WO2015122293A1 - Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device, organic el display device, and touch panel display device - Google Patents

Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device, organic el display device, and touch panel display device Download PDF

Info

Publication number
WO2015122293A1
WO2015122293A1 PCT/JP2015/052636 JP2015052636W WO2015122293A1 WO 2015122293 A1 WO2015122293 A1 WO 2015122293A1 JP 2015052636 W JP2015052636 W JP 2015052636W WO 2015122293 A1 WO2015122293 A1 WO 2015122293A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
photosensitive resin
structural unit
display device
Prior art date
Application number
PCT/JP2015/052636
Other languages
French (fr)
Japanese (ja)
Inventor
豪 安藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020167020248A priority Critical patent/KR20160102538A/en
Priority to JP2015562781A priority patent/JPWO2015122293A1/en
Priority to CN201580008378.9A priority patent/CN105980931A/en
Publication of WO2015122293A1 publication Critical patent/WO2015122293A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2012Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image using liquid photohardening compositions, e.g. for the production of reliefs such as flexographic plates or stamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a photosensitive resin composition (hereinafter sometimes simply referred to as “the composition of the present invention”). Moreover, it is related with the manufacturing method of the cured film using the said photosensitive resin composition, the cured film formed by hardening
  • the composition of the present invention is related with the manufacturing method of the cured film using the said photosensitive resin composition, the cured film formed by hardening
  • Organic EL display devices liquid crystal display devices, touch panel display devices, and the like are provided with a patterned interlayer insulating film.
  • photosensitive resin compositions are widely used because the number of steps for obtaining a required pattern shape is small and sufficient flatness is obtained.
  • the interlayer insulating film is also required to have higher temperature resistance than before.
  • the use of polysiloxane as such a high heat resistant interlayer insulating film has been studied.
  • Patent Document 1 discloses a positive resist composition containing an alkali-soluble siloxane polymer and a photosensitive compound having a 1,2-naphthoquinone diad group.
  • a positive photosensitive resin composition containing an epoxy group-containing siloxane compound as component (D) is disclosed.
  • Paragraph No. 0093 describes that the component (D) is preferably 1 to 40 parts by mass with respect to 100 parts by mass of the component (A).
  • Patent Document 3 discloses a photosensitive resin composition containing polysiloxane containing a structural unit having a protected silanol group and a structural unit having an epoxy group.
  • the present inventor examined the positive resist composition disclosed in Patent Document 1, the quantum yield of the photosensitive compound having a 1,2-naphthoquinone diad group used in Patent Document 1 was increased. Since the sensitivity is low, the sensitivity of the positive resist composition is not sufficient.
  • the positive photosensitive resin composition disclosed by patent document 2 contains epoxy group containing siloxane compound which is a hardening component. It was found that the solvent resistance was not sufficient due to the small amount. Also. It has been found that when the content of the epoxy group-containing siloxane compound is increased to improve the solvent resistance, the sensitivity is deteriorated.
  • an object of the present invention is to provide a photosensitive resin composition capable of forming a cured film having good sensitivity and excellent solvent resistance, a method for producing a cured film using such a photosensitive resin composition, a cured film, and an organic EL display device. Another object is to provide a liquid crystal display device and a touch panel display device.
  • a structural unit having a group in which a carboxy group is protected with an acid-decomposable group and / or a group in which a phenolic hydroxyl group is protected with an acid-decomposable group By using a polysiloxane having (a1) and a structural unit (a2) having a crosslinkable group together with a photoacid generator that generates an acid having a pKa of 3 or less, the sensitivity is good and the solvent resistance is improved.
  • the inventors have found that a photosensitive resin composition capable of forming an excellent cured film can be obtained, and have completed the present invention.
  • the present invention provides the following.
  • a photosensitive resin composition comprising polysiloxane having the structural unit (a2), (B) a photoacid generator that generates an acid having a pKa of 3 or less, and (C) a solvent.
  • the structural unit (a1) is a structural unit represented by the following general formula (a1-1) and / or a structural unit represented by the following general formula (a1-2), ⁇ 1> or The photosensitive resin composition as described in ⁇ 2>.
  • a represents 0 or 1
  • R 1 and R 2 each independently represents a hydrogen atom, an alkyl group or an aryl group, and R 1 and R 2 at least one of the two represents an alkyl group or an aryl group
  • R 3 represents an alkyl group or an aryl group
  • R 1 or R 2 may form a cyclic ether linked and the R 3,
  • R 4 Represents an alkyl group, an aryl group, or an aralkyl group
  • L 1 represents a single bond or a divalent linking group
  • L 2 represents a single bond or a divalent linking group
  • R x represents an alkyl Represents a group or a halogen atom
  • m1 represents 0 or 1
  • the structural unit (a2) is a structural unit represented by the following general formula (a2-1) and / or a structural unit represented by the following general formula (a2-2): ⁇ 4>
  • a represents 0 or 1
  • R 5 represents an alkyl group, an aryl group or an aralkyl group
  • R Y represents an alkyl group or a halogen atom.
  • L 3 represents a single bond or a divalent linking group
  • n represents 0 or 1
  • m2 represents an integer of 0 to 2 when n is 0, and n represents 1
  • It represents an integer from 0 to 3
  • m3 represents an integer from 0 to 6.
  • ⁇ 8> The total number of moles of the structural unit (a1) and the moles of the structural unit (a3) and the number of moles of the structural unit (a2) in the total amount of (A) polysiloxane contained in the photosensitive resin composition.
  • ⁇ 9> The photosensitive resin composition according to any one of ⁇ 1> to ⁇ 8>, wherein the crosslinkable group equivalent in the solid content of the photosensitive resin composition is 1500 or less.
  • ⁇ 12> A cured film obtained by curing the photosensitive resin composition according to any one of ⁇ 1> to ⁇ 11>, or a cured film formed by the method for producing a cured film according to ⁇ 12>.
  • ⁇ 13> The cured film according to ⁇ 12>, which is an interlayer insulating film.
  • ⁇ 14> A liquid crystal display device having the cured film according to ⁇ 12> or ⁇ 13>.
  • ⁇ 15> An organic EL display device having the cured film according to ⁇ 12> or ⁇ 13>.
  • ⁇ 16> A touch panel display device having the cured film according to ⁇ 12> or ⁇ 13>.
  • a photosensitive resin composition capable of forming a cured film having good sensitivity and excellent solvent resistance can be provided. Moreover, the manufacturing method of the cured film using the said photosensitive resin composition, a cured film, a liquid crystal display device, an organic EL display device, and a touch panel display device can be provided now.
  • FIG. 1 is a conceptual diagram of a configuration of an example of a liquid crystal display device.
  • the schematic sectional drawing of the active matrix substrate in a liquid crystal display device is shown, and it has the cured film 17 which is an interlayer insulation film.
  • It is a composition conceptual diagram of other examples of a liquid crystal display.
  • 1 shows a conceptual diagram of a configuration of an example of an organic EL display device. A schematic cross-sectional view of a substrate in a bottom emission type organic EL display device is shown, and a planarizing film 4 is provided.
  • the description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
  • “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the description which does not describe substitution and non-substitution includes what does not have a substituent and what has a substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • the solid content concentration in this specification refers to the solid content concentration at 25 ° C.
  • the viscosity in this specification means the viscosity in 25 degreeC.
  • a weight average molecular weight and a number average molecular weight are defined as a polystyrene conversion value by GPC measurement.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are, for example, HLC-8220 (manufactured by Tosoh Corporation), and TSKgel Super AWM-H (manufactured by Tosoh Corporation, 6) as a column.
  • 0.0 mm ID ⁇ 15.0 cm can be determined by using a 10 mmol / L lithium bromide NMP (N-methylpyrrolidinone) solution as the eluent.
  • the photosensitive resin composition of the present invention comprises (A) a structural unit (a1) having a group in which a carboxy group is protected with an acid-decomposable group and / or a group in which a phenolic hydroxyl group is protected with an acid-decomposable group. And a polysiloxane having a structural unit (a2) having a crosslinkable group, (B) a photoacid generator that generates an acid having a pKa of 3 or less, and (C) a solvent.
  • the photosensitive resin composition of the present invention contains the above-mentioned (A) polysiloxane and the above-mentioned (B) photoacid generator, a cured film having good sensitivity and excellent solvent resistance can be formed. Moreover, the cured film excellent in heat resistance can also be formed by including (A) polysiloxane.
  • the photosensitive resin composition of the present invention can be further excellent in storage stability and developability.
  • the photosensitive resin composition of the present invention can be preferably used as a chemically amplified photosensitive resin composition.
  • the crosslinkable group equivalent in the solid content is preferably 1500 or less, and more preferably 1000 or less.
  • the lower limit is preferably 100 or more, more preferably 150 or more, and most preferably 200 or more, from the viewpoints of sensitivity and developability.
  • the crosslinkable group equivalent in the solid content is the mass (g) of the solid content when 1 mol of the crosslinkable group is present in the solid content of the photosensitive resin composition.
  • the crosslinkable group equivalent in the solid content can be determined by measuring a certain amount of the solid content of the photosensitive resin composition and measuring the amount of the crosslinkable group contained in the solid content.
  • crosslinkable group when the crosslinkable group is an epoxy group, it can be determined by the same method as the measurement of the epoxy equivalent of the epoxy resin specified in JIS K7236: 2001. Further, in the case of other crosslinkable groups other than those described above, the same method can be used if the titrant is changed.
  • the polysiloxane (A) used in the photosensitive resin composition of the present invention has a structure in which a carboxy group is protected with an acid-decomposable group and / or a phenolic hydroxyl group is protected with an acid-decomposable group. It has a unit (a1) and a structural unit (a2) having a crosslinkable group.
  • the structure of the polysiloxane is not particularly limited. Any of a straight chain shape, a ring shape, a ladder shape, and a mesh shape may be used, and a structure in which these are connected to each other may be used. It is preferable in terms of hardness of the cured film that a ladder-like or network-like structure is included.
  • the acid-decomposable group is a group that is relatively easily decomposed by an acid (for example, an acetal such as an ester structure, a tetrahydropyranyl ester group, or a tetrahydrofuranyl ester group described later).
  • a functional group) or a group that is relatively difficult to decompose with an acid for example, a tertiary alkyl group such as a tert-butyl ester group or a tertiary alkyl carbonate group such as a tert-butyl carbonate group.
  • an acetal group is preferable. That is, the protected carboxyl group in which the carboxyl group is protected with an acetal group, and the protected phenol group in which the phenolic hydroxyl group is protected with an acetal group are the basic physical properties of the photosensitive resin composition, in particular, sensitivity, pattern shape, and contact hole formability. From the viewpoint of storage stability of the photosensitive resin composition, it is preferable.
  • the structural unit (a1) of the polysiloxane may be a structural unit represented by the following general formula (a1-1) and / or a structural unit represented by the following general formula (a1-2). preferable.
  • a represents 0 or 1
  • R 1 and R 2 each independently represents a hydrogen atom, an alkyl group or an aryl group, and R 1 and R 2 at least one of an alkyl group or an aryl group
  • R 3 represents an alkyl group or an aryl group
  • R 1 or R 2 may form a cyclic ether linked and the R 3,
  • R 4 is ,
  • L 1 represents a single bond or a divalent linking group
  • L 2 represents a single bond or a divalent linking group
  • R x represents an alkyl group Or, it represents a halogen atom
  • m1 represents an integer of 0 to 4.
  • R 1 and R 2 each independently represents a hydrogen atom, an alkyl group or an aryl group, and at least one of R 1 and R 2 is an alkyl group or an aryl group.
  • an alkyl group having 1 to 10 carbon atoms is preferable, an alkyl group having 1 to 8 carbon atoms is more preferable, and an alkyl group having 1 to 6 carbon atoms is more preferable.
  • the alkyl group may have a substituent.
  • the alkyl group may be linear, branched or cyclic, but is preferably a linear alkyl group.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a pentyl group, a hexyl group, and a cyclohexyl group.
  • aryl group an aryl group having 6 to 20 carbon atoms is preferable, an aryl group having 6 to 14 carbon atoms is more preferable, and an aryl group having 6 to 10 carbon atoms is further preferable.
  • the aryl group may have a substituent. Examples of the aryl group include a phenyl group, a naphthyl group, and an anthracenyl group.
  • alkyl group and aryl group may have include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a thioalkoxy group having 1 to 10 carbon atoms, a hydroxyl group, and a cyano group. And halogen atoms (fluorine atom, chlorine atom, bromine atom, iodine atom) and the like. These substituents may further have a substituent.
  • R 1 and R 2 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or a methyl group, one of R 1 and R 2 is a methyl group, and the other is a hydrogen atom. Particularly preferred is an atom.
  • R 3 represents an alkyl group or an aryl group.
  • the alkyl group and aryl group represented by R 3 have the same meanings as the alkyl group and aryl group in R 1 and R 2 .
  • R 3 is preferably a methyl group, an ethyl group, or a propyl group, and more preferably an ethyl group or a propyl group.
  • R 3 may be linked to R 1 or R 2 to form a cyclic ether.
  • the cyclic ether formed by linking to R 1 or R 2 is preferably a 3- to 6-membered cyclic ether, more preferably a 5- to 6-membered cyclic ether.
  • R 4 represents an alkyl group, an aryl group, or an aralkyl group.
  • an alkyl group having 1 to 10 carbon atoms is preferable, an alkyl group having 1 to 8 carbon atoms is more preferable, and an alkyl group having 1 to 6 carbon atoms is more preferable.
  • the alkyl group may have a substituent.
  • the alkyl group may be linear, branched or cyclic.
  • an aryl group having 6 to 20 carbon atoms is preferable, an aryl group having 6 to 14 carbon atoms is more preferable, and an aryl group having 6 to 10 carbon atoms is further preferable.
  • the aryl group may have a substituent.
  • the aryl group examples include a phenyl group, a naphthyl group, and an anthracenyl group.
  • the aralkyl group a group in which a part of hydrogen atoms of an alkyl group having 1 to 10 carbon atoms is substituted with an aryl group having 6 to 20 carbon atoms is preferable.
  • the aralkyl group may have a substituent.
  • the alkyl group constituting the aralkyl group may be linear, branched or cyclic.
  • the substituents that the alkyl group, aryl group, and aralkyl group may have are the same as the substituents described for R 1 and R 2 .
  • R 4 is preferably a methyl group, a phenyl group, a propyl group, a butyl group, or a hexyl group, and more preferably a methyl group or a phenyl group, from the viewpoint of solvent resistance or heat resistance.
  • R x represents an alkyl group or a halogen atom.
  • the alkyl group an alkyl group having 1 to 4 carbon atoms is preferable.
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are preferable.
  • L 1 and L 2 represent a single bond or a divalent linking group.
  • the divalent linking group include an alkylene group having 1 to 12 carbon atoms, an alkylene oxide group having 1 to 12 carbon atoms, and an arylene group having 6 to 12 carbon atoms.
  • the alkylene oxide group and the alkylene oxide group may be linear, branched or cyclic.
  • the alkylene group, alkylene oxide group, and arylene group may have a substituent. Examples of the substituent are the same as those described for R 1 and R 2 .
  • the structural unit represented by the general formula (a1-2) is preferably a structural unit represented by the following general formula (a1-2-1).
  • a 0 or 1
  • R 1 and R 2 each independently represents a hydrogen atom, an alkyl group or an aryl group, and at least one of R 1 and R 2 is Represents an alkyl group or an aryl group
  • R 3 represents an alkyl group or an aryl group
  • R 1 or R 2 and R 3 may be linked to form a cyclic ether
  • R 4 represents an alkyl group
  • An aryl group or an aralkyl group is represented
  • L 2 represents a single bond or a divalent linking group
  • R x represents an alkyl group or a halogen atom
  • m1 represents an integer of 0 to 4.
  • silane compound that can be used for obtaining the structural unit (a1) include the following silane compounds.
  • the proportion of the structural unit (a1) in (A) polysiloxane is preferably 10 to 90 mol%, more preferably 15 to 70 mol%, based on the total repeating units of (A) polysiloxane, from the viewpoint of sensitivity. 20 to 60 mol% is more preferable.
  • the structural unit (a2) of polysiloxane has a crosslinkable group.
  • the crosslinkable group means a group capable of causing a crosslinking reaction by heat. Any known crosslinkable group can be used without particular limitation as long as it undergoes a crosslinking reaction by heat. Among these, those that crosslink with a carboxy group or a phenolic hydroxyl group by heat are preferred. Examples thereof include cyclic ethers, groups having an ethylenically unsaturated bond, blocked isocyanate groups, alkoxymethyl groups, methylol groups, amino groups, and the like.
  • the crosslinkable group may be bonded via a linking group or the like.
  • the cyclic ether include an epoxy group and an oxetanyl group.
  • the group having an ethylenically unsaturated bond include vinyl group, allyl group, methallyl group, methacryloyl group, acryloyl group, allyloxycarbonyl group, and methallyloxycarbonyl group.
  • the alkoxymethyl group include a group represented by “—CH 2 OR”.
  • R represents an alkyl group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms, and more preferably a methyl group.
  • the alkyl group may be linear, branched or cyclic, but is preferably linear.
  • the blocked isocyanate group include a group capable of generating an isocyanate group by heat.
  • a group obtained by reacting a blocking agent with an isocyanate group to protect the isocyanate group can be preferably exemplified.
  • the blocking agent include oxime compounds, lactam compounds, phenol compounds, alcohol compounds, amine compounds, active methylene compounds, pyrazole compounds, mercaptan compounds, imidazole compounds, imide compounds, and the like.
  • the blocked isocyanate group is preferably a group capable of generating an isocyanate group by heat at 90 ° C. to 250 ° C.
  • the amino group may be an amino group having a substituent or an unsubstituted amino group.
  • an epoxy group, an oxetanyl group, and a group having an ethylenically unsaturated bond are preferable because the solvent resistance of the photosensitive resin composition can be further improved, and an epoxy group or an oxetanyl group is more preferable.
  • An epoxy group is particularly preferred.
  • Specific examples of the crosslinkable group include the following, but are not limited thereto.
  • * represents a connecting part with another group.
  • the structural unit (a2) may have at least one crosslinkable group in one structural unit, preferably 1 to 3 and more preferably 1.
  • the structural unit (a2) may all be of the same type or different types.
  • a plurality of crosslinkable groups are included, the same kind is preferable.
  • Examples of the structural unit (a2) include structural units represented by the following general formula (a2 ′).
  • a represents 0 or 1
  • R 5 represents an alkyl group, an aryl group or an aralkyl group
  • L 3 represents a single bond or a divalent linking group
  • X represents Represents a crosslinkable group.
  • the structural unit (a2) is a structural unit represented by the following general formula (a2-1) and / or a structural unit represented by the following general formula (a2-2) from the viewpoint of cured film properties. Is preferred.
  • the structural unit represented by the following general formula (a2-2) is more preferably a structural unit represented by the following general formula (a2-2-1).
  • a represents 0 or 1
  • R 5 represents an alkyl group, an aryl group, or an aralkyl group
  • R Y represents Represents an alkyl group or a halogen atom
  • L 3 represents a single bond or a divalent linking group
  • n represents 0 or 1
  • m2 represents an integer of 0 to 2 when n is 0.
  • N represents an integer of 0 to 3
  • m3 represents an integer of 0 to 6.
  • R 5 represents an alkyl group, an aryl group or an aralkyl group.
  • the alkyl group, aryl group and aralkyl group are the same as the ranges described for R 4 in the above (a1-1) and (a1-2), and the preferred ranges are also the same.
  • L 3 represents a single bond or a divalent linking group.
  • the divalent linking group is the same as the range described for L 1 of (a1-1) and L 2 of (a1-2), and the preferred range is also the same.
  • R Y represents an alkyl group or a halogen atom.
  • the alkyl group and the halogen atom are the same as the range described for R x in (a1-2) described above, and the preferred range is also the same.
  • N represents 0 or 1, and 0 is preferable.
  • M2 represents an integer of 0 to 2 when n is 0, and represents an integer of 0 to 3 when n is 1.
  • m2 is preferably 0.
  • M3 represents an integer of 0 to 6, preferably 0.
  • silanes that can be used to obtain the structural unit (a2) include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, and 3-methacryloxy. Mention may be made of propyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, etc. . Moreover, the silane compound shown below can also be used.
  • the proportion of the structural unit (a2) in (A) polysiloxane is preferably 10 to 90 mol%, and preferably 15 to 70 mol%, based on the cured film properties, with respect to all repeating units of (A) polysiloxane. More preferred is 25 to 65 mol%.
  • the polysiloxane may contain the structural unit (a3) having an acid group.
  • the acid group in the present invention means a group that imparts or improves the solubility of (A) polysiloxane in an alkaline developer.
  • Specific examples of the acid group include a carboxyl group, a sulfonamide group, a phosphonyl group, a sulfonyl group, a phenolic hydroxyl group, a sulfonamide group, and a sulfonylimide group.
  • Preferred acid groups include a carboxyl group and a phenolic hydroxyl group.
  • the structural unit (a3) having an acid group for example, a structure represented by the following general formula (a3-1) and / or a structure represented by the general formula (a3-2) are preferable specific examples. Can be mentioned.
  • a 0 or 1
  • R 6 represents an alkyl group, an aryl group, or an aralkyl group
  • L 4 represents a single bond or a divalent group
  • L 5 represents a single bond or a divalent linking group
  • R z represents an alkyl group or a halogen atom
  • m4 represents an integer of 0 to 4.
  • R 6 represents an alkyl group, an aryl group, or an aralkyl group.
  • the alkyl group, aryl group and aralkyl group are the same as the ranges described for R 4 in the above (a1-1) and (a1-2), and the preferred ranges are also the same.
  • L 4 represents a single bond or a divalent linking group.
  • the divalent linking group is the same as the range described for L 1 in (a1-1), and the preferred range is also the same.
  • L 5 represents a single bond or a divalent linking group.
  • the divalent linking group is the same as the range described for L 2 in (a1-2), and the preferred range is also the same.
  • R z represents an alkyl group or a halogen atom.
  • the alkyl group and the halogen atom are the same as the range described for R x in (a1-2) described above, and the preferred range is also the same.
  • the structural unit represented by the general formula (a3-2) is preferably a structural unit represented by the following general formula (a3-2-1).
  • a 0 or 1
  • R 6 represents an alkyl group, an aryl group, or an aralkyl group
  • L 5 represents a single bond or a divalent linking group.
  • R z represents an alkyl group or a halogen atom
  • m4 represents an integer of 0-4.
  • silane compound that can be used to obtain the structural unit (a3) the same silane compound that can be used to obtain the structural unit (a1) can be used.
  • the proportion of the structural unit (a3) in (A) polysiloxane is preferably 0 to 50 mol%, more preferably 1 to 40 mol%, based on the total repeating units of (A) polysiloxane, from the viewpoint of sensitivity. 5 to 25 mol% is particularly preferred.
  • the polysiloxane may contain a structural unit (a4) other than the structural units (a1) to (a3) described above.
  • the proportion of the structural unit (a4) in the polysiloxane (a) is preferably 0 to 40 mol% with respect to all repeating units of the (A) polysiloxane, from the viewpoint of developability and cured film properties. More preferred is ⁇ 25 mol%, particularly preferred is 1 to 20 mol%.
  • structural unit (a4) for example, a structure represented by the following general formula (a4-1) can be mentioned as a preferred specific example.
  • a represents an integer of 0 to 3
  • b represents an integer of 0 to 3.
  • R 7 and R 8 each independently represents an alkyl group, an aryl group, or an aralkyl group.
  • alkyl group, aryl group and aralkyl group represented by R 7 and R 8 are the same as the ranges described for R 4 in the above (a1-1) and (a1-2), and the preferred ranges are also the same.
  • the (A) polysiloxane used in the present invention is the total of the number of moles of the structural unit (a1) and the number of moles of the structural unit (a3) in the total amount of (A) polysiloxane contained in the photosensitive resin composition, and the structural unit.
  • the molar ratio of (a2) is preferably 10:90 to 90:10, more preferably 30:70 to 70:30, and still more preferably 40:60 to 60:40. If the ratio between the total number of moles of the structural unit (a1) and the moles of the structural unit (a3) and the mole number of the structural unit (a2) is in the above range, a cured film having excellent solvent resistance can be formed.
  • the (A) polysiloxane used in the present invention may contain silanol groups remaining during polymerization of the polysiloxane.
  • the number of silanol groups in the total amount of (A) polysiloxane is preferably 0 to 0.5 times, preferably 0 to 0.2 times, and preferably 0 to 0.05 times the number of Si atoms in (A) polysiloxane. Double is most preferred.
  • the number of silanol groups is in the above range, the storage stability of the photosensitive resin composition is good.
  • (A) the number of silanol groups in the total amount of polysiloxane means the total number of silanol groups contained in the total amount of (A) polysiloxane. The same applies to the number of Si atoms.
  • a polysiloxane is obtained by mixing and reacting a silane compound corresponding to each structural unit or an oligosiloxane. For example, it can be obtained by hydrolysis and condensation of the corresponding trimethoxysilane or dimethoxysilane. Hydrolysis and condensation can be appropriately performed by known methods and conditions.
  • Japanese Patent Application Laid-Open No. 10-324748 especially 0085 paragraph to 0087 paragraph
  • Japanese Patent Application Laid-Open No. 2005-283939 especially 0052 paragraph to 054 paragraph
  • Japanese Patent Application Laid-Open No. 2006-276598 particularly 0009 paragraph to 0030 paragraph
  • the procedures and conditions described in can be referred to.
  • the acid-decomposable group of the structural unit (a1) described above may be introduced using a protected silane compound or may be introduced by a polymer reaction.
  • a structural unit containing a carboxy group is introduced into (A) polysiloxane
  • the corresponding alkyl ester of carboxylic acid is used. It is preferable to synthesize a polysiloxane using a silane having an alkyl group and hydrolyze the alkyl ester by a general method to obtain a structural unit having a carboxy group.
  • the polysiloxane (A) is preferably 50 to 99.9% by mass, more preferably 60 to 99% by mass, based on the solid content in the photosensitive resin composition. More preferred is 70 to 98% by mass.
  • Polysiloxane can also use 2 or more types together. When using 2 or more types together, it is preferable that the total amount becomes the said range.
  • a polysiloxane other than the above-described (A) polysiloxane (hereinafter referred to as other polysiloxane) can be added.
  • the other polysiloxane includes the above-described structural unit (a1), does not include the above-described structural unit (a2), includes the above-described structural unit (a2), and does not include the above-described structural unit (a1). Examples thereof include polysiloxane. These may be included without departing from the spirit of the present invention.
  • content of polysiloxane which does not contain the structural unit (a1) mentioned above as another polysiloxane and does not contain the structural unit (a1) mentioned above is 5 mass parts or less with respect to 100 mass parts of (A) polysiloxane. Is preferable, 3 mass parts or less are more preferable, and it can also be set as the structure which does not contain substantially. By setting it as such a structure, the solvent tolerance of a cured film can be improved more.
  • substantially not containing means that it is 1 mass part or less with respect to 100 mass parts of (A) polysiloxane, for example.
  • the total amount of (A) polysiloxane and other polysiloxanes is preferably 50 to 99.9% by mass in the solid content in the photosensitive resin composition. 60 to 99% by mass is more preferable, and 70 to 98% by mass is more preferable.
  • the photosensitive resin composition of the present invention contains (B) a photoacid generator.
  • the photoacid generator (B) used in the present invention generates an acid having a pKa of 3 or less, and more preferably generates a acid having a pKa of 2 or less.
  • pKa of this invention points out pKa in water of 25 degreeC fundamentally. Those that cannot be measured in water refer to those measured after changing to a solvent suitable for measurement. Specifically, the pKa described in the chemical handbook can be referred to.
  • the acid having a pKa of 3 or less is preferably sulfonic acid or phosphonic acid, and more preferably sulfonic acid.
  • the photoacid generator is preferably a compound that reacts with actinic rays having a wavelength of 300 nm or more, preferably 300 to 450 nm, and generates an acid, but is not limited to its chemical structure. Further, a photoacid generator that is not directly sensitive to an actinic ray having a wavelength of 300 nm or more can also be used as a sensitizer if it is a compound that reacts with an actinic ray having a wavelength of 300 nm or more and generates an acid when used in combination with a sensitizer. It can be preferably used in combination.
  • Examples of the photoacid generator include onium salt compounds, trichloromethyl-s-triazines, diazomethane compounds, imide sulfonate compounds, oxime sulfonate compounds, and imide sulfonate compounds.
  • onium salt compounds trichloromethyl-s-triazines
  • diazomethane compounds imide sulfonate compounds
  • oxime sulfonate compounds oxime sulfonate compounds
  • imide sulfonate compounds imide sulfonate compounds.
  • 1 or more types chosen from an onium salt compound, an oxime sulfonate compound, and an imide sulfonate compound are preferable, and 1 or more types chosen from an oxime sulfonate compound and an imide sulfonate compound are more. preferable.
  • These photoacid generators can be used singly or in combination of two or more.
  • trichloromethyl-s-triazines diaryliodonium salts, triarylsulfonium salts, quaternary ammonium salts, and diazomethane derivatives include the compounds described in paragraph numbers 0083 to 0088 of JP2011-212494A. It can be illustrated.
  • onium salt compound a sulfonium salt, an iodonium salt, or a quaternary ammonium salt is preferable. Moreover, it is more preferable that it is a photo-acid generator represented by the following general formula (1) and / or general formula (2).
  • R 5 , R 6 and R 7 each independently represent an alkyl group or an aryl group, and in the case of representing an alkyl group, they may be linked to each other to form a ring, R 8 and R 9 each independently represents an aryl group, and X ⁇ represents a conjugate base.
  • R 5 , R 6 and R 7 each independently represents an alkyl group or an aryl group, and the alkyl group or aryl group may have a substituent.
  • substituents include an aryl group having 1 to 10 carbon atoms, a thioaryl group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a thioalkoxy group having 1 to 10 carbon atoms. , Hydroxyl group, cyano group, halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom) and the like. These substituents may further have a substituent.
  • the alkyl groups represented by R 5 , R 6 and R 7 are each preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, More preferred is an alkyl group of 4.
  • Examples of the alkyl group include a methyl group, an ethyl group, and a t-butyl group.
  • the two or more alkyl groups may be linked to each other to form a ring.
  • a ring may be formed via (for example, an oxygen atom, a sulfur atom, etc.).
  • Such a ring form is preferably a 5-membered ring (thiacyclopentane) or a 6-membered ring (thiacyclohexane) containing a sulfur atom.
  • the alkyl group may have a substituent.
  • the aryl groups represented by R 5 , R 6 and R 7 are each preferably an aryl group having 6 to 15 carbon atoms, and more preferably an aryl group having 6 to 10 carbon atoms.
  • the aryl group may have a substituent.
  • Aryl groups include phenyl, naphthyl, 4-methoxyphenyl, 4-chlorophenyl, 4-methylphenyl, 4-tertiarybutylphenyl, 4-phenylthiophenyl, 2,4,6-trimethyl. Examples thereof include a phenyl group and a 4-methoxy-1-naphthyl group. Of these, a phenyl group, a 4-methoxyphenyl group, and a 4-chlorophenyl group are preferable.
  • R 5 , R 6 and R 7 are preferably aryl groups, and preferably represent the same group.
  • X ⁇ represents a conjugate base.
  • the conjugate base represents a conjugate base of an alkyl sulfonic acid, a conjugate base of an aryl sulfonic acid, or a conjugate base of a bisperfluorosulfonylamide, and a conjugate base of an alkyl sulfonic acid or an aryl sulfonic acid is particularly preferable.
  • a conjugated base a conjugated base of an alkyl sulfonic acid having 1 to 7 carbon atoms is preferable, and a conjugated base having 1 to 4 carbon atoms is more preferable.
  • sulfonic acid particularly preferred are sulfonic acid, n-propanesulfonic acid and heptanesulfonic acid.
  • conjugate base of the aryl sulfonic acid for example, benzene sulfonic acid, chlorobenzene sulfonic acid, and paratoluene sulfonic acid are particularly preferable when expressed in an acid form.
  • the aryl groups independently represented by R 8 and R 9 are the same as the aryl groups represented by R 5 , R 6 and R 7 in general formula (1), and the preferred ranges are also the same. is there. Specifically, R 8 and R 9 are particularly preferably a phenyl group, a 4-methoxyphenyl group, and a 4-chlorophenyl group. R 8 and R 9 preferably represent the same group.
  • the conjugate base represented by X ⁇ has the same meaning as X ⁇ in general formula (1), and the preferred range is also the same.
  • onium salt compound examples include 4,7-di-n-butoxy-1-naphthyltetrahydrothiophenium trifluoromethanesulfonate. Moreover, the following compound is mentioned.
  • Preferred examples of the oxime sulfonate compound that is, a compound having an oxime sulfonate structure include compounds having an oxime sulfonate structure represented by the following general formula (B1).
  • R 21 represents an alkyl group or an aryl group.
  • the wavy line represents a bond with another group.
  • the alkyl group in R 21 may be linear, branched or cyclic. Acceptable substituents are described below.
  • the alkyl group for R 21 is preferably a linear or branched alkyl group having 1 to 10 carbon atoms.
  • the alkyl group represented by R 21 has a halogen atom, an aryl group having 6 to 11 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a cycloalkyl group (7,7-dimethyl-2-oxonorbornyl group). It may be substituted with a bridged alicyclic group, preferably a bicycloalkyl group or the like.
  • aryl group for R 21 an aryl group having 6 to 11 carbon atoms is preferable, and a phenyl group or a naphthyl group is more preferable.
  • the aryl group of R 21 may be substituted with a lower alkyl group, an alkoxy group, or a halogen atom.
  • a preferred embodiment of the compound containing the oxime sulfonate structure represented by the general formula (B1) is an oxime sulfonate compound represented by the following general formula (B1-1).
  • R 42 represents an optionally substituted alkyl group or aryl group
  • X represents an alkyl group, an alkoxy group, or a halogen atom
  • m4 represents 0-3. Represents an integer, and when m4 is 2 or 3, a plurality of Xs may be the same or different.
  • the alkyl group as X is preferably a linear or branched alkyl group having 1 to 4 carbon atoms.
  • the alkoxy group as X is preferably a linear or branched alkoxy group having 1 to 4 carbon atoms.
  • the halogen atom as X is preferably a chlorine atom or a fluorine atom.
  • m4 is preferably 0 or 1.
  • m4 is 1, X is a methyl group, the substitution position of X is an ortho position, R 42 is a linear alkyl group having 1 to 10 carbon atoms, 7, A compound which is a 7-dimethyl-2-oxonorbornylmethyl group or a p-toluyl group is particularly preferred.
  • oxime sulfonate compound represented by the general formula (B1-1) include the following compounds.
  • Another preferred embodiment of the compound containing an oxime sulfonate structure represented by the above general formula (B1) is an oxime sulfonate compound represented by the following general formula (B1-2).
  • R 43 has the same meaning as R 42 in Formula (B1-1), and X 1 represents a halogen atom, a hydroxyl group, an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. Represents an alkoxy group, a cyano group or a nitro group, and n4 represents an integer of 0 to 5.
  • R 43 in the above general formula (B1-2) is methyl group, ethyl group, n-propyl group, n-butyl group, n-octyl group, trifluoromethyl group, pentafluoroethyl group, perfluoro-n—.
  • a propyl group, a perfluoro-n-butyl group, a p-tolyl group, a 4-chlorophenyl group or a pentafluorophenyl group is preferable, and an n-octyl group is particularly preferable.
  • X 1 is preferably an alkoxy group having 1 to 5 carbon atoms, and more preferably a methoxy group.
  • n4 is preferably from 0 to 2, particularly preferably from 0 to 1.
  • Another preferred embodiment of the compound containing an oxime sulfonate structure represented by the above general formula (B1) is a compound represented by the following general formula (OS-1).
  • R 101 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkoxy group, an alkoxycarbonyl group, an acyl group, a carbamoyl group, a sulfamoyl group, a sulfo group, a cyano group, an aryl group, or Represents a heteroaryl group.
  • R102 represents an alkyl group or an aryl group.
  • X 101 represents —O—, —S—, —NH—, —NR 105 —, —CH 2 —, —CR 106 H—, or —CR 105 R 107 —, wherein R 105 to R 107 are alkyl groups.
  • R 121 to R 124 each independently represents a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an alkoxy group, an amino group, an alkoxycarbonyl group, an alkylcarbonyl group, an arylcarbonyl group, an amide group, a sulfo group, a cyano group, Or an aryl group is represented. Two of R 121 to R 124 may be bonded to each other to form a ring.
  • R 121 to R 124 are preferably a hydrogen atom, a halogen atom and an alkyl group, and an embodiment in which at least two of R 121 to R 124 are bonded to each other to form an aryl group is also preferred. Among these, an embodiment in which R 121 to R 124 are all hydrogen atoms is preferable from the viewpoint of sensitivity. Any of the aforementioned functional groups may further have a substituent.
  • the compound represented by the general formula (OS-1) is, for example, a compound represented by the general formula (OS-2) described in paragraph numbers 0087 to 0089 of JP2012-163937A which is incorporated herein by reference.
  • exemplary compounds b-1 to b-34) of the compound represented by the general formula (OS-1) are shown below, but the present invention is not limited thereto.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bn represents a benzyl group
  • Ph represents a phenyl group.
  • the compound containing an oxime sulfonate structure represented by the general formula (B1) as another preferred embodiment of the compound containing an oxime sulfonate structure represented by the general formula (B1), the following general formula (OS-3), the following general formula (OS-4) or the following general formula ( It is an oxime sulfonate compound represented by OS-5).
  • R 22 , R 25 and R 28 each independently represents an alkyl group, an aryl group or a heteroaryl group
  • R 23 , R 26 and R 29 are Each independently represents a hydrogen atom, an alkyl group, an aryl group or a halogen atom
  • R 24 , R 27 and R 30 each independently represent a halogen atom, an alkyl group, an alkyloxy group, a sulfonic acid group, an aminosulfonyl group or an alkoxysulfonyl group.
  • X 1 to X 3 each independently represents an oxygen atom or a sulfur atom
  • n 1 to n 3 each independently represents 1 or 2
  • m 1 to m 3 each independently represents an integer of 0 to 6 To express.
  • the compound having an oxime sulfonate structure represented by the general formula (B1) is, for example, the general formulas (OS-6) to (OS-) described in paragraph No. 0117 of JP2012-163937A. It is particularly preferred that the compound is represented by any one of 11), the contents of which are incorporated herein.
  • oxime sulfonate compounds represented by the general formula (OS-3) to the general formula (OS-5) include compounds described in paragraph numbers 0114 to 0120 of JP2011-221494A. The present invention is not limited to these.
  • Another preferred embodiment of the compound containing an oxime sulfonate structure represented by the general formula (B1) is an oxime sulfonate compound represented by the following general formula (B1-3).
  • R 1 represents an alkyl group or an aryl group
  • R 2 represents an alkyl group, an aryl group, or a heteroaryl group
  • R 3 to R 6 each represents a hydrogen atom, an alkyl group, an aryl group, or a halogen atom.
  • R 3 and R 4 , R 4 and R 5 , or R 5 and R 6 may combine to form an alicyclic ring or aromatic ring.
  • X represents —O— or —S—.
  • R 1 represents an alkyl group or an aryl group.
  • the alkyl group is preferably a branched alkyl group or a cyclic alkyl group.
  • the alkyl group preferably has 3 to 10 carbon atoms. In particular, when the alkyl group has a branched structure, an alkyl group having 3 to 6 carbon atoms is preferable. When the alkyl group has a cyclic structure, an alkyl group having 5 to 7 carbon atoms is preferable.
  • alkyl group examples include propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, 1,1-dimethylpropyl group, hexyl group. 2-ethylhexyl group, cyclohexyl group, octyl group and the like, preferably isopropyl group, tert-butyl group, neopentyl group, and cyclohexyl group.
  • the aryl group preferably has 6 to 12 carbon atoms, more preferably 6 to 8 carbon atoms, and still more preferably 6 to 7 carbon atoms.
  • Examples of the aryl group include a phenyl group and a naphthyl group, and a phenyl group is preferable.
  • the alkyl group and aryl group represented by R 1 may have a substituent.
  • substituents examples include a halogen atom (a fluorine atom, a chloro atom, a bromine atom, an iodine atom), a linear, branched or cyclic alkyl group (for example, a methyl group, an ethyl group, a propyl group, etc.), an alkenyl group, an alkynyl group, Aryl group, acyl group, alkoxycarbonyl group, aryloxycarbonyl group, carbamoyl group, cyano group, carboxyl group, hydroxyl group, alkoxy group, aryloxy group, alkylthio group, arylthio group, heterocyclic oxy group, acyloxy group, amino group, A nitro group, a hydrazino group, a heterocyclic group, etc. are mentioned. Further, these groups may be further substituted. Preferably, they are a halogen atom and a methyl group.
  • R 1 is preferably an alkyl group from the viewpoint of transparency, and R 1 has a branched structure having 3 to 6 carbon atoms from the viewpoint of achieving both storage stability and sensitivity.
  • An alkyl group, an alkyl group having a cyclic structure having 5 to 7 carbon atoms, or a phenyl group is preferable, and an alkyl group having a branched structure having 3 to 6 carbon atoms or an alkyl group having a cyclic structure having 5 to 7 carbon atoms is more preferable. .
  • an isopropyl group, a tert-butyl group, a neopentyl group, and a cyclohexyl group are preferable, and a tert-butyl group and a cyclohexyl group are more preferable.
  • R 2 represents an alkyl group, an aryl group, or a heteroaryl group.
  • the alkyl group represented by R 2 is preferably a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms.
  • Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, a pentyl group, a neopentyl group, a hexyl group, and a cyclohexyl group, preferably a methyl group.
  • the aryl group an aryl group having 6 to 10 carbon atoms is preferable.
  • Examples of the aryl group include a phenyl group, a naphthyl group, and a p-toluyl group (p-methylphenyl group), and a phenyl group and a p-toluyl group are preferable.
  • Examples of the heteroaryl group include a pyrrole group, an indole group, a carbazole group, a furan group, and a thiophene group.
  • the alkyl group, aryl group, and heteroaryl group represented by R 2 may have a substituent. As a substituent, it is synonymous with the substituent which the alkyl group and aryl group which R ⁇ 1 > may have.
  • R 2 is preferably an alkyl group or an aryl group, more preferably an aryl group, and more preferably a phenyl group.
  • As the substituent for the phenyl group a methyl group is preferred.
  • R 3 to R 6 each represent a hydrogen atom, an alkyl group, an aryl group, or a halogen atom (a fluorine atom, a chloro atom, a bromine atom, or an iodine atom).
  • the alkyl group represented by R 3 to R 6 has the same meaning as the alkyl group represented by R 2 , and the preferred range is also the same.
  • the aryl group represented by R 3 to R 6 has the same meaning as the aryl group represented by R 1 , and the preferred range is also the same.
  • R 3 to R 6 may combine to form a ring, and the ring may form an alicyclic ring or an aromatic ring. It is preferable that a benzene ring is more preferable.
  • R 3 to R 6 are each a hydrogen atom, an alkyl group, a halogen atom (fluorine atom, chloro atom, bromine atom), or R 3 and R 4 , R 4 and R 5 , or R 5 and R 6.
  • a benzene ring is preferably formed, and a hydrogen atom, a methyl group, a fluorine atom, a chloro atom, a bromine atom, or R 3 and R 4 , R 4 and R 5 , or R 5 and R 6 are combined to form a benzene ring Is more preferable.
  • Preferred embodiments of R 3 to R 6 are as follows. (Aspect 1) At least two are hydrogen atoms. (Aspect 2) The number of alkyl groups, aryl groups, or halogen atoms is one or less. (Aspect 3) R 3 and R 4 , R 4 and R 5 , or R 5 and R 6 are combined to form a benzene ring. (Aspect 4) An aspect satisfying the above aspects 1 and 2 and / or an aspect satisfying the above aspects 1 and 3.
  • X represents -O- or -S-.
  • Ts represents a tosyl group (p-toluenesulfonyl group)
  • Me represents a methyl group
  • Bu represents an n-butyl group
  • Ph represents a phenyl group.
  • an imide sulfonate compound having a structure represented by the following general formula (B2) can be preferably used.
  • R 200 represents a monovalent organic group having 16 or less carbon atoms.
  • the wavy line represents a bond with another group.
  • R 200 represents a monovalent organic group having 16 or less carbon atoms.
  • R 200 preferably does not contain other than C, H, O, and F.
  • Examples of R 200 include a methyl group, a trifluoromethyl group, a propyl group, a phenyl group, and a tosyl group.
  • a preferred embodiment of the compound containing the structure represented by the general formula (B2) is an imide sulfonate compound represented by the following general formula (I).
  • R 01 , R 04 , R 05 and R 06 represent a hydrogen atom, and any one of R 02 and R 03 is substituted with an alicyclic hydrocarbon group, a heterocyclic group or a halogen atom.
  • X 1 represents an oxygen atom or a sulfur atom
  • Y 1 represents a single bond or an alkanediyl group having 1 to 4 carbon atoms
  • R 11 represents a hydrocarbon group having 1 to 12 carbon atoms
  • R 12 represents an alkanediyl group having 1 to 4 carbon atoms
  • R 13 represents a hydrogen atom or an optionally substituted alkyl group having 1 to 4 carbon atoms or an alicyclic hydrocarbon having 3 to 10 carbon atoms
  • m represents 0 to 5, and when m is 2 to 5, a plurality of R 12 may be the same or different.
  • Y 2 represents a single bond or an alkanediyl group having 1 to 4 carbon atoms
  • R 21 represents an alkanediyl group having 2 to 6 carbon atoms, a halogenated alkanediyl group having 2 to 6 carbon atoms
  • carbon number represents an arylene group having 6 to 20 carbon atoms or a halogenated arylene group having 6 to 20 carbon atoms
  • R 22 represents a single bond, an alkanediyl group having 2 to 6 carbon atoms, a halogenated alkanediyl group having 2 to 6 carbon atoms
  • R 23 represents an alkyl group having 1 to 18 carbon atoms which may have a branch, or a carbon number which may have a branch.
  • halogenated alkyl groups 3 to 12 carbon alicyclic hydrocarbon groups, 6 to 20 aryl groups, 6 to 20 halogenated aryl groups, and 7 to 20 arylalkyls Groups or halogenated amines having 7 to 20 carbon atoms It represents Ruarukiru group, a, b represents 0 or 1, a, either the b is 1.
  • the photoacid generator is added to 100 parts by mass of all resin components (preferably solid content, more preferably (A) total of polysiloxane) in the photosensitive resin composition.
  • Two or more photoacid generators can be used in combination. When using 2 or more types together, it is preferable that the total amount becomes the said range.
  • the photoacid generator is used in an amount of 0.1 to 10 parts by mass with respect to 100 parts by mass of the solid content in the photosensitive resin composition from the viewpoint of sensitivity and light resistance. It is preferable to use 0.5 to 10 parts by mass, and more preferably 1.0 to 5.0 parts by mass.
  • Two or more photoacid generators can be used in combination. When using 2 or more types together, it is preferable that the total amount becomes the said range.
  • the photosensitive resin composition of the present invention contains (C) a solvent.
  • the photosensitive resin composition of the present invention is preferably prepared as a solution in which the essential components of the present invention and optional components described below are dissolved in the solvent (C).
  • a solvent used for the preparation of the photosensitive resin composition of the present invention a solvent that uniformly dissolves essential components and optional components and does not react with each component is used.
  • known solvents can be used, such as ethylene glycol monoalkyl ethers, ethylene glycol dialkyl ethers, ethylene glycol monoalkyl ether acetates, propylene.
  • Glycol monoalkyl ethers, propylene glycol dialkyl ethers, propylene glycol monoalkyl ether acetates, diethylene glycol dialkyl ethers, diethylene glycol monoalkyl ether acetates, dipropylene glycol monoalkyl ethers, dipropylene glycol dialkyl ethers, dipropylene glycol Examples include monoalkyl ether acetates, esters, ketones, amides, lactones and the like.
  • Specific examples of the solvent used in the photosensitive resin composition of the present invention include the solvents described in paragraph numbers 0174 to 0178 of JP2011-221494A, and paragraph numbers 0167 to 0168 of JP2012-194290A. And the contents thereof are incorporated herein by reference.
  • specific examples of the solvent include propylene glycol 1-monomethyl ether 2-acetate, methyl ethyl diglycol and the like.
  • the solvent that can be used in the present invention is a single type or a combination of two types, more preferably a combination of two types, propylene glycol monoalkyl ether acetates or dialkyl ethers, diacetates. And diethylene glycol dialkyl ethers or esters and butylene glycol alkyl ether acetates are more preferably used in combination.
  • the solvent (C) is preferably a solvent having a boiling point of 130 ° C. or higher and lower than 160 ° C., a solvent having a boiling point of 160 ° C. or higher, or a mixture thereof. Solvents having a boiling point of 130 ° C. or higher and lower than 160 ° C.
  • propylene glycol monomethyl ether acetate (boiling point 146 ° C.), propylene glycol monoethyl ether acetate (boiling point 158 ° C.), propylene glycol methyl-n-butyl ether (boiling point 155 ° C.), propylene glycol
  • An example is methyl-n-propyl ether (boiling point 131 ° C.).
  • Solvents having a boiling point of 160 ° C or higher include ethyl 3-ethoxypropionate (boiling point 170 ° C), diethylene glycol methyl ethyl ether (boiling point 176 ° C), propylene glycol monomethyl ether propionate (boiling point 160 ° C), dipropylene glycol methyl ether acetate.
  • a combination of propylene glycol monomethyl ether acetate and diethylene glycol methyl ethyl ether is preferable from the viewpoints of coatability and solubility.
  • the mixing ratio is preferably 10:90 to 90:10, more preferably 30:70 to 70:30.
  • a solvent obtained by mixing 1 to 10 parts of a solvent having a boiling point of 200 ° C. or higher such as 1,3-butylene glycol diacetate with 100 parts of the mixed solvent is also preferable.
  • the content of the solvent (C) in the photosensitive resin composition of the present invention is preferably 50 to 95 parts by mass, preferably 60 to 90 parts by mass, per 100 parts by mass of all components in the photosensitive resin composition. More preferably.
  • the photosensitive resin composition of the present invention in addition to the above components, (D) a sensitizer, (E) a crosslinking agent, (F) a basic compound, (G) a surfactant, H) An antioxidant can be preferably added.
