WO2018110212A1 - Vehicle air-conditioning apparatus - Google Patents

Vehicle air-conditioning apparatus Download PDF

Info

Publication number
WO2018110212A1
WO2018110212A1 PCT/JP2017/041581 JP2017041581W WO2018110212A1 WO 2018110212 A1 WO2018110212 A1 WO 2018110212A1 JP 2017041581 W JP2017041581 W JP 2017041581W WO 2018110212 A1 WO2018110212 A1 WO 2018110212A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
temperature
heat
refrigerant
heat absorber
Prior art date
Application number
PCT/JP2017/041581
Other languages
French (fr)
Japanese (ja)
Inventor
雄満 山崎
竜 宮腰
耕平 山下
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Priority to DE112017006293.4T priority Critical patent/DE112017006293T5/en
Priority to CN201780076668.6A priority patent/CN110062708B/en
Publication of WO2018110212A1 publication Critical patent/WO2018110212A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/321Control means therefor for preventing the freezing of a heat exchanger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00961Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising means for defrosting outside heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3261Cooling devices information from a variable is obtained related to temperature of the air at an evaporating unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/3285Cooling devices output of a control signal related to an expansion unit

Definitions

  • the present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle.
  • Hybrid vehicles and electric vehicles have come into widespread use due to the emergence of environmental problems in recent years.
  • a compressor that compresses and discharges the refrigerant
  • a radiator that is provided on the vehicle interior side and dissipates the refrigerant, and is provided on the vehicle interior side.
  • a heat absorber that absorbs the refrigerant and an outdoor heat exchanger that is provided outside the passenger compartment to dissipate or absorb heat from the passenger compartment, dissipate the refrigerant discharged from the compressor in the radiator, and dissipate the refrigerant dissipated in the radiator Heating mode in which heat is absorbed in the outdoor heat exchanger, and dehumidification in which the refrigerant discharged from the compressor is dissipated in the radiator and the refrigerant dissipated in the radiator is absorbed only in the heat absorber or in the heat absorber and the outdoor heat exchanger.
  • Heating mode, dehumidifying cooling mode in which the refrigerant discharged from the compressor dissipates heat in the radiator and the outdoor heat exchanger, and absorbs heat in the heat absorber, and refrigerant discharged from the compressor Is radiated in the outdoor heat exchanger, which executes switching between the cooling mode to heat absorption have been developed in the heat sink (e.g., see Patent Document 1).
  • the cooling (dehumidifying) capacity of the heat absorber is controlled by controlling the rotation speed of the compressor based on the temperature of the heat absorber.
  • the heating capacity of the radiator has been controlled by controlling the valve opening degree of the outdoor expansion valve that depressurizes the refrigerant flowing into the outdoor heat exchanger based on the temperature of the radiator.
  • the temperature of the radiator can be increased by reducing the valve opening degree of the outdoor expansion valve.
  • the valve opening of the outdoor expansion valve is reduced, the amount of refrigerant circulating in the heat absorber decreases, so the temperature distribution of the heat absorber (the temperature varies depending on the heat absorber) increases and the dehumidification performance decreases.
  • the present invention has been made to solve the conventional technical problem, and eliminates or suppresses the temperature distribution (temperature variation) generated in the heat absorber in the dehumidifying and cooling mode, thereby improving the air conditioning performance in the vehicle interior.
  • An object of the present invention is to provide an air conditioning apparatus for a vehicle with improved performance.
  • the vehicle air conditioner of the present invention heats the compressor that compresses the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air that dissipates the refrigerant and is supplied from the air flow passage to the vehicle interior.
  • a heat sink for absorbing heat from the refrigerant and cooling the air supplied from the air flow passage to the vehicle interior
  • an outdoor heat exchanger for dissipating the refrigerant provided outside the vehicle compartment
  • An outdoor expansion valve for depressurizing the refrigerant flowing into the heat exchanger, an indoor expansion valve for depressurizing the refrigerant flowing into the heat absorber, and a control device are provided, and at least discharged from the compressor by the control device.
  • the controller performs a dehumidifying and cooling mode in which the refrigerant is radiated by the radiator and the outdoor heat exchanger, and the radiated refrigerant is decompressed by the indoor expansion valve and then absorbed by the heat absorber.
  • cooling mode Controls the capacity of the compressor based on the temperature of the heat absorber, controls the valve opening of the outdoor expansion valve based on the temperature or pressure of the radiator, and prevents the temperature distribution from occurring in the heat absorber, The minimum valve opening degree of the outdoor expansion valve is changed so that the distribution becomes small.
  • a vehicular air conditioner according to the first aspect of the present invention, wherein the control device is configured such that the temperature distribution of the heat absorber satisfies a predetermined threshold that is allowed for the temperature distribution of the heat absorber.
  • the valve opening is changed.
  • an air conditioner for a vehicle including an indoor blower that circulates air in the air flow passage in each of the above-described inventions, and the control device is configured based on the amount of air flow to the heat absorber by the indoor blower.
  • the minimum valve opening degree of the outdoor expansion valve is changed in the direction of increasing as the amount increases.
  • a vehicle air conditioner according to the above invention, wherein the controller is configured to open the minimum of the outdoor expansion valve in such a direction that the smaller the valve opening is, the smaller the valve opening is. It is characterized by changing the degree.
  • the control device controls the capacity of the compressor based on the temperature of the heat absorber and the target temperature of the heat absorber, The minimum valve opening degree of the outdoor expansion valve is changed in a direction of decreasing as the target temperature of the vessel is lower.
  • a vehicle air conditioner according to a sixth aspect of the present invention is characterized in that, in each of the above inventions, the control device has a predetermined hysteresis when the minimum valve opening degree of the outdoor expansion valve is changed.
  • a compressor for compressing a refrigerant, an air flow passage through which air to be supplied to the vehicle interior flows, and a radiator for heating the air to be radiated from the refrigerant and supplied to the vehicle interior from the air flow passage.
  • a heat absorber that cools the air supplied to the vehicle interior through the air flow path by absorbing the refrigerant, an outdoor heat exchanger that is provided outside the vehicle cabin and dissipates the refrigerant, and the outdoor heat exchanger.
  • An outdoor expansion valve for depressurizing the refrigerant flowing in, an indoor expansion valve for depressurizing the refrigerant flowing into the heat absorber, and a control device are provided, and at least the refrigerant discharged from the compressor is radiated by the control device.
  • a vehicle air conditioner that executes a dehumidifying and cooling mode in which heat is radiated by a heat exchanger and an outdoor heat exchanger, and the radiated refrigerant is decompressed by an indoor expansion valve and then absorbed by a heat absorber.
  • Controls the capacity of the compressor based on the temperature of the heat absorber controls the valve opening of the outdoor expansion valve based on the temperature or pressure of the radiator, and prevents the temperature distribution from occurring in the heat absorber, Since the minimum valve opening of the outdoor expansion valve is changed so that the distribution becomes smaller, the valve opening of the outdoor expansion valve becomes smaller, the amount of refrigerant circulation to the heat absorber decreases, and the temperature distribution in the heat absorber The problem that occurs or the temperature distribution of the heat absorber becomes large can be solved. Thereby, while maintaining the dehumidifying performance of the heat absorber in the dehumidifying and cooling mode, the temperature of the radiator can be expanded, so that it is possible to contribute to energy saving.
  • the control device changes the minimum valve opening degree of the outdoor expansion valve so that the temperature distribution of the heat absorber satisfies a predetermined threshold that is allowed for the temperature distribution of the heat absorber.
  • a predetermined threshold that is allowed for the temperature distribution of the heat absorber.
  • control device configured to change the minimum valve opening degree of the outdoor expansion valve in a direction of increasing the larger the ventilation amount based on the ventilation amount of the indoor fan to the heat absorber.
  • the temperature distribution of the heat absorber associated with the reduction of the valve opening of the outdoor expansion valve can be effectively eliminated or suppressed.
  • the valve opening degree of the indoor expansion valve that depressurizes the refrigerant flowing into the heat absorber is large, the refrigerant circulation amount of the heat absorber increases, so the temperature distribution of the heat absorber becomes small.
  • the control device changes the minimum valve opening of the outdoor expansion valve in the direction of decreasing the valve opening as the valve opening is larger, based on the valve opening of the indoor expansion valve.
  • the temperature of the radiator can be raised without any trouble while eliminating or suppressing the temperature distribution of the heat absorber.
  • the controller controls the compressor based on the temperature of the heat absorber and its target temperature in the dehumidifying and cooling mode, the lower the target temperature of the heat absorber, the greater the capacity of the compressor and the amount of refrigerant circulation in the heat absorber. Will also increase.
  • the control device changes the minimum valve opening of the outdoor expansion valve in the direction of decreasing the lower the target temperature of the heat absorber as the target temperature of the heat absorber is reduced, the temperature distribution of the heat absorber is eliminated.
  • the temperature of the radiator can be raised without hindrance while being suppressed.
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention.
  • a vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery. Yes (both not shown), the vehicle air conditioner 1 of the present invention is also driven by the power of the battery.
  • EV electric vehicle
  • an engine internal combustion engine
  • the vehicle air conditioner 1 of the embodiment performs a heating mode by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further includes a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, Each operation mode of the MAX cooling mode (maximum cooling mode) and the auxiliary heater single mode is selectively executed.
  • the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
  • the vehicle air conditioner 1 performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G, dissipates the refrigerant, and supplies it to the vehicle interior.
  • a heat sink 9 for cooling caused by the air supplied to the vehicle interior is sucked from the cabin outside the accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
  • the refrigerant circuit R is filled with a predetermined amount of refrigerant and lubricating oil.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, so that the outdoor air blower 15 can also be used outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is comprised so that external air may be ventilated by the heat exchanger 7.
  • the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 sequentially on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is received via an electromagnetic valve 17 opened during cooling.
  • the refrigerant pipe 13 ⁇ / b> B connected to the dryer unit 14 and on the outlet side of the supercooling unit 16 is connected to the inlet side of the heat absorber 9 via the indoor expansion valve 8.
  • the receiver dryer part 14 and the supercooling part 16 structurally constitute a part of the outdoor heat exchanger 7.
  • the refrigerant pipe 13B between the subcooling section 16 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C on the outlet side of the heat absorber 9, and constitutes an internal heat exchanger 19 together.
  • the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9.
  • the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and this branched refrigerant pipe 13D is downstream of the internal heat exchanger 19 via an electromagnetic valve 21 opened during heating.
  • the refrigerant pipe 13C is connected in communication.
  • the refrigerant pipe 13 ⁇ / b> C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is connected to the inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
  • a refrigerant pipe 13G between the discharge side of the compressor 2 and the inlet side of the radiator 4 is provided with a solenoid valve 30 (which constitutes a flow path switching device) that is closed during dehumidification heating and MAX cooling described later. Yes.
  • the refrigerant pipe 13G is branched into a bypass pipe 35 on the upstream side of the electromagnetic valve 30, and the bypass pipe 35 is opened by the electromagnetic valve 40 (which also constitutes a flow path switching device) during dehumidifying heating and MAX cooling.
  • Bypass pipe 45, solenoid valve 30 and solenoid valve 40 constitute bypass device 45.
  • the bypass device 45 is configured by the bypass pipe 35, the electromagnetic valve 30, and the electromagnetic valve 40, the dehumidifying heating mode or the MAX for allowing the refrigerant discharged from the compressor 2 to directly flow into the outdoor heat exchanger 7 as will be described later. Switching between the cooling mode and the heating mode in which the refrigerant discharged from the compressor 2 flows into the radiator 4, the dehumidifying cooling mode, and the cooling mode can be performed smoothly.
  • the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1).
  • a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment.
  • an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 and ventilating the heat absorber 9 is provided on the air downstream side of the suction switching damper 26.
  • 23 is an auxiliary heater as an auxiliary heating device provided in the vehicle air conditioner 1 of the embodiment.
  • the auxiliary heater 23 of the embodiment is composed of a PTC heater which is an electric heater, and is in the air flow passage 3 which is on the windward side (air upstream side) of the radiator 4 with respect to the air flow in the air flow passage 3. Is provided.
  • the auxiliary heater 23 When the auxiliary heater 23 is energized and generates heat, the air in the air flow passage 3 flowing into the radiator 4 through the heat absorber 9 is heated.
  • the auxiliary heater 23 serves as a so-called heater core, which heats or complements the passenger compartment.
  • the air flow passage 3 on the leeward side (air downstream side) from the heat absorber 9 of the HVAC unit 10 is partitioned by a partition wall 10A, and a heating heat exchange passage 3A and a bypass passage 3B that bypasses it are formed.
  • the radiator 4 and the auxiliary heater 23 described above are disposed in the heating heat exchange passage 3A.
  • the air (inside air or outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is supplemented into the air flow passage 3 on the windward side of the auxiliary heater 23.
  • An air mix damper 28 is provided for adjusting the rate of ventilation through the heating heat exchange passage 3A in which the heater 23 and the radiator 4 are disposed.
  • the HVAC unit 10 on the leeward side of the radiator 4 includes a FOOT (foot) outlet 29A (first outlet) and a VENT (vent) outlet 29B (FOOT outlet 29A).
  • FOOT outlet 29A first outlets
  • DEF (def) outlets 29C second outlets
  • the FOOT air outlet 29A is an air outlet for blowing air under the feet in the passenger compartment, and is at the lowest position.
  • the VENT outlet 29B is an outlet for blowing out air near the driver's chest and face in the passenger compartment, and is located above the FOOT outlet 29A.
  • the DEF air outlet 29C is an air outlet for blowing air to the inner surface of the windshield of the vehicle, and is located at the highest position above the other air outlets 29A and 29B.
  • the FOOT air outlet 29A, the VENT air outlet 29B, and the DEF air outlet 29C are respectively provided with a FOOT air outlet damper 31A, a VENT air outlet damper 31B, and a DEF air outlet damper 31C that control the amount of air blown out. It has been.
  • FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment.
  • the control device 11 includes an air-conditioning controller 20 and a heat pump controller 32 each of which is a microcomputer that is an example of a computer including a processor, and these include a CAN (Controller Area Network) and a LIN (Local Interconnect Network). Is connected to a vehicle communication bus 65.
  • the compressor 2 and the auxiliary heater 23 are also connected to the vehicle communication bus 65, and the air conditioning controller 20, the heat pump controller 32, the compressor 2 and the auxiliary heater 23 are configured to transmit and receive data via the vehicle communication bus 65.
  • the air conditioning controller 20 is a host controller that controls the air conditioning of the vehicle interior of the vehicle.
  • the input of the air conditioning controller 20 includes an outside air temperature sensor 33 that detects the outside air temperature Tam of the vehicle and an outside air humidity that detects the outside air humidity.
  • An indoor air temperature sensor 37 that detects (indoor temperature Tin)
  • an indoor air humidity sensor 38 that detects the humidity of the air in the vehicle interior
  • an indoor CO 2 concentration sensor 39 that detects the carbon dioxide concentration in the vehicle interior
  • the discharge pressure sensor 42 that detects the refrigerant pressure Pd discharged from the compressor 2, and the amount of solar radiation into the passenger compartment are detected.
  • a photosensor-type solar radiation sensor 51 For example, a photosensor-type solar radiation sensor 51, a vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, and an air conditioner (air conditioner) operation for setting a set temperature and switching operation modes.
  • the unit 53 is connected.
  • the output of the air conditioning controller 20 is connected to an outdoor blower 15, an indoor blower (blower fan) 27, a suction switching damper 26, an air mix damper 28, and air outlet dampers 31A to 31C. It is controlled by the controller 20.
  • the heat pump controller 32 is a controller that mainly controls the refrigerant circuit R.
  • the input of the heat pump controller 32 includes a discharge temperature sensor 43 that detects a discharge refrigerant temperature Td of the compressor 2 and a suction refrigerant of the compressor 2.
  • the output of the heat pump controller 32 includes an outdoor expansion valve 6, an indoor expansion valve 8, an electromagnetic valve 30 (for reheating), an electromagnetic valve 17 (for cooling), an electromagnetic valve 21 (for heating), and an electromagnetic valve 40 (bypass). Are connected to each other and are controlled by the heat pump controller 32.
  • the compressor 2 and the auxiliary heater 23 each have a built-in controller, and the controllers of the compressor 2 and the auxiliary heater 23 send and receive data to and from the heat pump controller 32 via the vehicle communication bus 65. Be controlled.
  • the heat pump controller 32 and the air conditioning controller 20 transmit / receive data to / from each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting input by the air conditioning operation unit 53.
  • the outside air temperature sensor 33, the discharge pressure sensor 42, the vehicle speed sensor 52, the volumetric air volume Ga of air flowing into the air flow passage 3 (calculated by the air conditioning controller 20), and the air volume ratio SW The output from the air conditioning controller 53 is transmitted from the air conditioning controller 20 to the heat pump controller 32 via the vehicle communication bus 65, and is used for control by the heat pump controller 32.
  • the control device 11 the air conditioning controller 20 and the heat pump controller 32
  • heating mode When the heating mode is selected by the heat pump controller 32 (auto mode) or by manual operation (manual mode) to the air conditioning operation unit 53, the heat pump controller 32 opens the electromagnetic valve 21 (for heating), The electromagnetic valve 17 (for cooling) is closed. Further, the electromagnetic valve 30 (for reheating) is opened, and the electromagnetic valve 40 (for bypass) is closed. Then, the compressor 2 is operated.
  • the air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating.
  • the auxiliary heater 23 and the radiator 4 are ventilated, but the air volume may be adjusted.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the airflow passage 3 is passed through the radiator 4, the air in the airflow passage 3 is converted into the high-temperature refrigerant in the radiator 4 (when the auxiliary heater 23 operates, the auxiliary heater 23 and the radiator 4.
  • the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump.
  • the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13A, the electromagnetic valve 21 and the refrigerant pipe 13D, and is separated into gas and liquid there.
  • the heat pump controller 32 calculates the target radiator pressure PCO (target value of the radiator pressure PCI) from the target heater temperature TCO (target value of the radiator temperature TCI) calculated by the air conditioning controller 20 from the target outlet temperature TAO, and this target.
  • the number of revolutions NC of the compressor 2 is controlled based on the radiator pressure PCO and the refrigerant pressure of the radiator 4 detected by the radiator pressure sensor 47 (radiator pressure PCI. High pressure of the refrigerant circuit R). Control the heating by.
  • the heat pump controller 32 opens the outdoor expansion valve 6 based on the refrigerant temperature (radiator temperature TCI) of the radiator 4 detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47. The degree of supercooling of the refrigerant at the outlet of the radiator 4 is controlled. Further, in this heating mode, when the heating capability by the radiator 4 is insufficient with respect to the heating capability required for the cabin air conditioning, the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. The energization of the auxiliary heater 23 is controlled. Thereby, comfortable vehicle interior heating is realized and frost formation of the outdoor heat exchanger 7 is also suppressed.
  • the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air flowing through the air flow passage 3 is vented to the auxiliary heater 23 before the radiator 4.
  • the auxiliary heater 23 is disposed on the air downstream side of the radiator 4
  • the auxiliary heater 23 is configured by a PTC heater as in the embodiment
  • the temperature of the air flowing into the auxiliary heater 23 is determined by the radiator. 4
  • the resistance value of the PTC heater increases, the current value also decreases, and the heat generation amount decreases.
  • the auxiliary heater 23 by arranging the auxiliary heater 23 on the air upstream side of the radiator 4, Thus, the capacity of the auxiliary heater 23 composed of the PTC heater can be sufficiently exhibited.
  • the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated.
  • the air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating.
  • the auxiliary heater 23 and the radiator 4 are ventilated, but the air volume is also adjusted.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16.
  • the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
  • the air blown out from the indoor blower 27 by the heat absorption action at this time is cooled, and moisture in the air condenses and adheres to the heat absorber 9, so that the air in the air flow passage 3 is cooled, and Dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
  • the valve opening degree of the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent inconvenience that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. It becomes. Thereby, the fall of a refrigerant
  • the heat pump controller 32 energizes the auxiliary heater 23 to generate heat.
  • the heat pump controller 32 is a target heat absorption which is the target value (target temperature of the heat absorber 9) of the heat absorber temperature Te calculated by the air conditioning controller 20 and the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48 (heat absorber temperature Te).
  • the rotational speed NC of the compressor 2 is controlled based on the compressor temperature TEO, and the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 50 and the above-described target heater temperature TCO (in this case, the target value of the auxiliary heater temperature Tptc is obtained).
  • TEO compressor temperature
  • Tptc target heater temperature
  • TCO target heater temperature
  • the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air heated by the auxiliary heater 23 passes through the radiator 4. In this dehumidifying heating mode, the refrigerant is supplied to the radiator 4. Therefore, the disadvantage that the radiator 4 absorbs heat from the air heated by the auxiliary heater 23 is also eliminated. That is, the temperature of the air blown out into the vehicle compartment by the radiator 4 is suppressed, and the COP is improved.
  • the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is opened and the electromagnetic valve 40 is closed. Then, the compressor 2 is operated.
  • the air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating.
  • the auxiliary heater 23 and the radiator 4 are ventilated, but the air volume is also adjusted.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
  • the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
  • the air Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
  • the heat pump controller 32 does not energize the auxiliary heater 23, so that the air that has been cooled and dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 (the heat dissipation capability is lower than that during heating). Is done.
  • the heat pump controller 32 transmits the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and a target heat absorber temperature TEO (a target temperature of the heat absorber 9), which is a target value (target temperature of the heat absorber 9). ) To control the rotational speed NC (capacity of the compressor 2) of the compressor 2. That is, when the heat absorber temperature Te is higher than the target heat absorber temperature TEO, the rotational speed NC of the compressor 2 is increased, and when the heat absorber temperature Te is lower than the target heat absorber temperature TEO, the rotational speed NC is decreased.
  • the heat pump controller 32 calculates the target radiator pressure PCO from the target heater temperature TCO described above, and the target radiator pressure PCO and the refrigerant pressure (radiator pressure PCI) of the radiator 4 detected by the radiator pressure sensor 47. Based on the high pressure of the refrigerant circuit R), the valve opening degree of the outdoor expansion valve 6 is controlled, and heating by the radiator 4 is controlled.
  • the heat pump controller 32 determines the valve opening degree of the outdoor expansion valve 6 based on the target radiator pressure PCO and the radiator pressure PCI calculated from the target heater temperature TCO that is the target value of the radiator temperature TCI.
  • the valve opening degree of the outdoor expansion valve 6 may be controlled based on the radiator temperature TCI and the target heater temperature TCO.
  • the heat pump controller 32 decreases the valve opening degree of the outdoor expansion valve 6 when the pressure (or temperature) of the radiator 4 is lower than the target value.
  • the valve opening degree of the outdoor expansion valve 6 decreases, the refrigerant subcooling degree SC in the radiator 4 increases, so the temperature of the radiator 4 rises and the heating capacity increases.
  • the valve opening degree of the outdoor expansion valve 6 is increased, the temperature of the radiator 4 is lowered, and the heating capacity is reduced.
  • Cooling mode Next, in the cooling mode, the heat pump controller 32 fully opens the valve opening degree of the outdoor expansion valve 6 in the dehumidifying and cooling mode. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized.
  • the air-conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 is blown from the indoor blower 27 and the air in the air flow passage 3 that has passed through the heat absorber 9 is used as the auxiliary heater 23 in the heating heat exchange passage 3A. And it is set as the state which adjusts the ratio ventilated by the heat radiator 4.
  • FIG. 1 the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30, and the refrigerant exiting the radiator 4 passes through the refrigerant pipe 13E and the outdoor expansion valve 6.
  • the refrigerant passes through it and flows into the outdoor heat exchanger 7 as it is, where it is cooled by air or by outside air that is ventilated by the outdoor blower 15 and condensed. Liquefaction.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16.
  • the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19.
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
  • the air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. Further, moisture in the air condenses and adheres to the heat absorber 9.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through. Air that has been cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from each of the air outlets 29A to 29C (partly passes through the radiator 4 to exchange heat), thereby cooling the vehicle interior. Will be done.
  • the heat pump controller 32 uses the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the above-described target heat absorber temperature TEO which is the target value of the compressor 2. The number of revolutions NC is controlled.
  • MAX cooling mode maximum cooling mode
  • the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized.
  • the air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 is blown from the indoor blower 27 and the air in the air flow passage 3 passing through the heat absorber 9 is used as an auxiliary heater for the heating heat exchange passage 3 ⁇ / b> A. 23 and the rate of ventilation through the radiator 4 are adjusted. Accordingly, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
