PCO and the radiator pressure PCI (pressure on the high pressure side of the refrigerant circuit R) that is the refrigerant pressure of the radiator 4.
  • the F / B manipulated variable TGNChfb is calculated.
  • the F / F manipulated variable TGNCnff computed by the F / F manipulated variable computing unit 58 and the F / B manipulated variable TGNChfb computed by the F / B manipulated variable computing unit 60 are added by the adder 61, and the limit setting unit 62
  • the compressor target speed TGNCh is determined.
  • the heat pump controller 32 controls the rotational speed NC of the compressor 2 based on the compressor target rotational speed TGNCh. (9) Control of the compressor 2 and the auxiliary heater 23 in the dehumidifying heating mode by the heat pump controller 32 On the other hand, FIG.
  • the F / F manipulated variable calculation unit 63 of the heat pump controller 32 is a target heat release that is a target value of the outside air temperature Tam, the volumetric air volume Ga of the air flowing into the air flow passage 3, and the pressure of the radiator 4 (radiator pressure PCI). Based on the compressor pressure PCO and the target heat absorber temperature TEO which is the target value of the temperature of the heat absorber 9 (heat absorber temperature Te), the F / F manipulated variable TGNCcff of the compressor target rotational speed is calculated.
  • the F / B operation amount calculation unit 64 calculates the F / B operation amount TGNCcfb of the compressor target rotational speed based on the target heat absorber temperature TEO (transmitted from the air conditioning controller 20) and the heat absorber temperature Te. Then, the F / F manipulated variable TGNCcff computed by the F / F manipulated variable computing unit 63 and the F / B manipulated variable TGNCcfb computed by the F / B manipulated variable computing unit 64 are added by the adder 66, and the limit setting unit 67 After the control minimum rotational speed TGNCcLimLo (hereinafter referred to as A2) and the maximum control rotational speed TGNCcLimHi are set, the compressor target rotational speed TGNCc is determined.
  • A2 control minimum rotational speed
  • TGNCcLimHi hereinafter referred to as A2
  • the maximum control rotational speed TGNCcLimHi the compressor target rotational speed TGNCc is determined.
  • the heat pump controller 32 controls the rotational speed NC of the compressor 2 based on the compressor target rotational speed TGNCc.
  • FIG. 6 is a control block diagram of the heat pump controller 32 that determines the auxiliary heater required capacity TGQPTC of the auxiliary heater 23 in the dehumidifying heating mode.
  • the subtractor 73 of the heat pump controller 32 receives the target heater temperature TCO and the auxiliary heater temperature Tptc, and calculates a deviation (TCO ⁇ Tptc) between the target heater temperature TCO and the auxiliary heater temperature Tptc. This deviation (TCO-Tptc) is input to the F / B control unit 74.
  • the F / B control unit 74 eliminates the deviation (TCO-Tptc) so that the auxiliary heater temperature Tptc becomes the target heater temperature TCO.
  • the required capacity F / B manipulated variable is calculated.
  • the auxiliary heater required capacity F / B manipulated variable calculated by the F / B control unit 74 is set by the limit setting unit 76 after the limit of the control lower limit value QptcLimLo and the control upper limit value QptcLimHi are set. Determined as capability TGQPTC.
  • the controller 32 controls energization of the auxiliary heater 23 based on the auxiliary heater required capacity TGQPTC, thereby generating heat (heating) of the auxiliary heater 23 so that the auxiliary heater temperature Tptc becomes the target heater temperature TCO.
  • the heat pump controller 32 controls the operation of the compressor based on the heat absorber temperature Te and the target heat absorber temperature TEO, and controls the heat generation of the auxiliary heater 23 based on the target heater temperature TCO.
  • the air conditioning controller 20 is based on the air volume ratio SW that is passed through the radiator 4 and the auxiliary heater 23 in the heating heat exchange passage 3A calculated by the above-described expression (the following expression (III)) so that the air volume of the ratio is obtained. Further, by controlling the air mix damper 28, the amount of ventilation to the radiator 4 (and the auxiliary heater 23) is adjusted.
  • SW (TAO-Te) / (TH-Te) (III) That is, the air flow rate ratio SW passing through the radiator 4 and the auxiliary heater 23 in the heat exchange passage 3A for heating changes in a range of 0 ⁇ SW ⁇ 1, and when “0”, the air is not passed through the heat exchange passage 3A for heating.
  • the heat pump controller 32 executes the control described below when the compressor 2 is started in the heating mode or the dehumidifying heating mode. That is, when the vehicle air conditioner 1 is activated (vehicle activation), the heat pump controller 32 resets a flag and a timer, which will be described later, and then a compressor lower limit rotational speed restriction control flag, which will be described later in step S1 of FIG. It is determined whether fNCLLim has been reset. Since it has been reset at this point, it is next determined whether or not the compressor 2 has been started in step S2.
  • the heat pump controller 32 determines that the compressor 2 is activated. And it progresses to step S3 and it is judged whether the present operation mode is heating mode or dehumidification heating mode which were mentioned above. And when it is at the time of starting of the compressor 2 in heating mode or dehumidification heating mode, the heat pump controller 32 progresses to step S4 from step S2, S3, and the external temperature Tam transmitted from the air-conditioning controller 20 is predetermined value T1 (for example, 10 ° C.) or less.
  • T1 for example, 10 ° C.
  • the heat pump controller 32 proceeds from step S4 to step S5, and sets the above-described flag (compressor lower limit rotation speed limit control flag) fNCLLim. Set and start the compressor lower limit rotation speed limit control.
  • the heat pump controller 32 proceeds to step S6, and as described above, the compressor target rotation speed TGNCh calculated in the heating mode (FIG. 4) or the compressor target rotation speed TGNCc calculated in the dehumidifying heating mode (FIG. 5). In any case, it is determined whether or not the target rotational speed of the compressor 2 is lower than a predetermined lower limit rotational speed A1.
  • the lower limit rotation speed A1 is set to a value greater than at least the above-described minimum control rotation speed A2 (ECNpdLimLo in the heating mode, TGNCcLimLo in the dehumidifying heating mode. Both are 800 rpm in the embodiment), and 1500 rpm in the embodiment. If the compressor target rotational speeds TGNCh and TGNCh calculated in FIGS. 4 and 5 are lower than the lower limit rotational speed A1 (for example, 800 rpm), the heat pump controller 32 proceeds to step S7, and the compressor target rotational speed TGNCh Or TGNCc is forcibly increased to the lower limit rotational speed A1 (1500 rpm). When the compressor target rotational speeds TGNCh and TGNCc calculated in FIGS.
  • step S8 the compressor target rotational speeds TGNCh and TGNCc are set to the calculated 3000 rpm. That is, the heat pump controller 32 restricts the compressor target rotational speeds TGNCh and TGNCc from becoming lower than the lower limit rotational speed A1, and prevents the compressor from entering a poorly compressed state by making it equal to or higher than the lower limit rotational speed A1.
  • the heat pump controller 32 next starts the compressor 2 in step S8, and after setting the rotational speed NC of the compressor 2 to the target rotational speed TGNCh or TGNCc (target rotational speeds TGNCh, TGNCc greater than the lower limit rotational speed A1) for a predetermined time. It is determined whether t1 has elapsed.
  • the predetermined time t1 is set to 10 seconds in the embodiment, and the elapsed time is measured by a timer that the heat pump controller 32 has as its function.
  • step S8 If it is assumed that the predetermined time t1 has not elapsed since the rotational speed NC of the compressor 2 is set to the target rotational speed TGNCh or TGNCc (more than the lower limit rotational speed A1) at the present time, the heat pump controller 32 performs other control from step S8. The process returns to step S1 again. However, since the flag fNCLLim is set at this time, the process proceeds from step S1 to step S6. Thereafter, the compressor target rotational speeds TGNCh and TGNCc calculated in FIGS. 4 and 5 are lower than the lower limit rotational speed A1.
  • step S7 the heat pump controller 32 proceeds to step S7 to forcibly increase the compressor target rotational speeds TGNCh, TGNCc to the lower limit rotational speed A1, and if the compressor target rotational speeds TGNCh, TGNCc are equal to or higher than the lower limit rotational speed A1,
  • the compressor target rotation speeds are TGNCh and TGNCc.
  • the compressor lower limit rotational speed restriction control is terminated, and thereafter, the process proceeds from step S1 to step S2. If the present time is not when the compressor 2 is started, the process does not proceed from step S3. Therefore, the rotation speed NC of the compressor 2 is determined by the F / F operation amount TGNCnff calculated by the F / F operation amount calculation unit 58 of FIG. 4 and the F / B operation amount calculated by the F / B operation amount calculation unit 60.
  • Compressor target rotation speed TGNCh (heating mode) obtained by adding TGNChfb, F / F operation amount TGNCcff and F / B operation amount calculation unit 64 calculated by F / F operation amount calculation unit 63 in FIG.
  • the compressor target rotational speed TGNCc (dehumidification heating mode) obtained by adding the F / B manipulated variable TGNCcfb. This is shown in FIG.
  • shaft of FIG. 8 is compressor target rotation speed TGNCh and TGNCc, and a horizontal axis is time.
  • the compressor target rotational speeds TGNCh and TGNCc calculated in FIGS. 4 and 5 are set to the minimum rotational speed A2 (from the lower limit rotational speed A1 as shown by a thick broken line in FIG. 8, for example).
  • the heat pump controller 32 increases the compressor target rotational speeds TGNCh and TGNCc to the lower limit rotational speed A1, and sets the rotational speed NC to a predetermined value from the start of the compressor 2 as shown by a thick solid line in FIG. Increase at the rate of increase to the lower limit rotational speed A1.
  • the compressor target rotational speed TGNCh calculated in FIG. 4 and FIG. 5 until the predetermined time t1 elapses after the rotational speed NC of the compressor 2 is set to the compressor target rotational speed TGNCh or TGNCh (lower limit rotational speed A1).
  • the compressor target rotational speeds TGNCh and TGNCc are maintained at the lower limit rotational speed A1, and after the predetermined time t1 has elapsed, the compressor target rotational speed calculated in FIG. 4 and FIG.
  • the minimum rotational speed A2 that is TGNCh or TGNCc is set, and the rotational speed NC of the compressor 2 is lowered to the compressor target rotational speed TGNCh or TGNCc (minimum rotational speed A2) (indicated by AUTO in FIG. 8).
  • the heat pump controller 32 increases the lower limit rotational speed A1 as the outside air temperature Tam is lower in the embodiment. change. For example, when the outside air temperature Tam is in the range of 0 ° C. ⁇ Tam ⁇ 10 ° C. lower than the predetermined value T1 (10 ° C.) of the embodiment, the heat pump controller 32 has a lower limit rotational speed A1 higher than 1500 rpm of the above-described embodiment. When the outside air temperature Tam is lower than 0 ° C., for example, the lower limit rotational speed A1 is set to 2000 rpm, for example.
  • the heat pump controller 32 changes the direction in which the predetermined time t1 is increased as the outside air temperature Tam is lower. For example, when the outside air temperature Tam is in the range of 0 ° C. ⁇ Tam ⁇ 10 ° C. lower than the predetermined value T1 (10 ° C.) of the embodiment, the heat pump controller 32 sets the predetermined time t1 higher than 10 seconds of the above-described embodiment. When the outside air temperature Tam is lower than 0 ° C., for example, the predetermined time t1 is set to 20 seconds, for example.
  • Such a change may be a stepwise change as described above, or may be a linear change according to a change in the outside air temperature Tam.
  • both the lower limit rotational speed A1 and the predetermined time t1 are changed according to the outside air temperature Tam.
  • the present invention is not limited to this, and only one of them may be changed.
  • the air-conditioning controller 20 configuring the control device 11 includes the outside air temperature sensor 33 that detects the outside air temperature Tam, and the heat pump controller 32 configuring the control device 11 is configured to open the outside air when the compressor 2 is started.
  • the compressor lower limit rotational speed restriction control is performed so that the target rotational speeds TGNCh and TGNCc of the compressor 2 are equal to or higher than the predetermined lower limit rotational speed A1, so for example, heating
  • the target rotational speeds TGNCh and TGNCc of the compressor 2 are forcibly set to the lower limit rotational speed A1 or more in an environment where the outside air temperature Tam is equal to or lower than the predetermined value T1.
  • the compressor 2 falls into a poorly compressed state at the time of start-up in a low outside air temperature environment, and the problem that the required capacity cannot be exhibited and the problem that noise and durability are deteriorated are obviated or suppressed. Will be able to.
  • the lower limit rotational speed A1 is larger than the minimum rotational speed A2 in the control of the compressor 2.
  • the heat pump controller 32 sets the rotation speed NC of the compressor 2 to the target rotation speeds TGNCh and TGNCc (lower limit rotation speed A1 or more) until a predetermined time t1 elapses.
  • the heat pump controller 32 changes the direction to increase the lower limit rotational speed A1 and / or to increase the predetermined time t1 as the outside air temperature Tam is lower. It becomes possible to effectively eliminate the occurrence of inconvenience due to the change in the number or the compression failure state of the compressor 2 over time.
  • FIG. 9 shows a configuration diagram of a vehicle air conditioner 1 of another embodiment to which the present invention is applied.
  • the same reference numerals as those in FIG. 1 indicate the same or similar functions.
  • the outlet of the supercooling section 16 is connected to the check valve 18, and the outlet of the check valve 18 is connected to the refrigerant pipe 13B.
  • the check valve 18 has a forward direction on the refrigerant pipe 13B (indoor expansion valve 8) side.
  • a refrigerant pipe 13E on the refrigerant outlet side of the radiator 4 is branched in front of the outdoor expansion valve 6.
  • This branched refrigerant pipe (hereinafter referred to as a second bypass pipe) 13F is an electromagnetic valve 22 (for dehumidification).
  • the refrigerant pipe 13B on the downstream side of the check valve 18 via the on-off valve is connected to an evaporation pressure adjusting valve 70 on the refrigerant downstream side of the internal heat exchanger 19 and upstream of the refrigerant from the junction with the refrigerant pipe 13D.
  • the electromagnetic valve 22 and the evaporation pressure adjusting valve 70 are also connected to the output of the heat pump controller 32.
  • the bypass device 45 including the bypass pipe 35, the electromagnetic valve 30, and the electromagnetic valve 40 in FIG. 1 of the above-described embodiment is not provided. Others are the same as in FIG.
  • the heat pump controller 32 switches between the heating mode, the dehumidifying heating mode, the internal cycle mode, the dehumidifying cooling mode, the cooling mode, and the auxiliary heater single mode (the MAX cooling mode is present in this embodiment). do not do).
  • the operation when the heating mode, the dehumidifying and cooling mode, and the cooling mode are selected, the refrigerant flow, and the auxiliary heater single mode are the same as those in the above-described embodiment (embodiment 1), and thus the description thereof is omitted.
  • the solenoid valve 22 is closed in the heating mode, the dehumidifying cooling mode, and the cooling mode.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G. Since the air in the air flow path 3 that has flowed into the heat exchange path 3A for heating is passed through the heat radiator 4, the air in the air flow path 3 is heated by the high-temperature refrigerant in the heat radiator 4, while the heat radiator The refrigerant in 4 is deprived of heat by the air and cooled to condense. The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 through the refrigerant pipe 13C through the refrigerant pipe 13A, the solenoid valve 21 and the refrigerant pipe 13D, and is gas-liquid separated there. Repeated circulation inhaled.
  • a part of the condensed refrigerant flowing through the refrigerant pipe 13E through the radiator 4 is diverted, passes through the electromagnetic valve 22, and reaches the indoor expansion valve 8 through the internal heat exchanger 19 from the second bypass pipe 13F and the refrigerant pipe 13B. It becomes like this.
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 sequentially passes through the internal heat exchanger 19 and the evaporation pressure adjusting valve 70 and then merges with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C. Then, the refrigerant is sucked into the compressor 2 through the accumulator 12. repeat. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
  • the heat pump controller 32 selects the smaller one of the compressor target rotational speed TGNCh calculated in FIG. 4 and the compressor target rotational speed TGNCh calculated in FIG. 5 to control the rotational speed NC of the compressor 2. To do.
  • the heat pump 32 increases the valve opening degree of the outdoor expansion valve 6 based on the temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO transmitted from the air conditioning controller 20 (for control purposes). Simple control is performed in two stages, ie, the maximum opening) and the small diameter (minimum opening for control). Further, the heat pump controller 32 opens (enlarges the flow path) / closes (flows a small amount of refrigerant) the heat absorber 9 based on the temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48. The inconvenience of freezing due to too low temperature is prevented. (13) Internal cycle mode of the vehicle air conditioner 1 of FIG.
  • the heat pump controller 32 fully closes the outdoor expansion valve 6 in the state of the dehumidifying heating mode (fully closed position),
  • the solenoid valve 21 is closed. Since the outdoor expansion valve 6 and the electromagnetic valve 21 are closed, the inflow of refrigerant to the outdoor heat exchanger 7 and the outflow of refrigerant from the outdoor heat exchanger 7 are blocked.
  • the condensed refrigerant flowing through the refrigerant pipe 13E through the refrigerant flows through the electromagnetic valve 22 to the second bypass pipe 13F.
  • the refrigerant flowing through the second bypass pipe 13F reaches the indoor expansion valve 8 via the internal heat exchanger 19 from the refrigerant pipe 13B.
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 sequentially flows through the refrigerant pipe 13C through the internal heat exchanger 19 and the evaporation pressure adjustment valve 70, and repeats circulation that is sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
  • the refrigerant is circulated between the radiator 4 (radiation) and the heat absorber 9 (heat absorption) in the passage 3, heat from the outside air is not pumped up, and heating for the consumed power of the compressor 2 is performed.
  • Ability is demonstrated. Since the entire amount of the refrigerant flows through the heat absorber 9 that exhibits the dehumidifying action, the dehumidifying capacity is higher than that in the dehumidifying and heating mode, but the heating capacity is lowered.
  • the heat pump controller 32 controls the compressor 2, the outdoor expansion valve 6, and the evaporation pressure regulating valve 70 similarly to the said dehumidification heating mode, this internal cycle mode can also be considered as a part of dehumidification heating mode.
  • the compressor 2 falls into a poorly-compressed state at the start-up in a low outside air temperature environment by executing the compressor lower limit rotation speed limit control, which is required. Inconvenience that the ability to perform the function cannot be exhibited, and the problem that noise and durability are deteriorated can be solved or suppressed in advance.
  • the numerical values shown in the embodiments are not limited thereto, and should be appropriately set according to the apparatus to be applied.
  • the auxiliary heating device is not limited to the auxiliary heater 23 shown in the embodiment, and a heat medium circulation circuit that heats the air in the air flow passage 3 by circulating the heat medium heated by the heater or an engine. You may utilize the heater core etc. which circulate through the heated radiator water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Provided is an air-conditioning device for vehicles which is capable of eliminating the inconvenience of a compression malfunction occurring upon a compressor starting up when outside air temperature is low. The air-conditioning device for vehicles is provided with a compressor 2 and a control device 11 for controlling the rotation speed of the compressor 2 so as to be at a prescribed target rotation speed. An air-conditioning controller 20 of the control device 11 is provided with an outside air temperature sensor 33 for detecting the outside air temperature. In the event that the outside air temperature is no higher than a prescribed value at the time of the compressor 2 starting up, a heat pump controller 32 of the control device 11 executes control restricting the lower limit of the compressor rotation speed such that the target rotation speed of the compressor 2 is set to at least a prescribed lower rotation-speed limit A1.