  • the photosensitive resin composition of the present invention includes an acid proliferation agent, a development accelerator, a plasticizer, a thermal radical generator, a thermal acid generator, an ultraviolet absorber, a thickener, and an organic or inorganic precipitation inhibitor.
  • Known additives such as can be added.
  • these compounds for example, the description of paragraph numbers 0201 to 0224 of JP2012-88459A can be referred to, and the contents thereof are incorporated in the present specification.
  • the photosensitive resin composition of this invention can add an alkoxysilane compound for the adhesive improvement with a board
  • the photosensitive resin composition of the present invention preferably contains a sensitizer in order to promote its decomposition in combination with (B) the photoacid generator.
  • the sensitizer absorbs actinic rays or radiation and enters an electronically excited state.
  • the sensitizer in an electronically excited state comes into contact with the photoacid generator, and effects such as electron transfer, energy transfer, and heat generation occur.
  • a photo-acid generator raise
  • Examples of preferred sensitizers include compounds belonging to the following compounds and having an absorption wavelength in any of the wavelength ranges from 350 nm to 450 nm.
  • Polynuclear aromatics eg, pyrene, perylene, triphenylene, anthracene, 9,10-dibutoxyanthracene, 9,10-diethoxyanthracene, 3,7-dimethoxyanthracene, 9,10-dipropyloxyanthracene
  • xanthenes Eg, fluorescein, eosin, erythrosine, rhodamine B, rose bengal
  • xanthones eg, xanthone, thioxanthone, dimethylthioxanthone, diethylthioxanthone
  • cyanines eg, thiacarbocyanine, oxacarbocyanine
  • merocyanines For example, merocyanine, carbomerocyanine), rhodocyanines, oxonols, thiazines (eg, thionine, methylene blue, to
  • polynuclear aromatics polynuclear aromatics, acridones, styryls, base styryls, and coumarins are preferable, and polynuclear aromatics are more preferable.
  • polynuclear aromatics anthracene derivatives are most preferred.
  • the addition amount of the sensitizer in the photosensitive resin composition of the present invention is preferably 0 to 1000 parts by mass with respect to 100 parts by mass of the photoacid generator in the photosensitive resin composition. More preferably, it is more preferably 50 to 200 parts by mass. Two or more kinds can be used in combination.
  • the photosensitive resin composition of this invention contains a crosslinking agent as needed. By adding a crosslinking agent, the cured film obtained by the photosensitive resin composition of the present invention can be made a stronger film.
  • the crosslinking agent is a compound containing at least two crosslinking groups in the molecule.
  • the cross-linking group means a group that reacts with one or more selected from the cross-linkable group, benzene ring, hydroxy group, and carboxyl group of (A) polysiloxane by heat.
  • crosslinking group a methylol group, an epoxy group, an oxetanyl group, an alkoxymethyl group, a blocked isocyanate group, a methacryloyl group and an acryloyl group are preferable, and a methylol group, an epoxy group, an alkoxymethyl group, a blocked isocyanate group, a methacryloyl group and an acryloyl group are preferable. More preferred.
  • the number of cross-linking groups in one molecule of the cross-linking agent is preferably 3 or more, and more preferably 4 or more.
  • the cross-linking group may have two or more of the same type of cross-linking group in the molecule, or may have two or more different types of cross-linking groups in the molecule.
  • the molecular weight of the crosslinking agent used in the present invention is preferably 150 to 30000, and more preferably 200 to 10000. By setting it as such a range, the effect of this invention is exhibited more effectively.
  • the addition amount of the crosslinking agent in the photosensitive resin composition of the present invention is preferably 0.01 to 50 parts by mass, and preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the total solid content of the photosensitive resin composition.
  • the amount is more preferably part by mass, and further preferably 0.5 to 20 parts by mass.
  • a plurality of crosslinking agents may be used in combination. In that case, the content is calculated by adding all the crosslinking agents.
  • the photosensitive resin composition of this invention can also be set as the structure which does not contain a crosslinking agent substantially. The configuration not actually included means that the crosslinking agent is, for example, 1% by mass or less of the solid content of the photosensitive resin composition.
  • a compound having two or more epoxy groups in the molecule can be used as a crosslinking agent.
  • Specific examples of compounds having two or more epoxy groups in the molecule include bisphenol A type epoxy resins, bisphenol F type epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, aliphatic epoxy resins, and epoxy group containing An acrylic resin having a structural unit can be given.
  • JER152, JER157S70, JER157S65, JER806, JER828, JER1007 are commercially available products described in paragraph No. 0189 of JP2011-221494, etc.
  • crosslinking agent containing two or more alkoxymethyl groups or methylol groups in the molecule is a crosslinking agent having two or more structures represented by the following general formula (1) or general formula (2) in the molecule. , One or both of an alkoxymethyl group and a methylol group are contained in the molecule in a total of two or more.
  • -CH 2 OR 1 (1) In the formula, R 1 represents an alkyl group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms, and more preferably a methyl group.
  • the alkoxymethyl group or methylol group is preferably bonded to a nitrogen atom or a carbon atom forming an aromatic ring.
  • Alkoxymethylated melamine, alkoxymethylated benzoguanamine, alkoxymethylated glycoluril, and alkoxymethylated urea convert methylolated melamine, methylolated benzoguanamine, methylolated glycoluril, or methylol group of methylolated urea to alkoxymethyl group, respectively.
  • Examples of the alkoxymethyl group include a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, and a butoxymethyl group, and the methoxymethyl group is particularly preferable from the viewpoint of outgas generation amount.
  • alkoxymethylated melamine, methylolated melamine, alkoxymethylated benzoguanamine, methylolated benzoguanamine, alkoxymethylated glycoluril, methylolated glycoluril are mentioned as preferred crosslinkable compounds, from the viewpoint of transparency Alkoxymethylated glycoluril and methylolated glycoluril are particularly preferred.
  • the alkoxymethyl group-containing crosslinking agent described in paragraph No. 0107 of JP2012-8223A can be preferably used, and the contents thereof are incorporated in the present specification.
  • Preferred structures of the crosslinking agent containing two or more alkoxymethyl groups or methylol groups in the molecule include compounds represented by the following formulas (8-1) to (8-4).
  • R 7 and R each independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • R 8 to R 11 each independently represents Represents a hydrogen atom, a hydroxyl group, an alkyl group or an alkoxyl group
  • X 2 represents a single bond, a methylene group or an oxygen atom.
  • the alkyl group represented by R 7 and R has 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms, and examples thereof include a methyl group, an ethyl group, and a propyl group.
  • the alkyl group represented by R 8 to R 11 preferably has 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms, and examples thereof include a methyl group, an ethyl group, and a propyl group.
  • the alkoxyl group represented by R 8 to R 11 preferably has 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms, and examples thereof include a methoxy group, an ethoxy group, and a propoxy group.
  • X 2 is preferably a single bond or a methylene group.
  • R 7 to R 11 and X 2 may be substituted with an alkyl group such as a methyl group or an ethyl group, or a halogen atom.
  • a plurality of R 7 , R, and R 8 to R 11 may be the same or different.
  • Specific examples of the compound represented by the formula (8-2) include N, N, N, N-tetramethylolglycoluril, N, N, N, N-tetramethylolglycoluril having 1 to 1 methylol groups. 4 methoxymethylated compounds, N, N, N, N-tetramethylolglycoluril methylol group having 1 to 4 ethoxymethylated compounds, N, N, N, N-tetramethylolglycoluril methylol N-propoxymethylated compounds having 1 to 4 groups, isopropoxymethylated compounds having 1 to 4 methylol groups in N, N, N, N-tetramethylolglycoluril, N, N, N, N -N-butoxymethylated compound having 1 to 4 methylol groups of tetramethylol glycoluril, N, N, N, N-tetramethylolglycol Methylol groups
  • Ruuriru can be exemplified
  • Specific examples of the compound represented by the formula (8-4) include N, N, N, N, N, N-hexamethylol melamine, N, N, N, N, N-hexamethylol melamine.
  • 1-6 methoxymethylated methylol groups 1-6 methoxymethylated methylol groups of N, N, N, N, N, N-hexamethylolmelamine, N, N, N, N, N, N-hexamethylolmelamine 1-6 methylol groups n-propoxymethylated, N, N, N, N, N, N-hexamethylolmelamine 1-6 methylol groups isopropoxymethyl Compound, N, N, N, N, N, N-hexamethylolmelamine compound having 1-6 n-butoxymethylated methylol groups, N, N, N, N, N-hexamethylolmelami And the like compounds methylol group has 1-6 tert- butoxy methylated.
  • X represents a single bond or a monovalent to tetravalent organic group
  • R 11 and R 12 each independently represents a hydrogen atom or a monovalent organic group
  • n is an integer of 1 to 4.
  • p and q are each independently an integer of 0 to 4.
  • two Y's are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms and may contain an oxygen atom or a fluorine atom
  • R 13 to R 16 are each independently a hydrogen atom.
  • m and n are each independently an integer of 1 to 3
  • p and q are each independently an integer of 0 to 4.
  • Crosslinking agents containing two or more alkoxymethyl groups or methylol groups in these molecules are also available as commercial products, for example, Cymel 300, 301, 303, 370, 325, 327, 701, 266, 267, 238, 1141, 272, 202, 1156, 1158, 1123, 1170, 1174, UFR65, 300 (above, manufactured by Mitsui Cyanamid Co., Ltd.), Nicarax MX-750, -032, -706, -708, -40 , -31, -270, -280, -290, -750LM, Nicarak MS-11, Nicarak MW-30HM, -100LM, -390, (manufactured by Sanwa Chemical Co., Ltd.), etc. are preferably used. it can. These can be used alone or in combination of two or more.
  • a compound containing two or more blocked isocyanate groups in the molecule can be used as a crosslinking agent.
  • the blocked isocyanate group in the present invention is a group capable of generating an isocyanate group by heat.
  • a group obtained by reacting a blocking agent with an isocyanate group to protect the isocyanate group can be preferably exemplified.
  • the blocked isocyanate group is preferably a group capable of generating an isocyanate group by heat at 90 ° C. to 250 ° C.
  • the skeleton of the blocked isocyanate compound is not particularly limited, and any skeleton having two or more isocyanate groups in one molecule may be used, and may be aliphatic, alicyclic or aromatic.
  • tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), and isophorone diisocyanate (IPDI) are particularly preferable.
  • the matrix structure of the blocked isocyanate compound in the photosensitive resin composition of the present invention include biuret type, isocyanurate type, adduct type, and bifunctional prepolymer type.
  • the blocking agent that forms the block structure of the blocked isocyanate compound include oxime compounds, lactam compounds, phenol compounds, alcohol compounds, amine compounds, active methylene compounds, pyrazole compounds, mercaptan compounds, imidazole compounds, and imide compounds. be able to.
  • a blocking agent selected from oxime compounds, lactam compounds, phenol compounds, alcohol compounds, amine compounds, active methylene compounds, and pyrazole compounds is particularly preferable.
  • Examples of the oxime compound include oxime and ketoxime, and specific examples include acetoxime, formaldoxime, cyclohexane oxime, methyl ethyl ketone oxime, cyclohexanone oxime, and benzophenone oxime.
  • Examples of the lactam compound include ⁇ -caprolactam and ⁇ -butyrolactam.
  • Examples of the phenol compound include phenol, naphthol, cresol, xylenol, and halogen-substituted phenol.
  • Examples of the alcohol compound include methanol, ethanol, propanol, butanol, cyclohexanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, and alkyl lactate.
  • Examples of the amine compound include primary amines and secondary amines, which may be aromatic amines, aliphatic amines, and alicyclic amines, and examples thereof include aniline, diphenylamine, ethyleneimine, and polyethyleneimine.
  • Examples of the active methylene compound include diethyl malonate, dimethyl malonate, ethyl acetoacetate, methyl acetoacetate and the like.
  • Examples of the pyrazole compound include pyrazole, methylpyrazole, dimethylpyrazole and the like.
  • Examples of the mercaptan compound include alkyl mercaptans and aryl mercaptans.
  • the blocked isocyanate compound that can be used in the photosensitive resin composition of the present invention is commercially available.
  • Coronate AP Stable M Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (or more, Nippon Polyurethane Industry Co., Ltd.), Takenate B-830, B-815N, B-820NSU, B-842N, B-84N, B-870N, B-874N, B-882N (above, manufactured by Mitsui Chemicals, Inc.) ), Duranate 17B-60PX, 17B-60P, TPA-B80X, TPA-B80E, MF-B60X, MF-B60B, MF-K60X, MF-K60B, E402-B80B, SBN-70D, SBB-70P, K6000 (above , Manufactured by Asahi Kasei Chemicals Corporation, Death Module B 1100, BL1265 MPA / X, BL
  • a compound containing two or more methacryloyl groups or acryloyl groups in the molecule may be used as a crosslinking agent.
  • the compound containing a methacryloyl group or an acryloyl group is a compound selected from the group consisting of acrylic acid esters and methacrylic acid esters. It is preferable that the acryloyl group and the methacryloyl group are compounds having two or more, more preferably trifunctional or more in one molecule.
  • bifunctional (meth) acrylate examples include ethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, and polypropylene glycol di (meth) acrylate. , Tetraethylene glycol di (meth) acrylate, bisphenoxyethanol full orange acrylate, bisphenoxyethanol full orange acrylate, and the like.
  • Examples of the tri- or higher functional (meth) acrylate include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, tri ((meth) acryloyloxyethyl) phosphate, and pentaerythritol tetra (meth) acrylate. , Dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and the like.
  • Preferable commercially available products are KAYARAD DPHA manufactured by Nippon Kayaku Co., Ltd., NK ester series manufactured by Shin-Nakamura Chemical Co., Ltd., bifunctional A-200, A-400, A-600, A-1000, ABE-300, A- BPE-4, A-BPE-10, A-BPE-20, A-BPE-30, A-BPP-3, A-DOD, A-DCP, A-IBD-2E, A-NPG, 701A, A- B1206PE, A-HD-N, A-NOD-N, APG-100, APG-200, APG-400, APG-700, 1G, 2G, 3G, 4G, 9G, 14G, 23G, BG, BD, HD- N, NOD, IND, BPE-100, BPE-200, BPE-300, BPE-500, BPE-900, BPE-1300N, NPG, DCP, 1206PE, 701, 3 G, 9PG, tri
  • the photosensitive resin composition of the present invention may use a compound containing an oxetanyl group as a crosslinking agent. It is preferable that there are two or more oxetanyl groups in the molecule.
  • Examples of the compound having two or more oxetanyl groups in the molecule include the compounds described in paragraphs 0134 to 0145 of JP-A-2008-224970, the contents of which are incorporated herein.
  • Aron Oxetane OXT-121, OXT-221, OX-SQ, and PNOX above, manufactured by Toagosei Co., Ltd. can be used.
  • the photosensitive resin composition of this invention may contain the (F) basic compound.
  • the basic compound can be arbitrarily selected from those used in chemically amplified resists. Examples include aliphatic amines, aromatic amines, heterocyclic amines, quaternary ammonium hydroxides, quaternary ammonium salts of carboxylic acids, and the like. Specific examples thereof include the compounds described in JP-A 2011-212494, paragraphs 0204 to 0207, the contents of which are incorporated herein.
  • aliphatic amine for example, trimethylamine, diethylamine, triethylamine, di-n-propylamine, tri-n-propylamine, tributylamine, di-n-pentylamine, tri-n-pentylamine, Examples include diethanolamine, triethanolamine, dicyclohexylamine, and dicyclohexylmethylamine.
  • aromatic amine examples include aniline, benzylamine, N, N-dimethylaniline, diphenylamine and the like.
  • heterocyclic amine examples include pyridine, 2-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 4-ethylpyridine, 2-phenylpyridine, 4-phenylpyridine, N-methyl-4-phenylpyridine, 4-dimethylaminopyridine, imidazole, benzimidazole, 4-methylimidazole, 2-phenylbenzimidazole, 2,4,5-triphenylimidazole, nicotine, nicotinic acid, nicotinamide, quinoline, 8-oxyquinoline, pyrazine, Pyrazole, pyridazine, purine, pyrrolidine, piperidine, piperazine, morpholine, 4-methylmorpholine, N-cyclohexyl-N ′-[2- (4-morpholinyl) ethyl] thiourea, 1,5-diazabicyclo [4.3.0 ] -5-Nonene, 1,8-di And azabicyclo
  • Examples of the quaternary ammonium hydroxide include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-butylammonium hydroxide, tetra-n-hexylammonium hydroxide, and the like.
  • Examples of the quaternary ammonium salt of carboxylic acid include tetramethylammonium acetate, tetramethylammonium benzoate, tetra-n-butylammonium acetate, tetra-n-butylammonium benzoate and the like.
  • the basic compounds that can be used in the present invention may be used singly or in combination of two or more.
  • the content of the basic compound (F) in the photosensitive resin composition of the present invention is preferably 0.001 to 3 parts by mass with respect to 100 parts by mass of the total solid content in the photosensitive resin composition.
  • the amount is more preferably 0.005 to 1 part by mass.
  • the photosensitive resin composition of the present invention may contain (G) a surfactant.
  • a surfactant any of anionic, cationic, nonionic, or amphoteric surfactants can be used, but a preferred surfactant is a nonionic surfactant.
  • examples of the surfactant used in the composition of the present invention include those described in paragraph Nos. 0201 to 0205 in JP2012-88459A, and paragraphs 0185 to 0188 in JP2011-215580A. Can be used and these descriptions are incorporated herein.
  • nonionic surfactants include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkyl phenyl ethers, higher fatty acid diesters of polyoxyethylene glycol, silicone-based and fluorine-based surfactants. .
  • trade names are FA-630, KP-341, X-22-822 (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow No.
  • the surfactant is measured by gel permeation chromatography using the structural unit A and the structural unit B represented by the following general formula (I-1-1) and using tetrahydrofuran (THF) as a solvent.
  • a preferred example is a copolymer having a polystyrene-reduced weight average molecular weight (Mw) of 1,000 or more and 10,000 or less.
  • R 401 and R 403 each independently represent a hydrogen atom or a methyl group
  • R 402 represents a linear alkylene group having 1 to 4 carbon atoms
  • R 404 represents hydrogen.
  • L represents an alkylene group having 3 to 6 carbon atoms
  • p and q are mass percentages representing a polymerization ratio
  • p is 10 mass% to 80 mass%.
  • the following numerical values are represented, q represents a numerical value of 20% to 90% by mass, r represents an integer of 1 to 18, and s represents an integer of 1 to 10.
  • L is preferably a branched alkylene group represented by the following general formula (I-1-2).
  • R 405 in formula (I-1-2) represents an alkyl group having 1 to 4 carbon atoms, and preferably an alkyl group having 1 to 3 carbon atoms in terms of compatibility and wettability with respect to the coated surface. And an alkyl group having 2 or 3 carbon atoms is more preferred.
  • the weight average molecular weight (Mw) of the copolymer is more preferably from 1,500 to 5,000.
  • the amount of (I-1) surfactant added in the photosensitive resin composition of the present invention is preferably 10 parts by mass or less with respect to 100 parts by mass of the total solid content in the photosensitive resin composition.
  • the amount is more preferably 0.001 to 10 parts by mass, and still more preferably 0.01 to 3 parts by mass.
  • the photosensitive resin composition of the present invention may contain (H) an antioxidant.
  • an antioxidant a well-known antioxidant can be contained. By adding an antioxidant, there is an advantage that coloring of the cured film can be prevented, or a decrease in film thickness due to decomposition can be reduced, and heat-resistant transparency is excellent.
  • antioxidants include phosphorus antioxidants, amides, hydrazides, hindered amine antioxidants, sulfur antioxidants, phenol antioxidants, ascorbic acids, zinc sulfate, sugars, Examples thereof include nitrates, sulfites, thiosulfates, and hydroxylamine derivatives.
  • phenol-based antioxidants are particularly preferable from the viewpoint of coloring the cured film and reducing film thickness, with phenol-based antioxidants being the most preferred. preferable.
  • These may be used individually by 1 type and may mix 2 or more types. Specific examples include the compounds described in paragraph numbers 0026 to 0031 of JP-A-2005-29515, and the compounds described in paragraphs 0106 to 0116 of JP-A-2011-227106. Incorporated in the description.
  • Preferred commercial products include ADK STAB AO-60, ADK STAB AO-80, IRGANOX 1726, IRGANOX 1035, and IRGANOX 1098.
  • the content of the antioxidant is preferably 0.1 to 10% by mass, more preferably 0.2 to 5% by mass, based on the total solid content of the photosensitive resin composition. It is particularly preferably 5 to 4% by mass. By setting it within this range, sufficient transparency of the formed film can be obtained, and the sensitivity at the time of pattern formation can be improved.
  • additives other than antioxidants various ultraviolet absorbers described in “New Development of Polymer Additives (Nikkan Kogyo Shimbun Co., Ltd.)”, metal deactivators, and the like are used in the present invention. You may add to a resin composition.
  • an acid proliferating agent can be used for the purpose of improving sensitivity.
  • the acid proliferating agent that can be used in the present invention is a compound that can further generate an acid by an acid-catalyzed reaction to increase the acid concentration in the reaction system, and is a compound that exists stably in the absence of an acid. is there.
  • Specific examples of such an acid proliferating agent include acid proliferating agents described in paragraph numbers 0226 to 0228 of JP2011-221494A, the contents of which are incorporated herein.
  • the photosensitive resin composition of the present invention can contain a development accelerator.
  • a development accelerator those described in paragraphs 0171 to 0172 of JP2012-042837A can be referred to, and the contents thereof are incorporated in the present specification.
  • a development accelerator may be used individually by 1 type, and can also use 2 or more types together.
  • the addition amount of the development accelerator in the photosensitive resin composition of the present invention is preferably 0 to 30 parts by mass with respect to 100 parts by mass of the total solid content of the photosensitive composition, from the viewpoint of sensitivity and residual film ratio. 1 to 20 parts by mass is more preferable, and 0.5 to 10 parts by mass is most preferable.
  • thermal radical generators described in paragraphs 0120 to 0121 of JP2012-8223A, nitrogen-containing compounds and thermal acid generators described in WO2011-133604A1 can be used. Is incorporated herein by reference.
  • the photosensitive resin composition of the present invention can contain an alkoxysilane compound.
  • an alkoxysilane compound a dialkoxysilane compound or a trialkoxysilane compound is preferable, and a trialkoxysilane compound is more preferable.
  • the alkoxy group contained in the alkoxysilane compound preferably has 1 to 5 carbon atoms.
  • the alkoxysilane compound that can be used in the photosensitive resin composition of the present invention is a base material, for example, a silicon compound such as silicon, silicon oxide, or silicon nitride, or a metal such as gold, copper, molybdenum, titanium, or aluminum.
  • the compound improves the adhesion between the insulating film and the insulating film.
  • a known silane coupling agent or the like is also effective.
  • the photosensitive resin composition of the present invention can contain inorganic particles. By containing the inorganic particles, the hardness of the cured film becomes more excellent.
  • the average particle size of the inorganic particles used in the present invention is preferably 1 to 200 nm, more preferably 5 to 100 nm, and most preferably 5 to 50 nm.
  • the average particle diameter is an arithmetic average obtained by measuring the particle diameter of 200 arbitrary particles with an electron microscope. When the particle shape is not spherical, the longest side is the diameter.
  • the porosity of the inorganic particles is preferably less than 10%, more preferably less than 3%, and most preferably no void.
  • the porosity of the inorganic particles is preferably 10% or more and less than 80%, and more preferably 12% or more and less than 50%.
  • the porosity of the particle is an arithmetic average of 200 of the area ratio between the void portion of the cross-sectional image obtained by an electron microscope and the entire particle.
  • inorganic particles Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ce, Gd, Tb, Dy, Yb, Lu, Ti, Zr, Hf, Nb, Mo, W, Zn, B, Al Metal oxide particles containing atoms such as Si, Ge, Sn, Pb, Sb, Bi, and Te are preferable.
  • Silicon oxide, titanium oxide, titanium composite oxide, zinc oxide, zirconium oxide, indium / tin oxide, antimony / Tin oxide is more preferable, silicon oxide, titanium oxide, titanium composite oxide, zirconium oxide is more preferable, silicon oxide, zirconium oxide or titanium oxide is the stability of particles, availability, hardness of the cured film, It is particularly preferable from the viewpoints of transparency and refractive index adjustment. These particles can also be subjected to various surface modifications. For example, a reactive group can be introduced on the surface.
  • the inorganic particles can be used as a dispersion prepared by mixing and dispersing in a suitable dispersant and solvent using a mixing device such as a ball mill or a rod mill.
  • a mixing device such as a ball mill or a rod mill.
  • the content of the inorganic particles is preferably 1 part by mass or more and more preferably 5 parts by mass or more with respect to 100 parts by mass of the total solid content of the photosensitive resin composition from the viewpoint of hardness and refractive index.
  • 10 parts by mass or more is more preferable.
  • 80 mass parts or less are preferable, 50 mass parts or less are more preferable, and 40 mass parts or less are further more preferable.
  • One type of inorganic particles may be included, or two or more types may be included.
  • zirconium oxide particles and titanium oxide particles can be used in combination.
  • the total amount is preferably within the above range.
  • the photosensitive resin composition of the present invention can be prepared by mixing each component at a predetermined ratio and by any method, stirring and dissolving.
  • the photosensitive resin composition of the present invention can also be prepared by mixing each component with a predetermined ratio after preparing each solution in advance in a solvent.
  • the composition solution prepared as described above can be used after being filtered using, for example, a filter having a pore diameter of 0.2 ⁇ m.
  • the solid content concentration of the photosensitive resin composition of the present invention at 25 ° C. is preferably 1 to 60% by mass, more preferably 3 to 40% by mass, further preferably 5 to 30% by mass, and 5 to 17% by mass. Is particularly preferred.
  • the solid content concentration is preferably 7 to 30% by mass.
  • the viscosity at 25 ° C. is preferably 1 to 100 mPa ⁇ s, more preferably 2 to 60 mPa ⁇ s, and most preferably 3 to 40 mPa ⁇ s. In addition, when slit coating is performed, 2 to 20 mPa ⁇ s is preferable.
  • the viscosity can be measured, for example, using a viscometer RE85L (rotor: 1 ° 34 ′ ⁇ R24 measurement range 0.6 to 1200 mPa ⁇ s) manufactured by Toki Sangyo Co., Ltd., with the temperature adjusted to 25 ° C. .
  • the surface tension is a value measured by using a surface tension meter CBVP-A3 manufactured by Kyowa Interface Science Co., Ltd. and a method of immersing the lower end of the platinum plate in a measurement sample at 25 ⁇ 0.2 ° C.
  • the platinum plate used was made red by heating with an alcohol lamp before the measurement to clean the surface.
  • the method for producing a cured film of the present invention includes the following steps (1) to (5).
  • the step (1) it is preferable to apply the photosensitive resin composition of the present invention on a substrate to form a wet film containing a solvent.
  • substrate cleaning such as alkali cleaning or plasma cleaning
  • the method for treating the substrate surface with hexamethyldisilazane is not particularly limited, and examples thereof include a method in which the substrate is exposed to hexamethyldisilazane vapor.
  • Examples of the substrate include an inorganic substrate, a resin substrate, and a resin composite material substrate.
  • Examples of the inorganic substrate include a glass substrate, a quartz substrate, a silicone substrate, a silicon nitride substrate, and a composite substrate obtained by depositing molybdenum, titanium, aluminum, copper, or the like on such a substrate.
  • the coating method on the substrate is not particularly limited, and for example, a method such as an inkjet method, a slit coating method, a spray method, a roll coating method, a spin coating method, a casting coating method, a slit and spin method can be used.
  • the relative movement speed between the substrate and the slit die is preferably 50 to 120 mm / sec.
  • the wet film thickness when applied is not particularly limited, and can be applied with a film thickness according to the application, but it is usually used in the range of 0.5 to 10 ⁇ m.
  • the composition used in the present invention it is possible to apply a so-called pre-wet method as described in JP-A-2009-145395.
  • coating the photosensitive resin composition of this invention with respect to a large sized substrate slit application
  • the large substrate means a substrate having a size of 0.9 m ⁇ 0.9 m or more and 3.0 m ⁇ 3.0 m or less.
  • the solid content concentration of the composition is preferably 7 to 30% by mass. The viscosity at 25 ° C.
  • the surface tension at 25 ° C. is preferably 15 to 35 mN / m.
  • solid content concentration, a viscosity, and surface tension can be adjusted with the kind and quantity of a solvent or surfactant.
  • the solvent is removed from the applied wet film by vacuum (vacuum) and / or heating to form a dry coating film on the substrate.
  • the heating conditions for the solvent removal step are preferably 70 to 130 ° C. and about 30 to 300 seconds. When the temperature and time are in the above ranges, the pattern adhesiveness is better and the residue tends to be further reduced.
  • the substrate provided with the coating film is irradiated with an actinic ray having a predetermined pattern.
  • the photoacid generator is decomposed to generate an acid. Due to the catalytic action of the generated acid, the acid-decomposable group contained in the coating film component is hydrolyzed to generate a carboxyl group or a phenolic hydroxyl group.
  • a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a chemical lamp, an LED light source, an excimer laser generator, and the like can be used, and i-line (365 nm), h-line (405 nm), Actinic rays having a wavelength of 300 nm to 450 nm, such as 436 nm), can be preferably used.
  • irradiation light can also be adjusted through spectral filters, such as a long wavelength cut filter, a short wavelength cut filter, and a band pass filter, as needed.
  • the exposure amount is preferably 1 to 500 mJ / cm 2 .
  • various types of exposure machines such as a mirror projection aligner, a stepper, a scanner, a proximity, a contact, a microlens array, a lens scanner, and a laser exposure can be used.
  • exposure using so-called super-resolution technology can also be performed.
  • the super-resolution technique include multiple exposure in which multiple exposures are performed, a method using a phase shift mask, and a deformation proof method typified by an annular illumination method. By using these super-resolution techniques, it is possible to form a higher definition pattern, which is preferable.
  • post-exposure heat treatment In order to accelerate the hydrolysis reaction in the region where the acid catalyst is generated, post-exposure heat treatment: Post Exposure Bake (hereinafter also referred to as “PEB”) can be performed.
  • PEB Post Exposure Bake
  • PEB can promote the formation of a carboxyl group or a phenolic hydroxyl group from an acid-decomposable group.
  • the temperature for performing PEB is preferably 30 ° C. or higher and 130 ° C. or lower, more preferably 40 ° C. or higher and 110 ° C. or lower, and particularly preferably 50 ° C. or higher and 100 ° C. or lower.
  • a copolymer having a liberated carboxyl group or phenolic hydroxyl group is developed using an alkaline developer.
  • a positive image is formed by removing an exposed area containing a resin composition having a carboxyl group or a phenolic hydroxyl group that is easily dissolved in an alkaline developer.
  • the developer used in the development step preferably contains an aqueous solution of a basic compound.
  • Examples of basic compounds include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; alkali metal carbonates such as sodium carbonate, potassium carbonate, and cesium carbonate; sodium bicarbonate, potassium bicarbonate Alkali metal bicarbonates such as: tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, diethyldimethylammonium hydroxide, and other tetraalkylammonium hydroxides: Alkyl) trialkylammonium hydroxides; silicates such as sodium silicate and sodium metasilicate; ethylamine, propylamine, diethylamine, triethylammonium Alkylamines such as dimethyl alcohol; alcohol amines such as dimethylethanolamine and triethanolamine; 1,8-diazabicyclo- [5.4.0] -7-
  • sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, and choline (2-hydroxyethyltrimethylammonium hydroxide) are preferable.
  • An aqueous solution obtained by adding an appropriate amount of a water-soluble organic solvent such as methanol or ethanol or a surfactant to the alkaline aqueous solution can also be used as a developer.
  • the pH of the developer is preferably 10.0 to 14.0.
  • the development time is preferably 30 to 500 seconds, and the development method may be any of a liquid piling method (paddle method), a shower method, a dipping method, and the like.
  • a rinsing step can also be performed after development. In the rinsing step, the developed substrate and the development residue are removed by washing the developed substrate with pure water or the like.
  • a known method can be used as the rinsing method. For example, shower rinse and dip rinse can be mentioned.
  • the obtained positive image is heated to thermally decompose the acid-decomposable group to generate a carboxyl group or a phenolic hydroxyl group, thereby producing a crosslinkable group, a crosslinking agent, etc.
  • a cured film can be formed by crosslinking with. This heating is performed using a heating device such as a hot plate or an oven at a predetermined temperature, for example, 180 to 400 ° C. for a predetermined time, for example, 5 to 90 minutes on the hot plate, 30 to 120 minutes for the oven.
  • a protective film and an interlayer insulating film that are superior in heat resistance, hardness, and the like can be formed.
  • the transparency can be further improved.
  • post-baking can be performed after baking at a relatively low temperature (addition of a middle baking process).
  • middle baking it is preferable to post-bake at a high temperature of 200 ° C. or higher after heating at 90 to 180 ° C. for 1 to 60 minutes.
  • middle baking and post-baking can be heated in three or more stages. The taper angle of the pattern can be adjusted by devising such middle baking and post baking.
  • heating methods can use well-known heating methods, such as a hotplate, oven, and an infrared heater.
  • post-exposure the entire surface of the patterned substrate was re-exposed with actinic rays (post-exposure), and then post-baked to generate an acid from the photoacid generator present in the unexposed portion, thereby performing a crosslinking step. It can function as a catalyst to promote, and can accelerate the curing reaction of the film.
  • the preferred exposure amount in the case of including a post-exposure step preferably 100 ⁇ 3,000mJ / cm 2, particularly preferably 100 ⁇ 500mJ / cm 2.
  • the cured film obtained from the photosensitive resin composition of the present invention can also be used as a dry etching resist.
  • dry etching processes such as ashing, plasma etching, and ozone etching can be performed as the etching process.
  • the cured film of the present invention is a cured film obtained by curing the above-described photosensitive resin composition of the present invention.
  • the cured film of the present invention can be suitably used as an interlayer insulating film.
  • the cured film of this invention is a cured film obtained by the formation method of the cured film of this invention mentioned above.
  • the photosensitive resin composition of the present invention an interlayer insulating film having excellent insulation and high transparency even when baked at high temperatures can be obtained. Since the interlayer insulating film using the photosensitive resin composition of the present invention has good sensitivity and excellent solvent resistance, it is useful for various display devices such as liquid crystal display devices, organic EL display devices and touch panel display devices. It is.
  • the liquid crystal display device of the present invention has the cured film of the present invention.
  • the liquid crystal display device of the present invention is not particularly limited except that it has a flattening film and an interlayer insulating film formed using the photosensitive resin composition of the present invention, and known liquid crystal displays having various structures.
  • An apparatus can be mentioned.
  • specific examples of TFT (Thin-Film Transistor) included in the liquid crystal display device of the present invention include amorphous silicon-TFT, low-temperature polysilicon-TFT, oxide semiconductor TFT, and the like. Since the cured film of the present invention is excellent in electrical characteristics, it can be preferably used in combination with these TFTs.
  • the liquid crystal driving methods that can be taken by the liquid crystal display device of the present invention include TN (Twisted Nematic) method, VA (Vertical Alignment) method, IPS (In-Plane-Switching) method, FFS (Fringe Field Switching) method, OCB (Optical). Compensated Bend) method and the like.
  • the cured film of the present invention can also be used in a COA (Color Filter on Array) type liquid crystal display device.
  • COA Color Filter on Array
  • an organic insulating film (115) disclosed in JP-A-2005-284291, or JP-A-2005-346054 is used. It can be used as an organic insulating film (212).
  • the polymer orientation may be supported by a PSA (Polymer Sustained Alignment) technique described in JP-A Nos. 2003-149647 and 2011-257734.
  • the photosensitive resin composition of this invention and the cured film of this invention are not limited to the said use, It can be used for various uses.
  • a protective film for the color filter, a spacer for keeping the thickness of the liquid crystal layer in the liquid crystal display device constant, a micro lens provided on the color filter in the solid-state image sensor Can be suitably used.
  • FIG. 1 is a conceptual cross-sectional view showing an example of an active matrix liquid crystal display device 10.
  • the color liquid crystal display device 10 is a liquid crystal panel having a backlight unit 12 on the back surface, and the liquid crystal panel includes all pixels disposed between two glass substrates 14 and 15 having a polarizing film attached thereto.
  • the elements of the TFT 16 corresponding to are arranged.
  • Each element formed on the glass substrate is wired with an ITO transparent electrode 19 that forms a pixel electrode through a contact hole 18 formed in the cured film 17.
  • an RGB color filter 22 in which a liquid crystal 20 layer and a black matrix are arranged is provided.
  • the light source of the backlight is not particularly limited, and a known light source can be used.
  • a white LED for example, a white LED, a multicolor LED such as blue, red, and green, a fluorescent lamp (cold cathode tube), and an organic EL can be used.
  • the liquid crystal display device can be a 3D (stereoscopic) type or a touch panel type.
  • a flexible type can also be used.
  • the second interlayer insulating film (48) described in JP2011-145686A, the interlayer insulating film (520) described in JP2009-258758A, JP It can be used as an organic insulating film (PAS) described in FIG. 1 of 2007-328210.
  • reference numeral SUB1 denotes a glass substrate, which has a plurality of scanning signal lines and a plurality of video signal lines intersecting with the plurality of scanning signal lines.
  • a TFT is provided in the vicinity of each intersection.
  • a base film UC On the glass substrate SUB1, a base film UC, a semiconductor film PS such as silicon, a gate insulating film GI, a TFT gate electrode GT, and a first interlayer insulating film IN1 are formed in this order from the bottom.
  • a drain electrode SD1 of the TFT and a source electrode SD2 of the TFT are formed on the first interlayer insulating film IN1.
  • the drain electrode SD1 is connected to the drain region of the TFT through a contact hole formed in the gate insulating film GI and the first interlayer insulating film IN1.
  • the source electrode SD2 is connected to the source region of the TFT through a contact hole formed in the gate insulating film GI and the first interlayer insulating film IN1.
  • a second interlayer insulating film IN2 is formed on the drain electrode SD1 and the source electrode SD2.
  • An organic insulating film PAS is formed on the second interlayer insulating film IN2.
  • the organic insulating film PAS can be formed using the photosensitive resin composition of the present invention.
  • a counter electrode CT and a reflective film RAL are formed on the organic insulating film PAS.
  • a third interlayer insulating film IN3 is formed on the counter electrode CT and the reflective film RAL.
  • a pixel electrode PX is formed on the third interlayer insulating film IN3.
  • the pixel electrode PX is connected to the source electrode SD2 of the TFT through a contact hole formed in the second interlayer insulating film IN2 and the third interlayer insulating film IN3.
  • the organic insulating film PAS is formed using the photosensitive resin composition of the present invention, since the heat resistance of the organic insulating film PAS is excellent, the film forming temperature of the third interlayer insulating film IN3 is increased. And a denser film can be formed.
  • the photosensitive resin composition of the present invention can form a cured film having excellent heat resistance and denseness
  • UC, IN1, IN2, and IN3 which are usually formed of inorganic materials
  • UC, IN1, IN2, and IN3 which are usually formed of inorganic materials
  • UC, IN1, IN2, and IN3 which are usually formed of inorganic materials
  • UC, IN1, IN2, and IN3 which are usually formed of inorganic materials
  • UC, IN1, IN2, and IN3 which are usually formed of inorganic materials
  • UC, IN1, IN2, and IN3 which are usually formed of inorganic materials
  • the details of the liquid crystal display device shown in FIG. 2 can be referred to the description in Japanese Patent Application Laid-Open No. 2007-328210, and the contents thereof are incorporated in this specification. Note that FIG. 2 illustrates a top gate structure, but the present invention can be similarly applied to a display device having a bottom gate structure.
  • the organic EL display device of the present invention has the cured film of the present invention.
  • the organic EL display device of the present invention is not particularly limited except that it has a flattening film and an interlayer insulating film formed using the photosensitive resin composition of the present invention, and various known structures having various structures.
  • An organic EL display device can be mentioned.
  • specific examples of TFT (Thin-Film Transistor) included in the organic EL display device of the present invention include amorphous silicon-TFT, low-temperature polysilicon-TFT, oxide semiconductor TFT, and the like. Since the cured film of the present invention is excellent in electrical characteristics, it can be preferably used in combination with these TFTs.
  • FIG. 3 is a conceptual diagram of a configuration of an example of an organic EL display device.
  • a schematic cross-sectional view of a substrate in a bottom emission type organic EL display device is shown, and a planarizing film 4 is provided.
  • a bottom gate type TFT 1 is formed on a glass substrate 6, and an insulating film 3 made of Si 3 N 4 is formed so as to cover the TFT 1.
  • a contact hole (not shown) is formed in the insulating film 3, and then a wiring 2 (height: 1.0 ⁇ m) connected to the TFT 1 through the contact hole is formed on the insulating film 3.
  • the wiring 2 is for connecting the TFT 1 with an organic EL element formed between the TFTs 1 or in a later process.
  • the flattening film 4 is formed on the insulating film 3 with the unevenness due to the wiring 2 being embedded.
  • a bottom emission type organic EL element is formed on the planarizing film 4. That is, the first electrode 5 made of ITO is formed on the planarizing film 4 so as to be connected to the wiring 2 through the contact hole 7.
  • the first electrode 5 corresponds to the anode of the organic EL element.
  • An insulating film 8 having a shape covering the periphery of the first electrode 5 is formed. By providing the insulating film 8, a short circuit between the first electrode 5 and the second electrode formed in the subsequent process is prevented. can do. Further, although not shown in FIG.
  • a hole transport layer, an organic light emitting layer, and an electron transport layer are sequentially deposited through a desired pattern mask, and then a second layer made of Al is formed on the entire surface above the substrate.
  • An active matrix organic material in which two electrodes are formed and sealed by bonding using a sealing glass plate and an ultraviolet curable epoxy resin, and each organic EL element is connected to a TFT 1 for driving it.
  • An EL display device is obtained.
  • a resist pattern formed using the photosensitive resin composition of the present invention as a structural member of a MEMS device is used. It is used as a partition or as a part of a mechanical drive part.
  • MEMS devices include parts such as SAW filters, BAW filters, gyro sensors, display micro shutters, image sensors, electronic paper, inkjet heads, biochips, sealants, and the like. More specific examples are exemplified in JP-T-2007-522531, JP-A-2008-250200, JP-A-2009-263544, and the like.
  • the photosensitive resin composition of the present invention is excellent in flatness and transparency, for example, the bank layer (16) and the planarization film (57) described in FIG. 2 of JP-A-2011-107476, JP-A-2010-
  • spacers for maintaining the thickness of the liquid crystal layer in liquid crystal display devices imaging optical systems for on-chip color filters such as facsimiles, electronic copying machines, solid-state image sensors, and micro lenses for optical fiber connectors are also used. It can be used suitably.
  • LED sealing material, protective insulating film for semiconductor element, semiconductor element rewiring insulating film, insulating film for multilayer printed circuit board, solder protective film, coverlay film It is useful for base laminate films.
  • the touch panel display device of the present invention has the cured film of the present invention.
  • the touch panel display device of the present invention it is preferable that all or part of the insulating layer and / or the protective layer of the touch panel is composed of the cured product of the present invention.
  • the touch panel display device of the present invention preferably has at least a transparent substrate, an ITO electrode, an IZO electrode, other transparent electrodes, a metal electrode, an insulating layer, and / or a protective layer.
  • Preferred examples of the transparent substrate that can be used in the touch panel display device of the present invention include a glass substrate, a quartz substrate, and a transparent resin substrate.
  • the touch panel display device of the present invention can be manufactured, for example, as follows. That is, the photosensitive resin composition of the present invention is applied by various methods such as an inkjet coating method so as to be in contact with the ITO electrode, and an opening pattern having a predetermined shape is formed on the photosensitive resin composition applied to the ITO electrode. It can be manufactured through Step 2 in which a mask is placed and exposed by irradiation with active energy rays, Step 3 in which the exposed photosensitive resin composition is developed, and Step 4 in which the photosensitive resin composition after development is heated. .
  • Step 1 when the photosensitive resin composition is applied so as to be in contact with the ITO electrode, it is sufficient that at least a part of the applied photosensitive resin composition of the present invention is in contact with the ITO electrode.
  • Step 2 can be performed in the same manner as the exposure step described above, and the preferred embodiment is also the same.
  • Step 3 can be performed in the same manner as the development step described above, and the preferred embodiment is also the same.
  • Step 4 can be performed in the same manner as the post-baking step described above, and the preferred embodiment is also the same.
  • the touch panel display device of the present invention various known methods such as a capacitance method, a resistance film method, and an optical method can be adopted as a detection method. Of these, the electrostatic capacity method is preferable.
  • a so-called in-cell type for example, FIG. 5, FIG. 6, FIG. 7 and FIG. 8 of JP-A-2012-517051
  • a so-called on-cell type for example, FIG. 19, JP-A-2013-168125, 1 and FIG. 5 of JP 2012-89102
  • OGS One Glass Solution
  • TOL Touch on Lens
  • FIG. 6 of Japanese Patent Application Laid-Open No. 2013-164871
  • various out-cell types for example, GG (glass on glass), so-called G1 and G2, so-called GFF (Glass Film Film)) And so-called GF2, so-called GF1, and so-called G1F).
  • the touch panel and the touch panel display device equipped with the touch panel as a component are “the latest touch panel technology” (published July 6, 2009 Techno Times Co., Ltd.), supervised by Yuji Mitani, “Touch Panel Technology and Development”, CMC The configurations disclosed in Publication (2004, 12), FPD International 2009 Forum T-11 Lecture Textbook, Cypress Semiconductor Corporation Application Note AN2292, etc. can be applied.
  • the three-necked flask was immersed in a 40 ° C. oil bath and stirred for 30 minutes, and then the oil bath was heated to 115 ° C. over 30 minutes.
  • the internal temperature of the solution reached 100 ° C., and was then heated and stirred for 2 hours (internal temperature was 100 to 110 ° C.).
  • methanol as a by-product was distilled off.
  • the obtained polysiloxane DAA solution was poured into a large amount of water to precipitate a polymer, filtered and dried to obtain an A-1 precursor.
  • A-1 precursor 100 g of the obtained A-1 precursor was dissolved in 400 mL of tetrahydrofuran, and after adding a catalytic amount of p-toluenesulfonic acid, a solution in which 30 g of ethyl vinyl ether was dissolved in 30 g of tetrahydrofuran was added dropwise with stirring at 20 ° C. . After reacting for 30 minutes, the reaction solution was neutralized with concentrated aqueous ammonia and neutralized with 5 L of water, and a white solid was obtained. This was filtered, dissolved in 300 ml of acetone, dropped into 5 L of water, filtered and dried to obtain A-1.
  • the weight average molecular weight in terms of polystyrene by GPC was 5000.
  • the analysis by 1 H-NMR it was confirmed that in A-1, 70 mol% of the hydrogen atoms of the phenolic hydroxyl group were ethoxyethylated.
  • the types and molar ratios of the silane compounds used for the synthesis of A-1 are shown below.
  • the acidic aqueous layer was separated from the reaction mixture, then the organic layer was washed with 1 L of water, and further washed twice with water after the aqueous layer became neutral.
  • the organic layer was evaporated using an evaporator. The concentrated solution was heated at 200 ° C. for 2 hours to polymerize.
  • a polymer dissolved in 800 g of tetrahydrofuran was dropped into 1,000 g of a 10% sodium hydroxide solution and heated at 40 ° C. for 3 hours to hydrolyze the methyl ester group.
  • A-5 precursor polymer in which the carboxyl group of A-5 was not protected with tetrahydrofuranyl.
  • A-5 was synthesized by introducing a protecting group into the A-5 precursor by a polymer reaction in the same manner as A-1.
  • carboxy group was reacted with dihydrofuran, and 78 mol% was tetrahydrofuranylated.
  • the types and molar ratios of the silane compounds used for the synthesis of A-5 are shown below.
  • A′-1 which is a polysiloxane containing a structural unit having a carboxylic acid-protected group and not containing a crosslinkable group, was synthesized.
  • a ′′ -1 which is a polysiloxane containing a constitutional unit having an epoxy group without a constitutional unit having a carboxylic acid-protected group, was synthesized.
  • A′-3 which is a polysiloxane having a structural unit having a group in which a silanol group is acetal protected and a structural unit having an epoxy group, was synthesized.
  • the weight average molecular weight (GPC polystyrene standard) of this polysiloxane was 4.2 ⁇ 10 3 .
  • the abundance ratio of T0 to T3 was determined by 29Si-NMR, and the following average composition formula was calculated.
  • reaction solution was transferred to a 1 L eggplant flask, tetrahydrofuran was distilled off with a rotary evaporator under reduced pressure at room temperature, 300 g of methyl isobutyl ketone and 250 ml of 0.01N acetic acid aqueous solution were added, and the reaction solution was washed with water. After repeating this washing operation three times in total, the organic layer was separated and concentrated by a rotary evaporator to obtain 49.0 g of A′-3 which is a colorless and transparent acetalized polysiloxane. The acetal substitution rate of A′-3 was calculated to be 32.5 mol% from the result of 13 C-NMR.
  • B-1 PAG-103 (trade name, structure shown below, manufactured by BASF)
  • B-1 is a photoacid generator that generates an acid having a pKa of 3 or less.
  • B-2 Structure shown below (Synthesis examples will be described later) In the formula, Ts represents a tosyl group (p-toluenesulfonyl group).
  • B-2 is a photoacid generator that generates an acid having a pKa of 3 or less.
  • B-3 Structure shown below (synthesized according to the method described in paragraph 0108 of JP-T-2002-528451)
  • B-3 is a photoacid generator that generates an acid having a pKa of 3 or less.
  • B-4 Structure shown below (Synthesis examples will be described later)
  • B-4 is a photoacid generator that generates an acid having a pKa of 3 or less.
  • B-5 GSID-26-1, triarylsulfonium salt (manufactured by BASF)
  • B-5 is a photoacid generator that generates an acid having a pKa of 3 or less.
  • B-6 4,7-di-n-butoxy-1-naphthyltetrahydrothiophenium trifluoromethanesulfonate
  • B-6 is a photoacid generator that generates an acid having a pKa of 3 or less.
  • B-7 Structure shown below (Synthesis example will be described later) B-7 is a photoacid generator that generates an acid having a pKa of 3 or less.
  • B-8 Structure shown below (synthesized according to the method described in paragraph 249 of WO11 / 087011) B-8 is a photoacid generator that generates an acid having a pKa of 3 or less.