  • the air blown out from the indoor blower 27 by the heat absorption action at this time is cooled.
  • the air in the air flow passage 3 is dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
  • the outdoor expansion valve 6 is fully closed, similarly, it is possible to suppress or prevent the disadvantage that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. .
  • the heat pump controller 32 is also connected to the compressor based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO, which is the target value. 2 is controlled.
  • the control apparatus 11 of an Example stops the compressor 2 and the outdoor air blower 15 of the refrigerant circuit R, when the overheating frost arises in the outdoor heat exchanger 7, etc., and the auxiliary heater 23 And an auxiliary heater single mode in which the vehicle interior is heated only by the auxiliary heater 23.
  • the heat pump controller 32 controls energization (heat generation) of the auxiliary heater 23 based on the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 50 and the target heater temperature TCO described above.
  • the air conditioning controller 20 operates the indoor blower 27, and the air mix damper 28 passes the air in the air flow passage 3 blown out from the indoor blower 27 to the auxiliary heater 23 of the heat exchange passage 3A for heating, and the air volume is reduced. The state to be adjusted. Since the air heated by the auxiliary heater 23 is blown into the vehicle interior from each of the air outlets 29A to 29C, the vehicle interior is thereby heated. (7) Switching of operation mode
  • the air-conditioning controller 20 calculates the target blowing temperature TAO mentioned above from following formula (I).
  • This target blowing temperature TAO is a target value of the temperature of the air blown into the passenger compartment.
  • TAO (Tset ⁇ Tin) ⁇ K + Tbal (f (Tset, SUN, Tam)) .. (I)
  • Tset is the set temperature in the passenger compartment set by the air conditioning operation unit 53
  • Tin is the indoor temperature detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • the amount SUN is a balance value calculated from the outside air temperature Tam detected by the outside air temperature sensor 33.
  • this target blowing temperature TAO is so high that the outside temperature Tam is low, and it falls as the outside temperature Tam rises.
  • the heat pump controller 32 determines which one of the above operation modes based on the outside air temperature Tam (detected by the outside air temperature sensor 33) transmitted from the air conditioning controller 20 via the vehicle communication bus 65 and the target outlet temperature TAO. The operation mode is selected and each operation mode is transmitted to the air conditioning controller 20 via the vehicle communication bus 65.
  • the outside air temperature Tam the humidity in the passenger compartment
  • the target blowing temperature TAO the heating temperature TH (the temperature of the air on the leeward side of the radiator 4, estimated value)
  • the target heater temperature TCO the heat sink temperature Te
  • the heating mode, dehumidification heating mode, and dehumidification are accurately performed according to the environmental conditions and necessity of dehumidification.
  • FIG. 4 is a control block diagram of the heat pump controller 32 that determines the target rotational speed (compressor target rotational speed) TGNCh of the compressor 2 for heating mode.
  • the above-mentioned TH for calculating the air volume ratio SW is the temperature of the leeward air of the radiator 4 (hereinafter referred to as the heating temperature), and the heat pump controller 32 calculates the first-order lag calculation formula (II) shown below.
  • TH (INTL ⁇ TH0 + Tau ⁇ THz) / (Tau + INTL) (II)
  • INTL is the calculation cycle (constant)
  • Tau is the time constant of the primary delay
  • TH0 the steady value of the heating temperature TH in the steady state before the primary delay calculation
  • THz is the previous value of the heating temperature TH.
  • the heat pump controller 32 changes the time constant Tau and the steady value TH0 according to the operation mode described above, thereby making the above-described estimation formula (II) different depending on the operation mode, and estimates the heating temperature TH.
  • the heating temperature TH is transmitted to the air conditioning controller 20 via the vehicle communication bus 65.
  • the target radiator pressure PCO is calculated by the target value calculator 59 based on the target subcooling degree TGSC and the target heater temperature TCO.
  • the F / B (feedback) manipulated variable calculator 60 calculates the F / B manipulated variable TGNChfb of the compressor target rotational speed based on the target radiator pressure PCO and the radiator pressure PCI that is the refrigerant pressure of the radiator 4. To do.
  • the F / F manipulated variable TGNCnff computed by the F / F manipulated variable computing unit 58 and the TGNChfb computed by the F / B manipulated variable computing unit 60 are added by the adder 61, and the control upper limit value and the control are controlled by the limit setting unit 62. After the lower limit is set, it is determined as the compressor target rotational speed TGNCh. In the heating mode, the heat pump controller 32 controls the rotational speed NC of the compressor 2 based on the compressor target rotational speed TGNCh. (9) Control of Compressor 2 in Dehumidification Heating Mode, Dehumidification Cooling Mode, Cooling Mode, and MAX Cooling Mode by Heat Pump Controller 32 On the other hand, FIG.
  • FIG. 5 is for the dehumidifying heating mode, dehumidifying cooling mode, cooling mode, and MAX cooling mode.
  • FIG. 3 is a control block diagram of a heat pump controller 32 that determines a target rotational speed (compressor target rotational speed) TGNCc of the compressor 2.
  • the F / F manipulated variable calculation unit 63 of the heat pump controller 32 is a target heat release that is a target value of the outside air temperature Tam, the volumetric air volume Ga of the air flowing into the air flow passage 3, and the pressure of the radiator 4 (radiator pressure PCI).
  • the F / F manipulated variable TGNCcff of the compressor target rotational speed is calculated. Further, the F / B operation amount calculation unit 64 calculates the F / B operation amount TGNCcfb of the compressor target rotational speed based on the target heat absorber temperature TEO (transmitted from the air conditioning controller 20) and the heat absorber temperature Te.
  • the F / F manipulated variable TGNCcff computed by the F / F manipulated variable computing unit 63 and the F / B manipulated variable TGNCcfb computed by the F / B manipulated variable computing unit 64 are added by the adder 66, and the limit setting unit 67
  • the compressor target rotational speed TGNCc is determined.
  • the heat pump controller 32 controls the rotational speed NC of the compressor 2 based on the compressor target rotational speed TGNCc. (10) Control of the auxiliary heater 23 in the dehumidifying and heating mode by the heat pump controller 32 Next, FIG.
  • FIG. 6 is a control block diagram of the heat pump controller 32 that determines the auxiliary heater required capacity TGQPTC of the auxiliary heater 23 in the dehumidifying and heating mode.
  • the subtractor 73 of the heat pump controller 32 receives the target heater temperature TCO and the auxiliary heater temperature Tptc, and calculates a deviation (TCO ⁇ Tptc) between the target heater temperature TCO and the auxiliary heater temperature Tptc. This deviation (TCO-Tptc) is input to the F / B control unit 74.
  • the F / B control unit 74 eliminates the deviation (TCO-Tptc) so that the auxiliary heater temperature Tptc becomes the target heater temperature TCO.
  • the required capacity F / B manipulated variable is calculated.
  • the auxiliary heater required capability F / B manipulated variable calculated by the F / B control unit 74 is determined as the auxiliary heater required capability TGQPTC after the limit setting unit 76 limits the control upper limit value and the control lower limit value. .
  • the controller 32 controls energization of the auxiliary heater 23 based on the auxiliary heater required capacity TGQPTC, thereby generating heat (heating) of the auxiliary heater 23 so that the auxiliary heater temperature Tptc becomes the target heater temperature TCO. To control.
  • the heat pump controller 32 controls the operation of the compressor based on the heat absorber temperature Te and the target heat absorber temperature TEO, and controls the heat generation of the auxiliary heater 23 based on the target heater temperature TCO.
  • cooling and dehumidification by the heat absorber 9 and heating by the auxiliary heater 23 in the dehumidifying heating mode are accurately controlled.
  • valve opening ECCVpc of the outdoor expansion valve 6 is reduced (the outdoor expansion valve 6 is throttled), the temperature of the radiator 4 (heat radiator temperature TCI) is increased as shown in FIG. 7, and the heating capacity is also increased.
  • the valve opening degree ECCVpc of the outdoor expansion valve 6 is reduced, the refrigerant circulation amount of the heat absorber 9 is reduced by that amount, so that the refrigerant is completely evaporated at an early stage when it flows into the heat absorber 9. For this reason, the heat absorber 9 has low and high temperatures, resulting in temperature distribution (temperature variation).
  • FIG. Distribution increases.
  • the dehumidifying performance is lowered, and depending on the part, it becomes difficult to cool the ventilated air, and it becomes difficult to establish the target blowing temperature TAO, and the air conditioning performance in the vehicle interior Will get worse.
  • the air flow rate through the indoor fan 27 to the heat absorber 9 and the temperature distribution and the greater the air flow rate, the easier the temperature distribution occurs (note that all the air blown out from the indoor fan 27 is the heat absorber. 9), the volume air volume Ga described above becomes the air flow volume to the heat absorber 9). This is shown in FIG. In the embodiment, for example, the flow rate to the heat absorber 9 is divided into three stages, L1 in FIG.
  • L9 is the temperature distribution of the heat sink 9 when the flow rate is high
  • L2 is the temperature distribution when the medium flow rate
  • L3 indicates the temperature distribution when the air volume is low.
  • the valve opening ECCVpc of the outdoor expansion valve 6 is B (FIG. 9)
  • the greater the amount of ventilation to the heat absorber 9 the more actively the refrigerant in the heat absorber 9 evaporates.
  • the temperature distribution of the heat absorber 9 also increases, and the difference between the temperature distribution L1 when the air volume is high and the temperature distribution L2 when the air volume is medium is X1 (FIG. 9). Therefore, in the embodiment, a predetermined threshold value X2 that is allowed for the temperature distribution of the heat absorber 9 is set.
  • the threshold value X2 is a temperature distribution when the difference between the temperature of the air blown to the driver's seat side in the passenger compartment and the temperature of the air blown to the passenger seat side is a predetermined value (for example, 5 degrees). This is obtained in advance by experiments.
  • the present invention is not limited thereto, and for example, the temperature at a plurality of locations of the heat absorber 9 may be measured in advance, and the threshold value X2 may be set directly from the difference therebetween. As shown in FIG. 9, when the air flow rate of the heat absorber 9 is high, the valve opening degree of the outdoor expansion valve 6 at which the temperature distribution L1 of the heat absorber 9 increases to the threshold value X2 is A, and the air flow rate of the heat absorber 9 is medium.
  • the temperature of the outdoor expansion valve 6 at which the temperature distribution L2 of the heat absorber 9 increases to the threshold value X2 when the air volume is B is B, and the temperature distribution L3 of the heat absorber 9 is the threshold value X2 when the air flow rate of the heat absorber 9 is low. If the valve opening degree of the outdoor expansion valve 6 that increases to C is C, the heat pump controller 32 allows the temperature distribution L1 of the heat absorber 9 to be the threshold value X2 of the outdoor expansion valve 6 when the air flow rate of the heat absorber 9 is high. When the valve opening degree A (FIG.
  • the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 is the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 and the air flow rate of the heat absorber 9 is medium, the outdoor expansion valve 6 in which the temperature distribution L2 of the heat absorber 9 becomes the threshold value X2.
  • pcmin and when the air flow rate of the heat absorber 9 is low, the valve opening C (FIG. 9) of the outdoor expansion valve 6 at which the temperature distribution L3 of the heat absorber 9 becomes the threshold value X2 is the minimum valve opening of the outdoor expansion valve 6.
  • the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 is changed so as to set the degree of ECCVpcmin. As is apparent from FIG.
  • valve openings minimum valve opening ECCVpcmin
  • the air flow rate is determined in three steps in the embodiment, it may be determined in two steps, and conversely, it may be determined in more steps (four steps or more).
  • the valve opening degree of the outdoor expansion valve 6 is not reduced to a value at which the temperature distribution of the heat absorber 9 becomes larger than the threshold value X2 at any ventilation rate.
  • the heat pump controller 32 determines the minimum of the outdoor expansion valve 6 so that the temperature distribution of the heat absorber 9 satisfies the threshold value X2 (the temperature distribution is equal to or less than the threshold value X2) based on the air flow rate (volumetric air volume Ga) of the heat absorber 9.
  • the valve opening degree ECCVpcmin is changed.
  • the heat pump controller 32 changes the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 according to the air flow rate of the heat absorber 9, the heat pump controller 32 gives a predetermined hysteresis to the air flow rate as shown in FIG. In FIG. 10, the arrow line indicating the change direction is shown obliquely, but actually changes in the vertical direction.
  • the heat pump controller 32 increases the minimum valve opening of the outdoor expansion valve 6 in such a direction that the larger the amount of air flow (high air amount) and the smaller the amount (low air amount), the smaller the amount of air flow. Since ECCVpcmin is changed, no temperature distribution is generated in the heat absorber 9 or the temperature distribution is reduced. As a result, the valve opening degree ECCVpc of the outdoor expansion valve 6 is decreased, the refrigerant circulation amount to the heat absorber 9 is decreased, the temperature distribution is generated in the heat absorber 9, or the temperature distribution of the heat absorber 9 is increased. Can be resolved.
  • the temperature of the radiator 4 (heat radiator temperature TCI) can also be expanded, so that it can contribute to energy saving. It becomes possible.
  • the target blowing temperature TAO of the air supplied to the passenger compartment can be easily established, the air conditioning performance in the passenger compartment can be improved as a whole, and passenger comfort can also be improved.
  • the heat pump controller 32 changes the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 so that the temperature distribution of the heat absorber 9 satisfies a predetermined threshold value X2 that is allowed for the temperature distribution of the heat absorber 9.
  • the heat pump controller 32 changes the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 in a direction of increasing the larger the ventilation amount based on the ventilation amount of the indoor blower 6 to the heat absorber 9. Therefore, the temperature distribution of the heat absorber 9 accompanying the reduction of the valve opening ECCVpc of the outdoor expansion valve 6 can be effectively eliminated or suppressed.
  • the heat pump controller 32 when changing the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6, the heat pump controller 32 changes the minimum valve opening degree ECCVpc of the outdoor expansion valve 6 because it has a predetermined hysteresis. In this case, the inconvenience of hunting can be avoided in advance.
  • (13) Change control of the minimum valve opening degree of the outdoor expansion valve 6 in the dehumidifying and cooling mode by the heat pump controller 32 (part 2) Further, when the valve opening degree TXV of the indoor expansion valve 8 for reducing the pressure of the refrigerant flowing into the heat absorber 9 is large, the refrigerant circulation amount of the heat absorber 9 is increased, so that the temperature distribution of the heat absorber 9 is reduced.
  • the heat pump controller 32 changes the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 based on the valve opening degree TXV of the indoor expansion valve 8 instead of or in addition to the above embodiment (part 1).
  • FIG. 11 is a diagram for explaining an example of control for changing the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 by the valve opening degree TXV of the indoor expansion valve 8 in addition to the above-described embodiment (No. 1).
  • the ventilation to the heat absorber 9 described above depends on whether the valve opening TXV of the indoor expansion valve 8 is on the open side (the valve opening is large), the reference, or the closing side (the valve opening is small).
  • valve openings A, B, and C that are the minimum valve opening ECCVpcmin based on the amount (high air volume, medium air volume, low air volume) are further changed. That is, when the valve opening degree TXV of the indoor expansion valve 8 is on the open side (the valve opening degree is large) and the air flow rate to the heat absorber 9 is high, the minimum valve of the outdoor expansion valve 6 is used.
  • the opening degree ECCVpcmin is set to A- ⁇ smaller than the above-described valve opening degree A, and is set to B- ⁇ smaller than the above-described valve opening degree B when the medium air volume is obtained.
  • C ⁇ is smaller than the opening degree C (where ⁇ , ⁇ , and ⁇ are positive numbers).
  • the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 is set to the valve opening degree A set based on the air flow rate to the heat absorber 9 described above. , B, C.
  • the minimum valve of the outdoor expansion valve 6 is used.
  • the opening degree ECCVpcmin is set to A + ⁇ larger than the above-described valve opening degree A, B + ⁇ larger than the above-described valve opening degree B when the medium air volume is obtained, and from the above-described valve opening degree C when the air volume is low. Is larger C + ⁇ (where ⁇ , ⁇ , and ⁇ are positive numbers). In this way, by changing the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 in a direction to be smaller as the valve opening degree TXV is larger based on the valve opening degree TXV of the indoor expansion valve 8 by the heat pump controller 32, While eliminating or suppressing the temperature distribution of the heat sink 9, the temperature of the radiator 4 can be raised without any trouble.
  • the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 is changed based on only the valve opening degree TXV of the indoor expansion valve 8 without making any change based on the air flow rate to the heat absorber 9 regardless of this embodiment. You may make it do.
  • the minimum valve opening ECCVpcmin of the outdoor expansion valve 6 is set to B- ⁇ , and the valve opening For example, B is set when TXV is a reference, and B + ⁇ is set when the valve opening TXV is closed.
  • the heat pump controller 32 controls the rotational speed NC of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) and the target heat absorber temperature TEO that is the target temperature. As shown in FIG. 12, when the target heat absorber temperature TEO (target temperature of the heat absorber 9) is lowered, the rotational speed NC of the compressor 2 is increased, the capacity thereof is increased, and the refrigerant circulation amount of the heat absorber 9 is also increased. Become more.
  • the temperature distribution of the heat absorber 9 becomes smaller (portion indicated by X3 in FIG. 12), and the temperature of the radiator 4 (heat radiator temperature TCI) also rises. Therefore, even if the minimum valve opening ECCVpcmin of the outdoor expansion valve 6 is lowered (the portion indicated by X4 in FIG. 12, the radiator temperature TCI also rises), the temperature distribution of the heat absorber 9 is the same as that before the target heat absorber temperature TEO is lowered. It becomes larger only up to the state (portion indicated by X5 in FIG. 12).
  • the heat pump controller 32 changes the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 based on the target heat absorber temperature TEO instead of or in addition to the first embodiment (part 1) and the second embodiment (part 2). .
  • FIG. 13 is a diagram for explaining an example of control for changing the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 by the target heat absorber temperature TEO in addition to the first embodiment (part 1).
  • the minimum valve opening ECCVpcmin based on the air flow rate (high air volume, medium air volume, low air volume) to the heat absorber 9 described above depending on whether the target heat absorber temperature TEO is low, medium or high. Further, the valve openings A, B, and C are changed.
  • valve 13 shows only the valve opening A when the air volume is high, the valve opening B when the air volume is medium and the valve opening C when the air volume is low are similarly changed. That is, when the target heat absorber temperature TEO is low and the air flow rate to the heat absorber 9 is high, the minimum valve opening ECCVpcmin of the outdoor expansion valve 6 is set to A ⁇ smaller than the valve opening A described above. And When the target heat absorber temperature TEO is medium, the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 is set to the valve opening degree A set from the high air flow rate to the heat absorber 9 described above.
  • the minimum valve opening ECCVpcmin of the outdoor expansion valve 6 is set to A + ⁇ larger than the valve opening A described above. (However, ⁇ and ⁇ are positive numbers).
  • the heat pump controller 32 changes the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 in a direction to decrease as the target temperature of the heat absorber 9 (target heat absorber temperature TEO) is lower, the temperature of the heat absorber 9 While eliminating or suppressing the distribution, the temperature of the radiator 4 (the radiator temperature TCI) can be raised without any trouble (FIG. 12).
  • the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 is set based on only the target heat absorber temperature TEO, without changing based on the air flow rate to the heat absorber 9 regardless of the above. You may make it change. In that case, for example, as shown in FIG. 13, only when the target heat absorber temperature TEO is low, the minimum valve opening ECCVpcmin of the outdoor expansion valve 6 is set to A ⁇ when the target heat absorber temperature TEO is low. Is A, and when it is high, A + ⁇ .
  • FIG. 14 shows a configuration diagram of a vehicle air conditioner 1 of another embodiment to which the present invention is applied.
  • the same reference numerals as those in FIG. 1 indicate the same or similar functions.
  • the outlet of the supercooling section 16 is connected to the check valve 18, and the outlet of the check valve 18 is connected to the refrigerant pipe 13B.
  • the check valve 18 has a forward direction on the refrigerant pipe 13B (indoor expansion valve 8) side.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is branched before the outdoor expansion valve 6, and the branched refrigerant pipe (hereinafter referred to as second bypass pipe) 13F is an electromagnetic valve 22 (for dehumidification).
  • an evaporating pressure adjusting valve 70 is connected to the refrigerant pipe 13C on the outlet side of the heat absorber 9 on the refrigerant downstream side of the internal heat exchanger 19 and upstream of the refrigerant with respect to the refrigerant pipe 13D. .
  • the electromagnetic valve 22 and the evaporation pressure adjusting valve 70 are also connected to the output of the heat pump controller 32. Note that the bypass device 45 including the bypass pipe 35, the electromagnetic valve 30, and the electromagnetic valve 40 in FIG. 1 of the above-described embodiment is not provided. Others are the same as in FIG. With the above configuration, the operation of the vehicle air conditioner 1 of this embodiment will be described.
  • the heat pump controller 32 switches between the heating mode, the dehumidifying heating mode, the internal cycle mode, the dehumidifying cooling mode, the cooling mode, and the auxiliary heater single mode (the MAX cooling mode is present in this embodiment). do not do).
  • the operation when the heating mode, the dehumidifying and cooling mode, and the cooling mode are selected, the refrigerant flow, and the auxiliary heater single mode are the same as those in the above-described embodiment (embodiment 1), and thus the description thereof is omitted.
  • the solenoid valve 22 is closed in the heating mode, the dehumidifying cooling mode, and the cooling mode.
  • heat pump controller 32 opens electromagnetic valve 21 (for heating) and electromagnetic valve 17 ( Close for cooling. Further, the electromagnetic valve 22 (for dehumidification) is opened. Then, the compressor 2 is operated.
  • the air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating.
  • the auxiliary heater 23 and the radiator 4 are ventilated, but the air volume is also adjusted. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G.
  • the air in the air flow path 3 that has flowed into the heat exchange path 3A for heating is passed through the heat radiator 4, the air in the air flow path 3 is heated by the high-temperature refrigerant in the heat radiator 4, while the heat radiator The refrigerant in 4 is deprived of heat by the air and cooled to condense.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15.
  • the refrigerant circuit R becomes a heat pump. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 through the refrigerant pipe 13C through the refrigerant pipe 13A, the solenoid valve 21 and the refrigerant pipe 13D, and is gas-liquid separated there. Repeated circulation inhaled. Further, a part of the condensed refrigerant flowing through the refrigerant pipe 13E through the radiator 4 is diverted, passes through the electromagnetic valve 22, and reaches the indoor expansion valve 8 through the internal heat exchanger 19 from the second bypass pipe 13F and the refrigerant pipe 13B. It becomes like this.
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 sequentially passes through the internal heat exchanger 19 and the evaporation pressure adjusting valve 70 and then merges with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C. Then, the refrigerant is sucked into the compressor 2 through the accumulator 12. repeat.
  • the air conditioning controller 20 transmits the target heater temperature TCO (target value of the radiator outlet temperature TCI) calculated from the target blowing temperature TAO to the heat pump controller 32.
  • the heat pump controller 32 calculates a target radiator pressure PCO (target value of the radiator pressure PCI) from the target heater temperature TCO, and the refrigerant of the radiator 4 detected by the target radiator pressure PCO and the radiator pressure sensor 47.
  • the number of revolutions NC of the compressor 2 is controlled based on the pressure (radiator pressure PCI, high pressure of the refrigerant circuit R), and heating by the radiator 4 is controlled.
  • the heat pump controller 32 controls the valve opening degree of the outdoor expansion valve 6 based on the temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO transmitted from the air conditioning controller 20. In addition, the heat pump controller 32 opens (enlarges the flow path) / closes (flows a small amount of refrigerant) the heat absorber 9 based on the temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48. The inconvenience of freezing due to too low temperature is prevented. (16) Internal cycle mode of the vehicle air conditioner 1 of FIG. 14 In the internal cycle mode, the heat pump controller 32 fully closes the outdoor expansion valve 6 in the dehumidifying and heating mode state (fully closed position), The solenoid valve 21 is closed.
  • the air Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 sequentially flows through the refrigerant pipe 13C through the internal heat exchanger 19 and the evaporation pressure adjustment valve 70, and repeats circulation that is sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
  • the air conditioning controller 20 transmits the target heater temperature TCO (target value of the radiator outlet temperature TCI) calculated from the target outlet temperature TAO to the heat pump controller 32.
  • the heat pump controller 32 calculates the target radiator pressure PCO (target value of the radiator pressure PCI) from the transmitted target heater temperature TCO, and the target radiator pressure PCO and the radiator 4 detected by the radiator pressure sensor 47.
  • the rotational speed NC of the compressor 2 is controlled based on the refrigerant pressure (radiator pressure PCI, high pressure of the refrigerant circuit R), and heating by the radiator 4 is controlled. Since the flow and control of the refrigerant in the dehumidifying and cooling mode of the vehicle air conditioner 1 according to the second embodiment are the same as those in the first embodiment described above, the heat pump controller 32 also operates in the dehumidifying and cooling mode in this embodiment. By performing the change control (No. 1) to (No.
  • the temperature distribution is not generated in the heat absorber 9 as described above, or The temperature distribution becomes smaller. Accordingly, the valve opening ECCVpc of the outdoor expansion valve 6 is similarly reduced, the refrigerant circulation amount to the heat absorber 9 is reduced, and the temperature distribution is generated in the heat absorber 9 or the temperature distribution of the heat absorber 9 is increased. Inconvenience can be eliminated. Similarly, in this case as well, the temperature of the radiator 4 (heat radiator temperature TCI) can be expanded while maintaining the dehumidifying performance of the heat absorber 9 in the dehumidifying and cooling mode. It is possible to contribute to energy saving.
  • the target blowing temperature TAO of the air supplied to the passenger compartment can be easily established, the air conditioning performance in the passenger compartment can be improved as a whole, and passenger comfort can also be improved.
  • the numerical values shown in the embodiments are not limited thereto, and should be appropriately set according to the apparatus to be applied.
  • the auxiliary heating device is not limited to the auxiliary heater 23 shown in the embodiment, and a heat medium circulation circuit that heats the air in the air flow passage 3 by circulating the heat medium heated by the heater or an engine. You may utilize the heater core etc. which circulate through the heated radiator water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