Description

車両用空気調和装置Air conditioner for vehicles
 本発明は、車室内を空調するヒートポンプ式の車両用空気調和装置に関するものである。 The present invention relates to a heat pump type vehicle air conditioner that air-conditions a vehicle interior.
 近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する電動式の圧縮機と、車室内側に設けられて冷媒を放熱させる放熱器と、車室内側に設けられて冷媒を吸熱させる吸熱器と、車室外側に設けられて冷媒を放熱又は吸熱させる室外熱交換器を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器において放熱させ、放熱器において放熱した冷媒を吸熱器及び室外熱交換器において吸熱させる除湿暖房モードと、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる内部サイクルモードと、圧縮機から吐出された冷媒を放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房モードと、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房モードの各運転モードを切り換えて実行するものが開発されている(例えば、特許文献1参照)。
 そして、例えば上記暖房モードでは、冷媒回路の高圧側の圧力である放熱器の圧力に基づき、また、上記除湿暖房モードでは吸熱器の温度に基づいて圧縮機の目標回転数を算出し、この目標回転数となるように圧縮機の回転数を所定の制御上の最高回転数と最低回転数の間で制御していた。
Hybrid vehicles and electric vehicles have come into widespread use due to the emergence of environmental problems in recent years. And as an air conditioner that can be applied to such a vehicle, an electric compressor that compresses and discharges the refrigerant, a radiator that is provided on the vehicle interior side to dissipate the refrigerant, and on the vehicle interior side A heat absorber that absorbs the refrigerant and an outdoor heat exchanger that is provided outside the passenger compartment and dissipates or absorbs heat from the passenger compartment, dissipates the refrigerant discharged from the compressor in the radiator, and dissipates heat in the radiator A heating mode that absorbs heat in the outdoor heat exchanger, a dehumidifying heating mode in which the refrigerant discharged from the compressor dissipates heat in the radiator, and the refrigerant dissipated in the radiator absorbs heat in the heat absorber and the outdoor heat exchanger, The internal cycle mode in which the refrigerant discharged from the compressor is dissipated by a radiator, the refrigerant that has been radiated is depressurized, and heat is absorbed by a heat absorber, and the refrigerant discharged from the compressor is Heat is dissipated by the heat exchanger and outdoor heat exchanger, and after the decompressed refrigerant is depressurized, the dehumidifying and cooling mode in which heat is absorbed by the heat absorber, and the refrigerant discharged from the compressor is dissipated by the outdoor heat exchanger, and the heat is dissipated After the pressure of the refrigerant is reduced, a cooling mode in which each operation mode of the cooling mode in which heat is absorbed by the heat absorber is switched and executed has been developed (for example, see Patent Document 1).
For example, in the heating mode, the target rotational speed of the compressor is calculated based on the pressure of the radiator, which is the pressure on the high pressure side of the refrigerant circuit, and in the dehumidifying heating mode, based on the temperature of the heat absorber. The number of rotations of the compressor is controlled between a maximum number of rotations and a minimum number of rotations in a predetermined control so that the number of rotations becomes the same.
特開2017−13652号公報JP 2017-13652 A 特開2009−281279号公報JP 2009-281279 A
 ここで、暖房モードで例えば日射や乗員の影響等で車室内の温度が比較的高く、外気温度は低い状況の場合、圧縮機を起動する際の目標回転数は前述した最低回転数となる場合が多くなる。また、除湿暖房モードでも吸熱器の温度で制御する関係上、外気温度が低い環境で圧縮機を起動する際は、目標回転数が最低回転数となる場合が多い。このような暖房モードや除湿暖房モードにおいて、低外気温度環境下で圧縮機を起動する場合、圧縮機に吸い込まれる冷媒の密度が小さくなり、特に回転数が低い場合は圧縮室を形成し難くなり、吐出圧力が上昇し難い。このような状態が発生すると、要求される能力を発揮できなくなることに加えて、運転状態が異常となるために圧縮機において異音発生や、内部損傷が生じる懸念があった。
 例えば、上記特許文献2に記載されているようなスクロール型の圧縮機では、背圧を利用せずに固定スクロールに対して旋回スクロールを押し付けているため、圧縮室が形成できなくなると、各スクロールを密着させることができなくなって圧縮不良が発生する問題があった。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、低外気温度での圧縮機の起動時に圧縮不良が発生する不都合を解消することができる車両用空気調和装置を提供することを目的とする。
Here, in the heating mode, for example, when the temperature in the passenger compartment is relatively high and the outside air temperature is low due to the influence of solar radiation or passengers, the target rotational speed when starting the compressor is the above-mentioned minimum rotational speed. Will increase. In addition, in the dehumidifying and heating mode, the target rotational speed is often the minimum rotational speed when the compressor is started in an environment where the outside air temperature is low due to the control by the temperature of the heat absorber. In such a heating mode or dehumidifying heating mode, when the compressor is started under a low outside air temperature environment, the density of the refrigerant sucked into the compressor becomes small, and it becomes difficult to form a compression chamber particularly when the rotation speed is low. The discharge pressure is difficult to increase. When such a state occurs, in addition to being unable to exhibit the required capability, there is a concern that abnormal noise may occur and internal damage may occur in the compressor because the operating state becomes abnormal.
For example, in the scroll type compressor described in the above-mentioned Patent Document 2, the scroll is pressed against the fixed scroll without using the back pressure. There was a problem that compression could not be achieved due to the inability to adhere to each other.
The present invention has been made to solve the conventional technical problem, and provides an air conditioner for a vehicle that can eliminate the disadvantage that compression failure occurs when the compressor is started at a low outside air temperature. The purpose is to provide.
 本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、この圧縮機の回転数を所定の目標回転数に制御する制御装置を備えたものであって、制御装置は、外気温度を検出する外気温度センサを備え、圧縮機の起動時、外気温度が所定値以下である場合、当該圧縮機の目標回転数を所定の下限回転数A1以上とする圧縮機下限回転数制限制御を実行することを特徴とする。
 請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、制御上の最低回転数A2を有し、下限回転数A1は、最低回転数A2より大きい値であることを特徴とする。
 請求項3の発明の車両用空気調和装置は、上記各発明において制御装置は、圧縮機の起動後、当該圧縮機の回転数を目標回転数としてから所定時間t1が経過するまで圧縮機下限回転数制限制御を継続することを特徴とする。
 請求項4の発明の車両用空気調和装置は、上記発明において制御装置は、外気温度が低い程、下限回転数A1を高くする方向、及び/又は、所定時間t1を長くする方向に変更することを特徴とする。
 請求項5の発明の車両用空気調和装置は、上記各発明において冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器とを備え、制御装置は、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させることで車室内を暖房し、高圧側の圧力に基づいて圧縮機の目標回転数を算出する暖房モードを実行すると共に、この暖房モードにおいて圧縮機下限回転数制限制御を実行することを特徴とする。
 請求項6の発明の車両用空気調和装置は、上記各発明において冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器と、車室内に供給する空気を加熱するための補助加熱装置とを備え、制御装置は、圧縮機から吐出された冷媒を放熱器に流さず、室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させ、補助加熱装置を発熱させることで車室内を除湿暖房し、吸熱器の温度に基づいて圧縮機の目標回転数を算出する除湿暖房モードを実行すると共に、この除湿暖房モードにおいて圧縮機下限回転数制限制御を実行することを特徴とする。
 請求項7の発明の車両用空気調和装置は、請求項1乃至請求項5の発明において冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器とを備え、制御装置は、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器のみ、又は、この吸熱器と室外熱交換器にて吸熱させることで車室内を除湿暖房し、高圧側の圧力、又は、吸熱器の温度に基づいて圧縮機の目標回転数を算出する除湿暖房モードを実行すると共に、この除湿暖房モードにおいて圧縮機下限回転数制限制御を実行することを特徴とする。
An air conditioner for a vehicle according to the present invention includes a compressor that compresses a refrigerant, and a control device that controls the rotational speed of the compressor to a predetermined target rotational speed. An outside temperature sensor for detecting is provided. When the outside temperature is not more than a predetermined value at the time of starting the compressor, a compressor lower limit rotation speed limiting control is performed so that the target rotation speed of the compressor is not less than a predetermined lower limit rotation speed A1. It is characterized by doing.
The vehicle air conditioner according to a second aspect of the present invention is characterized in that, in the above invention, the control device has a minimum rotational speed A2 for control, and the lower limit rotational speed A1 is greater than the minimum rotational speed A2. To do.
According to a third aspect of the present invention, there is provided a vehicle air conditioner according to each of the first and second aspects of the present invention, wherein the control device starts the compressor lower limit rotation until a predetermined time t1 elapses after the rotation speed of the compressor is set as the target rotation speed. The number limiting control is continued.
According to a fourth aspect of the present invention, in the vehicle air conditioner of the present invention, the control device changes the direction to increase the lower limit rotational speed A1 and / or to increase the predetermined time t1 as the outside air temperature is lower. It is characterized by.
According to a fifth aspect of the present invention, there is provided a vehicle air conditioner that cools the air supplied to the vehicle interior by absorbing heat from the heat radiator that dissipates the refrigerant and heats the air supplied to the vehicle interior. And a heat exchanger that is provided outside the passenger compartment. The control device dissipates the refrigerant discharged from the compressor with a radiator and decompresses the radiated refrigerant. The vehicle interior is heated by absorbing heat with the heat exchanger, and a heating mode is calculated in which the target rotation speed of the compressor is calculated based on the pressure on the high pressure side, and the compressor lower limit rotation speed limit control is performed in this heating mode. It is characterized by performing.
According to a sixth aspect of the present invention, there is provided an air conditioner for a vehicle that cools air supplied to the vehicle interior by absorbing heat from the heat radiator that dissipates the refrigerant and heats the air supplied to the vehicle interior. A heat absorber, an outdoor heat exchanger provided outside the vehicle interior, and an auxiliary heating device for heating the air supplied to the vehicle interior, and the control device dissipates the refrigerant discharged from the compressor. Do not flow to the heater, let it flow to the outdoor heat exchanger to dissipate heat, depressurize the dissipated refrigerant, absorb heat with the heat absorber, and heat the auxiliary heating device to dehumidify and heat the interior of the vehicle, the temperature of the heat absorber The dehumidifying and heating mode for calculating the target rotational speed of the compressor is executed based on the above, and the compressor lower limit rotational speed limiting control is executed in the dehumidifying and heating mode.
According to a seventh aspect of the present invention, there is provided a vehicle air conditioner according to any one of the first to fifth aspects of the present invention, wherein the refrigerant dissipates heat and heats the air supplied to the vehicle interior, and the refrigerant absorbs heat into the vehicle interior. A heat absorber for cooling the air supplied to the vehicle and an outdoor heat exchanger provided outside the passenger compartment, and the control device causes the refrigerant discharged from the compressor to dissipate heat by the radiator and dissipates the refrigerant. After the pressure is reduced, the vehicle interior is dehumidified and heated by absorbing heat only with the heat absorber or with this heat absorber and the outdoor heat exchanger, and the target of the compressor is based on the pressure on the high pressure side or the temperature of the heat absorber. The dehumidifying and heating mode for calculating the rotation speed is executed, and the compressor lower limit rotation speed limiting control is executed in the dehumidifying and heating mode.
 本発明によれば、冷媒を圧縮する圧縮機と、この圧縮機の回転数を所定の目標回転数に制御する制御装置を備えた車両用空気調和装置において、制御装置が、外気温度を検出する外気温度センサを備え、圧縮機の起動時、外気温度が所定値以下である場合、当該圧縮機の目標回転数を所定の下限回転数A1以上とする圧縮機下限回転数制限制御を実行するようにしたので、例えば、請求項5乃至請求項7の如き暖房モードや除湿暖房モードでの圧縮機の起動時、外気温度が所定値以下の環境下では圧縮機の目標回転数は強制的に下限回転数A1以上とされるようになる。
 これにより、低外気温度環境下での起動時に圧縮機が圧縮不良状態に陥り、要求される能力を発揮できなくなる不都合や、騒音及び耐久性の悪化が生じる問題を未然に解消、若しくは、抑制することができるようになる。
 この場合、下限回転数A1は、請求項2の発明の如く圧縮機の制御上の最低回転数A2より大きい値である。
 そして、請求項3の発明の如く制御装置が、圧縮機の起動後、当該圧縮機の回転数を目標回転数としてから所定時間t1が経過するまで圧縮機下限回転数制限制御を継続することで、圧縮機の圧縮不良状態による不都合の発生を確実に解消することが可能となる。
 また、請求項4の発明の如く制御装置が、外気温度が低い程、下限回転数A1を高くする方向、及び/又は、所定時間t1を長くする方向に変更するようにすれば、必要最低限の回転数の変更、或いは、時間で圧縮機の圧縮不良状態による不都合の発生を効果的に解消することができるようになるものである。
According to the present invention, in a vehicle air conditioner including a compressor that compresses a refrigerant and a control device that controls the rotational speed of the compressor to a predetermined target rotational speed, the control device detects an outside air temperature. An outside air temperature sensor is provided, and when the compressor is started, if the outside air temperature is equal to or lower than a predetermined value, compressor lower limit rotation speed limitation control is performed so that the target rotation speed of the compressor is equal to or higher than a predetermined lower limit rotation speed A1 Therefore, for example, when the compressor is started in the heating mode or the dehumidifying heating mode as in claims 5 to 7, the target rotational speed of the compressor is forcibly set to a lower limit in an environment where the outside air temperature is a predetermined value or less. The rotation speed is set to A1 or more.
This eliminates or suppresses inconvenience that the compressor falls into a poorly compressed state when starting up in a low outside air temperature environment and the required ability cannot be exhibited, and the problem that noise and durability deteriorate. Will be able to.
In this case, the lower limit rotational speed A1 is a value larger than the minimum rotational speed A2 in the control of the compressor as in the second aspect of the invention.
Then, after the start of the compressor, the control device continues the compressor lower limit rotation speed limit control until a predetermined time t1 elapses after the rotation speed of the compressor is set as the target rotation speed. Thus, it is possible to reliably eliminate the inconvenience caused by the compression failure state of the compressor.
Further, if the control device is changed to a direction in which the lower limit rotational speed A1 is increased and / or the predetermined time t1 is increased as the outside air temperature is lower as in the invention of claim 4, the minimum necessary The occurrence of inconvenience due to a change in the rotational speed of the compressor or a poorly compressed state of the compressor over time can be effectively eliminated.
本発明を適用した一実施形態の車両用空気調和装置の構成図である(実施例1)。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied (Example 1). 図1の車両用空気調和装置の制御装置のブロック図である。It is a block diagram of the control apparatus of the air conditioning apparatus for vehicles of FIG. 図1の車両用空気調和装置の空気流通路の模式図である。It is a schematic diagram of the airflow path of the vehicle air conditioner of FIG. 図2のヒートポンプコントローラの暖房モードにおける圧縮機制御に関する制御ブロック図である。It is a control block diagram regarding the compressor control in the heating mode of the heat pump controller of FIG. 図2のヒートポンプコントローラの除湿暖房モードにおける圧縮機制御に関する制御ブロック図である。It is a control block diagram regarding the compressor control in the dehumidification heating mode of the heat pump controller of FIG. 図2のヒートポンプコントローラの除湿暖房モードにおける補助ヒータ(補助加熱装置)制御に関する制御ブロック図である。It is a control block diagram regarding auxiliary heater (auxiliary heating apparatus) control in the dehumidification heating mode of the heat pump controller of FIG. 図2のヒートポンプコントローラによる圧縮機下限回転数制限制御を説明するフローチャートである。It is a flowchart explaining the compressor lower limit rotation speed limitation control by the heat pump controller of FIG. 図2のヒートポンプコントローラによる圧縮機起動時のTGNCh(TGNCc)の変化を示す図である。It is a figure which shows the change of TGNCh (TGNCc) at the time of the compressor starting by the heat pump controller of FIG. 本発明の他の実施例の車両用空気調和装置の構成図である(実施例2)。It is a block diagram of the air conditioning apparatus for vehicles of the other Example of this invention (Example 2).
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリの電力で駆動されるものとする。即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房モードを行い、更に、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(最太冷房モード)及び補助ヒータ単独モードの各運転モードを選択的に実行するものである。
 尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式(バッテリ駆動)の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を放熱させて車室内に供給する空気を加熱するためのヒータとしての放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6(減圧装置)と、車室外に設けられて冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁(機械式でもよい)から成る室内膨張弁8(減圧装置)と、空気流通路3内に設けられ、冷房時及び除湿時に冷媒を吸熱させて車室内外から吸い込んで車室内に供給する空気を冷却するための吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。そして、この冷媒回路Rには所定量の冷媒と潤滑用のオイルが充填されている。
 尚、実施例の圧縮機2は前述した特許文献2に示されているスクロール型の圧縮機である。また、室外熱交換器7には室外送風機15が設けられており、この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させる。それにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房や除湿時に開放される開閉弁としての電磁弁17を介してレシーバドライヤ部14に接続され、過冷却部16の冷媒出口側の冷媒配管13Bは室内膨張弁8介して吸熱器9の冷媒入口側に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。
 また、過冷却部16と室内膨張弁8間の冷媒配管13Bは、吸熱器9の冷媒出口側の冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出た低温の冷媒により冷却(過冷却)される構成とされている。
 また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房モードで開放される開閉弁としての電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。これにより、電磁弁21は室外熱交換器7の冷媒出口側に接続され、吸熱器9の冷媒出口側は電磁弁21の冷媒出口側に連通接続されたかたちとなる。そして、冷媒配管13Cがアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。更に、放熱器4の冷媒出口側の冷媒配管13Eは室外膨張弁6を介して室外熱交換器7の冷媒入口側に接続されている。
 また、圧縮機2の冷媒吐出側と放熱器4の冷媒入口側の間の冷媒配管13Gには後述する除湿暖房とMAX冷房時に閉じられる開閉弁としての電磁弁30(流路切換装置を構成する)が介設されている。この場合、冷媒配管13Gは電磁弁30の上流側でバイパス配管35に分岐しており、このバイパス配管35は除湿暖房とMAX冷房時に開放される開閉弁としての電磁弁40(これも流路切換装置を構成する)を介して室外膨張弁6の冷媒出口側の冷媒配管13Eに連通接続されている。
 即ち、バイパス配管35は圧縮機2の冷媒吐出側と室外膨張弁6の冷媒出口側とを連通し、電磁弁30が閉じられ、電磁弁40が開放された状態では、圧縮機2から吐出された冷媒を放熱器4及び室外膨張弁6に流すこと無く、室外熱交換器7に直接流入させる。そして、これらバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45が構成される。
 このようなバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45を構成したことで、後述する如く圧縮機2から吐出された冷媒を放熱器4及び室外膨張弁6に流すこと無く、室外熱交換器7に直接流入させる除湿暖房モードやMAX冷房モードと、圧縮機2から吐出された冷媒を放熱器4に流入させる暖房モードや除湿冷房モード、冷房モードとの切り換えを円滑に行うことができるようになる。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気(車室内に供給する空気)を空気流通路3に送給し、吸熱器9に通風するための室内送風機(ブロワファン)27が設けられている。
 また、図1において23は実施例の車両用空気調和装置1に設けられた補助加熱装置としての補助ヒータである。実施例の補助ヒータ23は電気ヒータであるPTCヒータにて構成されており、空気流通路3の空気の流れに対して、放熱器4の風上側(空気上流側)となる空気流通路3内に設けられている。そして、補助ヒータ23に通電されて発熱すると、吸熱器9を経て放熱器4に流入する空気流通路3内の空気が加熱される。即ち、この補助ヒータ23が所謂ヒータコアとなり、車室内の暖房を行い、或いは、それを補完する。
 ここで、HVACユニット10の吸熱器9より風下側(空気下流側)の空気流通路3は仕切壁10Aにより区画され、暖房用熱交換通路3Aとそれをバイパスするバイパス通路3Bとが形成されており、前述した放熱器4と補助ヒータ23は暖房用熱交換通路3Aに配置されている。
 また、補助ヒータ23の風上側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を、補助ヒータ23及び放熱器4が配置された暖房用熱交換通路3Aに通風する割合を調整するエアミックスダンパ28が設けられている。
 更に、放熱器4の風下側におけるHVACユニット10には、FOOT(フット)吹出口29A(第1の吹出口)、VENT(ベント)吹出口29B(FOOT吹出口29Aに対しては第2の吹出口、DEF吹出口29Cに対しては第1の吹出口)、DEF(デフ)吹出口29C(第2の吹出口)の各吹出口が形成されている。FOOT吹出口29Aは車室内の足下に空気を吹き出すための吹出口で、最も低い位置にある。また、VENT吹出口29Bは車室内の運転者の胸や顔付近に空気を吹き出すための吹出口で、FOOT吹出口29Aより上方にある。そして、DEF吹出口29Cは車両のフロントガラス内面に空気を吹き出すための吹出口で、他の吹出口29A、29Bよりも上方の最も高い位置にある。
 そして、FOOT吹出口29A、VENT吹出口29B、及び、DEF吹出口29Cには、空気の吹き出し量を制御するFOOT吹出口ダンパ31A、VENT吹出口ダンパ31B、及び、DEF吹出口ダンパ31Cがそれぞれ設けられている。
 次に、図2は実施例の車両用空気調和装置1の制御装置11のブロック図を示している。制御装置11は、何れもプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された空調コントローラ20及びヒートポンプコントローラ32から構成されており、これらがCAN(Controller Area Network)やLIN(Local Interconnect Network)を構成する車両通信バス65に接続されている。また、圧縮機2と補助ヒータ23も車両通信バス65に接続され、これら空調コントローラ20、ヒートポンプコントローラ32、圧縮機2及び補助ヒータ23が車両通信バス65を介してデータの送受信を行うように構成されている。
 空調コントローラ20は、車両の車室内空調の制御を司る上位のコントローラであり、この空調コントローラ20の入力には、車両の外気温度(Tam)を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれて吸熱器9に流入する空気の温度(吸込空気温度Tas)を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度(室内温度Tin)を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO濃度センサ39と、車室内に吹き出される空気の温度を