  • B′-1 (Structure shown below. Quinonediazide compound) B′-1 is a compound that generates an acid having a pKa of more than 3.
  • Crude B-1-2A was purified by silica gel column chromatography to obtain 1.7 g of intermediate B-1-2A.
  • B-1-2A (1.7 g) and p-xylene (6 mL) were mixed, 0.23 g of p-toluenesulfonic acid monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added and heated at 140 ° C. for 2 hours. .
  • water and ethyl acetate were added to the reaction mixture and the phases were separated.
  • DBA 9,10-dibutoxyanthracene
  • FA-630 Silicone surfactant “FA-630” (trade name) manufactured by Shin-Etsu Chemical MW-30HM: Nicarak MW-30HM (the following structure)
  • crosslinkable group equivalent A certain amount of the solid content of the photosensitive resin composition was weighed, and the amount of the crosslinkable group contained in the solid content was measured.
  • the crosslinkable group was an epoxy group, it was determined by a method for measuring an epoxy equivalent specified in JIS K7236: 2001.
  • Other crosslinkable groups other than the epoxy group were also determined by the same measurement method by changing the titrant.
  • the exposed photosensitive resin composition layer was developed with an alkali developer (0.5% tetramethylammonium hydroxide aqueous solution) at 23 ° C./60 seconds, and then rinsed with ultrapure water for 20 seconds.
  • an alkali developer (0.5% tetramethylammonium hydroxide aqueous solution) at 23 ° C./60 seconds, and then rinsed with ultrapure water for 20 seconds.
  • the optimum i-line exposure amount (Eopt) when resolving a hole having a diameter of 6 ⁇ m was determined and used as the sensitivity. Evaluation is based on the following criteria, and 1, 2 and 3 are practical levels.
  • Example 18, Comparative Example 1 and Comparative Example 2 were developed after being heated on a hot plate at 90 ° C. for 3 minutes after the exposure (added a post exposure bake (PEB) step).
  • PEB post exposure bake
  • ⁇ Development evaluation> A glass substrate (EAGLE XG, 0.7 mm thickness (manufactured by Corning)) was exposed to hexamethyldisilazane (HMDS) vapor for 30 seconds, and each photosensitive resin composition was slit-coated, and then heated at 90 ° C./120 seconds. Pre-baked on the plate to volatilize the solvent to form a photosensitive resin composition layer having a thickness of 3.0 ⁇ m. Next, the obtained photosensitive resin composition layer was exposed at an optimum exposure amount obtained by sensitivity evaluation with a 5 ⁇ m line-and-space mask pattern using MPA 5500CF (high pressure mercury lamp) manufactured by Canon Inc.
  • MPA 5500CF high pressure mercury lamp
  • the exposed photosensitive resin composition layer was developed with an alkali developer (0.5% tetramethylammonium hydroxide aqueous solution) at 23 ° C./60 seconds, and then rinsed with ultrapure water for 20 seconds.
  • This pattern was observed with an optical microscope and evaluated according to the following criteria. 1 and 2 are practical levels. 1: The edge of the pattern is clean 2: There is a slight backlash at the edge of the pattern 3: There is a backlash at the edge of the pattern Or a pattern is not formed.
  • the photosensitive resin compositions of the present invention shown in Examples 1 to 48 were able to form cured films having excellent sensitivity and excellent solvent resistance.
  • the photosensitive resin compositions of the present invention shown in Examples 1 to 48 were excellent in storage stability and developability. Furthermore, a cured film excellent in heat resistance could be formed.
  • polysiloxane (A′-1) containing a structural unit having a carboxylic acid-protected group and not containing a crosslinkable group, and not containing a structural unit having a carboxylic acid-protected group In Comparative Examples 1 and 2 in combination with polysiloxane (A ′′ -1) containing a structural unit having an epoxy group, the solvent resistance was poor.
  • Comparative Example 3 using polysiloxane (A′-3) having a structural unit having a silanol group-protected acetal group and a structural unit having an epoxy group was inferior in solvent resistance. . Furthermore, the storage stability was poor. Further, Comparative Example 4 using B′-1, which is a compound that generates an acid having a pKa exceeding 3 as a photoacid generator, was inferior in sensitivity.
  • Example 101 An organic EL display device using a thin film transistor (TFT) was produced by the following method (see FIG. 3).
  • a bottom gate type TFT 1 was formed on a glass substrate 6, and an insulating film 3 made of Si 3 N 4 was formed so as to cover the TFT 1.
  • a contact hole (not shown) is formed in the insulating film 3, and then a wiring 2 (height 1.0 ⁇ m) connected to the TFT 1 through the contact hole is formed on the insulating film 3. .
  • the wiring 2 is used to connect the TFT 1 with an organic EL element formed between TFTs 1 or in a later process.
  • the planarizing film 4 was formed on the insulating film 3 in a state where the unevenness due to the wiring 2 was embedded.
  • the planarizing film 4 is formed on the insulating film 3 by slit-coating the photosensitive resin composition of Example 1 on the substrate, prebaking (90 ° C. ⁇ 2 minutes) on a hot plate, and then applying high pressure from above the mask. After irradiating the i-line (365 nm) with the optimum exposure amount obtained by sensitivity evaluation using a mercury lamp, a pattern was formed by developing with an alkaline aqueous solution, and a heat treatment was performed at 230 ° C. for 60 minutes.
  • the applicability when applying the photosensitive resin composition was good, and no wrinkles or cracks were observed in the cured film obtained after exposure, development and baking. Furthermore, the average step of the wiring 2 was 500 nm, and the thickness of the prepared planarizing film 4 was 2,000 nm.
  • a bottom emission type organic EL element was formed on the obtained planarization film 4.
  • a first electrode 5 made of ITO was formed on the planarizing film 4 so as to be connected to the wiring 2 through the contact hole 7.
  • a commercially available resist was applied, prebaked, exposed through a mask having a desired pattern, and developed. Using this resist pattern as a mask, pattern processing was performed by wet etching using an ITO etchant. Thereafter, the resist pattern was stripped at 50 ° C. using a resist stripper (remover 100, manufactured by AZ Electronic Materials).
  • the first electrode 5 thus obtained corresponds to the anode of the organic EL element.
  • an insulating film 8 having a shape covering the periphery of the first electrode 5 was formed.
  • the photosensitive resin composition of Example 1 was used, and the insulating film 8 was formed by the same method as described above. By providing this insulating film 8, it is possible to prevent a short circuit between the first electrode 5 and the second electrode formed in the subsequent process.
  • a hole transport layer, an organic light emitting layer, and an electron transport layer were sequentially deposited through a desired pattern mask in a vacuum deposition apparatus.
  • a second electrode made of Al was formed on the entire surface above the substrate. The obtained board
  • substrate was taken out from the vapor deposition machine, and it sealed by bonding together using the glass plate for sealing, and an ultraviolet curable epoxy resin.
  • Example 101 an organic EL display device was produced in the same manner as in Example 101 except that the photosensitive resin composition of Example 1 was replaced with the photosensitive resin composition of Examples 2 to 48. When a drive voltage was applied to the obtained organic EL display device, it was found that the organic EL display device showed good display characteristics and had high reliability.
  • Example 201 In the active matrix liquid crystal display device described in FIG. 1 of Japanese Patent No. 3321003, a cured film 17 was formed as an interlayer insulating film as follows, and a liquid crystal display device of Example 201 was obtained. That is, using the photosensitive resin composition of Example 1, the cured film 17 was formed as an interlayer insulating film by the same method as the method for forming the planarizing film 4 of the organic EL display device in Example 101. When a driving voltage was applied to the obtained liquid crystal display device, it was found that the liquid crystal display device showed good display characteristics and high reliability.
  • Examples 202 to 248 A liquid crystal display device was produced in the same manner as in Example 201 except that in Example 201, the photosensitive resin composition of Example 1 was replaced with the photosensitive resin compositions of Examples 2 to 48. When a driving voltage was applied to the obtained liquid crystal display device, it was found that the liquid crystal display device showed good display characteristics and high reliability.
  • Example 251 In the liquid crystal display device described in FIG. 1 of JP-A-2007-328210, the organic insulating film PAS was formed by the following method to obtain a liquid crystal display device. First, according to Japanese Patent Application Laid-Open No. 2007-328210, an array substrate formed up to just before the organic insulating film PAS was produced. Next, this substrate was exposed to hexamethyldisilazane vapor for 30 seconds, after which the photosensitive resin composition of Example 1 was slit-coated and then pre-baked on a hot plate at 90 ° C. for 2 minutes to volatilize the solvent, A photosensitive resin composition layer was formed.
  • i-line (365 nm) was calculated
  • the exposed photosensitive resin composition layer was developed with an alkali developer (0.5% tetramethylammonium hydroxide aqueous solution) at 23 ° C./60 seconds, and then rinsed with ultrapure water for 20 seconds. Subsequently, the whole surface was exposed using an ultra-high pressure mercury lamp so that the integrated irradiation amount was 300 mJ / cm 2 (energy intensity: 20 mW / cm 2 , measured by i-line).
  • the organic insulating film PAS was obtained by heating for minutes.
  • a liquid crystal display device was obtained according to Japanese Patent Application Laid-Open No. 2007-328210.
  • the interlayer insulating film IN3 is formed at the same temperature as the interlayer insulating film IN2. Thereby, IN3 could be made into a dense film.
  • a driving voltage was applied to the obtained liquid crystal display device, it was found that the liquid crystal display device showed very good display characteristics and had high reliability.
  • Example 251 a liquid crystal display device was produced in the same manner as in Example 251, except that the photosensitive resin composition of Example 1 was replaced with the photosensitive resin compositions of Examples 2 to 48. When a driving voltage was applied to the obtained liquid crystal display device, it was found that the liquid crystal display device showed very good display characteristics and had high reliability.
  • a touch panel display device was produced by the method described below.
  • etching resist was applied onto ITO and dried to form an etching resist layer.
  • the distance between the exposure mask (quartz exposure mask having a transparent electrode pattern) surface and the etching resist layer is set to 100 ⁇ m, pattern exposure is performed at an exposure amount of 50 mJ / cm 2 (i-line), and development is performed with a developer.
  • a post-baking treatment at 130 ° C. for 30 minutes was performed to obtain a front plate on which a transparent electrode layer and a photosensitive resin layer pattern for etching were formed.
  • the front plate on which the transparent electrode layer and the photo-sensitive resin layer pattern for etching are formed is immersed in an etching tank containing ITO etchant (hydrochloric acid, potassium chloride aqueous solution, liquid temperature 30 ° C.), treated for 100 seconds, and etched resist.
  • ITO etchant hydroochloric acid, potassium chloride aqueous solution, liquid temperature 30 ° C.
  • the exposed transparent electrode layer not covered with the layer was dissolved and removed to obtain a front plate with a transparent electrode layer pattern with an etching resist layer pattern.
  • the front plate with the transparent electrode layer pattern with the etching resist layer pattern is immersed in a dedicated resist stripping solution, the photosensitive resin layer for etching is removed, and the mask layer and the first transparent electrode pattern A front plate formed was obtained.
  • the photosensitive resin composition of Example 1 was applied and dried (film thickness: 1 ⁇ m, 90 ° C., 120 seconds) to form a photosensitive resin composition layer.
  • the distance between the surface of the exposure mask (quartz exposure mask having a pattern for insulating layer) and the photosensitive resin composition layer was set to 30 ⁇ m, and pattern exposure was performed with the optimum exposure amount obtained by sensitivity evaluation.
  • the film was developed with a 2.38 mass% tetramethylammonium hydroxide aqueous solution at 23 ° C. for 15 seconds and rinsed with ultrapure water for 10 seconds.
  • a post-bake treatment at 220 ° C. for 45 minutes was performed to obtain a front plate on which a mask layer, a first transparent electrode pattern, and an insulating layer pattern were formed.
  • the front plate formed up to the insulating layer pattern was subjected to DC magnetron sputtering treatment (conditions: substrate temperature 50 ° C., argon pressure 0.13 Pa, oxygen pressure 0.01 Pa).
  • An ITO thin film having a thickness of 80 nm was formed to obtain a front plate on which a transparent electrode layer was formed.
  • the surface resistance of the ITO thin film was 110 ⁇ / ⁇ .
  • the first transparent electrode pattern using a commercially available etching resist, the first transparent electrode pattern, an insulating layer pattern formed using the photosensitive resin composition of Example 1, a transparent electrode layer, A front plate on which an etching resist pattern was formed was obtained (post-baking treatment; 130 ° C. for 30 minutes). Further, etching was performed in the same manner as the formation of the first transparent electrode pattern, and the etching resist layer was removed to form the mask layer, the first transparent electrode pattern, and the photosensitive resin composition of Example 1. A front plate on which an insulating layer pattern and a second transparent electrode pattern were formed was obtained.
  • a front plate on which a pattern, a second transparent electrode pattern, and an etching resist pattern were formed was obtained (post-bake treatment; 130 ° C. for 30 minutes). Further, in the same manner as the formation of the first transparent electrode pattern, etching (30 ° C. for 50 seconds) is performed, and the etching resist layer is removed (45 ° C. for 200 seconds).
  • a front plate on which a conductive element different from the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns formed using the photosensitive resin composition of Example 1 was obtained was obtained.
  • the photosensitive resin composition of Example 1 was applied and dried (film thickness: 1 ⁇ m) on the front plate formed up to the conductive element different from the first and second transparent electrode patterns. , 90 ° C. for 120 seconds) to obtain a photosensitive resin composition film.
  • a liquid crystal display device manufactured by the method described in Japanese Patent Application Laid-Open No. 2009-47936 is bonded to the previously manufactured front plate, and a touch panel display device including a capacitive input device as a constituent element is manufactured by a known method. did.
  • Example 301 a touch panel display device was produced in the same manner as in Example 301 except that the photosensitive resin composition of Example 1 was replaced with the photosensitive resin compositions of Examples 2 to 48.
  • the obtained touch panel display device has no problem in the conductivity of each of the first transparent electrode pattern, the second transparent electrode pattern, and a conductive element different from these, while the first transparent electrode pattern Between the transparent electrode pattern and the second transparent electrode pattern, there was insulation, and good display characteristics as a touch panel were obtained. Furthermore, the first and second transparent electrode patterns were hardly visible and excellent display characteristics were obtained.
  • TFT Thin Film Transistor
  • Wiring 3 Insulating film 4: Flattened film 5: First electrode 6: Glass substrate 7: Contact hole 8: Insulating film 10: Liquid crystal display device 12: Backlight unit 14, 15: Glass substrate 16: TFT 17: Cured film 18: Contact hole 19: ITO transparent electrode 20: Liquid crystal 22: Color filter

Abstract

Provided is a photosensitive resin composition which exhibits good sensitivity and can form a cured film having excellent solvent resistance. Further, provided are: a method for producing a cured film by using a photosensitive resin composition; a cured film; a liquid crystal display device; an organic EL display device; and a touch panel display device. This photosensitive resin composition contains: a polysiloxane (A) having a constituent unit (a1) which has a group obtained by protecting a carboxyl group with an acid-dissociable group and/or a group obtained by protecting a phenolic hydroxyl group with an acid-dissociable group, and a constituent unit (a2) having a crosslinkable group; a photo-acid generator (B) that generates an acid having a pKa value of 3 or lower; and a solvent (C).

Description

感光性樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置、有機EL表示装置、タッチパネル表示装置Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device, organic EL display device, touch panel display device
 本発明は、感光性樹脂組成物(以下、単に、「本発明の組成物」ということがある)に関する。また、上記感光性樹脂組成物を用いた硬化膜の製造方法、感光性組成物を硬化してなる硬化膜、上記硬化膜を用いた各種画像表示装置に関する。
 さらに詳しくは、液晶表示装置、有機EL(有機エレクトロルミネッセンス)表示装置、タッチパネル表示装置、集積回路素子、固体撮像素子などの電子部品の平坦化膜、保護膜や層間絶縁膜の形成に好適な、感光性樹脂組成物およびそれを用いた硬化膜の製造方法に関する。
The present invention relates to a photosensitive resin composition (hereinafter sometimes simply referred to as “the composition of the present invention”). Moreover, it is related with the manufacturing method of the cured film using the said photosensitive resin composition, the cured film formed by hardening | curing the photosensitive composition, and various image display apparatuses using the said cured film.
More specifically, it is suitable for the formation of a planarizing film, a protective film and an interlayer insulating film of an electronic component such as a liquid crystal display device, an organic EL (organic electroluminescence) display device, a touch panel display device, an integrated circuit element, a solid-state imaging device, The present invention relates to a photosensitive resin composition and a method for producing a cured film using the same.
 有機EL表示装置、液晶表示装置、タッチパネル表示装置などには、パターン形成された層間絶縁膜が設けられている。この層間絶縁膜の形成には、必要とするパターン形状を得るための工程数が少なく、しかも十分な平坦性が得られるといったことから、感光性樹脂組成物が広く使用されている。 Organic EL display devices, liquid crystal display devices, touch panel display devices, and the like are provided with a patterned interlayer insulating film. In forming the interlayer insulating film, photosensitive resin compositions are widely used because the number of steps for obtaining a required pattern shape is small and sufficient flatness is obtained.
 最近、製造の効率化や表示装置の高性能化のために、層間絶縁膜製造後の表示装置作製工程において、従来よりも高い温度(例えば300℃程度)での熱処理や製膜を行う試みがなされており、層間絶縁膜にも従来よりも高い温度に対する耐性が求められている。このような高耐熱性の層間絶縁膜として、ポリシロキサンを用いることが検討されている。 Recently, in order to improve manufacturing efficiency and display device performance, there has been an attempt to perform heat treatment or film formation at a higher temperature (for example, about 300 ° C.) in the display device manufacturing process after manufacturing the interlayer insulating film. The interlayer insulating film is also required to have higher temperature resistance than before. The use of polysiloxane as such a high heat resistant interlayer insulating film has been studied.
 特許文献1には、アルカリ可溶性シロキサン重合体と、1,2-ナフトキノンジアド基を有する感光性化合物とを含有するポジ型レジスト組成物が開示されている。
 特許文献2には、(A)成分として、酸分解性基で保護されたカルボン酸を有する構成単位を含むポリシロキサン、(B)成分として、光酸発生剤、(C)成分として有機溶剤、(D)成分としてエポキシ基含有シロキサン化合物を含有するポジ型感光性樹脂組成物が開示されている。段落番号0093には、(D)成分は、(A)成分100質量部に対して、1~40質量部が好ましいと記載されている。
 特許文献3には、保護されたシラノール基を有する構成単位と、エポキシ基を有する構成単位とを含むポリシロキサンを含有する感光性樹脂組成物が開示されている。
Patent Document 1 discloses a positive resist composition containing an alkali-soluble siloxane polymer and a photosensitive compound having a 1,2-naphthoquinone diad group.
In Patent Document 2, polysiloxane containing a structural unit having a carboxylic acid protected with an acid-decomposable group as component (A), a photoacid generator as component (B), an organic solvent as component (C), A positive photosensitive resin composition containing an epoxy group-containing siloxane compound as component (D) is disclosed. Paragraph No. 0093 describes that the component (D) is preferably 1 to 40 parts by mass with respect to 100 parts by mass of the component (A).
Patent Document 3 discloses a photosensitive resin composition containing polysiloxane containing a structural unit having a protected silanol group and a structural unit having an epoxy group.
特開2003-255546号公報JP 2003-255546 A 特開2013-92633号公報JP 2013-92633 A 特開2009-263522号公報JP 2009-263522 A
 しかしながら、本発明者が、特許文献1に開示されたポジ型レジスト組成物について検討したところ、特許文献1で使用している1,2-ナフトキノンジアド基を有する感光性化合物の量子収率が低いため、ポジ型レジスト組成物の感度も充分ではなかった。
 また、本発明者が、特許文献2に開示されたポジ型感光性樹脂組成物について検討したところ、特許文献2のポジ型感光性樹脂組成物は、硬化成分であるエポキシ基含有シロキサン化合物の含有量が少ないため、溶剤耐性が充分ではないことが分かった。また。溶剤耐性改善のためにエポキシ基含有シロキサン化合物の含有量を増量すると、感度が悪化することが分かった。
 また、本発明者が、特許文献3に開示された感光性樹脂組成物について検討したところ、特許文献3の感光性樹脂組成物は感度に優れるものの、溶剤耐性が充分ではないことが分かった。
 このように、感度が良好で、溶剤耐性に優れる硬化膜を形成できる感光性樹脂組成物は知られていないのが現状であった。
However, when the present inventor examined the positive resist composition disclosed in Patent Document 1, the quantum yield of the photosensitive compound having a 1,2-naphthoquinone diad group used in Patent Document 1 was increased. Since the sensitivity is low, the sensitivity of the positive resist composition is not sufficient.
Moreover, when this inventor examined the positive photosensitive resin composition disclosed by patent document 2, the positive photosensitive resin composition of patent document 2 contains epoxy group containing siloxane compound which is a hardening component. It was found that the solvent resistance was not sufficient due to the small amount. Also. It has been found that when the content of the epoxy group-containing siloxane compound is increased to improve the solvent resistance, the sensitivity is deteriorated.
Moreover, when this inventor examined the photosensitive resin composition disclosed by patent document 3, although the photosensitive resin composition of patent document 3 was excellent in the sensitivity, it turned out that solvent tolerance is not enough.
Thus, the present condition is that the photosensitive resin composition which can form the cured film which is good in sensitivity and excellent in solvent tolerance is not known.
 よって、本発明の目的は、感度が良好で、溶剤耐性に優れる硬化膜を形成できる感光性樹脂組成物、かかる感光性樹脂組成物を応用した硬化膜の製造方法、硬化膜、有機EL表示装置、液晶表示装置およびタッチパネル表示装置を提供することにある。 Accordingly, an object of the present invention is to provide a photosensitive resin composition capable of forming a cured film having good sensitivity and excellent solvent resistance, a method for producing a cured film using such a photosensitive resin composition, a cured film, and an organic EL display device. Another object is to provide a liquid crystal display device and a touch panel display device.
 かかる状況のもと、本発明者が検討を行った結果、カルボキシ基が酸分解性基で保護された基、および/または、フェノール性水酸基が酸分解性基で保護された基を有する構成単位(a1)と、架橋性基を有する構成単位(a2)とを有するポリシロキサンと、pKaが3以下の酸を発生する光酸発生剤とを併用することにより、感度が良好で、溶剤耐性に優れる硬化膜を形成できる感光性樹脂組成物が得られることを見出し、本発明を完成するに至った。本発明は以下を提供する。 Under such circumstances, as a result of investigation by the present inventors, a structural unit having a group in which a carboxy group is protected with an acid-decomposable group and / or a group in which a phenolic hydroxyl group is protected with an acid-decomposable group. By using a polysiloxane having (a1) and a structural unit (a2) having a crosslinkable group together with a photoacid generator that generates an acid having a pKa of 3 or less, the sensitivity is good and the solvent resistance is improved. The inventors have found that a photosensitive resin composition capable of forming an excellent cured film can be obtained, and have completed the present invention. The present invention provides the following.
 <1> (A)カルボキシ基が酸分解性基で保護された基、および/または、フェノール性水酸基が酸分解性基で保護された基を有する構成単位(a1)と、架橋性基を有する構成単位(a2)とを有するポリシロキサンと、(B)pKaが3以下の酸を発生する光酸発生剤と、(C)溶剤とを含有する感光性樹脂組成物。
 <2> 酸分解性基がアセタール基である<1>に記載の感光性樹脂組成物。
 <3> 構成単位(a1)が、下記一般式(a1-1)で表される構成単位、および/または、下記一般式(a1-2)で表される構成単位である、<1>または<2>に記載の感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000003
(一般式(a1-1)、(a1-2)中、aは0または1を表し、R1およびR2は、それぞれ独立に、水素原子、アルキル基またはアリール基を表し、R1およびR2の少なくとも一方がアルキル基またはアリール基を表し、R3は、アルキル基またはアリール基を表し、R1またはR2と、R3とが連結して環状エーテルを形成してもよく、R4は、アルキル基、アリール基、または、アラルキル基を表し、L1は、単結合または2価の連結基を表し、L2は、単結合または2価の連結基を表し、Rxは、アルキル基またはハロゲン原子を表し、m1は、0~4の整数を表す。)
 <4> 構成単位(a2)が有する架橋性基が、環状エーテル、および/または、エチレン性不飽和結合を有する基である<1>~<3>のいずれかに記載の感光性樹脂組成物。
 <5> 構成単位(a2)が、下記一般式(a2-1)で表される構成単位、および/または、下記一般式(a2-2)で表される構成単位である、<1>~<4>のいずれかに記載の感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000004
(一般式(a2-1)、(a2-2)中、aは0または1を表し、R5は、アルキル基、アリール基またはアラルキル基を表し、RYは、アルキル基またはハロゲン原子を表し、L3は、単結合、または、2価の連結基を表し、nは、0または1を表し、m2は、nが0の場合は0~2の整数を表し、nが1の場合は0~3の整数を表し、m3は、0~6の整数を表す。)
 <6> (A)ポリシロキサンが、さらに酸基を有する構成単位(a3)を含む、<1>~<5>のいずれかに記載の感光性樹脂組成物。
 <7> 構成単位(a3)は、酸基として、カルボキシ基、および/または、フェノール性水酸基を有する、<6>に記載の感光性樹脂組成物。
 <8> 感光性樹脂組成物に含まれる(A)ポリシロキサン全量中、構成単位(a1)のモル数および構成単位(a3)のモル数の合計と、構成単位(a2)のモル数との比が、10:90~90:10である、<6>または<7>に記載の感光性樹脂組成物。
 <9> 感光性樹脂組成物の固形分中の架橋性基当量が1500以下である、<1>~<8>のいずれかに記載の感光性樹脂組成物。
 <10> (B)光酸発生剤が、オニウム塩化合物、オキシムスルホネート化合物、およびイミドスルホネート化合物から選ばれる少なくとも1種である、<1>~<9>のいずれかに記載感光性樹脂組成物。
 <11> <1>~<10>のいずれかに記載の感光性樹脂組成物を基板上に塗布する工程、基板に塗布された感光性樹脂組成物から溶剤を除去する工程、溶剤が除去された感光性樹脂組成物を露光する工程、露光された感光性樹脂組成物を現像する工程、および、現像された感光性樹脂組成物を熱硬化する工程、
を含む硬化膜の製造方法。
 <12> <1>~<11>のいずれかに記載の感光性樹脂組成物を硬化した硬化膜、または、<12>に記載の硬化膜の製造方法により形成された硬化膜。
 <13> 層間絶縁膜である、<12>に記載の硬化膜。
 <14> <12>または<13>に記載の硬化膜を有する、液晶表示装置。
 <15> <12>または<13>に記載の硬化膜を有する、有機EL表示装置。
 <16> <12>または<13>に記載の硬化膜を有する、タッチパネル表示装置。
<1> (A) A structural unit (a1) having a group in which a carboxy group is protected with an acid-decomposable group and / or a group in which a phenolic hydroxyl group is protected with an acid-decomposable group, and a crosslinkable group A photosensitive resin composition comprising polysiloxane having the structural unit (a2), (B) a photoacid generator that generates an acid having a pKa of 3 or less, and (C) a solvent.
<2> The photosensitive resin composition according to <1>, wherein the acid-decomposable group is an acetal group.
<3> The structural unit (a1) is a structural unit represented by the following general formula (a1-1) and / or a structural unit represented by the following general formula (a1-2), <1> or The photosensitive resin composition as described in <2>.
Figure JPOXMLDOC01-appb-C000003
(In the general formulas (a1-1) and (a1-2), a represents 0 or 1, R 1 and R 2 each independently represents a hydrogen atom, an alkyl group or an aryl group, and R 1 and R 2 at least one of the two represents an alkyl group or an aryl group, R 3 represents an alkyl group or an aryl group, and R 1 or R 2, may form a cyclic ether linked and the R 3, R 4 Represents an alkyl group, an aryl group, or an aralkyl group, L 1 represents a single bond or a divalent linking group, L 2 represents a single bond or a divalent linking group, and R x represents an alkyl Represents a group or a halogen atom, and m1 represents an integer of 0 to 4.)
<4> The photosensitive resin composition according to any one of <1> to <3>, wherein the crosslinkable group included in the structural unit (a2) is a cyclic ether and / or a group having an ethylenically unsaturated bond. .
<5> The structural unit (a2) is a structural unit represented by the following general formula (a2-1) and / or a structural unit represented by the following general formula (a2-2): <4> The photosensitive resin composition according to any one of the above.
Figure JPOXMLDOC01-appb-C000004
(In the general formulas (a2-1) and (a2-2), a represents 0 or 1, R 5 represents an alkyl group, an aryl group or an aralkyl group, and R Y represents an alkyl group or a halogen atom. , L 3 represents a single bond or a divalent linking group, n represents 0 or 1, m2 represents an integer of 0 to 2 when n is 0, and n represents 1 (It represents an integer from 0 to 3, and m3 represents an integer from 0 to 6.)
<6> The photosensitive resin composition according to any one of <1> to <5>, wherein (A) the polysiloxane further contains a structural unit (a3) having an acid group.
<7> The photosensitive resin composition according to <6>, wherein the structural unit (a3) has a carboxy group and / or a phenolic hydroxyl group as an acid group.
<8> The total number of moles of the structural unit (a1) and the moles of the structural unit (a3) and the number of moles of the structural unit (a2) in the total amount of (A) polysiloxane contained in the photosensitive resin composition. The photosensitive resin composition according to <6> or <7>, wherein the ratio is 10:90 to 90:10.
<9> The photosensitive resin composition according to any one of <1> to <8>, wherein the crosslinkable group equivalent in the solid content of the photosensitive resin composition is 1500 or less.
<10> The photosensitive resin composition according to any one of <1> to <9>, wherein (B) the photoacid generator is at least one selected from an onium salt compound, an oxime sulfonate compound, and an imide sulfonate compound. .
<11> A step of applying the photosensitive resin composition according to any one of <1> to <10> on a substrate, a step of removing a solvent from the photosensitive resin composition applied to the substrate, and the solvent is removed. A step of exposing the exposed photosensitive resin composition, a step of developing the exposed photosensitive resin composition, and a step of thermosetting the developed photosensitive resin composition,
The manufacturing method of the cured film containing this.
<12> A cured film obtained by curing the photosensitive resin composition according to any one of <1> to <11>, or a cured film formed by the method for producing a cured film according to <12>.
<13> The cured film according to <12>, which is an interlayer insulating film.
<14> A liquid crystal display device having the cured film according to <12> or <13>.
<15> An organic EL display device having the cured film according to <12> or <13>.
<16> A touch panel display device having the cured film according to <12> or <13>.
 感度が良好で、溶剤耐性に優れる硬化膜を形成できる感光性樹脂組成物を提供可能になった。また、上記感光性樹脂組成物を用いた硬化膜の製造方法、硬化膜、液晶表示装置、有機EL表示装置およびタッチパネル表示装置を提供可能になった。 A photosensitive resin composition capable of forming a cured film having good sensitivity and excellent solvent resistance can be provided. Moreover, the manufacturing method of the cured film using the said photosensitive resin composition, a cured film, a liquid crystal display device, an organic EL display device, and a touch panel display device can be provided now.
液晶表示装置の一例の構成概念図を示す。液晶表示装置におけるアクティブマトリックス基板の模式的断面図を示し、層間絶縁膜である硬化膜17を有している。1 is a conceptual diagram of a configuration of an example of a liquid crystal display device. The schematic sectional drawing of the active matrix substrate in a liquid crystal display device is shown, and it has the cured film 17 which is an interlayer insulation film. 液晶表示装置の他の例の構成概念図である。It is a composition conceptual diagram of other examples of a liquid crystal display. 有機EL表示装置の一例の構成概念図を示す。ボトムエミッション型の有機EL表示装置における基板の模式的断面図を示し、平坦化膜4を有している。1 shows a conceptual diagram of a configuration of an example of an organic EL display device. A schematic cross-sectional view of a substrate in a bottom emission type organic EL display device is shown, and a planarizing film 4 is provided.
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。尚、本願明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書における基(原子団)の表記において、置換および無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 本明細書における固形分濃度とは、25℃における固形分の濃度をいう。また、本明細書における粘度とは、25℃における粘度をいう。
 本明細書において、重量平均分子量および数平均分子量は、GPC測定によるポリスチレン換算値として定義される。本明細書において、重量平均分子量(Mw)及び数平均分子量(Mn)は、例えば、HLC-8220(東ソー(株)製)を用い、カラムとしてTSKgel Super AWM―H(東ソー(株)製、6.0mmID×15.0cmを、溶離液として10mmol/L リチウムブロミドNMP(N-メチルピロリジノン)溶液を用いることによって求めることができる。
Hereinafter, the contents of the present invention will be described in detail. The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments. In the present specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
In the description of the group (atomic group) in this specification, the description which does not describe substitution and non-substitution includes what does not have a substituent and what has a substituent. For example, the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
The solid content concentration in this specification refers to the solid content concentration at 25 ° C. Moreover, the viscosity in this specification means the viscosity in 25 degreeC.
In this specification, a weight average molecular weight and a number average molecular weight are defined as a polystyrene conversion value by GPC measurement. In this specification, the weight average molecular weight (Mw) and the number average molecular weight (Mn) are, for example, HLC-8220 (manufactured by Tosoh Corporation), and TSKgel Super AWM-H (manufactured by Tosoh Corporation, 6) as a column. 0.0 mm ID × 15.0 cm can be determined by using a 10 mmol / L lithium bromide NMP (N-methylpyrrolidinone) solution as the eluent.
[感光性樹脂組成物]
 本発明の感光性樹脂組成物は、(A)カルボキシ基が酸分解性基で保護された基、および/または、フェノール性水酸基が酸分解性基で保護された基を有する構成単位(a1)と、架橋性基を有する構成単位(a2)とを有するポリシロキサンと、(B)pKaが3以下の酸を発生する光酸発生剤と、(C)溶剤とを含有する。
 本発明の感光性樹脂組成物は、上述した(A)ポリシロキサンと、上述した(B)光酸発生剤を含むので、感度が良好で、溶剤耐性に優れる硬化膜を形成できる。また、(A)ポリシロキサンを含ことにより、耐熱性に優れた硬化膜を形成することもできる。本発明の感光性樹脂組成物は、さらに保存安定性、現像性に優れたものとすることもできる。本発明の感光性樹脂組成物は、化学増幅型感光性樹脂組成物として好ましく用いることができる。
[Photosensitive resin composition]
The photosensitive resin composition of the present invention comprises (A) a structural unit (a1) having a group in which a carboxy group is protected with an acid-decomposable group and / or a group in which a phenolic hydroxyl group is protected with an acid-decomposable group. And a polysiloxane having a structural unit (a2) having a crosslinkable group, (B) a photoacid generator that generates an acid having a pKa of 3 or less, and (C) a solvent.
Since the photosensitive resin composition of the present invention contains the above-mentioned (A) polysiloxane and the above-mentioned (B) photoacid generator, a cured film having good sensitivity and excellent solvent resistance can be formed. Moreover, the cured film excellent in heat resistance can also be formed by including (A) polysiloxane. The photosensitive resin composition of the present invention can be further excellent in storage stability and developability. The photosensitive resin composition of the present invention can be preferably used as a chemically amplified photosensitive resin composition.
 本発明の感光性樹脂組成物は、硬化膜の溶剤耐性の観点から、固形分中の架橋性基当量が1500以下であることが好ましく、1000以下がより好ましい。下限は、感度、現像性の観点から、100以上が好ましく、150以上が好ましく、200以上が最も好ましい。
 固形分中の架橋性基当量とは、感光性樹脂組成物の固形分中に架橋性基が1molある場合の固形分の質量(g)である。固形分中の架橋性基当量は、感光性樹脂組成物の固形分を一定量はかり取り、その固形分中に含まれる架橋性基量を測定することで求めることができる。
 例えば、架橋性基がエポキシ基である場合には、JIS K7236:2001に規定されるエポキシ樹脂のエポキシ当量の測定と同様の方法で求めることができる。また、上記以外の他の架橋性基の場合も滴定液を変更すれば、同様の方法にて測定できる。
In the photosensitive resin composition of the present invention, from the viewpoint of solvent resistance of the cured film, the crosslinkable group equivalent in the solid content is preferably 1500 or less, and more preferably 1000 or less. The lower limit is preferably 100 or more, more preferably 150 or more, and most preferably 200 or more, from the viewpoints of sensitivity and developability.
The crosslinkable group equivalent in the solid content is the mass (g) of the solid content when 1 mol of the crosslinkable group is present in the solid content of the photosensitive resin composition. The crosslinkable group equivalent in the solid content can be determined by measuring a certain amount of the solid content of the photosensitive resin composition and measuring the amount of the crosslinkable group contained in the solid content.
For example, when the crosslinkable group is an epoxy group, it can be determined by the same method as the measurement of the epoxy equivalent of the epoxy resin specified in JIS K7236: 2001. Further, in the case of other crosslinkable groups other than those described above, the same method can be used if the titrant is changed.
 以下、本発明の感光性樹脂組成物の各成分についてさらに詳しく説明する。 Hereinafter, each component of the photosensitive resin composition of the present invention will be described in more detail.
<(A)ポリシロキサン>
 本発明の感光性樹脂組成物に用いる(A)ポリシロキサンは、カルボキシ基が酸分解性基で保護された基、および/または、フェノール性水酸基が酸分解性基で保護された基を有する構成単位(a1)と、架橋性基を有する構成単位(a2)とを有する。
<(A) Polysiloxane>
The polysiloxane (A) used in the photosensitive resin composition of the present invention has a structure in which a carboxy group is protected with an acid-decomposable group and / or a phenolic hydroxyl group is protected with an acid-decomposable group. It has a unit (a1) and a structural unit (a2) having a crosslinkable group.
 (A)ポリシロキサンの構造は、特に限定はない。直鎖状、環状、梯子状、網目状いずれでもよく、これらが相互に連結された構造でも良い。梯子状または、網目状の構造を含むことが硬化膜硬度の点で好ましい。 (A) The structure of the polysiloxane is not particularly limited. Any of a straight chain shape, a ring shape, a ladder shape, and a mesh shape may be used, and a structure in which these are connected to each other may be used. It is preferable in terms of hardness of the cured film that a ladder-like or network-like structure is included.
<<カルボキシ基が酸分解性基で保護された基、および/または、フェノール性水酸基が酸分解性基で保護された基を有する構成単位(a1)>>
 (A)ポリシロキサンの構成単位(a1)において、酸分解性基としては、酸により比較的分解し易い基(例えば、後述するエステル構造、テトラヒドロピラニルエステル基、または、テトラヒドロフラニルエステル基等のアセタール系官能基)や酸により比較的分解し難い基(例えば、tert-ブチルエステル基等の第三級アルキル基、tert-ブチルカーボネート基等の第三級アルキルカーボネート基)を用いることができる。これらの基の中でも、アセタール基が好ましい。すなわち、カルボキシル基がアセタール基で保護された保護カルボキシル基、フェノール性水酸基がアセタール基で保護された保護フェノール基が、感光性樹脂組成物の基本物性、特に感度やパターン形状、コンタクトホールの形成性、感光性樹脂組成物の保存安定性の観点から好ましい。
<< Structural Unit (a1) Having a Group in which Carboxy Group is Protected with Acid-Decomposable Group and / or Phenolic Hydroxyl Group is Protected with Acid-decomposable Group >>
(A) In the structural unit (a1) of the polysiloxane, the acid-decomposable group is a group that is relatively easily decomposed by an acid (for example, an acetal such as an ester structure, a tetrahydropyranyl ester group, or a tetrahydrofuranyl ester group described later). A functional group) or a group that is relatively difficult to decompose with an acid (for example, a tertiary alkyl group such as a tert-butyl ester group or a tertiary alkyl carbonate group such as a tert-butyl carbonate group). Among these groups, an acetal group is preferable. That is, the protected carboxyl group in which the carboxyl group is protected with an acetal group, and the protected phenol group in which the phenolic hydroxyl group is protected with an acetal group are the basic physical properties of the photosensitive resin composition, in particular, sensitivity, pattern shape, and contact hole formability. From the viewpoint of storage stability of the photosensitive resin composition, it is preferable.
 (A)ポリシロキサンの構成単位(a1)は、下記一般式(a1-1)で表される構成単位、および/または、下記一般式(a1-2)で表される構成単位であることが好ましい。 (A) The structural unit (a1) of the polysiloxane may be a structural unit represented by the following general formula (a1-1) and / or a structural unit represented by the following general formula (a1-2). preferable.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(a1-1)、(a1-2)中、aは0または1を表し、R1およびR2は、それぞれ独立に、水素原子、アルキル基またはアリール基を表し、R1およびR2の少なくとも一方がアルキル基またはアリール基を表し、R3は、アルキル基またはアリール基を表し、R1またはR2と、R3とが連結して環状エーテルを形成してもよく、R4は、アルキル基、アリール基、または、アラルキル基を表し、L1は、単結合または2価の連結基を表し、L2は、単結合または2価の連結基を表し、Rxは、アルキル基またはハロゲン原子を表し、m1は、0~4の整数を表す。 In general formulas (a1-1) and (a1-2), a represents 0 or 1, R 1 and R 2 each independently represents a hydrogen atom, an alkyl group or an aryl group, and R 1 and R 2 at least one of an alkyl group or an aryl group, R 3 represents an alkyl group or an aryl group, and R 1 or R 2, may form a cyclic ether linked and the R 3, R 4 is , An alkyl group, an aryl group, or an aralkyl group, L 1 represents a single bond or a divalent linking group, L 2 represents a single bond or a divalent linking group, and R x represents an alkyl group Or, it represents a halogen atom, and m1 represents an integer of 0 to 4.
 R1およびR2は、それぞれ独立に、水素原子、アルキル基またはアリール基を表し、R1およびR2の少なくとも一方がアルキル基またはアリール基である。
 アルキル基としては、炭素数1~10のアルキル基が好ましく、炭素数1~8のアルキル基がより好ましく、炭素数1~6のアルキル基がさらに好ましい。アルキル基は、置換基を有していてもよい。また、アルキル基は、直鎖、分岐、環状のいずれであってもよいが、直鎖のアルキル基が好ましい。アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基等が例示される。
 アリール基としては、炭素数6~20のアリール基が好ましく、炭素数6~14のアリール基がより好ましく、炭素数6~10のアリール基がさらに好ましい。アリール基は、置換基を有していてもよい。アリール基としては、例えば、フェニル基、ナフチル基、アントラセニル基等が例示される。
R 1 and R 2 each independently represents a hydrogen atom, an alkyl group or an aryl group, and at least one of R 1 and R 2 is an alkyl group or an aryl group.
As the alkyl group, an alkyl group having 1 to 10 carbon atoms is preferable, an alkyl group having 1 to 8 carbon atoms is more preferable, and an alkyl group having 1 to 6 carbon atoms is more preferable. The alkyl group may have a substituent. The alkyl group may be linear, branched or cyclic, but is preferably a linear alkyl group. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a pentyl group, a hexyl group, and a cyclohexyl group.
As the aryl group, an aryl group having 6 to 20 carbon atoms is preferable, an aryl group having 6 to 14 carbon atoms is more preferable, and an aryl group having 6 to 10 carbon atoms is further preferable. The aryl group may have a substituent. Examples of the aryl group include a phenyl group, a naphthyl group, and an anthracenyl group.
 アルキル基およびアリール基が有していてもよい置換基としては、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のチオアルコキシ基、ヒドロキシル基、シアノ基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)などが挙げられる。これら置換基は、さらに置換基を有していてもよい。 Examples of the substituent that the alkyl group and aryl group may have include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a thioalkoxy group having 1 to 10 carbon atoms, a hydroxyl group, and a cyano group. And halogen atoms (fluorine atom, chlorine atom, bromine atom, iodine atom) and the like. These substituents may further have a substituent.
 これらの中でも、R1およびR2は、水素原子、アルキル基であることが好ましく、水素原子、メチル基であることがより好ましく、R1およびR2の一方がメチル基であり、他方が水素原子であることが特に好ましい。 Among these, R 1 and R 2 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or a methyl group, one of R 1 and R 2 is a methyl group, and the other is a hydrogen atom. Particularly preferred is an atom.
 R3はアルキル基またはアリール基を表す。R3が表すアルキル基、およびアリール基は、R1およびR2におけるアルキル基、アリール基と同義である。R3は、メチル基、エチル基、プロピル基であることが好ましく、エチル基、プロピル基がより好ましい。 R 3 represents an alkyl group or an aryl group. The alkyl group and aryl group represented by R 3 have the same meanings as the alkyl group and aryl group in R 1 and R 2 . R 3 is preferably a methyl group, an ethyl group, or a propyl group, and more preferably an ethyl group or a propyl group.
 R3は、R1またはR2と連結して環状エーテルを形成してもよい。R1またはR2と連結して形成される環状エーテルとしては、3~6員環の環状エーテルが好ましく、5~6員環の環状エーテルがより好ましい。 R 3 may be linked to R 1 or R 2 to form a cyclic ether. The cyclic ether formed by linking to R 1 or R 2 is preferably a 3- to 6-membered cyclic ether, more preferably a 5- to 6-membered cyclic ether.
 R4は、アルキル基、アリール基、または、アラルキル基を表す。
 アルキル基としては、炭素数1~10のアルキル基が好ましく、炭素数1~8のアルキル基がより好ましく、炭素数1~6のアルキル基がさらに好ましい。アルキル基は、置換基を有していてもよい。また、アルキル基は、直鎖、分岐、環状のいずれであってもよい。
 アリール基としては、炭素数6~20のアリール基が好ましく、炭素数6~14のアリール基がより好ましく、炭素数6~10のアリール基がさらに好ましい。アリール基は、置換基を有していてもよい。アリール基としては、例えば、フェニル基、ナフチル基、アントラセニル基等が例示される。
 アラルキル基としては、炭素数1~10のアルキル基の水素原子の一部が、炭素数6~20のアリール基に置換されている基が好ましい。アラルキル基は、置換基を有していてもよい。アラルキル基を構成するアルキル基は、直鎖、分岐、環状のいずれであってもよい。
 アルキル基、アリール基、アラルキル基が有してもよい置換基としては、R1、R2で説明した置換基と同様である。
 R4は、溶剤耐性や耐熱性の観点からメチル基、フェニル基、プロピル基、ブチル基、ヘキシル基が好ましく、メチル基、フェニル基がより好ましい。
R 4 represents an alkyl group, an aryl group, or an aralkyl group.
As the alkyl group, an alkyl group having 1 to 10 carbon atoms is preferable, an alkyl group having 1 to 8 carbon atoms is more preferable, and an alkyl group having 1 to 6 carbon atoms is more preferable. The alkyl group may have a substituent. The alkyl group may be linear, branched or cyclic.
As the aryl group, an aryl group having 6 to 20 carbon atoms is preferable, an aryl group having 6 to 14 carbon atoms is more preferable, and an aryl group having 6 to 10 carbon atoms is further preferable. The aryl group may have a substituent. Examples of the aryl group include a phenyl group, a naphthyl group, and an anthracenyl group.
As the aralkyl group, a group in which a part of hydrogen atoms of an alkyl group having 1 to 10 carbon atoms is substituted with an aryl group having 6 to 20 carbon atoms is preferable. The aralkyl group may have a substituent. The alkyl group constituting the aralkyl group may be linear, branched or cyclic.
The substituents that the alkyl group, aryl group, and aralkyl group may have are the same as the substituents described for R 1 and R 2 .
R 4 is preferably a methyl group, a phenyl group, a propyl group, a butyl group, or a hexyl group, and more preferably a methyl group or a phenyl group, from the viewpoint of solvent resistance or heat resistance.
 Rxは、アルキル基またはハロゲン原子を表す。アルキル基としては、炭素数1~4のアルキル基が好ましい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が好ましい。 R x represents an alkyl group or a halogen atom. As the alkyl group, an alkyl group having 1 to 4 carbon atoms is preferable. As a halogen atom, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are preferable.
 L1およびL2は、単結合または2価の連結基を表す。2価の連結基としては、炭素数1~12のアルキレン基、炭素数1~12のアルキレンオキサイド基、炭素数6~12のアリーレン基が挙げられる。アルキレンオキサイド基、および、アルキレンオキサイド基は、直鎖、分岐、環状のいずれであってもよい。また、アルキレン基、アルキレンオキサイド基、アリーレン基は、置換基を有していてもよい。置換基としては、R1、R2で説明した置換基と同様である。 L 1 and L 2 represent a single bond or a divalent linking group. Examples of the divalent linking group include an alkylene group having 1 to 12 carbon atoms, an alkylene oxide group having 1 to 12 carbon atoms, and an arylene group having 6 to 12 carbon atoms. The alkylene oxide group and the alkylene oxide group may be linear, branched or cyclic. In addition, the alkylene group, alkylene oxide group, and arylene group may have a substituent. Examples of the substituent are the same as those described for R 1 and R 2 .
 上記一般式(a1-2)で表される構成単位は、下記一般式(a1-2-1)で表される構成単位であることが好ましい。 The structural unit represented by the general formula (a1-2) is preferably a structural unit represented by the following general formula (a1-2-1).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(a1-2-1)中、aは0または1を表し、R1およびR2は、それぞれ独立に、水素原子、アルキル基またはアリール基を表し、R1およびR2の少なくとも一方がアルキル基またはアリール基を表し、R3は、アルキル基またはアリール基を表し、R1またはR2と、R3とが連結して環状エーテルを形成してもよく、R4は、アルキル基、アリール基、または、アラルキル基を表し、L2は、単結合または2価の連結基を表し、Rxは、アルキル基またはハロゲン原子を表し、m1は、0~4の整数を表す。 In general formula (a1-2-1), a represents 0 or 1, R 1 and R 2 each independently represents a hydrogen atom, an alkyl group or an aryl group, and at least one of R 1 and R 2 is Represents an alkyl group or an aryl group, R 3 represents an alkyl group or an aryl group, and R 1 or R 2 and R 3 may be linked to form a cyclic ether, and R 4 represents an alkyl group, An aryl group or an aralkyl group is represented, L 2 represents a single bond or a divalent linking group, R x represents an alkyl group or a halogen atom, and m1 represents an integer of 0 to 4.