The present invention eliminates or suppresses temperature distribution (variation in temperature) generated in a heat absorber in a dehumidification cooling mode. The dehumidification cooling mode is executed in which the heat of a refrigerant discharged from a compressor 2 is dissipated at a heat dissipator 4 and an outdoor heat exchanger 7, the pressure of the heat-dissipated refrigerant is reduced by an indoor expansion valve 8, and then the heat is absorbed by a heat absorber 9. A control device controls the performance of the compressor on the basis of the temperature of the heat absorber, and controls the valve opening degree of an outdoor expansion valve on the basis of the temperature or pressure of the heat dissipator. The minimum opening degree of the outdoor expansion valve is changed so that no temperature distribution is generated in the heat absorber or the temperature distribution becomes small.

Description

車両用空気調和装置Air conditioner for vehicles
 本発明は、車両の車室内を空調するヒートポンプ式の空気調和装置に関するものである。 The present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle.
 近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する圧縮機と、車室内側に設けられて冷媒を放熱させる放熱器と、車室内側に設けられて冷媒を吸熱させる吸熱器と、車室外側に設けられて冷媒を放熱又は吸熱させる室外熱交換器を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器において放熱させ、放熱器において放熱した冷媒を吸熱器のみ、又は、この吸熱器と室外熱交換器において吸熱させる除湿暖房モードと、圧縮機から吐出された冷媒を放熱器及び室外熱交換器において放熱させ、吸熱器において吸熱させる除湿冷房モードと、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させる冷房モードとを切り換えて実行するものが開発されている(例えば、特許文献1参照)。
 そして、除湿冷房モードでは、吸熱器の温度に基づいて圧縮機の回転数を制御することで、吸熱器の冷却(除湿)能力を制御する。また、室外熱交換器に流入する冷媒を減圧させる室外膨張弁の弁開度を、放熱器の温度に基づいて制御することで、放熱器の加熱能力を制御していた。
Hybrid vehicles and electric vehicles have come into widespread use due to the emergence of environmental problems in recent years. As an air conditioner that can be applied to such a vehicle, a compressor that compresses and discharges the refrigerant, a radiator that is provided on the vehicle interior side and dissipates the refrigerant, and is provided on the vehicle interior side. A heat absorber that absorbs the refrigerant and an outdoor heat exchanger that is provided outside the passenger compartment to dissipate or absorb heat from the passenger compartment, dissipate the refrigerant discharged from the compressor in the radiator, and dissipate the refrigerant dissipated in the radiator Heating mode in which heat is absorbed in the outdoor heat exchanger, and dehumidification in which the refrigerant discharged from the compressor is dissipated in the radiator and the refrigerant dissipated in the radiator is absorbed only in the heat absorber or in the heat absorber and the outdoor heat exchanger. Heating mode, dehumidifying cooling mode in which the refrigerant discharged from the compressor dissipates heat in the radiator and the outdoor heat exchanger, and absorbs heat in the heat absorber, and refrigerant discharged from the compressor Is radiated in the outdoor heat exchanger, which executes switching between the cooling mode to heat absorption have been developed in the heat sink (e.g., see Patent Document 1).
In the dehumidifying and cooling mode, the cooling (dehumidifying) capacity of the heat absorber is controlled by controlling the rotation speed of the compressor based on the temperature of the heat absorber. Moreover, the heating capacity of the radiator has been controlled by controlling the valve opening degree of the outdoor expansion valve that depressurizes the refrigerant flowing into the outdoor heat exchanger based on the temperature of the radiator.
特開2014−205563号公報JP 2014-205563 A
 即ち、除湿冷房モードにおいては室外膨張弁の弁開度を小さくすることで放熱器の温度を上げることができる。しかしながら、室外膨張弁の弁開度が小さくなると、吸熱器の冷媒循環量が減少するため、吸熱器の温度分布(吸熱器の部分によって温度にバラツキが生じること)が大きくなり、除湿性能が低下すると共に、目標吹出温度も成立し難くなるという問題があった。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、除湿冷房モードにおいて吸熱器に生じる温度分布(温度のバラツキ)を解消若しくは抑制することで、車室内の空調性能を向上させた車両用空気調和装置を提供することを目的とする。
That is, in the dehumidifying and cooling mode, the temperature of the radiator can be increased by reducing the valve opening degree of the outdoor expansion valve. However, if the valve opening of the outdoor expansion valve is reduced, the amount of refrigerant circulating in the heat absorber decreases, so the temperature distribution of the heat absorber (the temperature varies depending on the heat absorber) increases and the dehumidification performance decreases. In addition, there is a problem that it is difficult to establish the target blowing temperature.
The present invention has been made to solve the conventional technical problem, and eliminates or suppresses the temperature distribution (temperature variation) generated in the heat absorber in the dehumidifying and cooling mode, thereby improving the air conditioning performance in the vehicle interior. An object of the present invention is to provide an air conditioning apparatus for a vehicle with improved performance.
 本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を放熱させるための室外熱交換器と、この室外熱交換器に流入する冷媒を減圧させるための室外膨張弁と、吸熱器に流入する冷媒を減圧させるための室内膨張弁と、制御装置とを備え、この制御装置により、少なくとも圧縮機から吐出された冷媒を放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を室内膨張弁により減圧した後、吸熱器にて吸熱させる除湿冷房モードを実行するものであって、制御装置は、除湿冷房モードにおいては吸熱器の温度に基づいて圧縮機の能力を制御し、放熱器の温度又は圧力に基づいて室外膨張弁の弁開度を制御すると共に 吸熱器に温度分布が生じないように、若しくは、温度分布が小さくなるように室外膨張弁の最小弁開度を変更することを特徴とする。
 請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、吸熱器の温度分布が、当該吸熱器の温度分布に関して許容される所定の閾値を満足するように室外膨張弁の最小弁開度を変更することを特徴とする。
 請求項3の発明の車両用空気調和装置は、上記各発明において空気流通路内に空気を流通させる室内送風機を備え、制御装置は、室内送風機による吸熱器への通風量に基づき、当該通風量が多い程、大きくする方向で室外膨張弁の最小弁開度を変更することを特徴とする。
 請求項4の発明の車両用空気調和装置は、上記各発明において制御装置は、室内膨張弁の弁開度に基づき、当該弁開度が大きい程、小さくする方向で室外膨張弁の最小弁開度を変更することを特徴とする。
 請求項5の発明の車両用空気調和装置は、上記各発明において制御装置は、除湿冷房モードにおいては吸熱器の温度と当該吸熱器の目標温度に基づいて圧縮機の能力を制御すると共に、吸熱器の目標温度が低い程、小さくする方向で室外膨張弁の最小弁開度を変更することを特徴とする。
 請求項6の発明の車両用空気調和装置は、上記各発明において制御装置は、室外膨張弁の最小弁開度を変更する場合、所定のヒステリシスを持たせることを特徴とする。
The vehicle air conditioner of the present invention heats the compressor that compresses the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air that dissipates the refrigerant and is supplied from the air flow passage to the vehicle interior. A heat sink for absorbing heat from the refrigerant and cooling the air supplied from the air flow passage to the vehicle interior, an outdoor heat exchanger for dissipating the refrigerant provided outside the vehicle compartment, An outdoor expansion valve for depressurizing the refrigerant flowing into the heat exchanger, an indoor expansion valve for depressurizing the refrigerant flowing into the heat absorber, and a control device are provided, and at least discharged from the compressor by the control device. The controller performs a dehumidifying and cooling mode in which the refrigerant is radiated by the radiator and the outdoor heat exchanger, and the radiated refrigerant is decompressed by the indoor expansion valve and then absorbed by the heat absorber. In cooling mode Controls the capacity of the compressor based on the temperature of the heat absorber, controls the valve opening of the outdoor expansion valve based on the temperature or pressure of the radiator, and prevents the temperature distribution from occurring in the heat absorber, The minimum valve opening degree of the outdoor expansion valve is changed so that the distribution becomes small.
According to a second aspect of the present invention, there is provided a vehicular air conditioner according to the first aspect of the present invention, wherein the control device is configured such that the temperature distribution of the heat absorber satisfies a predetermined threshold that is allowed for the temperature distribution of the heat absorber. The valve opening is changed.
According to a third aspect of the present invention, there is provided an air conditioner for a vehicle including an indoor blower that circulates air in the air flow passage in each of the above-described inventions, and the control device is configured based on the amount of air flow to the heat absorber by the indoor blower. The minimum valve opening degree of the outdoor expansion valve is changed in the direction of increasing as the amount increases.
According to a fourth aspect of the present invention, there is provided a vehicle air conditioner according to the above invention, wherein the controller is configured to open the minimum of the outdoor expansion valve in such a direction that the smaller the valve opening is, the smaller the valve opening is. It is characterized by changing the degree.
According to a fifth aspect of the present invention, in the air conditioning apparatus for a vehicle according to each of the above aspects, in the dehumidifying and cooling mode, the control device controls the capacity of the compressor based on the temperature of the heat absorber and the target temperature of the heat absorber, The minimum valve opening degree of the outdoor expansion valve is changed in a direction of decreasing as the target temperature of the vessel is lower.
A vehicle air conditioner according to a sixth aspect of the present invention is characterized in that, in each of the above inventions, the control device has a predetermined hysteresis when the minimum valve opening degree of the outdoor expansion valve is changed.
 本発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を放熱させるための室外熱交換器と、この室外熱交換器に流入する冷媒を減圧させるための室外膨張弁と、吸熱器に流入する冷媒を減圧させるための室内膨張弁と、制御装置とを備え、この制御装置により、少なくとも圧縮機から吐出された冷媒を放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を室内膨張弁により減圧した後、吸熱器にて吸熱させる除湿冷房モードを実行する車両用空気調和装置において、制御装置は、除湿冷房モードにおいては吸熱器の温度に基づいて圧縮機の能力を制御し、放熱器の温度又は圧力に基づいて室外膨張弁の弁開度を制御すると共に 吸熱器に温度分布が生じないように、若しくは、温度分布が小さくなるように室外膨張弁の最小弁開度を変更するようにしたので、室外膨張弁の弁開度が小さくなって吸熱器への冷媒循環量が減少し、吸熱器に温度分布が生じ、若しくは、吸熱器の温度分布が大きくなる不都合を解消することができるようになる。
 これにより、除湿冷房モードにおける吸熱器の除湿性能を維持しながら、放熱器の温度も、その取り得る範囲を拡げることができるようになるので、省エネルギーに寄与することが可能となる。また、車室内に供給される空気の目標吹出温度も成立させ易くなるので、総じて車室内の空調性能を向上させ、搭乗者の快適性も改善することができるようになる。
 この場合、請求項2の発明の如く制御装置が、吸熱器の温度分布が、当該吸熱器の温度分布に関して許容される所定の閾値を満足するように室外膨張弁の最小弁開度を変更するようにすれば、室外膨張弁の弁開度の縮小に伴う吸熱器の温度分布を的確に解消し、若しくは、抑制することができるようになる。
 ここで、空気流通路内に空気を流通させる室内送風機が設けられ、この室内送風機により吸熱器に通風されるときには、通風量が多い程、冷媒は活発に蒸発するようになるので、吸熱器の温度分布も大きくなる。そこで、請求項3の発明の如く制御装置が、室内送風機による吸熱器への通風量に基づき、当該通風量が多い程、大きくする方向で室外膨張弁の最小弁開度を変更するようにすれば、室外膨張弁の弁開度の縮小に伴う吸熱器の温度分布を効果的に解消し、若しくは、抑制することができるようになる。
 また、吸熱器に流入する冷媒を減圧させる室内膨張弁の弁開度が大きいときには、吸熱器の冷媒循環量が多くなるので、吸熱器の温度分布は小さくなる。そこで、請求項4の発明の如く制御装置が、室内膨張弁の弁開度に基づき、当該弁開度が大きい程、小さくする方向で室外膨張弁の最小弁開度を変更するようにすれば、吸熱器の温度分布を解消、若しくは、抑制しながら、支障無く放熱器の温度を上げることができるようになる。
 更に、制御装置は除湿冷房モードでは吸熱器の温度とその目標温度に基づいて圧縮機を制御するので、吸熱器の目標温度が低い程、圧縮機の能力は増大され、吸熱器の冷媒循環量も多くなる。そこで、請求項5の発明の如く制御装置が、吸熱器の目標温度が低い程、小さくする方向で室外膨張弁の最小弁開度を変更するようにすれば、吸熱器の温度分布を解消、若しくは、抑制しながら、支障無く放熱器の温度を上げることができるようになる。
 そして、請求項6の発明の如く制御装置が、室外膨張弁の最小弁開度を変更する場合、所定のヒステリシスを持たせることにより、室外膨張弁の最小弁開度を変更する際に、ハンチングが発生する不都合を未然に回避することができるようになる。
According to the present invention, a compressor for compressing a refrigerant, an air flow passage through which air to be supplied to the vehicle interior flows, and a radiator for heating the air to be radiated from the refrigerant and supplied to the vehicle interior from the air flow passage. A heat absorber that cools the air supplied to the vehicle interior through the air flow path by absorbing the refrigerant, an outdoor heat exchanger that is provided outside the vehicle cabin and dissipates the refrigerant, and the outdoor heat exchanger. An outdoor expansion valve for depressurizing the refrigerant flowing in, an indoor expansion valve for depressurizing the refrigerant flowing into the heat absorber, and a control device are provided, and at least the refrigerant discharged from the compressor is radiated by the control device. In a vehicle air conditioner that executes a dehumidifying and cooling mode in which heat is radiated by a heat exchanger and an outdoor heat exchanger, and the radiated refrigerant is decompressed by an indoor expansion valve and then absorbed by a heat absorber. smell Controls the capacity of the compressor based on the temperature of the heat absorber, controls the valve opening of the outdoor expansion valve based on the temperature or pressure of the radiator, and prevents the temperature distribution from occurring in the heat absorber, Since the minimum valve opening of the outdoor expansion valve is changed so that the distribution becomes smaller, the valve opening of the outdoor expansion valve becomes smaller, the amount of refrigerant circulation to the heat absorber decreases, and the temperature distribution in the heat absorber The problem that occurs or the temperature distribution of the heat absorber becomes large can be solved.
Thereby, while maintaining the dehumidifying performance of the heat absorber in the dehumidifying and cooling mode, the temperature of the radiator can be expanded, so that it is possible to contribute to energy saving. In addition, since it is easy to establish the target blowing temperature of the air supplied to the passenger compartment, air conditioning performance in the passenger compartment is generally improved, and passenger comfort can be improved.
In this case, the control device changes the minimum valve opening degree of the outdoor expansion valve so that the temperature distribution of the heat absorber satisfies a predetermined threshold that is allowed for the temperature distribution of the heat absorber. By doing so, the temperature distribution of the heat absorber associated with the reduction of the valve opening degree of the outdoor expansion valve can be accurately eliminated or suppressed.
Here, when an indoor blower that circulates air in the air flow passage is provided, and the ventilation blown by the indoor blower to the heat absorber, the larger the amount of ventilation, the more actively the refrigerant evaporates. The temperature distribution also increases. Therefore, the control device according to the invention of claim 3 is configured to change the minimum valve opening degree of the outdoor expansion valve in a direction of increasing the larger the ventilation amount based on the ventilation amount of the indoor fan to the heat absorber. Thus, the temperature distribution of the heat absorber associated with the reduction of the valve opening of the outdoor expansion valve can be effectively eliminated or suppressed.
Further, when the valve opening degree of the indoor expansion valve that depressurizes the refrigerant flowing into the heat absorber is large, the refrigerant circulation amount of the heat absorber increases, so the temperature distribution of the heat absorber becomes small. Therefore, as in the fourth aspect of the present invention, if the control device changes the minimum valve opening of the outdoor expansion valve in the direction of decreasing the valve opening as the valve opening is larger, based on the valve opening of the indoor expansion valve. The temperature of the radiator can be raised without any trouble while eliminating or suppressing the temperature distribution of the heat absorber.
Furthermore, since the controller controls the compressor based on the temperature of the heat absorber and its target temperature in the dehumidifying and cooling mode, the lower the target temperature of the heat absorber, the greater the capacity of the compressor and the amount of refrigerant circulation in the heat absorber. Will also increase. Therefore, if the control device changes the minimum valve opening of the outdoor expansion valve in the direction of decreasing the lower the target temperature of the heat absorber as the target temperature of the heat absorber is reduced, the temperature distribution of the heat absorber is eliminated. Alternatively, the temperature of the radiator can be raised without hindrance while being suppressed.
When the control device changes the minimum valve opening degree of the outdoor expansion valve as in the sixth aspect of the invention, the hunting is performed when the minimum valve opening degree of the outdoor expansion valve is changed by providing a predetermined hysteresis. It becomes possible to avoid the inconvenience that occurs.
本発明を適用した一実施形態の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied. 図1の車両用空気調和装置の制御装置のブロック図である。It is a block diagram of the control apparatus of the air conditioning apparatus for vehicles of FIG. 図1の車両用空気調和装置の空気流通路の模式図である。It is a schematic diagram of the airflow path of the vehicle air conditioner of FIG. 図2のヒートポンプコントローラの暖房モードにおける圧縮機制御に関する制御ブロック図である。It is a control block diagram regarding the compressor control in the heating mode of the heat pump controller of FIG. 図2のヒートポンプコントローラの除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モードにおける圧縮機制御に関する制御ブロック図である。It is a control block diagram regarding the compressor control in the dehumidification heating mode, the dehumidification cooling mode, the cooling mode, and the MAX cooling mode of the heat pump controller of FIG. 図2のヒートポンプコントローラの除湿暖房モードにおける補助ヒータ(補助加熱装置)制御に関する制御ブロック図である。It is a control block diagram regarding auxiliary heater (auxiliary heating apparatus) control in the dehumidification heating mode of the heat pump controller of FIG. 図1の車両用空気調和装置の除湿冷房モードにおける室外膨張弁の弁開度と放熱器の温度の関係を示す図である。It is a figure which shows the relationship between the valve opening degree of the outdoor expansion valve in the dehumidification air_conditioning | cooling mode of the vehicle air conditioner of FIG. 1, and the temperature of a radiator. 図1の車両用空気調和装置の除湿冷房モードにおける室外膨張弁の弁開度と吸熱器の温度分布の関係を示す図である。It is a figure which shows the relationship between the valve opening degree of the outdoor expansion valve in the dehumidification air_conditioning | cooling mode of the vehicle air conditioner of FIG. 1, and the temperature distribution of a heat sink. 図1の車両用空気調和装置の除湿冷房モードで吸熱器の通風量が変化した場合の室外膨張弁の弁開度と吸熱器の温度分布の関係を示す図である。It is a figure which shows the relationship between the valve opening degree of an outdoor expansion valve, and the temperature distribution of a heat absorber when the ventilation volume of a heat absorber changes in the dehumidification cooling mode of the vehicle air conditioner of FIG. 図1の車両用空気調和装置の除湿冷房モードにおいて吸熱器の通風量で室外膨張弁の最小弁開度を変更するときのヒステリシスを説明する図である。It is a figure explaining the hysteresis when changing the minimum valve opening degree of an outdoor expansion valve with the ventilation volume of a heat absorber in the dehumidification cooling mode of the vehicle air conditioner of FIG. 図1の車両用空気調和装置の除湿冷房モードにおいて室内膨張弁の弁開度で室外膨張弁の最小弁開度を変更する制御を説明する図である。It is a figure explaining the control which changes the minimum valve opening degree of an outdoor expansion valve with the valve opening degree of an indoor expansion valve in the dehumidification cooling mode of the vehicle air conditioner of FIG. 図1の車両用空気調和装置の除湿冷房モードにおいて吸熱器の目標温度を下げたときの状況を説明するタイミングチャートである。It is a timing chart explaining the situation when the target temperature of the heat absorber is lowered in the dehumidifying and cooling mode of the vehicle air conditioner of FIG. 図1の車両用空気調和装置の除湿冷房モードにおいて吸熱器の目標温度で室外膨張弁の最小弁開度を変更する制御を説明する図である。It is a figure explaining the control which changes the minimum valve opening degree of an outdoor expansion valve with the target temperature of a heat absorber in the dehumidification air_conditioning | cooling mode of the vehicle air conditioner of FIG. 本発明の他の実施例の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of the other Example of this invention.
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリの電力で駆動されるものとする。
 即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房モードを行い、更に、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(最大冷房モード)及び補助ヒータ単独モードの各運転モードを選択的に実行するものである。
 尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を放熱させて車室内に供給する空気を加熱するための放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6(減圧装置)と、車室外に設けられて冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8(減圧装置)と、空気流通路3内に設けられ、冷房時及び除湿時に冷媒を吸熱させて車室内外から吸い込んで車室内に供給する空気を冷却するための吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。
 そして、この冷媒回路Rには所定量の冷媒と潤滑用のオイルが充填されている。尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される電磁弁17を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは室内膨張弁8介して吸熱器9の入口側に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。
 また、過冷却部16と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側の冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出た低温の冷媒により冷却(過冷却)される構成とされている。
 また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。この冷媒配管13Cがアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6を介して室外熱交換器7の入口側に接続されている。
 また、圧縮機2の吐出側と放熱器4の入口側の間の冷媒配管13Gには後述する除湿暖房とMAX冷房時に閉じられる電磁弁30(流路切換装置を構成する)が介設されている。この場合、冷媒配管13Gは電磁弁30の上流側でバイパス配管35に分岐しており、このバイパス配管35は除湿暖房とMAX冷房時に開放される電磁弁40(これも流路切換装置を構成する)を介して室外膨張弁6の下流側の冷媒配管13Eに連通接続されている。これらバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45が構成される。
 このようなバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45を構成したことで、後述する如く圧縮機2から吐出された冷媒を室外熱交換器7に直接流入させる除湿暖房モードやMAX冷房モードと、圧縮機2から吐出された冷媒を放熱器4に流入させる暖房モードや除湿冷房モード、冷房モードとの切り換えを円滑に行うことができるようになる。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給し、吸熱器9に通風するための室内送風機(ブロワファン)27が設けられている。
 また、図1において23は実施例の車両用空気調和装置1に設けられた補助加熱装置としての補助ヒータである。実施例の補助ヒータ23は電気ヒータであるPTCヒータにて構成されており、空気流通路3の空気の流れに対して、放熱器4の風上側(空気上流側)となる空気流通路3内に設けられている。そして、補助ヒータ23に通電されて発熱すると、吸熱器9を経て放熱器4に流入する空気流通路3内の空気が加熱される。即ち、この補助ヒータ23が所謂ヒータコアとなり、車室内の暖房を行い、或いは、それを補完する。
 ここで、HVACユニット10の吸熱器9より風下側(空気下流側)の空気流通路3は仕切壁10Aにより区画され、暖房用熱交換通路3Aとそれをバイパスするバイパス通路3Bとが形成されており、前述した放熱器4と補助ヒータ23は暖房用熱交換通路3Aに配置されている。
 また、補助ヒータ23の風上側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を、補助ヒータ23及び放熱器4が配置された暖房用熱交換通路3Aに通風する割合を調整するエアミックスダンパ28が設けられている。
 更に、放熱器4の風下側におけるHVACユニット10には、FOOT(フット)吹出口29A(第1の吹出口)、VENT(ベント)吹出口29B(FOOT吹出口29Aに対しては第2の吹出口、DEF吹出口29Cに対しては第1の吹出口)、DEF(デフ)吹出口29C(第2の吹出口)の各吹出口が形成されている。FOOT吹出口29Aは車室内の足下に空気を吹き出すための吹出口で、最も低い位置にある。また、VENT吹出口29Bは車室内の運転者の胸や顔付近に空気を吹き出すための吹出口で、FOOT吹出口29Aより上方にある。そして、DEF吹出口29Cは車両のフロントガラス内面に空気を吹き出すための吹出口で、他の吹出口29A、29Bよりも上方の最も高い位置にある。
 そして、FOOT吹出口29A、VENT吹出口29B、及び、DEF吹出口29Cには、空気の吹き出し量を制御するFOOT吹出口ダンパ31A、VENT吹出口ダンパ31B、及び、DEF吹出口ダンパ31Cがそれぞれ設けられている。
 次に、図2は実施例の車両用空気調和装置1の制御装置11のブロック図を示している。制御装置11は、何れもプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された空調コントローラ20及びヒートポンプコントローラ32から構成されており、これらがCAN(Controller Area Network)やLIN(Local Interconnect Network)を構成する車両通信バス65に接続されている。また、圧縮機2と補助ヒータ23も車両通信バス65に接続され、これら空調コントローラ20、ヒートポンプコントローラ32、圧縮機2及び補助ヒータ23が車両通信バス65を介してデータの送受信を行うように構成されている。
 空調コントローラ20は、車両の車室内空調の制御を司る上位のコントローラであり、この空調コントローラ20の入力には、車両の外気温度Tamを検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれて吸熱器9に流入する空気の温度(吸込空気温度Tas)を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度(室内温度Tin)を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO濃度センサ39と、車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力Pdを検出する吐出圧力センサ42と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52の各出力と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53が接続されている。
 また、空調コントローラ20の出力には、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、各吹出口ダンパ31A~31Cが接続され、それらは空調コントローラ20により制御される。
 ヒートポンプコントローラ32は、主に冷媒回路Rの制御を司るコントローラであり、このヒートポンプコントローラ32の入力には、圧縮機2の吐出冷媒温度Tdを検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力Psを検出する吸込圧力センサ44と、圧縮機2の吸込冷媒温度Tsを検出する吸込温度センサ55と、放熱器4の冷媒温度(放熱器温度TCI)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の冷媒温度(吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力を検出する吸熱器圧力センサ49と、補助ヒータ23の温度(補助ヒータ温度Tptc)を検出する補助ヒータ温度センサ50と、室外熱交換器7の出口の冷媒温度(室外熱交換器温度TXO)を検出する室外熱交換器温度センサ54と、室外熱交換器7の出口の冷媒圧力(室外熱交換器圧力PXO)を検出する室外熱交換器圧力センサ56の各出力が接続されている。
 また、ヒートポンプコントローラ32の出力には、室外膨張弁6、室内膨張弁8と、電磁弁30(リヒート用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁40(バイパス用)の各電磁弁が接続され、それらはヒートポンプコントローラ32により制御される。尚、圧縮機2と補助ヒータ23はそれぞれコントローラを内蔵しており、圧縮機2と補助ヒータ23のコントローラは車両通信バス65を介してヒートポンプコントローラ32とデータの送受信を行い、このヒートポンプコントローラ32によって制御される。
 ヒートポンプコントローラ32と空調コントローラ20は車両通信バス65を介して相互にデータの送受信を行い、各センサの出力や空調操作部53にて入力された設定に基づき、各機器を制御するものであるが、この場合の実施例では外気温度センサ33、吐出圧力センサ42、車速センサ52、空気流通路3に流入した空気の体積風量Ga(空調コントローラ20が算出)、エアミックスダンパ28による風量割合SW(空調コントローラ20が算出)、空調操作部53の出力は空調コントローラ20から車両通信バス65を介してヒートポンプコントローラ32に送信され、ヒートポンプコントローラ32による制御に供される構成とされている。
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。この実施例では制御装置11(空調コントローラ20、ヒートポンプコントローラ32)は、暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(最大冷房モード)及び補助ヒータ単独モードの各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れと制御の概略について説明する。
 (1)暖房モード
 ヒートポンプコントローラ32により(オートモード)或いは空調操作部53へのマニュアル操作(マニュアルモード)により暖房モードが選択されると、ヒートポンプコントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁30(リヒート用)を開放し、電磁弁40(バイパス用)を閉じる。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量を調整してもよい。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)にて加熱された空気は各吹出口29A~29Cから吹き出されるので、これにより車室内の暖房が行われることになる。
 ヒートポンプコントローラ32は、空調コントローラ20が目標吹出温度TAOから算出する目標ヒータ温度TCO(放熱器温度TCIの目標値)から目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御し、放熱器4による加熱を制御する。また、ヒートポンプコントローラ32は、放熱器温度センサ46が検出する放熱器4の冷媒温度(放熱器温度TCI)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度SCを制御する。
 また、ヒートポンプコントローラ32はこの暖房モードにおいては、車室内空調に要求される暖房能力に対して放熱器4による暖房能力が不足する場合、その不足する分を補助ヒータ23の発熱で補完するように補助ヒータ23の通電を制御する。それにより、快適な車室内暖房を実現し、且つ、室外熱交換器7の着霜も抑制する。このとき、補助ヒータ23は放熱器4の空気上流側に配置されているので、空気流通路3を流通する空気は放熱器4の前に補助ヒータ23に通風されることになる。
 ここで、補助ヒータ23が放熱器4の空気下流側に配置されていると、実施例の如くPTCヒータで補助ヒータ23を構成した場合には、補助ヒータ23に流入する空気の温度が放熱器4によって上昇するため、PTCヒータの抵抗値が大きくなり、電流値も低くなって発熱量が低下してしまうが、放熱器4の空気上流側に補助ヒータ23を配置することで、実施例の如くPTCヒータから構成される補助ヒータ23の能力を十分に発揮させることができるようになる。
 (2)除湿暖房モード
 次に、除湿暖房モードでは、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
 これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却され、且つ、当該空気中の水分が吸熱器9に凝結して付着するので、空気流通路3内の空気は冷却され、且つ、除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。
 このとき、室外膨張弁6の弁開度は全閉とされているので、圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。更に、この除湿暖房モードにおいてヒートポンプコントローラ32は、補助ヒータ23に通電して発熱させる。これにより、吸熱器9にて冷却され、且つ、除湿された空気は補助ヒータ23を通過する過程で更に加熱され、温度が上昇するので車室内の除湿暖房が行われることになる。
 ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)と、空調コントローラ20が算出する吸熱器温度Teの目標値(吸熱器9の目標温度)である目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御すると共に、補助ヒータ温度センサ50が検出する補助ヒータ温度Tptcと前述した目標ヒータ温度TCO(この場合、補助ヒータ温度Tptcの目標値となる)に基づいて補助ヒータ23の通電(発熱による加熱)を制御することで、吸熱器9での空気の冷却と除湿を適切に行いながら、補助ヒータ23による加熱で各吹出口29A~29Cから車室内に吹き出される空気温度の低下を的確に防止する。これにより、車室内に吹き出される空気を除湿しながら、その温度を適切な暖房温度に制御することが可能となり、車室内の快適且つ効率的な除湿暖房を実現することができるようになる。
 尚、補助ヒータ23は放熱器4の空気上流側に配置されているので、補助ヒータ23で加熱された空気は放熱器4を通過することになるが、この除湿暖房モードでは放熱器4に冷媒は流されないので、補助ヒータ23にて加熱された空気から放熱器4が吸熱してしまう不都合も解消される。即ち、放熱器4によって車室内に吹き出される空気の温度が低下してしまうことが抑制され、COPも向上することになる。
 (3)除湿冷房モード
 次に、除湿冷房モードでは、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を開放し、電磁弁40を閉じる。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。この除湿冷房モードではヒートポンプコントローラ32は補助ヒータ23に通電しないので、吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)される。これにより車室内の除湿冷房が行われることになる。
 ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値(吸熱器9の目標温度)である目標吸熱器温度TEO(空調コントローラ20から送信される)に基づいて圧縮機2の回転数NC(圧縮機2の能力)を制御する。即ち、吸熱器温度Teが目標吸熱器温度TEOより高いときは圧縮機2の回転数NCを上昇させ、吸熱器温度Teが目標吸熱器温度TEOより低いときには回転数NCを低下させる。また、ヒートポンプコントローラ32は前述した目標ヒータ温度TCOから目標放熱器圧力PCOを算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて室外膨張弁6の弁開度を制御し、放熱器4による加熱を制御する。