検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52の各出力と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53が接続されている。
 また、空調コントローラ20の出力には、室外送風機15と、室内送風機27と、吸込切換ダンパ26と、エアミックスダンパ28と、各吹出口ダンパ31A~31Cが接続され、それらは空調コントローラ20により制御される。
 ヒートポンプコントローラ32は、主に冷媒回路Rの制御を司るコントローラであり、このヒートポンプコントローラ32の入力には、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力を検出する吸込圧力センサ44と、圧縮機2の吸込冷媒温度Tsを検出する吸込温度センサ55と、放熱器4の冷媒温度(放熱器温度TCI)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の冷媒温度(吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力を検出する吸熱器圧力センサ49と、補助ヒータ23の温度(補助ヒータ温度Tptc)を検出する補助ヒータ温度センサ50と、室外熱交換器7の出口の冷媒温度(室外熱交換器温度TXO)を検出する室外熱交換器温度センサ54と、室外熱交換器7の出口の冷媒圧力(室外熱交換器圧力PXO)を検出する室外熱交換器圧力センサ56の各出力が接続されている。
 また、ヒートポンプコントローラ32の出力には、室外膨張弁6、室内膨張弁8と、電磁弁30(リヒート用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁40(バイパス用)の各電磁弁が接続され、それらはヒートポンプコントローラ32により制御される。尚、圧縮機2と補助ヒータ23はそれぞれコントローラを内蔵しており、圧縮機2と補助ヒータ23のコントローラは車両通信バス65を介してヒートポンプコントローラ32とデータの送受信を行い、このヒートポンプコントローラ32によって制御される。
 ヒートポンプコントローラ32と空調コントローラ20は車両通信バス65を介して相互にデータの送受信を行い、各センサの出力や空調操作部53にて入力された設定に基づき、各機器を制御するものであるが、この場合の実施例では外気温度センサ33、吐出圧力センサ42、車速センサ52、空気流通路3に流入した空気の体積風量Ga(空調コントローラ20が算出)、エアミックスダンパ28による風量割合SW(空調コントローラ20が算出)、空調操作部53の出力は空調コントローラ20から車両通信バス65を介してヒートポンプコントローラ32に送信され、ヒートポンプコントローラ32による制御に供される構成とされている。
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。この実施例では制御装置11(空調コントローラ20、ヒートポンプコントローラ32)は、暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(最大冷房モード)及び補助ヒータ単独モードの各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れと制御の概略について説明する。
 (1)暖房モード
 ヒートポンプコントローラ32により(オートモード)或いは空調操作部53へのマニュアル操作(マニュアルモード)により暖房モードが選択されると、ヒートポンプコントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁30(リヒート用)を開放し、電磁弁40(バイパス用)を閉じる。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量を調整してもよい。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)にて加熱された空気は各吹出口29A~29Cから吹き出されるので、これにより車室内の暖房が行われることになる。
 ヒートポンプコントローラ32は、空調コントローラ20が目標吹出温度TAOから算出する目標ヒータ温度TCO(放熱器温度TCIの目標値)から目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧側の圧力)に基づいて圧縮機2の回転数NCを制御し、放熱器4による加熱を制御する。また、ヒートポンプコントローラ32は、放熱器温度センサ46が検出する放熱器4の冷媒温度(放熱器温度TCI)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度SCを制御する。
 また、ヒートポンプコントローラ32はこの暖房モードにおいては、車室内空調に要求される暖房能力に対して放熱器4による暖房能力が不足する場合、その不足する分を補助ヒータ23の発熱で補完するように補助ヒータ23の通電を制御する。それにより、快適な車室内暖房を実現し、且つ、室外熱交換器7の着霜も抑制する。このとき、補助ヒータ23は放熱器4の空気上流側に配置されているので、空気流通路3を流通する空気は放熱器4の前に補助ヒータ23に通風されることになる。
 ここで、補助ヒータ23が放熱器4の空気下流側に配置されていると、実施例の如くPTCヒータで補助ヒータ23を構成した場合には、補助ヒータ23に流入する空気の温度が放熱器4によって上昇するため、PTCヒータの抵抗値が大きくなり、電流値も低くなって発熱量が低下してしまうが、放熱器4の空気上流側に補助ヒータ23を配置することで、実施例の如くPTCヒータから構成される補助ヒータ23の能力を十分に発揮させることができるようになる。
 (2)除湿暖房モード
 次に、除湿暖房モードでは、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
 これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は放熱器4及び室外膨張弁6に流れること無く、室外熱交換器7に直接流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却され、且つ、当該空気中の水分が吸熱器9に凝結して付着するので、空気流通路3内の空気は冷却され、且つ、除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。
 このとき、室外膨張弁6の弁開度は全閉とされているので、圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。更に、この除湿暖房モードにおいてヒートポンプコントローラ32は、補助ヒータ23に通電して発熱させる。これにより、吸熱器9にて冷却され、且つ、除湿された空気は補助ヒータ23を通過する過程で更に加熱され、温度が上昇するので車室内の除湿暖房が行われることになる。
 ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)と、空調コントローラ20が算出する吸熱器温度Teの目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御すると共に、補助ヒータ温度センサ50が検出する補助ヒータ温度Tptcと前述した目標ヒータ温度TCO(この場合、補助ヒータ温度Tptcの目標値となる)に基づいて補助ヒータ23の通電(発熱による加熱)を制御することで、吸熱器9での空気の冷却と除湿を適切に行いながら、補助ヒータ23による加熱で各吹出口29A~29Cから車室内に吹き出される空気温度の低下を的確に防止する。これにより、車室内に吹き出される空気を除湿しながら、その温度を適切な暖房温度に制御することが可能となり、車室内の快適且つ効率的な除湿暖房を実現することができるようになる。
 尚、補助ヒータ23は放熱器4の空気上流側に配置されているので、補助ヒータ23で加熱された空気は放熱器4を通過することになるが、この除湿暖房モードでは放熱器4に冷媒は流されないので、補助ヒータ23にて加熱された空気から放熱器4が吸熱してしまう不都合も解消される。即ち、放熱器4によって車室内に吹き出される空気の温度が低下してしまうことが抑制され、COPも向上することになる。
 (3)除湿冷房モード
 次に、除湿冷房モードでは、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を開放し、電磁弁40を閉じる。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。この除湿冷房モードではヒートポンプコントローラ32は補助ヒータ23に通電しないので、吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)される。これにより車室内の除湿冷房が行われることになる。
 ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEO(空調コントローラ20から送信される)に基づいて圧縮機2の回転数NCを制御する。また、ヒートポンプコントローラ32は前述した目標ヒータ温度TCOから目標放熱器圧力PCOを算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて室外膨張弁6の弁開度を制御し、放熱器4による加熱を制御する。
 (4)冷房モード
 次に、冷房モードでは、ヒートポンプコントローラ32は上記除湿冷房モードの状態において室外膨張弁6の弁開度を全開とする。そして、圧縮機2を運転し、補助ヒータ23には通電しない。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の空気が、暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風される割合を調整する状態とする。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入すると共に、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒はそれを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着する。
 吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気が各吹出口29A~29Cから車室内に吹き出されるので(一部は放熱器4を通過して熱交換する)、これにより車室内の冷房が行われることになる。また、この冷房モードにおいては、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である前述した目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御する。
 (5)MAX冷房モード(最大冷房モード)
 次に、MAX冷房モード(最大冷房モード)では、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2を運転し、補助ヒータ23には通電しない。空調コントローラ20は、各送風機15、27を運転し、エアミックスダンパ28は、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の空気が、暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風される割合を調整する状態とする。
 これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は放熱器4及び室外膨張弁6に流れること無く、室外熱交換器7に直接流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着するので、空気流通路3内の空気は除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。このとき、室外膨張弁6は全閉とされているので、同様に圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。
 ここで、前述した冷房モードでは放熱器4に高温の冷媒が流れているため、放熱器4からHVACユニット10への直接の熱伝導が少なからず生じるが、このMAX冷房モードでは放熱器4に冷媒が流れないため、放熱器4からHVACユニット10に伝達される熱で吸熱器9からの空気流通路3内の空気が加熱されることも無くなる。そのため、車室内の強力な冷房が行われ、特に外気温度Tamが高いような環境下では、迅速に車室内を冷房して快適な車室内空調を実現することができるようになる。また、このMAX冷房モードにおいても、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である前述した目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御する。
 (6)補助ヒータ単独モード
 尚、実施例の制御装置11は室外熱交換器7に過着霜が生じた場合などに、冷媒回路Rの圧縮機2と室外送風機15を停止し、補助ヒータ23に通電してこの補助ヒータ23のみで車室内を暖房する補助ヒータ単独モードを有している。この場合にも、ヒートポンプコントローラ32は補助ヒータ温度センサ50が検出する補助ヒータ温度Tptcと前述した目標ヒータ温度TCOに基づいて補助ヒータ23の通電(発熱)を制御する。
 また、空調コントローラ20は室内送風機27を運転し、エアミックスダンパ28は、室内送風機27から吹き出された空気流通路3内の空気を暖房用熱交換通路3Aの補助ヒータ23に通風し、風量を調整する状態とする。補助ヒータ23にて加熱された空気が各吹出口29A~29Cから車室内に吹き出されるので、これにより車室内の暖房が行われることになる。
 (7)運転モードの切換
 空調コントローラ20は、下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset−Tin)×K+Tbal(f(Tset、SUN、Tam))
                                   ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する室内温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
 ヒートポンプコントローラ32は、起動時には空調コントローラ20から車両通信バス65を介して送信される外気温度Tam(外気温度センサ33が検出する)と目標吹出温度TAOとに基づいて上記各運転モードのうちの何れかの運転モードを選択すると共に、各運転モードを車両通信バス65を介して空調コントローラ20に送信する。
 また、ヒートポンプコントローラ32は、起動後は外気温度Tam、車室内の湿度、目標吹出温度TAO、後述する加熱温度TH(放熱器4の風下側の空気の温度。推定値)、目標ヒータ温度TCO、吸熱器温度Te、目標吸熱器温度TEO、車室内の除湿要求の有無、等のパラメータに基づいて各運転モードの切り換えを行うことで、環境条件や除湿の要否に応じて的確に暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード及び補助ヒータ単独モードを切り換えて車室内に吹き出される空気の温度を目標吹出温度TAOに制御し、快適且つ効率的な車室内空調を実現するものである。
 (8)ヒートポンプコントローラ32による暖房モードでの圧縮機2の制御
 次に、図4を用いて前述した暖房モードにおける圧縮機2の制御について詳述する。図4は暖房モード用の圧縮機2の目標回転数(圧縮機目標回転数)TGNChを決定するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部58は外気温度センサ33から得られる外気温度Tamと、室内送風機27のブロワ電圧BLVと、SW=(TAO−Te)/(TH−Te)で得られるエアミックスダンパ28による風量割合SWと、放熱器4の出口における過冷却度SCの目標値である目標過冷却度TGSCと、放熱器4の温度の目標値である前述した目標ヒータ温度TCO(空調コントローラ20から送信される)と、放熱器4の圧力の目標値である目標放熱器圧力PCOに基づいて圧縮機目標回転数のF/F操作量TGNChffを演算する。
 ここで、風量割合SWを算出する上記THは、放熱器4の風下側の空気の温度(以下、加熱温度と云う)であり、ヒートポンプコントローラ32が下記に示す一次遅れ演算の式(II)から推定する。
 TH=(INTL×TH0+Tau×THz)/(Tau+INTL) ・・(II)
 ここで、INTLは演算周期(定数)、Tauは一次遅れの時定数、TH0は一次遅れ演算前の定常状態における加熱温度THの定常値、THzは加熱温度THの前回値である。このように加熱温度THを推定することで、格別な温度センサを設ける必要がなくなる。
 尚、ヒートポンプコントローラ32は前述した運転モードによって上記時定数Tau及び定常値TH0を変更することにより、上述した推定式(II)を運転モードによって異なるものとし、加熱温度THを推定する。そして、この加熱温度THは車両通信バス65を介して空調コントローラ20に送信される。
 前記目標放熱器圧力PCOは上記目標過冷却度TGSCと目標ヒータ温度TCOに基づいて目標値演算部59が演算する。更に、F/B(フィードバック)操作量演算部60はこの目標放熱器圧力PCOと放熱器4の冷媒圧力である放熱器圧力PCI(冷媒回路Rの高圧側の圧力)に基づいて圧縮機目標回転数のF/B操作量TGNChfbを演算する。そして、F/F操作量演算部58が演算したF/F操作量TGNCnffとF/B操作量演算部60が演算したF/B操作量TGNChfbは加算器61で加算され、リミット設定部62で制御上の最低回転数ECNpdLimLo(以下、A2とする)と制御上の最高回転数ECNpdLimHiのリミットが付けられた後、圧縮機目標回転数TGNChとして決定される。前記暖房モードにおいては、ヒートポンプコントローラ32はこの圧縮機目標回転数TGNChに基づいて圧縮機2の回転数NCを制御する。
 (9)ヒートポンプコントローラ32による除湿暖房モードでの圧縮機2及び補助ヒータ23の制御
 一方、図5は前記除湿暖房モード用の圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを決定するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F操作量演算部63は外気温度Tamと、空気流通路3に流入した空気の体積風量Gaと、放熱器4の圧力(放熱器圧力PCI)の目標値である目標放熱器圧力PCOと、吸熱器9の温度(吸熱器温度Te)の目標値である目標吸熱器温度TEOに基づいて圧縮機目標回転数のF/F操作量TGNCcffを演算する。
 また、F/B操作量演算部64は目標吸熱器温度TEO(空調コントローラ20から送信される)と吸熱器温度Teに基づいて圧縮機目標回転数のF/B操作量TGNCcfbを演算する。そして、F/F操作量演算部63が演算したF/F操作量TGNCcffとF/B操作量演算部64が演算したF/B操作量TGNCcfbは加算器66で加算され、リミット設定部67で制御上の最低回転数TGNCcLimLo(以下、A2とする)と制御上の最高回転数TGNCcLimHiのリミットが付けられた後、圧縮機目標回転数TGNCcとして決定される。除湿暖房モードにおいては、ヒートポンプコントローラ32はこの圧縮機目標回転数TGNCcに基づいて圧縮機2の回転数NCを制御する。
 また、図6は除湿暖房モードにおける補助ヒータ23の補助ヒータ要求能力TGQPTCを決定するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32の減算器73には目標ヒータ温度TCOと補助ヒータ温度Tptcが入力され、目標ヒータ温度TCOと補助ヒータ温度Tptcの偏差(TCO−Tptc)が算出される。この偏差(TCO−Tptc)はF/B制御部74に入力され、このF/B制御部74は偏差(TCO−Tptc)を無くして補助ヒータ温度Tptcが目標ヒータ温度TCOとなるように補助ヒータ要求能力F/B操作量を演算する。
 このF/B制御部74で算出された補助ヒータ要求能力F/B操作量はリミット設定部76で制御上の下限値QptcLimLoと制御上の上限値QptcLimHiのリミットが付けられた後、補助ヒータ要求能力TGQPTCとして決定される。除湿暖房モードにおいては、コントローラ32はこの補助ヒータ要求能力TGQPTCに基づいて補助ヒータ23の通電を制御することにより、補助ヒータ温度Tptcが目標ヒータ温度TCOとなるように補助ヒータ23の発熱(加熱)を制御する。
 このようにしてヒートポンプコントローラ32は、除湿暖房モードでは吸熱器温度Teと目標吸熱器温度TEOに基づいて圧縮機の運転を制御すると共に、目標ヒータ温度TCOに基づいて補助ヒータ23の発熱を制御することで、除湿暖房モードにおける吸熱器9による冷却と除湿、並びに、補助ヒータ23による加熱を的確に制御する。これにより、車室内に吹き出される空気をより適切に除湿しながら、その温度をより正確な暖房温度に制御することが可能となり、より一層快適且つ効率的な車室内の除湿暖房を実現することができるようになる。
 (10)エアミックスダンパ28の制御
 次に、図3を参照しながら空調コントローラ20によるエアミックスダンパ28の制御について説明する。図3においてGaは前述した空気流通路3に流入した空気の体積風量、Teは吸熱器温度、THは前述した加熱温度(放熱器4の風下側の空気の温度)である。
 空調コントローラ20は、前述した如き式(下記式(III))により算出される暖房用熱交換通路3Aの放熱器4と補助ヒータ23に通風する風量割合SWに基づき、当該割合の風量となるようにエアミックスダンパ28を制御することで放熱器4(及び補助ヒータ23)への通風量を調整する。
 SW=(TAO−Te)/(TH−Te)   ・・(III)
 即ち、暖房用熱交換通路3Aの放熱器4と補助ヒータ23に通風する風量割合SWは0≦SW≦1の範囲で変化し、「0」で暖房用熱交換通路3Aへの通風をせず、空気流通路3内の全ての空気をバイパス通路3Bに通風するエアミックス全閉状態、「1」で空気流通路3内の全ての空気を暖房用熱交換通路3Aに通風するエアミックス全開状態となる。即ち、放熱器4への風量はGa×SWとなる。
 (11)暖房モード及び除湿暖房モードにおける圧縮機下限回転数制限制御
 次に、図7及び図8を参照しながら、車両用空気調和装置1の運転モードが前述した暖房モード及び除湿暖房モードである際に、ヒートポンプコントローラ32が実行する圧縮機下限回転数制限制御の一例について説明する。前述した如く暖房モードや除湿暖房モードで圧縮機2を起動する際、外気温度Tamが低い環境では圧縮機2の圧縮不良が発生し易くなる。そこで、ヒートポンプコントローラ32は暖房モードや除湿暖房モードでの圧縮機2の起動時、以下に説明する制御を実行する。
 即ち、ヒートポンプコントローラ32は、車両用空気調和装置1が起動(車両の起動)されると、後述するフラグやタイマをリセットした後、図7のステップS1で後述する圧縮機下限回転数制限制御フラグfNCLLimがリセットされているか否か判断する。この時点ではリセットされているので、次にステップS2で圧縮機2の起動が行われたか否か判断する。現在は車両用空気調和装置1(車両)の起動時、又は、圧縮機2が一旦停止した後の再起動時であったものとすると、ヒートポンプコントローラ32は圧縮機2が起動時であると判断し、ステップS3に進んで現在の運転モードが前述した暖房モード又は除湿暖房モードであるか否か判断する。
 そして、暖房モード又は除湿暖房モードでの圧縮機2の起動時である場合、ヒートポンプコントローラ32はステップS2、S3からステップS4に進み、空調コントローラ20から送信される外気温度Tamが所定値T1(例えば、10℃)以下であるか否か判断する。圧縮機2の起動時において外気温度Tamが所定値T1以下の低い環境であった場合、ヒートポンプコントローラ32はステップS4からステップS5に進み、前述したフラグ(圧縮機下限回転数制限制御フラグ)fNCLLimをセットして、圧縮機下限回転数制限制御を開始する。
 次に、ヒートポンプコントローラ32は、ステップS6に進み、前述した如く暖房モードで算出された圧縮機目標回転数TGNCh(図4)又は除湿暖房モードで算出された圧縮機目標回転数TGNCc(図5。何れも圧縮機2の目標回転数)が所定の下限回転数A1より低いか否か判断する。この下限回転数A1は少なくとも前述した制御上の最低回転数A2(暖房モードではECNpdLimLo、除湿暖房モードではTGNCcLimLo。何れも実施例では800rpm)より大きい値、実施例では1500rpmに設定されている。
 今、図4や図5で算出された圧縮機目標回転数TGNChやTGNCcが下限回転数A1より低かった場合(例えば、800rpm等)、ヒートポンプコントローラ32はステップS7に進み、圧縮機目標回転数TGNChやTGNCcを強制的に下限回転数A1(1500rpm)に上昇させる。
 尚、図4や図5で算出される圧縮機目標回転数TGNChやTGNCcが下限回転数A1より高い場合、例えば3000rpm等であった場合、ヒートポンプコントローラ32はステップS7では無く後述するステップS8に進むので、圧縮機目標回転数TGNCh、TGNCcは当該算出された3000rpmとされる。即ち、ヒートポンプコントローラ32は圧縮機目標回転数TGNChやTGNCcが下限回転数A1より低くなることを制限し、下限回転数A1以上になるようにして圧縮不良状態に陥ることを防ぐ。
 ヒートポンプコントローラ32は、次にステップS8で圧縮機2の起動後、当該圧縮機2の回転数NCを目標回転数TGNChやTGNCc(下限回転数A1以上の目標回転数TGNCh、TGNCc)としてから所定時間t1が経過しているか否か判断する。この所定時間t1は実施例では10秒が設定されており、経過時間はヒートポンプコントローラ32がその機能として有するタイマにより計時しているものである。
 そして、現時点では圧縮機2の回転数NCを目標回転数TGNChやTGNCc(下限回転数A1以上)としてから所定時間t1が経過していないものとすると、ヒートポンプコントローラ32はステップS8から他の制御に移行し、再びステップS1に戻ってくる。しかしながら、このときフラグfNCLLimはセットされているので、ステップS1からはステップS6に進むようになり、以後、図4や図5で算出された圧縮機目標回転数TGNChやTGNCcが下限回転数A1より低い限り、ヒートポンプコントローラ32はステップS7に進んで強制的に圧縮機目標回転数TGNCh、TGNCcを下限回転数A1に上昇させ、圧縮機目標回転数TGNCh、TGNCcが下限回転数A1以上の場合は当該圧縮機目標回転数TGNCh、TGNCcとする。
 そして、圧縮機2の回転数NCを目標回転数TGNChやTGNCc(下限回転数A1以上)としてから所定時間t1(10秒)が経過すると、ヒートポンプコントローラ32はステップS8からステップS9に進み、フラグfNCLLimをリセットする。これにより圧縮機下限回転数制限制御が終了され、以後はステップS1からステップS2に進むようになり、現在が圧縮機2の起動時でなければステップS3以降には進まなくなる。従って、圧縮機2の回転数NCは、前述した図4のF/F操作量演算部58が演算したF/F操作量TGNCnffとF/B操作量演算部60が演算したF/B操作量TGNChfbを加算して得られる圧縮機目標回転数TGNCh(暖房モード)や、図5のF/F操作量演算部63が演算したF/F操作量TGNCcffとF/B操作量演算部64が演算したF/B操作量TGNCcfbを加算して得られる圧縮機目標回転数TGNCc(除湿暖房モード)で制御されるようになる。
 この様子が図8に示されている。尚、図8の縦軸は圧縮機目標回転数TGNCh、TGNCcであり、横軸は時間である。暖房モードや除湿暖房モードでの起動時、図4や図5で算出された圧縮機目標回転数TGNChやTGNCcが、例えば図8中に太い破線で示す如く最低回転数A2(下限回転数A1より低い値)であった場合、ヒートポンプコントローラ32は圧縮機目標回転数TGNChやTGNCcを下限回転数A1に上昇させ、図8中に太い実線で示す如く圧縮機2の起動から回転数NCを所定の上昇率で下限回転数A1まで上げていく。
 そして、圧縮機2の回転数NCを圧縮機目標回転数TGNChやTGNCc(下限回転数A1)としてから所定時間t1が経過するまで、図4や図5で算出された圧縮機目標回転数TGNChやTGNCcが下限回転数A1より低い限り、圧縮機目標回転数TGNChやTGNCcを下限回転数A1に維持し、所定時間t1が経過した後は、図4や図5で算出された圧縮機目標回転数TGNChやTGNCcである最低回転数A2とし、圧縮機2の回転数NCを当該圧縮機目標回転数TGNChやTGNCc(最低回転数A2)に下げる(図8中にAUTOで示す)。
 (11−1)下限回転数A1、所定時間t1の変更制御
 ここで、圧縮機2の圧縮不良状態は外気温度Tamが低い程、発生し易くなるので、ヒートポンプコントローラ32は、実施例では外気温度Tamが低い程、前述した下限回転数A1を高くする方向で変更する。例えば、外気温度Tamが実施例の所定値T1(10℃)より低い0℃≦Tam<10℃の範囲であるとき、ヒートポンプコントローラ32は下限回転数A1を前述した実施例の1500rpmよりも高い例えば1700rpmとし、外気温度Tamが例えば0℃より低いときは、下限回転数A1を例えば2000rpmとする。係る変更は上記のように段階的に行ってもよく、外気温度Tamの変化に応じてリニアに変更してもよい。
 また、同様の理由で実施例ではヒートポンプコントローラ32は、外気温度Tamが低い程、前述した所定時間t1を長くする方向で変更する。例えば、外気温度Tamが実施例の所定値T1(10℃)より低い0℃≦Tam<10℃の範囲であるとき、ヒートポンプコントローラ32は所定時間t1を前述した実施例の10秒よりも高い例えば15秒とし、外気温度Tamが例えば0℃より低いときは、所定時間t1を例えば20秒とする。係る変更も上記のような段階的な変更でもよく、外気温度Tamの変化に応じたリニアな変更でもよい。尚、上記実施例では外気温度Tamに応じて下限回転数A1と所定時間t1の双方を変更するようにしたが、それに限らず、何れか一方のみを変更するものでもよい。
 このように本発明では、制御装置11を構成する空調コントローラ20が、外気温度Tamを検出する外気温度センサ33を備え、制御装置11を構成するヒートポンプコントローラ32が、圧縮機2の起動時、外気温度Tamが所定値T1以下である場合、当該圧縮機2の目標回転数TGNCh、TGNCcを所定の下限回転数A1以上とする圧縮機下限回転数制限制御を実行するようにしたので、例えば、暖房モードや除湿暖房モードでの圧縮機2の起動時、外気温度Tamが所定値T1以下の環境下では圧縮機2の目標回転数TGNCh、TGNCcは強制的に下限回転数A1以上とされるようになる。
 これにより、低外気温度環境下での起動時に圧縮機2が圧縮不良状態に陥り、要求される能力を発揮できなくなる不都合や、騒音及び耐久性の悪化が生じる問題を未然に解消、若しくは、抑制することができるようになる。この場合、下限回転数A1は、圧縮機2の制御上の最低回転数A2より大きい値である。
 そして、ヒートポンプコントローラ32は、実施例では圧縮機2の起動後、圧縮機2の回転数NCを目標回転数TGNCh、TGNCc(下限回転数A1以上)としてから所定時間t1が経過するまで圧縮機下限回転数制限制御を継続するようにしたので、圧縮機2の圧縮不良状態による不都合の発生を確実に解消することが可能となる。
 また、実施例ではヒートポンプコントローラ32は、外気温度Tamが低い程、下限回転数A1を高くする方向、及び/又は、所定時間t1を長くする方向に変更するようにしたので、必要最低限の回転数の変更、或いは、時間で圧縮機2の圧縮不良状態による不都合の発生を効果的に解消することができるようになる。
FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention. A vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery. Yes (both not shown), the vehicle air conditioner 1 of the present invention is also driven by the power of the battery. That is, the vehicle air conditioner 1 of the embodiment performs a heating mode by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further includes a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, Each operation mode of the MAX cooling mode (the thickest cooling mode) and the auxiliary heater single mode is selectively executed.
The present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
The vehicle air conditioner 1 according to the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a passenger compartment of an electric vehicle, and includes an electric (battery-driven) compressor 2 that compresses refrigerant. The high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G and is dissipated to dissipate the vehicle. A radiator 4 as a heater for heating the air supplied to the room, an outdoor expansion valve 6 (pressure reducing device) composed of an electric valve that decompresses and expands the refrigerant during heating, and a heat radiator that is provided outside the vehicle compartment and is cooled. An indoor expansion valve 8 comprising an outdoor heat exchanger 7 that performs heat exchange between the refrigerant and the outside air to function as an evaporator during heating, and an electric valve (may be mechanical) that decompresses and expands the refrigerant. Decompressor) and air A heat absorber 9 that is provided in the passage 3 and absorbs heat from the outside of the vehicle interior during cooling and dehumidification to cool the air supplied to the vehicle interior and an accumulator 12 are sequentially connected by a refrigerant pipe 13. The refrigerant circuit R is configured. The refrigerant circuit R is filled with a predetermined amount of refrigerant and lubricating oil.
In addition, the compressor 2 of an Example is a scroll type compressor shown by the patent document 2 mentioned above. The outdoor heat exchanger 7 is provided with an outdoor blower 15, and the outdoor blower 15 forcibly ventilates the outside air through the outdoor heat exchanger 7 to exchange heat between the outside air and the refrigerant. Thereby, the outside air is ventilated to the outdoor heat exchanger 7 even when the vehicle is stopped (that is, the vehicle speed is 0 km / h).
The outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 sequentially on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is an electromagnetic as an on-off valve that is opened during cooling or dehumidification. The refrigerant pipe 13 </ b> B on the refrigerant outlet side of the supercooling section 16 is connected to the refrigerant inlet side of the heat absorber 9 via the indoor expansion valve 8. In addition, the receiver dryer part 14 and the supercooling part 16 structurally constitute a part of the outdoor heat exchanger 7.
In addition, the refrigerant pipe 13B between the supercooling unit 16 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C on the refrigerant outlet side of the heat absorber 9, and constitutes an internal heat exchanger 19 together. Thus, the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9.
Further, the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and this branched refrigerant pipe 13D exchanges internal heat via an electromagnetic valve 21 as an on-off valve that is opened in the heating mode. The refrigerant pipe 13 </ b> C is connected to the downstream side of the vessel 19. Thus, the electromagnetic valve 21 is connected to the refrigerant outlet side of the outdoor heat exchanger 7, and the refrigerant outlet side of the heat absorber 9 is connected to the refrigerant outlet side of the electromagnetic valve 21. The refrigerant pipe 13 </ b> C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2. Further, the refrigerant pipe 13 </ b> E on the refrigerant outlet side of the radiator 4 is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
A refrigerant pipe 13G between the refrigerant discharge side of the compressor 2 and the refrigerant inlet side of the radiator 4 is an electromagnetic valve 30 (a flow path switching device is configured as an on-off valve that is closed during dehumidifying heating and MAX cooling described later. ) Is provided. In this case, the refrigerant pipe 13G is branched into a bypass pipe 35 on the upstream side of the electromagnetic valve 30, and the bypass pipe 35 is an electromagnetic valve 40 as an on-off valve that is opened during dehumidifying heating and MAX cooling (also a flow path switching). Through the refrigerant pipe 13E on the refrigerant outlet side of the outdoor expansion valve 6 through the refrigerant pipe 13E.