 構成単位(a1)を得るために使用できるシラン化合物の具体例としては、例えば、以下に示すシラン化合物が挙げられる。 Specific examples of the silane compound that can be used for obtaining the structural unit (a1) include the following silane compounds.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 (A)ポリシロキサン中の構成単位(a1)の割合は、感度の観点から、(A)ポリシロキサンの全繰り返し単位に対して、10~90モル%が好ましく、15~70モル%がより好ましく、20~60モル%がさらに好ましい。 The proportion of the structural unit (a1) in (A) polysiloxane is preferably 10 to 90 mol%, more preferably 15 to 70 mol%, based on the total repeating units of (A) polysiloxane, from the viewpoint of sensitivity. 20 to 60 mol% is more preferable.
<<架橋性基を有する構成単位(a2)>>
 (A)ポリシロキサンの構成単位(a2)は、架橋性基を有する。本発明において、架橋性基とは、熱によって架橋反応を生じうる基を意味する。
 架橋性基は熱により架橋反応が起こるものであれば特に制限無く公知のものを使用できる。中でも熱によりカルボキシ基またはフェノール性水酸基と架橋するものが好ましい。
 例えば、環状エーテル、エチレン性不飽和結合を有する基、ブロックイソシアネート基、アルコキシメチル基、メチロール基、アミノ基などが挙げられる。また、架橋性基は、連結基等を介して結合していてもよい。
 環状エーテルとしては、エポキシ基、オキセタニル基が挙げられる。
 エチレン性不飽和結合を有する基としては、ビニル基、アリル基、メタリル基、メタクリロイル基、アクリロイル基、アリルオキシカルボニル基、メタリルオキシカルボニル基などが挙げられる。
 アルコキシメチル基としては、「-CH2OR」で表される基が挙げられる。Rは炭素原子数1~8のアルキル基を表し、炭素数1~4のアルキル基が好ましく、メチル基がより好ましい。アルキル基は、直鎖、分岐、および、環状のいずれでもよいが、直鎖が好ましい。
 ブロックイソシアネート基は、熱によりイソシアネート基を生成することが可能な基が挙げられる。例えば、ブロック剤とイソシアネート基とを反応させイソシアネート基を保護した基が好ましく例示できる。ブロック剤としては、オキシム化合物、ラクタム化合物、フェノール化合物、アルコール化合物、アミン化合物、活性メチレン化合物、ピラゾール化合物、メルカプタン化合物、イミダゾール系化合物、イミド系化合物等を挙げることができる。また、ブロックイソシアネート基は、90℃~250℃の熱によりイソシアネート基を生成することが可能な基であることが好ましい。
 アミノ基としては、置換基を有するアミノ基であってもよく、無置換のアミノ基であってもよい。
 架橋性基としては、感光性樹脂組成の溶剤耐性をより向上させることができるという理由からエポキシ基、オキセタニル基、およびエチレン性不飽和結合を有する基が好ましく、エポキシ基、またはオキセタニル基がより好ましく、エポキシ基が特に好ましい。
 架橋性基の具体例としては、以下のものが挙げられるが、これらに限定されるものではない。
<< Structural Unit (a2) Having Crosslinkable Group >>
(A) The structural unit (a2) of polysiloxane has a crosslinkable group. In the present invention, the crosslinkable group means a group capable of causing a crosslinking reaction by heat.
Any known crosslinkable group can be used without particular limitation as long as it undergoes a crosslinking reaction by heat. Among these, those that crosslink with a carboxy group or a phenolic hydroxyl group by heat are preferred.
Examples thereof include cyclic ethers, groups having an ethylenically unsaturated bond, blocked isocyanate groups, alkoxymethyl groups, methylol groups, amino groups, and the like. The crosslinkable group may be bonded via a linking group or the like.
Examples of the cyclic ether include an epoxy group and an oxetanyl group.
Examples of the group having an ethylenically unsaturated bond include vinyl group, allyl group, methallyl group, methacryloyl group, acryloyl group, allyloxycarbonyl group, and methallyloxycarbonyl group.
Examples of the alkoxymethyl group include a group represented by “—CH 2 OR”. R represents an alkyl group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms, and more preferably a methyl group. The alkyl group may be linear, branched or cyclic, but is preferably linear.
Examples of the blocked isocyanate group include a group capable of generating an isocyanate group by heat. For example, a group obtained by reacting a blocking agent with an isocyanate group to protect the isocyanate group can be preferably exemplified. Examples of the blocking agent include oxime compounds, lactam compounds, phenol compounds, alcohol compounds, amine compounds, active methylene compounds, pyrazole compounds, mercaptan compounds, imidazole compounds, imide compounds, and the like. The blocked isocyanate group is preferably a group capable of generating an isocyanate group by heat at 90 ° C. to 250 ° C.
The amino group may be an amino group having a substituent or an unsubstituted amino group.
As the crosslinkable group, an epoxy group, an oxetanyl group, and a group having an ethylenically unsaturated bond are preferable because the solvent resistance of the photosensitive resin composition can be further improved, and an epoxy group or an oxetanyl group is more preferable. An epoxy group is particularly preferred.
Specific examples of the crosslinkable group include the following, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式中*は、他の基との連結部分を表す。 In the formula, * represents a connecting part with another group.
 構成単位(a2)は、1つの構成単位中に架橋性基を少なくとも1個有していればよく、1~3個有していることが好ましく、1個がより好ましい。構成単位(a2)が架橋性基を複数有する場合は、すべて同一種類であってもよく、異なる種類であってもよい。架橋性基を複数含む場合は、同一の種類であることが好ましい。 The structural unit (a2) may have at least one crosslinkable group in one structural unit, preferably 1 to 3 and more preferably 1. When the structural unit (a2) has a plurality of crosslinkable groups, they may all be of the same type or different types. When a plurality of crosslinkable groups are included, the same kind is preferable.
 構成単位(a2)としては、下記一般式(a2’)で表される構成単位が挙げられる。 Examples of the structural unit (a2) include structural units represented by the following general formula (a2 ′).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 一般式(a2’)中、aは0または1を表し、R5は、アルキル基、アリール基またはアラルキル基を表し、L3は、単結合、または、2価の連結基を表し、Xは架橋性基を表す。 In general formula (a2 ′), a represents 0 or 1, R 5 represents an alkyl group, an aryl group or an aralkyl group, L 3 represents a single bond or a divalent linking group, and X represents Represents a crosslinkable group.
 構成単位(a2)は、硬化膜特性の観点から、下記一般式(a2-1)で表される構成単位、および/または、下記一般式(a2-2)で表される構成単位であることが好ましい。また、下記一般式(a2-2)で表される構成単位は、下記一般式(a2-2-1)で表される構成単位であることがより好ましい。 The structural unit (a2) is a structural unit represented by the following general formula (a2-1) and / or a structural unit represented by the following general formula (a2-2) from the viewpoint of cured film properties. Is preferred. The structural unit represented by the following general formula (a2-2) is more preferably a structural unit represented by the following general formula (a2-2-1).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 一般式(a2-1)、(a2-2)および(a2-2-1)中、aは0または1を表し、R5は、アルキル基、アリール基またはアラルキル基を表し、RYは、アルキル基またはハロゲン原子を表し、L3は、単結合、または、2価の連結基を表し、nは、0または1を表し、m2は、nが0の場合は0~2の整数を表し、nが1の場合は0~3の整数を表し、m3は、0~6の整数を表す。 In general formulas (a2-1), (a2-2), and (a2-2-1), a represents 0 or 1, R 5 represents an alkyl group, an aryl group, or an aralkyl group, and R Y represents Represents an alkyl group or a halogen atom; L 3 represents a single bond or a divalent linking group; n represents 0 or 1; and m2 represents an integer of 0 to 2 when n is 0. , N represents an integer of 0 to 3, and m3 represents an integer of 0 to 6.
 R5は、アルキル基、アリール基またはアラルキル基を表す。アルキル基、アリール基、アラルキル基としては、上述した(a1-1)及び(a1-2)のR4で説明した範囲と同様であり、好ましい範囲も同様である。 R 5 represents an alkyl group, an aryl group or an aralkyl group. The alkyl group, aryl group and aralkyl group are the same as the ranges described for R 4 in the above (a1-1) and (a1-2), and the preferred ranges are also the same.
 L3は、単結合、または、2価の連結基を表す。2価の連結基としては、(a1-1)のL1及び(a1-2)のL2で説明した範囲と同様であり、好ましい範囲も同様である。 L 3 represents a single bond or a divalent linking group. The divalent linking group is the same as the range described for L 1 of (a1-1) and L 2 of (a1-2), and the preferred range is also the same.
 RYは、アルキル基またはハロゲン原子を表す。アルキル基、および、ハロゲン原子としては、上述した(a1-2)のRxで説明した範囲と同様であり、好ましい範囲も同様である。 R Y represents an alkyl group or a halogen atom. The alkyl group and the halogen atom are the same as the range described for R x in (a1-2) described above, and the preferred range is also the same.
 nは、0または1を表し、0が好ましい。 N represents 0 or 1, and 0 is preferable.
 m2は、nが0の場合は0~2の整数を表し、nが1の場合は0~3の整数を表す。m2は0が好ましい。 M2 represents an integer of 0 to 2 when n is 0, and represents an integer of 0 to 3 when n is 1. m2 is preferably 0.
 m3は、0~6の整数を表し、0が好ましい。 M3 represents an integer of 0 to 6, preferably 0.
 構成単位(a2)を得るために使用できるシランの具体例としては、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランなどを挙げることができる。また、以下に示すシラン化合物を用いることもできる。 Specific examples of silanes that can be used to obtain the structural unit (a2) include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, and 3-methacryloxy. Mention may be made of propyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, etc. . Moreover, the silane compound shown below can also be used.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 (A)ポリシロキサン中の構成単位(a2)の割合は、硬化膜特性の観点から、(A)ポリシロキサンの全繰り返し単位に対して、10~90モル%が好ましく、15~70モル%がより好ましく、25~65モル%がさらに好ましい。 The proportion of the structural unit (a2) in (A) polysiloxane is preferably 10 to 90 mol%, and preferably 15 to 70 mol%, based on the cured film properties, with respect to all repeating units of (A) polysiloxane. More preferred is 25 to 65 mol%.
<<酸基を有する構成単位(a3)>>
 (A)ポリシロキサンは、酸基を有する構成単位(a3)を含んでいてもよい。本発明における酸基とは、(A)ポリシロキサンに対しアルカリ性現像液への溶解性を付与または向上させる基を意味する。具体的な酸基としては、カルボキシル基、スルホンアミド基、ホスホニル基、スルホニル基、フェノール性水酸基、スルホンアミド基、スルホニルイミド基が例示され、好ましい酸基としては、カルボキシル基、およびフェノール性水酸基が挙げられる。
 酸基を有する構成単位(a3)としては、例えば、以下の一般式(a3-1)で表される構造、および/または、一般式(a3-2)で表される構造が好ましい具体例として挙げられる。
<< Structural Unit (a3) Having Acid Group >>
(A) The polysiloxane may contain the structural unit (a3) having an acid group. The acid group in the present invention means a group that imparts or improves the solubility of (A) polysiloxane in an alkaline developer. Specific examples of the acid group include a carboxyl group, a sulfonamide group, a phosphonyl group, a sulfonyl group, a phenolic hydroxyl group, a sulfonamide group, and a sulfonylimide group. Preferred acid groups include a carboxyl group and a phenolic hydroxyl group. Can be mentioned.
As the structural unit (a3) having an acid group, for example, a structure represented by the following general formula (a3-1) and / or a structure represented by the general formula (a3-2) are preferable specific examples. Can be mentioned.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 (一般式(a3-1)、(a3-2)中、aは0または1を表し、R6は、アルキル基、アリール基、または、アラルキル基を表し、L4は、単結合または2価の連結基を表し、L5は、単結合または2価の連結基を表し、Rzは、アルキル基またはハロゲン原子を表し、m4は、0~4の整数を表す。) (In the general formulas (a3-1) and (a3-2), a represents 0 or 1, R 6 represents an alkyl group, an aryl group, or an aralkyl group, and L 4 represents a single bond or a divalent group. L 5 represents a single bond or a divalent linking group, R z represents an alkyl group or a halogen atom, and m4 represents an integer of 0 to 4.)
 R6は、アルキル基、アリール基、または、アラルキル基を表す。アルキル基、アリール基、アラルキル基としては、上述した(a1-1)及び(a1-2)のR4で説明した範囲と同様であり、好ましい範囲も同様である。 R 6 represents an alkyl group, an aryl group, or an aralkyl group. The alkyl group, aryl group and aralkyl group are the same as the ranges described for R 4 in the above (a1-1) and (a1-2), and the preferred ranges are also the same.
 L4は、単結合、または、2価の連結基を表す。2価の連結基としては、(a1-1)のL1で説明した範囲と同様であり、好ましい範囲も同様である。 L 4 represents a single bond or a divalent linking group. The divalent linking group is the same as the range described for L 1 in (a1-1), and the preferred range is also the same.
 L5は、単結合、または、2価の連結基を表す。2価の連結基としては、(a1-2)のL2で説明した範囲と同様であり、好ましい範囲も同様である。 L 5 represents a single bond or a divalent linking group. The divalent linking group is the same as the range described for L 2 in (a1-2), and the preferred range is also the same.
 Rzは、アルキル基またはハロゲン原子を表す。アルキル基、および、ハロゲン原子としては、上述した(a1-2)のRxで説明した範囲と同様であり、好ましい範囲も同様である。 R z represents an alkyl group or a halogen atom. The alkyl group and the halogen atom are the same as the range described for R x in (a1-2) described above, and the preferred range is also the same.
 上記一般式(a3-2)で表される構成単位は、下記一般式(a3-2-1)で表される構成単位であることが好ましい。 The structural unit represented by the general formula (a3-2) is preferably a structural unit represented by the following general formula (a3-2-1).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 一般式(a3-2-1)中、aは0または1を表し、R6は、アルキル基、アリール基、または、アラルキル基を表し、L5は、単結合または2価の連結基を表し、Rzは、アルキル基またはハロゲン原子を表し、m4は、0~4の整数を表す。 In general formula (a3-2-1), a represents 0 or 1, R 6 represents an alkyl group, an aryl group, or an aralkyl group, and L 5 represents a single bond or a divalent linking group. , R z represents an alkyl group or a halogen atom, and m4 represents an integer of 0-4.
 構成単位(a3)を得るために使用できるシラン化合物としては、構成単位(a1)を得るために使用できるシラン化合物と同様のものを使用できる。 As the silane compound that can be used to obtain the structural unit (a3), the same silane compound that can be used to obtain the structural unit (a1) can be used.
 (A)ポリシロキサン中の構成単位(a3)の割合は、感度の観点から、(A)ポリシロキサンの全繰り返し単位に対して、0~50モル%が好ましく、1~40モル%がより好ましく、5~25モル%が特に好ましい。 The proportion of the structural unit (a3) in (A) polysiloxane is preferably 0 to 50 mol%, more preferably 1 to 40 mol%, based on the total repeating units of (A) polysiloxane, from the viewpoint of sensitivity. 5 to 25 mol% is particularly preferred.
<<他の構成単位(a4)>>
 (A)ポリシロキサンは、上述した構成単位(a1)~(a3)以外の構成単位(a4)を含むことができる。
 ポリシロキサン(a)中の構成単位(a4)の割合は、現像性、および、硬化膜特性の観点から、(A)ポリシロキサンの全繰り返し単位に対して、0~40モル%が好ましく、0~25モル%がより好ましく、1~20モル%が特に好ましい。
<< Other structural unit (a4) >>
(A) The polysiloxane may contain a structural unit (a4) other than the structural units (a1) to (a3) described above.
The proportion of the structural unit (a4) in the polysiloxane (a) is preferably 0 to 40 mol% with respect to all repeating units of the (A) polysiloxane, from the viewpoint of developability and cured film properties. More preferred is ˜25 mol%, particularly preferred is 1 to 20 mol%.
 構成単位(a4)としては、例えば、以下の一般式(a4-1)で表される構造が好ましい具体例として挙げられる。 As the structural unit (a4), for example, a structure represented by the following general formula (a4-1) can be mentioned as a preferred specific example.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 一般式(a4-1)中、aは0~3の整数を表し、bは0~3の整数を表す。ただし0≦a+b≦3である。R7およびR8は、それぞれ独立に、アルキル基、アリール基、または、アラルキル基を表す。 In general formula (a4-1), a represents an integer of 0 to 3, and b represents an integer of 0 to 3. However, 0 ≦ a + b ≦ 3. R 7 and R 8 each independently represents an alkyl group, an aryl group, or an aralkyl group.
 R7、R8が示すアルキル基、アリール基、アラルキル基としては、上述した(a1-1)及び(a1-2)のR4で説明した範囲と同様であり、好ましい範囲も同様である。 The alkyl group, aryl group and aralkyl group represented by R 7 and R 8 are the same as the ranges described for R 4 in the above (a1-1) and (a1-2), and the preferred ranges are also the same.
 構成単位(a4)を得るために使用できるシラン化合物としては、アルコキシシラン化合物、クロロシラン化合物などが挙られる。具体的には、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシラン、トリフルオロプロピルトリメトキシシランなどを挙げることができる。また、以下に示すシラン化合物を用いることもできる。 Examples of silane compounds that can be used to obtain the structural unit (a4) include alkoxysilane compounds and chlorosilane compounds. Specific examples include methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, hexyltriethoxysilane, decyltrimethoxysilane, trifluoropropyltrimethoxysilane, and the like. Moreover, the silane compound shown below can also be used.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 本発明で用いる(A)ポリシロキサンは、感光性樹脂組成物に含まれる(A)ポリシロキサン全量中、構成単位(a1)のモル数および構成単位(a3)のモル数の合計と、構成単位(a2)のモル数の比が、10:90~90:10であることが好ましく30:70~70:30であることがより好ましく、40:60~60:40であることが更に好ましい。構成単位(a1)のモル数および構成単位(a3)のモル数の合計と、構成単位(a2)のモル数との比が上記範囲であれば、溶剤耐性に優れた硬化膜を形成できる。 The (A) polysiloxane used in the present invention is the total of the number of moles of the structural unit (a1) and the number of moles of the structural unit (a3) in the total amount of (A) polysiloxane contained in the photosensitive resin composition, and the structural unit. The molar ratio of (a2) is preferably 10:90 to 90:10, more preferably 30:70 to 70:30, and still more preferably 40:60 to 60:40. If the ratio between the total number of moles of the structural unit (a1) and the moles of the structural unit (a3) and the mole number of the structural unit (a2) is in the above range, a cured film having excellent solvent resistance can be formed.
 本発明で用いる(A)ポリシロキサンは、ポリシロキサンの重合時に残ったシラノール基を含んでいてもよい。(A)ポリシロキサン全量中のシラノール基の数は、(A)ポリシロキサン中のSi原子数に対して0~0.5倍が好ましく、0~0.2倍が好ましく、0~0.05倍が最も好ましい。シラノール基の数が上記範囲であれば、感光性樹脂組成物の保存安定性が良好である。なお、ここでいう(A)ポリシロキサン全量中のシラノール基の数とは、(A)ポリシロキサン全量中に含まれる、シラノール基の数の合計値を意味する。Si原子数についても同様である。 The (A) polysiloxane used in the present invention may contain silanol groups remaining during polymerization of the polysiloxane. The number of silanol groups in the total amount of (A) polysiloxane is preferably 0 to 0.5 times, preferably 0 to 0.2 times, and preferably 0 to 0.05 times the number of Si atoms in (A) polysiloxane. Double is most preferred. When the number of silanol groups is in the above range, the storage stability of the photosensitive resin composition is good. Here, (A) the number of silanol groups in the total amount of polysiloxane means the total number of silanol groups contained in the total amount of (A) polysiloxane. The same applies to the number of Si atoms.
 (A)ポリシロキサンは、各構成単位に対応するシラン化合物や、オリゴシロキサンを混合および反応させることによって得られる。例えば対応するトリメトキシシランやジメトキシシランを加水分解、縮合させることによって得られる。加水分解、縮合は公知の方法、条件で適宜行うことができる。例えば、特開平10-324748号公報(特に0085段落~0087段落)、特開2005-283991号公報(特に0052段落~054段落)、特開2006ー276598号公報(特に0009段落~0030段落)等に記載された手順や条件を参考にすることができる。
 上述した構成単位(a1)の酸分解性基は、保護されたシラン化合物を用いて導入してもよいし、高分子反応で導入してもよい。
 なお、特開平10-324748号公報(特に0085段落~0087段落)に記載のように、(A)ポリシロキサンに、カルボキシ基を含む構成単位を導入する場合には、対応するカルボン酸のアルキルエステルを有するシランを用いてポリシロキサンを合成し、アルキルエステルを一般的な方法で加水分解してカルボキシ基を有する構成単位を得ることが好ましい。
 また、(A)ポリシロキサンに、フェノール性水酸基が酸分解性基で保護された基を有する構成単位を導入するには、フェノール性水酸基を有するポリシロキサンを合成後、所謂高分子反応で、酸分解性基を導入してフェノール性水酸基を保護することが好ましい。
 本発明の感光性樹脂組成物において、(A)ポリシロキサンは、感光性樹脂組成物中の固形分中、50~99.9質量%であることが好ましく、60~99質量%がより好ましく、70~98質量%がさらに好ましい。(A)ポリシロキサンは、2種以上を併用することもできる。2種以上併用する場合は、その合計量が上記範囲となることが好ましい。
(A) A polysiloxane is obtained by mixing and reacting a silane compound corresponding to each structural unit or an oligosiloxane. For example, it can be obtained by hydrolysis and condensation of the corresponding trimethoxysilane or dimethoxysilane. Hydrolysis and condensation can be appropriately performed by known methods and conditions. For example, Japanese Patent Application Laid-Open No. 10-324748 (especially 0085 paragraph to 0087 paragraph), Japanese Patent Application Laid-Open No. 2005-283939 (especially 0052 paragraph to 054 paragraph), Japanese Patent Application Laid-Open No. 2006-276598 (particularly 0009 paragraph to 0030 paragraph), etc. The procedures and conditions described in can be referred to.
The acid-decomposable group of the structural unit (a1) described above may be introduced using a protected silane compound or may be introduced by a polymer reaction.
As described in JP-A-10-324748 (particularly paragraphs 0085 to 0087), when a structural unit containing a carboxy group is introduced into (A) polysiloxane, the corresponding alkyl ester of carboxylic acid is used. It is preferable to synthesize a polysiloxane using a silane having an alkyl group and hydrolyze the alkyl ester by a general method to obtain a structural unit having a carboxy group.
In addition, in order to introduce a structural unit having a group in which a phenolic hydroxyl group is protected with an acid-decomposable group into (A) polysiloxane, after synthesizing a polysiloxane having a phenolic hydroxyl group, a so-called polymer reaction is performed. It is preferable to introduce a decomposable group to protect the phenolic hydroxyl group.
In the photosensitive resin composition of the present invention, the polysiloxane (A) is preferably 50 to 99.9% by mass, more preferably 60 to 99% by mass, based on the solid content in the photosensitive resin composition. More preferred is 70 to 98% by mass. (A) Polysiloxane can also use 2 or more types together. When using 2 or more types together, it is preferable that the total amount becomes the said range.
 <他のポリシロキサン>
 本発明の感光性樹脂組成物は、上述した(A)ポリシロキサン以外のポリシロキサン(以下、他のポリシロキサンという)を加えることができる。
 他のポリシロキサンとしては、上述した構成単位(a1)を含み、上述した構成単位(a2)を含まないポリシロキサン、上述した構成単位(a2)を含み、上述した構成単位(a1)を含まないポリシロキサンなどが挙げられる。これらは、本発明の趣旨を逸脱しない範囲で含んでいても良い。
 また、他のポリシロキサンとして、上述した構成単位(a2)を含み、上述した構成単位(a1)を含まないポリシロキサンの含有量は、(A)ポリシロキサン100質量部に対して5質量部以下が好ましく、3質量部以下がより好ましく、実質的に含有しない構成とすることもできる。このような構成とすることにより、硬化膜の溶剤耐性をより向上させることができる。尚、実質的に含有しないとは、例えば、(A)ポリシロキサン100質量部に対して、1質量部以下であることをいう。
 本発明の感光性樹脂組成物において、(A)ポリシロキサンと、他のポリシロキサンとの合計量は、感光性樹脂組成物中の固形分中、50~99.9質量%であることが好ましく、60~99質量%がより好ましく、70~98質量%がさらに好ましい。
<Other polysiloxanes>
To the photosensitive resin composition of the present invention, a polysiloxane other than the above-described (A) polysiloxane (hereinafter referred to as other polysiloxane) can be added.
The other polysiloxane includes the above-described structural unit (a1), does not include the above-described structural unit (a2), includes the above-described structural unit (a2), and does not include the above-described structural unit (a1). Examples thereof include polysiloxane. These may be included without departing from the spirit of the present invention.
Moreover, content of polysiloxane which does not contain the structural unit (a1) mentioned above as another polysiloxane and does not contain the structural unit (a1) mentioned above is 5 mass parts or less with respect to 100 mass parts of (A) polysiloxane. Is preferable, 3 mass parts or less are more preferable, and it can also be set as the structure which does not contain substantially. By setting it as such a structure, the solvent tolerance of a cured film can be improved more. In addition, substantially not containing means that it is 1 mass part or less with respect to 100 mass parts of (A) polysiloxane, for example.
In the photosensitive resin composition of the present invention, the total amount of (A) polysiloxane and other polysiloxanes is preferably 50 to 99.9% by mass in the solid content in the photosensitive resin composition. 60 to 99% by mass is more preferable, and 70 to 98% by mass is more preferable.
<(B)光酸発生剤>
 本発明の感光性樹脂組成物は、(B)光酸発生剤を含有する。本発明で使用される(B)光酸発生剤は、pKaが3以下の酸を発生するものであり、pKaが2以下の酸を発生するものがより好ましい。なお本発明のpKaは、基本的に25℃の水中におけるpKaを指す。水中で測定できないものは、測定に適する溶剤に変更し測定したものを指す。具体的には、化学便覧等に記載のpKaが参考にできる。pKaが3以下の酸としては、スルホン酸またはホスホン酸であることが好ましく、スルホン酸であることがより好ましい。
<(B) Photoacid generator>
The photosensitive resin composition of the present invention contains (B) a photoacid generator. The photoacid generator (B) used in the present invention generates an acid having a pKa of 3 or less, and more preferably generates a acid having a pKa of 2 or less. In addition, pKa of this invention points out pKa in water of 25 degreeC fundamentally. Those that cannot be measured in water refer to those measured after changing to a solvent suitable for measurement. Specifically, the pKa described in the chemical handbook can be referred to. The acid having a pKa of 3 or less is preferably sulfonic acid or phosphonic acid, and more preferably sulfonic acid.
 (B)光酸発生剤は、波長300nm以上、好ましくは波長300~450nmの活性光線に感応し、酸を発生する化合物が好ましいが、その化学構造に制限されるものではない。また、波長300nm以上の活性光線に直接感応しない光酸発生剤についても、増感剤と併用することによって波長300nm以上の活性光線に感応し、酸を発生する化合物であれば、増感剤と組み合わせて好ましく用いることができる。 (B) The photoacid generator is preferably a compound that reacts with actinic rays having a wavelength of 300 nm or more, preferably 300 to 450 nm, and generates an acid, but is not limited to its chemical structure. Further, a photoacid generator that is not directly sensitive to an actinic ray having a wavelength of 300 nm or more can also be used as a sensitizer if it is a compound that reacts with an actinic ray having a wavelength of 300 nm or more and generates an acid when used in combination with a sensitizer. It can be preferably used in combination.
 (B)光酸発生剤の例として、オニウム塩化合物、トリクロロメチル-s-トリアジン類、ジアゾメタン化合物、イミドスルホネート化合物、オキシムスルホネート化合物、および、イミドスルホネート化合物などを挙げることができる。これらの中でも、感度、現像性の観点から、オニウム塩化合物、オキシムスルホネート化合物、およびイミドスルホネート化合物から選ばれる1種以上が好ましく、オキシムスルホネート化合物、および、イミドスルホネート化合物から選ばれる1種以上がより好ましい。これら光酸発生剤は、1種単独または2種類以上を組み合わせて使用することができる。トリクロロメチル-s-トリアジン類、ジアリールヨードニウム塩類、トリアリールスルホニウム塩類、第四級アンモニウム塩類、およびジアゾメタン誘導体の具体例としては、特開2011-221494号公報の段落番号0083~0088に記載の化合物が例示できる。 (B) Examples of the photoacid generator include onium salt compounds, trichloromethyl-s-triazines, diazomethane compounds, imide sulfonate compounds, oxime sulfonate compounds, and imide sulfonate compounds. Among these, from a sensitivity and developability viewpoint, 1 or more types chosen from an onium salt compound, an oxime sulfonate compound, and an imide sulfonate compound are preferable, and 1 or more types chosen from an oxime sulfonate compound and an imide sulfonate compound are more. preferable. These photoacid generators can be used singly or in combination of two or more. Specific examples of trichloromethyl-s-triazines, diaryliodonium salts, triarylsulfonium salts, quaternary ammonium salts, and diazomethane derivatives include the compounds described in paragraph numbers 0083 to 0088 of JP2011-212494A. It can be illustrated.
 オニウム塩化合物としては、スルホニウム塩やヨードニウム塩、第四級アンモニウム塩類が好ましい。また、下記一般式(1)および/または一般式(2)で表される光酸発生剤であることがより好ましい。 As the onium salt compound, a sulfonium salt, an iodonium salt, or a quaternary ammonium salt is preferable. Moreover, it is more preferable that it is a photo-acid generator represented by the following general formula (1) and / or general formula (2).
Figure JPOXMLDOC01-appb-C000016
(式中、R5、R6およびR7はそれぞれ独立にアルキル基またはアリール基を表し、アルキル基を表す場合、互いに連結し環を形成してもよく、ヘテロ原子を介して環を形成していてもよい。R8およびR9はそれぞれ独立にアリール基を表し、X-は共役塩基を表す。)
Figure JPOXMLDOC01-appb-C000016
(In the formula, R 5 , R 6 and R 7 each independently represent an alkyl group or an aryl group, and in the case of representing an alkyl group, they may be linked to each other to form a ring, R 8 and R 9 each independently represents an aryl group, and X represents a conjugate base.)
 R5、R6およびR7はそれぞれ独立にアルキル基またはアリール基を表し、アルキル基またはアリール基は置換基を有していてもよい。置換基としては、炭素数1~10のアリール基、炭素数1~10のチオアリール基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のチオアルコキシ基、ヒドロキシル基、シアノ基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)などが挙げられる。これら置換基は、さらに置換基を有していてもよい。
 一般式(1)中、R5、R6およびR7がそれぞれ表すアルキル基としては、炭素数1~10のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましく、炭素数1~4のアルキル基がさらに好ましい。アルキル基としては、例えば、メチル基、エチル基、t-ブチル基などが挙げられる。また、一般式(1)中、R5、R6およびR7のうち、2つ以上がアルキル基の場合、その2つ以上のアルキル基が互いに連結し環を形成してもよく、ヘテロ原子(例えば酸素原子、硫黄原子など)を介して環を形成していてもよい。そのような環形態としては硫黄原子を含んだ形で5員環(チアシクロペンタン)、または6員環(チアシクロヘキサン)が好ましい。アルキル基は、置換基を有していてもよい。
 一般式(1)中、R5、R6およびR7がそれぞれ表すアリール基としては、炭素数6~15のアリール基が好ましく、炭素数6~10のアリール基がより好ましい。アリール基は、置換基を有していてもよい。アリール基としては、フェニル基、ナフチル基、4-メトキシフェニル基、4-クロロフェニル基、4-メチルフェニル基、4-ターシャリーブチルフェニル基、4-フェニルチオフェニル基、2,4,6-トリメチルフェニル基、4-メトキシ-1-ナフチル基が挙げられる。中でも、フェニル基、4-メトキシフェニル基、4-クロロフェニル基が好ましい。
 R5、R6およびR7はアリール基であることが好ましく、同一の基を表すことが好ましい。
R 5 , R 6 and R 7 each independently represents an alkyl group or an aryl group, and the alkyl group or aryl group may have a substituent. Examples of the substituent include an aryl group having 1 to 10 carbon atoms, a thioaryl group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a thioalkoxy group having 1 to 10 carbon atoms. , Hydroxyl group, cyano group, halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom) and the like. These substituents may further have a substituent.
In general formula (1), the alkyl groups represented by R 5 , R 6 and R 7 are each preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, More preferred is an alkyl group of 4. Examples of the alkyl group include a methyl group, an ethyl group, and a t-butyl group. In the general formula (1), when two or more of R 5 , R 6 and R 7 are alkyl groups, the two or more alkyl groups may be linked to each other to form a ring. A ring may be formed via (for example, an oxygen atom, a sulfur atom, etc.). Such a ring form is preferably a 5-membered ring (thiacyclopentane) or a 6-membered ring (thiacyclohexane) containing a sulfur atom. The alkyl group may have a substituent.
In the general formula (1), the aryl groups represented by R 5 , R 6 and R 7 are each preferably an aryl group having 6 to 15 carbon atoms, and more preferably an aryl group having 6 to 10 carbon atoms. The aryl group may have a substituent. Aryl groups include phenyl, naphthyl, 4-methoxyphenyl, 4-chlorophenyl, 4-methylphenyl, 4-tertiarybutylphenyl, 4-phenylthiophenyl, 2,4,6-trimethyl. Examples thereof include a phenyl group and a 4-methoxy-1-naphthyl group. Of these, a phenyl group, a 4-methoxyphenyl group, and a 4-chlorophenyl group are preferable.
R 5 , R 6 and R 7 are preferably aryl groups, and preferably represent the same group.
 一般式(1)中、X-は共役塩基を表す。共役塩基は、アルキルスルホン酸の共役塩基、アリールスルホン酸の共役塩基、ビスパーフルオロスルホニルアミドの共役塩基を表し、特にアルキルスルホン酸およびアリールスルホン酸の共役塩基が好ましい。そのような共役塩基としては、炭素数1~7のアルキルスルホン酸の共役塩基が好ましく、更に炭素数1~4の共役塩基がより好ましく、酸の形で表記すると例えば、メタンスルホン酸、トリフルオロメタンスルホン酸、n-プロパンスルホン酸、ヘプタンスルホン酸が特に好ましい。アリールスルホン酸の共役塩基としては、酸の形で表記すると例えば、ベンゼンスルホン酸、クロロベンゼンスルホン酸、パラトルエンスルホン酸が特に好ましい。 In the general formula (1), X represents a conjugate base. The conjugate base represents a conjugate base of an alkyl sulfonic acid, a conjugate base of an aryl sulfonic acid, or a conjugate base of a bisperfluorosulfonylamide, and a conjugate base of an alkyl sulfonic acid or an aryl sulfonic acid is particularly preferable. As such a conjugated base, a conjugated base of an alkyl sulfonic acid having 1 to 7 carbon atoms is preferable, and a conjugated base having 1 to 4 carbon atoms is more preferable. Particularly preferred are sulfonic acid, n-propanesulfonic acid and heptanesulfonic acid. As the conjugate base of the aryl sulfonic acid, for example, benzene sulfonic acid, chlorobenzene sulfonic acid, and paratoluene sulfonic acid are particularly preferable when expressed in an acid form.
 一般式(2)中、R8およびR9がそれぞれ独立に表わすアリール基は、一般式(1)中のR5、R6およびR7が表わすアリール基と同義であり、好ましい範囲も同様である。
 R8およびR9は、具体的にはフェニル基、4-メトキシフェニル基、4-クロロフェニル基が特に好ましい。また、R8およびR9は、同一の基を表すことが好ましい。
 一般式(1)中、X-が表わす共役塩基は、一般式(1)中のX-と同義であり、好ましい範囲も同様である。
In general formula (2), the aryl groups independently represented by R 8 and R 9 are the same as the aryl groups represented by R 5 , R 6 and R 7 in general formula (1), and the preferred ranges are also the same. is there.
Specifically, R 8 and R 9 are particularly preferably a phenyl group, a 4-methoxyphenyl group, and a 4-chlorophenyl group. R 8 and R 9 preferably represent the same group.
In general formula (1), the conjugate base represented by X has the same meaning as X in general formula (1), and the preferred range is also the same.
 オニウム塩化合物の具体例としては、4,7-ジ-n-ブトキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネートなどが挙げられる。また、下記の化合物が挙げられる。 Specific examples of the onium salt compound include 4,7-di-n-butoxy-1-naphthyltetrahydrothiophenium trifluoromethanesulfonate. Moreover, the following compound is mentioned.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 オキシムスルホネート化合物、すなわち、オキシムスルホネート構造を有する化合物としては、下記一般式(B1)で表されるオキシムスルホネート構造を含有する化合物が好ましく例示できる。 Preferred examples of the oxime sulfonate compound, that is, a compound having an oxime sulfonate structure include compounds having an oxime sulfonate structure represented by the following general formula (B1).
Figure JPOXMLDOC01-appb-C000018
(一般式(B1)中、R21は、アルキル基、または、アリール基を表す。波線は他の基との結合を表す。)
Figure JPOXMLDOC01-appb-C000018
(In the general formula (B1), R 21 represents an alkyl group or an aryl group. The wavy line represents a bond with another group.)
 R21におけるアルキル基、アリール基は、いずれの基も置換されてもよい。R21におけるアルキル基は直鎖状でも分岐状でも環状でもよい。許容される置換基は以下に説明する。
 R21のアルキル基としては、炭素数1~10の、直鎖状または分岐状アルキル基が好ましい。R21のアルキル基は、ハロゲン原子、炭素数6~11のアリール基、炭素数1~10のアルコキシ基、または、シクロアルキル基(7,7-ジメチル-2-オキソノルボルニル基などの有橋式脂環基を含む、好ましくはビシクロアルキル基等)で置換されてもよい。
 R21のアリール基としては、炭素数6~11のアリール基が好ましく、フェニル基またはナフチル基がより好ましい。R21のアリール基は、低級アルキル基、アルコキシ基あるいはハロゲン原子で置換されてもよい。
Any group of the alkyl group and aryl group in R 21 may be substituted. The alkyl group in R 21 may be linear, branched or cyclic. Acceptable substituents are described below.
The alkyl group for R 21 is preferably a linear or branched alkyl group having 1 to 10 carbon atoms. The alkyl group represented by R 21 has a halogen atom, an aryl group having 6 to 11 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a cycloalkyl group (7,7-dimethyl-2-oxonorbornyl group). It may be substituted with a bridged alicyclic group, preferably a bicycloalkyl group or the like.
As the aryl group for R 21, an aryl group having 6 to 11 carbon atoms is preferable, and a phenyl group or a naphthyl group is more preferable. The aryl group of R 21 may be substituted with a lower alkyl group, an alkoxy group, or a halogen atom.
 オキシムスルホネート化合物の好ましい形態の一例としては、特開2013-190507号公報の段落番号0108~0141の記載が例示され、これらの内容は本願明細書に組み込まれる。 As an example of a preferable form of the oxime sulfonate compound, description of paragraph numbers 0108 to 0141 of JP2013-190507A is exemplified, and these contents are incorporated in the present specification.
 上記一般式(B1)で表されるオキシムスルホネート構造を含有する化合物の好ましい態様としては、下記一般式(B1-1)で表されるオキシムスルホネート化合物である。 A preferred embodiment of the compound containing the oxime sulfonate structure represented by the general formula (B1) is an oxime sulfonate compound represented by the following general formula (B1-1).
一般式(B1-1)
Figure JPOXMLDOC01-appb-C000019
(式(B1-1)中、R42は、置換されていても良いアルキル基またはアリール基を表し、Xは、アルキル基、アルコキシ基、または、ハロゲン原子を表し、m4は、0~3の整数を表し、m4が2または3であるとき、複数のXは同一でも異なっていてもよい。)
General formula (B1-1)
Figure JPOXMLDOC01-appb-C000019
(In the formula (B1-1), R 42 represents an optionally substituted alkyl group or aryl group, X represents an alkyl group, an alkoxy group, or a halogen atom, and m4 represents 0-3. Represents an integer, and when m4 is 2 or 3, a plurality of Xs may be the same or different.
 R42の好ましい範囲としては、上記R21の好ましい範囲と同一である。
 Xとしてのアルキル基は、炭素数1~4の直鎖状または分岐状アルキル基が好ましい。
 Xとしてのアルコキシ基は、炭素数1~4の直鎖状または分岐状アルコキシ基が好ましい。
 Xとしてのハロゲン原子は、塩素原子またはフッ素原子が好ましい。
 m4は、0または1が好ましい。上記一般式(B1-1)中、m4が1であり、Xがメチル基であり、Xの置換位置がオルト位であり、R42が炭素数1~10の直鎖状アルキル基、7,7-ジメチル-2-オキソノルボルニルメチル基、またはp-トルイル基である化合物が特に好ましい。
Preferred ranges of R 42, the same as the preferable range of the R 21.
The alkyl group as X is preferably a linear or branched alkyl group having 1 to 4 carbon atoms.
The alkoxy group as X is preferably a linear or branched alkoxy group having 1 to 4 carbon atoms.
The halogen atom as X is preferably a chlorine atom or a fluorine atom.
m4 is preferably 0 or 1. In the general formula (B1-1), m4 is 1, X is a methyl group, the substitution position of X is an ortho position, R 42 is a linear alkyl group having 1 to 10 carbon atoms, 7, A compound which is a 7-dimethyl-2-oxonorbornylmethyl group or a p-toluyl group is particularly preferred.
 一般式(B1-1)で表されるオキシムスルホネート化合物の具体例としては、例えば、以下の化合物が例示できる。 Specific examples of the oxime sulfonate compound represented by the general formula (B1-1) include the following compounds.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 上記一般式(B1)で表されるオキシムスルホネート構造を含有する化合物の他の好ましい態様としては、下記一般式(B1-2)で表されるオキシムスルホネート化合物である。 Another preferred embodiment of the compound containing an oxime sulfonate structure represented by the above general formula (B1) is an oxime sulfonate compound represented by the following general formula (B1-2).
一般式(B1-2)
Figure JPOXMLDOC01-appb-C000021
(式(B1-2)中、R43は式(B1-1)におけるR42と同義であり、X1は、ハロゲン原子、水酸基、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、シアノ基またはニトロ基を表し、n4は0~5の整数を表す。)
General formula (B1-2)
Figure JPOXMLDOC01-appb-C000021
(In Formula (B1-2), R 43 has the same meaning as R 42 in Formula (B1-1), and X 1 represents a halogen atom, a hydroxyl group, an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. Represents an alkoxy group, a cyano group or a nitro group, and n4 represents an integer of 0 to 5.)
 上記一般式(B1-2)におけるR43としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-オクチル基、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロ-n-プロピル基、パーフルオロ-n-ブチル基、p-トリル基、4-クロロフェニル基またはペンタフルオロフェニル基が好ましく、n-オクチル基が特に好ましい。
 X1としては、炭素数1~5のアルコキシ基が好ましく、メトキシ基がより好ましい。
 n4としては、0~2が好ましく、0~1が特に好ましい。
R 43 in the above general formula (B1-2) is methyl group, ethyl group, n-propyl group, n-butyl group, n-octyl group, trifluoromethyl group, pentafluoroethyl group, perfluoro-n—. A propyl group, a perfluoro-n-butyl group, a p-tolyl group, a 4-chlorophenyl group or a pentafluorophenyl group is preferable, and an n-octyl group is particularly preferable.
X 1 is preferably an alkoxy group having 1 to 5 carbon atoms, and more preferably a methoxy group.
n4 is preferably from 0 to 2, particularly preferably from 0 to 1.
 上記一般式(B1-2)で表される化合物の具体例および好ましいオキシムスルホネート化合物の具体例としては、例えば、以下の化合物が例示できる。また、以下に例示する化合物の他にも、特開2012-163937号公報の段落番号0080~0082の記載を参酌でき、この内容は本願明細書に組み込まれる。 Specific examples of the compound represented by the general formula (B1-2) and specific examples of preferred oxime sulfonate compounds include the following compounds. In addition to the compounds exemplified below, the descriptions in paragraph numbers 0080 to 0082 of JP2012-163937A can be referred to, and the contents thereof are incorporated in the present specification.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 上記一般式(B1)で表されるオキシムスルホネート構造を含有する化合物の他の好ましい態様としては、下記一般式(OS-1)で表される化合物である。 Another preferred embodiment of the compound containing an oxime sulfonate structure represented by the above general formula (B1) is a compound represented by the following general formula (OS-1).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 上記一般式(OS-1)中、R101は、水素原子、アルキル基、アルケニル基、アルコキシ基、アルコキシカルボニル基、アシル基、カルバモイル基、スルファモイル基、スルホ基、シアノ基、アリール基、または、ヘテロアリール基を表す。R102は、アルキル基、または、アリール基を表す。
 X101は-O-、-S-、-NH-、-NR105-、-CH2-、-CR106H-、または、-CR105107-を表し、R105~R107はアルキル基、または、アリール基を表す。
 R121~R124は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、アルケニル基、アルコキシ基、アミノ基、アルコキシカルボニル基、アルキルカルボニル基、アリールカルボニル基、アミド基、スルホ基、シアノ基、または、アリール基を表す。R121~R124のうち2つは、それぞれ互いに結合して環を形成してもよい。
 R121~R124としては、水素原子、ハロゲン原子、および、アルキル基が好ましく、また、R121~R124のうち少なくとも2つが互いに結合してアリール基を形成する態様もまた、好ましく挙げられる。中でも、R121~R124がいずれも水素原子である態様が感度の観点から好ましい。
 既述の官能基は、いずれも、さらに置換基を有していてもよい。
In the general formula (OS-1), R 101 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkoxy group, an alkoxycarbonyl group, an acyl group, a carbamoyl group, a sulfamoyl group, a sulfo group, a cyano group, an aryl group, or Represents a heteroaryl group. R102 represents an alkyl group or an aryl group.
X 101 represents —O—, —S—, —NH—, —NR 105 —, —CH 2 —, —CR 106 H—, or —CR 105 R 107 —, wherein R 105 to R 107 are alkyl groups. Or an aryl group.
R 121 to R 124 each independently represents a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an alkoxy group, an amino group, an alkoxycarbonyl group, an alkylcarbonyl group, an arylcarbonyl group, an amide group, a sulfo group, a cyano group, Or an aryl group is represented. Two of R 121 to R 124 may be bonded to each other to form a ring.
R 121 to R 124 are preferably a hydrogen atom, a halogen atom and an alkyl group, and an embodiment in which at least two of R 121 to R 124 are bonded to each other to form an aryl group is also preferred. Among these, an embodiment in which R 121 to R 124 are all hydrogen atoms is preferable from the viewpoint of sensitivity.
Any of the aforementioned functional groups may further have a substituent.
 上記一般式(OS-1)で表される化合物は、例えば、特開2012-163937号公報の段落番号0087~0089に記載されている一般式(OS-2)で表される化合物であることが好ましく、この内容は本願明細書に組み込まれる。 The compound represented by the general formula (OS-1) is, for example, a compound represented by the general formula (OS-2) described in paragraph numbers 0087 to 0089 of JP2012-163937A Which is incorporated herein by reference.
 本発明に好適に用いうる上記一般式(OS-1)で表される化合物の具体例としては、特開2011-221494号公報の段落番号0128~0132に記載の化合物(例示化合物b-1~b-34)が挙げられるが、本発明はこれに限定されない。 Specific examples of the compound represented by the general formula (OS-1) that can be suitably used in the present invention include compounds described in paragraph numbers 0128 to 0132 of JP2011-221494A (exemplified compounds b-1 to b-34), but the present invention is not limited thereto.
 以下に、一般式(OS-1)で表される化合物の具体例(例示化合物b-1~b-34)を示すが、本発明はこれに限定されない。なお、具体例中、Meはメチル基を表し、Etはエチル基を表し、Bnはベンジル基を表し、Phはフェニル基を表す。 Specific examples (exemplary compounds b-1 to b-34) of the compound represented by the general formula (OS-1) are shown below, but the present invention is not limited thereto. In specific examples, Me represents a methyl group, Et represents an ethyl group, Bn represents a benzyl group, and Ph represents a phenyl group.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 本発明では、一般式(B1)で表されるオキシムスルホネート構造を含有する化合物の他の好ましい態様としては、下記一般式(OS-3)、下記一般式(OS-4)または下記一般式(OS-5)で表されるオキシムスルホネート化合物である。 In the present invention, as another preferred embodiment of the compound containing an oxime sulfonate structure represented by the general formula (B1), the following general formula (OS-3), the following general formula (OS-4) or the following general formula ( It is an oxime sulfonate compound represented by OS-5).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 一般式(OS-3)~一般式(OS-5)中、R22、R25およびR28はそれぞれ独立にアルキル基、アリール基またはヘテロアリール基を表し、R23、R26およびR29はそれぞれ独立に水素原子、アルキル基、アリール基またはハロゲン原子を表し、R24、R27およびR30はそれぞれ独立にハロゲン原子、アルキル基、アルキルオキシ基、スルホン酸基、アミノスルホニル基またはアルコキシスルホニル基を表し、X1~X3はそれぞれ独立に酸素原子または硫黄原子を表し、n1~n3はそれぞれ独立に1または2を表し、m1~m3はそれぞれ独立に0~6の整数を表す。) In the general formula (OS-3) to general formula (OS-5), R 22 , R 25 and R 28 each independently represents an alkyl group, an aryl group or a heteroaryl group, and R 23 , R 26 and R 29 are Each independently represents a hydrogen atom, an alkyl group, an aryl group or a halogen atom, and R 24 , R 27 and R 30 each independently represent a halogen atom, an alkyl group, an alkyloxy group, a sulfonic acid group, an aminosulfonyl group or an alkoxysulfonyl group. X 1 to X 3 each independently represents an oxygen atom or a sulfur atom, n 1 to n 3 each independently represents 1 or 2, and m 1 to m 3 each independently represents an integer of 0 to 6 To express. )
 一般式(OS-3)~(OS-5)については、例えば、特開2012-163937号公報の段落番号0098~0115の記載を参酌でき、この内容は本願明細書に組み込まれる。一般式(OS-3)で表される化合物としては、例えば、以下が例示できる。 Regarding the general formulas (OS-3) to (OS-5), for example, the description of paragraph numbers 0098 to 0115 of JP2012-163937A can be referred to, and the contents thereof are incorporated in the present specification. Examples of the compound represented by the general formula (OS-3) include the following.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 また、一般式(B1)で表されるオキシムスルホネート構造を含有する化合物は、例えば、特開2012-163937号公報の段落番号0117に記載されている、一般式(OS-6)~(OS-11)のいずれかで表される化合物であることが特に好ましく、この内容は本願明細書に組み込まれる。 In addition, the compound having an oxime sulfonate structure represented by the general formula (B1) is, for example, the general formulas (OS-6) to (OS-) described in paragraph No. 0117 of JP2012-163937A. It is particularly preferred that the compound is represented by any one of 11), the contents of which are incorporated herein.