 ここで、実施例ではヒートポンプコントローラ32は、放熱器温度TCIの目標値である目標ヒータ温度TCOから算出された目標放熱器圧力PCOと放熱器圧力PCIとに基づいて室外膨張弁6の弁開度を制御するようにしているが、放熱器温度TCIと目標ヒータ温度TCOとに基づいて室外膨張弁6の弁開度を制御するようにしても良い。何れにしてもヒートポンプコントローラ32は、放熱器4の圧力(又は温度)が目標値より低いときには室外膨張弁6の弁開度を小さくする。室外膨張弁6の弁開度が小さくなると放熱器4における冷媒の過冷却度SCが大きくなるので、放熱器4の温度が上がって加熱能力は大きくなる。一方、目標値より高い場合には室外膨張弁6の弁開度を大きくして放熱器4の温度を下げ、加熱能力を小さくする。
 (4)冷房モード
 次に、冷房モードでは、ヒートポンプコントローラ32は上記除湿冷房モードの状態において室外膨張弁6の弁開度を全開とする。そして、圧縮機2を運転し、補助ヒータ23には通電しない。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の空気が、暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風される割合を調整する状態とする。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入すると共に、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒はそれを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着する。
 吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気が各吹出口29A~29Cから車室内に吹き出されるので(一部は放熱器4を通過して熱交換する)、これにより車室内の冷房が行われることになる。また、この冷房モードにおいては、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である前述した目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御する。
 (5)MAX冷房モード(最大冷房モード)
 次に、最大冷房モードとしてのMAX冷房モードでは、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2を運転し、補助ヒータ23には通電しない。空調コントローラ20は、各送風機15、27を運転し、エアミックスダンパ28は、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の空気が、暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風される割合を調整する状態とする。
 これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着するので、空気流通路3内の空気は除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。このとき、室外膨張弁6は全閉とされているので、同様に圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。
 ここで、前述した冷房モードでは放熱器4に高温の冷媒が流れているため、放熱器4からHVACユニット10への直接の熱伝導が少なからず生じるが、このMAX冷房モードでは放熱器4に冷媒が流れないため、放熱器4からHVACユニット10に伝達される熱で吸熱器9からの空気流通路3内の空気が加熱されることも無くなる。そのため、車室内の強力な冷房が行われ、特に外気温度Tamが高いような環境下では、迅速に車室内を冷房して快適な車室内空調を実現することができるようになる。また、このMAX冷房モードにおいても、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である前述した目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御する。
 (6)補助ヒータ単独モード
 尚、実施例の制御装置11は室外熱交換器7に過着霜が生じた場合などに、冷媒回路Rの圧縮機2と室外送風機15を停止し、補助ヒータ23に通電してこの補助ヒータ23のみで車室内を暖房する補助ヒータ単独モードを有している。この場合にも、ヒートポンプコントローラ32は補助ヒータ温度センサ50が検出する補助ヒータ温度Tptcと前述した目標ヒータ温度TCOに基づいて補助ヒータ23の通電(発熱)を制御する。
 また、空調コントローラ20は室内送風機27を運転し、エアミックスダンパ28は、室内送風機27から吹き出された空気流通路3内の空気を暖房用熱交換通路3Aの補助ヒータ23に通風し、風量を調整する状態とする。補助ヒータ23にて加熱された空気が各吹出口29A~29Cから車室内に吹き出されるので、これにより車室内の暖房が行われることになる。
 (7)運転モードの切換
 空調コントローラ20は、下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset−Tin)×K+Tbal(f(Tset、SUN、Tam))
                                   ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する室内温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する非射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
 ヒートポンプコントローラ32は、起動時には空調コントローラ20から車両通信バス65を介して送信される外気温度Tam(外気温度センサ33が検出する)と目標吹出温度TAOとに基づいて上記各運転モードのうちの何れかの運転モードを選択すると共に、各運転モードを車両通信バス65を介して空調コントローラ20に送信する。また、起動後は外気温度Tam、車室内の湿度、目標吹出温度TAO、後述する加熱温度TH(放熱器4の風下側の空気の温度。推定値)、目標ヒータ温度TCO、吸熱器温度Te、目標吸熱器温度TEO、車室内の除湿要求の有無、等のパラメータに基づいて各運転モードの切り換えを行うことで、環境条件や除湿の要否に応じて的確に暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード及び補助ヒータ単独モードを切り換えて車室内に吹き出される空気の温度を目標吹出温度TAOに制御し、快適且つ効率的な車室内空調を実現するものである。
 (8)ヒートポンプコントローラ32による暖房モードでの圧縮機2の制御
 次に、図4を用いて前述した暖房モードにおける圧縮機2の制御について詳述する。図4は暖房モード用の圧縮機2の目標回転数(圧縮機目標回転数)TGNChを決定するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部58は外気温度センサ33から得られる外気温度Tamと、室内送風機27のブロワ電圧BLVと、SW=(TAO−Te)/(TH−Te)で得られるエアミックスダンパ28による風量割合SWと、放熱器4の出口における過冷却度SCの目標値である目標過冷却度TGSCと、放熱器4の温度の目標値である前述した目標ヒータ温度TCO(空調コントローラ20から送信される)と、放熱器4の圧力の目標値である目標放熱器圧力PCOに基づいて圧縮機目標回転数のF/F操作量TGNChffを演算する。
 ここで、風量割合SWを算出する上記THは、放熱器4の風下側の空気の温度(以下、加熱温度と云う)であり、ヒートポンプコントローラ32が下記に示す一次遅れ演算の式(II)から推定する。
 TH=(INTL×TH0+Tau×THz)/(Tau+INTL) ・・(II)
 ここで、INTLは演算周期(定数)、Tauは一次遅れの時定数、TH0は一次遅れ演算前の定常状態における加熱温度THの定常値、THzは加熱温度THの前回値である。このように加熱温度THを推定することで、格別な温度センサを設ける必要がなくなる。
 尚、ヒートポンプコントローラ32は前述した運転モードによって上記時定数Tau及び定常値TH0を変更することにより、上述した推定式(II)を運転モードによって異なるものとし、加熱温度THを推定する。そして、この加熱温度THは車両通信バス65を介して空調コントローラ20に送信される。
 前記目標放熱器圧力PCOは上記目標過冷却度TGSCと目標ヒータ温度TCOに基づいて目標値演算部59が演算する。更に、F/B(フィードバック)操作量演算部60はこの目標放熱器圧力PCOと放熱器4の冷媒圧力である放熱器圧力PCIに基づいて圧縮機目標回転数のF/B操作量TGNChfbを演算する。そして、F/F操作量演算部58が演算したF/F操作量TGNCnffとF/B操作量演算部60が演算したTGNChfbは加算器61で加算され、リミット設定部62で制御上限値と制御下限値のリミットが付けられた後、圧縮機目標回転数TGNChとして決定される。前記暖房モードにおいては、ヒートポンプコントローラ32はこの圧縮機目標回転数TGNChに基づいて圧縮機2の回転数NCを制御する。
 (9)ヒートポンプコントローラ32による除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モードでの圧縮機2の制御
 一方、図5は前記除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード用の圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを決定するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F操作量演算部63は外気温度Tamと、空気流通路3に流入した空気の体積風量Gaと、放熱器4の圧力(放熱器圧力PCI)の目標値である目標放熱器圧力PCOと、吸熱器9の温度(吸熱器温度Te)の目標値である目標吸熱器温度TEOに基づいて圧縮機目標回転数のF/F操作量TGNCcffを演算する。
 また、F/B操作量演算部64は目標吸熱器温度TEO(空調コントローラ20から送信される)と吸熱器温度Teに基づいて圧縮機目標回転数のF/B操作量TGNCcfbを演算する。そして、F/F操作量演算部63が演算したF/F操作量TGNCcffとF/B操作量演算部64が演算したF/B操作量TGNCcfbは加算器66で加算され、リミット設定部67で制御上限値と制御下限値のリミットが付けられた後、圧縮機目標回転数TGNCcとして決定される。除湿暖房モードにおいては、ヒートポンプコントローラ32はこの圧縮機目標回転数TGNCcに基づいて圧縮機2の回転数NCを制御する。
 (10)ヒートポンプコントローラ32による除湿暖房モードでの補助ヒータ23の制御
 次に、図6は除湿暖房モードにおける補助ヒータ23の補助ヒータ要求能力TGQPTCを決定するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32の減算器73には目標ヒータ温度TCOと補助ヒータ温度Tptcが入力され、目標ヒータ温度TCOと補助ヒータ温度Tptcの偏差(TCO−Tptc)が算出される。この偏差(TCO−Tptc)はF/B制御部74に入力され、このF/B制御部74は偏差(TCO−Tptc)を無くして補助ヒータ温度Tptcが目標ヒータ温度TCOとなるように補助ヒータ要求能力F/B操作量を演算する。
 このF/B制御部74で算出された補助ヒータ要求能力F/B操作量はリミット設定部76で制御上限値と制御下限値のリミットが付けられた後、補助ヒータ要求能力TGQPTCとして決定される。除湿暖房モードにおいては、コントローラ32はこの補助ヒータ要求能力TGQPTCに基づいて補助ヒータ23の通電を制御することにより、補助ヒータ温度Tptcが目標ヒータ温度TCOとなるように補助ヒータ23の発熱(加熱)を制御する。
 このようにしてヒートポンプコントローラ32は、除湿暖房モードでは吸熱器温度Teと目標吸熱器温度TEOに基づいて圧縮機の運転を制御すると共に、目標ヒータ温度TCOに基づいて補助ヒータ23の発熱を制御することで、除湿暖房モードにおける吸熱器9による冷却と除湿、並びに、補助ヒータ23による加熱を的確に制御する。これにより、車室内に吹き出される空気をより適切に除湿しながら、その温度をより正確な暖房温度に制御することが可能となり、より一層快適且つ効率的な車室内の除湿暖房を実現することができるようになる。
 (11)エアミックスダンパ28の制御
 次に、図3を参照しながら空調コントローラ20によるエアミックスダンパ28の制御について説明する。図3においてGaは前述した空気流通路3に流入した空気の体積風量、Teは吸熱器温度、THは前述した加熱温度(放熱器4の風下側の空気の温度)である。
 空調コントローラ20は、前述した如き式(下記式(III))により算出される暖房用熱交換通路3Aの放熱器4と補助ヒータ23に通風する風量割合SWに基づき、当該割合の風量となるようにエアミックスダンパ28を制御することで放熱器4(及び補助ヒータ23)への通風量を調整する。
 SW=(TAO−Te)/(TH−Te)   ・・(III)
 即ち、暖房用熱交換通路3Aの放熱器4と補助ヒータ23に通風する風量割合SWは0≦SW≦1の範囲で変化し、「0」で暖房用熱交換通路3Aへの通風をせず、空気流通路3内の全ての空気をバイパス通路3Bに通風するエアミックス全閉状態、「1」で空気流通路3内の全ての空気を暖房用熱交換通路3Aに通風するエアミックス全開状態となる。即ち、放熱器4への風量はGa×SWとなる。
 (12)ヒートポンプコントローラ32による除湿冷房モードでの室外膨張弁6の最小弁開度の変更制御(その1)
 次に、図7~図10を用いてヒートポンプコントローラ32による除湿冷房モードでの室外膨張弁6の最小弁開度ECCVpcminの変更制御の一例について説明する。前述した如くヒートポンプコントローラ32は、除湿冷房モードにおいて実施例では目標放熱器圧力PCOと放熱器圧力PCIに基づいて室外膨張弁6の弁開度ECCVpcを制御するものであるが、この場合、ヒートポンプコントローラ32は所定の最大弁開度ECCVpcmaxと最小弁開度ECCVpcminの間で室外膨張弁6の弁開度ECCVpcを制御している。
 そして、この室外膨張弁6の弁開度ECCVpcを小さくすれば(室外膨張弁6を絞る)、図7に示す如く放熱器4の温度(放熱器温度TCI)は高くなり、加熱能力も増大する。しかしながら、室外膨張弁6の弁開度ECCVpcが小さくなると、その分、吸熱器9の冷媒循環量が減少するため、冷媒は吸熱器9に流入した早い段階で蒸発し切ってしまうようになる。そのため、吸熱器9の部分で温度が低いところと高いところが生じ、温度分布が生じるようになり(温度バラツキ)、図8に示す如く室外膨張弁6の弁開度ECCVpcが小さくなる程、この温度分布は大きくなる。
 吸熱器9に温度分布が生じ、それが大きくなると、除湿性能が低下すると共に、部分によっては通風された空気を冷やし難くなり、目標吹出温度TAOを成立させることが難しくなって車室内の空調性能が悪化することになる。
 一方、室内送風機27による吸熱器9への通風量と温度分布には相関関係があり、通風量が多い程、温度分布は生じ易くなる(尚、室内送風機27から吹き出された空気は全て吸熱器9に通風されるので、前述した体積風量Gaが吸熱器9への通風量となる)。この様子が図9に示されている。実施例では例えば吸熱器9への通風量を三段階に分けており、図9中のL1は通風量が高風量のときの吸熱器9の温度分布、L2は中風量のときの温度分布、L3は低風量のときの温度分布をそれぞれ示している。例えば、室外膨張弁6の弁開度ECCVpcがB(図9)であるとした場合、吸熱器9への通風量が多い程、吸熱器9内の冷媒は活発に蒸発するようになるので、吸熱器9の温度分布も大きくなり、高風量のときの温度分布L1と中風量のときの温度分布L2の差はX1となる(図9)。
 そこで、実施例では吸熱器9の温度分布に関して許容される所定の閾値X2を設定する。この閾値X2は、実施例では車室内の運転席側に吹き出される空気の温度と、助手席側に吹き出される空気の温度の差が所定値(例えば5deg)であるときの温度分布としており、これは予め実験により求めておくものとする。尚、それに限らず、例えば吸熱器9の複数箇所の温度を予め計測して、それらの差から直接閾値X2を設定してもよい。
 図9に示す如く、吸熱器9の通風量が高風量のときに吸熱器9の温度分布L1が閾値X2まで大きくなる室外膨張弁6の弁開度をA、吸熱器9の通風量が中風量のときに吸熱器9の温度分布L2が閾値X2まで大きくなる室外膨張弁6の弁開度をB、吸熱器9の通風量が低風量のときに吸熱器9の温度分布L3が閾値X2まで大きくなる室外膨張弁6の弁開度をCとすると、ヒートポンプコントローラ32は、吸熱器9の通風量が高風量のときには、吸熱器9の温度分布L1が閾値X2となる室外膨張弁6の弁開度A(図9)を当該室外膨張弁6の最小弁開度ECCVpcminとし、吸熱器9の通風量が中風量のときには、吸熱器9の温度分布L2が閾値X2となる室外膨張弁6の弁開度B(図9)を当該室外膨張弁6の最小弁開度ECCVpcminとし、吸熱器9の通風量が低風量のときには、吸熱器9の温度分布L3が閾値X2となる室外膨張弁6の弁開度C(図9)を当該室外膨張弁6の最小弁開度ECCVpcminとするように、室外膨張弁6の最小弁開度ECCVpcminを変更する。尚、図9から明らかな如く、各弁開度(最小弁開度ECCVpcmin)の関係はA>B>Cである。また、通風量を実施例では三段階で判断しているが、二段階でも良く、逆に更に多くの段階(四段階以上)で判断するようにしてもよい。
 これにより、何れの通風量においても室外膨張弁6の弁開度は吸熱器9の温度分布が閾値X2より大きくなる値まで縮小されなくなる。即ち、ヒートポンプコントローラ32は吸熱器9の通風量(体積風量Ga)に基づき、吸熱器9の温度分布が閾値X2を満足する(温度分布が閾値X2以下となる)ように室外膨張弁6の最小弁開度ECCVpcminを変更することになる。但し、ヒートポンプコントローラ32は吸熱器9の通風量によって室外膨張弁6の最小弁開度ECCVpcminを変更する際、図10に示す如く通風量に所定のヒステリシスを持たせる。尚、図10では変更方向を示した矢印の線を斜めで示しているが、実際には垂直方向に変化することになる。
 このように、ヒートポンプコントローラ32は、吸熱器9の通風量に応じて、通風量が多い程(高風量)大きくし、少ない程(低風量)小さくする方向で室外膨張弁6の最小弁開度ECCVpcminを変更するので、吸熱器9に温度分布が生じなくなり、若しくは、温度分布が小さくなる。これにより、室外膨張弁6の弁開度ECCVpcが小さくなって吸熱器9への冷媒循環量が減少し、吸熱器9に温度分布が生じ、若しくは、吸熱器9の温度分布が大きくなる不都合を解消することができるようになる。そして、除湿冷房モードにおける吸熱器9の除湿性能を維持しながら、放熱器4の温度(放熱器温度TCI)も、その取り得る範囲を拡げることができるようになるので、省エネルギーに寄与することが可能となる。また、車室内に供給される空気の目標吹出温度TAOも成立させ易くなるので、総じて車室内の空調性能を向上させ、搭乗者の快適性も改善することができるようになる。
 この場合、実施例ではヒートポンプコントローラ32は、吸熱器9の温度分布が当該吸熱器9の温度分布に関して許容される所定の閾値X2を満足するように室外膨張弁6の最小弁開度ECCVpcminを変更するようにしているので、室外膨張弁6の弁開度ECCVpcの縮小に伴う吸熱器9の温度分布を的確に解消し、若しくは、抑制することができるようになる。
 また、この実施例ではヒートポンプコントローラ32は、室内送風機6による吸熱器9への通風量に基づき、当該通風量が多い程、大きくする方向で室外膨張弁6の最小弁開度ECCVpcminを変更するようにしているので、室外膨張弁6の弁開度ECCVpcの縮小に伴う吸熱器9の温度分布を効果的に解消し、若しくは、抑制することができるようになる。
 更に、実施例ではヒートポンプコントローラ32は、室外膨張弁6の最小弁開度ECCVpcminを変更する場合、所定のヒステリシスを持たせるようにしているので、室外膨張弁6の最小弁開度ECCVpcを変更する際に、ハンチングが発生する不都合を未然に回避することができるようになる。
 (13)ヒートポンプコントローラ32による除湿冷房モードでの室外膨張弁6の最小弁開度の変更制御(その2)
 また、吸熱器9に流入する冷媒を減圧させる室内膨張弁8の弁開度TXVが大きいときには、吸熱器9の冷媒循環量が多くなるので、吸熱器9の温度分布は小さくなる。そこで、ヒートポンプコントローラ32は、上記実施例(その1)に代えて、或いは、それに加えて室内膨張弁8の弁開度TXVに基づいて室外膨張弁6の最小弁開度ECCVpcminを変更する。
 図11は上記実施例(その1)に加えて室内膨張弁8の弁開度TXVによっても室外膨張弁6の最小弁開度ECCVpcminを変更する制御の例を説明する図である。この実施例では室内膨張弁8の弁開度TXVが開き側(弁開度が大きい)か、基準か、閉め側(弁開度が小さい)か、に応じて前述した吸熱器9への通風量(高風量、中風量、低風量)に基づいた最小弁開度ECCVpcminである弁開度A、B、Cを更に変更する。
 即ち、室内膨張弁8の弁開度TXVが開き側(弁開度が大きい)である場合であって、吸熱器9への通風量が高風量であるときは、室外膨張弁6の最小弁開度ECCVpcminを、前述した弁開度Aよりも小さいA−αとし、中風量であるときは、前述した弁開度Bよりも小さいB−βとし、低風量であるときは、前述した弁開度Cよりも小さいC−γとする(但し、α、β、γは正数)。
 また、室内膨張弁8の弁開度TXVが基準の値である場合には、室外膨張弁6の最小弁開度ECCVpcminを、前述した吸熱器9への通風量から設定された弁開度A、B、Cとする。
 一方、室内膨張弁8の弁開度TXVが閉め側(弁開度が小さい)である場合であって、吸熱器9への通風量が高風量であるときは、室外膨張弁6の最小弁開度ECCVpcminを、前述した弁開度Aよりも大きいA+δとし、中風量であるときは、前述した弁開度Bよりも大きいB+εとし、低風量であるときは、前述した弁開度Cよりも大きいC+ζとする(但し、δ、ε、ζは正数)。
 このように、ヒートポンプコントローラ32により、室内膨張弁8の弁開度TXVに基づき、当該弁開度TXVが大きい程、小さくする方向で室外膨張弁6の最小弁開度ECCVpcminを変更することで、吸熱器9の温度分布を解消、若しくは、抑制しながら、支障無く放熱器4の温度を上げることができるようになる。
 尚、この実施例によらず、吸熱器9への通風量に基づいた変更は行わずに、室内膨張弁8の弁開度TXVのみに基づいて室外膨張弁6の最小弁開度ECCVpcminを変更するようにしても良い。その場合は、例えば前述した弁開度Bのみに基本として、室内膨張弁8の弁開度TXVが開き側のときは室外膨張弁6の最小弁開度ECCVpcminをB−βとし、弁開度TXVが基準のときはB、弁開度TXVが閉め側のときはB+εとする等である。
 (14)ヒートポンプコントローラ32による除湿冷房モードでの室外膨張弁6の最小弁開度の変更制御(その3)
 更に、前述した如くヒートポンプコントローラ32は、除湿冷房モードでは吸熱器9の温度(吸熱器温度Te)とその目標温度である目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御するので、図12に示されるように目標吸熱器温度TEO(吸熱器9の目標温度)が低くなると、圧縮機2の回転数NCは高くなり、その能力は増大されて吸熱器9の冷媒循環量も多くなる。それにより、吸熱器9の温度分布は小さくなり(図12でX3で示す部分)、放熱器4の温度(放熱器温度TCI)も上昇する。
 従って、室外膨張弁6の最小弁開度ECCVpcminを下げても(図12でX4で示す部分。放熱器温度TCIも上がる)、吸熱器9の温度分布は、目標吸熱器温度TEOが下がる前の状態までしか大きくならなくなる(図12でX5で示す部分)。
 そこで、ヒートポンプコントローラ32は、前記実施例(その1)、(その2)に代えて、或いは、それらに加えて目標吸熱器温度TEOに基づいて室外膨張弁6の最小弁開度ECCVpcminを変更する。
 図13は前記実施例(その1)に加えて目標吸熱器温度TEOによっても室外膨張弁6の最小弁開度ECCVpcminを変更する制御の例を説明する図である。この実施例では目標吸熱器温度TEOが低いか、中程度か、高いか、に応じて前述した吸熱器9への通風量(高風量、中風量、低風量)に基づいた最小弁開度ECCVpcminである弁開度A、B、Cを更に変更する。尚、図13では高風量のときの弁開度Aについてのみ示しているが、中風量のときの弁開度B、低風量のときの弁開度Cについても同様に変更するものとする。
 即ち、目標吸熱器温度TEOが低い場合、吸熱器9への通風量が高風量であるときは、室外膨張弁6の最小弁開度ECCVpcminを、前述した弁開度Aよりも小さいA−ηとする。また、目標吸熱器温度TEOが中程度である場合、室外膨張弁6の最小弁開度ECCVpcminを、前述した吸熱器9への高風量から設定された弁開度Aとする。更に、目標吸熱器温度TEOが高い場合、吸熱器9への通風量が高風量であるときは、室外膨張弁6の最小弁開度ECCVpcminを、前述した弁開度Aよりも大きいA+θとする(但し、η、θは正数)。
 このように、ヒートポンプコントローラ32は、吸熱器9の目標温度(目標吸熱器温度TEO)が低い程、小さくする方向で室外膨張弁6の最小弁開度ECCVpcminを変更するので、吸熱器9の温度分布を解消、若しくは、抑制しながら、支障無く放熱器4の温度(放熱器温度TCI)を上げることができるようになる(図12)。
 尚、この実施例の場合にも上記によらず、吸熱器9への通風量に基づいた変更は行わずに、目標吸熱器温度TEOのみに基づいて室外膨張弁6の最小弁開度ECCVpcminを変更するようにしても良い。その場合は、例えば図13の通りに前述した弁開度Aのみに基本として、目標吸熱器温度TEOが低いときは室外膨張弁6の最小弁開度ECCVpcminをA−ηとし、中程度のときはA、高いときはA+θとする等である。
FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention. A vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery. Yes (both not shown), the vehicle air conditioner 1 of the present invention is also driven by the power of the battery.
That is, the vehicle air conditioner 1 of the embodiment performs a heating mode by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further includes a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, Each operation mode of the MAX cooling mode (maximum cooling mode) and the auxiliary heater single mode is selectively executed.
The present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
The vehicle air conditioner 1 according to the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G, dissipates the refrigerant, and supplies it to the vehicle interior. A radiator 4 for heating air, an outdoor expansion valve 6 (pressure reducing device) composed of an electric valve that decompresses and expands the refrigerant during heating, and functions as a radiator during cooling and serves as a radiator during heating, and an evaporator during heating An outdoor heat exchanger 7 that exchanges heat between the refrigerant and the outside air, an indoor expansion valve 8 (decompression device) that is an electric valve that decompresses and expands the refrigerant, and an air flow passage 3. Absorbs refrigerant during cooling and dehumidification A heat sink 9 for cooling caused by the air supplied to the vehicle interior is sucked from the cabin outside the accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
The refrigerant circuit R is filled with a predetermined amount of refrigerant and lubricating oil. The outdoor heat exchanger 7 is provided with an outdoor blower 15. The outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, so that the outdoor air blower 15 can also be used outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is comprised so that external air may be ventilated by the heat exchanger 7. FIG.
The outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 sequentially on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is received via an electromagnetic valve 17 opened during cooling. The refrigerant pipe 13 </ b> B connected to the dryer unit 14 and on the outlet side of the supercooling unit 16 is connected to the inlet side of the heat absorber 9 via the indoor expansion valve 8. In addition, the receiver dryer part 14 and the supercooling part 16 structurally constitute a part of the outdoor heat exchanger 7.
The refrigerant pipe 13B between the subcooling section 16 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C on the outlet side of the heat absorber 9, and constitutes an internal heat exchanger 19 together. Thus, the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9.
Further, the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and this branched refrigerant pipe 13D is downstream of the internal heat exchanger 19 via an electromagnetic valve 21 opened during heating. The refrigerant pipe 13C is connected in communication. The refrigerant pipe 13 </ b> C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2. Further, the refrigerant pipe 13E on the outlet side of the radiator 4 is connected to the inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
A refrigerant pipe 13G between the discharge side of the compressor 2 and the inlet side of the radiator 4 is provided with a solenoid valve 30 (which constitutes a flow path switching device) that is closed during dehumidification heating and MAX cooling described later. Yes. In this case, the refrigerant pipe 13G is branched into a bypass pipe 35 on the upstream side of the electromagnetic valve 30, and the bypass pipe 35 is opened by the electromagnetic valve 40 (which also constitutes a flow path switching device) during dehumidifying heating and MAX cooling. ) Through the refrigerant pipe 13E on the downstream side of the outdoor expansion valve 6. Bypass pipe 45, solenoid valve 30 and solenoid valve 40 constitute bypass device 45.
Since the bypass device 45 is configured by the bypass pipe 35, the electromagnetic valve 30, and the electromagnetic valve 40, the dehumidifying heating mode or the MAX for allowing the refrigerant discharged from the compressor 2 to directly flow into the outdoor heat exchanger 7 as will be described later. Switching between the cooling mode and the heating mode in which the refrigerant discharged from the compressor 2 flows into the radiator 4, the dehumidifying cooling mode, and the cooling mode can be performed smoothly.
The air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment. Yes. Further, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 and ventilating the heat absorber 9 is provided on the air downstream side of the suction switching damper 26.
Moreover, in FIG. 1, 23 is an auxiliary heater as an auxiliary heating device provided in the vehicle air conditioner 1 of the embodiment. The auxiliary heater 23 of the embodiment is composed of a PTC heater which is an electric heater, and is in the air flow passage 3 which is on the windward side (air upstream side) of the radiator 4 with respect to the air flow in the air flow passage 3. Is provided. When the auxiliary heater 23 is energized and generates heat, the air in the air flow passage 3 flowing into the radiator 4 through the heat absorber 9 is heated. In other words, the auxiliary heater 23 serves as a so-called heater core, which heats or complements the passenger compartment.
Here, the air flow passage 3 on the leeward side (air downstream side) from the heat absorber 9 of the HVAC unit 10 is partitioned by a partition wall 10A, and a heating heat exchange passage 3A and a bypass passage 3B that bypasses it are formed. The radiator 4 and the auxiliary heater 23 described above are disposed in the heating heat exchange passage 3A.
Further, the air (inside air or outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is supplemented into the air flow passage 3 on the windward side of the auxiliary heater 23. An air mix damper 28 is provided for adjusting the rate of ventilation through the heating heat exchange passage 3A in which the heater 23 and the radiator 4 are disposed.
Further, the HVAC unit 10 on the leeward side of the radiator 4 includes a FOOT (foot) outlet 29A (first outlet) and a VENT (vent) outlet 29B (FOOT outlet 29A). For the outlet and the DEF outlet 29C, first outlets) and DEF (def) outlets 29C (second outlets) are formed. The FOOT air outlet 29A is an air outlet for blowing air under the feet in the passenger compartment, and is at the lowest position. Further, the VENT outlet 29B is an outlet for blowing out air near the driver's chest and face in the passenger compartment, and is located above the FOOT outlet 29A. The DEF air outlet 29C is an air outlet for blowing air to the inner surface of the windshield of the vehicle, and is located at the highest position above the other air outlets 29A and 29B.
The FOOT air outlet 29A, the VENT air outlet 29B, and the DEF air outlet 29C are respectively provided with a FOOT air outlet damper 31A, a VENT air outlet damper 31B, and a DEF air outlet damper 31C that control the amount of air blown out. It has been.
Next, FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment. The control device 11 includes an air-conditioning controller 20 and a heat pump controller 32 each of which is a microcomputer that is an example of a computer including a processor, and these include a CAN (Controller Area Network) and a LIN (Local Interconnect Network). Is connected to a vehicle communication bus 65. The compressor 2 and the auxiliary heater 23 are also connected to the vehicle communication bus 65, and the air conditioning controller 20, the heat pump controller 32, the compressor 2 and the auxiliary heater 23 are configured to transmit and receive data via the vehicle communication bus 65. Has been.
The air conditioning controller 20 is a host controller that controls the air conditioning of the vehicle interior of the vehicle. The input of the air conditioning controller 20 includes an outside air temperature sensor 33 that detects the outside air temperature Tam of the vehicle and an outside air humidity that detects the outside air humidity. The sensor 34, the HVAC suction temperature sensor 36 that detects the temperature of the air (suction air temperature Tas) that is sucked into the air flow passage 3 from the suction port 25 and flows into the heat sink 9, and the temperature of the air (inside air) in the passenger compartment An indoor air temperature sensor 37 that detects (indoor temperature Tin), an indoor air humidity sensor 38 that detects the humidity of the air in the vehicle interior, an indoor CO 2 concentration sensor 39 that detects the carbon dioxide concentration in the vehicle interior, and a blowout into the vehicle interior The temperature sensor 41 that detects the temperature of the air to be discharged, the discharge pressure sensor 42 that detects the refrigerant pressure Pd discharged from the compressor 2, and the amount of solar radiation into the passenger compartment are detected. For example, a photosensor-type solar radiation sensor 51, a vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, and an air conditioner (air conditioner) operation for setting a set temperature and switching operation modes. The unit 53 is connected.
The output of the air conditioning controller 20 is connected to an outdoor blower 15, an indoor blower (blower fan) 27, a suction switching damper 26, an air mix damper 28, and air outlet dampers 31A to 31C. It is controlled by the controller 20.
The heat pump controller 32 is a controller that mainly controls the refrigerant circuit R. The input of the heat pump controller 32 includes a discharge temperature sensor 43 that detects a discharge refrigerant temperature Td of the compressor 2 and a suction refrigerant of the compressor 2. A suction pressure sensor 44 for detecting the pressure Ps, a suction temperature sensor 55 for detecting the suction refrigerant temperature Ts of the compressor 2, a radiator temperature sensor 46 for detecting the refrigerant temperature of the radiator 4 (radiator temperature TCI), A radiator pressure sensor 47 that detects the refrigerant pressure of the radiator 4 (radiator pressure PCI), a heat absorber temperature sensor 48 that detects the refrigerant temperature of the heat absorber 9 (heat absorber temperature Te), and the refrigerant pressure of the heat absorber 9 A heat absorber pressure sensor 49 that detects the temperature of the auxiliary heater 23, an auxiliary heater temperature sensor 50 that detects the temperature of the auxiliary heater 23 (auxiliary heater temperature Tptc), and the outlet of the outdoor heat exchanger 7 An outdoor heat exchanger temperature sensor 54 that detects the refrigerant temperature (outdoor heat exchanger temperature TXO), and an outdoor heat exchanger pressure sensor 56 that detects the refrigerant pressure (outdoor heat exchanger pressure PXO) at the outlet of the outdoor heat exchanger 7. Each output is connected.
The output of the heat pump controller 32 includes an outdoor expansion valve 6, an indoor expansion valve 8, an electromagnetic valve 30 (for reheating), an electromagnetic valve 17 (for cooling), an electromagnetic valve 21 (for heating), and an electromagnetic valve 40 (bypass). Are connected to each other and are controlled by the heat pump controller 32. The compressor 2 and the auxiliary heater 23 each have a built-in controller, and the controllers of the compressor 2 and the auxiliary heater 23 send and receive data to and from the heat pump controller 32 via the vehicle communication bus 65. Be controlled.
The heat pump controller 32 and the air conditioning controller 20 transmit / receive data to / from each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting input by the air conditioning operation unit 53. In the embodiment in this case, the outside air temperature sensor 33, the discharge pressure sensor 42, the vehicle speed sensor 52, the volumetric air volume Ga of air flowing into the air flow passage 3 (calculated by the air conditioning controller 20), and the air volume ratio SW ( The output from the air conditioning controller 53 is transmitted from the air conditioning controller 20 to the heat pump controller 32 via the vehicle communication bus 65, and is used for control by the heat pump controller 32.
Next, the operation of the vehicle air conditioner 1 having the above-described configuration will be described. In this embodiment, the control device 11 (the air conditioning controller 20 and the heat pump controller 32) has each operation mode of heating mode, dehumidifying heating mode, dehumidifying cooling mode, cooling mode, MAX cooling mode (maximum cooling mode), and auxiliary heater single mode. Switch and execute. First, an outline of refrigerant flow and control in each operation mode will be described.
(1) Heating mode When the heating mode is selected by the heat pump controller 32 (auto mode) or by manual operation (manual mode) to the air conditioning operation unit 53, the heat pump controller 32 opens the electromagnetic valve 21 (for heating), The electromagnetic valve 17 (for cooling) is closed. Further, the electromagnetic valve 30 (for reheating) is opened, and the electromagnetic valve 40 (for bypass) is closed. Then, the compressor 2 is operated. The air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating. The auxiliary heater 23 and the radiator 4 are ventilated, but the air volume may be adjusted.
As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the airflow passage 3 is passed through the radiator 4, the air in the airflow passage 3 is converted into the high-temperature refrigerant in the radiator 4 (when the auxiliary heater 23 operates, the auxiliary heater 23 and the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.
The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13A, the electromagnetic valve 21 and the refrigerant pipe 13D, and is separated into gas and liquid there. Repeated circulation inhaled. The air heated by the radiator 4 (when the auxiliary heater 23 is operated, the auxiliary heater 23 and the radiator 4) is blown out from the outlets 29A to 29C, so that the vehicle interior is heated. become.
The heat pump controller 32 calculates the target radiator pressure PCO (target value of the radiator pressure PCI) from the target heater temperature TCO (target value of the radiator temperature TCI) calculated by the air conditioning controller 20 from the target outlet temperature TAO, and this target. The number of revolutions NC of the compressor 2 is controlled based on the radiator pressure PCO and the refrigerant pressure of the radiator 4 detected by the radiator pressure sensor 47 (radiator pressure PCI. High pressure of the refrigerant circuit R). Control the heating by. Further, the heat pump controller 32 opens the outdoor expansion valve 6 based on the refrigerant temperature (radiator temperature TCI) of the radiator 4 detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47. The degree of supercooling of the refrigerant at the outlet of the radiator 4 is controlled.