That is, the bypass pipe 35 communicates the refrigerant discharge side of the compressor 2 and the refrigerant outlet side of the outdoor expansion valve 6, and is discharged from the compressor 2 when the electromagnetic valve 30 is closed and the electromagnetic valve 40 is opened. The flowed refrigerant is caused to flow directly into the outdoor heat exchanger 7 without flowing through the radiator 4 and the outdoor expansion valve 6. The bypass pipe 45, the electromagnetic valve 30, and the electromagnetic valve 40 constitute a bypass device 45.
Since the bypass device 45 is configured by the bypass pipe 35, the electromagnetic valve 30, and the electromagnetic valve 40, the refrigerant discharged from the compressor 2 is not allowed to flow to the radiator 4 and the outdoor expansion valve 6 as described later. It is possible to smoothly switch between the dehumidifying heating mode and the MAX cooling mode for directly flowing into the heat exchanger 7 and the heating mode, the dehumidifying cooling mode and the cooling mode for flowing the refrigerant discharged from the compressor 2 into the radiator 4. become able to.
The air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment. Yes. Further, on the air downstream side of the suction switching damper 26, an indoor blower (blower fan) for supplying the introduced inside air or outside air (air supplied into the vehicle interior) to the air flow passage 3 and ventilating the heat absorber 9. ) 27 is provided.
Moreover, in FIG. 1, 23 is an auxiliary heater as an auxiliary heating device provided in the vehicle air conditioner 1 of the embodiment. The auxiliary heater 23 of the embodiment is composed of a PTC heater which is an electric heater, and is in the air flow passage 3 which is on the windward side (air upstream side) of the radiator 4 with respect to the air flow in the air flow passage 3. Is provided. When the auxiliary heater 23 is energized and generates heat, the air in the air flow passage 3 flowing into the radiator 4 through the heat absorber 9 is heated. In other words, the auxiliary heater 23 serves as a so-called heater core, which heats or complements the passenger compartment.
Here, the air flow passage 3 on the leeward side (air downstream side) from the heat absorber 9 of the HVAC unit 10 is partitioned by a partition wall 10A, and a heating heat exchange passage 3A and a bypass passage 3B that bypasses it are formed. The radiator 4 and the auxiliary heater 23 described above are disposed in the heating heat exchange passage 3A.
Further, the air (inside air or outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is supplemented into the air flow passage 3 on the windward side of the auxiliary heater 23. An air mix damper 28 is provided for adjusting the rate of ventilation through the heating heat exchange passage 3A in which the heater 23 and the radiator 4 are disposed.
Further, the HVAC unit 10 on the leeward side of the radiator 4 includes a FOOT (foot) outlet 29A (first outlet) and a VENT (vent) outlet 29B (FOOT outlet 29A). For the outlet and the DEF outlet 29C, first outlets) and DEF (def) outlets 29C (second outlets) are formed. The FOOT air outlet 29A is an air outlet for blowing air under the feet in the passenger compartment, and is at the lowest position. Further, the VENT outlet 29B is an outlet for blowing out air near the driver's chest and face in the passenger compartment, and is located above the FOOT outlet 29A. The DEF air outlet 29C is an air outlet for blowing air to the inner surface of the windshield of the vehicle, and is located at the highest position above the other air outlets 29A and 29B.
The FOOT air outlet 29A, the VENT air outlet 29B, and the DEF air outlet 29C are respectively provided with a FOOT air outlet damper 31A, a VENT air outlet damper 31B, and a DEF air outlet damper 31C that control the amount of air blown out. It has been.
Next, FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment. The control device 11 includes an air-conditioning controller 20 and a heat pump controller 32 each of which is a microcomputer that is an example of a computer including a processor, and these include a CAN (Controller Area Network) and a LIN (Local Interconnect Network). Is connected to a vehicle communication bus 65. The compressor 2 and the auxiliary heater 23 are also connected to the vehicle communication bus 65, and the air conditioning controller 20, the heat pump controller 32, the compressor 2 and the auxiliary heater 23 are configured to transmit and receive data via the vehicle communication bus 65. Has been.
The air conditioning controller 20 is an upper controller that controls the air conditioning of the vehicle interior of the vehicle. The input of the air conditioning controller 20 detects an outside air temperature sensor 33 that detects the outside air temperature (Tam) of the vehicle and an outside air humidity. An outside air humidity sensor 34, an HVAC suction temperature sensor 36 that detects the temperature of the air (suction air temperature Tas) that is sucked into the air flow passage 3 from the suction port 25 and flows into the heat sink 9, and the air in the vehicle interior (inside air) An indoor air temperature sensor 37 that detects the temperature of the vehicle (indoor temperature Tin), an indoor air humidity sensor 38 that detects the humidity of the air in the vehicle interior, and an indoor CO that detects the carbon dioxide concentration in the vehicle interior 2 Concentration sensor 39 and the temperature of the air blown into the passenger compartment
A blowout temperature sensor 41 to detect, a discharge pressure sensor 42 to detect the discharge refrigerant pressure (discharge pressure Pd) of the compressor 2, for example, a photosensor type solar radiation sensor 51 for detecting the amount of solar radiation into the passenger compartment, Each output of the vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle and an air conditioning (air conditioner) operation unit 53 for setting the set temperature and switching of the operation mode are connected.
The output of the air conditioning controller 20 is connected to an outdoor fan 15, an indoor fan 27, a suction switching damper 26, an air mix damper 28, and air outlet dampers 31A to 31C, which are controlled by the air conditioning controller 20. Is done.
The heat pump controller 32 is a controller that mainly controls the refrigerant circuit R. The input of the heat pump controller 32 includes a discharge temperature sensor 43 that detects a refrigerant temperature discharged from the compressor 2 and a suction refrigerant pressure of the compressor 2. A suction pressure sensor 44 that detects the refrigerant, a suction temperature sensor 55 that detects the suction refrigerant temperature Ts of the compressor 2, a radiator temperature sensor 46 that detects the refrigerant temperature (radiator temperature TCI) of the radiator 4, and a radiator 4, a radiator pressure sensor 47 for detecting the refrigerant pressure (radiator pressure PCI), a heat absorber temperature sensor 48 for detecting the refrigerant temperature (heat absorber temperature Te) of the heat absorber 9, and a refrigerant pressure of the heat absorber 9 are detected. A heat absorber pressure sensor 49 that detects the temperature of the auxiliary heater 23 (auxiliary heater temperature Tptc), and a refrigerant temperature at the outlet of the outdoor heat exchanger 7. Each of an outdoor heat exchanger temperature sensor 54 that detects (outdoor heat exchanger temperature TXO) and an outdoor heat exchanger pressure sensor 56 that detects refrigerant pressure (outdoor heat exchanger pressure PXO) at the outlet of the outdoor heat exchanger 7. The output is connected.
The output of the heat pump controller 32 includes an outdoor expansion valve 6, an indoor expansion valve 8, an electromagnetic valve 30 (for reheating), an electromagnetic valve 17 (for cooling), an electromagnetic valve 21 (for heating), and an electromagnetic valve 40 (bypass). Are connected to each other and are controlled by the heat pump controller 32. The compressor 2 and the auxiliary heater 23 each have a built-in controller, and the controllers of the compressor 2 and the auxiliary heater 23 send and receive data to and from the heat pump controller 32 via the vehicle communication bus 65. Be controlled.
The heat pump controller 32 and the air conditioning controller 20 transmit / receive data to / from each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting input by the air conditioning operation unit 53. In the embodiment in this case, the outside air temperature sensor 33, the discharge pressure sensor 42, the vehicle speed sensor 52, the volumetric air volume Ga of air flowing into the air flow passage 3 (calculated by the air conditioning controller 20), and the air volume ratio SW ( The output from the air conditioning controller 53 is transmitted from the air conditioning controller 20 to the heat pump controller 32 via the vehicle communication bus 65, and is used for control by the heat pump controller 32.
Next, the operation of the vehicle air conditioner 1 having the above-described configuration will be described. In this embodiment, the control device 11 (the air conditioning controller 20 and the heat pump controller 32) has each operation mode of heating mode, dehumidifying heating mode, dehumidifying cooling mode, cooling mode, MAX cooling mode (maximum cooling mode), and auxiliary heater single mode. Switch and execute. First, an outline of refrigerant flow and control in each operation mode will be described.
(1) Heating mode
When the heating mode is selected by the heat pump controller 32 (auto mode) or the manual operation (manual mode) to the air conditioning operation unit 53, the heat pump controller 32 opens the electromagnetic valve 21 (for heating) and the electromagnetic valve 17 (cooling). Close). Further, the electromagnetic valve 30 (for reheating) is opened, and the electromagnetic valve 40 (for bypass) is closed. Then, the compressor 2 is operated. The air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating. The auxiliary heater 23 and the radiator 4 are ventilated, but the air volume may be adjusted.
As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the airflow passage 3 is passed through the radiator 4, the air in the airflow passage 3 is converted into the high-temperature refrigerant in the radiator 4 (when the auxiliary heater 23 operates, the auxiliary heater 23 and the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.
The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13A, the electromagnetic valve 21 and the refrigerant pipe 13D, and is separated into gas and liquid there. Repeated circulation inhaled. The air heated by the radiator 4 (when the auxiliary heater 23 is operated, the auxiliary heater 23 and the radiator 4) is blown out from the outlets 29A to 29C, so that the vehicle interior is heated. become.
The heat pump controller 32 calculates the target radiator pressure PCO (target value of the radiator pressure PCI) from the target heater temperature TCO (target value of the radiator temperature TCI) calculated by the air conditioning controller 20 from the target outlet temperature TAO, and this target. The number of revolutions NC of the compressor 2 is controlled based on the radiator pressure PCO and the refrigerant pressure of the radiator 4 detected by the radiator pressure sensor 47 (radiator pressure PCI. Pressure on the high pressure side of the refrigerant circuit R) to radiate heat. The heating by the vessel 4 is controlled. Further, the heat pump controller 32 opens the outdoor expansion valve 6 based on the refrigerant temperature (radiator temperature TCI) of the radiator 4 detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47. The degree of supercooling of the refrigerant at the outlet of the radiator 4 is controlled.
Further, in this heating mode, when the heating capability by the radiator 4 is insufficient with respect to the heating capability required for the cabin air conditioning, the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. The energization of the auxiliary heater 23 is controlled. Thereby, comfortable vehicle interior heating is realized and frost formation of the outdoor heat exchanger 7 is also suppressed. At this time, since the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air flowing through the air flow passage 3 is vented to the auxiliary heater 23 before the radiator 4.
Here, when the auxiliary heater 23 is disposed on the air downstream side of the radiator 4, when the auxiliary heater 23 is configured by a PTC heater as in the embodiment, the temperature of the air flowing into the auxiliary heater 23 is determined by the radiator. 4, the resistance value of the PTC heater increases, the current value also decreases, and the heat generation amount decreases. However, by arranging the auxiliary heater 23 on the air upstream side of the radiator 4, Thus, the capacity of the auxiliary heater 23 composed of the PTC heater can be sufficiently exhibited.
(2) Dehumidification heating mode
Next, in the dehumidifying heating mode, the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated. The air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating. The auxiliary heater 23 and the radiator 4 are ventilated, but the air volume is also adjusted.
Accordingly, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows directly into the outdoor heat exchanger 7 without flowing into the radiator 4 and the outdoor expansion valve 6. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled, and moisture in the air condenses and adheres to the heat absorber 9, so that the air in the air flow passage 3 is cooled, and Dehumidified. The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
At this time, since the valve opening degree of the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent inconvenience that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. It becomes. Thereby, the fall of a refrigerant | coolant circulation amount can be suppressed or eliminated and air-conditioning capability can be ensured now. Further, in this dehumidifying and heating mode, the heat pump controller 32 energizes the auxiliary heater 23 to generate heat. As a result, the air cooled and dehumidified by the heat absorber 9 is further heated in the process of passing through the auxiliary heater 23 and the temperature rises, so that the dehumidifying heating in the passenger compartment is performed.
The heat pump controller 32 is a compressor based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and a target heat absorber temperature TEO that is a target value of the heat absorber temperature Te calculated by the air conditioning controller 20. 2, and the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 50 and the above-described target heater temperature TCO (in this case, the target value of the auxiliary heater temperature Tptc) is used. By controlling energization (heating by heat generation), the air temperature of the air blown out from the outlets 29A to 29C by the heating by the auxiliary heater 23 while appropriately cooling and dehumidifying the air in the heat absorber 9 is controlled. Prevent the decline accurately. As a result, it is possible to control the temperature to an appropriate heating temperature while dehumidifying the air blown into the vehicle interior, and it is possible to realize comfortable and efficient dehumidification heating in the vehicle interior.
In addition, since the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air heated by the auxiliary heater 23 passes through the radiator 4. In this dehumidifying heating mode, the refrigerant is supplied to the radiator 4. Therefore, the disadvantage that the radiator 4 absorbs heat from the air heated by the auxiliary heater 23 is also eliminated. That is, the temperature of the air blown out into the vehicle compartment by the radiator 4 is suppressed, and the COP is improved.
(3) Dehumidifying and cooling mode
Next, in the dehumidifying and cooling mode, the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is opened and the electromagnetic valve 40 is closed. Then, the compressor 2 is operated. The air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating. The auxiliary heater 23 and the radiator 4 are ventilated, but the air volume is also adjusted.
As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
The refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through. In this dehumidifying and cooling mode, the heat pump controller 32 does not energize the auxiliary heater 23, so that the air that has been cooled and dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 (the heat dissipation capability is lower than that during heating). Is done. As a result, dehumidifying and cooling in the passenger compartment is performed.
The heat pump controller 32 determines the temperature of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO (transmitted from the air conditioning controller 20) that is the target value. The rotational speed NC is controlled. The heat pump controller 32 calculates the target radiator pressure PCO from the target heater temperature TCO described above, and the target radiator pressure PCO and the refrigerant pressure (radiator pressure PCI) of the radiator 4 detected by the radiator pressure sensor 47. Based on the high pressure of the refrigerant circuit R), the valve opening degree of the outdoor expansion valve 6 is controlled, and heating by the radiator 4 is controlled.
(4) Cooling mode
Next, in the cooling mode, the heat pump controller 32 fully opens the opening degree of the outdoor expansion valve 6 in the dehumidifying and cooling mode. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized. The air-conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 is blown from the indoor blower 27 and the air in the air flow passage 3 that has passed through the heat absorber 9 is used as the auxiliary heater 23 in the heating heat exchange passage 3A. And it is set as the state which adjusts the ratio ventilated by the heat radiator 4. FIG.
As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30, and the refrigerant exiting the radiator 4 passes through the refrigerant pipe 13E and the outdoor expansion valve 6. To. At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant passes through it and flows into the outdoor heat exchanger 7 as it is, where it is cooled by air or by outside air that is ventilated by the outdoor blower 15 and condensed. Liquefaction. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. Further, moisture in the air condenses and adheres to the heat absorber 9.
The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through. Air that has been cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from each of the air outlets 29A to 29C (partly passes through the radiator 4 to exchange heat), thereby cooling the vehicle interior. Will be done. Further, in this cooling mode, the heat pump controller 32 uses the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the above-described target heat absorber temperature TEO which is the target value of the compressor 2. The number of revolutions NC is controlled.
(5) MAX cooling mode (maximum cooling mode)
Next, in the MAX cooling mode (maximum cooling mode), the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized. The air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 is blown from the indoor blower 27 and the air in the air flow passage 3 passing through the heat absorber 9 is used as an auxiliary heater for the heating heat exchange passage 3 </ b> A. 23 and the rate of ventilation through the radiator 4 are adjusted.