 一般式(OS-6)~(OS-11)における好ましい範囲は、特開2011-221494号公報の段落番号0110~0112に記載される(OS-6)~(OS-11)の好ましい範囲と同様である。 Preferred ranges in the general formulas (OS-6) to (OS-11) are the preferred ranges of (OS-6) to (OS-11) described in paragraph numbers 0110 to 0112 of JP2011-221494A. It is the same.
 一般式(OS-3)~一般式(OS-5)で表されるオキシムスルホネート化合物の具体例としては、特開2011-221494号公報の段落番号0114~0120に記載の化合物が挙げられるが、本発明は、これらに限定されるものではない。 Specific examples of the oxime sulfonate compounds represented by the general formula (OS-3) to the general formula (OS-5) include compounds described in paragraph numbers 0114 to 0120 of JP2011-221494A. The present invention is not limited to these.
 一般式(B1)で表されるオキシムスルホネート構造を含有する化合物の他の好ましい態様としては、下記一般式(B1-3)で表されるオキシムスルホネート化合物である。 Another preferred embodiment of the compound containing an oxime sulfonate structure represented by the general formula (B1) is an oxime sulfonate compound represented by the following general formula (B1-3).
一般式(B1-3)
Figure JPOXMLDOC01-appb-C000030
General formula (B1-3)
Figure JPOXMLDOC01-appb-C000030
 一般式(B1-3)中、R1は、アルキル基またはアリール基を表し、R2は、アルキル基、アリール基、またはヘテロアリール基を表す。R3~R6は、それぞれ、水素原子、アルキル基、アリール基、ハロゲン原子を表す。但し、R3とR4、R4とR5、またはR5とR6が結合して脂環または芳香環を形成してもよい。Xは、-O-または-S-を表す。) In General Formula (B1-3), R 1 represents an alkyl group or an aryl group, and R 2 represents an alkyl group, an aryl group, or a heteroaryl group. R 3 to R 6 each represents a hydrogen atom, an alkyl group, an aryl group, or a halogen atom. However, R 3 and R 4 , R 4 and R 5 , or R 5 and R 6 may combine to form an alicyclic ring or aromatic ring. X represents —O— or —S—. )
 R1は、アルキル基またはアリール基を表す。アルキル基は、分岐構造を有するアルキル基または環状構造のアルキル基が好ましい。
 アルキル基の炭素数は、好ましくは3~10である。特にアルキル基が分岐構造を有する場合、炭素数3~6のアルキル基が好ましく、環状構造を有する場合、炭素数5~7のアルキル基が好ましい。
 アルキル基としては、例えば、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、1,1-ジメチルプロピル基、ヘキシル基、2-エチルヘキシル基、シクロヘキシル基、オクチル基などが挙げられ、好ましくは、イソプロピル基、tert-ブチル基、ネオペンチル基、シクロヘキシル基である。
 アリール基の炭素数は、好ましくは6~12であり、より好ましくは6~8であり、さらに好ましくは6~7である。アリール基としては、フェニル基、ナフチル基などが挙げられ、好ましくは、フェニル基である。
 R1が表すアルキル基およびアリール基は、置換基を有していてもよい。置換基としては、例えばハロゲン原子(フッ素原子、クロロ原子、臭素原子、ヨウ素原子)、直鎖、分岐または環状のアルキル基(例えばメチル基、エチル基、プロピル基など)、アルケニル基、アルキニル基、アリール基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、シアノ基、カルボキシル基、水酸基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、ヘテロ環オキシ基、アシルオキシ基、アミノ基、ニトロ基、ヒドラジノ基、ヘテロ環基などが挙げられる。また、これらの基によってさらに置換されていてもよい。好ましくは、ハロゲン原子、メチル基である。
R 1 represents an alkyl group or an aryl group. The alkyl group is preferably a branched alkyl group or a cyclic alkyl group.
The alkyl group preferably has 3 to 10 carbon atoms. In particular, when the alkyl group has a branched structure, an alkyl group having 3 to 6 carbon atoms is preferable. When the alkyl group has a cyclic structure, an alkyl group having 5 to 7 carbon atoms is preferable.
Examples of the alkyl group include propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, 1,1-dimethylpropyl group, hexyl group. 2-ethylhexyl group, cyclohexyl group, octyl group and the like, preferably isopropyl group, tert-butyl group, neopentyl group, and cyclohexyl group.
The aryl group preferably has 6 to 12 carbon atoms, more preferably 6 to 8 carbon atoms, and still more preferably 6 to 7 carbon atoms. Examples of the aryl group include a phenyl group and a naphthyl group, and a phenyl group is preferable.
The alkyl group and aryl group represented by R 1 may have a substituent. Examples of the substituent include a halogen atom (a fluorine atom, a chloro atom, a bromine atom, an iodine atom), a linear, branched or cyclic alkyl group (for example, a methyl group, an ethyl group, a propyl group, etc.), an alkenyl group, an alkynyl group, Aryl group, acyl group, alkoxycarbonyl group, aryloxycarbonyl group, carbamoyl group, cyano group, carboxyl group, hydroxyl group, alkoxy group, aryloxy group, alkylthio group, arylthio group, heterocyclic oxy group, acyloxy group, amino group, A nitro group, a hydrazino group, a heterocyclic group, etc. are mentioned. Further, these groups may be further substituted. Preferably, they are a halogen atom and a methyl group.
 本発明の感光性樹脂組成物は、透明性の観点から、R1はアルキル基が好ましく、保存安定性と感度とを両立させる観点から、R1は、炭素数3~6の分岐構造を有するアルキル基、炭素数5~7の環状構造のアルキル基、または、フェニル基が好ましく、炭素数3~6の分岐構造を有するアルキル基、または炭素数5~7の環状構造のアルキル基がより好ましい。このようなかさ高い基(特に、かさ高いアルキル基)をR1として採用することにより、透明性をより向上させることが可能になる。
 かさ高い置換基の中でも、イソプロピル基、tert-ブチル基、ネオペンチル基、シクロヘキシル基が好ましく、tert-ブチル基、シクロヘキシル基がより好ましい。
In the photosensitive resin composition of the present invention, R 1 is preferably an alkyl group from the viewpoint of transparency, and R 1 has a branched structure having 3 to 6 carbon atoms from the viewpoint of achieving both storage stability and sensitivity. An alkyl group, an alkyl group having a cyclic structure having 5 to 7 carbon atoms, or a phenyl group is preferable, and an alkyl group having a branched structure having 3 to 6 carbon atoms or an alkyl group having a cyclic structure having 5 to 7 carbon atoms is more preferable. . By adopting such a bulky group (particularly a bulky alkyl group) as R 1 , it becomes possible to further improve the transparency.
Among the bulky substituents, an isopropyl group, a tert-butyl group, a neopentyl group, and a cyclohexyl group are preferable, and a tert-butyl group and a cyclohexyl group are more preferable.
 R2は、アルキル基、アリール基、またはヘテロアリール基を表す。R2が表すアルキル基としては、炭素数1~10の、直鎖、分岐または環状のアルキル基が好ましい。アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基などが挙げられ、好ましくは、メチル基である。
 アリール基としては、炭素数6~10のアリール基が好ましい。アリール基としては、フェニル基、ナフチル基、p-トルイル基(p-メチルフェニル基)などが挙げられ、好ましくは、フェニル基、p-トルイル基である。
 ヘテロアリール基としては、例えば、ピロール基、インドール基、カルバゾール基、フラン基、チオフェン基などが挙げられる。
 R2が表すアルキル基、アリール基、およびヘテロアリール基は、置換基を有していてもよい。置換基としては、R1が表すアルキル基およびアリール基が有していてもよい置換基と同義である。
 R2は、アルキル基またはアリール基が好ましく、アリール基がより好ましく、フェニル基がより好ましい。フェニル基の置換基としてはメチル基が好ましい。
R 2 represents an alkyl group, an aryl group, or a heteroaryl group. The alkyl group represented by R 2 is preferably a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, a pentyl group, a neopentyl group, a hexyl group, and a cyclohexyl group, preferably a methyl group. It is.
As the aryl group, an aryl group having 6 to 10 carbon atoms is preferable. Examples of the aryl group include a phenyl group, a naphthyl group, and a p-toluyl group (p-methylphenyl group), and a phenyl group and a p-toluyl group are preferable.
Examples of the heteroaryl group include a pyrrole group, an indole group, a carbazole group, a furan group, and a thiophene group.
The alkyl group, aryl group, and heteroaryl group represented by R 2 may have a substituent. As a substituent, it is synonymous with the substituent which the alkyl group and aryl group which R < 1 > may have.
R 2 is preferably an alkyl group or an aryl group, more preferably an aryl group, and more preferably a phenyl group. As the substituent for the phenyl group, a methyl group is preferred.
 R3~R6は、それぞれ、水素原子、アルキル基、アリール基、またはハロゲン原子(フッ素原子、クロロ原子、臭素原子、ヨウ素原子)を表す。R3~R6が表すアルキル基としては、R2が表すアルキル基と同義であり、好ましい範囲も同様である。また、R3~R6が表すアリール基としては、R1が表すアリール基と同義であり、好ましい範囲も同様である。
 R3~R6のうち、R3とR4、R4とR5、またはR5とR6が結合して環を形成してもよく、環としては、脂環または芳香環を形成していることが好ましく、ベンゼン環がより好ましい。
 R3~R6は、水素原子、アルキル基、ハロゲン原子(フッ素原子、クロロ原子、臭素原子)、または、R3とR4、R4とR5、またはR5とR6が結合してベンゼン環を構成していることが好ましく、水素原子、メチル基、フッ素原子、クロロ原子、臭素原子またはR3とR4、R4とR5、またはR5とR6が結合してベンゼン環を構成していることがより好ましい。
 R3~R6の好ましい態様は以下の通りである。
(態様1)少なくとも2つは水素原子である。
(態様2)アルキル基、アリール基、またはハロゲン原子の数は、1つ以下である。
(態様3)R3とR4、R4とR5、またはR5とR6が結合してベンゼン環を構成している。
(態様4)上記態様1と2を満たす態様、および/または、上記態様1と3を満たす態様。
R 3 to R 6 each represent a hydrogen atom, an alkyl group, an aryl group, or a halogen atom (a fluorine atom, a chloro atom, a bromine atom, or an iodine atom). The alkyl group represented by R 3 to R 6 has the same meaning as the alkyl group represented by R 2 , and the preferred range is also the same. The aryl group represented by R 3 to R 6 has the same meaning as the aryl group represented by R 1 , and the preferred range is also the same.
Among R 3 to R 6 , R 3 and R 4 , R 4 and R 5 , or R 5 and R 6 may combine to form a ring, and the ring may form an alicyclic ring or an aromatic ring. It is preferable that a benzene ring is more preferable.
R 3 to R 6 are each a hydrogen atom, an alkyl group, a halogen atom (fluorine atom, chloro atom, bromine atom), or R 3 and R 4 , R 4 and R 5 , or R 5 and R 6. A benzene ring is preferably formed, and a hydrogen atom, a methyl group, a fluorine atom, a chloro atom, a bromine atom, or R 3 and R 4 , R 4 and R 5 , or R 5 and R 6 are combined to form a benzene ring Is more preferable.
Preferred embodiments of R 3 to R 6 are as follows.
(Aspect 1) At least two are hydrogen atoms.
(Aspect 2) The number of alkyl groups, aryl groups, or halogen atoms is one or less.
(Aspect 3) R 3 and R 4 , R 4 and R 5 , or R 5 and R 6 are combined to form a benzene ring.
(Aspect 4) An aspect satisfying the above aspects 1 and 2 and / or an aspect satisfying the above aspects 1 and 3.
 Xは、-O-または-S-を表す。 X represents -O- or -S-.
 上記一般式(B1-3)の具体例としては、以下のような化合物が挙げられるが、本発明では特にこれに限定されない。なお、例示化合物中、Tsはトシル基(p-トルエンスルホニル基)を表し、Meはメチル基を表し、Buはn-ブチル基を表し、Phはフェニル基を表す。 Specific examples of the general formula (B1-3) include the following compounds, but the present invention is not particularly limited thereto. In the exemplified compounds, Ts represents a tosyl group (p-toluenesulfonyl group), Me represents a methyl group, Bu represents an n-butyl group, and Ph represents a phenyl group.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 イミドスルホネート化合物としては、下記一般式(B2)で表される構造を有するイミドスルホネート化合物を好ましく用いることができる。 As the imide sulfonate compound, an imide sulfonate compound having a structure represented by the following general formula (B2) can be preferably used.
Figure JPOXMLDOC01-appb-C000032
 (一般式(B2)中、R200は、炭素原子数16以下の1価有機基を表す。波線は他の基との結合を表す。)
Figure JPOXMLDOC01-appb-C000032
(In General Formula (B2), R 200 represents a monovalent organic group having 16 or less carbon atoms. The wavy line represents a bond with another group.)
 R200は、炭素原子数16以下の1価有機基を表す。R200は、C、H、O、F以外を含まないことが好ましい。R200としては、例えば、メチル基、トリフルオロメチル基、プロピル基、フェニル基、トシル基などが挙げられる。 R 200 represents a monovalent organic group having 16 or less carbon atoms. R 200 preferably does not contain other than C, H, O, and F. Examples of R 200 include a methyl group, a trifluoromethyl group, a propyl group, a phenyl group, and a tosyl group.
 一般式(B2)で表される構造を含有する化合物の好ましい態様としては、下記一般式(I)で表されるイミドスルホネート化合物である。 A preferred embodiment of the compound containing the structure represented by the general formula (B2) is an imide sulfonate compound represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 式中、R01、R04、R05及びR06は、水素原子を表し、R02、R03のいずれか1つは、脂環式炭化水素基、複素環基またはハロゲン原子で置換されてもよく、分岐を有してもよい炭素数4~18のアルコキシ基;アルコキシ基の酸素原子に隣接しない任意位置のメチレン基が-C(=O)-基で置換された基;アルコキシ基がナフタレン環に近いほうから-O-C(=O)-結合若しくは-OC(=O)-NH-結合で中断された基;脂環式炭化水素基、複素環基またはハロゲン原子で置換されてもよく、分岐を有してもよい炭素数4~18のアルキルチオ基;アルキルチオ基の硫黄原子に隣接しない任意位置のメチレン基が-C(=O)-基で置換された基;アルキルチオ基がナフタレン環に近いほうから-O-C(=O)-結合若しくは-OC(=O)-NH-結合で中断された基;または、下記一般式(A)で表される基を表し、R02、R03の残りの1つは、水素原子を表し、R07は、ハロゲン原子及び/又はアルキルチオ基で置換されてもよい炭素数1~18の脂肪族炭化水素基;ハロゲン原子及び/又は脂環式炭化水素基で置換されてもよく、分岐を有してもよい炭素数1~18のアルキル基;ハロゲン原子で置換されてもよい炭素数3~18の脂環式炭化水素基;ハロゲン原子及び/又は炭素数1~18のアルキルチオ基で置換されてもよい炭素数6~20のアリール基;ハロゲン原子及び/又は炭素数1~18のアルキルチオ基で置換されてもよい炭素数7~20のアリールアルキル基;ハロゲン原子で置換されてもよい炭素数7~20のアルキルアリール基;アシル基で置換された炭素数7~20のアリール基;10-カンファーイル;または、下記一般式(B)で表される基を表す。 In the formula, R 01 , R 04 , R 05 and R 06 represent a hydrogen atom, and any one of R 02 and R 03 is substituted with an alicyclic hydrocarbon group, a heterocyclic group or a halogen atom. An alkoxy group having 4 to 18 carbon atoms which may have a branch; a group in which a methylene group at any position not adjacent to the oxygen atom of the alkoxy group is substituted with a —C (═O) — group; A group interrupted by an —O—C (═O) — bond or —OC (═O) —NH— bond from the side closer to the naphthalene ring; substituted with an alicyclic hydrocarbon group, a heterocyclic group or a halogen atom; An alkylthio group having 4 to 18 carbon atoms which may have a branch; a group in which a methylene group at any position not adjacent to a sulfur atom of the alkylthio group is substituted with a —C (═O) — group; From the side closest to the naphthalene ring, the —O—C (═O) — bond -OC (= O) -NH- group is interrupted a bond; or, a group represented by the following general formula (A), the remaining one of R 02, R 03 represents a hydrogen atom, R 07 is an aliphatic hydrocarbon group having 1 to 18 carbon atoms which may be substituted with a halogen atom and / or an alkylthio group; may be substituted with a halogen atom and / or an alicyclic hydrocarbon group, and has a branch An optionally substituted alkyl group having 1 to 18 carbon atoms; an alicyclic hydrocarbon group having 3 to 18 carbon atoms which may be substituted with a halogen atom; and a substituted group with a halogen atom and / or an alkylthio group having 1 to 18 carbon atoms. An aryl group having 6 to 20 carbon atoms; an arylalkyl group having 7 to 20 carbon atoms that may be substituted with a halogen atom and / or an alkylthio group having 1 to 18 carbon atoms; a carbon number that may be substituted with a halogen atom 7 to 20 alkylaryl groups; Aryl groups of carbon number of 7 to 20 substituted with Le group; 10-camphorsulfonic yl; or a group represented by the following general formula (B).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 式中、X1は、酸素原子又は硫黄原子を表し、Y1は、単結合又は炭素数1~4のアルカンジイル基を表し、R11は、炭素数1~12の炭化水素基を表し、R12は、炭素数1~4のアルカンジイル基を表し、R13は、水素原子又は分岐を有してもよい炭素数1~4のアルキル基又は炭素数3~10の脂環式炭化水素基若しくは複素環基を表し、mは、0~5を表し、mが2~5の場合、複数存在するR12は同一でも異なってもよい。 In the formula, X 1 represents an oxygen atom or a sulfur atom, Y 1 represents a single bond or an alkanediyl group having 1 to 4 carbon atoms, R 11 represents a hydrocarbon group having 1 to 12 carbon atoms, R 12 represents an alkanediyl group having 1 to 4 carbon atoms, R 13 represents a hydrogen atom or an optionally substituted alkyl group having 1 to 4 carbon atoms or an alicyclic hydrocarbon having 3 to 10 carbon atoms Represents a group or a heterocyclic group, m represents 0 to 5, and when m is 2 to 5, a plurality of R 12 may be the same or different.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 式中、Y2は、単結合又は炭素数1~4のアルカンジイル基を表し、R21は、炭素数2~6のアルカンジイル基、炭素数2~6のハロゲン化アルカンジイル基、炭素数6~20のアリーレン基又は炭素数6~20のハロゲン化アリーレン基を表し、R22は、単結合、炭素数2~6のアルカンジイル基、炭素数2~6のハロゲン化アルカンジイル基、炭素数6~20のアリーレン基又は炭素数6~20のハロゲン化アリーレン基を表し、R23は、分岐を有してもよい炭素数1~18のアルキル基、分岐を有してもよい炭素数1~18のハロゲン化アルキル基、炭素数3~12の脂環式炭化水素基、炭素数6~20のアリール基、炭素数6~20のハロゲン化アリール基、炭素数7~20のアリールアルキル基又は炭素数7~20のハロゲン化アリールアルキル基を表し、a、bは、0又は1を表し、a、bのどちらか一方は1である。 In the formula, Y 2 represents a single bond or an alkanediyl group having 1 to 4 carbon atoms, R 21 represents an alkanediyl group having 2 to 6 carbon atoms, a halogenated alkanediyl group having 2 to 6 carbon atoms, carbon number Represents an arylene group having 6 to 20 carbon atoms or a halogenated arylene group having 6 to 20 carbon atoms, and R 22 represents a single bond, an alkanediyl group having 2 to 6 carbon atoms, a halogenated alkanediyl group having 2 to 6 carbon atoms, carbon Represents an arylene group having 6 to 20 carbon atoms or a halogenated arylene group having 6 to 20 carbon atoms, and R 23 represents an alkyl group having 1 to 18 carbon atoms which may have a branch, or a carbon number which may have a branch. 1 to 18 halogenated alkyl groups, 3 to 12 carbon alicyclic hydrocarbon groups, 6 to 20 aryl groups, 6 to 20 halogenated aryl groups, and 7 to 20 arylalkyls Groups or halogenated amines having 7 to 20 carbon atoms It represents Ruarukiru group, a, b represents 0 or 1, a, either the b is 1.
 一般式(I)については、例えば、国際公開WO11/087011号公報の段落番号0019~0063の記載を参酌でき、この内容は本願明細書に組み込まれる。一般式(I)で表される化合物としては、例えば、以下が例示できる。また、以下に例示する化合物の他にも、国際公開WO11/087011号公報の段落番号0065~0075の記載を参酌でき、この内容は本願明細書に組み込まれる。 Regarding the general formula (I), for example, the description of paragraph numbers 0019 to 0063 of International Publication No. WO11 / 087011 can be referred to, and the contents thereof are incorporated in the present specification. Examples of the compound represented by the general formula (I) include the following. In addition to the compounds exemplified below, the description in paragraphs 0065 to 0075 of International Publication No. WO11 / 087011 can be referred to, the contents of which are incorporated herein.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 本発明の感光性樹脂組成物において、(B)光酸発生剤は、感光性樹脂組成物中の全樹脂成分(好ましくは固形分、より好ましくは(A)ポリシロキサンの合計)100質量部に対して、0.1~10質量部使用することが好ましく、0.5~10質量部使用することがより好ましく、1.0~5.0質量部がさらに好ましい。(B)光酸発生剤は、2種以上を併用することもできる。2種以上併用する場合は、その合計量が上記範囲となることが好ましい。
 本発明の感光性樹脂組成物において、(B)光酸発生剤は、感度や耐光性の観点から感光性樹脂組成物中の固形分100質量部に対して、0.1~10質量部使用することが好ましく、0.5~10質量部使用することがより好ましく、1.0~5.0質量部がさらに好ましい。(B)光酸発生剤は、2種以上を併用することもできる。2種以上併用する場合は、その合計量が上記範囲となることが好ましい。
In the photosensitive resin composition of the present invention, (B) the photoacid generator is added to 100 parts by mass of all resin components (preferably solid content, more preferably (A) total of polysiloxane) in the photosensitive resin composition. On the other hand, it is preferable to use 0.1 to 10 parts by mass, more preferably 0.5 to 10 parts by mass, and further preferably 1.0 to 5.0 parts by mass. (B) Two or more photoacid generators can be used in combination. When using 2 or more types together, it is preferable that the total amount becomes the said range.
In the photosensitive resin composition of the present invention, (B) the photoacid generator is used in an amount of 0.1 to 10 parts by mass with respect to 100 parts by mass of the solid content in the photosensitive resin composition from the viewpoint of sensitivity and light resistance. It is preferable to use 0.5 to 10 parts by mass, and more preferably 1.0 to 5.0 parts by mass. (B) Two or more photoacid generators can be used in combination. When using 2 or more types together, it is preferable that the total amount becomes the said range.
<(C)溶剤>
 本発明の感光性樹脂組成物は、(C)溶剤を含有する。本発明の感光性樹脂組成物は、本発明の必須成分と、さらに後述の任意の成分を(C)溶剤に溶解した溶液として調製されることが好ましい。本発明の感光性樹脂組成物の調製に用いられる溶剤としては、必須成分及び任意成分を均一に溶解し、各成分と反応しないものが用いられる。
 本発明の感光性樹脂組成物に使用される(C)溶剤としては、公知の溶剤を用いることができ、エチレングリコールモノアルキルエーテル類、エチレングリコールジアルキルエーテル類、エチレングリコールモノアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテル類、プロピレングリコールジアルキルエーテル類、プロピレングリコールモノアルキルエーテルアセテート類、ジエチレングリコールジアルキルエーテル類、ジエチレングリコールモノアルキルエーテルアセテート類、ジプロピレングリコールモノアルキルエーテル類、ジプロピレングリコールジアルキルエーテル類、ジプロピレングリコールモノアルキルエーテルアセテート類、エステル類、ケトン類、アミド類、ラクトン類等が例示できる。また、本発明の感光性樹脂組成物に使用される溶剤の具体例としては特開2011-221494号公報の段落番号0174~0178に記載の溶剤、特開2012-194290公報の段落番号0167~0168に記載の溶剤も挙げられ、これらの内容は本願明細書に組み込まれる。例えば、溶剤の具体例の一例としては、プロピレングリコール1-モノメチルエーテル2-アセタート、メチルエチルジグリコールなどが挙げられる。
<(C) Solvent>
The photosensitive resin composition of the present invention contains (C) a solvent. The photosensitive resin composition of the present invention is preferably prepared as a solution in which the essential components of the present invention and optional components described below are dissolved in the solvent (C). As a solvent used for the preparation of the photosensitive resin composition of the present invention, a solvent that uniformly dissolves essential components and optional components and does not react with each component is used.
As the solvent (C) used in the photosensitive resin composition of the present invention, known solvents can be used, such as ethylene glycol monoalkyl ethers, ethylene glycol dialkyl ethers, ethylene glycol monoalkyl ether acetates, propylene. Glycol monoalkyl ethers, propylene glycol dialkyl ethers, propylene glycol monoalkyl ether acetates, diethylene glycol dialkyl ethers, diethylene glycol monoalkyl ether acetates, dipropylene glycol monoalkyl ethers, dipropylene glycol dialkyl ethers, dipropylene glycol Examples include monoalkyl ether acetates, esters, ketones, amides, lactones and the like. Specific examples of the solvent used in the photosensitive resin composition of the present invention include the solvents described in paragraph numbers 0174 to 0178 of JP2011-221494A, and paragraph numbers 0167 to 0168 of JP2012-194290A. And the contents thereof are incorporated herein by reference. For example, specific examples of the solvent include propylene glycol 1-monomethyl ether 2-acetate, methyl ethyl diglycol and the like.
 また、これらの溶剤にさらに必要に応じて、ベンジルエチルエーテル、ジヘキシルエーテル、エチレングリコールモノフェニルエーテルアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、イソホロン、カプロン酸、カプリル酸、1-オクタノール、1-ノナール、ベンジルアルコール、アニソール、酢酸ベンジル、安息香酸エチル、シュウ酸ジエチル、マレイン酸ジエチル、炭酸エチレン、炭酸プロピレン等の溶剤を添加することもできる。これら溶剤は、1種単独でまたは2種以上を混合して使用することができる。本発明に用いることができる溶剤は、1種単独、または、2種を併用することが好ましく、2種を併用することがより好ましく、プロピレングリコールモノアルキルエーテルアセテート類またはジアルキルエーテル類、ジアセテート類とジエチレングリコールジアルキルエーテル類、あるいは、エステル類とブチレングリコールアルキルエーテルアセテート類とを併用することがさらに好ましい。 In addition, benzyl ethyl ether, dihexyl ether, ethylene glycol monophenyl ether acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, isophorone, caproic acid, caprylic acid, 1-octanol, 1-nonal as necessary for these solvents , Benzyl alcohol, anisole, benzyl acetate, ethyl benzoate, diethyl oxalate, diethyl maleate, ethylene carbonate, propylene carbonate and the like can also be added. These solvents can be used alone or in combination of two or more. The solvent that can be used in the present invention is a single type or a combination of two types, more preferably a combination of two types, propylene glycol monoalkyl ether acetates or dialkyl ethers, diacetates. And diethylene glycol dialkyl ethers or esters and butylene glycol alkyl ether acetates are more preferably used in combination.
 また、(C)溶剤としては、沸点130℃以上160℃未満の溶剤、沸点160℃以上の溶剤、または、これらの混合物であることが好ましい。
 沸点130℃以上160℃未満の溶剤としては、プロピレングリコールモノメチルエーテルアセテート(沸点146℃)、プロピレングリコールモノエチルエーテルアセテート(沸点158℃)、プロピレングリコールメチル-n-ブチルエーテル(沸点155℃)、プロピレングリコールメチル-n-プロピルエーテル(沸点131℃)が例示できる。
 沸点160℃以上の溶剤としては、3-エトキシプロピオン酸エチル(沸点170℃)、ジエチレングリコールメチルエチルエーテル(沸点176℃)、プロピレングリコールモノメチルエーテルプロピオネート(沸点160℃)、ジプロピレングリコールメチルエーテルアセテート(沸点213℃)、3-メトキシブチルエーテルアセテート(沸点171℃)、ジエチレングリコールジエチルエーテル(沸点189℃)、ジエチレングリコールジメチルエーテル(沸点162℃)、プロピレングリコールジアセテート(沸点190℃)、ジエチレングリコールモノエチルエーテルアセテート(沸点220℃)、ジプロピレングリコールジメチルエーテル(沸点175℃)、1,3-ブチレングリコールジアセテート(沸点232℃)が例示できる。
 特に、プロピレングリコールモノメチルエーテルアセテートとジエチレングリコールメチルエチルエーテルとの組み合わせが塗布性、溶解性の観点から好ましい。その混合比は10:90~90:10が好ましく、30:70~70:30がより好ましい。この混合溶剤100部に1,3-ブチレングリコールジアセテートのような沸点200℃以上の溶剤を1部~10部混合した溶剤も好ましい。
The solvent (C) is preferably a solvent having a boiling point of 130 ° C. or higher and lower than 160 ° C., a solvent having a boiling point of 160 ° C. or higher, or a mixture thereof.
Solvents having a boiling point of 130 ° C. or higher and lower than 160 ° C. include propylene glycol monomethyl ether acetate (boiling point 146 ° C.), propylene glycol monoethyl ether acetate (boiling point 158 ° C.), propylene glycol methyl-n-butyl ether (boiling point 155 ° C.), propylene glycol An example is methyl-n-propyl ether (boiling point 131 ° C.).
Solvents having a boiling point of 160 ° C or higher include ethyl 3-ethoxypropionate (boiling point 170 ° C), diethylene glycol methyl ethyl ether (boiling point 176 ° C), propylene glycol monomethyl ether propionate (boiling point 160 ° C), dipropylene glycol methyl ether acetate. (Bp 213 ° C.), 3-methoxybutyl ether acetate (bp 171 ° C.), diethylene glycol diethyl ether (bp 189 ° C.), diethylene glycol dimethyl ether (bp 162 ° C.), propylene glycol diacetate (bp 190 ° C.), diethylene glycol monoethyl ether acetate ( Examples include boiling point 220 ° C, dipropylene glycol dimethyl ether (boiling point 175 ° C), and 1,3-butylene glycol diacetate (boiling point 232 ° C). Kill.
In particular, a combination of propylene glycol monomethyl ether acetate and diethylene glycol methyl ethyl ether is preferable from the viewpoints of coatability and solubility. The mixing ratio is preferably 10:90 to 90:10, more preferably 30:70 to 70:30. A solvent obtained by mixing 1 to 10 parts of a solvent having a boiling point of 200 ° C. or higher such as 1,3-butylene glycol diacetate with 100 parts of the mixed solvent is also preferable.
 本発明の感光性樹脂組成物における(C)溶剤の含有量は、感光性樹脂組成物中の全成分100質量部当たり、50~95質量部であることが好ましく、60~90質量部であることがさらに好ましい。 The content of the solvent (C) in the photosensitive resin composition of the present invention is preferably 50 to 95 parts by mass, preferably 60 to 90 parts by mass, per 100 parts by mass of all components in the photosensitive resin composition. More preferably.
<その他の成分>
 本発明の感光性樹脂組成物には、上記成分に加えて、必要に応じて、(D)増感剤、(E)架橋剤、(F)塩基性化合物、(G)界面活性剤、(H)酸化防止剤を好ましく加えることができる。
 さらに本発明の感光性樹脂組成物には、酸増殖剤、現像促進剤、可塑剤、熱ラジカル発生剤、熱酸発生剤、紫外線吸収剤、増粘剤、および、有機または無機の沈殿防止剤などの公知の添加剤を加えることができる。また、これらの化合物としては、例えば特開2012-88459号公報の段落番号0201~0224の記載も参酌でき、これらの内容は本願明細書に組み込まれる。
 また、本発明の感光性樹脂組成物は、基板との密着性向上のためにアルコキシシラン化合物を加えることができる。
<Other ingredients>
In the photosensitive resin composition of the present invention, in addition to the above components, (D) a sensitizer, (E) a crosslinking agent, (F) a basic compound, (G) a surfactant, H) An antioxidant can be preferably added.
Furthermore, the photosensitive resin composition of the present invention includes an acid proliferation agent, a development accelerator, a plasticizer, a thermal radical generator, a thermal acid generator, an ultraviolet absorber, a thickener, and an organic or inorganic precipitation inhibitor. Known additives such as can be added. Further, as these compounds, for example, the description of paragraph numbers 0201 to 0224 of JP2012-88459A can be referred to, and the contents thereof are incorporated in the present specification.
Moreover, the photosensitive resin composition of this invention can add an alkoxysilane compound for the adhesive improvement with a board | substrate.
 <(D)増感剤>
 本発明の感光性樹脂組成物は、(B)光酸発生剤との組み合わせにおいて、その分解を促進させるために、増感剤を含有することが好ましい。増感剤は、活性光線または放射線を吸収して電子励起状態となる。電子励起状態となった増感剤は、光酸発生剤と接触して、電子移動、エネルギー移動、発熱などの作用が生じる。これにより光酸発生剤は化学変化を起こして分解し、酸を生成する。好ましい増感剤の例としては、以下の化合物類に属しており、かつ350nmから450nmの波長域のいずれかに吸収波長を有する化合物を挙げることができる。
<(D) Sensitizer>
The photosensitive resin composition of the present invention preferably contains a sensitizer in order to promote its decomposition in combination with (B) the photoacid generator. The sensitizer absorbs actinic rays or radiation and enters an electronically excited state. The sensitizer in an electronically excited state comes into contact with the photoacid generator, and effects such as electron transfer, energy transfer, and heat generation occur. Thereby, a photo-acid generator raise | generates a chemical change and decomposes | disassembles and produces | generates an acid. Examples of preferred sensitizers include compounds belonging to the following compounds and having an absorption wavelength in any of the wavelength ranges from 350 nm to 450 nm.
 多核芳香族類(例えば、ピレン、ペリレン、トリフェニレン、アントラセン、9,10-ジブトキシアントラセン、9,10-ジエトキシアントラセン,3,7-ジメトキシアントラセン、9,10-ジプロピルオキシアントラセン)、キサンテン類(例えば、フルオレッセイン、エオシン、エリスロシン、ローダミンB、ローズベンガル)、キサントン類(例えば、キサントン、チオキサントン、ジメチルチオキサントン、ジエチルチオキサントン)、シアニン類(例えばチアカルボシアニン、オキサカルボシアニン)、メロシアニン類(例えば、メロシアニン、カルボメロシアニン)、ローダシアニン類、オキソノール類、チアジン類(例えば、チオニン、メチレンブルー、トルイジンブルー)、アクリジン類(例えば、アクリジンオレンジ、クロロフラビン、アクリフラビン)、アクリドン類(例えば、アクリドン、10-ブチル-2-クロロアクリドン)、アントラキノン類(例えば、アントラキノン)、スクアリウム類(例えば、スクアリウム)、スチリル類、ベーススチリル類(例えば、2-[2-[4-(ジメチルアミノ)フェニル]エテニル]ベンゾオキサゾール)、クマリン類(例えば、7-ジエチルアミノ4-メチルクマリン、7-ヒドロキシ4-メチルクマリン、2,3,6,7-テトラヒドロ-9-メチル-1H,5H,11H[1]ベンゾピラノ[6,7,8-ij]キノリジン-11-ノン)。
 これら増感剤の中でも、多核芳香族類、アクリドン類、スチリル類、ベーススチリル類、クマリン類が好ましく、多核芳香族類がより好ましい。多核芳香族類の中でもアントラセン誘導体が最も好ましい。
Polynuclear aromatics (eg, pyrene, perylene, triphenylene, anthracene, 9,10-dibutoxyanthracene, 9,10-diethoxyanthracene, 3,7-dimethoxyanthracene, 9,10-dipropyloxyanthracene), xanthenes (Eg, fluorescein, eosin, erythrosine, rhodamine B, rose bengal), xanthones (eg, xanthone, thioxanthone, dimethylthioxanthone, diethylthioxanthone), cyanines (eg, thiacarbocyanine, oxacarbocyanine), merocyanines ( For example, merocyanine, carbomerocyanine), rhodocyanines, oxonols, thiazines (eg, thionine, methylene blue, toluidine blue), acridines (eg, acridine oleoresin) Di, chloroflavin, acriflavine), acridones (eg, acridone, 10-butyl-2-chloroacridone), anthraquinones (eg, anthraquinone), squaliums (eg, squalium), styryls, base styryls ( For example, 2- [2- [4- (dimethylamino) phenyl] ethenyl] benzoxazole), coumarins (for example, 7-diethylamino 4-methylcoumarin, 7-hydroxy 4-methylcoumarin, 2,3,6,7 -Tetrahydro-9-methyl-1H, 5H, 11H [1] benzopyrano [6,7,8-ij] quinolizine-11-non).
Among these sensitizers, polynuclear aromatics, acridones, styryls, base styryls, and coumarins are preferable, and polynuclear aromatics are more preferable. Of the polynuclear aromatics, anthracene derivatives are most preferred.
 本発明の感光性樹脂組成物中における増感剤の添加量は、感光性樹脂組成物の光酸発生剤100質量部に対し、0~1000質量部であることが好ましく、10~500質量部であることがより好ましく、50~200質量部であることがさらに好ましい。
2種以上を併用することもできる。
The addition amount of the sensitizer in the photosensitive resin composition of the present invention is preferably 0 to 1000 parts by mass with respect to 100 parts by mass of the photoacid generator in the photosensitive resin composition. More preferably, it is more preferably 50 to 200 parts by mass.
Two or more kinds can be used in combination.
(E)架橋剤
 本発明の感光性樹脂組成物は、必要に応じて、架橋剤を含有することが好ましい。架橋剤を添加することにより、本発明の感光性樹脂組成物により得られる硬化膜をより強固な膜とすることができる。
 架橋剤は、架橋基を分子内に少なくとも2つ以上含有する化合物である。架橋基とは、熱により(A)ポリシロキサンの、架橋性基、ベンゼン環、ヒドロキシ基、および、カルボキシル基から選ばれる1種以上と反応する基を意味する。架橋基としては、メチロール基、エポキシ基、オキセタニル基、アルコキシメチル基、ブロックイソシアネート基、メタクリロイル基およびアクリロイル基が好ましく、メチロール基、エポキシ基、アルコキシメチル基、ブロックイソシアネート基、メタクリロイル基およびアクリロイル基がより好ましい。
 また、架橋剤一分子中の架橋基の数は、3以上であることが好ましく、4以上であることがより好ましい。
 架橋基は、同じ種類の架橋基を分子内に2つ以上有していてもよいし、異なる種類の架橋基を分子内に2つ以上有していてもよい。
 本発明で用いる架橋剤の分子量は、150~30000が好ましく、200~10000がより好ましい。このような範囲とすることにより、本発明の効果がより効果的に発揮される。
(E) Crosslinking agent It is preferable that the photosensitive resin composition of this invention contains a crosslinking agent as needed. By adding a crosslinking agent, the cured film obtained by the photosensitive resin composition of the present invention can be made a stronger film.
The crosslinking agent is a compound containing at least two crosslinking groups in the molecule. The cross-linking group means a group that reacts with one or more selected from the cross-linkable group, benzene ring, hydroxy group, and carboxyl group of (A) polysiloxane by heat. As the crosslinking group, a methylol group, an epoxy group, an oxetanyl group, an alkoxymethyl group, a blocked isocyanate group, a methacryloyl group and an acryloyl group are preferable, and a methylol group, an epoxy group, an alkoxymethyl group, a blocked isocyanate group, a methacryloyl group and an acryloyl group are preferable. More preferred.
The number of cross-linking groups in one molecule of the cross-linking agent is preferably 3 or more, and more preferably 4 or more.
The cross-linking group may have two or more of the same type of cross-linking group in the molecule, or may have two or more different types of cross-linking groups in the molecule.
The molecular weight of the crosslinking agent used in the present invention is preferably 150 to 30000, and more preferably 200 to 10000. By setting it as such a range, the effect of this invention is exhibited more effectively.
 本発明の感光性樹脂組成物中における架橋剤の添加量は、感光性樹脂組成物の全固形分100質量部に対し、0.01~50質量部であることが好ましく、0.1~30質量部であることがより好ましく、0.5~20質量部であることがさらに好ましい。この範囲で添加することにより、機械的強度および溶剤耐性に優れた硬化膜が得られる。架橋剤は複数を併用することもでき、その場合は架橋剤を全て合算して含有量を計算する。
 また、本発明の感光性樹脂組成物は、架橋剤を実質的に含まない構成とすることもできる。実施的に含まない構成とは、架橋剤が感光性樹脂組成物の固形分の、例えば、1質量%以下であることをいう。
The addition amount of the crosslinking agent in the photosensitive resin composition of the present invention is preferably 0.01 to 50 parts by mass, and preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the total solid content of the photosensitive resin composition. The amount is more preferably part by mass, and further preferably 0.5 to 20 parts by mass. By adding in this range, a cured film having excellent mechanical strength and solvent resistance can be obtained. A plurality of crosslinking agents may be used in combination. In that case, the content is calculated by adding all the crosslinking agents.
Moreover, the photosensitive resin composition of this invention can also be set as the structure which does not contain a crosslinking agent substantially. The configuration not actually included means that the crosslinking agent is, for example, 1% by mass or less of the solid content of the photosensitive resin composition.
<<分子内に2個以上のエポキシ基を有する化合物>>
 本発明の感光性樹脂組成物では、架橋剤として、分子内に2個以上のエポキシ基を有する化合物を用いることができる。分子内に2個以上のエポキシ基を有する化合物の具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂肪族エポキシ樹脂、エポキシ基含有構成単位有するアクリル樹脂等を挙げることができる。
<< Compound having two or more epoxy groups in the molecule >>
In the photosensitive resin composition of the present invention, a compound having two or more epoxy groups in the molecule can be used as a crosslinking agent. Specific examples of compounds having two or more epoxy groups in the molecule include bisphenol A type epoxy resins, bisphenol F type epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, aliphatic epoxy resins, and epoxy group containing An acrylic resin having a structural unit can be given.
 これらは市販品として入手できる。例えば、JER152、JER157S70、JER157S65、JER806、JER828、JER1007((株)三菱ケミカルホールディングス製)など、特開2011-221494号公報の段落番号0189に記載の市販品などが挙げられ、その他にも、デナコールEX-611、EX-612、EX-614、EX-614B、EX-622、EX-512、EX-521、EX-411、EX-421、EX-313、EX-314、EX-321、EX-321L、EX-211、EX-212、EX-810、EX-811、EX-850、EX-851、EX-821、EX-830、EX-832、EX-841、EX-911、EX-941、EX-920、EX-931、EX-212L、EX-214L、EX-216L、EX-850L、DLC-201、DLC-203、DLC-204、DLC-205、DLC-206、DLC-301、DLC-402(以上ナガセケムテックス製)、YH-300、YH-301、YH-302、YH-315、YH-324、YH-325(以上新日鐵化学製)、セロキサイド 2021P、セロキサイド 2081、EHPE3150、EHPE3150CE(以上ダイセル)などが挙げられる。これらは1種単独または2種以上を組み合わせて使用することができる。
 これらの中でも、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂および脂肪族エポキシ樹脂がより好ましく挙げられ、ビスフェノールA型エポキシ樹脂が特に好ましく挙げられる。
These are available as commercial products. For example, JER152, JER157S70, JER157S65, JER806, JER828, JER1007 (manufactured by Mitsubishi Chemical Holdings Co., Ltd.), and the like are commercially available products described in paragraph No. 0189 of JP2011-221494, etc. EX-611, EX-612, EX-614, EX-614B, EX-622, EX-512, EX-521, EX-411, EX-421, EX-313, EX-314, EX-321, EX- 321L, EX-211, EX-212, EX-810, EX-811, EX-850, EX-851, EX-821, EX-830, EX-832, EX-841, EX-911, EX-941, EX-920, EX-931, EX-212L, EX-214L, X-216L, EX-850L, DLC-201, DLC-203, DLC-204, DLC-205, DLC-206, DLC-301, DLC-402 (manufactured by Nagase ChemteX), YH-300, YH-301 , YH-302, YH-315, YH-324, YH-325 (manufactured by Nippon Steel Chemical Co., Ltd.), Celoxide 2021P, Celoxide 2081, EHPE3150, EHPE3150CE (above Daicel), and the like. These can be used alone or in combination of two or more.
Among these, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin and aliphatic epoxy resin are more preferable, and bisphenol A type epoxy resin is particularly preferable.
<<分子内に2個以上のアルコキシメチル基またはメチロール基を含有する架橋剤>>
 本発明の感光性樹脂組成物では、架橋剤として、アルコキシメチル基またはメチロール基を含有する架橋剤を用いることができる。分子内に2個以上のアルコキシメチル基またはメチロール基を含有する架橋剤としては、下記一般式(1)または一般式(2)で表される構造を分子内に2個以上有する架橋剤であり、アルコキシメチル基とメチロール基のいずれか一方または両方を合計で2個以上分子内に含有する。
-CH2OR1 (1)
(式中、R1は炭素原子数1~8のアルキル基を表し、炭素数1~4のアルキル基が好ましく、メチル基がより好ましい。)
-CH2OH (2)
<< Crosslinking agent containing two or more alkoxymethyl groups or methylol groups in the molecule >>
In the photosensitive resin composition of the present invention, a crosslinking agent containing an alkoxymethyl group or a methylol group can be used as the crosslinking agent. The crosslinking agent containing two or more alkoxymethyl groups or methylol groups in the molecule is a crosslinking agent having two or more structures represented by the following general formula (1) or general formula (2) in the molecule. , One or both of an alkoxymethyl group and a methylol group are contained in the molecule in a total of two or more.
-CH 2 OR 1 (1)
(In the formula, R 1 represents an alkyl group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms, and more preferably a methyl group.)
—CH 2 OH (2)
 アルコキシメチル基またはメチロール基は、窒素原子または芳香族環を形成する炭素原子に結合していることが好ましい。 The alkoxymethyl group or methylol group is preferably bonded to a nitrogen atom or a carbon atom forming an aromatic ring.
 アルコキシメチル基またはメチロール基が、窒素原子に結合している架橋剤としては、アルコキシメチル化メラミン、メチロール化メラミン、アルコキシメチル化ベンゾグアナミン、メチロール化ベンゾグアナミン、アルコキシメチル化グリコールウリル、メチロール化グリコールウリル、アルコキシメチル化尿素およびメチロール化尿素等が好ましい。アルコキシメチル化メラミン、アルコキシメチル化ベンゾグアナミン、アルコキシメチル化グリコールウリル、アルコキシメチル化尿素は、それぞれメチロール化メラミン、メチロール化ベンゾグアナミン、メチロール化グリコールウリル、または、メチロール化尿素のメチロール基をアルコキシメチル基に変換することにより得られる。このアルコキシメチル基の種類については、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基等を挙げることができるが、アウトガスの発生量の観点から、メトキシメチル基が特に好ましい。
 これらの架橋性化合物のうち、アルコキシメチル化メラミン、メチロール化メラミン、アルコキシメチル化ベンゾグアナミン、メチロール化ベンゾグアナミン、アルコキシメチル化グリコールウリル、メチロール化グリコールウリルが好ましい架橋性化合物として挙げられ、透明性の観点から、アルコキシメチル化グリコールウリルおよびメチロール化グリコールウリルが特に好ましい。
 本発明では、特開2012-8223号公報の段落番号0107に記載のアルコキシメチル基含有架橋剤、を好ましく用いることができ、これらの内容は本願明細書に組み込まれる。
Examples of the crosslinking agent in which an alkoxymethyl group or a methylol group is bonded to a nitrogen atom include alkoxymethylated melamine, methylolated melamine, alkoxymethylated benzoguanamine, methylolated benzoguanamine, alkoxymethylated glycoluril, methylolated glycoluril, alkoxy Methylated urea and methylolated urea are preferred. Alkoxymethylated melamine, alkoxymethylated benzoguanamine, alkoxymethylated glycoluril, and alkoxymethylated urea convert methylolated melamine, methylolated benzoguanamine, methylolated glycoluril, or methylol group of methylolated urea to alkoxymethyl group, respectively. Can be obtained. Examples of the alkoxymethyl group include a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, and a butoxymethyl group, and the methoxymethyl group is particularly preferable from the viewpoint of outgas generation amount.
Among these crosslinkable compounds, alkoxymethylated melamine, methylolated melamine, alkoxymethylated benzoguanamine, methylolated benzoguanamine, alkoxymethylated glycoluril, methylolated glycoluril are mentioned as preferred crosslinkable compounds, from the viewpoint of transparency Alkoxymethylated glycoluril and methylolated glycoluril are particularly preferred.
In the present invention, the alkoxymethyl group-containing crosslinking agent described in paragraph No. 0107 of JP2012-8223A can be preferably used, and the contents thereof are incorporated in the present specification.
 分子内に2個以上のアルコキシメチル基またはメチロール基を含有する架橋剤の好ましい構造として、下記式(8-1)~(8-4)で示される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000037
(上記式(8-1)~(8-4)中、R7およびRはそれぞれ独立して水素原子または炭素数1~8のアルキル基を表し、R8~R11はそれぞれ独立して、水素原子、水酸基、アルキル基またはアルコキシル基を表し、X2は、単結合、メチレン基または酸素原子を表す。)
Preferred structures of the crosslinking agent containing two or more alkoxymethyl groups or methylol groups in the molecule include compounds represented by the following formulas (8-1) to (8-4).
Figure JPOXMLDOC01-appb-C000037
(In the above formulas (8-1) to (8-4), R 7 and R each independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R 8 to R 11 each independently represents Represents a hydrogen atom, a hydroxyl group, an alkyl group or an alkoxyl group, and X 2 represents a single bond, a methylene group or an oxygen atom.)