Further, in this heating mode, when the heating capability by the radiator 4 is insufficient with respect to the heating capability required for the cabin air conditioning, the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. The energization of the auxiliary heater 23 is controlled. Thereby, comfortable vehicle interior heating is realized and frost formation of the outdoor heat exchanger 7 is also suppressed. At this time, since the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air flowing through the air flow passage 3 is vented to the auxiliary heater 23 before the radiator 4.
Here, when the auxiliary heater 23 is disposed on the air downstream side of the radiator 4, when the auxiliary heater 23 is configured by a PTC heater as in the embodiment, the temperature of the air flowing into the auxiliary heater 23 is determined by the radiator. 4, the resistance value of the PTC heater increases, the current value also decreases, and the heat generation amount decreases. However, by arranging the auxiliary heater 23 on the air upstream side of the radiator 4, Thus, the capacity of the auxiliary heater 23 composed of the PTC heater can be sufficiently exhibited.
(2) Dehumidifying heating mode Next, in the dehumidifying heating mode, the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated. The air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating. The auxiliary heater 23 and the radiator 4 are ventilated, but the air volume is also adjusted.
Accordingly, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled, and moisture in the air condenses and adheres to the heat absorber 9, so that the air in the air flow passage 3 is cooled, and Dehumidified. The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
At this time, since the valve opening degree of the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent inconvenience that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. It becomes. Thereby, the fall of a refrigerant | coolant circulation amount can be suppressed or eliminated and air-conditioning capability can be ensured now. Further, in this dehumidifying and heating mode, the heat pump controller 32 energizes the auxiliary heater 23 to generate heat. As a result, the air cooled and dehumidified by the heat absorber 9 is further heated in the process of passing through the auxiliary heater 23 and the temperature rises, so that the dehumidifying heating in the passenger compartment is performed.
The heat pump controller 32 is a target heat absorption which is the target value (target temperature of the heat absorber 9) of the heat absorber temperature Te calculated by the air conditioning controller 20 and the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48 (heat absorber temperature Te). The rotational speed NC of the compressor 2 is controlled based on the compressor temperature TEO, and the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 50 and the above-described target heater temperature TCO (in this case, the target value of the auxiliary heater temperature Tptc is obtained). ) To control the energization (heating by heat generation) of the auxiliary heater 23 to appropriately cool the air in the heat absorber 9 and dehumidify the air from the air outlets 29A to 29C by heating with the auxiliary heater 23. The fall of the temperature of the air blown into the room is accurately prevented. As a result, it is possible to control the temperature to an appropriate heating temperature while dehumidifying the air blown into the vehicle interior, and it is possible to realize comfortable and efficient dehumidification heating in the vehicle interior.
In addition, since the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air heated by the auxiliary heater 23 passes through the radiator 4. In this dehumidifying heating mode, the refrigerant is supplied to the radiator 4. Therefore, the disadvantage that the radiator 4 absorbs heat from the air heated by the auxiliary heater 23 is also eliminated. That is, the temperature of the air blown out into the vehicle compartment by the radiator 4 is suppressed, and the COP is improved.
(3) Dehumidifying and Cooling Mode Next, in the dehumidifying and cooling mode, the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is opened and the electromagnetic valve 40 is closed. Then, the compressor 2 is operated. The air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating. The auxiliary heater 23 and the radiator 4 are ventilated, but the air volume is also adjusted.
As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
The refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through. In this dehumidifying and cooling mode, the heat pump controller 32 does not energize the auxiliary heater 23, so that the air that has been cooled and dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 (the heat dissipation capability is lower than that during heating). Is done. As a result, dehumidifying and cooling in the passenger compartment is performed.
The heat pump controller 32 transmits the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and a target heat absorber temperature TEO (a target temperature of the heat absorber 9), which is a target value (target temperature of the heat absorber 9). ) To control the rotational speed NC (capacity of the compressor 2) of the compressor 2. That is, when the heat absorber temperature Te is higher than the target heat absorber temperature TEO, the rotational speed NC of the compressor 2 is increased, and when the heat absorber temperature Te is lower than the target heat absorber temperature TEO, the rotational speed NC is decreased. The heat pump controller 32 calculates the target radiator pressure PCO from the target heater temperature TCO described above, and the target radiator pressure PCO and the refrigerant pressure (radiator pressure PCI) of the radiator 4 detected by the radiator pressure sensor 47. Based on the high pressure of the refrigerant circuit R), the valve opening degree of the outdoor expansion valve 6 is controlled, and heating by the radiator 4 is controlled.
Here, in the embodiment, the heat pump controller 32 determines the valve opening degree of the outdoor expansion valve 6 based on the target radiator pressure PCO and the radiator pressure PCI calculated from the target heater temperature TCO that is the target value of the radiator temperature TCI. However, the valve opening degree of the outdoor expansion valve 6 may be controlled based on the radiator temperature TCI and the target heater temperature TCO. In any case, the heat pump controller 32 decreases the valve opening degree of the outdoor expansion valve 6 when the pressure (or temperature) of the radiator 4 is lower than the target value. When the valve opening degree of the outdoor expansion valve 6 decreases, the refrigerant subcooling degree SC in the radiator 4 increases, so the temperature of the radiator 4 rises and the heating capacity increases. On the other hand, when it is higher than the target value, the valve opening degree of the outdoor expansion valve 6 is increased, the temperature of the radiator 4 is lowered, and the heating capacity is reduced.
(4) Cooling mode Next, in the cooling mode, the heat pump controller 32 fully opens the valve opening degree of the outdoor expansion valve 6 in the dehumidifying and cooling mode. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized. The air-conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 is blown from the indoor blower 27 and the air in the air flow passage 3 that has passed through the heat absorber 9 is used as the auxiliary heater 23 in the heating heat exchange passage 3A. And it is set as the state which adjusts the ratio ventilated by the heat radiator 4. FIG.
As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30, and the refrigerant exiting the radiator 4 passes through the refrigerant pipe 13E and the outdoor expansion valve 6. To. At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant passes through it and flows into the outdoor heat exchanger 7 as it is, where it is cooled by air or by outside air that is ventilated by the outdoor blower 15 and condensed. Liquefaction. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. Further, moisture in the air condenses and adheres to the heat absorber 9.
The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through. Air that has been cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from each of the air outlets 29A to 29C (partly passes through the radiator 4 to exchange heat), thereby cooling the vehicle interior. Will be done. Further, in this cooling mode, the heat pump controller 32 uses the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the above-described target heat absorber temperature TEO which is the target value of the compressor 2. The number of revolutions NC is controlled.
(5) MAX cooling mode (maximum cooling mode)
Next, in the MAX cooling mode as the maximum cooling mode, the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized. The air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 is blown from the indoor blower 27 and the air in the air flow passage 3 passing through the heat absorber 9 is used as an auxiliary heater for the heating heat exchange passage 3 </ b> A. 23 and the rate of ventilation through the radiator 4 are adjusted.
Accordingly, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. In addition, since moisture in the air condenses and adheres to the heat absorber 9, the air in the air flow passage 3 is dehumidified. The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through. At this time, since the outdoor expansion valve 6 is fully closed, similarly, it is possible to suppress or prevent the disadvantage that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. . Thereby, the fall of a refrigerant | coolant circulation amount can be suppressed or eliminated and air-conditioning capability can be ensured now.
Here, since the high-temperature refrigerant flows through the radiator 4 in the cooling mode described above, direct heat conduction from the radiator 4 to the HVAC unit 10 occurs not a little, but in this MAX cooling mode, the refrigerant flows into the radiator 4. Therefore, the air in the air flow passage 3 from the heat absorber 9 is not heated by the heat transmitted from the radiator 4 to the HVAC unit 10. Therefore, powerful cooling of the passenger compartment is performed, and particularly in an environment where the outside air temperature Tam is high, the passenger compartment can be quickly cooled to realize comfortable air conditioning in the passenger compartment. Also in this MAX cooling mode, the heat pump controller 32 is also connected to the compressor based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO, which is the target value. 2 is controlled.
(6) Auxiliary heater single mode In addition, the control apparatus 11 of an Example stops the compressor 2 and the outdoor air blower 15 of the refrigerant circuit R, when the overheating frost arises in the outdoor heat exchanger 7, etc., and the auxiliary heater 23 And an auxiliary heater single mode in which the vehicle interior is heated only by the auxiliary heater 23. Also in this case, the heat pump controller 32 controls energization (heat generation) of the auxiliary heater 23 based on the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 50 and the target heater temperature TCO described above.
The air conditioning controller 20 operates the indoor blower 27, and the air mix damper 28 passes the air in the air flow passage 3 blown out from the indoor blower 27 to the auxiliary heater 23 of the heat exchange passage 3A for heating, and the air volume is reduced. The state to be adjusted. Since the air heated by the auxiliary heater 23 is blown into the vehicle interior from each of the air outlets 29A to 29C, the vehicle interior is thereby heated.
(7) Switching of operation mode The air-conditioning controller 20 calculates the target blowing temperature TAO mentioned above from following formula (I). This target blowing temperature TAO is a target value of the temperature of the air blown into the passenger compartment.
TAO = (Tset−Tin) × K + Tbal (f (Tset, SUN, Tam))
.. (I)
Here, Tset is the set temperature in the passenger compartment set by the air conditioning operation unit 53, Tin is the indoor temperature detected by the inside air temperature sensor 37, K is a coefficient, Tbal is the set temperature Tset, and the non-radiated light detected by the solar radiation sensor 51. The amount SUN is a balance value calculated from the outside air temperature Tam detected by the outside air temperature sensor 33. And generally this target blowing temperature TAO is so high that the outside temperature Tam is low, and it falls as the outside temperature Tam rises.
When the heat pump controller 32 is activated, the heat pump controller 32 determines which one of the above operation modes based on the outside air temperature Tam (detected by the outside air temperature sensor 33) transmitted from the air conditioning controller 20 via the vehicle communication bus 65 and the target outlet temperature TAO. The operation mode is selected and each operation mode is transmitted to the air conditioning controller 20 via the vehicle communication bus 65. In addition, after startup, the outside air temperature Tam, the humidity in the passenger compartment, the target blowing temperature TAO, the heating temperature TH (the temperature of the air on the leeward side of the radiator 4, estimated value), the target heater temperature TCO, the heat sink temperature Te, By switching each operation mode based on parameters such as the target heat absorber temperature TEO and whether or not there is a dehumidification request in the passenger compartment, the heating mode, dehumidification heating mode, and dehumidification are accurately performed according to the environmental conditions and necessity of dehumidification. The cooling mode, the cooling mode, the MAX cooling mode, and the auxiliary heater single mode are switched to control the temperature of the air blown into the vehicle interior to the target blowing temperature TAO, thereby realizing comfortable and efficient vehicle interior air conditioning.
(8) Control of compressor 2 in heating mode by heat pump controller 32 Next, control of the compressor 2 in heating mode mentioned above using FIG. 4 is explained in full detail. FIG. 4 is a control block diagram of the heat pump controller 32 that determines the target rotational speed (compressor target rotational speed) TGNCh of the compressor 2 for heating mode. The F / F (feed forward) manipulated variable calculation unit 58 of the heat pump controller 32 has an outside air temperature Tam obtained from the outside air temperature sensor 33, a blower voltage BLV of the indoor blower 27, and SW = (TAO−Te) / (TH−Te). ) Obtained by the air mix damper 28, the target supercooling degree TGSC that is the target value of the supercooling degree SC at the outlet of the radiator 4, and the target heater that is the target value of the temperature of the radiator 4 described above. Based on the temperature TCO (transmitted from the air conditioning controller 20) and the target radiator pressure PCO that is the target value of the pressure of the radiator 4, the F / F manipulated variable TGNChff of the compressor target rotational speed is calculated.
Here, the above-mentioned TH for calculating the air volume ratio SW is the temperature of the leeward air of the radiator 4 (hereinafter referred to as the heating temperature), and the heat pump controller 32 calculates the first-order lag calculation formula (II) shown below. presume.
TH = (INTL × TH0 + Tau × THz) / (Tau + INTL) (II)
Here, INTL is the calculation cycle (constant), Tau is the time constant of the primary delay, TH0 is the steady value of the heating temperature TH in the steady state before the primary delay calculation, and THz is the previous value of the heating temperature TH. By estimating the heating temperature TH in this way, there is no need to provide a special temperature sensor.
The heat pump controller 32 changes the time constant Tau and the steady value TH0 according to the operation mode described above, thereby making the above-described estimation formula (II) different depending on the operation mode, and estimates the heating temperature TH. The heating temperature TH is transmitted to the air conditioning controller 20 via the vehicle communication bus 65.
The target radiator pressure PCO is calculated by the target value calculator 59 based on the target subcooling degree TGSC and the target heater temperature TCO. Further, the F / B (feedback) manipulated variable calculator 60 calculates the F / B manipulated variable TGNChfb of the compressor target rotational speed based on the target radiator pressure PCO and the radiator pressure PCI that is the refrigerant pressure of the radiator 4. To do. The F / F manipulated variable TGNCnff computed by the F / F manipulated variable computing unit 58 and the TGNChfb computed by the F / B manipulated variable computing unit 60 are added by the adder 61, and the control upper limit value and the control are controlled by the limit setting unit 62. After the lower limit is set, it is determined as the compressor target rotational speed TGNCh. In the heating mode, the heat pump controller 32 controls the rotational speed NC of the compressor 2 based on the compressor target rotational speed TGNCh.
(9) Control of Compressor 2 in Dehumidification Heating Mode, Dehumidification Cooling Mode, Cooling Mode, and MAX Cooling Mode by Heat Pump Controller 32 On the other hand, FIG. 5 is for the dehumidifying heating mode, dehumidifying cooling mode, cooling mode, and MAX cooling mode. FIG. 3 is a control block diagram of a heat pump controller 32 that determines a target rotational speed (compressor target rotational speed) TGNCc of the compressor 2. The F / F manipulated variable calculation unit 63 of the heat pump controller 32 is a target heat release that is a target value of the outside air temperature Tam, the volumetric air volume Ga of the air flowing into the air flow passage 3, and the pressure of the radiator 4 (radiator pressure PCI). Based on the compressor pressure PCO and the target heat absorber temperature TEO which is the target value of the temperature of the heat absorber 9 (heat absorber temperature Te), the F / F manipulated variable TGNCcff of the compressor target rotational speed is calculated.
Further, the F / B operation amount calculation unit 64 calculates the F / B operation amount TGNCcfb of the compressor target rotational speed based on the target heat absorber temperature TEO (transmitted from the air conditioning controller 20) and the heat absorber temperature Te. Then, the F / F manipulated variable TGNCcff computed by the F / F manipulated variable computing unit 63 and the F / B manipulated variable TGNCcfb computed by the F / B manipulated variable computing unit 64 are added by the adder 66, and the limit setting unit 67 After the control upper limit value and the control lower limit value are set, the compressor target rotational speed TGNCc is determined. In the dehumidifying and heating mode, the heat pump controller 32 controls the rotational speed NC of the compressor 2 based on the compressor target rotational speed TGNCc.
(10) Control of the auxiliary heater 23 in the dehumidifying and heating mode by the heat pump controller 32 Next, FIG. 6 is a control block diagram of the heat pump controller 32 that determines the auxiliary heater required capacity TGQPTC of the auxiliary heater 23 in the dehumidifying and heating mode. The subtractor 73 of the heat pump controller 32 receives the target heater temperature TCO and the auxiliary heater temperature Tptc, and calculates a deviation (TCO−Tptc) between the target heater temperature TCO and the auxiliary heater temperature Tptc. This deviation (TCO-Tptc) is input to the F / B control unit 74. The F / B control unit 74 eliminates the deviation (TCO-Tptc) so that the auxiliary heater temperature Tptc becomes the target heater temperature TCO. The required capacity F / B manipulated variable is calculated.
The auxiliary heater required capability F / B manipulated variable calculated by the F / B control unit 74 is determined as the auxiliary heater required capability TGQPTC after the limit setting unit 76 limits the control upper limit value and the control lower limit value. . In the dehumidifying heating mode, the controller 32 controls energization of the auxiliary heater 23 based on the auxiliary heater required capacity TGQPTC, thereby generating heat (heating) of the auxiliary heater 23 so that the auxiliary heater temperature Tptc becomes the target heater temperature TCO. To control.
Thus, in the dehumidifying heating mode, the heat pump controller 32 controls the operation of the compressor based on the heat absorber temperature Te and the target heat absorber temperature TEO, and controls the heat generation of the auxiliary heater 23 based on the target heater temperature TCO. Thus, cooling and dehumidification by the heat absorber 9 and heating by the auxiliary heater 23 in the dehumidifying heating mode are accurately controlled. As a result, it is possible to control the temperature to a more accurate heating temperature while more appropriately dehumidifying the air blown into the passenger compartment, thereby realizing more comfortable and efficient dehumidifying heating in the passenger compartment. Will be able to.
(11) Control of Air Mix Damper 28 Next, control of the air mix damper 28 by the air conditioning controller 20 will be described with reference to FIG. In FIG. 3, Ga is the volumetric volume of the air flowing into the air flow passage 3 described above, Te is the heat absorber temperature, and TH is the heating temperature described above (the temperature of the air on the leeward side of the radiator 4).
The air conditioning controller 20 is based on the air volume ratio SW that is passed through the radiator 4 and the auxiliary heater 23 in the heating heat exchange passage 3A calculated by the above-described expression (the following expression (III)) so that the air volume of the ratio is obtained. Further, by controlling the air mix damper 28, the amount of ventilation to the radiator 4 (and the auxiliary heater 23) is adjusted.
SW = (TAO-Te) / (TH-Te) (III)
That is, the air flow rate ratio SW passing through the radiator 4 and the auxiliary heater 23 in the heat exchange passage 3A for heating changes in a range of 0 ≦ SW ≦ 1, and when “0”, the air is not passed through the heat exchange passage 3A for heating. The air mix fully closed state in which all the air in the air flow passage 3 is passed through the bypass passage 3B, and the air mix fully open state in which all the air in the air flow passage 3 is passed through the heating heat exchange passage 3A with "1" It becomes. That is, the air volume to the radiator 4 is Ga × SW.
(12) Change control of the minimum valve opening degree of the outdoor expansion valve 6 in the dehumidifying and cooling mode by the heat pump controller 32 (part 1)
Next, an example of change control of the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 in the dehumidifying and cooling mode by the heat pump controller 32 will be described with reference to FIGS. As described above, the heat pump controller 32 controls the valve opening ECCVpc of the outdoor expansion valve 6 based on the target radiator pressure PCO and the radiator pressure PCI in the embodiment in the dehumidifying and cooling mode. 32 controls the valve opening ECCVpc of the outdoor expansion valve 6 between a predetermined maximum valve opening ECCVpcmax and a minimum valve opening ECCVpcmin.
If the valve opening ECCVpc of the outdoor expansion valve 6 is reduced (the outdoor expansion valve 6 is throttled), the temperature of the radiator 4 (heat radiator temperature TCI) is increased as shown in FIG. 7, and the heating capacity is also increased. . However, when the valve opening degree ECCVpc of the outdoor expansion valve 6 is reduced, the refrigerant circulation amount of the heat absorber 9 is reduced by that amount, so that the refrigerant is completely evaporated at an early stage when it flows into the heat absorber 9. For this reason, the heat absorber 9 has low and high temperatures, resulting in temperature distribution (temperature variation). As the valve opening ECCVpc of the outdoor expansion valve 6 decreases as shown in FIG. Distribution increases.
When the temperature distribution is generated in the heat absorber 9 and becomes larger, the dehumidifying performance is lowered, and depending on the part, it becomes difficult to cool the ventilated air, and it becomes difficult to establish the target blowing temperature TAO, and the air conditioning performance in the vehicle interior Will get worse.
On the other hand, there is a correlation between the air flow rate through the indoor fan 27 to the heat absorber 9 and the temperature distribution, and the greater the air flow rate, the easier the temperature distribution occurs (note that all the air blown out from the indoor fan 27 is the heat absorber. 9), the volume air volume Ga described above becomes the air flow volume to the heat absorber 9). This is shown in FIG. In the embodiment, for example, the flow rate to the heat absorber 9 is divided into three stages, L1 in FIG. 9 is the temperature distribution of the heat sink 9 when the flow rate is high, L2 is the temperature distribution when the medium flow rate, L3 indicates the temperature distribution when the air volume is low. For example, assuming that the valve opening ECCVpc of the outdoor expansion valve 6 is B (FIG. 9), the greater the amount of ventilation to the heat absorber 9, the more actively the refrigerant in the heat absorber 9 evaporates. The temperature distribution of the heat absorber 9 also increases, and the difference between the temperature distribution L1 when the air volume is high and the temperature distribution L2 when the air volume is medium is X1 (FIG. 9).
Therefore, in the embodiment, a predetermined threshold value X2 that is allowed for the temperature distribution of the heat absorber 9 is set. In the embodiment, the threshold value X2 is a temperature distribution when the difference between the temperature of the air blown to the driver's seat side in the passenger compartment and the temperature of the air blown to the passenger seat side is a predetermined value (for example, 5 degrees). This is obtained in advance by experiments. However, the present invention is not limited thereto, and for example, the temperature at a plurality of locations of the heat absorber 9 may be measured in advance, and the threshold value X2 may be set directly from the difference therebetween.