Accordingly, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows directly into the outdoor heat exchanger 7 without flowing into the radiator 4 and the outdoor expansion valve 6. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. In addition, since moisture in the air condenses and adheres to the heat absorber 9, the air in the air flow passage 3 is dehumidified. The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through. At this time, since the outdoor expansion valve 6 is fully closed, similarly, it is possible to suppress or prevent the disadvantage that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. . Thereby, the fall of a refrigerant | coolant circulation amount can be suppressed or eliminated and air-conditioning capability can be ensured now.
Here, since the high-temperature refrigerant flows through the radiator 4 in the cooling mode described above, direct heat conduction from the radiator 4 to the HVAC unit 10 occurs not a little, but in this MAX cooling mode, the refrigerant flows into the radiator 4. Therefore, the air in the air flow passage 3 from the heat absorber 9 is not heated by the heat transmitted from the radiator 4 to the HVAC unit 10. Therefore, powerful cooling of the passenger compartment is performed, and particularly in an environment where the outside air temperature Tam is high, the passenger compartment can be quickly cooled to realize comfortable air conditioning in the passenger compartment. Also in this MAX cooling mode, the heat pump controller 32 is also connected to the compressor based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO, which is the target value. 2 is controlled.
(6) Auxiliary heater single mode
Note that the control device 11 of the embodiment stops the compressor 2 and the outdoor blower 15 of the refrigerant circuit R and energizes the auxiliary heater 23 when, for example, excessive frost formation occurs in the outdoor heat exchanger 7. The auxiliary heater single mode for heating the passenger compartment with only 23 is provided. Also in this case, the heat pump controller 32 controls energization (heat generation) of the auxiliary heater 23 based on the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 50 and the target heater temperature TCO described above.
The air conditioning controller 20 operates the indoor blower 27, and the air mix damper 28 passes the air in the air flow passage 3 blown out from the indoor blower 27 to the auxiliary heater 23 of the heat exchange passage 3A for heating, and the air volume is reduced. The state to be adjusted. Since the air heated by the auxiliary heater 23 is blown into the vehicle interior from each of the air outlets 29A to 29C, the vehicle interior is thereby heated.
(7) Switching operation mode
The air conditioning controller 20 calculates the target blowing temperature TAO described above from the following formula (I). This target blowing temperature TAO is a target value of the temperature of the air blown into the passenger compartment.
TAO = (Tset−Tin) × K + Tbal (f (Tset, SUN, Tam))
.. (I)
Here, Tset is a set temperature in the passenger compartment set by the air conditioning operation unit 53, Tin is a room temperature detected by the inside air temperature sensor 37, K is a coefficient, Tbal is a set temperature Tset, and a solar radiation amount detected by the solar radiation sensor 51. SUN is a balance value calculated from the outside air temperature Tam detected by the outside air temperature sensor 33. And generally this target blowing temperature TAO is so high that the outside temperature Tam is low, and it falls as the outside temperature Tam rises.
When the heat pump controller 32 is activated, the heat pump controller 32 determines which one of the above operation modes based on the outside air temperature Tam (detected by the outside air temperature sensor 33) transmitted from the air conditioning controller 20 via the vehicle communication bus 65 and the target outlet temperature TAO. The operation mode is selected and each operation mode is transmitted to the air conditioning controller 20 via the vehicle communication bus 65.
In addition, the heat pump controller 32, after startup, the outside air temperature Tam, the humidity in the vehicle interior, the target blowing temperature TAO, the heating temperature TH (the temperature of the air on the leeward side of the radiator 4), the target heater temperature TCO, By switching each operation mode based on parameters such as the endothermic temperature Te, the target endothermic temperature TEO, whether there is a dehumidification request in the passenger compartment, the heating mode accurately according to the environmental conditions and the necessity of dehumidification, Dehumidifying heating mode, dehumidifying cooling mode, cooling mode, MAX cooling mode and auxiliary heater single mode are switched to control the temperature of the air blown into the passenger compartment to the target outlet temperature TAO, realizing comfortable and efficient passenger compartment air conditioning To do.
(8) Control of the compressor 2 in the heating mode by the heat pump controller 32
Next, the control of the compressor 2 in the heating mode described above will be described in detail with reference to FIG. FIG. 4 is a control block diagram of the heat pump controller 32 that determines the target rotational speed (compressor target rotational speed) TGNCh of the compressor 2 for heating mode. The F / F (feed forward) manipulated variable calculation unit 58 of the heat pump controller 32 has an outside air temperature Tam obtained from the outside air temperature sensor 33, a blower voltage BLV of the indoor blower 27, and SW = (TAO−Te) / (TH−Te). ) Obtained by the air mix damper 28, the target supercooling degree TGSC that is the target value of the supercooling degree SC at the outlet of the radiator 4, and the target heater that is the target value of the temperature of the radiator 4 described above. Based on the temperature TCO (transmitted from the air conditioning controller 20) and the target radiator pressure PCO that is the target value of the pressure of the radiator 4, the F / F manipulated variable TGNChff of the compressor target rotational speed is calculated.
Here, the above-mentioned TH for calculating the air volume ratio SW is the temperature of the leeward air of the radiator 4 (hereinafter referred to as the heating temperature), and the heat pump controller 32 calculates the first-order lag calculation formula (II) shown below. presume.
TH = (INTL × TH0 + Tau × THz) / (Tau + INTL) (II)
Here, INTL is the calculation cycle (constant), Tau is the time constant of the primary delay, TH0 is the steady value of the heating temperature TH in the steady state before the primary delay calculation, and THz is the previous value of the heating temperature TH. By estimating the heating temperature TH in this way, there is no need to provide a special temperature sensor.
The heat pump controller 32 changes the time constant Tau and the steady value TH0 according to the operation mode described above, thereby making the above-described estimation formula (II) different depending on the operation mode, and estimates the heating temperature TH. The heating temperature TH is transmitted to the air conditioning controller 20 via the vehicle communication bus 65.
The target radiator pressure PCO is calculated by the target value calculator 59 based on the target subcooling degree TGSC and the target heater temperature TCO. Further, the F / B (feedback) manipulated variable calculation unit 60 performs the compressor target rotation based on the target radiator pressure PCO and the radiator pressure PCI (pressure on the high pressure side of the refrigerant circuit R) that is the refrigerant pressure of the radiator 4. The F / B manipulated variable TGNChfb is calculated. Then, the F / F manipulated variable TGNCnff computed by the F / F manipulated variable computing unit 58 and the F / B manipulated variable TGNChfb computed by the F / B manipulated variable computing unit 60 are added by the adder 61, and the limit setting unit 62 After limiting the minimum control speed ECNpdLimLo (hereinafter referred to as A2) and the maximum control speed ECNpdLimHi, the compressor target speed TGNCh is determined. In the heating mode, the heat pump controller 32 controls the rotational speed NC of the compressor 2 based on the compressor target rotational speed TGNCh.
(9) Control of the compressor 2 and the auxiliary heater 23 in the dehumidifying heating mode by the heat pump controller 32
On the other hand, FIG. 5 is a control block diagram of the heat pump controller 32 that determines the target rotational speed (compressor target rotational speed) TGNCc of the compressor 2 for the dehumidifying and heating mode. The F / F manipulated variable calculation unit 63 of the heat pump controller 32 is a target heat release that is a target value of the outside air temperature Tam, the volumetric air volume Ga of the air flowing into the air flow passage 3, and the pressure of the radiator 4 (radiator pressure PCI). Based on the compressor pressure PCO and the target heat absorber temperature TEO which is the target value of the temperature of the heat absorber 9 (heat absorber temperature Te), the F / F manipulated variable TGNCcff of the compressor target rotational speed is calculated.
Further, the F / B operation amount calculation unit 64 calculates the F / B operation amount TGNCcfb of the compressor target rotational speed based on the target heat absorber temperature TEO (transmitted from the air conditioning controller 20) and the heat absorber temperature Te. Then, the F / F manipulated variable TGNCcff computed by the F / F manipulated variable computing unit 63 and the F / B manipulated variable TGNCcfb computed by the F / B manipulated variable computing unit 64 are added by the adder 66, and the limit setting unit 67 After the control minimum rotational speed TGNCcLimLo (hereinafter referred to as A2) and the maximum control rotational speed TGNCcLimHi are set, the compressor target rotational speed TGNCc is determined. In the dehumidifying and heating mode, the heat pump controller 32 controls the rotational speed NC of the compressor 2 based on the compressor target rotational speed TGNCc.
FIG. 6 is a control block diagram of the heat pump controller 32 that determines the auxiliary heater required capacity TGQPTC of the auxiliary heater 23 in the dehumidifying heating mode. The subtractor 73 of the heat pump controller 32 receives the target heater temperature TCO and the auxiliary heater temperature Tptc, and calculates a deviation (TCO−Tptc) between the target heater temperature TCO and the auxiliary heater temperature Tptc. This deviation (TCO-Tptc) is input to the F / B control unit 74. The F / B control unit 74 eliminates the deviation (TCO-Tptc) so that the auxiliary heater temperature Tptc becomes the target heater temperature TCO. The required capacity F / B manipulated variable is calculated.
The auxiliary heater required capacity F / B manipulated variable calculated by the F / B control unit 74 is set by the limit setting unit 76 after the limit of the control lower limit value QptcLimLo and the control upper limit value QptcLimHi are set. Determined as capability TGQPTC. In the dehumidifying heating mode, the controller 32 controls energization of the auxiliary heater 23 based on the auxiliary heater required capacity TGQPTC, thereby generating heat (heating) of the auxiliary heater 23 so that the auxiliary heater temperature Tptc becomes the target heater temperature TCO. To control.
Thus, in the dehumidifying heating mode, the heat pump controller 32 controls the operation of the compressor based on the heat absorber temperature Te and the target heat absorber temperature TEO, and controls the heat generation of the auxiliary heater 23 based on the target heater temperature TCO. Thus, cooling and dehumidification by the heat absorber 9 and heating by the auxiliary heater 23 in the dehumidifying heating mode are accurately controlled. As a result, it is possible to control the temperature to a more accurate heating temperature while more appropriately dehumidifying the air blown into the passenger compartment, thereby realizing more comfortable and efficient dehumidifying heating in the passenger compartment. Will be able to.
(10) Control of the air mix damper 28
Next, the control of the air mix damper 28 by the air conditioning controller 20 will be described with reference to FIG. In FIG. 3, Ga is the volumetric volume of the air flowing into the air flow passage 3 described above, Te is the heat absorber temperature, and TH is the heating temperature described above (the temperature of the air on the leeward side of the radiator 4).
The air conditioning controller 20 is based on the air volume ratio SW that is passed through the radiator 4 and the auxiliary heater 23 in the heating heat exchange passage 3A calculated by the above-described expression (the following expression (III)) so that the air volume of the ratio is obtained. Further, by controlling the air mix damper 28, the amount of ventilation to the radiator 4 (and the auxiliary heater 23) is adjusted.
SW = (TAO-Te) / (TH-Te) (III)
That is, the air flow rate ratio SW passing through the radiator 4 and the auxiliary heater 23 in the heat exchange passage 3A for heating changes in a range of 0 ≦ SW ≦ 1, and when “0”, the air is not passed through the heat exchange passage 3A for heating. The air mix fully closed state in which all the air in the air flow passage 3 is passed through the bypass passage 3B, and the air mix fully open state in which all the air in the air flow passage 3 is passed through the heating heat exchange passage 3A with "1" It becomes. That is, the air volume to the radiator 4 is Ga × SW.
(11) Compressor lower limit rotation speed limit control in heating mode and dehumidifying heating mode
Next, referring to FIG. 7 and FIG. 8, when the operation mode of the vehicle air conditioner 1 is the heating mode and the dehumidifying heating mode described above, the compressor lower limit rotation speed limit control executed by the heat pump controller 32 is performed. An example will be described. As described above, when the compressor 2 is started in the heating mode or the dehumidifying heating mode, a compression failure of the compressor 2 is likely to occur in an environment where the outside air temperature Tam is low. Therefore, the heat pump controller 32 executes the control described below when the compressor 2 is started in the heating mode or the dehumidifying heating mode.
That is, when the vehicle air conditioner 1 is activated (vehicle activation), the heat pump controller 32 resets a flag and a timer, which will be described later, and then a compressor lower limit rotational speed restriction control flag, which will be described later in step S1 of FIG. It is determined whether fNCLLim has been reset. Since it has been reset at this point, it is next determined whether or not the compressor 2 has been started in step S2. If it is assumed that the vehicle air conditioner 1 (vehicle) is currently activated or restarted after the compressor 2 is temporarily stopped, the heat pump controller 32 determines that the compressor 2 is activated. And it progresses to step S3 and it is judged whether the present operation mode is heating mode or dehumidification heating mode which were mentioned above.
And when it is at the time of starting of the compressor 2 in heating mode or dehumidification heating mode, the heat pump controller 32 progresses to step S4 from step S2, S3, and the external temperature Tam transmitted from the air-conditioning controller 20 is predetermined value T1 (for example, 10 ° C.) or less. When the outside air temperature Tam is a low environment equal to or lower than the predetermined value T1 when the compressor 2 is started, the heat pump controller 32 proceeds from step S4 to step S5, and sets the above-described flag (compressor lower limit rotation speed limit control flag) fNCLLim. Set and start the compressor lower limit rotation speed limit control.
Next, the heat pump controller 32 proceeds to step S6, and as described above, the compressor target rotation speed TGNCh calculated in the heating mode (FIG. 4) or the compressor target rotation speed TGNCc calculated in the dehumidifying heating mode (FIG. 5). In any case, it is determined whether or not the target rotational speed of the compressor 2 is lower than a predetermined lower limit rotational speed A1. The lower limit rotation speed A1 is set to a value greater than at least the above-described minimum control rotation speed A2 (ECNpdLimLo in the heating mode, TGNCcLimLo in the dehumidifying heating mode. Both are 800 rpm in the embodiment), and 1500 rpm in the embodiment.
If the compressor target rotational speeds TGNCh and TGNCh calculated in FIGS. 4 and 5 are lower than the lower limit rotational speed A1 (for example, 800 rpm), the heat pump controller 32 proceeds to step S7, and the compressor target rotational speed TGNCh Or TGNCc is forcibly increased to the lower limit rotational speed A1 (1500 rpm).
When the compressor target rotational speeds TGNCh and TGNCc calculated in FIGS. 4 and 5 are higher than the lower limit rotational speed A1, for example, 3000 rpm, the heat pump controller 32 proceeds to step S8, which will be described later, instead of step S7. Therefore, the compressor target rotational speeds TGNCh and TGNCc are set to the calculated 3000 rpm. That is, the heat pump controller 32 restricts the compressor target rotational speeds TGNCh and TGNCc from becoming lower than the lower limit rotational speed A1, and prevents the compressor from entering a poorly compressed state by making it equal to or higher than the lower limit rotational speed A1.
The heat pump controller 32 next starts the compressor 2 in step S8, and after setting the rotational speed NC of the compressor 2 to the target rotational speed TGNCh or TGNCc (target rotational speeds TGNCh, TGNCc greater than the lower limit rotational speed A1) for a predetermined time. It is determined whether t1 has elapsed. The predetermined time t1 is set to 10 seconds in the embodiment, and the elapsed time is measured by a timer that the heat pump controller 32 has as its function.
If it is assumed that the predetermined time t1 has not elapsed since the rotational speed NC of the compressor 2 is set to the target rotational speed TGNCh or TGNCc (more than the lower limit rotational speed A1) at the present time, the heat pump controller 32 performs other control from step S8. The process returns to step S1 again. However, since the flag fNCLLim is set at this time, the process proceeds from step S1 to step S6. Thereafter, the compressor target rotational speeds TGNCh and TGNCc calculated in FIGS. 4 and 5 are lower than the lower limit rotational speed A1. As long as it is low, the heat pump controller 32 proceeds to step S7 to forcibly increase the compressor target rotational speeds TGNCh, TGNCc to the lower limit rotational speed A1, and if the compressor target rotational speeds TGNCh, TGNCc are equal to or higher than the lower limit rotational speed A1, The compressor target rotation speeds are TGNCh and TGNCc.