 R7およびRが表すアルキル基は、炭素数1~8であり、炭素数1~4がより好ましく、例えばメチル基、エチル基、プロピル基が挙げられる。R8~R11が表すアルキル基は、炭素数1~8が好ましく、炭素数1~4がより好ましく、例えば、メチル基、エチル基、プロピル基が挙げられる。R8~R11が表すアルコキシル基は、炭素数1~8が好ましく、炭素数1~4がより好ましく、例えばメトキシ基、エトキシ基、プロポキシ基が挙げられる。X2は単結合またはメチレン基であるのが好ましい。R7~R11、X2は、メチル基、エチル基等のアルキル基、ハロゲン原子などで置換されていてもよい。複数個のR7、R、R8~R11は、各々同一でも異なっていてもよい。 The alkyl group represented by R 7 and R has 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms, and examples thereof include a methyl group, an ethyl group, and a propyl group. The alkyl group represented by R 8 to R 11 preferably has 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms, and examples thereof include a methyl group, an ethyl group, and a propyl group. The alkoxyl group represented by R 8 to R 11 preferably has 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms, and examples thereof include a methoxy group, an ethoxy group, and a propoxy group. X 2 is preferably a single bond or a methylene group. R 7 to R 11 and X 2 may be substituted with an alkyl group such as a methyl group or an ethyl group, or a halogen atom. A plurality of R 7 , R, and R 8 to R 11 may be the same or different.
 式(8-1)で表される化合物として具体的には、例えば、以下に示される化合物等を挙げることができる。
Figure JPOXMLDOC01-appb-C000038
Specific examples of the compound represented by the formula (8-1) include the compounds shown below.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 式(8-2)で表される化合物として具体的には、例えば、N,N,N,N-テトラメチロールグリコールウリル、N,N,N,N-テトラメチロールグリコールウリルのメチロール基が1~4個のメトキシメチル化した化合物、N,N,N,N-テトラメチロールグリコールウリルのメチロール基が1~4個のエトキシメチル化した化合物、N,N,N,N-テトラメチロールグリコールウリルのメチロール基が1~4個のn-プロポキシメチル化した化合物、N,N,N,N-テトラメチロールグリコールウリルのメチロール基が1~4個のイソプロポキシメチル化した化合物、N,N,N,N-テトラメチロールグリコールウリルのメチロール基が1~4個のn-ブトキシメチル化した化合物、N,N,N,N-テトラメチロールグリコールウリルのメチロール基が1~4個のtert-ブトキシメチル化した化合物等を挙げることができる。この中で、特に、N,N,N,N-テトラメチロールグリコールウリルのメチロール基が1~4個のメトキシメチル化した化合物が好ましい。 Specific examples of the compound represented by the formula (8-2) include N, N, N, N-tetramethylolglycoluril, N, N, N, N-tetramethylolglycoluril having 1 to 1 methylol groups. 4 methoxymethylated compounds, N, N, N, N-tetramethylolglycoluril methylol group having 1 to 4 ethoxymethylated compounds, N, N, N, N-tetramethylolglycoluril methylol N-propoxymethylated compounds having 1 to 4 groups, isopropoxymethylated compounds having 1 to 4 methylol groups in N, N, N, N-tetramethylolglycoluril, N, N, N, N -N-butoxymethylated compound having 1 to 4 methylol groups of tetramethylol glycoluril, N, N, N, N-tetramethylolglycol Methylol groups Ruuriru can be exemplified such as 1-4 tert- butoxy methylated compound. Of these, compounds having 1 to 4 methoxymethylated methylol groups of N, N, N, N-tetramethylolglycoluril are particularly preferred.
 式(8-3)で表される化合物として具体的には、例えば、以下に示される化合物等を挙げることができる。
Figure JPOXMLDOC01-appb-C000040
Specific examples of the compound represented by the formula (8-3) include the compounds shown below.
Figure JPOXMLDOC01-appb-C000040
 式(8-4)で表される化合物として具体的には、例えば、N,N,N,N,N,N-ヘキサメチロールメラミン、N,N,N,N,N,N-ヘキサメチロールメラミンのメチロール基が1~6個メトキシメチル化した化合物、N,N,N,N,N,N-ヘキサメチロールメラミンのメチロール基が1~6個エトキシメチル化した化合物、N,N,N,N,N,N-ヘキサメチロールメラミンのメチロール基が1~6個n-プロポキシメチル化した化合物、N,N,N,N,N,N-ヘキサメチロールメラミンのメチロール基が1~6個イソプロポキシメチル化した化合物、N,N,N,N,N,N-ヘキサメチロールメラミンのメチロール基が1~6個n-ブトキシメチル化した化合物、N,N,N,N,N,N-ヘキサメチロールメラミンのメチロール基が1~6個tert-ブトキシメチル化した化合物等を挙げることができる。また、下式で表される化合物が挙げられる。この中で特に、下式で表される化合物が好ましい。 Specific examples of the compound represented by the formula (8-4) include N, N, N, N, N, N-hexamethylol melamine, N, N, N, N, N, N-hexamethylol melamine. 1-6 methoxymethylated methylol groups, 1-6 methoxymethylated methylol groups of N, N, N, N, N, N-hexamethylolmelamine, N, N, N, N , N, N-hexamethylolmelamine 1-6 methylol groups n-propoxymethylated, N, N, N, N, N, N-hexamethylolmelamine 1-6 methylol groups isopropoxymethyl Compound, N, N, N, N, N, N-hexamethylolmelamine compound having 1-6 n-butoxymethylated methylol groups, N, N, N, N, N, N-hexamethylolmelami And the like compounds methylol group has 1-6 tert- butoxy methylated. Moreover, the compound represented by the following Formula is mentioned. Among these, a compound represented by the following formula is particularly preferable.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 アルコキシメチル基またはメチロール基が、芳香族環を形成する炭素原子に結合している架橋剤の例として、例えば下記一般式(4)~(5)で表されるものを挙げることができる。 Examples of the crosslinking agent in which an alkoxymethyl group or a methylol group is bonded to a carbon atom that forms an aromatic ring include those represented by the following general formulas (4) to (5).
Figure JPOXMLDOC01-appb-C000042
(式(4)中、Xは単結合または1~4価の有機基を表し、R11、R12は各々独立に水素原子または一価の有機基を表し、nは1~4の整数であり、pおよびqは各々独立に0~4の整数である。)
Figure JPOXMLDOC01-appb-C000042
(In the formula (4), X represents a single bond or a monovalent to tetravalent organic group, R 11 and R 12 each independently represents a hydrogen atom or a monovalent organic group, and n is an integer of 1 to 4. And p and q are each independently an integer of 0 to 4.)
Figure JPOXMLDOC01-appb-C000043
(式(5)中、2つのYは各々独立に水素原子または炭素原子数1~10のアルキル基で酸素原子、フッ素原子を含んでいてもよく、R13~R16は各々独立に水素原子または一価の有機基を示し、mおよびnは各々独立に1~3の整数であり、pおよびqは各々独立に0~4の整数である。)
Figure JPOXMLDOC01-appb-C000043
(In the formula (5), two Y's are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms and may contain an oxygen atom or a fluorine atom, and R 13 to R 16 are each independently a hydrogen atom. Or a monovalent organic group, m and n are each independently an integer of 1 to 3, and p and q are each independently an integer of 0 to 4.)
 一般式(4)~(5)で表される具体的化合物として、例えば以下に示すものを挙げることができる。Meはメチル基を表す。
Figure JPOXMLDOC01-appb-C000044
Specific examples of the compounds represented by the general formulas (4) to (5) include those shown below. Me represents a methyl group.
Figure JPOXMLDOC01-appb-C000044
 これらの分子内に2個以上のアルコキシメチル基またはメチロール基を含有する架橋剤は、市販品としても入手可能であり、例えば、サイメル300、301、303、370、325、327、701、266、267、238、1141、272、202、1156、1158、1123、1170、1174、UFR65、300(以上、三井サイアナミッド(株)製)、ニカラックMX-750、-032、-706、-708、-40、-31、-270、-280、-290、-750LM、ニカラックMS-11、ニカラックMW-30HM、-100LM、-390、(以上、(株)三和ケミカル製)などを好ましく使用することができる。これらは1種単独または2種以上を組み合わせて使用することができる。 Crosslinking agents containing two or more alkoxymethyl groups or methylol groups in these molecules are also available as commercial products, for example, Cymel 300, 301, 303, 370, 325, 327, 701, 266, 267, 238, 1141, 272, 202, 1156, 1158, 1123, 1170, 1174, UFR65, 300 (above, manufactured by Mitsui Cyanamid Co., Ltd.), Nicarax MX-750, -032, -706, -708, -40 , -31, -270, -280, -290, -750LM, Nicarak MS-11, Nicarak MW-30HM, -100LM, -390, (manufactured by Sanwa Chemical Co., Ltd.), etc. are preferably used. it can. These can be used alone or in combination of two or more.
<<分子内に2個以上のブロックイソシアネート基を含有する化合物>>
 本発明の感光性樹脂組成物では、架橋剤として、分子内に2個以上のブロックイソシアネート基を含有する化合物を用いることができる。
 本発明におけるブロックイソシアネート基とは、熱によりイソシアネート基を生成することが可能な基であり、例えば、ブロック剤とイソシアネート基とを反応させイソシアネート基を保護した基が好ましく例示できる。また、上記ブロックイソシアネート基は、90℃~250℃の熱によりイソシアネート基を生成することが可能な基であることが好ましい。
 また、ブロックイソシアネート化合物としては、その骨格は特に限定されるものではなく、1分子中にイソシアネート基を2個以上有するものであればどのようなものでもよく、脂肪族、脂環族または芳香族のポリイソシアネートであってよいが、例えば2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、イソホロンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、1,3-トリメチレンジイソシアネート、1,4-テトラメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、1,9-ノナメチレンジイソシアネート、1,10-デカメチレンジイソシアネート、1,4-シクロヘキサンジイソシアネート、2,2'-ジエチルエーテルジイソシアネート、ジフェニルメタン-4,4'-ジイソシアネート、o-キシレンジイソシアネート、m-キシレンジイソシアネート、p-キシレンジイソシアネート、メチレンビス(シクロヘキシルイソシアネート)、シクロヘキサン-1,3-ジメチレンジイソシアネート、シクロヘキサン-1,4-ジメチレンジイソシアネート、1,5-ナフタレンジイソシアネート、p-フェニレンジイソシアネート、3,3'-メチレンジトリレン-4,4'-ジイソシアネート、4,4'-ジフェニルエーテルジイソシアネート、テトラクロロフェニレンジイソシアネート、ノルボルナンジイソシアネート、水素化1,3-キシリレンジイソシアネート、水素化1,4-キシリレンジイソシアネート等のイソシアネート化合物およびこれらの化合物から派生するプレポリマー型の骨格の化合物を好適に用いることができる。これらの中でも、トリレンジイソシアネート(TDI)やジフェニルメタンジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)が特に好ましい。
 本発明の感光性樹脂組成物におけるブロックイソシアネート化合物の母構造としては、ビウレット型、イソシアヌレート型、アダクト型、2官能プレポリマー型等を挙げることができる。
 上記ブロックイソシアネート化合物のブロック構造を形成するブロック剤としては、オキシム化合物、ラクタム化合物、フェノール化合物、アルコール化合物、アミン化合物、活性メチレン化合物、ピラゾール化合物、メルカプタン化合物、イミダゾール系化合物、イミド系化合物等を挙げることができる。これらの中でも、オキシム化合物、ラクタム化合物、フェノール化合物、アルコール化合物、アミン化合物、活性メチレン化合物、ピラゾール化合物から選ばれるブロック剤が特に好ましい。
<< Compound containing two or more blocked isocyanate groups in the molecule >>
In the photosensitive resin composition of the present invention, a compound containing two or more blocked isocyanate groups in the molecule can be used as a crosslinking agent.
The blocked isocyanate group in the present invention is a group capable of generating an isocyanate group by heat. For example, a group obtained by reacting a blocking agent with an isocyanate group to protect the isocyanate group can be preferably exemplified. The blocked isocyanate group is preferably a group capable of generating an isocyanate group by heat at 90 ° C. to 250 ° C.
Further, the skeleton of the blocked isocyanate compound is not particularly limited, and any skeleton having two or more isocyanate groups in one molecule may be used, and may be aliphatic, alicyclic or aromatic. For example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, isophorone diisocyanate, 1,6-hexamethylene diisocyanate, 1,3-trimethylene diisocyanate, 1,4-tetraisocyanate Methylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 1,9-nonamethylene diisocyanate, 1,10-decamethylene diisocyanate, 1,4- cyclohexane diisocyanate 2,2′-diethyl ether diisocyanate, diphenylmethane-4,4′-diisocyanate, o-xylene diisocyanate, m-xylene diisocyanate, p-xylene diisocyanate, methylene bis (cyclohexyl isocyanate), cyclohexane-1,3-dimethylene diisocyanate, cyclohexane -1,4-dimethylene diisocyanate, 1,5-naphthalene diisocyanate, p-phenylene diisocyanate, 3,3′-methylene ditolylene-4,4′-diisocyanate, 4,4′-diphenyl ether diisocyanate, tetrachlorophenylene diisocyanate, Isocyanates such as norbornane diisocyanate, hydrogenated 1,3-xylylene diisocyanate, hydrogenated 1,4-xylylene diisocyanate Compounds and compounds having a prepolymer type skeleton derived from these compounds can be preferably used. Among these, tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), and isophorone diisocyanate (IPDI) are particularly preferable.
Examples of the matrix structure of the blocked isocyanate compound in the photosensitive resin composition of the present invention include biuret type, isocyanurate type, adduct type, and bifunctional prepolymer type.
Examples of the blocking agent that forms the block structure of the blocked isocyanate compound include oxime compounds, lactam compounds, phenol compounds, alcohol compounds, amine compounds, active methylene compounds, pyrazole compounds, mercaptan compounds, imidazole compounds, and imide compounds. be able to. Among these, a blocking agent selected from oxime compounds, lactam compounds, phenol compounds, alcohol compounds, amine compounds, active methylene compounds, and pyrazole compounds is particularly preferable.
 上記オキシム化合物としては、オキシム、および、ケトオキシムが挙げられ、具体的には、アセトキシム、ホルムアルドキシム、シクロヘキサンオキシム、メチルエチルケトンオキシム、シクロヘキサノンオキシム、ベンゾフェノンオキシム等が例示できる。
 上記ラクタム化合物としてはε-カプロラクタム、γ-ブチロラクタム等が例示できる。
 上記フェノール化合物としては、フェノール、ナフトール、クレゾール、キシレノール、ハロゲン置換フェノール等が例示できる。
 上記アルコール化合物としては、メタノール、エタノール、プロパノール、ブタノール、シクロヘキサノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、乳酸アルキル等が例示できる。
 上記アミン化合物としては、1級アミンおよび2級アミンが上げられ、芳香族アミン、脂肪族アミン、脂環族アミンいずれでもよく、アニリン、ジフェニルアミン、エチレンイミン、ポリエチレンイミン等が例示できる。
 上記活性メチレン化合物としては、マロン酸ジエチル、マロン酸ジメチル、アセト酢酸エチル、アセト酢酸メチル等が例示できる。
 上記ピラゾール化合物としては、ピラゾール、メチルピラゾール、ジメチルピラゾール等が例示できる。
 上記メルカプタン化合物としては、アルキルメルカプタン、アリールメルカプタン等が例示できる。
Examples of the oxime compound include oxime and ketoxime, and specific examples include acetoxime, formaldoxime, cyclohexane oxime, methyl ethyl ketone oxime, cyclohexanone oxime, and benzophenone oxime.
Examples of the lactam compound include ε-caprolactam and γ-butyrolactam.
Examples of the phenol compound include phenol, naphthol, cresol, xylenol, and halogen-substituted phenol.
Examples of the alcohol compound include methanol, ethanol, propanol, butanol, cyclohexanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, and alkyl lactate.
Examples of the amine compound include primary amines and secondary amines, which may be aromatic amines, aliphatic amines, and alicyclic amines, and examples thereof include aniline, diphenylamine, ethyleneimine, and polyethyleneimine.
Examples of the active methylene compound include diethyl malonate, dimethyl malonate, ethyl acetoacetate, methyl acetoacetate and the like.
Examples of the pyrazole compound include pyrazole, methylpyrazole, dimethylpyrazole and the like.
Examples of the mercaptan compound include alkyl mercaptans and aryl mercaptans.
 本発明の感光性樹脂組成物に使用できるブロックイソシアネート化合物は、市販品として入手可能であり、例えば、コロネートAPステーブルM、コロネート2503、2515、2507、2513、2555、ミリオネートMS-50(以上、日本ポリウレタン工業(株)製)、タケネートB-830、B-815N、B-820NSU、B-842N、B-846N、B-870N、B-874N、B-882N(以上、三井化学(株)製)、デュラネート17B-60PX、17B-60P、TPA-B80X、TPA-B80E、MF-B60X、MF-B60B、MF-K60X、MF-K60B、E402-B80B、SBN-70D、SBB-70P、K6000(以上、旭化成ケミカルズ(株)製)、デスモジュールBL1100、BL1265 MPA/X、BL3575/1、BL3272MPA、BL3370MPA、BL3475BA/SN、BL5375MPA、VPLS2078/2、BL4265SN、PL340、PL350、スミジュールBL3175(以上、住化バイエルウレタン(株)製)等を好ましく使用することができる。 The blocked isocyanate compound that can be used in the photosensitive resin composition of the present invention is commercially available. For example, Coronate AP Stable M, Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (or more, Nippon Polyurethane Industry Co., Ltd.), Takenate B-830, B-815N, B-820NSU, B-842N, B-84N, B-870N, B-874N, B-882N (above, manufactured by Mitsui Chemicals, Inc.) ), Duranate 17B-60PX, 17B-60P, TPA-B80X, TPA-B80E, MF-B60X, MF-B60B, MF-K60X, MF-K60B, E402-B80B, SBN-70D, SBB-70P, K6000 (above , Manufactured by Asahi Kasei Chemicals Corporation, Death Module B 1100, BL1265 MPA / X, BL3575 / 1, BL3272MPA, BL3370MPA, BL3475BA / SN, BL5375MPA, VPLS2078 / 2, BL4265SN, PL340, PL350, Sumidur BL3175 (above, manufactured by Sumika Bayer Urethane Co., Ltd.) etc. are preferably used can do.
<<分子内に2個以上のメタクリロイル基またはアクリロイル基を含む化合物>>
 本発明の感光性樹脂組成物は、架橋剤として、メタクリロイル基またはアクリロイル基を含む化合物を使用してもよい。メタクリロイル基またはアクリロイル基を含む化合物とは、アクリル酸エステル、メタクリル酸エステルからなる群から選択される化合物である。アクリロイル基、メタクリロイル基は1分子中に2個以上、さらに好ましくは3官能以上ある化合物であることが好ましい。
<< Compound containing two or more methacryloyl groups or acryloyl groups in the molecule >>
In the photosensitive resin composition of the present invention, a compound containing a methacryloyl group or an acryloyl group may be used as a crosslinking agent. The compound containing a methacryloyl group or an acryloyl group is a compound selected from the group consisting of acrylic acid esters and methacrylic acid esters. It is preferable that the acryloyl group and the methacryloyl group are compounds having two or more, more preferably trifunctional or more in one molecule.
 2官能(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ビスフェノキシエタノールフルオレンジアクリレート、ビスフェノキシエタノールフルオレンジアクリレートなどが挙げられる。
 3官能以上の(メタ)アクリレートとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリ((メタ)アクリロイロキシエチル)フォスフェート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどが挙げられる。
 好ましい市販品としては、日本化薬社製 KAYARAD DPHA、新中村化学工業社製 NKエステルシリーズで、二官能のA-200、A-400、A-600、A-1000、ABE-300、A-BPE-4、A-BPE-10、A-BPE-20、A-BPE-30、A-BPP-3、A-DOD、A-DCP、A-IBD-2E、A-NPG、701A、A-B1206PE、A-HD-N、A-NOD-N、APG-100、APG-200、APG-400、APG-700、1G、2G、3G、4G、9G、14G、23G、BG、BD、HD-N、NOD、IND、BPE-100、BPE-200、BPE-300、BPE-500、BPE-900、BPE-1300N、NPG、DCP、1206PE、701、3PG、9PG、3官能のA-9300、AT-30E、A-TMPT-3EO、A-TMPT-9EO、A-TMPT-3PO、A-TMM-3、A-TMM-3L、A-TMM-3LM-N、TMPT、TMPT-9EO、4官能以上のATM-35E、ATM-4E、AD-TMP、AD-TMP-L、ATM-4P、A-TMMT、A-DPH等を挙げることができる。
Examples of the bifunctional (meth) acrylate include ethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, and polypropylene glycol di (meth) acrylate. , Tetraethylene glycol di (meth) acrylate, bisphenoxyethanol full orange acrylate, bisphenoxyethanol full orange acrylate, and the like.
Examples of the tri- or higher functional (meth) acrylate include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, tri ((meth) acryloyloxyethyl) phosphate, and pentaerythritol tetra (meth) acrylate. , Dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and the like.
Preferable commercially available products are KAYARAD DPHA manufactured by Nippon Kayaku Co., Ltd., NK ester series manufactured by Shin-Nakamura Chemical Co., Ltd., bifunctional A-200, A-400, A-600, A-1000, ABE-300, A- BPE-4, A-BPE-10, A-BPE-20, A-BPE-30, A-BPP-3, A-DOD, A-DCP, A-IBD-2E, A-NPG, 701A, A- B1206PE, A-HD-N, A-NOD-N, APG-100, APG-200, APG-400, APG-700, 1G, 2G, 3G, 4G, 9G, 14G, 23G, BG, BD, HD- N, NOD, IND, BPE-100, BPE-200, BPE-300, BPE-500, BPE-900, BPE-1300N, NPG, DCP, 1206PE, 701, 3 G, 9PG, trifunctional A-9300, AT-30E, A-TMPT-3EO, A-TMPT-9EO, A-TMPT-3PO, A-TMM-3, A-TMM-3L, A-TMM-3LM -N, TMPT, TMPT-9EO, tetra- or higher functional ATM-35E, ATM-4E, AD-TMP, AD-TMP-L, ATM-4P, A-TMMT, A-DPH and the like can be mentioned.
<<分子内に2個以上のオキセタニル基を含む化合物>>
 本発明の感光性樹脂組成物は、架橋剤として、オキセタニル基を含む化合物を使用してもよい。オキセタニル基は分子内に2個以上あることが好ましい。分子内に2個以上のオキセタニル基を有する化合物としては、特開2008-224970号公報の段落0134~0145記載の化合物が挙げられ、その内容は本明細書に組み込まれる。具体例としては、アロンオキセタンOXT-121、OXT-221、OX-SQ、PNOX(以上、東亞合成(株)製)を用いることができる。
<< Compound containing two or more oxetanyl groups in the molecule >>
The photosensitive resin composition of the present invention may use a compound containing an oxetanyl group as a crosslinking agent. It is preferable that there are two or more oxetanyl groups in the molecule. Examples of the compound having two or more oxetanyl groups in the molecule include the compounds described in paragraphs 0134 to 0145 of JP-A-2008-224970, the contents of which are incorporated herein. As specific examples, Aron Oxetane OXT-121, OXT-221, OX-SQ, and PNOX (above, manufactured by Toagosei Co., Ltd.) can be used.
(F)塩基性化合物
 本発明の感光性樹脂組成物は、(F)塩基性化合物を含有してもよい。(F)塩基性化合物としては、化学増幅レジストで用いられるものの中から任意に選択して使用することができる。例えば、脂肪族アミン、芳香族アミン、複素環式アミン、第四級アンモニウムヒドロキシド、カルボン酸の第四級アンモニウム塩等が挙げられる。これらの具体例としては、特開2011-221494号公報の段落番号0204~0207に記載の化合物が挙げられ、これらの内容は本願明細書に組み込まれる。
(F) Basic compound The photosensitive resin composition of this invention may contain the (F) basic compound. (F) The basic compound can be arbitrarily selected from those used in chemically amplified resists. Examples include aliphatic amines, aromatic amines, heterocyclic amines, quaternary ammonium hydroxides, quaternary ammonium salts of carboxylic acids, and the like. Specific examples thereof include the compounds described in JP-A 2011-212494, paragraphs 0204 to 0207, the contents of which are incorporated herein.
 具体的には、脂肪族アミンとしては、例えば、トリメチルアミン、ジエチルアミン、トリエチルアミン、ジ-n-プロピルアミン、トリ-n-プロピルアミン、トリブチルアミン、ジ-n-ペンチルアミン、トリ-n-ペンチルアミン、ジエタノールアミン、トリエタノールアミン、ジシクロヘキシルアミン、ジシクロヘキシルメチルアミンなどが挙げられる。
 芳香族アミンとしては、例えば、アニリン、ベンジルアミン、N,N-ジメチルアニリン、ジフェニルアミンなどが挙げられる。
 複素環式アミンとしては、例えば、ピリジン、2-メチルピリジン、4-メチルピリジン、2-エチルピリジン、4-エチルピリジン、2-フェニルピリジン、4-フェニルピリジン、N-メチル-4-フェニルピリジン、4-ジメチルアミノピリジン、イミダゾール、ベンズイミダゾール、4-メチルイミダゾール、2-フェニルベンズイミダゾール、2,4,5-トリフェニルイミダゾール、ニコチン、ニコチン酸、ニコチン酸アミド、キノリン、8-オキシキノリン、ピラジン、ピラゾール、ピリダジン、プリン、ピロリジン、ピペリジン、ピペラジン、モルホリン、4-メチルモルホリン、N-シクロヘキシル-N’-[2-(4-モルホリニル)エチル]チオ尿素、1,5-ジアザビシクロ[4.3.0]-5-ノネン、1,8-ジアザビシクロ[5.3.0]-7-ウンデセンなどが挙げられる。
 第四級アンモニウムヒドロキシドとしては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラ-n-ブチルアンモニウムヒドロキシド、テトラ-n-ヘキシルアンモニウムヒドロキシドなどが挙げられる。
 カルボン酸の第四級アンモニウム塩としては、例えば、テトラメチルアンモニウムアセテート、テトラメチルアンモニウムベンゾエート、テトラ-n-ブチルアンモニウムアセテート、テトラ-n-ブチルアンモニウムベンゾエートなどが挙げられる。
Specifically, as the aliphatic amine, for example, trimethylamine, diethylamine, triethylamine, di-n-propylamine, tri-n-propylamine, tributylamine, di-n-pentylamine, tri-n-pentylamine, Examples include diethanolamine, triethanolamine, dicyclohexylamine, and dicyclohexylmethylamine.
Examples of the aromatic amine include aniline, benzylamine, N, N-dimethylaniline, diphenylamine and the like.
Examples of the heterocyclic amine include pyridine, 2-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 4-ethylpyridine, 2-phenylpyridine, 4-phenylpyridine, N-methyl-4-phenylpyridine, 4-dimethylaminopyridine, imidazole, benzimidazole, 4-methylimidazole, 2-phenylbenzimidazole, 2,4,5-triphenylimidazole, nicotine, nicotinic acid, nicotinamide, quinoline, 8-oxyquinoline, pyrazine, Pyrazole, pyridazine, purine, pyrrolidine, piperidine, piperazine, morpholine, 4-methylmorpholine, N-cyclohexyl-N ′-[2- (4-morpholinyl) ethyl] thiourea, 1,5-diazabicyclo [4.3.0 ] -5-Nonene, 1,8-di And azabicyclo [5.3.0] -7-undecene.
Examples of the quaternary ammonium hydroxide include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-butylammonium hydroxide, tetra-n-hexylammonium hydroxide, and the like.
Examples of the quaternary ammonium salt of carboxylic acid include tetramethylammonium acetate, tetramethylammonium benzoate, tetra-n-butylammonium acetate, tetra-n-butylammonium benzoate and the like.
  本発明に用いることができる塩基性化合物は、1種単独で使用しても、2種以上を併用してもよい。 The basic compounds that can be used in the present invention may be used singly or in combination of two or more.
 本発明の感光性樹脂組成物における(F)塩基性化合物の含有量は、感光性樹脂組成物中の全固形分100質量部に対して、0.001~3質量部であることが好ましく、0.005~1質量部であることがより好ましい。 The content of the basic compound (F) in the photosensitive resin composition of the present invention is preferably 0.001 to 3 parts by mass with respect to 100 parts by mass of the total solid content in the photosensitive resin composition. The amount is more preferably 0.005 to 1 part by mass.
 (G)界面活性剤
 本発明の感光性樹脂組成物は、(G)界面活性剤を含有してもよい。(G)界面活性剤としては、アニオン系、カチオン系、ノニオン系、または、両性のいずれでも使用することができるが、好ましい界面活性剤はノニオン界面活性剤である。本発明の組成物に用いられる界面活性剤としては、例えば、特開2012-88459号公報の段落番号0201~0205に記載のものや、特開2011-215580号公報の段落番号0185~0188に記載のものを用いることができ、これらの記載は本願明細書に組み込まれる。
 ノニオン系界面活性剤の例としては、ポリオキシエチレン高級アルキルエーテル類、ポリオキシエチレン高級アルキルフェニルエーテル類、ポリオキシエチレングリコールの高級脂肪酸ジエステル類、シリコーン系、フッ素系界面活性剤を挙げることができる。また、以下商品名で、FA-630、KP-341、X-22-822(信越化学工業(株)製)、ポリフローNo.99C(共栄社化学(株)製)、エフトップ(三菱マテリアル化成社製)、メガファック(DIC(株)製)、フロラードノベックFC-4430(住友スリーエム(株)製)、サーフロンS-242(AGCセイミケミカル社製)、PolyFoxPF-6320(OMNOVA社製)、SH-8400(東レ・ダウコーニングシリコーン)、フタージェントFTX-218G(ネオス社製)等を挙げることができる。
 また、界面活性剤として、下記一般式(I-1-1)で表される構成単位Aおよび構成単位Bを含み、テトラヒドロフラン(THF)を溶媒とした場合のゲルパーミエーションクロマトグラフィーで測定されるポリスチレン換算の重量平均分子量(Mw)が1,000以上10,000以下である共重合体を好ましい例として挙げることができる。
(G) Surfactant The photosensitive resin composition of the present invention may contain (G) a surfactant. As the surfactant (G), any of anionic, cationic, nonionic, or amphoteric surfactants can be used, but a preferred surfactant is a nonionic surfactant. Examples of the surfactant used in the composition of the present invention include those described in paragraph Nos. 0201 to 0205 in JP2012-88459A, and paragraphs 0185 to 0188 in JP2011-215580A. Can be used and these descriptions are incorporated herein.
Examples of nonionic surfactants include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkyl phenyl ethers, higher fatty acid diesters of polyoxyethylene glycol, silicone-based and fluorine-based surfactants. . The following trade names are FA-630, KP-341, X-22-822 (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow No. 99C (manufactured by Kyoeisha Chemical Co., Ltd.), F Top (manufactured by Mitsubishi Materials Kasei Co., Ltd.), MegaFac (manufactured by DIC Corporation), Florard Novec FC-4430 (manufactured by Sumitomo 3M Co., Ltd.), Surflon S-242 (Manufactured by AGC Seimi Chemical Co., Ltd.), PolyFoxPF-6320 (manufactured by OMNOVA), SH-8400 (Toray Dow Corning Silicone), and footgent FTX-218G (manufactured by Neos).
Further, the surfactant is measured by gel permeation chromatography using the structural unit A and the structural unit B represented by the following general formula (I-1-1) and using tetrahydrofuran (THF) as a solvent. A preferred example is a copolymer having a polystyrene-reduced weight average molecular weight (Mw) of 1,000 or more and 10,000 or less.
一般式(I-1-1)
Figure JPOXMLDOC01-appb-C000045
(式(I-1-1)中、R401およびR403はそれぞれ独立に、水素原子またはメチル基を表し、R402は炭素数1以上4以下の直鎖アルキレン基を表し、R404は水素原子または炭素数1以上4以下のアルキル基を表し、Lは炭素数3以上6以下のアルキレン基を表し、pおよびqは重合比を表す質量百分率であり、pは10質量%以上80質量%以下の数値を表し、qは20質量%以上90質量%以下の数値を表し、rは1以上18以下の整数を表し、sは1以上10以下の整数を表す。)
Formula (I-1-1)
Figure JPOXMLDOC01-appb-C000045
(In the formula (I-1-1), R 401 and R 403 each independently represent a hydrogen atom or a methyl group, R 402 represents a linear alkylene group having 1 to 4 carbon atoms, and R 404 represents hydrogen. Represents an atom or an alkyl group having 1 to 4 carbon atoms, L represents an alkylene group having 3 to 6 carbon atoms, p and q are mass percentages representing a polymerization ratio, and p is 10 mass% to 80 mass%. The following numerical values are represented, q represents a numerical value of 20% to 90% by mass, r represents an integer of 1 to 18, and s represents an integer of 1 to 10.
 上記Lは、下記一般式(I-1-2)で表される分岐アルキレン基であることが好ましい。一般式(I-1-2)におけるR405は、炭素数1以上4以下のアルキル基を表し、相溶性と被塗布面に対する濡れ性の点で、炭素数1以上3以下のアルキル基が好ましく、炭素数2または3のアルキル基がより好ましい。pとqとの和(p+q)は、p+q=100、すなわち、100質量%であることが好ましい。 L is preferably a branched alkylene group represented by the following general formula (I-1-2). R 405 in formula (I-1-2) represents an alkyl group having 1 to 4 carbon atoms, and preferably an alkyl group having 1 to 3 carbon atoms in terms of compatibility and wettability with respect to the coated surface. And an alkyl group having 2 or 3 carbon atoms is more preferred. The sum (p + q) of p and q is preferably p + q = 100, that is, 100% by mass.
一般式(I-1-2)
Figure JPOXMLDOC01-appb-C000046
Formula (I-1-2)
Figure JPOXMLDOC01-appb-C000046
 上記共重合体の重量平均分子量(Mw)は、1,500以上5,000以下がより好ましい。 The weight average molecular weight (Mw) of the copolymer is more preferably from 1,500 to 5,000.
 これらの界面活性剤は、1種単独でまたは2種以上を混合して使用することができる。
 本発明の感光性樹脂組成物における(I-1)界面活性剤の添加量は、感光性樹脂組成物中の全固形分100質量部に対して、10質量部以下であることが好ましく、0.001~10質量部であることがより好ましく、0.01~3質量部であることがさらに好ましい。
These surfactants can be used individually by 1 type or in mixture of 2 or more types.
The amount of (I-1) surfactant added in the photosensitive resin composition of the present invention is preferably 10 parts by mass or less with respect to 100 parts by mass of the total solid content in the photosensitive resin composition. The amount is more preferably 0.001 to 10 parts by mass, and still more preferably 0.01 to 3 parts by mass.
 (H)酸化防止剤
 本発明の感光性樹脂組成物は、(H)酸化防止剤を含有してもよい。酸化防止剤としては、公知の酸化防止剤を含有することができる。酸化防止剤を添加することにより、硬化膜の着色を防止できる、または、分解による膜厚減少を低減でき、また、耐熱透明性に優れるという利点がある。
 このような酸化防止剤としては、例えば、リン系酸化防止剤、アミド類、ヒドラジド類、ヒンダードアミン系酸化防止剤、イオウ系酸化防止剤、フェノール系酸化防止剤、アスコルビン酸類、硫酸亜鉛、糖類、亜硝酸塩、亜硫酸塩、チオ硫酸塩、ヒドロキシルアミン誘導体などを挙げることができる。これらの中では、硬化膜の着色、膜厚減少の観点から特にフェノール系酸化防止剤、アミド系酸化防止剤、ヒドラジド系酸化防止剤、イオウ系酸化防止剤が好ましく、フェノール系酸化防止剤が最も好ましい。これらは1種単独で用いてもよいし、2種以上を混合してもよい。
 具体例としては、特開2005-29515号公報の段落番号0026~0031に記載の化合物、特開2011-227106号公報の段落0106~0116に記載の化合物を挙げる事ができ、これらの内容は本願明細書に組み込まれる。
 好ましい市販品として、アデカスタブAO-60、アデカスタブAO-80、イルガノックス1726、イルガノックス1035、イルガノックス1098を挙げる事ができる。
(H) Antioxidant The photosensitive resin composition of the present invention may contain (H) an antioxidant. As an antioxidant, a well-known antioxidant can be contained. By adding an antioxidant, there is an advantage that coloring of the cured film can be prevented, or a decrease in film thickness due to decomposition can be reduced, and heat-resistant transparency is excellent.
Examples of such antioxidants include phosphorus antioxidants, amides, hydrazides, hindered amine antioxidants, sulfur antioxidants, phenol antioxidants, ascorbic acids, zinc sulfate, sugars, Examples thereof include nitrates, sulfites, thiosulfates, and hydroxylamine derivatives. Of these, phenol-based antioxidants, amide-based antioxidants, hydrazide-based antioxidants, and sulfur-based antioxidants are particularly preferable from the viewpoint of coloring the cured film and reducing film thickness, with phenol-based antioxidants being the most preferred. preferable. These may be used individually by 1 type and may mix 2 or more types.
Specific examples include the compounds described in paragraph numbers 0026 to 0031 of JP-A-2005-29515, and the compounds described in paragraphs 0106 to 0116 of JP-A-2011-227106. Incorporated in the description.
Preferred commercial products include ADK STAB AO-60, ADK STAB AO-80, IRGANOX 1726, IRGANOX 1035, and IRGANOX 1098.
 酸化防止剤の含有量は、感光性樹脂組成物の全固形分に対して、0.1~10質量%であることが好ましく、0.2~5質量%であることがより好ましく、0.5~4質量%であることが特に好ましい。この範囲にすることで、形成された膜の十分な透明性が得られ、且つ、パターン形成時の感度も良好となる。
 また、酸化防止剤以外の添加剤として、“高分子添加剤の新展開((株)日刊工業新聞社)”に記載の各種紫外線吸収剤や、金属不活性化剤等を本発明の感光性樹脂組成物に添加してもよい。
The content of the antioxidant is preferably 0.1 to 10% by mass, more preferably 0.2 to 5% by mass, based on the total solid content of the photosensitive resin composition. It is particularly preferably 5 to 4% by mass. By setting it within this range, sufficient transparency of the formed film can be obtained, and the sensitivity at the time of pattern formation can be improved.
As additives other than antioxidants, various ultraviolet absorbers described in “New Development of Polymer Additives (Nikkan Kogyo Shimbun Co., Ltd.)”, metal deactivators, and the like are used in the present invention. You may add to a resin composition.
〔酸増殖剤〕
 本発明の感光性樹脂組成物は、感度向上を目的に、酸増殖剤を用いることができる。
 本発明に用いることができる酸増殖剤は、酸触媒反応によってさらに酸を発生して反応系内の酸濃度を上昇させることができる化合物であり、酸が存在しない状態では安定に存在する化合物である。
 このような酸増殖剤の具体例としては、特開2011-221494の段落番号0226~0228に記載の酸増殖剤が挙げられ、この内容は本願明細書に組み込まれる。
[Acid multiplication agent]
In the photosensitive resin composition of the present invention, an acid proliferating agent can be used for the purpose of improving sensitivity.
The acid proliferating agent that can be used in the present invention is a compound that can further generate an acid by an acid-catalyzed reaction to increase the acid concentration in the reaction system, and is a compound that exists stably in the absence of an acid. is there.
Specific examples of such an acid proliferating agent include acid proliferating agents described in paragraph numbers 0226 to 0228 of JP2011-221494A, the contents of which are incorporated herein.
〔現像促進剤〕
 本発明の感光性樹脂組成物は、現像促進剤を含有することができる。
 現像促進剤としては、特開2012-042837号公報の段落番号0171~0172に記載されているものを参酌でき、この内容は本願明細書に組み込まれる。
[Development accelerator]
The photosensitive resin composition of the present invention can contain a development accelerator.
As the development accelerator, those described in paragraphs 0171 to 0172 of JP2012-042837A can be referred to, and the contents thereof are incorporated in the present specification.
 現像促進剤は、1種を単独で用いてもよいし、2種以上を併用することも可能である。
 本発明の感光性樹脂組成物における現像促進剤の添加量は、感度と残膜率の観点から、感光性組成物の全固形分100質量部に対し、0~30質量部が好ましく、0.1~20質量部がより好ましく、0.5~10質量部であることが最も好ましい。
 また、その他の添加剤としては特開2012-8223号公報の段落番号0120~0121に記載の熱ラジカル発生剤、WO2011/136074A1に記載の窒素含有化合物および熱酸発生剤も用いることができ、これらの内容は本願明細書に組み込まれる。
A development accelerator may be used individually by 1 type, and can also use 2 or more types together.
The addition amount of the development accelerator in the photosensitive resin composition of the present invention is preferably 0 to 30 parts by mass with respect to 100 parts by mass of the total solid content of the photosensitive composition, from the viewpoint of sensitivity and residual film ratio. 1 to 20 parts by mass is more preferable, and 0.5 to 10 parts by mass is most preferable.
In addition, as other additives, thermal radical generators described in paragraphs 0120 to 0121 of JP2012-8223A, nitrogen-containing compounds and thermal acid generators described in WO2011-133604A1, can be used. Is incorporated herein by reference.
[アルコキシシラン化合物]
 本発明の感光性樹脂組成物は、アルコキシシラン化合物を含有することができる。
 アルコキシシラン化合物としては、ジアルコキシシラン化合物またはトリアルコキシシラン化合物が好ましく、トリアルコキシシラン化合物がより好ましい。アルコキシシラン化合物が有するアルコキシ基の炭素数は1~5が好ましい。
 本発明の感光性樹脂組成物に用いることができるアルコキシシラン化合物は、基材となる無機物、例えば、シリコン、酸化シリコン、窒化シリコン等のシリコン化合物、金、銅、モリブデン、チタン、アルミニウム等の金属と絶縁膜との密着性を向上させる化合物であることが好ましい。具体的には、公知のシランカップリング剤等も有効である。
[Alkoxysilane compound]
The photosensitive resin composition of the present invention can contain an alkoxysilane compound.
As the alkoxysilane compound, a dialkoxysilane compound or a trialkoxysilane compound is preferable, and a trialkoxysilane compound is more preferable. The alkoxy group contained in the alkoxysilane compound preferably has 1 to 5 carbon atoms.
The alkoxysilane compound that can be used in the photosensitive resin composition of the present invention is a base material, for example, a silicon compound such as silicon, silicon oxide, or silicon nitride, or a metal such as gold, copper, molybdenum, titanium, or aluminum. Preferably, the compound improves the adhesion between the insulating film and the insulating film. Specifically, a known silane coupling agent or the like is also effective.
[無機粒子]
 本発明の感光性樹脂性組成物は、無機粒子を含有することができる。無機粒子を含有することにより、硬化膜の硬度がより優れたものとなる。
 本発明で用いる無機粒子の平均粒径は、1~200nmが好ましく、5~100nmがより好ましく、5~50nmが最も好ましい。平均粒径は、電子顕微鏡により任意の粒子200個の粒子径を測定し、その算術平均をいう。また、粒子の形状が球形でない場合には、最も長い辺を径とする。
 また、硬化膜の硬度の観点から、無機粒子の空隙率は、10%未満が好ましく、3%未満がより好ましく、空隙が無いことが最も好ましい。一方、低誘電率化の観点からは、無機粒子の空隙率は、10%以上80%未満が好ましく、12%以上50%未満がより好ましい。粒子の空隙率は電子顕微鏡による断面画像の空隙部分と粒子全体との面積比の、200個の算術平均である。
 無機粒子としては、Be、Mg、Ca、Sr、Ba、Sc、Y、La、Ce、Gd、Tb、Dy、Yb、Lu、Ti、Zr、Hf、Nb、Mo、W、Zn、B、Al、Si、Ge、Sn、Pb、Sb、Bi、Te等の原子を含む金属酸化物粒子が好ましく、酸化ケイ素、酸化チタン、チタン複合酸化物、酸化亜鉛、酸化ジルコニウム、インジウム/スズ酸化物、アンチモン/スズ酸化物がより好ましく、酸化ケイ素、酸化チタン、チタン複合酸化物、酸化ジルコニウムがより好ましく、酸化ケイ素、酸化ジルコニウムまたは酸化チタンが、粒子の安定性、入手しやすさ、硬化膜の硬度、透明性、屈折率調整等の観点から特に好ましい。
 これらの粒子は各種の表面修飾をすることもできる。例えば、表面に反応性基を導入することができる。
[Inorganic particles]
The photosensitive resin composition of the present invention can contain inorganic particles. By containing the inorganic particles, the hardness of the cured film becomes more excellent.
The average particle size of the inorganic particles used in the present invention is preferably 1 to 200 nm, more preferably 5 to 100 nm, and most preferably 5 to 50 nm. The average particle diameter is an arithmetic average obtained by measuring the particle diameter of 200 arbitrary particles with an electron microscope. When the particle shape is not spherical, the longest side is the diameter.
Moreover, from the viewpoint of the hardness of the cured film, the porosity of the inorganic particles is preferably less than 10%, more preferably less than 3%, and most preferably no void. On the other hand, from the viewpoint of reducing the dielectric constant, the porosity of the inorganic particles is preferably 10% or more and less than 80%, and more preferably 12% or more and less than 50%. The porosity of the particle is an arithmetic average of 200 of the area ratio between the void portion of the cross-sectional image obtained by an electron microscope and the entire particle.
As inorganic particles, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ce, Gd, Tb, Dy, Yb, Lu, Ti, Zr, Hf, Nb, Mo, W, Zn, B, Al Metal oxide particles containing atoms such as Si, Ge, Sn, Pb, Sb, Bi, and Te are preferable. Silicon oxide, titanium oxide, titanium composite oxide, zinc oxide, zirconium oxide, indium / tin oxide, antimony / Tin oxide is more preferable, silicon oxide, titanium oxide, titanium composite oxide, zirconium oxide is more preferable, silicon oxide, zirconium oxide or titanium oxide is the stability of particles, availability, hardness of the cured film, It is particularly preferable from the viewpoints of transparency and refractive index adjustment.
These particles can also be subjected to various surface modifications. For example, a reactive group can be introduced on the surface.
 本発明において、無機粒子は、適当な分散剤および溶剤中でボールミル、ロッドミル等の混合装置を用いて混合・分散することにより調製された分散液として使用に供することもできる。
 無機粒子の含有量は、無機粒子を配合する場合、硬度や屈折率の観点から、感光性樹脂組成物の全固形分100質量部に対し、1質量部以上が好ましく、5質量部以上がより好ましく、10質量部以上がさらに好ましい。また、80質量部以下が好ましく、50質量部以下がより好ましく、40質量部以下がさらに好ましい。
 無機粒子は、1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。例えば酸化ジルコニウム粒子と酸化チタン粒子とを併用することができる。2種類以上含む場合は、その合計量が上記範囲となることが好ましい。
In the present invention, the inorganic particles can be used as a dispersion prepared by mixing and dispersing in a suitable dispersant and solvent using a mixing device such as a ball mill or a rod mill.
When the inorganic particles are blended, the content of the inorganic particles is preferably 1 part by mass or more and more preferably 5 parts by mass or more with respect to 100 parts by mass of the total solid content of the photosensitive resin composition from the viewpoint of hardness and refractive index. Preferably, 10 parts by mass or more is more preferable. Moreover, 80 mass parts or less are preferable, 50 mass parts or less are more preferable, and 40 mass parts or less are further more preferable.
One type of inorganic particles may be included, or two or more types may be included. For example, zirconium oxide particles and titanium oxide particles can be used in combination. When two or more types are included, the total amount is preferably within the above range.
[感光性樹脂組成物の調製方法]
 本発明の感光性樹脂組成物は、各成分を所定の割合でかつ任意の方法で混合し、撹拌溶解して調製することができる。例えば、各成分を、それぞれ予め溶剤に溶解させた溶液とした後、これらを所定の割合で混合して本発明の感光性樹脂組成物を調製することもできる。以上のように調製した組成物溶液は、例えば孔径0.2μmのフィルター等を用いてろ過した後に、使用することもできる。
[Method for Preparing Photosensitive Resin Composition]
The photosensitive resin composition of the present invention can be prepared by mixing each component at a predetermined ratio and by any method, stirring and dissolving. For example, the photosensitive resin composition of the present invention can also be prepared by mixing each component with a predetermined ratio after preparing each solution in advance in a solvent. The composition solution prepared as described above can be used after being filtered using, for example, a filter having a pore diameter of 0.2 μm.
 本発明の感光性樹脂組成物組成物の25℃における固形分濃度は、1~60質量%が好ましく、3~40質量%がより好ましく、5~30質量%がさらに好ましく、5~17質量%が特に好ましい。また、スリット塗布を行う場合は、固形分濃度は、7~30質量%が好ましい。
 25℃における粘度は、1~100mPa・sが好ましく、2~60mPa・sがより好ましく、3~40mPa・sが最も好ましい。また、スリット塗布を行う場合は、2~20mPa・sが好ましい。
 また、25℃における表面張力は、15~35mN/mが好ましく、15~30mN/mがより好ましい。
 固形分濃度、粘度、表面張力を上記範囲とすることで、高品位な塗布が可能となる。粘度は、例えば、東機産業製 粘度計 RE85L(ローター:1°34’×R24測定範囲0.6~1200mPa・s)を使用し、25℃に温度調製を施した状態で測定することができる。表面張力は、協和界面科学(株)製の表面張力計CBVP-A3を用い、25±0.2℃において、白金プレートの下端を測定サンプルに浸漬させる手法で測定した値である。なお、白金プレートは、測定前にアルコールランプにて赤熱させて、表面を清浄化したものを使用した。
The solid content concentration of the photosensitive resin composition of the present invention at 25 ° C. is preferably 1 to 60% by mass, more preferably 3 to 40% by mass, further preferably 5 to 30% by mass, and 5 to 17% by mass. Is particularly preferred. When performing slit coating, the solid content concentration is preferably 7 to 30% by mass.
The viscosity at 25 ° C. is preferably 1 to 100 mPa · s, more preferably 2 to 60 mPa · s, and most preferably 3 to 40 mPa · s. In addition, when slit coating is performed, 2 to 20 mPa · s is preferable.
The surface tension at 25 ° C. is preferably 15 to 35 mN / m, more preferably 15 to 30 mN / m.
By setting the solid content concentration, viscosity, and surface tension within the above ranges, high-quality coating can be achieved. The viscosity can be measured, for example, using a viscometer RE85L (rotor: 1 ° 34 ′ × R24 measurement range 0.6 to 1200 mPa · s) manufactured by Toki Sangyo Co., Ltd., with the temperature adjusted to 25 ° C. . The surface tension is a value measured by using a surface tension meter CBVP-A3 manufactured by Kyowa Interface Science Co., Ltd. and a method of immersing the lower end of the platinum plate in a measurement sample at 25 ± 0.2 ° C. In addition, the platinum plate used was made red by heating with an alcohol lamp before the measurement to clean the surface.