As shown in FIG. 9, when the air flow rate of the heat absorber 9 is high, the valve opening degree of the outdoor expansion valve 6 at which the temperature distribution L1 of the heat absorber 9 increases to the threshold value X2 is A, and the air flow rate of the heat absorber 9 is medium. The temperature of the outdoor expansion valve 6 at which the temperature distribution L2 of the heat absorber 9 increases to the threshold value X2 when the air volume is B is B, and the temperature distribution L3 of the heat absorber 9 is the threshold value X2 when the air flow rate of the heat absorber 9 is low. If the valve opening degree of the outdoor expansion valve 6 that increases to C is C, the heat pump controller 32 allows the temperature distribution L1 of the heat absorber 9 to be the threshold value X2 of the outdoor expansion valve 6 when the air flow rate of the heat absorber 9 is high. When the valve opening degree A (FIG. 9) is the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 and the air flow rate of the heat absorber 9 is medium, the outdoor expansion valve 6 in which the temperature distribution L2 of the heat absorber 9 becomes the threshold value X2. Is the minimum valve opening ECC of the outdoor expansion valve 6. pcmin, and when the air flow rate of the heat absorber 9 is low, the valve opening C (FIG. 9) of the outdoor expansion valve 6 at which the temperature distribution L3 of the heat absorber 9 becomes the threshold value X2 is the minimum valve opening of the outdoor expansion valve 6. The minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 is changed so as to set the degree of ECCVpcmin. As is apparent from FIG. 9, the relationship between the valve openings (minimum valve opening ECCVpcmin) is A>B> C. Moreover, although the air flow rate is determined in three steps in the embodiment, it may be determined in two steps, and conversely, it may be determined in more steps (four steps or more).
As a result, the valve opening degree of the outdoor expansion valve 6 is not reduced to a value at which the temperature distribution of the heat absorber 9 becomes larger than the threshold value X2 at any ventilation rate. That is, the heat pump controller 32 determines the minimum of the outdoor expansion valve 6 so that the temperature distribution of the heat absorber 9 satisfies the threshold value X2 (the temperature distribution is equal to or less than the threshold value X2) based on the air flow rate (volumetric air volume Ga) of the heat absorber 9. The valve opening degree ECCVpcmin is changed. However, when the heat pump controller 32 changes the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 according to the air flow rate of the heat absorber 9, the heat pump controller 32 gives a predetermined hysteresis to the air flow rate as shown in FIG. In FIG. 10, the arrow line indicating the change direction is shown obliquely, but actually changes in the vertical direction.
Thus, the heat pump controller 32 increases the minimum valve opening of the outdoor expansion valve 6 in such a direction that the larger the amount of air flow (high air amount) and the smaller the amount (low air amount), the smaller the amount of air flow. Since ECCVpcmin is changed, no temperature distribution is generated in the heat absorber 9 or the temperature distribution is reduced. As a result, the valve opening degree ECCVpc of the outdoor expansion valve 6 is decreased, the refrigerant circulation amount to the heat absorber 9 is decreased, the temperature distribution is generated in the heat absorber 9, or the temperature distribution of the heat absorber 9 is increased. Can be resolved. And while maintaining the dehumidifying performance of the heat sink 9 in the dehumidifying and cooling mode, the temperature of the radiator 4 (heat radiator temperature TCI) can also be expanded, so that it can contribute to energy saving. It becomes possible. In addition, since the target blowing temperature TAO of the air supplied to the passenger compartment can be easily established, the air conditioning performance in the passenger compartment can be improved as a whole, and passenger comfort can also be improved.
In this case, in the embodiment, the heat pump controller 32 changes the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 so that the temperature distribution of the heat absorber 9 satisfies a predetermined threshold value X2 that is allowed for the temperature distribution of the heat absorber 9. As a result, the temperature distribution of the heat absorber 9 accompanying the reduction of the valve opening ECCVpc of the outdoor expansion valve 6 can be eliminated or suppressed accurately.
Further, in this embodiment, the heat pump controller 32 changes the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 in a direction of increasing the larger the ventilation amount based on the ventilation amount of the indoor blower 6 to the heat absorber 9. Therefore, the temperature distribution of the heat absorber 9 accompanying the reduction of the valve opening ECCVpc of the outdoor expansion valve 6 can be effectively eliminated or suppressed.
Furthermore, in the embodiment, when changing the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6, the heat pump controller 32 changes the minimum valve opening degree ECCVpc of the outdoor expansion valve 6 because it has a predetermined hysteresis. In this case, the inconvenience of hunting can be avoided in advance.
(13) Change control of the minimum valve opening degree of the outdoor expansion valve 6 in the dehumidifying and cooling mode by the heat pump controller 32 (part 2)
Further, when the valve opening degree TXV of the indoor expansion valve 8 for reducing the pressure of the refrigerant flowing into the heat absorber 9 is large, the refrigerant circulation amount of the heat absorber 9 is increased, so that the temperature distribution of the heat absorber 9 is reduced. Therefore, the heat pump controller 32 changes the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 based on the valve opening degree TXV of the indoor expansion valve 8 instead of or in addition to the above embodiment (part 1).
FIG. 11 is a diagram for explaining an example of control for changing the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 by the valve opening degree TXV of the indoor expansion valve 8 in addition to the above-described embodiment (No. 1). In this embodiment, the ventilation to the heat absorber 9 described above depends on whether the valve opening TXV of the indoor expansion valve 8 is on the open side (the valve opening is large), the reference, or the closing side (the valve opening is small). The valve openings A, B, and C that are the minimum valve opening ECCVpcmin based on the amount (high air volume, medium air volume, low air volume) are further changed.
That is, when the valve opening degree TXV of the indoor expansion valve 8 is on the open side (the valve opening degree is large) and the air flow rate to the heat absorber 9 is high, the minimum valve of the outdoor expansion valve 6 is used. The opening degree ECCVpcmin is set to A-α smaller than the above-described valve opening degree A, and is set to B-β smaller than the above-described valve opening degree B when the medium air volume is obtained. C−γ is smaller than the opening degree C (where α, β, and γ are positive numbers).
When the valve opening degree TXV of the indoor expansion valve 8 is a reference value, the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 is set to the valve opening degree A set based on the air flow rate to the heat absorber 9 described above. , B, C.
On the other hand, when the valve opening degree TXV of the indoor expansion valve 8 is on the closed side (the valve opening degree is small) and the air flow rate to the heat absorber 9 is high, the minimum valve of the outdoor expansion valve 6 is used. The opening degree ECCVpcmin is set to A + δ larger than the above-described valve opening degree A, B + ε larger than the above-described valve opening degree B when the medium air volume is obtained, and from the above-described valve opening degree C when the air volume is low. Is larger C + ζ (where δ, ε, and ζ are positive numbers).
In this way, by changing the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 in a direction to be smaller as the valve opening degree TXV is larger based on the valve opening degree TXV of the indoor expansion valve 8 by the heat pump controller 32, While eliminating or suppressing the temperature distribution of the heat sink 9, the temperature of the radiator 4 can be raised without any trouble.
It should be noted that the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 is changed based on only the valve opening degree TXV of the indoor expansion valve 8 without making any change based on the air flow rate to the heat absorber 9 regardless of this embodiment. You may make it do. In this case, for example, based on only the valve opening B described above, when the valve opening TXV of the indoor expansion valve 8 is on the open side, the minimum valve opening ECCVpcmin of the outdoor expansion valve 6 is set to B-β, and the valve opening For example, B is set when TXV is a reference, and B + ε is set when the valve opening TXV is closed.
(14) Change control of the minimum valve opening degree of the outdoor expansion valve 6 in the dehumidifying and cooling mode by the heat pump controller 32 (part 3)
Furthermore, as described above, in the dehumidifying and cooling mode, the heat pump controller 32 controls the rotational speed NC of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) and the target heat absorber temperature TEO that is the target temperature. As shown in FIG. 12, when the target heat absorber temperature TEO (target temperature of the heat absorber 9) is lowered, the rotational speed NC of the compressor 2 is increased, the capacity thereof is increased, and the refrigerant circulation amount of the heat absorber 9 is also increased. Become more. Thereby, the temperature distribution of the heat absorber 9 becomes smaller (portion indicated by X3 in FIG. 12), and the temperature of the radiator 4 (heat radiator temperature TCI) also rises.
Therefore, even if the minimum valve opening ECCVpcmin of the outdoor expansion valve 6 is lowered (the portion indicated by X4 in FIG. 12, the radiator temperature TCI also rises), the temperature distribution of the heat absorber 9 is the same as that before the target heat absorber temperature TEO is lowered. It becomes larger only up to the state (portion indicated by X5 in FIG. 12).
Therefore, the heat pump controller 32 changes the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 based on the target heat absorber temperature TEO instead of or in addition to the first embodiment (part 1) and the second embodiment (part 2). .
FIG. 13 is a diagram for explaining an example of control for changing the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 by the target heat absorber temperature TEO in addition to the first embodiment (part 1). In this embodiment, the minimum valve opening ECCVpcmin based on the air flow rate (high air volume, medium air volume, low air volume) to the heat absorber 9 described above depending on whether the target heat absorber temperature TEO is low, medium or high. Further, the valve openings A, B, and C are changed. Although FIG. 13 shows only the valve opening A when the air volume is high, the valve opening B when the air volume is medium and the valve opening C when the air volume is low are similarly changed.
That is, when the target heat absorber temperature TEO is low and the air flow rate to the heat absorber 9 is high, the minimum valve opening ECCVpcmin of the outdoor expansion valve 6 is set to A−η smaller than the valve opening A described above. And When the target heat absorber temperature TEO is medium, the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 is set to the valve opening degree A set from the high air flow rate to the heat absorber 9 described above. Further, when the target heat absorber temperature TEO is high and the air flow rate to the heat absorber 9 is high, the minimum valve opening ECCVpcmin of the outdoor expansion valve 6 is set to A + θ larger than the valve opening A described above. (However, η and θ are positive numbers).
Thus, since the heat pump controller 32 changes the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 in a direction to decrease as the target temperature of the heat absorber 9 (target heat absorber temperature TEO) is lower, the temperature of the heat absorber 9 While eliminating or suppressing the distribution, the temperature of the radiator 4 (the radiator temperature TCI) can be raised without any trouble (FIG. 12).
In the case of this embodiment as well, the minimum valve opening degree ECCVpcmin of the outdoor expansion valve 6 is set based on only the target heat absorber temperature TEO, without changing based on the air flow rate to the heat absorber 9 regardless of the above. You may make it change. In that case, for example, as shown in FIG. 13, only when the target heat absorber temperature TEO is low, the minimum valve opening ECCVpcmin of the outdoor expansion valve 6 is set to A−η when the target heat absorber temperature TEO is low. Is A, and when it is high, A + θ.
 次に、図14は本発明を適用した他の実施例の車両用空気調和装置1の構成図を示している。尚、この図において図1と同一符号で示すものは同一若しくは同様の機能を奏するものである。この実施例の場合、過冷却部16の出口は逆止弁18に接続され、この逆止弁18の出口が冷媒配管13Bに接続されている。尚、逆止弁18は冷媒配管13B(室内膨張弁8)側が順方向とされている。
 また、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前で分岐しており、この分岐した冷媒配管(以下、第2のバイパス配管と称する)13Fは電磁弁22(除湿用)を介して逆止弁18の下流側の冷媒配管13Bに連通接続されている。更に、吸熱器9の出口側の冷媒配管13Cには、内部熱交換器19の冷媒下流側であって、冷媒配管13Dとの合流点より冷媒上流側に蒸発圧力調整弁70が接続されている。
 そして、これら電磁弁22や蒸発圧力調整弁70もヒートポンプコントローラ32の出力に接続されている。尚、前述の実施例の図1中のバイパス配管35、電磁弁30及び電磁弁40から成るバイパス装置45は設けられていない。その他は図1と同様であるので説明を省略する。
 以上の構成で、この実施例の車両用空気調和装置1の動作を説明する。ヒートポンプコントローラ32はこの実施例では、暖房モード、除湿暖房モード、内部サイクルモード、除湿冷房モード、冷房モード及び補助ヒータ単独モードの各運転モードを切り換えて実行する(MAX冷房モードはこの実施例では存在しない)。尚、暖房モード、除湿冷房モード及び冷房モードが選択されたときの動作及び冷媒の流れと、補助ヒータ単独モードは前述の実施例(実施例1)の場合と同様であるので説明を省略する。但し、この実施例(実施例2)ではこれら暖房モード、除湿冷房モード及び冷房モードにおいては電磁弁22を閉じるものとする。
 (15)図14の車両用空気調和装置1の除湿暖房モード
 他方、除湿暖房モードが選択された場合、この実施例ではヒートポンプコントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁22(除湿用)を開放する。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は冷媒配管13Gから放熱器4に流入する。放熱器4には暖房用熱交換通路3Aに流入した空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A、電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。
 また、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部は分流され、電磁弁22を経て第2のバイパス配管13F及び冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至るようになる。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は、内部熱交換器19、蒸発圧力調整弁70を順次経て冷媒配管13Cにて冷媒配管13Dからの冷媒と合流した後、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。
 空調コントローラ20は、目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器出口温度TCIの目標値)をヒートポンプコントローラ32に送信する。ヒートポンプコントローラ32は、この目標ヒータ温度TCOから目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御し、放熱器4による加熱を制御する。また、ヒートポンプコントローラ32は、吸熱器温度センサ48が検出する吸熱器9の温度Teと、空調コントローラ20から送信された目標吸熱器温度TEOに基づいて室外膨張弁6の弁開度を制御する。また、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度Teに基づき、蒸発圧力調整弁70を開(流路を拡大する)/閉(少許冷媒が流れる)して吸熱器9の温度が下がり過ぎて凍結する不都合を防止する。
 (16)図14の車両用空気調和装置1の内部サイクルモード
 また、内部サイクルモードでは、ヒートポンプコントローラ32は上記除湿暖房モードの状態において室外膨張弁6を全閉とする(全閉位置)と共に、電磁弁21を閉じる。この室外膨張弁6と電磁弁21が閉じられることにより、室外熱交換器7への冷媒の流入、及び、室外熱交換器7からの冷媒の流出は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は電磁弁22を経て第2のバイパス配管13Fに全て流れるようになる。そして、第2のバイパス配管13Fを流れる冷媒は冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は、内部熱交換器19、蒸発圧力調整弁70を順次経て冷媒配管13Cを流れ、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより、車室内の除湿暖房が行われることになるが、この内部サイクルモードでは室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房モードに比較すると除湿能力は高いが、暖房能力は低くなる。
 空調コントローラ20は目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器出口温度TCIの目標値)をヒートポンプコントローラ32に送信する。ヒートポンプコントローラ32は送信された目標ヒータ温度TCOから目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御し、放熱器4による加熱を制御する。
 実施例2の車両用空気調和装置1の除湿冷房モードの冷媒の流れと制御は前述した実施例1の場合と同様であるので、この実施例の場合にも除湿冷房モードにおいて、ヒートポンプコントローラ32が前述した(12)~(14)の室外膨張弁6の最小弁開度の変更制御(その1)~(その3)を行うことで、前述同様に吸熱器9に温度分布が生じなくなり、若しくは、温度分布が小さくなる。それにより、同様に室外膨張弁6の弁開度ECCVpcが小さくなって吸熱器9への冷媒循環量が減少し、吸熱器9に温度分布が生じ、若しくは、吸熱器9の温度分布が大きくなる不都合を解消することができるようになる。
 そして、同様にこの場合にも除湿冷房モードにおける吸熱器9の除湿性能を維持しながら、放熱器4の温度(放熱器温度TCI)も、その取り得る範囲を拡げることができるようになるので、省エネルギーに寄与することが可能となる。また、車室内に供給される空気の目標吹出温度TAOも成立させ易くなるので、総じて車室内の空調性能を向上させ、搭乗者の快適性も改善することができるようになる。
 尚、各実施例で示した数値等はそれに限られるものでは無く、適用する装置に応じて適宜設定すべきものである。また、補助加熱装置は実施例で示した補助ヒータ23に限られるものでは無く、ヒータで加熱された熱媒体を循環させて空気流通路3内の空気を加熱する熱媒体循環回路や、エンジンで加熱されたラジエター水を循環するヒータコア等を利用してもよい。
Next, FIG. 14 shows a configuration diagram of a vehicle air conditioner 1 of another embodiment to which the present invention is applied. In this figure, the same reference numerals as those in FIG. 1 indicate the same or similar functions. In the case of this embodiment, the outlet of the supercooling section 16 is connected to the check valve 18, and the outlet of the check valve 18 is connected to the refrigerant pipe 13B. The check valve 18 has a forward direction on the refrigerant pipe 13B (indoor expansion valve 8) side.
The refrigerant pipe 13E on the outlet side of the radiator 4 is branched before the outdoor expansion valve 6, and the branched refrigerant pipe (hereinafter referred to as second bypass pipe) 13F is an electromagnetic valve 22 (for dehumidification). Is connected to the refrigerant pipe 13B downstream of the check valve 18. Further, an evaporating pressure adjusting valve 70 is connected to the refrigerant pipe 13C on the outlet side of the heat absorber 9 on the refrigerant downstream side of the internal heat exchanger 19 and upstream of the refrigerant with respect to the refrigerant pipe 13D. .
The electromagnetic valve 22 and the evaporation pressure adjusting valve 70 are also connected to the output of the heat pump controller 32. Note that the bypass device 45 including the bypass pipe 35, the electromagnetic valve 30, and the electromagnetic valve 40 in FIG. 1 of the above-described embodiment is not provided. Others are the same as in FIG.
With the above configuration, the operation of the vehicle air conditioner 1 of this embodiment will be described. In this embodiment, the heat pump controller 32 switches between the heating mode, the dehumidifying heating mode, the internal cycle mode, the dehumidifying cooling mode, the cooling mode, and the auxiliary heater single mode (the MAX cooling mode is present in this embodiment). do not do). The operation when the heating mode, the dehumidifying and cooling mode, and the cooling mode are selected, the refrigerant flow, and the auxiliary heater single mode are the same as those in the above-described embodiment (embodiment 1), and thus the description thereof is omitted. However, in this embodiment (Example 2), the solenoid valve 22 is closed in the heating mode, the dehumidifying cooling mode, and the cooling mode.
(15) Dehumidifying heating mode of vehicle air conditioner 1 of FIG. 14 On the other hand, when the dehumidifying heating mode is selected, in this embodiment, heat pump controller 32 opens electromagnetic valve 21 (for heating) and electromagnetic valve 17 ( Close for cooling. Further, the electromagnetic valve 22 (for dehumidification) is opened. Then, the compressor 2 is operated. The air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating. The auxiliary heater 23 and the radiator 4 are ventilated, but the air volume is also adjusted.
Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G. Since the air in the air flow path 3 that has flowed into the heat exchange path 3A for heating is passed through the heat radiator 4, the air in the air flow path 3 is heated by the high-temperature refrigerant in the heat radiator 4, while the heat radiator The refrigerant in 4 is deprived of heat by the air and cooled to condense.
The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 through the refrigerant pipe 13C through the refrigerant pipe 13A, the solenoid valve 21 and the refrigerant pipe 13D, and is gas-liquid separated there. Repeated circulation inhaled.
Further, a part of the condensed refrigerant flowing through the refrigerant pipe 13E through the radiator 4 is diverted, passes through the electromagnetic valve 22, and reaches the indoor expansion valve 8 through the internal heat exchanger 19 from the second bypass pipe 13F and the refrigerant pipe 13B. It becomes like this. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 sequentially passes through the internal heat exchanger 19 and the evaporation pressure adjusting valve 70 and then merges with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C. Then, the refrigerant is sucked into the compressor 2 through the accumulator 12. repeat. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
The air conditioning controller 20 transmits the target heater temperature TCO (target value of the radiator outlet temperature TCI) calculated from the target blowing temperature TAO to the heat pump controller 32. The heat pump controller 32 calculates a target radiator pressure PCO (target value of the radiator pressure PCI) from the target heater temperature TCO, and the refrigerant of the radiator 4 detected by the target radiator pressure PCO and the radiator pressure sensor 47. The number of revolutions NC of the compressor 2 is controlled based on the pressure (radiator pressure PCI, high pressure of the refrigerant circuit R), and heating by the radiator 4 is controlled. The heat pump controller 32 controls the valve opening degree of the outdoor expansion valve 6 based on the temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO transmitted from the air conditioning controller 20. In addition, the heat pump controller 32 opens (enlarges the flow path) / closes (flows a small amount of refrigerant) the heat absorber 9 based on the temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48. The inconvenience of freezing due to too low temperature is prevented.
(16) Internal cycle mode of the vehicle air conditioner 1 of FIG. 14 In the internal cycle mode, the heat pump controller 32 fully closes the outdoor expansion valve 6 in the dehumidifying and heating mode state (fully closed position), The solenoid valve 21 is closed. Since the outdoor expansion valve 6 and the electromagnetic valve 21 are closed, the inflow of refrigerant to the outdoor heat exchanger 7 and the outflow of refrigerant from the outdoor heat exchanger 7 are blocked. The condensed refrigerant flowing through the refrigerant pipe 13E through the refrigerant flows through the electromagnetic valve 22 to the second bypass pipe 13F. The refrigerant flowing through the second bypass pipe 13F reaches the indoor expansion valve 8 via the internal heat exchanger 19 from the refrigerant pipe 13B. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 sequentially flows through the refrigerant pipe 13C through the internal heat exchanger 19 and the evaporation pressure adjustment valve 70, and repeats circulation that is sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed. Since the refrigerant is circulated between the radiator 4 (radiation) and the heat absorber 9 (heat absorption) in the passage 3, heat from the outside air is not pumped up, and heating for the consumed power of the compressor 2 is performed. Ability is demonstrated. Since the entire amount of the refrigerant flows through the heat absorber 9 that exhibits the dehumidifying action, the dehumidifying capacity is higher than that in the dehumidifying and heating mode, but the heating capacity is lowered.
The air conditioning controller 20 transmits the target heater temperature TCO (target value of the radiator outlet temperature TCI) calculated from the target outlet temperature TAO to the heat pump controller 32. The heat pump controller 32 calculates the target radiator pressure PCO (target value of the radiator pressure PCI) from the transmitted target heater temperature TCO, and the target radiator pressure PCO and the radiator 4 detected by the radiator pressure sensor 47. The rotational speed NC of the compressor 2 is controlled based on the refrigerant pressure (radiator pressure PCI, high pressure of the refrigerant circuit R), and heating by the radiator 4 is controlled.
Since the flow and control of the refrigerant in the dehumidifying and cooling mode of the vehicle air conditioner 1 according to the second embodiment are the same as those in the first embodiment described above, the heat pump controller 32 also operates in the dehumidifying and cooling mode in this embodiment. By performing the change control (No. 1) to (No. 3) of the minimum valve opening degree of the outdoor expansion valve 6 of (12) to (14) described above, the temperature distribution is not generated in the heat absorber 9 as described above, or The temperature distribution becomes smaller. Accordingly, the valve opening ECCVpc of the outdoor expansion valve 6 is similarly reduced, the refrigerant circulation amount to the heat absorber 9 is reduced, and the temperature distribution is generated in the heat absorber 9 or the temperature distribution of the heat absorber 9 is increased. Inconvenience can be eliminated.
Similarly, in this case as well, the temperature of the radiator 4 (heat radiator temperature TCI) can be expanded while maintaining the dehumidifying performance of the heat absorber 9 in the dehumidifying and cooling mode. It is possible to contribute to energy saving. In addition, since the target blowing temperature TAO of the air supplied to the passenger compartment can be easily established, the air conditioning performance in the passenger compartment can be improved as a whole, and passenger comfort can also be improved.
It should be noted that the numerical values shown in the embodiments are not limited thereto, and should be appropriately set according to the apparatus to be applied. Further, the auxiliary heating device is not limited to the auxiliary heater 23 shown in the embodiment, and a heat medium circulation circuit that heats the air in the air flow passage 3 by circulating the heat medium heated by the heater or an engine. You may utilize the heater core etc. which circulate through the heated radiator water.
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 10 HVACユニット
 11 制御装置
 20 空調コントローラ
 27 室内送風機(ブロワファン)
 28 エアミックスダンパ
 32 ヒートポンプコントローラ
 41 吹出温度センサ
 65 車両通信バス
 R 冷媒回路
DESCRIPTION OF SYMBOLS 1 Vehicle air conditioner 2 Compressor 3 Air flow path 4 Radiator 6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve 9 Heat absorber 10 HVAC unit 11 Controller 20 Air-conditioning controller 27 Indoor blower (blower fan)
28 Air Mix Damper 32 Heat Pump Controller 41 Blowout Temperature Sensor 65 Vehicle Communication Bus R Refrigerant Circuit