When a predetermined time t1 (10 seconds) has elapsed since the rotation speed NC of the compressor 2 is set to the target rotation speed TGNCh or TGNCc (more than the lower limit rotation speed A1), the heat pump controller 32 proceeds from step S8 to step S9, and the flag fNCLLim To reset. As a result, the compressor lower limit rotational speed restriction control is terminated, and thereafter, the process proceeds from step S1 to step S2. If the present time is not when the compressor 2 is started, the process does not proceed from step S3. Therefore, the rotation speed NC of the compressor 2 is determined by the F / F operation amount TGNCnff calculated by the F / F operation amount calculation unit 58 of FIG. 4 and the F / B operation amount calculated by the F / B operation amount calculation unit 60. Compressor target rotation speed TGNCh (heating mode) obtained by adding TGNChfb, F / F operation amount TGNCcff and F / B operation amount calculation unit 64 calculated by F / F operation amount calculation unit 63 in FIG. It is controlled by the compressor target rotational speed TGNCc (dehumidification heating mode) obtained by adding the F / B manipulated variable TGNCcfb.
This is shown in FIG. In addition, the vertical axis | shaft of FIG. 8 is compressor target rotation speed TGNCh and TGNCc, and a horizontal axis is time. When starting in the heating mode or the dehumidifying heating mode, the compressor target rotational speeds TGNCh and TGNCc calculated in FIGS. 4 and 5 are set to the minimum rotational speed A2 (from the lower limit rotational speed A1 as shown by a thick broken line in FIG. 8, for example). In the case of a low value), the heat pump controller 32 increases the compressor target rotational speeds TGNCh and TGNCc to the lower limit rotational speed A1, and sets the rotational speed NC to a predetermined value from the start of the compressor 2 as shown by a thick solid line in FIG. Increase at the rate of increase to the lower limit rotational speed A1.
The compressor target rotational speed TGNCh calculated in FIG. 4 and FIG. 5 until the predetermined time t1 elapses after the rotational speed NC of the compressor 2 is set to the compressor target rotational speed TGNCh or TGNCh (lower limit rotational speed A1). As long as TGNCc is lower than the lower limit rotational speed A1, the compressor target rotational speeds TGNCh and TGNCc are maintained at the lower limit rotational speed A1, and after the predetermined time t1 has elapsed, the compressor target rotational speed calculated in FIG. 4 and FIG. The minimum rotational speed A2 that is TGNCh or TGNCc is set, and the rotational speed NC of the compressor 2 is lowered to the compressor target rotational speed TGNCh or TGNCc (minimum rotational speed A2) (indicated by AUTO in FIG. 8).
(11-1) Change control of lower limit rotational speed A1 and predetermined time t1
Here, since the compression failure state of the compressor 2 is more likely to occur as the outside air temperature Tam is lower, the heat pump controller 32 increases the lower limit rotational speed A1 as the outside air temperature Tam is lower in the embodiment. change. For example, when the outside air temperature Tam is in the range of 0 ° C. ≦ Tam <10 ° C. lower than the predetermined value T1 (10 ° C.) of the embodiment, the heat pump controller 32 has a lower limit rotational speed A1 higher than 1500 rpm of the above-described embodiment. When the outside air temperature Tam is lower than 0 ° C., for example, the lower limit rotational speed A1 is set to 2000 rpm, for example. Such a change may be performed stepwise as described above, or may be changed linearly according to a change in the outside air temperature Tam.
For the same reason, in the embodiment, the heat pump controller 32 changes the direction in which the predetermined time t1 is increased as the outside air temperature Tam is lower. For example, when the outside air temperature Tam is in the range of 0 ° C. ≦ Tam <10 ° C. lower than the predetermined value T1 (10 ° C.) of the embodiment, the heat pump controller 32 sets the predetermined time t1 higher than 10 seconds of the above-described embodiment. When the outside air temperature Tam is lower than 0 ° C., for example, the predetermined time t1 is set to 20 seconds, for example. Such a change may be a stepwise change as described above, or may be a linear change according to a change in the outside air temperature Tam. In the above embodiment, both the lower limit rotational speed A1 and the predetermined time t1 are changed according to the outside air temperature Tam. However, the present invention is not limited to this, and only one of them may be changed.
As described above, in the present invention, the air-conditioning controller 20 configuring the control device 11 includes the outside air temperature sensor 33 that detects the outside air temperature Tam, and the heat pump controller 32 configuring the control device 11 is configured to open the outside air when the compressor 2 is started. When the temperature Tam is equal to or lower than the predetermined value T1, the compressor lower limit rotational speed restriction control is performed so that the target rotational speeds TGNCh and TGNCc of the compressor 2 are equal to or higher than the predetermined lower limit rotational speed A1, so for example, heating When the compressor 2 is started in the mode or the dehumidifying heating mode, the target rotational speeds TGNCh and TGNCc of the compressor 2 are forcibly set to the lower limit rotational speed A1 or more in an environment where the outside air temperature Tam is equal to or lower than the predetermined value T1. Become.
As a result, the compressor 2 falls into a poorly compressed state at the time of start-up in a low outside air temperature environment, and the problem that the required capacity cannot be exhibited and the problem that noise and durability are deteriorated are obviated or suppressed. Will be able to. In this case, the lower limit rotational speed A1 is larger than the minimum rotational speed A2 in the control of the compressor 2.
Then, in the embodiment, after the compressor 2 is started, the heat pump controller 32 sets the rotation speed NC of the compressor 2 to the target rotation speeds TGNCh and TGNCc (lower limit rotation speed A1 or more) until a predetermined time t1 elapses. Since the rotation speed limit control is continued, it is possible to reliably eliminate the occurrence of inconvenience due to the compression failure state of the compressor 2.
In the embodiment, the heat pump controller 32 changes the direction to increase the lower limit rotational speed A1 and / or to increase the predetermined time t1 as the outside air temperature Tam is lower. It becomes possible to effectively eliminate the occurrence of inconvenience due to the change in the number or the compression failure state of the compressor 2 over time.
 次に、図9は本発明を適用した他の実施例の車両用空気調和装置1の構成図を示している。尚、この図において図1と同一符号で示すものは同一若しくは同様の機能を奏するものである。この実施例の場合、過冷却部16の出口は逆止弁18に接続され、この逆止弁18の出口が冷媒配管13Bに接続されている。尚、逆止弁18は冷媒配管13B(室内膨張弁8)側が順方向とされている。
 また、放熱器4の冷媒出口側の冷媒配管13Eは室外膨張弁6の手前で分岐しており、この分岐した冷媒配管(以下、第2のバイパス配管と称する)13Fは電磁弁22(除湿用の開閉弁)を介して逆止弁18の下流側の冷媒配管13Bに連通接続されている。更に、吸熱器9の冷媒出口側の冷媒配管13Cには、内部熱交換器19の冷媒下流側であって、冷媒配管13Dとの合流点より冷媒上流側に蒸発圧力調整弁70が接続されている。そして、これら電磁弁22や蒸発圧力調整弁70もヒートポンプコントローラ32の出力に接続されている。尚、前述の実施例の図1中のバイパス配管35、電磁弁30及び電磁弁40から成るバイパス装置45は設けられていない。その他は図1と同様であるので説明を省略する。
 以上の構成で、この実施例の車両用空気調和装置1の動作を説明する。ヒートポンプコントローラ32はこの実施例では、暖房モード、除湿暖房モード、内部サイクルモード、除湿冷房モード、冷房モード及び補助ヒータ単独モードの各運転モードを切り換えて実行する(MAX冷房モードはこの実施例では存在しない)。尚、暖房モード、除湿冷房モード及び冷房モードが選択されたときの動作及び冷媒の流れと、補助ヒータ単独モードは前述の実施例(実施例1)の場合と同様であるので説明を省略する。但し、この実施例(実施例2)ではこれら暖房モード、除湿冷房モード及び冷房モードにおいては電磁弁22を閉じるものとする。
 (12)図9の車両用空気調和装置1の除湿暖房モード
 他方、除湿暖房モードが選択された場合、この実施例(実施例2)ではヒートポンプコントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁22(除湿用)を開放する。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は冷媒配管13Gから放熱器4に流入する。放熱器4には暖房用熱交換通路3Aに流入した空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A、電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。
 また、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部は分流され、電磁弁22を経て第2のバイパス配管13F及び冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至るようになる。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は、内部熱交換器19、蒸発圧力調整弁70を順次経て冷媒配管13Cにて冷媒配管13Dからの冷媒と合流した後、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。
 ヒートポンプコントローラ32は、前述した図4で算出された圧縮機目標回転数TGNChと図5で算出された圧縮機目標回転数TGNCcのうち、小さい方を選択して圧縮機2の回転数NCを制御する。また、ヒートポンプ32は吸熱器温度センサ48が検出する吸熱器9の温度Teと、空調コントローラ20から送信された目標吸熱器温度TEOに基づいて室外膨張弁6の弁開度を大口径(制御上の最大開度)と小口径(制御上の最小開度)の二段階で簡易的な制御を行う。更に、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度Teに基づき、蒸発圧力調整弁70を開(流路を拡大する)/閉(少許冷媒が流れる)して吸熱器9の温度が下がり過ぎて凍結する不都合を防止する。
 (13)図9の車両用空気調和装置1の内部サイクルモード
 また、内部サイクルモードでは、ヒートポンプコントローラ32は上記除湿暖房モードの状態において室外膨張弁6を全閉とする(全閉位置)と共に、電磁弁21を閉じる。この室外膨張弁6と電磁弁21が閉じられることにより、室外熱交換器7への冷媒の流入、及び、室外熱交換器7からの冷媒の流出は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は電磁弁22を経て第2のバイパス配管13Fに全て流れるようになる。そして、第2のバイパス配管13Fを流れる冷媒は冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は、内部熱交換器19、蒸発圧力調整弁70を順次経て冷媒配管13Cを流れ、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより、車室内の除湿暖房が行われることになるが、この内部サイクルモードでは室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房モードに比較すると除湿能力は高いが、暖房能力は低くなる。
 そして、ヒートポンプコントローラ32は上記除湿暖房モードと同様に圧縮機2と室外膨張弁6、蒸発圧力調整弁70を制御するので、この内部サイクルモードも除湿暖房モードの一部と捉えることができる。
 (14)暖房モード及び除湿暖房モードにおける圧縮機下限回転数制限制御
 そして、この実施例においても暖房モードや除湿暖房モード(内部サイクルモードを含む)での圧縮機2の起動時、ヒートポンプコントローラ32は前述した実施例の(11)と同様の圧縮機下限回転数制限制御を実行し、(11−1)と同様の下限回転数A1や所定時間t1の変更を行う。
 前述した如くこの実施例の除湿暖房モードでも高圧側の圧力や吸熱器温度Teの温度に基づいて圧縮機2の回転数を目標回転数(TGNCh、TGNCc)を制御することになるので、低外気温環境下での起動時には圧縮不良状態になり易くなるが、圧縮機下限回転数制限制御を実行することにより、低外気温度環境下での起動時に圧縮機2が圧縮不良状態に陥り、要求される能力を発揮できなくなる不都合や、騒音及び耐久性の悪化が生じる問題を未然に解消、若しくは、抑制することができるようになる。
 尚、各実施例で示した数値等はそれに限られるものでは無く、適用する装置に応じて適宜設定すべきものである。また、補助加熱装置は実施例で示した補助ヒータ23に限られるものでは無く、ヒータで加熱された熱媒体を循環させて空気流通路3内の空気を加熱する熱媒体循環回路や、エンジンで加熱されたラジエター水を循環するヒータコア等を利用してもよい。
Next, FIG. 9 shows a configuration diagram of a vehicle air conditioner 1 of another embodiment to which the present invention is applied. In this figure, the same reference numerals as those in FIG. 1 indicate the same or similar functions. In the case of this embodiment, the outlet of the supercooling section 16 is connected to the check valve 18, and the outlet of the check valve 18 is connected to the refrigerant pipe 13B. The check valve 18 has a forward direction on the refrigerant pipe 13B (indoor expansion valve 8) side.
A refrigerant pipe 13E on the refrigerant outlet side of the radiator 4 is branched in front of the outdoor expansion valve 6. This branched refrigerant pipe (hereinafter referred to as a second bypass pipe) 13F is an electromagnetic valve 22 (for dehumidification). Is connected to the refrigerant pipe 13B on the downstream side of the check valve 18 via the on-off valve. Further, the refrigerant pipe 13C on the refrigerant outlet side of the heat absorber 9 is connected to an evaporation pressure adjusting valve 70 on the refrigerant downstream side of the internal heat exchanger 19 and upstream of the refrigerant from the junction with the refrigerant pipe 13D. Yes. The electromagnetic valve 22 and the evaporation pressure adjusting valve 70 are also connected to the output of the heat pump controller 32. Note that the bypass device 45 including the bypass pipe 35, the electromagnetic valve 30, and the electromagnetic valve 40 in FIG. 1 of the above-described embodiment is not provided. Others are the same as in FIG.
With the above configuration, the operation of the vehicle air conditioner 1 of this embodiment will be described. In this embodiment, the heat pump controller 32 switches between the heating mode, the dehumidifying heating mode, the internal cycle mode, the dehumidifying cooling mode, the cooling mode, and the auxiliary heater single mode (the MAX cooling mode is present in this embodiment). do not do). The operation when the heating mode, the dehumidifying and cooling mode, and the cooling mode are selected, the refrigerant flow, and the auxiliary heater single mode are the same as those in the above-described embodiment (embodiment 1), and thus the description thereof is omitted. However, in this embodiment (Example 2), the solenoid valve 22 is closed in the heating mode, the dehumidifying cooling mode, and the cooling mode.
(12) Dehumidifying and heating mode of vehicle air conditioner 1 of FIG. 9 On the other hand, when the dehumidifying and heating mode is selected, in this embodiment (Example 2), heat pump controller 32 opens electromagnetic valve 21 (for heating). The electromagnetic valve 17 (for cooling) is closed. Further, the electromagnetic valve 22 (for dehumidification) is opened. Then, the compressor 2 is operated. The air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating. The auxiliary heater 23 and the radiator 4 are ventilated, but the air volume is also adjusted.
Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G. Since the air in the air flow path 3 that has flowed into the heat exchange path 3A for heating is passed through the heat radiator 4, the air in the air flow path 3 is heated by the high-temperature refrigerant in the heat radiator 4, while the heat radiator The refrigerant in 4 is deprived of heat by the air and cooled to condense.
The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 through the refrigerant pipe 13C through the refrigerant pipe 13A, the solenoid valve 21 and the refrigerant pipe 13D, and is gas-liquid separated there. Repeated circulation inhaled.
Further, a part of the condensed refrigerant flowing through the refrigerant pipe 13E through the radiator 4 is diverted, passes through the electromagnetic valve 22, and reaches the indoor expansion valve 8 through the internal heat exchanger 19 from the second bypass pipe 13F and the refrigerant pipe 13B. It becomes like this. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 sequentially passes through the internal heat exchanger 19 and the evaporation pressure adjusting valve 70 and then merges with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C. Then, the refrigerant is sucked into the compressor 2 through the accumulator 12. repeat. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
The heat pump controller 32 selects the smaller one of the compressor target rotational speed TGNCh calculated in FIG. 4 and the compressor target rotational speed TGNCh calculated in FIG. 5 to control the rotational speed NC of the compressor 2. To do. Further, the heat pump 32 increases the valve opening degree of the outdoor expansion valve 6 based on the temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO transmitted from the air conditioning controller 20 (for control purposes). Simple control is performed in two stages, ie, the maximum opening) and the small diameter (minimum opening for control). Further, the heat pump controller 32 opens (enlarges the flow path) / closes (flows a small amount of refrigerant) the heat absorber 9 based on the temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48. The inconvenience of freezing due to too low temperature is prevented.
(13) Internal cycle mode of the vehicle air conditioner 1 of FIG. 9 In the internal cycle mode, the heat pump controller 32 fully closes the outdoor expansion valve 6 in the state of the dehumidifying heating mode (fully closed position), The solenoid valve 21 is closed. Since the outdoor expansion valve 6 and the electromagnetic valve 21 are closed, the inflow of refrigerant to the outdoor heat exchanger 7 and the outflow of refrigerant from the outdoor heat exchanger 7 are blocked. The condensed refrigerant flowing through the refrigerant pipe 13E through the refrigerant flows through the electromagnetic valve 22 to the second bypass pipe 13F. The refrigerant flowing through the second bypass pipe 13F reaches the indoor expansion valve 8 via the internal heat exchanger 19 from the refrigerant pipe 13B. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 sequentially flows through the refrigerant pipe 13C through the internal heat exchanger 19 and the evaporation pressure adjustment valve 70, and repeats circulation that is sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed. Since the refrigerant is circulated between the radiator 4 (radiation) and the heat absorber 9 (heat absorption) in the passage 3, heat from the outside air is not pumped up, and heating for the consumed power of the compressor 2 is performed. Ability is demonstrated. Since the entire amount of the refrigerant flows through the heat absorber 9 that exhibits the dehumidifying action, the dehumidifying capacity is higher than that in the dehumidifying and heating mode, but the heating capacity is lowered.
And since the heat pump controller 32 controls the compressor 2, the outdoor expansion valve 6, and the evaporation pressure regulating valve 70 similarly to the said dehumidification heating mode, this internal cycle mode can also be considered as a part of dehumidification heating mode.
(14) Compressor lower limit rotation speed limit control in heating mode and dehumidifying heating mode And also in this embodiment, when starting up the compressor 2 in the heating mode and dehumidifying heating mode (including the internal cycle mode), the heat pump controller 32 The compressor lower limit rotational speed limit control similar to (11) of the above-described embodiment is executed, and the lower limit rotational speed A1 and the predetermined time t1 are changed similarly to (11-1).
As described above, even in the dehumidifying and heating mode of this embodiment, the target number of rotations (TGNCh, TGNCc) of the compressor 2 is controlled based on the high-pressure side pressure and the temperature of the heat absorber temperature Te. Although it is likely to be in a poorly compressed state at the start-up in a temperature environment, the compressor 2 falls into a poorly-compressed state at the start-up in a low outside air temperature environment by executing the compressor lower limit rotation speed limit control, which is required. Inconvenience that the ability to perform the function cannot be exhibited, and the problem that noise and durability are deteriorated can be solved or suppressed in advance.
It should be noted that the numerical values shown in the embodiments are not limited thereto, and should be appropriately set according to the apparatus to be applied. Further, the auxiliary heating device is not limited to the auxiliary heater 23 shown in the embodiment, and a heat medium circulation circuit that heats the air in the air flow passage 3 by circulating the heat medium heated by the heater or an engine. You may utilize the heater core etc. which circulate through the heated radiator water.
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 11 制御装置
 20 空調コントローラ
 23 補助ヒータ(補助加熱装置)
 27 室内送風機(ブロワファン)
 32 ヒートポンプコントローラ
 33 外気温度センサ
 65 車両通信バス
 R 冷媒回路
DESCRIPTION OF SYMBOLS 1 Vehicle air conditioner 2 Compressor 3 Air flow path 4 Radiator 6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve 9 Heat absorber 11 Control apparatus 20 Air conditioning controller 23 Auxiliary heater (auxiliary heating apparatus)
27 Indoor blower
32 heat pump controller 33 outside temperature sensor 65 vehicle communication bus R refrigerant circuit