[硬化膜の製造方法]
 次に、本発明の硬化膜の製造方法を説明する。
 本発明の硬化膜の製造方法は、以下の(1)~(5)の工程を含む。
 (1)本発明の感光性樹脂組成物を基板上に塗布する工程;
 (2)基板に塗布された感光性樹脂組成物から溶剤を除去する工程;
 (3)溶剤が除去された感光性樹脂組成物を露光する工程;
 (4)露光された感光性樹脂組成物を現像する工程;
 (5)現像された感光性樹脂組成物を熱硬化する工程;
 以下に各工程を順に説明する。
[Method for producing cured film]
Next, the manufacturing method of the cured film of this invention is demonstrated.
The method for producing a cured film of the present invention includes the following steps (1) to (5).
(1) The process of apply | coating the photosensitive resin composition of this invention on a board | substrate;
(2) removing the solvent from the photosensitive resin composition applied to the substrate;
(3) a step of exposing the photosensitive resin composition from which the solvent has been removed;
(4) A step of developing the exposed photosensitive resin composition;
(5) a step of thermosetting the developed photosensitive resin composition;
Each step will be described below in order.
 (1)の工程(塗布工程ともいう)では、本発明の感光性樹脂組成物を基板上に塗布して溶剤を含む湿潤膜とすることが好ましい。感光性樹樹脂組成物を基板へ塗布する前にアルカリ洗浄やプラズマ洗浄といった基板の洗浄を行うことが好ましく、さらに基板洗浄後にヘキサメチルジシラザンで基板表面を処理することがより好ましい。この処理を行うことにより、感光性樹脂組成物の基板への密着性が向上する傾向にある。ヘキサメチルジシラザンで基板表面を処理する方法としては、特に限定されないが、例えば、ヘキサメチルジシラザン蒸気に中に基板を晒しておく方法等が挙げられる。
 上記の基板としては、無機基板、樹脂基板、樹脂複合材料基板などが挙げられる。
 無機基板としては、例えばガラス基板、石英基板、シリコーン基板、シリコンナイトライド基板、および、それらのような基板上にモリブデン、チタン、アルミニウム、銅などを蒸着した複合基板が挙げられる。
 樹脂基板としては、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリスチレン、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリアリレート、アリルジグリコールカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリベンズアゾール、ポリフェニレンサルファイド、ポリシクロオレフィン、ノルボルネン樹脂、ポリクロロトリフルオロエチレン等のフッ素樹脂、液晶ポリマー、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、アイオノマー樹脂、シアネート樹脂、架橋フマル酸ジエステル、環状ポリオレフィン、芳香族エーテル、マレイミドーオレフィン、セルロース、エピスルフィド化合物等の合成樹脂からなる基板が挙げられる。これらの基板は、上記の形態のまま用いられる場合は少なく、通常、最終製品の形態によって、例えばTFT素子のような多層積層構造が形成されている。
 基板への塗布方法は特に限定されず、例えば、インクジェット法、スリットコート法、スプレー法、ロールコート法、回転塗布法、流延塗布法、スリットアンドスピン法等の方法を用いることができる。
 スリットコート法の場合には基板とスリットダイとの相対移動速度を50~120mm/secとすることが好ましい。
 塗布したときの湿潤膜厚は特に限定されるものではなく、用途に応じた膜厚で塗布することができるが、通常は0.5~10μmの範囲で使用される。
 さらに、基板に本発明で用いられる組成物を塗布する前に、特開2009-145395号公報に記載されているような、所謂プリウェット法を適用することも可能である。
 また、本発明の感光性樹脂組成物を、大型基板に対して塗布する場合は、大型基板への塗布適性の観点からはスリット塗布が特に好ましい。大型基板とは、0.9m×0.9m以上、3.0m×3.0m以下の大きさの基板のことをいう。
 本発明の感光性樹脂組成物をスリット塗布する場合、組成物の固形分濃度は7~30質量%であることが好ましい。また、25℃における粘度は2.0~20mPa・sであることが好ましい。また、25℃における表面張力は15~35mN/mであることが好ましい。
 なお、固形分濃度、粘度、表面張力は、溶剤や界面活性剤の種類や量によって調整できる。
In the step (1) (also referred to as a coating step), it is preferable to apply the photosensitive resin composition of the present invention on a substrate to form a wet film containing a solvent. Before applying the photosensitive resin resin composition to the substrate, it is preferable to perform substrate cleaning such as alkali cleaning or plasma cleaning, and it is more preferable to treat the substrate surface with hexamethyldisilazane after substrate cleaning. By performing this treatment, the adhesiveness of the photosensitive resin composition to the substrate tends to be improved. The method for treating the substrate surface with hexamethyldisilazane is not particularly limited, and examples thereof include a method in which the substrate is exposed to hexamethyldisilazane vapor.
Examples of the substrate include an inorganic substrate, a resin substrate, and a resin composite material substrate.
Examples of the inorganic substrate include a glass substrate, a quartz substrate, a silicone substrate, a silicon nitride substrate, and a composite substrate obtained by depositing molybdenum, titanium, aluminum, copper, or the like on such a substrate.
As the resin substrate, polybutylene terephthalate, polyethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polystyrene, polycarbonate, polysulfone, polyethersulfone, polyarylate, allyl diglycol carbonate, polyamide, polyimide, polyamideimide, polyetherimide, Fluorine resin such as polybenzazole, polyphenylene sulfide, polycycloolefin, norbornene resin, polychlorotrifluoroethylene, liquid crystal polymer, acrylic resin, epoxy resin, silicone resin, ionomer resin, cyanate resin, crosslinked fumaric acid diester, cyclic polyolefin, Made of synthetic resin such as aromatic ether, maleimide-olefin, cellulose, episulfide compound Plate, and the like. These substrates are rarely used in the above-described form, and usually a multilayer laminated structure such as a TFT element is formed depending on the form of the final product.
The coating method on the substrate is not particularly limited, and for example, a method such as an inkjet method, a slit coating method, a spray method, a roll coating method, a spin coating method, a casting coating method, a slit and spin method can be used.
In the case of the slit coating method, the relative movement speed between the substrate and the slit die is preferably 50 to 120 mm / sec.
The wet film thickness when applied is not particularly limited, and can be applied with a film thickness according to the application, but it is usually used in the range of 0.5 to 10 μm.
Furthermore, before applying the composition used in the present invention to the substrate, it is possible to apply a so-called pre-wet method as described in JP-A-2009-145395.
Moreover, when apply | coating the photosensitive resin composition of this invention with respect to a large sized substrate, slit application | coating is especially preferable from a viewpoint of the applicability | paintability to a large sized substrate. The large substrate means a substrate having a size of 0.9 m × 0.9 m or more and 3.0 m × 3.0 m or less.
When the photosensitive resin composition of the present invention is applied by slitting, the solid content concentration of the composition is preferably 7 to 30% by mass. The viscosity at 25 ° C. is preferably 2.0 to 20 mPa · s. The surface tension at 25 ° C. is preferably 15 to 35 mN / m.
In addition, solid content concentration, a viscosity, and surface tension can be adjusted with the kind and quantity of a solvent or surfactant.
 (2)の工程(溶剤除去工程ともいう)では、塗布された上記の湿潤膜から、減圧(バキューム)および/または加熱等により、溶剤を除去して基板上に乾燥塗膜を形成させる。溶剤除去工程の加熱条件は、好ましくは70~130℃で30~300秒間程度である。温度と時間が上記範囲である場合、パターンの密着性がより良好で、且つ残渣もより低減できる傾向にある。 In the step (2) (also referred to as solvent removal step), the solvent is removed from the applied wet film by vacuum (vacuum) and / or heating to form a dry coating film on the substrate. The heating conditions for the solvent removal step are preferably 70 to 130 ° C. and about 30 to 300 seconds. When the temperature and time are in the above ranges, the pattern adhesiveness is better and the residue tends to be further reduced.
 (3)の工程(露光工程ともいう)では、塗膜を設けた基板に所定のパターンの活性光線を照射する。この工程では、光酸発生剤が分解し酸が発生する。発生した酸の触媒作用により、塗膜成分中に含まれる酸分解性基が加水分解されて、カルボキシル基またはフェノール性水酸基が生成する。
 活性光線による露光光源としては、低圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、LED光源、エキシマレーザー発生装置などを用いることができ、i線(365nm)、h線(405nm)、g線(436nm)などの波長300nm以上450nm以下の波長を有する活性光線が好ましく使用できる。また、必要に応じて長波長カットフィルター、短波長カットフィルター、バンドパスフィルターのような分光フィルターを通して照射光を調整することもできる。露光量は好ましくは1~500mJ/cm2である。
 露光装置としては、ミラープロジェクションアライナー、ステッパー、スキャナー、プロキシミティ、コンタクト、マイクロレンズアレイ、レンズスキャナ、レーザー露光、など各種方式の露光機を用いることができる。また、所謂超解像技術を用いた露光をすることもできる。超解像技術としては、複数回露光する多重露光や、位相シフトマスクを用いる方法、輪帯照明法に代表される変形証明法などが挙げられる。これら超解像技術を用いることでより高精細なパターン形成が可能となり、好ましい。
 酸触媒の生成した領域において、上記の加水分解反応を加速させるために、露光後加熱処理:Post Exposure Bake(以下、「PEB」ともいう。)を行うことができる。PEBにより、酸分解性基からのカルボキシル基またはフェノール性水酸基の生成を促進させることができる。PEBを行う場合の温度は、30℃以上130℃以下であることが好ましく、40℃以上110℃以下がより好ましく、50℃以上100℃以下が特に好ましい。
In the step (3) (also referred to as an exposure step), the substrate provided with the coating film is irradiated with an actinic ray having a predetermined pattern. In this step, the photoacid generator is decomposed to generate an acid. Due to the catalytic action of the generated acid, the acid-decomposable group contained in the coating film component is hydrolyzed to generate a carboxyl group or a phenolic hydroxyl group.
As an exposure light source using actinic light, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a chemical lamp, an LED light source, an excimer laser generator, and the like can be used, and i-line (365 nm), h-line (405 nm), Actinic rays having a wavelength of 300 nm to 450 nm, such as 436 nm), can be preferably used. Moreover, irradiation light can also be adjusted through spectral filters, such as a long wavelength cut filter, a short wavelength cut filter, and a band pass filter, as needed. The exposure amount is preferably 1 to 500 mJ / cm 2 .
As the exposure apparatus, various types of exposure machines such as a mirror projection aligner, a stepper, a scanner, a proximity, a contact, a microlens array, a lens scanner, and a laser exposure can be used. Further, exposure using so-called super-resolution technology can also be performed. Examples of the super-resolution technique include multiple exposure in which multiple exposures are performed, a method using a phase shift mask, and a deformation proof method typified by an annular illumination method. By using these super-resolution techniques, it is possible to form a higher definition pattern, which is preferable.
In order to accelerate the hydrolysis reaction in the region where the acid catalyst is generated, post-exposure heat treatment: Post Exposure Bake (hereinafter also referred to as “PEB”) can be performed. PEB can promote the formation of a carboxyl group or a phenolic hydroxyl group from an acid-decomposable group. The temperature for performing PEB is preferably 30 ° C. or higher and 130 ° C. or lower, more preferably 40 ° C. or higher and 110 ° C. or lower, and particularly preferably 50 ° C. or higher and 100 ° C. or lower.
 (4)の工程(現像工程ともいう)では、遊離したカルボキシル基またはフェノール性水酸基を有する共重合体を、アルカリ性現像液を用いて現像する。アルカリ性現像液に溶解しやすいカルボキシル基またはフェノール性水酸基を有する樹脂組成物を含む露光部領域を除去することにより、ポジ画像が形成する。
 現像工程で使用する現像液には、塩基性化合物の水溶液が含まれることが好ましい。塩基性化合物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物類;炭酸ナトリウム、炭酸カリウム、炭酸セシウムなどのアルカリ金属炭酸塩類;重炭酸ナトリウム、重炭酸カリウムなどのアルカリ金属重炭酸塩類;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ジエチルジメチルアンモニウムヒドロキシド等のテトラアルキルアンモニウムヒドロキシド類:コリン等の(ヒドロキシアルキル)トリアルキルアンモニウムヒドロキシド類;ケイ酸ナトリウム、メタケイ酸ナトリウムなどのケイ酸塩類;エチルアミン、プロピルアミン、ジエチルアミン、トリエチルアミン等のアルキルアミン類;ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類;1,8-ジアザビシクロ‐[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等の脂環式アミン類を使用することができる。
 これらのうち、水酸化ナトリウム、水酸化カリウム、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、コリン(2-ヒドロキシエチルトリメチルアンモニウムヒドロキシド)が好ましい。
 また、上記アルカリ類の水溶液にメタノールやエタノールなどの水溶性有機溶剤や界面活性剤を適当量添加した水溶液を現像液として使用することもできる。
 現像液のpHは、好ましくは10.0~14.0である。
 現像時間は、好ましくは30~500秒間であり、また、現像の手法は液盛り法(パドル法)、シャワー法、ディップ法等の何れでもよい。
 現像の後に、リンス工程を行うこともできる。リンス工程では、現像後の基板を純水などで洗うことで、付着している現像液除去、現像残渣除去を行う。リンス方法は公知の方法を用いることができる。例えばシャワーリンスやディップリンスなどを挙げる事ができる。
In the step (4) (also referred to as a development step), a copolymer having a liberated carboxyl group or phenolic hydroxyl group is developed using an alkaline developer. A positive image is formed by removing an exposed area containing a resin composition having a carboxyl group or a phenolic hydroxyl group that is easily dissolved in an alkaline developer.
The developer used in the development step preferably contains an aqueous solution of a basic compound. Examples of basic compounds include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; alkali metal carbonates such as sodium carbonate, potassium carbonate, and cesium carbonate; sodium bicarbonate, potassium bicarbonate Alkali metal bicarbonates such as: tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, diethyldimethylammonium hydroxide, and other tetraalkylammonium hydroxides: Alkyl) trialkylammonium hydroxides; silicates such as sodium silicate and sodium metasilicate; ethylamine, propylamine, diethylamine, triethylammonium Alkylamines such as dimethyl alcohol; alcohol amines such as dimethylethanolamine and triethanolamine; 1,8-diazabicyclo- [5.4.0] -7-undecene, 1,5-diazabicyclo- [4.3.0 ] Cycloaliphatic amines such as 5-nonene can be used.
Of these, sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, and choline (2-hydroxyethyltrimethylammonium hydroxide) are preferable.
An aqueous solution obtained by adding an appropriate amount of a water-soluble organic solvent such as methanol or ethanol or a surfactant to the alkaline aqueous solution can also be used as a developer.
The pH of the developer is preferably 10.0 to 14.0.
The development time is preferably 30 to 500 seconds, and the development method may be any of a liquid piling method (paddle method), a shower method, a dipping method, and the like.
A rinsing step can also be performed after development. In the rinsing step, the developed substrate and the development residue are removed by washing the developed substrate with pure water or the like. A known method can be used as the rinsing method. For example, shower rinse and dip rinse can be mentioned.
 (5)の工程(ポストベーク工程ともいう)では、得られたポジ画像を加熱することにより、酸分解性基を熱分解しカルボキシル基またはフェノール性水酸基を生成させ、架橋性基、架橋剤等と架橋させることにより、硬化膜を形成することができる。この加熱は、ホットプレートやオーブン等の加熱装置を用いて、所定の温度、例えば180~400℃で所定の時間、例えばホットプレート上なら5~90分間、オーブンならば30~120分間、加熱処理をすることが好ましい。このように架橋反応を進行させることにより、耐熱性、硬度等により優れた保護膜や層間絶縁膜を形成することができる。また、加熱処理を行う際は窒素雰囲気下で行うことにより、透明性をより向上させることもできる。
 ポストベークの前に、比較的低温でベークを行った後にポストベークすることもできる(ミドルベーク工程の追加)。ミドルベークを行う場合は、90~180℃で1~60分加熱した後に、200℃以上の高温でポストベークすることが好ましい。また、ミドルベーク、ポストベークを3段階以上の多段階に分けて加熱する事もできる。このようなミドルベーク、ポストベークの工夫により、パターンのテーパー角を調整することができる。これらの加熱は、ホットプレート、オーブン、赤外線ヒーターなど、公知の加熱方法を使用することができる。
 なお、ポストベークに先立ち、パターンを形成した基板に活性光線により全面再露光(ポスト露光)した後、ポストベークすることにより未露光部分に存在する光酸発生剤から酸を発生させ、架橋工程を促進する触媒として機能させることができ、膜の硬化反応を促進することができる。ポスト露光工程を含む場合の好ましい露光量としては、100~3,000mJ/cm2が好ましく、100~500mJ/cm2が特に好ましい。
In the step (5) (also referred to as a post-bake step), the obtained positive image is heated to thermally decompose the acid-decomposable group to generate a carboxyl group or a phenolic hydroxyl group, thereby producing a crosslinkable group, a crosslinking agent, etc. A cured film can be formed by crosslinking with. This heating is performed using a heating device such as a hot plate or an oven at a predetermined temperature, for example, 180 to 400 ° C. for a predetermined time, for example, 5 to 90 minutes on the hot plate, 30 to 120 minutes for the oven. It is preferable to By proceeding the crosslinking reaction in this way, a protective film and an interlayer insulating film that are superior in heat resistance, hardness, and the like can be formed. In addition, when the heat treatment is performed in a nitrogen atmosphere, the transparency can be further improved.
Prior to post-baking, post-baking can be performed after baking at a relatively low temperature (addition of a middle baking process). When performing middle baking, it is preferable to post-bake at a high temperature of 200 ° C. or higher after heating at 90 to 180 ° C. for 1 to 60 minutes. Moreover, middle baking and post-baking can be heated in three or more stages. The taper angle of the pattern can be adjusted by devising such middle baking and post baking. These heating methods can use well-known heating methods, such as a hotplate, oven, and an infrared heater.
Prior to post-baking, the entire surface of the patterned substrate was re-exposed with actinic rays (post-exposure), and then post-baked to generate an acid from the photoacid generator present in the unexposed portion, thereby performing a crosslinking step. It can function as a catalyst to promote, and can accelerate the curing reaction of the film. The preferred exposure amount in the case of including a post-exposure step, preferably 100 ~ 3,000mJ / cm 2, particularly preferably 100 ~ 500mJ / cm 2.
 さらに、本発明の感光性樹脂組成物より得られた硬化膜は、ドライエッチングレジストとして使用することもできる。ポストベーク工程により熱硬化して得られた硬化膜をドライエッチングレジストとして使用する場合、エッチング処理としてはアッシング、プラズマエッチング、オゾンエッチングなどのドライエッチング処理を行うことができる。 Furthermore, the cured film obtained from the photosensitive resin composition of the present invention can also be used as a dry etching resist. In the case where a cured film obtained by thermal curing in a post-baking process is used as a dry etching resist, dry etching processes such as ashing, plasma etching, and ozone etching can be performed as the etching process.
 [硬化膜]
 本発明の硬化膜は、上述した本発明の感光性樹脂組成物を硬化して得られた硬化膜である。
 本発明の硬化膜は、層間絶縁膜として好適に用いることができる。また、本発明の硬化膜は、上述した本発明の硬化膜の形成方法により得られた硬化膜であることが好ましい。
 本発明の感光性樹脂組成物により、絶縁性に優れ、高温でベークされた場合においても高い透明性を有する層間絶縁膜が得られる。本発明の感光性樹脂組成物を用いてなる層間絶縁膜は、感度が良好で、溶剤耐性に優れるため、液晶表示装置、有機EL表示装置、タッチパネル表示装置などの各種表示装置等の用途に有用である。
[Curing film]
The cured film of the present invention is a cured film obtained by curing the above-described photosensitive resin composition of the present invention.
The cured film of the present invention can be suitably used as an interlayer insulating film. Moreover, it is preferable that the cured film of this invention is a cured film obtained by the formation method of the cured film of this invention mentioned above.
With the photosensitive resin composition of the present invention, an interlayer insulating film having excellent insulation and high transparency even when baked at high temperatures can be obtained. Since the interlayer insulating film using the photosensitive resin composition of the present invention has good sensitivity and excellent solvent resistance, it is useful for various display devices such as liquid crystal display devices, organic EL display devices and touch panel display devices. It is.
[液晶表示装置]
 本発明の液晶表示装置は、本発明の硬化膜を有する。
 本発明の液晶表示装置としては、上記本発明の感光性樹脂組成物を用いて形成される平坦化膜や層間絶縁膜を有すること以外は特に制限されず、様々な構造をとる公知の液晶表示装置を挙げることができる。
 例えば、本発明の液晶表示装置が具備するTFT(Thin-Film Transistor)の具体例としては、アモルファスシリコン-TFT、低温ポリシリコンーTFT、酸化物半導体TFT等が挙げられる。本発明の硬化膜は電気特性に優れるため、これらのTFTに組み合わせて好ましく用いることができる。
 また、本発明の液晶表示装置が取りうる液晶駆動方式としてはTN(TwistedNematic)方式、VA(Vertical Alignment)方式、IPS(In-Plane-Switching)方式、FFS(Fringe Field Switching)方式、OCB(Optical Compensated Bend)方式などが挙げられる。
 パネル構成においては、COA(Color Filter on Array)方式の液晶表示装置でも本発明の硬化膜を用いることができ、例えば、特開2005-284291の有機絶縁膜(115)や、特開2005-346054の有機絶縁膜(212)として用いることができる。また、本発明の液晶表示装置が取りうる液晶配向膜の具体的な配向方式としてはラビング配向法、光配向法などが挙げられる。また、特開2003-149647号公報や特開2011-257734号公報に記載のPSA(Polymer Sustained Alignment)技術によってポリマー配向支持されていてもよい。
 また、本発明の感光性樹脂組成物および本発明の硬化膜は、上記用途に限定されず種々の用途に使用することができる。例えば、平坦化膜や層間絶縁膜以外にも、カラーフィルターの保護膜や、液晶表示装置における液晶層の厚みを一定に保持するためのスペーサーや固体撮像素子においてカラーフィルター上に設けられるマイクロレンズ等に好適に用いることができる。
 図1は、アクティブマトリックス方式の液晶表示装置10の一例を示す概念的断面図である。このカラー液晶表示装置10は、背面にバックライトユニット12を有する液晶パネルであって、液晶パネルは、偏光フィルムが貼り付けられた2枚のガラス基板14,15の間に配置されたすべての画素に対応するTFT16の素子が配置されている。ガラス基板上に形成された各素子には、硬化膜17中に形成されたコンタクトホール18を通して、画素電極を形成するITO透明電極19が配線されている。ITO透明電極19の上には、液晶20の層とブラックマトリックスを配置したRGBカラーフィルター22が設けられている。
 バックライトの光源としては、特に限定されず公知の光源を用いることができる。例えば白色LED、青色・赤色・緑色などの多色LED、蛍光灯(冷陰極管)、有機ELなどを挙げる事ができる。
 また、液晶表示装置は、3D(立体視)型のものとしたり、タッチパネル型のものとしたりすることも可能である。さらにフレキシブル型にすることも可能であり、特開2011-145686号公報に記載の第2層間絶縁膜(48)や、特開2009-258758号公報に記載の層間絶縁膜(520)、特開2007-328210号公報の図1に記載の有機絶縁膜(PAS)として用いることができる。
[Liquid Crystal Display]
The liquid crystal display device of the present invention has the cured film of the present invention.
The liquid crystal display device of the present invention is not particularly limited except that it has a flattening film and an interlayer insulating film formed using the photosensitive resin composition of the present invention, and known liquid crystal displays having various structures. An apparatus can be mentioned.
For example, specific examples of TFT (Thin-Film Transistor) included in the liquid crystal display device of the present invention include amorphous silicon-TFT, low-temperature polysilicon-TFT, oxide semiconductor TFT, and the like. Since the cured film of the present invention is excellent in electrical characteristics, it can be preferably used in combination with these TFTs.
Further, the liquid crystal driving methods that can be taken by the liquid crystal display device of the present invention include TN (Twisted Nematic) method, VA (Vertical Alignment) method, IPS (In-Plane-Switching) method, FFS (Fringe Field Switching) method, OCB (Optical). Compensated Bend) method and the like.
In the panel configuration, the cured film of the present invention can also be used in a COA (Color Filter on Array) type liquid crystal display device. For example, an organic insulating film (115) disclosed in JP-A-2005-284291, or JP-A-2005-346054 is used. It can be used as an organic insulating film (212). Specific examples of the alignment method of the liquid crystal alignment film that can be taken by the liquid crystal display device of the present invention include a rubbing alignment method and a photo alignment method. Further, the polymer orientation may be supported by a PSA (Polymer Sustained Alignment) technique described in JP-A Nos. 2003-149647 and 2011-257734.
Moreover, the photosensitive resin composition of this invention and the cured film of this invention are not limited to the said use, It can be used for various uses. For example, in addition to the planarization film and interlayer insulating film, a protective film for the color filter, a spacer for keeping the thickness of the liquid crystal layer in the liquid crystal display device constant, a micro lens provided on the color filter in the solid-state image sensor Can be suitably used.
FIG. 1 is a conceptual cross-sectional view showing an example of an active matrix liquid crystal display device 10. The color liquid crystal display device 10 is a liquid crystal panel having a backlight unit 12 on the back surface, and the liquid crystal panel includes all pixels disposed between two glass substrates 14 and 15 having a polarizing film attached thereto. The elements of the TFT 16 corresponding to are arranged. Each element formed on the glass substrate is wired with an ITO transparent electrode 19 that forms a pixel electrode through a contact hole 18 formed in the cured film 17. On the ITO transparent electrode 19, an RGB color filter 22 in which a liquid crystal 20 layer and a black matrix are arranged is provided.
The light source of the backlight is not particularly limited, and a known light source can be used. For example, a white LED, a multicolor LED such as blue, red, and green, a fluorescent lamp (cold cathode tube), and an organic EL can be used.
Further, the liquid crystal display device can be a 3D (stereoscopic) type or a touch panel type. Further, a flexible type can also be used. The second interlayer insulating film (48) described in JP2011-145686A, the interlayer insulating film (520) described in JP2009-258758A, JP It can be used as an organic insulating film (PAS) described in FIG. 1 of 2007-328210.
 特開2007-328210号公報の図1に記載の液晶表示装置について、図2を用いて説明する。
 図2において、符号SUB1は、ガラス基板であり、複数の走査信号線と、複数の走査信号線に交差する複数の映像信号線とを有している。各交点近傍には、TFTを有している。
 ガラス基板SUB1の上には、下から順に下地膜UC、シリコン等の半導体膜PS、ゲート絶縁膜GI、TFTのゲート電極GT、第1の層間絶縁膜IN1が形成されている。第1の層間絶縁膜IN1の上には、TFTのドレイン電極SD1と、TFTのソース電極SD2とが形成されている。
 ドレイン電極SD1は、ゲート絶縁膜GI及び第1の層間絶縁膜IN1に形成されたコンタクトホールを介してTFTのドレイン領域に接続されている。ソース電極SD2は、ゲート絶縁膜GI及び第1の層間絶縁膜IN1に形成されたコンタクトホールを介してTFTのソース領域に接続されている。
 ドレイン電極SD1及びソース電極SD2の上には、第2の層間絶縁膜IN2が形成されている。第2の層間絶縁膜IN2の上には、有機絶縁膜PASが形成されている。有機絶縁膜PASは、本発明の感光性樹脂組成物を用いて形成できる。
 有機絶縁膜PASの上には、対向電極CT及び反射膜RALが形成されている。
 対向電極CT及び反射膜RALの上には、第3の層間絶縁膜IN3が形成されている。第3の層間絶縁膜IN3の上には、画素電極PXが形成されている。画素電極PXは、第2の層間絶縁膜IN2及び第3の層間絶縁膜IN3に形成されたコンタクトホールを介してTFTのソース電極SD2と接続されている。
 有機絶縁膜PASを、本発明の感光性樹脂組成物を用いて形成した場合においては、有機絶縁膜PASの耐熱性が優れているため、第3の層間絶縁膜IN3の製膜温度を高めることができ、より緻密な膜を製膜できる。
 なお、本発明の感光性樹脂組成物は、耐熱性および緻密性に優れる硬化膜を形成できるため、通常無機材料で形成される、UC、IN1、IN2、IN3も本発明の感光性樹脂組成物を用いて形成することができる。
 図2に示す液晶表示装置の詳細については、特開2007-328210号公報の記載を参酌でき、この内容は本明細書に組み込まれることとする。
 なお、図2ではトップゲート構造の図を示したが、ボトムゲート構造の表示装置にも同様に適用可能である。
The liquid crystal display device shown in FIG. 1 of Japanese Patent Application Laid-Open No. 2007-328210 will be described with reference to FIG.
In FIG. 2, reference numeral SUB1 denotes a glass substrate, which has a plurality of scanning signal lines and a plurality of video signal lines intersecting with the plurality of scanning signal lines. A TFT is provided in the vicinity of each intersection.
On the glass substrate SUB1, a base film UC, a semiconductor film PS such as silicon, a gate insulating film GI, a TFT gate electrode GT, and a first interlayer insulating film IN1 are formed in this order from the bottom. A drain electrode SD1 of the TFT and a source electrode SD2 of the TFT are formed on the first interlayer insulating film IN1.
The drain electrode SD1 is connected to the drain region of the TFT through a contact hole formed in the gate insulating film GI and the first interlayer insulating film IN1. The source electrode SD2 is connected to the source region of the TFT through a contact hole formed in the gate insulating film GI and the first interlayer insulating film IN1.
A second interlayer insulating film IN2 is formed on the drain electrode SD1 and the source electrode SD2. An organic insulating film PAS is formed on the second interlayer insulating film IN2. The organic insulating film PAS can be formed using the photosensitive resin composition of the present invention.
On the organic insulating film PAS, a counter electrode CT and a reflective film RAL are formed.
A third interlayer insulating film IN3 is formed on the counter electrode CT and the reflective film RAL. A pixel electrode PX is formed on the third interlayer insulating film IN3. The pixel electrode PX is connected to the source electrode SD2 of the TFT through a contact hole formed in the second interlayer insulating film IN2 and the third interlayer insulating film IN3.
In the case where the organic insulating film PAS is formed using the photosensitive resin composition of the present invention, since the heat resistance of the organic insulating film PAS is excellent, the film forming temperature of the third interlayer insulating film IN3 is increased. And a denser film can be formed.
In addition, since the photosensitive resin composition of the present invention can form a cured film having excellent heat resistance and denseness, UC, IN1, IN2, and IN3, which are usually formed of inorganic materials, are also the photosensitive resin composition of the present invention. Can be used.
The details of the liquid crystal display device shown in FIG. 2 can be referred to the description in Japanese Patent Application Laid-Open No. 2007-328210, and the contents thereof are incorporated in this specification.
Note that FIG. 2 illustrates a top gate structure, but the present invention can be similarly applied to a display device having a bottom gate structure.
[有機EL表示装置]
 本発明の有機EL表示装置は、本発明の硬化膜を有する。
 本発明の有機EL表示装置としては、上記本発明の感光性樹脂組成物を用いて形成される平坦化膜や層間絶縁膜を有すること以外は特に制限されず、様々な構造をとる公知の各種有機EL表示装置を挙げることができる。
 例えば、本発明の有機EL表示装置が具備するTFT(Thin-Film Transistor)の具体例としては、アモルファスシリコン-TFT、低温ポリシリコンーTFT、酸化物半導体TFT等が挙げられる。本発明の硬化膜は電気特性に優れるため、これらのTFTに組み合わせて好ましく用いることができる。
 図3は、有機EL表示装置の一例の構成概念図である。ボトムエミッション型の有機EL表示装置における基板の模式的断面図を示し、平坦化膜4を有している。
 ガラス基板6上にボトムゲート型のTFT1を形成し、このTFT1を覆う状態でSi34から成る絶縁膜3が形成されている。絶縁膜3に、ここでは図示を省略したコンタクトホールを形成した後、このコンタクトホールを介してTFT1に接続される配線2(高さ1.0μm)が絶縁膜3上に形成されている。配線2は、TFT1間または、後の工程で形成される有機EL素子とTFT1とを接続するためのものである。
 さらに、配線2の形成による凹凸を平坦化するために、配線2による凹凸を埋め込む状態で絶縁膜3上に平坦化膜4が形成されている。
 平坦化膜4上には、ボトムエミッション型の有機EL素子が形成されている。すなわち、平坦化膜4上に、ITOからなる第一電極5が、コンタクトホール7を介して配線2に接続させて形成されている。また、第一電極5は、有機EL素子の陽極に相当する。
 第一電極5の周縁を覆う形状の絶縁膜8が形成されており、この絶縁膜8を設けることによって、第一電極5とこの後の工程で形成する第二電極との間のショートを防止することができる。
 さらに、図3には図示していないが、所望のパターンマスクを介して、正孔輸送層、有機発光層、電子輸送層を順次蒸着して設け、次いで、基板上方の全面にAlから成る第二電極を形成し、封止用ガラス板と紫外線硬化型エポキシ樹脂を用いて貼り合わせることで封止し、各有機EL素子にこれを駆動するためのTFT1が接続されてなるアクティブマトリックス型の有機EL表示装置が得られる。
[Organic EL display device]
The organic EL display device of the present invention has the cured film of the present invention.
The organic EL display device of the present invention is not particularly limited except that it has a flattening film and an interlayer insulating film formed using the photosensitive resin composition of the present invention, and various known structures having various structures. An organic EL display device can be mentioned.
For example, specific examples of TFT (Thin-Film Transistor) included in the organic EL display device of the present invention include amorphous silicon-TFT, low-temperature polysilicon-TFT, oxide semiconductor TFT, and the like. Since the cured film of the present invention is excellent in electrical characteristics, it can be preferably used in combination with these TFTs.
FIG. 3 is a conceptual diagram of a configuration of an example of an organic EL display device. A schematic cross-sectional view of a substrate in a bottom emission type organic EL display device is shown, and a planarizing film 4 is provided.
A bottom gate type TFT 1 is formed on a glass substrate 6, and an insulating film 3 made of Si 3 N 4 is formed so as to cover the TFT 1. A contact hole (not shown) is formed in the insulating film 3, and then a wiring 2 (height: 1.0 μm) connected to the TFT 1 through the contact hole is formed on the insulating film 3. The wiring 2 is for connecting the TFT 1 with an organic EL element formed between the TFTs 1 or in a later process.
Further, in order to flatten the unevenness due to the formation of the wiring 2, the flattening film 4 is formed on the insulating film 3 with the unevenness due to the wiring 2 being embedded.
On the planarizing film 4, a bottom emission type organic EL element is formed. That is, the first electrode 5 made of ITO is formed on the planarizing film 4 so as to be connected to the wiring 2 through the contact hole 7. The first electrode 5 corresponds to the anode of the organic EL element.
An insulating film 8 having a shape covering the periphery of the first electrode 5 is formed. By providing the insulating film 8, a short circuit between the first electrode 5 and the second electrode formed in the subsequent process is prevented. can do.
Further, although not shown in FIG. 3, a hole transport layer, an organic light emitting layer, and an electron transport layer are sequentially deposited through a desired pattern mask, and then a second layer made of Al is formed on the entire surface above the substrate. An active matrix organic material in which two electrodes are formed and sealed by bonding using a sealing glass plate and an ultraviolet curable epoxy resin, and each organic EL element is connected to a TFT 1 for driving it. An EL display device is obtained.
 本発明の感光性樹脂組成物は、感度が良好で、溶剤耐性などの硬化膜特性に優れるため、MEMSデバイスの構造部材として、本発明の感光性樹脂組成物を用いて形成されたレジストパターンを隔壁としたり、機械駆動部品の一部として組み込んで使用される。このようなMEMS用デバイスとしては、例えばSAWフィルター、BAWフィルター、ジャイロセンサー、ディスプレイ用マイクロシャッター、イメージセンサー、電子ペーパー、インクジェットヘッド、バイオチップ、封止剤等の部品が挙げられる。より具体的な例は、特表2007-522531、特開2008-250200、特開2009-263544等に例示されている。 Since the photosensitive resin composition of the present invention has good sensitivity and excellent cured film properties such as solvent resistance, a resist pattern formed using the photosensitive resin composition of the present invention as a structural member of a MEMS device is used. It is used as a partition or as a part of a mechanical drive part. Examples of such MEMS devices include parts such as SAW filters, BAW filters, gyro sensors, display micro shutters, image sensors, electronic paper, inkjet heads, biochips, sealants, and the like. More specific examples are exemplified in JP-T-2007-522531, JP-A-2008-250200, JP-A-2009-263544, and the like.
 本発明の感光性樹脂組成物は、平坦性や透明性に優れるため、例えば特開2011-107476号公報の図2に記載のバンク層(16)および平坦化膜(57)、特開2010-9793号公報の図4(a)に記載の隔壁(12)および平坦化膜(102)、特開2010-27591号公報の図10に記載のバンク層(221)および第3層間絶縁膜(216b)、特開2009-128577号公報の図4(a)に記載の第2層間絶縁膜(125)および第3層間絶縁膜(126)、特開2010-182638号公報の図3に記載の平坦化膜(12)および画素分離絶縁膜(14)などの形成に用いることもできる。この他、液晶表示装置における液晶層の厚みを一定に保持するためのスペーサーや、ファクシミリ、電子複写機、固体撮像素子等のオンチップカラーフィルターの結像光学系あるいは光ファイバコネクタのマイクロレンズにも好適に用いることができる。
 この他、耐光性、耐熱性や耐薬品性に優れることから、LED封止材、半導体素子用保護絶縁膜、半導体素子再配線絶縁膜、多層プリント基板用絶縁膜、半田保護膜、カバーレイフィルム、基盤張り合わせ膜等に有用である。
Since the photosensitive resin composition of the present invention is excellent in flatness and transparency, for example, the bank layer (16) and the planarization film (57) described in FIG. 2 of JP-A-2011-107476, JP-A-2010- The partition wall (12) and the planarization film (102) described in FIG. 4 (a) of Japanese Patent No. 9793, the bank layer (221) and the third interlayer insulating film (216b) described in FIG. 10 of Japanese Patent Application Laid-Open No. 2010-27591. ), The second interlayer insulating film (125) and the third interlayer insulating film (126) described in FIG. 4A of JP-A-2009-128577, and the flatness described in FIG. 3 of JP-A-2010-182638. It can also be used to form a chemical film (12) and a pixel isolation insulating film (14). In addition, spacers for maintaining the thickness of the liquid crystal layer in liquid crystal display devices, imaging optical systems for on-chip color filters such as facsimiles, electronic copying machines, solid-state image sensors, and micro lenses for optical fiber connectors are also used. It can be used suitably.
In addition, since it is excellent in light resistance, heat resistance and chemical resistance, LED sealing material, protective insulating film for semiconductor element, semiconductor element rewiring insulating film, insulating film for multilayer printed circuit board, solder protective film, coverlay film It is useful for base laminate films.
[タッチパネル表示装置]
 本発明のタッチパネル表示装置は、本発明の硬化膜を有する。本発明のタッチパネル表示装置は、タッチパネルの絶縁層及び又は保護層の全部又は一部が本発明の硬化物で構成されていることが好ましい。また、本発明のタッチパネル表示装置は、透明基板、ITO電極、IZO電極、その他透明電極、金属電極及び絶縁層及び又は保護増を少なくとも有することが好ましい。
[Touch panel display]
The touch panel display device of the present invention has the cured film of the present invention. In the touch panel display device of the present invention, it is preferable that all or part of the insulating layer and / or the protective layer of the touch panel is composed of the cured product of the present invention. The touch panel display device of the present invention preferably has at least a transparent substrate, an ITO electrode, an IZO electrode, other transparent electrodes, a metal electrode, an insulating layer, and / or a protective layer.
 本発明のタッチパネル表示装置に用いることのできる透明基板としては、ガラス基板、石英基板、透明樹脂基板等が好ましく挙げられる。 Preferred examples of the transparent substrate that can be used in the touch panel display device of the present invention include a glass substrate, a quartz substrate, and a transparent resin substrate.
 本発明のタッチパネル表示装置は、例えば、次のようにして製造できる。
 すなわち、ITO電極に接するように、本発明の感光性樹脂組成物をインクジェット塗布方式など各種方法により塗布する工程1、上記ITO電極に塗布した感光性樹脂組成物上に所定形状の開口パターンを有するマスクを載置し、活性エネルギー線照射を行い露光する工程2、露光後の感光性樹脂組成物を現像する工程3、及び、現像後の感光性樹脂組成物を加熱する工程4を経て製造できる。
The touch panel display device of the present invention can be manufactured, for example, as follows.
That is, the photosensitive resin composition of the present invention is applied by various methods such as an inkjet coating method so as to be in contact with the ITO electrode, and an opening pattern having a predetermined shape is formed on the photosensitive resin composition applied to the ITO electrode. It can be manufactured through Step 2 in which a mask is placed and exposed by irradiation with active energy rays, Step 3 in which the exposed photosensitive resin composition is developed, and Step 4 in which the photosensitive resin composition after development is heated. .
 工程1において、ITO電極に接するように、感光性樹脂組成物を塗布する際、塗布された本発明の感光性樹脂組成物の少なくとも一部が、ITO電極に接していればよい。
 工程2は、上述した露光工程と同様に行うことができ、好ましい態様も同様である。
 工程3は、上述した現像工程と同様に行うことができ、好ましい態様も同様である。
 工程4は、上述したポストベーク工程と同様に行うことができ、好ましい態様も同様である。
In Step 1, when the photosensitive resin composition is applied so as to be in contact with the ITO electrode, it is sufficient that at least a part of the applied photosensitive resin composition of the present invention is in contact with the ITO electrode.
Step 2 can be performed in the same manner as the exposure step described above, and the preferred embodiment is also the same.
Step 3 can be performed in the same manner as the development step described above, and the preferred embodiment is also the same.
Step 4 can be performed in the same manner as the post-baking step described above, and the preferred embodiment is also the same.
 本発明のタッチパネル表示装置は、検出方式としては静電容量方式、抵抗膜方式、光学方式など各種公知の方式を採用できる。なかでも静電容量方式が好ましい。
 タッチパネルの型としては、いわゆる、インセル型(例えば、特表2012-517051号公報の図5、図6、図7、図8)、いわゆる、オンセル型(例えば、特開2013-168125の図19、特開2012ー89102の図1や図5)、OGS(One Glass Solution)型、TOL(Touch on Lens)型(例えば特開2013-54727の図2、特開2015-15042の図2、図3、図4、図5)、その他の構成(例えば、特開2013-164871号公報の図6)、各種アウトセル型(所謂GG(glass on glass)、所謂G1・G2、所謂GFF(Glass Film Film)、所謂GF2、所謂GF1、所謂G1Fなど)を挙げることができる。
In the touch panel display device of the present invention, various known methods such as a capacitance method, a resistance film method, and an optical method can be adopted as a detection method. Of these, the electrostatic capacity method is preferable.
As the type of the touch panel, a so-called in-cell type (for example, FIG. 5, FIG. 6, FIG. 7 and FIG. 8 of JP-A-2012-517051), a so-called on-cell type (for example, FIG. 19, JP-A-2013-168125, 1 and FIG. 5 of JP 2012-89102), OGS (One Glass Solution) type, TOL (Touch on Lens) type (for example, FIG. 2 of JP 2013-54727 A, FIGS. 2 and 3 of JP 2015-15042 A). 4, FIG. 5), other configurations (for example, FIG. 6 of Japanese Patent Application Laid-Open No. 2013-164871), various out-cell types (so-called GG (glass on glass), so-called G1 and G2, so-called GFF (Glass Film Film)) And so-called GF2, so-called GF1, and so-called G1F).
 タッチパネル、及び、タッチパネルを構成要素として備えたタッチパネル表示装置は、「最新タッチパネル技術」(2009年7月6日発行(株)テクノタイムズ)、三谷雄二監修、“タッチパネルの技術と開発”、シーエムシー出版(2004,12)、FPD International 2009 Forum T-11講演テキストブック、Cypress Semiconductor Corporation アプリケーションノートAN2292等に開示されている構成を適用することができる。 The touch panel and the touch panel display device equipped with the touch panel as a component are “the latest touch panel technology” (published July 6, 2009 Techno Times Co., Ltd.), supervised by Yuji Mitani, “Touch Panel Technology and Development”, CMC The configurations disclosed in Publication (2004, 12), FPD International 2009 Forum T-11 Lecture Textbook, Cypress Semiconductor Corporation Application Note AN2292, etc. can be applied.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜変更することができる。従って、本発明の範囲は以下に限定されるものではない。 The present invention will be described more specifically with reference to the following examples. The materials, usage amounts, ratios, processing contents, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Accordingly, the scope of the present invention is not limited to the following.
 実施例および比較例に用いた各化合物を示す略号の詳細は、以下の通りである。 Details of the abbreviations indicating each compound used in Examples and Comparative Examples are as follows.
 <(A)ポリシロキサン>
 (A-1の合成)
 4-ヒドロキシベンジルトリメトキシシラン114.2g(0.5モル)、3-グリシドキシプロピルトリメトキシシラン94.5g(0.4モル)、メチルトリメトキシシラン6.8g(0.05モル)、フェニルトリメトキシシラン9.9g(0.05モル)、DAA(ジアセトンアルコール)250gを、三口フラスコに仕込み、室温で攪拌しながら、水54gにリン酸0.176g(仕込みシラン化合物に対して0.1質量%)を溶かしたリン酸水溶液を、30分かけて添加した。その後、三口フラスコを40℃のオイルバスに浸けて30分攪拌した後、オイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した(内温は100~110℃)。
 反応中に副生成物であるメタノールが留出した。得られたポリシロキサンのDAA溶液を多量の水に注いでポリマーを析出させ、ろ過、乾燥してA-1前駆体を得た。
 得られたA-1前駆体の100gを、テトラヒドロフラン400mLに溶解させ、触媒量のp-トルエンスルホン酸を添加後、20℃で撹拌しながらエチルビニルエーテル30gをテトラヒドロフラン30gに溶解させた溶液を滴下した。
 30分反応させた後、濃アンモニア水により中和し、水5Lに中和した反応液を滴下したところ、白色固体が得られた。これを濾過後、アセトン300mlに溶解させ、水5Lに滴下し、濾過後、乾燥してA-1を得た。
 GPCによるポリスチレン換算の重量平均分子量は5000であった。
 1H-NMRによる分析において、A-1においては、フェノール性水酸基の水素原子の70モル%がエトキシエチル化されたことが確認された。
 A-1の合成に使用したシラン化合物の種類及びモル比を以下に示す。
<(A) Polysiloxane>
(Synthesis of A-1)
4-hydroxybenzyltrimethoxysilane 114.2 g (0.5 mol), 3-glycidoxypropyltrimethoxysilane 94.5 g (0.4 mol), methyltrimethoxysilane 6.8 g (0.05 mol), 9.9 g (0.05 mol) of phenyltrimethoxysilane and 250 g of DAA (diacetone alcohol) were charged into a three-necked flask and stirred at room temperature, and 0.176 g of phosphoric acid (0 with respect to the charged silane compound) was added to 54 g of water. 0.1 mass%) was added over 30 minutes. Thereafter, the three-necked flask was immersed in a 40 ° C. oil bath and stirred for 30 minutes, and then the oil bath was heated to 115 ° C. over 30 minutes. One hour after the start of temperature increase, the internal temperature of the solution reached 100 ° C., and was then heated and stirred for 2 hours (internal temperature was 100 to 110 ° C.).
During the reaction, methanol as a by-product was distilled off. The obtained polysiloxane DAA solution was poured into a large amount of water to precipitate a polymer, filtered and dried to obtain an A-1 precursor.
100 g of the obtained A-1 precursor was dissolved in 400 mL of tetrahydrofuran, and after adding a catalytic amount of p-toluenesulfonic acid, a solution in which 30 g of ethyl vinyl ether was dissolved in 30 g of tetrahydrofuran was added dropwise with stirring at 20 ° C. .
After reacting for 30 minutes, the reaction solution was neutralized with concentrated aqueous ammonia and neutralized with 5 L of water, and a white solid was obtained. This was filtered, dissolved in 300 ml of acetone, dropped into 5 L of water, filtered and dried to obtain A-1.
The weight average molecular weight in terms of polystyrene by GPC was 5000.
In the analysis by 1 H-NMR, it was confirmed that in A-1, 70 mol% of the hydrogen atoms of the phenolic hydroxyl group were ethoxyethylated.
The types and molar ratios of the silane compounds used for the synthesis of A-1 are shown below.
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
 (A-2の合成)
 シラン化合物を、以下に示す化合物及びモル比で使用し、保護基の種類と量を調整した以外はA-1と同様にして、下記シラン化合物を混合、反応させ、高分子反応で保護基を導入し、A-2を合成した。
 1H-NMRによる分析において、A-2においては、フェノール性水酸基の水素原子の70モル%がエトキシエチル化されたことが確認された。
(Synthesis of A-2)
The following silane compounds were mixed and reacted in the same manner as in A-1, except that the silane compounds were used in the following compounds and molar ratios, and the types and amounts of the protecting groups were adjusted. And A-2 was synthesized.
In the analysis by 1H-NMR, it was confirmed that in A-2, 70 mol% of the hydrogen atoms of the phenolic hydroxyl group were ethoxyethylated.
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
 (A-3の合成)
 シラン化合物を、以下に示す化合物及びモル比で使用し、保護基の種類と量を調整した以外はA-1と同様にして、下記シラン化合物を混合、反応させ、高分子反応で保護基を導入し、A-3を合成した。
 1H-NMRによる分析において、A-3においては、フェノール性水酸基の水素原子の70モル%がエトキシエチル化されたことが確認された。
(Synthesis of A-3)
The following silane compounds were mixed and reacted in the same manner as in A-1, except that the silane compounds were used in the following compounds and molar ratios, and the types and amounts of the protecting groups were adjusted. And A-3 was synthesized.
In the analysis by 1H-NMR, it was confirmed that in A-3, 70 mol% of the hydrogen atoms of the phenolic hydroxyl group were ethoxyethylated.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
 (A-4の合成)
 シラン化合物を、以下に示す化合物及びモル比で使用し、保護基の種類と量を調整した以外はA-1と同様にして、下記シラン化合物を混合、反応させ、高分子反応で保護基を導入し、A-4を合成した。
 1H-NMRによる分析において、A-4においては、フェノール性水酸基の水素原子の70モル%がエトキシエチル化されたことが確認された。
(Synthesis of A-4)
The following silane compounds were mixed and reacted in the same manner as in A-1, except that the silane compounds were used in the following compounds and molar ratios, and the types and amounts of the protecting groups were adjusted. And A-4 was synthesized.