Claims (6)

  1.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     車室外に設けられて冷媒を放熱させるための室外熱交換器と、
     該室外熱交換器に流入する冷媒を減圧させるための室外膨張弁と、
     前記吸熱器に流入する冷媒を減圧させるための室内膨張弁と、
     制御装置とを備え、
     該制御装置により、少なくとも前記圧縮機から吐出された冷媒を前記放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を前記室内膨張弁により減圧した後、前記吸熱器にて吸熱させる除湿冷房モードを実行する車両用空気調和装置において、
     前記制御装置は、前記除湿冷房モードにおいては前記吸熱器の温度に基づいて前記圧縮機の能力を制御し、前記放熱器の温度又は圧力に基づいて前記室外膨張弁の弁開度を制御すると共に、
     前記吸熱器に温度分布が生じないように、若しくは、温度分布が小さくなるように前記室外膨張弁の最小弁開度を変更することを特徴とする車両用空気調和装置。
    A compressor for compressing the refrigerant;
    An air flow passage through which air to be supplied into the passenger compartment flows;
    A radiator for radiating the refrigerant to heat the air supplied from the air flow passage to the vehicle interior;
    A heat absorber for absorbing the refrigerant and cooling the air supplied from the air flow passage to the vehicle interior;
    An outdoor heat exchanger provided outside the passenger compartment to dissipate the refrigerant,
    An outdoor expansion valve for depressurizing the refrigerant flowing into the outdoor heat exchanger;
    An indoor expansion valve for depressurizing the refrigerant flowing into the heat absorber;
    A control device,
    Dehumidification by which at least the refrigerant discharged from the compressor is radiated by the controller and the outdoor heat exchanger, and the radiated refrigerant is decompressed by the indoor expansion valve and then absorbed by the heat absorber. In a vehicle air conditioner that executes a cooling mode,
    In the dehumidifying and cooling mode, the control device controls the capacity of the compressor based on the temperature of the heat absorber, and controls the opening degree of the outdoor expansion valve based on the temperature or pressure of the radiator. ,
    An air conditioner for a vehicle, wherein a minimum valve opening degree of the outdoor expansion valve is changed so that a temperature distribution does not occur in the heat absorber or the temperature distribution becomes small.
  2.  前記制御装置は、前記吸熱器の温度分布が、当該吸熱器の温度分布に関して許容される所定の閾値を満足するように前記室外膨張弁の最小弁開度を変更することを特徴とする請求項1に記載の車両用空気調和装置。 The said control apparatus changes the minimum valve opening degree of the said outdoor expansion valve so that the temperature distribution of the said heat absorber may satisfy | fill the predetermined threshold value permitted regarding the temperature distribution of the said heat absorber. The vehicle air conditioner according to claim 1.
  3.  前記空気流通路内に空気を流通させる室内送風機を備え、
     前記制御装置は、前記室内送風機による前記吸熱器への通風量に基づき、当該通風量が多い程、大きくする方向で前記室外膨張弁の最小弁開度を変更することを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。
    An indoor blower for circulating air in the air flow passage;
    The said control apparatus changes the minimum valve-opening degree of the said outdoor expansion valve in the direction which makes it large, so that the said ventilation amount is large based on the ventilation amount to the said heat absorber by the said indoor air blower. Or the air conditioning apparatus for vehicles of Claim 2.
  4.  前記制御装置は、前記室内膨張弁の弁開度に基づき、当該弁開度が大きい程、小さくする方向で前記室外膨張弁の最小弁開度を変更することを特徴とする請求項1乃至請求項3のうちの何れかに記載の車両用空気調和装置。 2. The control device according to claim 1, wherein the control device changes the minimum valve opening of the outdoor expansion valve in a direction of decreasing the larger the valve opening, based on the valve opening of the indoor expansion valve. Item 4. The vehicle air conditioner according to any one of Items 3 to 4.
  5.  前記制御装置は、前記除湿冷房モードにおいては前記吸熱器の温度と当該吸熱器の目標温度に基づいて前記圧縮機の能力を制御すると共に、
     前記吸熱器の目標温度が低い程、小さくする方向で前記室外膨張弁の最小弁開度を変更することを特徴とする請求項1乃至請求項4のうちの何れかに記載の車両用空気調和装置。
    The control device, in the dehumidifying and cooling mode, controls the capacity of the compressor based on the temperature of the heat absorber and the target temperature of the heat absorber,
    5. The vehicle air conditioner according to claim 1, wherein the minimum valve opening degree of the outdoor expansion valve is changed in a direction of decreasing as the target temperature of the heat absorber becomes lower. apparatus.
  6.  前記制御装置は、前記室外膨張弁の最小弁開度を変更する場合、所定のヒステリシスを持たせることを特徴とする請求項1乃至請求項5のうちの何れかに記載の車両用空気調和装置。 6. The vehicle air conditioner according to claim 1, wherein the control device gives a predetermined hysteresis when changing the minimum valve opening of the outdoor expansion valve. .
PCT/JP2017/041581 2016-12-14 2017-11-13 Vehicle air-conditioning apparatus WO2018110212A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112017006293.4T DE112017006293T5 (en) 2016-12-14 2017-11-13 Vehicle air conditioning device
CN201780076668.6A CN110062708B (en) 2016-12-14 2017-11-13 Air conditioner for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016242134A JP6767856B2 (en) 2016-12-14 2016-12-14 Vehicle air conditioner
JP2016-242134 2016-12-14