Claims (7)

  1.  冷媒を圧縮する圧縮機と、該圧縮機の回転数を所定の目標回転数に制御する制御装置を備えた車両用空気調和装置において、
     前記制御装置は、外気温度を検出する外気温度センサを備え、前記圧縮機の起動時、外気温度が所定値以下である場合、当該圧縮機の目標回転数を所定の下限回転数A1以上とする圧縮機下限回転数制限制御を実行することを特徴とする車両用空気調和装置。
    In a vehicle air conditioner including a compressor that compresses a refrigerant, and a control device that controls the rotational speed of the compressor to a predetermined target rotational speed,
    The control device includes an outside air temperature sensor that detects an outside air temperature. When the outside air temperature is equal to or lower than a predetermined value when the compressor is started, the target rotation speed of the compressor is set to a predetermined lower limit rotation speed A1 or more. An air conditioner for a vehicle that performs compressor lower limit rotational speed restriction control.
  2.  前記制御装置は、制御上の最低回転数A2を有し、前記下限回転数A1は、前記最低回転数A2より大きい値であることを特徴とする請求項1に記載の車両用空気調和装置。 2. The vehicle air conditioner according to claim 1, wherein the control device has a minimum rotational speed A2 for control, and the lower limit rotational speed A1 is larger than the minimum rotational speed A2.
  3.  前記制御装置は、前記圧縮機の起動後、当該圧縮機の回転数を前記目標回転数としてから所定時間t1が経過するまで前記圧縮機下限回転数制限制御を継続することを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。 The said control apparatus continues the said compressor lower limit rotation speed limitation control until predetermined time t1 passes after making the rotation speed of the said compressor into the said target rotation speed after starting of the said compressor. The vehicle air conditioner according to claim 1 or 2.
  4.  前記制御装置は、外気温度が低い程、前記下限回転数A1を高くする方向、及び/又は、前記所定時間t1を長くする方向に変更することを特徴とする請求項3に記載の車両用空気調和装置。 4. The vehicle air according to claim 3, wherein the control device changes the direction to increase the lower limit rotational speed A <b> 1 and / or to increase the predetermined time t <b> 1 as the outside air temperature is lower. Harmony device.
  5.  冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記車室内に供給する空気を冷却するための吸熱器と、
     車室外に設けられた室外熱交換器とを備え、
     前記制御装置は、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させることで前記車室内を暖房し、高圧側の圧力に基づいて前記圧縮機の目標回転数を算出する暖房モードを実行すると共に、
     該暖房モードにおいて前記圧縮機下限回転数制限制御を実行することを特徴とする請求項1乃至請求項4のうちの何れかに記載の車両用空気調和装置。
    A radiator for heating the air supplied to the passenger compartment by dissipating the refrigerant;
    A heat absorber for absorbing the refrigerant to cool the air supplied to the vehicle interior;
    An outdoor heat exchanger provided outside the vehicle compartment,
    The control device radiates the refrigerant discharged from the compressor with the radiator, depressurizes the radiated refrigerant, heats the vehicle interior by absorbing heat with the outdoor heat exchanger, A heating mode for calculating a target rotational speed of the compressor based on the pressure on the side, and
    The vehicle air conditioner according to any one of claims 1 to 4, wherein the compressor lower limit rotation speed limit control is executed in the heating mode.
  6.  冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記車室内に供給する空気を冷却するための吸熱器と、
     車室外に設けられた室外熱交換器と、
     前記車室内に供給する空気を加熱するための補助加熱装置とを備え、
     前記制御装置は、前記圧縮機から吐出された冷媒を前記放熱器に流さず、前記室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させ、前記補助加熱装置を発熱させることで前記車室内を除湿暖房し、前記吸熱器の温度に基づいて前記圧縮機の目標回転数を算出する除湿暖房モードを実行すると共に、
     該除湿暖房モードにおいて前記圧縮機下限回転数制限制御を実行することを特徴とする請求項1乃至請求項5のうちの何れかに記載の車両用空気調和装置。
    A radiator for heating the air supplied to the passenger compartment by dissipating the refrigerant;
    A heat absorber for absorbing the refrigerant to cool the air supplied to the vehicle interior;
    An outdoor heat exchanger installed outside the passenger compartment,
    An auxiliary heating device for heating the air supplied to the vehicle interior,
    The control device does not flow the refrigerant discharged from the compressor to the radiator, but flows it to the outdoor heat exchanger to radiate heat, depressurizes the radiated refrigerant, and then absorbs heat by the heat absorber. While dehumidifying and heating the vehicle interior by causing the auxiliary heating device to generate heat, executing a dehumidifying heating mode that calculates a target rotational speed of the compressor based on the temperature of the heat absorber,
    The vehicle air conditioner according to any one of claims 1 to 5, wherein the compressor lower limit rotation speed restriction control is executed in the dehumidifying heating mode.
  7.  冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記車室内に供給する空気を冷却するための吸熱器と、
     車室外に設けられた室外熱交換器とを備え、
     前記制御装置は、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器のみ、又は、当該吸熱器と前記室外熱交換器にて吸熱させることで前記車室内を除湿暖房し、高圧側の圧力、又は、前記吸熱器の温度に基づいて前記圧縮機の目標回転数を算出する除湿暖房モードを実行すると共に、
     該除湿暖房モードにおいて前記圧縮機下限回転数制限制御を実行することを特徴とする請求項1乃至請求項5のうちの何れかに記載の車両用空気調和装置。
    A radiator for heating the air supplied to the passenger compartment by dissipating the refrigerant;
    A heat absorber for absorbing the refrigerant to cool the air supplied to the vehicle interior;
    An outdoor heat exchanger provided outside the vehicle compartment,
    The control device radiates the refrigerant discharged from the compressor with the radiator, depressurizes the radiated refrigerant, and then absorbs heat with the heat absorber alone or with the heat absorber and the outdoor heat exchanger. The vehicle interior is dehumidified and heated, and a dehumidifying heating mode for calculating a target rotational speed of the compressor based on the pressure on the high pressure side or the temperature of the heat absorber is executed,
    The vehicle air conditioner according to any one of claims 1 to 5, wherein the compressor lower limit rotation speed restriction control is executed in the dehumidifying heating mode.
PCT/JP2018/019424 2017-06-05 2018-05-15 Air-conditioning device for vehicles WO2018225486A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017111114A JP2018203069A (en) 2017-06-05 2017-06-05 Air conditioner for vehicle
JP2017-111114 2017-06-05

Publications (1)

Publication Number Publication Date
WO2018225486A1 true WO2018225486A1 (en) 2018-12-13

Family

ID=64566805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019424 WO2018225486A1 (en) 2017-06-05 2018-05-15 Air-conditioning device for vehicles

Country Status (2)

Country Link
JP (1) JP2018203069A (en)
WO (1) WO2018225486A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113165477A (en) * 2018-12-19 2021-07-23 三电汽车空调系统株式会社 Air conditioner for vehicle
CN113195272A (en) * 2018-12-25 2021-07-30 三电汽车空调系统株式会社 Air conditioner for vehicle

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219530A (en) * 1995-02-09 1996-08-30 Daikin Ind Ltd Air-conditioner
JPH11123929A (en) * 1997-10-23 1999-05-11 Denso Corp Air conditioner for vehicle
JP2001183016A (en) * 1999-12-24 2001-07-06 Zexel Valeo Climate Control Corp Air-conditioning device for vehicle
JP2006234329A (en) * 2005-02-25 2006-09-07 Mitsubishi Heavy Ind Ltd Air conditioning system
US20080041081A1 (en) * 2006-08-15 2008-02-21 Bristol Compressors, Inc. System and method for compressor capacity modulation in a heat pump
JP2011226724A (en) * 2010-04-22 2011-11-10 Panasonic Corp Refrigeration cycle device, and method for starting and controlling the same
US20120010753A1 (en) * 2009-04-03 2012-01-12 Carrier Corporation Systems and Methods Involving Heating and Cooling System Control
JP2013522116A (en) * 2010-03-24 2013-06-13 ヴァレオ システム テルミク Heating, ventilation and / or air conditioning loops, and heating, ventilation and / or air conditioning devices including such heating, ventilation and / or air conditioning loops
JP2016044937A (en) * 2014-08-26 2016-04-04 株式会社富士通ゼネラル Air conditioner
JP2017024511A (en) * 2015-07-21 2017-02-02 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle
JP2017053527A (en) * 2015-09-08 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle apparatus and control method for the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219530A (en) * 1995-02-09 1996-08-30 Daikin Ind Ltd Air-conditioner
JPH11123929A (en) * 1997-10-23 1999-05-11 Denso Corp Air conditioner for vehicle
JP2001183016A (en) * 1999-12-24 2001-07-06 Zexel Valeo Climate Control Corp Air-conditioning device for vehicle
JP2006234329A (en) * 2005-02-25 2006-09-07 Mitsubishi Heavy Ind Ltd Air conditioning system
US20080041081A1 (en) * 2006-08-15 2008-02-21 Bristol Compressors, Inc. System and method for compressor capacity modulation in a heat pump
US20120010753A1 (en) * 2009-04-03 2012-01-12 Carrier Corporation Systems and Methods Involving Heating and Cooling System Control
JP2013522116A (en) * 2010-03-24 2013-06-13 ヴァレオ システム テルミク Heating, ventilation and / or air conditioning loops, and heating, ventilation and / or air conditioning devices including such heating, ventilation and / or air conditioning loops
JP2011226724A (en) * 2010-04-22 2011-11-10 Panasonic Corp Refrigeration cycle device, and method for starting and controlling the same
JP2016044937A (en) * 2014-08-26 2016-04-04 株式会社富士通ゼネラル Air conditioner
JP2017024511A (en) * 2015-07-21 2017-02-02 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle
JP2017053527A (en) * 2015-09-08 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle apparatus and control method for the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113165477A (en) * 2018-12-19 2021-07-23 三电汽车空调系统株式会社 Air conditioner for vehicle
CN113165477B (en) * 2018-12-19 2024-05-10 三电有限公司 Air conditioning device for vehicle
CN113195272A (en) * 2018-12-25 2021-07-30 三电汽车空调系统株式会社 Air conditioner for vehicle
CN113195272B (en) * 2018-12-25 2024-05-10 三电有限公司 Air conditioning device for vehicle

Also Published As

Publication number Publication date
JP2018203069A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
JP6723137B2 (en) Vehicle air conditioner
WO2016047590A1 (en) Air-conditioning apparatus for vehicle
WO2018211958A1 (en) Vehicle air-conditioning device
JP2018122635A (en) Air conditioner for vehicle
JP2019031227A (en) Air conditioning apparatus for vehicle
WO2018116962A1 (en) Air conditioning device for vehicle
WO2018110211A1 (en) Vehicle air-conditioning device
WO2018079121A1 (en) Vehicle air-conditioning device
WO2018225486A1 (en) Air-conditioning device for vehicles
JP2018058575A (en) Air conditioner for vehicle
WO2018110212A1 (en) Vehicle air-conditioning apparatus
JP6917794B2 (en) Vehicle air conditioner
WO2018088124A1 (en) Vehicular air conditioner
WO2018123634A1 (en) Vehicular air conditioning device
WO2018061785A1 (en) Air-conditioning device for vehicle
WO2018043152A1 (en) Vehicle air-conditioning apparatus
WO2019017149A1 (en) Vehicular air conditioning device
WO2017146269A1 (en) Vehicular air-conditioning device
JP2018114945A (en) Vehicular air conditioner
WO2018225485A1 (en) Vehicle air conditioner
WO2018074111A1 (en) Vehicular air conditioning device
JP2019031226A (en) Air conditioning apparatus for vehicle
WO2019049637A1 (en) Vehicular air conditioning device
JP2019055648A (en) Air conditioner for vehicle
JP6853036B2 (en) Vehicle air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813631

Country of ref document: EP

Kind code of ref document: A1