Publications (1)

Publication Number Publication Date
WO2018110212A1 true WO2018110212A1 (en) 2018-06-21

Family

ID=62558528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041581 WO2018110212A1 (en) 2016-12-14 2017-11-13 Vehicle air-conditioning apparatus

Country Status (4)

Country Link
JP (1) JP6767856B2 (en)
CN (1) CN110062708B (en)
DE (1) DE112017006293T5 (en)
WO (1) WO2018110212A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113453926A (en) * 2019-02-15 2021-09-28 三电汽车空调系统株式会社 Air conditioner for vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020115049A (en) * 2019-01-17 2020-07-30 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159485A1 (en) * 2014-04-18 2015-10-22 サンデンホールディングス株式会社 Vehicle air conditioner
WO2016059945A1 (en) * 2014-09-29 2016-04-21 サンデンホールディングス株式会社 Vehicle air-conditioning device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218004A (en) * 1994-01-28 1995-08-18 Matsushita Seiko Co Ltd Motor operated expansion valve controller for air conditioner
JPH07294021A (en) * 1994-04-28 1995-11-10 Kubota Corp Heat pump type cooling dehumidifying equipment
JP4969271B2 (en) * 2007-02-28 2012-07-04 三菱重工業株式会社 Air conditioner
JP6005484B2 (en) * 2012-11-09 2016-10-12 サンデンホールディングス株式会社 Air conditioner for vehicles
JP6241595B2 (en) * 2013-08-23 2017-12-06 サンデンホールディングス株式会社 Air conditioner for vehicles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159485A1 (en) * 2014-04-18 2015-10-22 サンデンホールディングス株式会社 Vehicle air conditioner
WO2016059945A1 (en) * 2014-09-29 2016-04-21 サンデンホールディングス株式会社 Vehicle air-conditioning device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113453926A (en) * 2019-02-15 2021-09-28 三电汽车空调系统株式会社 Air conditioner for vehicle

Also Published As

Publication number Publication date
JP2018095098A (en) 2018-06-21
DE112017006293T5 (en) 2019-08-29
JP6767856B2 (en) 2020-10-14
CN110062708B (en) 2022-04-29
CN110062708A (en) 2019-07-26

Similar Documents

Publication Publication Date Title
JP6496958B2 (en) Air conditioner for vehicles
WO2018074112A1 (en) Vehicular air conditioning device
WO2018211958A1 (en) Vehicle air-conditioning device
JP6900271B2 (en) Vehicle air conditioner
WO2018147039A1 (en) Vehicle air-conditioning device
WO2018110211A1 (en) Vehicle air-conditioning device
WO2018079121A1 (en) Vehicle air-conditioning device
JP2018058575A (en) Air conditioner for vehicle
WO2018110212A1 (en) Vehicle air-conditioning apparatus
WO2018225486A1 (en) Air-conditioning device for vehicles
WO2018135603A1 (en) Vehicular air-conditioning device
WO2018061785A1 (en) Air-conditioning device for vehicle
WO2018123634A1 (en) Vehicular air conditioning device
WO2018088124A1 (en) Vehicular air conditioner
WO2018043152A1 (en) Vehicle air-conditioning apparatus
WO2017146269A1 (en) Vehicular air-conditioning device
JP2019018708A (en) Air conditioner for vehicle
WO2018225485A1 (en) Vehicle air conditioner
WO2018074111A1 (en) Vehicular air conditioning device
WO2019049637A1 (en) Vehicular air conditioning device
JP2019031226A (en) Air conditioning apparatus for vehicle
JP6853036B2 (en) Vehicle air conditioner
WO2018088130A1 (en) Vehicle air conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880752

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17880752

Country of ref document: EP

Kind code of ref document: A1