In the analysis by 1H-NMR, it was confirmed that in A-4, 70 mol% of the hydrogen atoms of the phenolic hydroxyl group were ethoxyethylated.
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
 (A-5の合成)
 3-トリクロロシリル-1-シクロヘキシルカルボン酸メチルエステル12.4g(0.045mol)、グリシドキシプロピルトリクロロシラン11.2g(0.045mol)、メチルトリクロロシラン0.745g(0.005mol)、フェニルトリクロロシラン1.06g(0.005mol)をトルエン150gに溶解し、水300g中へ室温で撹拌しながら滴下添加した。滴下終了後、反応混合物より酸性水層を分離し、次いで水1Lで有機層を水洗し、水層が中性になってからさらに2回水洗を行った。有機層をエバポレーターにより溶媒留去した。その濃縮液を200℃で2時間加熱し、重合した。
 重合物にテトラヒドロフラン800gを加えて溶解したものを、10%水酸化ナトリウム溶液1,000gへ滴下し、40℃で3時間加熱し、メチルエステル基を加水分解した。塩酸で酸性にしてポリマーを晶出し、濾過、乾燥を行いA-5前駆体(A-5のカルボキシ基がテトラヒドロフラニル保護されていないポリマー)を得た。
 A-5前駆体に対して、A-1と同様に高分子反応で保護基を導入し、A-5を合成した。
 1H-NMRによる分析において、A-5においては、カルボキシ基にジヒドロフランを反応させ、78モル%がテトラヒドロフラニル化された。
 A-5の合成に使用したシラン化合物の種類及びモル比を以下に示す。
(Synthesis of A-5)
3-trichlorosilyl-1-cyclohexylcarboxylic acid methyl ester 12.4 g (0.045 mol), glycidoxypropyltrichlorosilane 11.2 g (0.045 mol), methyltrichlorosilane 0.745 g (0.005 mol), phenyltri 1.06 g (0.005 mol) of chlorosilane was dissolved in 150 g of toluene and added dropwise to 300 g of water with stirring at room temperature. After completion of the dropwise addition, the acidic aqueous layer was separated from the reaction mixture, then the organic layer was washed with 1 L of water, and further washed twice with water after the aqueous layer became neutral. The organic layer was evaporated using an evaporator. The concentrated solution was heated at 200 ° C. for 2 hours to polymerize.
A polymer dissolved in 800 g of tetrahydrofuran was dropped into 1,000 g of a 10% sodium hydroxide solution and heated at 40 ° C. for 3 hours to hydrolyze the methyl ester group. The polymer was crystallized with hydrochloric acid, crystallized, filtered and dried to obtain an A-5 precursor (polymer in which the carboxyl group of A-5 was not protected with tetrahydrofuranyl).
A-5 was synthesized by introducing a protecting group into the A-5 precursor by a polymer reaction in the same manner as A-1.
In analysis by 1H-NMR, in A-5, carboxy group was reacted with dihydrofuran, and 78 mol% was tetrahydrofuranylated.
The types and molar ratios of the silane compounds used for the synthesis of A-5 are shown below.
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
 (A-6の合成)
 シラン化合物を、以下に示す化合物及びモル比で使用し、保護基の種類と量を調整した以外はA-5と同様にして、下記シラン化合物を混合、反応させ、高分子反応で保護基を導入し、A-6を合成した。
 1H-NMRによる分析において、A-6においては、カルボキシ基の78モル%がエトキシエチル化されたことが確認された。
(Synthesis of A-6)
The following silane compounds were mixed and reacted in the same manner as in A-5 except that the silane compounds were used in the following compounds and molar ratios and the types and amounts of the protecting groups were adjusted, and the protecting groups were then reacted by polymer reaction. And A-6 was synthesized.
In the analysis by 1H-NMR, it was confirmed that 78 mol% of the carboxy group was ethoxyethylated in A-6.
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
 (A-7の合成)
 シラン化合物を、以下に示す化合物及びモル比で使用し、保護基の種類と量を調整した以外はA-5と同様にして、下記シラン化合物を混合、反応させ、高分子反応で保護基を導入し、A-7を合成した。
 1H-NMRによる分析において、A-7においては、カルボキシ基の78モル%がエトキシエチル化されたことが確認された。
(Synthesis of A-7)
The following silane compounds were mixed and reacted in the same manner as in A-5 except that the silane compounds were used in the following compounds and molar ratios and the types and amounts of the protecting groups were adjusted, and the protecting groups were then reacted by polymer reaction. And A-7 was synthesized.
Analysis by 1H-NMR confirmed that 78 mol% of the carboxy groups were ethoxyethylated in A-7.
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
 (A-8の合成)
 シラン化合物を、以下に示す化合物及びモル比で使用し、保護基の種類と量を調整した以外はA-5と同様にして、下記シラン化合物を混合、反応させ、高分子反応で保護基を導入し、A-8を合成した。
 1H-NMRによる分析において、A-8においては、カルボキシ基の78モル%がテトラヒドロフラニル化されたことが確認された。
(Synthesis of A-8)
The following silane compounds were mixed and reacted in the same manner as in A-5 except that the silane compounds were used in the following compounds and molar ratios and the types and amounts of the protecting groups were adjusted, and the protecting groups were then reacted by polymer reaction. And A-8 was synthesized.
Analysis by 1H-NMR confirmed that 78 mol% of the carboxy group was tetrahydrofuranylated in A-8.
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
 (A-9の合成)
 シラン化合物を、以下に示す化合物及びモル比で使用し、保護基の種類と量を調整した以外はA-5と同様にして、下記シラン化合物を混合、反応させ、高分子反応で保護基を導入し、A-9を合成した。
 1H-NMRによる分析において、A-9においては、カルボキシ基の78モル%がテトラヒドロフラニル化されたことが確認された。
(Synthesis of A-9)
The following silane compounds were mixed and reacted in the same manner as in A-5 except that the silane compounds were used in the following compounds and molar ratios and the types and amounts of the protecting groups were adjusted, and the protecting groups were then reacted by polymer reaction. And A-9 was synthesized.
In the analysis by 1H-NMR, it was confirmed that 78 mol% of the carboxy groups were tetrahydrofuranylated in A-9.
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000055
 (A-10の合成)
 シラン化合物を、以下に示す化合物及びモル比で使用し、保護基の種類と量を調整した以外はA-5と同様にして、下記シラン化合物を混合、反応させ、高分子反応で保護基を導入し、A-10を合成した。
 1H-NMRによる分析において、A-10においては、カルボキシ基の78モル%がテトラヒドロフラニル化されたことが確認された。
(Synthesis of A-10)
The following silane compounds were mixed and reacted in the same manner as in A-5 except that the silane compounds were used in the following compounds and molar ratios and the types and amounts of the protecting groups were adjusted, and the protecting groups were then reacted by polymer reaction. And A-10 was synthesized.
In the analysis by 1H-NMR, it was confirmed that 78 mol% of the carboxy group was tetrahydrofuranylated in A-10.
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
 (A-11の合成)
 シラン化合物を、以下に示す化合物及びモル比で使用し、保護基の種類と量を調整した以外はA-1と同様にして、下記シラン化合物を混合、反応させ、高分子反応で保護基を導入し、A-11を合成した。
 1H-NMRによる分析において、A-11においては、フェノール性水酸基の水素原子の75モル%がエトキシエチル化されたことが確認された。
(Synthesis of A-11)
The following silane compounds were mixed and reacted in the same manner as in A-1, except that the silane compounds were used in the following compounds and molar ratios, and the types and amounts of the protecting groups were adjusted. And A-11 was synthesized.
In the analysis by 1H-NMR, it was confirmed that in A-11, 75 mol% of the hydrogen atoms of the phenolic hydroxyl group were ethoxyethylated.
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057
 (A-12の合成)
 シラン化合物を、以下に示す化合物及びモル比で使用し、保護基の種類と量を調整した以外はA-1と同様にして、下記シラン化合物を混合、反応させ、高分子反応で保護基を導入し、A-12を合成した。
 1H-NMRによる分析において、A-12においては、フェノール性水酸基の水素原子の75モル%がエトキシエチル化されたことが確認された。
(Synthesis of A-12)
The following silane compounds were mixed and reacted in the same manner as in A-1, except that the silane compounds were used in the following compounds and molar ratios, and the types and amounts of the protecting groups were adjusted. Introduced and synthesized A-12.
In the analysis by 1H-NMR, it was confirmed that in A-12, 75 mol% of the hydrogen atoms of the phenolic hydroxyl group were ethoxyethylated.
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058
 (A-13の合成)
 シラン化合物を、以下に示す化合物及びモル比で使用し、保護基の種類と量を調整した以外はA-1と同様にして、下記シラン化合物を混合、反応させ、高分子反応で保護基を導入し、A-13を合成した。
 1H-NMRによる分析において、A-13においては、フェノール性水酸基の水素原子の70モル%がエトキシエチル化されたことが確認された。
(Synthesis of A-13)
The following silane compounds were mixed and reacted in the same manner as in A-1, except that the silane compounds were used in the following compounds and molar ratios, and the types and amounts of the protecting groups were adjusted. And A-13 was synthesized.
In the analysis by 1H-NMR, it was confirmed that in A-13, 70 mol% of the hydrogen atoms of the phenolic hydroxyl group were ethoxyethylated.
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059
 (A-14の合成)
 シラン化合物を、以下に示す化合物及びモル比で使用し、保護基の種類と量を調整した以外はA-5と同様にして、下記シラン化合物を混合、反応させ、高分子反応で保護基を導入し、A-14を合成した。
 1H-NMRによる分析において、A-14においては、カルボキシ基の92モル%がテトラヒドロフラニル化されたことが確認された。
(Synthesis of A-14)
The following silane compounds were mixed and reacted in the same manner as in A-5 except that the silane compounds were used in the following compounds and molar ratios and the types and amounts of the protecting groups were adjusted, and the protecting groups were then reacted by polymer reaction. And A-14 was synthesized.
In the analysis by 1H-NMR, it was confirmed that 92 mol% of the carboxy groups were tetrahydrofuranylated in A-14.
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000060
 (A-15の合成)
 シラン化合物を、以下に示す化合物及びモル比で使用し、保護基の種類と量を調整した以外はA-5と同様にして、下記シラン化合物を混合、反応させ、高分子反応で保護基を導入し、A-15を合成した。
 1H-NMRによる分析において、A-15においては、カルボキシ基の88モル%がエトキシエチル化されたことが確認された。
(Synthesis of A-15)
The following silane compounds were mixed and reacted in the same manner as in A-5 except that the silane compounds were used in the following compounds and molar ratios and the types and amounts of the protecting groups were adjusted, and the protecting groups were then reacted by polymer reaction. And A-15 was synthesized.
In the analysis by 1H-NMR, it was confirmed that 88 mol% of the carboxy group was ethoxyethylated in A-15.
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000061
 (A-16の合成)
 シラン化合物を、以下に示す化合物及びモル比で使用し、保護基の種類と量を調整した以外はA-5と同様にして、下記シラン化合物を混合、反応させ、高分子反応で保護基を導入し、A-16を合成した。
 1H-NMRによる分析において、A-16においては、カルボキシ基の80モル%がテトラヒドロフラニル化されたことが確認された。
(Synthesis of A-16)
The following silane compounds were mixed and reacted in the same manner as in A-5 except that the silane compounds were used in the following compounds and molar ratios and the types and amounts of the protecting groups were adjusted, and the protecting groups were then reacted by polymer reaction. And A-16 was synthesized.
In the analysis by 1H-NMR, it was confirmed that 80 mol% of the carboxy groups were tetrahydrofuranylated in A-16.
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000062
 (A-17の合成)
 シラン化合物を、以下に示す化合物及びモル比で使用し、保護基の種類と量を調整した以外はA-1と同様にして、下記シラン化合物を混合、反応させ、高分子反応で保護基を導入し、A-17を合成した。
 1H-NMRによる分析において、A-17においては、フェノール性水酸基の水素原子の75モル%がエトキシエチル化されたことが確認された。
(Synthesis of A-17)
The following silane compounds were mixed and reacted in the same manner as in A-1, except that the silane compounds were used in the following compounds and molar ratios, and the types and amounts of the protecting groups were adjusted. And A-17 was synthesized.
In the analysis by 1H-NMR, it was confirmed that in A-17, 75 mol% of the hydrogen atoms of the phenolic hydroxyl group were ethoxyethylated.
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000063
 (A-18の合成)
 A-5の合成で記載した方法と同様にして、A-5前駆体を得た。
 A-5前駆体に対して高分子反応でイソブテンを反応させて保護基を導入し、A-18を合成した。
 1H-NMRによる分析において、A-18においては、カルボキシ基の70モル%がt-ブチルエステル化されたことが確認された。
 A-18の合成に使用したシラン化合物の種類及びモル比を以下に示す。
(Synthesis of A-18)
In the same manner as described in the synthesis of A-5, an A-5 precursor was obtained.
A-18 was synthesized by reacting the A-5 precursor with isobutene by a polymer reaction to introduce a protecting group.
In the analysis by 1H-NMR, it was confirmed that in A-18, 70 mol% of the carboxy group was t-butyl esterified.
The types and molar ratios of the silane compounds used for the synthesis of A-18 are shown below.
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
 (A-101の合成)
 シラン化合物を、以下に示す化合物及びモル比で使用し、保護基の種類と量を調整した以外は、A-1と同様にして、下記シラン化合物を混合、反応させ、高分子反応で保護基を導入し、A-101を合成した。
 1H-NMRによる分析において、A-101においては、カルボキシ基の70モル%がエトキシエチル化されたことが確認された。
(Synthesis of A-101)
The following silane compounds were mixed and reacted in the same manner as in A-1, except that the silane compounds were used in the following compounds and molar ratios, and the types and amounts of the protecting groups were adjusted. And A-101 was synthesized.
Analysis by 1H-NMR confirmed that 70 mol% of the carboxy group was ethoxyethylated in A-101.
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000065
 (A-102の合成)
 シラン化合物を、以下に示す化合物及びモル比で使用し、保護基の種類と量を調整した以外は、A-1と同様にして、下記シラン化合物を混合、反応させ、高分子反応で保護基を導入し、A-102を合成した。
 1H-NMRによる分析において、A-102においては、カルボキシ基の70モル%がエトキシエチル化されたことが確認された。
(Synthesis of A-102)
The following silane compounds were mixed and reacted in the same manner as in A-1, except that the silane compounds were used in the following compounds and molar ratios, and the types and amounts of the protecting groups were adjusted. And A-102 was synthesized.
In the analysis by 1H-NMR, it was confirmed that 70 mol% of the carboxy group was ethoxyethylated in A-102.
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
 (A-103の合成)
 シラン化合物を、以下に示す化合物及びモル比で使用し、保護基の種類と量を調整した以外は、A-5と同様にして、下記シラン化合物を混合、反応させ、高分子反応で保護基を導入し、A-103を合成した。
 1H-NMRによる分析において、A-103においては、カルボキシ基の78モル%がテトラヒドロフラニル化されたことが確認された。
(Synthesis of A-103)
The following silane compounds were mixed and reacted in the same manner as A-5, except that the silane compounds were used in the following compounds and molar ratios, and the types and amounts of the protecting groups were adjusted. A-103 was synthesized.
The analysis by 1H-NMR confirmed that 78 mol% of the carboxy group was tetrahydrofuranylated in A-103.
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000067
 (A-104の合成)
 シラン化合物を、以下に示す化合物及びモル比で使用し、保護基の種類と量を調整した以外は、A-5と同様にして、下記シラン化合物を混合、反応させ、高分子反応で保護基を導入し、A-104を合成した。
 1H-NMRによる分析において、A-104においては、カルボキシ基の78モル%がテトラヒドロフラニル化されたことが確認された。
(Synthesis of A-104)
The following silane compounds were mixed and reacted in the same manner as A-5, except that the silane compounds were used in the following compounds and molar ratios, and the types and amounts of the protecting groups were adjusted. And A-104 was synthesized.
In the analysis by 1H-NMR, it was confirmed that in A-104, 78 mol% of the carboxy group was tetrahydrofuranylated.
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000068
 (A-105の合成)
 シラン化合物を、以下に示す化合物及びモル比で使用し、保護基の種類と量を調整した以外は、A-5と同様にして、下記シラン化合物を混合、反応させ、高分子反応で保護基を導入し、A-105を合成した。
 1H-NMRによる分析において、A-105においては、カルボキシ基の78モル%がテトラヒドロフラニル化されたことが確認された。
(Synthesis of A-105)
The following silane compounds were mixed and reacted in the same manner as A-5, except that the silane compounds were used in the following compounds and molar ratios, and the types and amounts of the protecting groups were adjusted. And A-105 was synthesized.
The analysis by 1H-NMR confirmed that 78 mol% of the carboxy group was tetrahydrofuranylated in A-105.
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000069
 (A-201の合成)
 シラン化合物を、以下に示す化合物及びモル比で使用し、保護基の種類と量を調整した以外は、A-1と同様にして、下記シラン化合物を混合、反応させ、高分子反応で保護基を導入し、A-201を合成した。
 1H-NMRによる分析において、A-201においては、カルボキシ基の70モル%がエトキシエチル化されたことが確認された。
(Synthesis of A-201)
The following silane compounds were mixed and reacted in the same manner as in A-1, except that the silane compounds were used in the following compounds and molar ratios, and the types and amounts of the protecting groups were adjusted. A-201 was synthesized.
In the analysis by 1H-NMR, it was confirmed that in A-201, 70 mol% of the carboxy group was ethoxyethylated.
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000070
 (A-202の合成)
 シラン化合物を、以下に示す化合物及びモル比で使用し、保護基の種類と量を調整した以外は、A-1と同様にして、下記シラン化合物を混合、反応させ、高分子反応で保護基を導入し、A-202を合成した。
 1H-NMRによる分析において、A-202においては、カルボキシ基の70モル%がエトキシエチル化されたことが確認された。
(Synthesis of A-202)
The following silane compounds were mixed and reacted in the same manner as in A-1, except that the silane compounds were used in the following compounds and molar ratios, and the types and amounts of the protecting groups were adjusted. And A-202 was synthesized.
In the analysis by 1H-NMR, it was confirmed that 70 mol% of the carboxy group was ethoxyethylated in A-202.
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000071
 (A-203の合成)
 シラン化合物を、以下に示す化合物及びモル比で使用し、保護基の種類と量を調整した以外は、A-5と同様にして、下記シラン化合物を混合、反応させ、高分子反応で保護基を導入し、A-203を合成した。
 1H-NMRによる分析において、A-203においては、カルボキシ基の78モル%がテトラヒドロフラニル化されたことが確認された。
(Synthesis of A-203)
The following silane compounds were mixed and reacted in the same manner as A-5, except that the silane compounds were used in the following compounds and molar ratios, and the types and amounts of the protecting groups were adjusted. A-203 was synthesized.
Analysis by 1H-NMR confirmed that 78 mol% of the carboxy group was tetrahydrofuranylated in A-203.
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000072
 (A-204の合成)
 シラン化合物を、以下に示す化合物及びモル比で使用し、保護基の種類と量を調整した以外は、A-5と同様にして、下記シラン化合物を混合、反応させ、高分子反応で保護基を導入し、A-204を合成した。
 1H-NMRによる分析において、A-204においては、カルボキシ基の78モル%がテトラヒドロフラニル化されたことが確認された。
(Synthesis of A-204)
The following silane compounds were mixed and reacted in the same manner as A-5, except that the silane compounds were used in the following compounds and molar ratios, and the types and amounts of the protecting groups were adjusted. A-204 was synthesized.
In the analysis by 1H-NMR, it was confirmed that 78 mol% of the carboxy group was tetrahydrofuranylated in A-204.
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000073
 (A-205の合成)
 シラン化合物を、以下に示す化合物及びモル比で使用し、保護基の種類と量を調整した以外は、A-5と同様にして、下記シラン化合物を混合、反応させ、高分子反応で保護基を導入し、A-205を合成した。
 1H-NMRによる分析において、A-205においては、カルボキシ基の80モル%がテトラヒドロフラニル化されたことが確認された。
(Synthesis of A-205)
The following silane compounds were mixed and reacted in the same manner as A-5, except that the silane compounds were used in the following compounds and molar ratios, and the types and amounts of the protecting groups were adjusted. And A-205 was synthesized.
Analysis by 1H-NMR confirmed that 80 mol% of the carboxy group was tetrahydrofuranylated in A-205.
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000074
 (A’-1の合成)
 特開2013-92633号公報の0117段落の記載に従って、カルボン酸が保護された基を有する構成単位を含み、架橋性基を有する構成単位を含まないポリシロキサンであるA‘-1を合成した。
 温度計、攪拌装置を備えたガラス製反応容器に、溶剤としてトルエン300g、2,4,6,8-テトラメチルシクロテトラシロキサン240g(1モル)、アクリル酸-t-ブチルエステル64.1g(0.5モル)、4-t-ブトキシスチレン352g(2モル)および触媒として白金-ジビニルテトラメチルジシロキサン錯体(Karstedt触媒)0.05gを加えて、攪拌しながら60℃で10時間反応させて、溶媒を留去しポリシロキサン(A’-1)前駆体得た。
 温度計、攪拌装置を備えたガラス製反応容器に、溶剤としてトルエン200g、ポリシロキサン(A’-1)前駆体の65.6g(0.1モル)、トリメトキシビニルシラン22.1g(0.15モル)、および触媒として白金-ジビニルテトラメチルジシロキサン錯体(Karstedt触媒)0.001gを加えて、攪拌しながら60℃で10時間反応させた。
 次いで、この反応系にフェニルトリメトキシシラン45.6g(0.23モル)を添加し、5~10℃になるよう氷冷撹拌しながら、5%シュウ酸水溶液50gを30分かけて滴下し、さらに10℃で15時間撹拌した。50℃、減圧下で還流脱水・脱アルコール処理し、50℃減圧下で溶媒のトルエンをPGMEA(プロピレングリコール1-モノメチルエーテル2-アセタート)に溶媒交換し、30%のPGMEA溶液とした後、濾過により固形物を除去し、ポリシロキサン(A’-1)の30%PGMEA溶液を得た。GPC分析による質量平均分子量は6300であった。
(Synthesis of A'-1)
According to the description in paragraph 0117 of JP2013-92633A, A′-1, which is a polysiloxane containing a structural unit having a carboxylic acid-protected group and not containing a crosslinkable group, was synthesized.
In a glass reaction vessel equipped with a thermometer and a stirrer, 300 g of toluene, 240 g (1 mol) of 2,4,6,8-tetramethylcyclotetrasiloxane as a solvent, 64.1 g of acrylic acid-t-butyl ester (0 0.5 mol), 352 g (2 mol) of 4-t-butoxystyrene and 0.05 g of a platinum-divinyltetramethyldisiloxane complex (Karstedt catalyst) as a catalyst, and allowed to react at 60 ° C. for 10 hours with stirring. The solvent was distilled off to obtain a polysiloxane (A′-1) precursor.
In a glass reaction vessel equipped with a thermometer and a stirrer, 200 g of toluene as a solvent, 65.6 g (0.1 mol) of a polysiloxane (A′-1) precursor, 22.1 g of trimethoxyvinylsilane (0.15) Mol), and 0.001 g of a platinum-divinyltetramethyldisiloxane complex (Karstedt catalyst) as a catalyst was added and reacted at 60 ° C. for 10 hours with stirring.
Next, 45.6 g (0.23 mol) of phenyltrimethoxysilane was added to this reaction system, and 50 g of 5% oxalic acid aqueous solution was added dropwise over 30 minutes while stirring with ice cooling to 5 to 10 ° C. The mixture was further stirred at 10 ° C. for 15 hours. Reflux dehydration and dealcoholization treatment under reduced pressure at 50 ° C., and solvent exchange of solvent toluene with PGMEA (propylene glycol 1-monomethyl ether 2-acetate) under reduced pressure at 50 ° C. to obtain a 30% PGMEA solution, followed by filtration The solid was removed by the above to obtain a 30% PGMEA solution of polysiloxane (A′-1). The mass average molecular weight by GPC analysis was 6300.
 (A’’-1の合成)
 特開2013-92633の0121段落の記載に従って、カルボン酸が保護された基を有する構成単位を含まず、エポキシ基を有する構成単位を含むポリシロキサンであるA’’-1を合成した。
 温度計、攪拌装置を備えたガラス製反応容器に、溶剤としてトルエン200g、2,4,6,8-テトラメチルシクロテトラシロキサン120g(0.5モル)、アリルグリシジルエーテル228g(2モル)、および白金-ジビニルテトラメチルジシロキサン錯体(Karstedt触媒)9mgを加えて、攪拌しながら50~60℃で15時間反応させた後、溶媒を60℃で減圧留去させ、A’’-1を得た。エポキシ当量の分析値は174であった。
(Synthesis of A ''-1)
According to the description in paragraph 0121 of JP2013-92633A, A ″ -1, which is a polysiloxane containing a constitutional unit having an epoxy group without a constitutional unit having a carboxylic acid-protected group, was synthesized.
In a glass reaction vessel equipped with a thermometer and a stirrer, 200 g of toluene as a solvent, 120 g (0.5 mol) of 2,4,6,8-tetramethylcyclotetrasiloxane, 228 g (2 mol) of allyl glycidyl ether, and After adding 9 mg of platinum-divinyltetramethyldisiloxane complex (Karsttedt catalyst) and reacting at 50-60 ° C. for 15 hours with stirring, the solvent was distilled off under reduced pressure at 60 ° C. to obtain A ″ -1. . The analytical value of epoxy equivalent was 174.
 (A’-3の合成)
 特開2009-263522の0056段落の記載に従って、シラノール基がアセタール保護された基を有する構成単位と、エポキシ基を有する構成単位と、を有するポリシロキサンであるA’-3を合成した。
 温度計、撹拌機、冷却器を備えた1L三つ口フラスコに、フェニルトリメトキシシラン89.2g(0.45モル)、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン110.9g(0.45モル)、メタノール360gを仕込み、撹拌しながら10℃以下に氷冷した。滴下ロートに0.1Mの酢酸水溶液90gを仕込み、氷冷しながら滴下したところ、発熱を伴い加水分解縮合反応が進行した。内温を室温まで上昇させ、2時間撹拌熟成した後、エステルアダプターを設置し、加熱常圧にてメタノール留去を行った。内温がメタノールの沸点を超えるまで留去を続けることによって、白濁粘ちょうなポリシロキサン溶液を得た。この時、捕捉したメタノール量は382gであった。このポリシロキサン溶液に酢酸エチル300gを添加し、溶解した溶液を純水にて2回水洗を行った。このポリシロキサン溶液をロータリーエバポレーターにて濃縮することにより、無色透明のポリシロキサン溶液Aを233g(固形分濃度62.2質量%)得た。
 このポリシロキサンの重量平均分子量(GPCポリスチレン標準)は4.2×103であった。またアルカリクラッキング法では、残存メトキシ基は検出されなかった。29Si-NMRにてT0~T3の存在比を求め、下記の平均組成式を算出した。
 Ph0.5(EP)0.5Si(OH)0.721.14
 EP:2-(3,4-エポキシシクロヘキシル)エチル基
 Ph:フェニル基
 得られたポリシロキサン80.4gを酢酸エチル溶液からテトラヒドロフラン溶液(固形分濃度20質量%)に溶媒置換した後、温度計、撹拌機、冷却器を備えた1L三つ口フラスコに仕込み、メタンスルホン酸1.0g(0.01モル)を添加した。
 次に、10℃以下に氷冷し撹拌しながら、エチル-1-プロペニルエーテル19.4g(0.23モル)を滴下ロートにて内温を10℃以下に保ちながら滴下した。滴下後室温にて2時間反応させた後、トリエチルアミン1.0g(0.01モル)を添加し反応を終了した。反応液を1Lナスフラスコに移し、常温減圧下ロータリーエバポレーターにてテトラヒドロフランを留去し、メチルイソブチルケトン300gおよび0.01N酢酸水溶液250mlを添加し反応液を水洗浄した。この洗浄操作を合計3回繰り返した後、有機層を分離、ロータリーエバポレーターにて濃縮して、無色透明のアセタール化ポリシロキサンであるA‘-3を49.0g得た。
 このA‘-3のアセタール置換率は13C-NMRの結果より32.5モル%と算出された。
(Synthesis of A'-3)
According to the description in paragraph 0056 of JP-A-2009-263522, A′-3, which is a polysiloxane having a structural unit having a group in which a silanol group is acetal protected and a structural unit having an epoxy group, was synthesized.
To a 1 L three-necked flask equipped with a thermometer, a stirrer, and a condenser, 89.2 g (0.45 mol) of phenyltrimethoxysilane and 110.9 g of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane ( 0.45 mol) and 360 g of methanol were charged, and ice-cooled to 10 ° C. or lower with stirring. When 90 g of 0.1 M acetic acid aqueous solution was charged into the dropping funnel and dropped while cooling with ice, hydrolysis condensation reaction proceeded with heat generation. After raising the internal temperature to room temperature and aging for 2 hours, an ester adapter was installed, and methanol was distilled off under heating and normal pressure. Distillation was continued until the internal temperature exceeded the boiling point of methanol to obtain a cloudy viscous polysiloxane solution. At this time, the amount of captured methanol was 382 g. To this polysiloxane solution, 300 g of ethyl acetate was added, and the dissolved solution was washed twice with pure water. The polysiloxane solution was concentrated with a rotary evaporator to obtain 233 g of a colorless and transparent polysiloxane solution A (solid content concentration: 62.2% by mass).
The weight average molecular weight (GPC polystyrene standard) of this polysiloxane was 4.2 × 10 3 . In the alkali cracking method, no residual methoxy group was detected. The abundance ratio of T0 to T3 was determined by 29Si-NMR, and the following average composition formula was calculated.
Ph 0.5 (EP) 0.5 Si (OH) 0.72 O 1.14
EP: 2- (3,4-epoxycyclohexyl) ethyl group Ph: phenyl group After 80.4 g of the obtained polysiloxane was solvent-substituted from an ethyl acetate solution to a tetrahydrofuran solution (solid content concentration 20% by mass), a thermometer, A 1 L three-necked flask equipped with a stirrer and a condenser was charged, and 1.0 g (0.01 mol) of methanesulfonic acid was added.
Next, 19.4 g (0.23 mol) of ethyl-1-propenyl ether was added dropwise while keeping the internal temperature at 10 ° C. or less with a dropping funnel while cooling with ice at 10 ° C. or lower and stirring. After dropping, the mixture was reacted at room temperature for 2 hours, and then 1.0 g (0.01 mol) of triethylamine was added to complete the reaction. The reaction solution was transferred to a 1 L eggplant flask, tetrahydrofuran was distilled off with a rotary evaporator under reduced pressure at room temperature, 300 g of methyl isobutyl ketone and 250 ml of 0.01N acetic acid aqueous solution were added, and the reaction solution was washed with water. After repeating this washing operation three times in total, the organic layer was separated and concentrated by a rotary evaporator to obtain 49.0 g of A′-3 which is a colorless and transparent acetalized polysiloxane.
The acetal substitution rate of A′-3 was calculated to be 32.5 mol% from the result of 13 C-NMR.
 <(B)光酸発生剤>
 B-1:PAG-103(商品名、下記に示す構造、BASF社製)
 B-1は、pKaが3以下の酸を発生する光酸発生剤である。
Figure JPOXMLDOC01-appb-C000075
 B-2:下記に示す構造(合成例は後述する)
 なお、式中のTsは、トシル基(p-トルエンスルホニル基)を表す。
 B-2は、pKaが3以下の酸を発生する光酸発生剤である。
Figure JPOXMLDOC01-appb-C000076
 B-3:下記に示す構造(特表2002-528451号公報の段落0108に記載の方法に従って合成した。)
 B-3は、pKaが3以下の酸を発生する光酸発生剤である。
Figure JPOXMLDOC01-appb-C000077
 B-4:下記に示す構造(合成例は後述する。)
 B-4は、pKaが3以下の酸を発生する光酸発生剤である。
Figure JPOXMLDOC01-appb-C000078
 B-5:GSID-26-1、トリアリールスルホニウム塩(BASF社製)
 B-5は、pKaが3以下の酸を発生する光酸発生剤である。
Figure JPOXMLDOC01-appb-C000079
 B-6:4,7-ジ-n-ブトキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート
 B-6は、pKaが3以下の酸を発生する光酸発生剤である。
 B-7:下記に示す構造(合成例を後述する)
 B-7は、pKaが3以下の酸を発生する光酸発生剤である。
Figure JPOXMLDOC01-appb-C000080
 B-8:下記に示す構造(WO11/087011の249段落記載の方法に従って合成した。)
 B-8は、pKaが3以下の酸を発生する光酸発生剤である。
Figure JPOXMLDOC01-appb-C000081
 B’-1:(下記に示す構造。キノンジアジド化合物)
 B’-1は、pKaが3を超える酸を発生する化合物である。
Figure JPOXMLDOC01-appb-C000082
<(B) Photoacid generator>
B-1: PAG-103 (trade name, structure shown below, manufactured by BASF)
B-1 is a photoacid generator that generates an acid having a pKa of 3 or less.
Figure JPOXMLDOC01-appb-C000075
B-2: Structure shown below (Synthesis examples will be described later)
In the formula, Ts represents a tosyl group (p-toluenesulfonyl group).
B-2 is a photoacid generator that generates an acid having a pKa of 3 or less.
Figure JPOXMLDOC01-appb-C000076
B-3: Structure shown below (synthesized according to the method described in paragraph 0108 of JP-T-2002-528451)
B-3 is a photoacid generator that generates an acid having a pKa of 3 or less.
Figure JPOXMLDOC01-appb-C000077
B-4: Structure shown below (Synthesis examples will be described later)
B-4 is a photoacid generator that generates an acid having a pKa of 3 or less.
Figure JPOXMLDOC01-appb-C000078
B-5: GSID-26-1, triarylsulfonium salt (manufactured by BASF)
B-5 is a photoacid generator that generates an acid having a pKa of 3 or less.
Figure JPOXMLDOC01-appb-C000079
B-6: 4,7-di-n-butoxy-1-naphthyltetrahydrothiophenium trifluoromethanesulfonate B-6 is a photoacid generator that generates an acid having a pKa of 3 or less.
B-7: Structure shown below (Synthesis example will be described later)
B-7 is a photoacid generator that generates an acid having a pKa of 3 or less.
Figure JPOXMLDOC01-appb-C000080
B-8: Structure shown below (synthesized according to the method described in paragraph 249 of WO11 / 087011)
B-8 is a photoacid generator that generates an acid having a pKa of 3 or less.
Figure JPOXMLDOC01-appb-C000081
B′-1: (Structure shown below. Quinonediazide compound)
B′-1 is a compound that generates an acid having a pKa of more than 3.
Figure JPOXMLDOC01-appb-C000082
<B-2の合成>
 1-アミノー2-ナフトール塩酸塩(東京化成製)4.0gをN-メチルピロリドン(和光純薬精)16gに懸濁させ、炭酸水素ナトリウム(和光純薬製)3.4gを添加後、4,4-ジメチルー3-オキソ吉草酸メチル(和光純薬製)4.9gを滴下し、窒素雰囲気下120℃で2時間加熱した。放冷後、反応混合液に水、酢酸エチルを添加して分液し、有機相を硫酸マグネシウムで乾燥し、ろ過、濃縮して粗B-1-2Aを得た。粗B-1-2Aをシリカゲルカラムクロマトグラフィー精製して、中間体B-1-2Aを1.7g得た。
 B-1-2A(1.7g)とp-キシレン(6mL)を混合し、p-トルエンスルホン酸一水和物(和光純薬製)0.23gを添加して140℃で2時間加熱した。放冷後、反応混合液に水、酢酸エチルを添加して分液し、有機相を硫酸マグネシウムで乾燥後、ろ過、濃縮して粗B-1-2Bを得た。
 THF(2mL)と粗B-1-2B全量を混合し、氷冷下2M塩酸/THF溶液6.0mL、次いで亜硝酸イソペンチル(和光純薬製)(0.84g)を滴下し、室温まで昇温後2時間攪拌した。得られた反応混合物に水、酢酸エチルを添加して分液し、有機層を水で洗浄後、硫酸マグネシウムで乾燥し、ろ過、濃縮して中間体粗B-1-2Cを得た。
 中間体粗B-1-2C全量をアセトン(10mL)と混合し、氷冷下でトリエチルアミン(和光純薬製)(1.2g)、p-トルエンスルホニルクロリド(東京化成製)(1.4g)を添加後、室温まで昇温して1時間攪拌した。得られた反応混合液に水、酢酸エチルを添加して分液し、有機相を硫酸マグネシウムで乾燥後、ろ過、濃縮して粗B-1-2を得た。粗B-1-2を冷メタノールでリスラリー後、ろ過、乾燥してB-1-2(1.2g)を得た。
 なお、B-2の1H-NMRスペクトル(300MHz、CDCl3)は、δ=8.5-8.4(m,1H),8.0-7.9(m,4H),7.7-7.6(m,2H),7.6-7.5(m,1H),7.4(d.2H),2.4(s,3H),1.4(s,9H)であった。
<Synthesis of B-2>
4.0 g of 1-amino-2-naphthol hydrochloride (Tokyo Kasei) is suspended in 16 g of N-methylpyrrolidone (Wako Pure Chemical Industries), and 3.4 g of sodium hydrogen carbonate (Wako Pure Chemical Industries) is added. , 4-dimethyl-3-oxovalerate methyl (manufactured by Wako Pure Chemical Industries, Ltd.) (4.9 g) was added dropwise and heated at 120 ° C. for 2 hours in a nitrogen atmosphere. After allowing to cool, water and ethyl acetate were added to the reaction mixture and the phases were separated, and the organic phase was dried over magnesium sulfate, filtered and concentrated to obtain crude B-1-2A. Crude B-1-2A was purified by silica gel column chromatography to obtain 1.7 g of intermediate B-1-2A.
B-1-2A (1.7 g) and p-xylene (6 mL) were mixed, 0.23 g of p-toluenesulfonic acid monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added and heated at 140 ° C. for 2 hours. . After allowing to cool, water and ethyl acetate were added to the reaction mixture and the phases were separated. The organic phase was dried over magnesium sulfate, filtered and concentrated to give crude B-1-2B.
THF (2 mL) and the entire amount of crude B-1-2B were mixed, and 2 mL hydrochloric acid / THF solution 6.0 mL was added dropwise under ice cooling, and then isopentyl nitrite (manufactured by Wako Pure Chemical Industries, Ltd.) (0.84 g) was added dropwise. The mixture was stirred for 2 hours after warming. Water and ethyl acetate were added to the obtained reaction mixture for liquid separation, and the organic layer was washed with water, dried over magnesium sulfate, filtered and concentrated to obtain Intermediate Intermediate B-1-2C.
The whole amount of intermediate crude B-1-2C was mixed with acetone (10 mL), and triethylamine (Wako Pure Chemical Industries, Ltd.) (1.2 g) and p-toluenesulfonyl chloride (Tokyo Kasei Co., Ltd.) (1.4 g) were cooled with ice. Then, the mixture was warmed to room temperature and stirred for 1 hour. Water and ethyl acetate were added to the obtained reaction mixture to separate it, and the organic phase was dried over magnesium sulfate, filtered and concentrated to obtain crude B-1-2. Crude B-1-2 was reslurried with cold methanol, filtered and dried to obtain B-1-2 (1.2 g).
The 1 H-NMR spectrum (300 MHz, CDCl 3 ) of B-2 is δ = 8.5-8.4 (m, 1H), 8.0-7.9 (m, 4H), 7.7. -7.6 (m, 2H), 7.6-7.5 (m, 1H), 7.4 (d. 2H), 2.4 (s, 3H), 1.4 (s, 9H) there were.
<B-4の合成>
 2-ナフトール(10g)、クロロベンゼン(30mL)の懸濁溶液に塩化アルミニウム(10.6g)、2-クロロプロピオニルクロリド(10.1g)を添加し、混合液を40℃に加熱して2時間反応させた。氷冷下、反応液に4NHCl水溶液(60mL)を滴下し、酢酸エチル(50mL)を添加して分液した。有機層に炭酸カリウム(19.2g)を加え、40℃で1時間反応させた後、2NHCl水溶液(60mL)を添加して分液し、有機層を濃縮後、結晶をジイソプロピルエーテル(10mL)でリスラリーし、ろ過、乾燥してケトン化合物(6.5g)を得た。
 得られたケトン化合物(3.0g)、メタノール(30mL)の懸濁溶液に酢酸(7.3g)、50質量%ヒドロキシルアミン水溶液(8.0g)を添加し、加熱還流した。放冷後、水(50mL)を加え、析出した結晶をろ過、冷メタノール洗浄後、乾燥してオキシム化合物(2.4g)を得た。
 得られたオキシム化合物(1.8g)をアセトン(20mL)に溶解させ、氷冷下トリエチルアミン(1.5g)、p-トルエンスルホニルクロリド(2.4g)を添加し、室温に昇温して1時間反応させた。反応液に水(50mL)を添加し、析出した結晶をろ過後、メタノール(20mL)でリスラリーし、ろ過、乾燥してB-1-1の化合物(上述の構造)(2.3g)を得た。
 なお、B-4の1H-NMRスペクトル(300MHz、CDCl3)は、δ=8
.3(d,1H),8.0(d,2H),7.9(d,1H),7.8(d,1H),7.6(dd,1H),7.4(dd,1H)7.3(d,2H),7.1(d.1H),5.6(q,1H),2.4(s,3H),1.7(d,3H)であった。
<Synthesis of B-4>
Aluminum chloride (10.6 g) and 2-chloropropionyl chloride (10.1 g) were added to a suspension of 2-naphthol (10 g) and chlorobenzene (30 mL), and the mixture was heated to 40 ° C. for 2 hours. I let you. Under ice-cooling, 4N HCl aqueous solution (60 mL) was added dropwise to the reaction solution, and ethyl acetate (50 mL) was added for liquid separation. Potassium carbonate (19.2 g) was added to the organic layer, reacted at 40 ° C. for 1 hour, 2N HCl aqueous solution (60 mL) was added and separated, and the organic layer was concentrated, and the crystals were diluted with diisopropyl ether (10 mL). The slurry was reslurried, filtered and dried to obtain a ketone compound (6.5 g).
Acetic acid (7.3 g) and a 50 mass% aqueous hydroxylamine solution (8.0 g) were added to a suspension of the obtained ketone compound (3.0 g) and methanol (30 mL), and the mixture was heated to reflux. After allowing to cool, water (50 mL) was added, and the precipitated crystals were filtered, washed with cold methanol, and dried to obtain an oxime compound (2.4 g).
The obtained oxime compound (1.8 g) was dissolved in acetone (20 mL), triethylamine (1.5 g) and p-toluenesulfonyl chloride (2.4 g) were added under ice cooling, and the temperature was raised to room temperature. Reacted for hours. Water (50 mL) was added to the reaction solution, and the precipitated crystals were filtered, reslurried with methanol (20 mL), filtered and dried to obtain the compound of B-1-1 (the above structure) (2.3 g). It was.
The 1H-NMR spectrum (300 MHz, CDCl 3) of B-4 is δ = 8
. 3 (d, 1H), 8.0 (d, 2H), 7.9 (d, 1H), 7.8 (d, 1H), 7.6 (dd, 1H), 7.4 (dd, 1H) 7.3 (d, 2H), 7.1 (d. 1H), 5.6 (q, 1H), 2.4 (s, 3H), 1.7 (d, 3H).
<B-7の合成>
 攪拌器および温度計を装着したセパラブルフラスコにN―ヒドロキシナフタルイミドナトリウム塩 33.6g、4-ジメチルアミノピリジン 0.72g、テトラヒドロフラン 300ミリリットルを仕込み、室温25℃下で攪拌し溶解させた。次いで、(+)10―カンファースルホニルクロライド 42gを加えて3時間攪拌した後、トリエチルアミン 15gを加えた後、室温下で10時間攪拌した。次いで、蒸留水 300ミリリットル中に反応溶液を入れ、析出した沈殿をろ別した。この沈殿をアセトンとヘキサンを用いて再沈殿処理を数回繰り返し、N―カンファースルホニルオキシ-1,8-ナフタルイミド 12gを得た。
<Synthesis of B-7>
A separable flask equipped with a stirrer and a thermometer was charged with 33.6 g of N-hydroxynaphthalimide sodium salt, 0.72 g of 4-dimethylaminopyridine and 300 ml of tetrahydrofuran and dissolved by stirring at room temperature of 25 ° C. Next, 42 g of (+) 10-camphorsulfonyl chloride was added and stirred for 3 hours, and then 15 g of triethylamine was added, followed by stirring at room temperature for 10 hours. Subsequently, the reaction solution was put into 300 ml of distilled water, and the deposited precipitate was separated by filtration. This precipitation was reprecipitated several times using acetone and hexane to obtain 12 g of N-camphorsulfonyloxy-1,8-naphthalimide.
 (B‘-1の合成)
 乾燥窒素気流下、TrisP-PA(商品名、本州化学工業(株)製)21.23g(0.05モル)と5-ナフトキノンジアジドスルホニル酸クロリド37.62g(0.14モル)を1,4-ジオキサン450gに溶解させ、室温にした。ここに、1,4-ジオキサン50gと混合させたトリエチルアミン15.58g(0.154モル)を系内が35℃以上にならないように滴下した。滴下後30℃で2時間攪拌した。トリエチルアミン塩を濾過し、濾液を水に投入させた。その後、析出した沈殿を濾過で集めた。この沈殿を真空乾燥機で乾燥させ、上記構造のキノンジアジド化合物を得た。
(Synthesis of B'-1)
Under a dry nitrogen stream, TrisP-PA (trade name, manufactured by Honshu Chemical Industry Co., Ltd.) 21.23 g (0.05 mol) and 37-62 g (0.14 mol) of 5-naphthoquinone diazide sulfonyl chloride were added to 1,4 -Dissolved in 450 g dioxane and brought to room temperature. Here, 15.58 g (0.154 mol) of triethylamine mixed with 50 g of 1,4-dioxane was added dropwise so that the temperature inside the system would not exceed 35 ° C. It stirred at 30 degreeC after dripping for 2 hours. The triethylamine salt was filtered and the filtrate was poured into water. Thereafter, the deposited precipitate was collected by filtration. The precipitate was dried with a vacuum dryer to obtain a quinonediazide compound having the above structure.
 <(C)溶剤>
 C-1:PGMEA(プロピレングリコール1-モノメチルエーテル2-アセタート)
 C-2:MEDG(メチルエチルジグリコール)
<(C) Solvent>
C-1: PGMEA (propylene glycol 1-monomethyl ether 2-acetate)
C-2: MEDG (methyl ethyl diglycol)
 (塩基性化合物)
 TBA:トリブチルアミン
(Basic compound)
TBA: Tributylamine
 (その他添加剤)
DBA:9,10-ジブトキシアントラセン
FA-630:信越化学製、シリコーン系界面活性剤「FA-630」(商品名)
MW-30HM:ニカラックMW-30HM(下記構造)
Figure JPOXMLDOC01-appb-C000083
(Other additives)
DBA: 9,10-dibutoxyanthracene FA-630: Silicone surfactant “FA-630” (trade name) manufactured by Shin-Etsu Chemical
MW-30HM: Nicarak MW-30HM (the following structure)
Figure JPOXMLDOC01-appb-C000083
<感光性樹脂組成物の調製>
 下記表に記載のように各成分を配合・撹拌して溶剤溶液とし、口径0.2μmのポリテトラフルオロエチレン製フィルターで濾過して、各実施例および比較例の感光性樹脂組成物を得た。なお、架橋性基当量については、以下の測定方法で求めた。
<Preparation of photosensitive resin composition>
As shown in the following table, each component was blended and stirred to obtain a solvent solution, which was filtered through a polytetrafluoroethylene filter having a diameter of 0.2 μm to obtain photosensitive resin compositions of Examples and Comparative Examples. . In addition, about the crosslinkable group equivalent, it calculated | required with the following measuring methods.
<架橋性基当量の測定>
 感光性樹脂組成物の固形分を一定量はかり取り、その固形分中に含まれる架橋性基量を測定した。なお、架橋性基がエポキシ基である場合には、JIS K7236:2001に規定されるエポキシ当量の測定方法で求めた。エポキシ基以外の他の架橋性基についても、滴定液を変更して同様の測定方法にて求めた。
A:1000未満
B:1000以上1500未満
C:1500以上
<Measurement of crosslinkable group equivalent>
A certain amount of the solid content of the photosensitive resin composition was weighed, and the amount of the crosslinkable group contained in the solid content was measured. In addition, when the crosslinkable group was an epoxy group, it was determined by a method for measuring an epoxy equivalent specified in JIS K7236: 2001. Other crosslinkable groups other than the epoxy group were also determined by the same measurement method by changing the titrant.
A: Less than 1000 B: 1000 or more and less than 1500 C: 1500 or more
<保存安定性の評価>
 感光性樹脂組成物の調製直後の、粘度N0(単位:Pa・s)と、10℃で30日間保存した後の粘度N1(単位:Pa・s)とを測定し、以下の式の値を算出した。
 |(N1-N0)|/N0
 上記数式の値は、経時による粘度変化を表し、数値が小さいほど好ましい。以下の基準で評価し、1および2が実用レベルである。
1:0.04未満
2:0.04以上、0.08未満
3:0.08以上
<Evaluation of storage stability>
The viscosity N 0 (unit: Pa · s) immediately after the preparation of the photosensitive resin composition and the viscosity N 1 (unit: Pa · s) after storage at 10 ° C. for 30 days were measured. The value was calculated.
| (N 1 −N 0 ) | / N 0
The value of the above formula represents the change in viscosity over time, and the smaller the value, the better. Evaluation is based on the following criteria, and 1 and 2 are practical levels.
1: Less than 0.04 2: 0.04 or more, less than 0.08 3: 0.08 or more
<感度の評価>
 ガラス基板(EAGLE XG、0.7mm厚(コーニング社製))を、ヘキサメチルジシラザン(HMDS)蒸気下に30秒曝し、各感光性樹脂組成物をスリット塗布した後、90℃/120秒ホットプレート上でプリベークして溶剤を揮発させ、膜厚3.0μmの感光性樹脂組成物層を形成した。
 次に、得られた感光性樹脂組成物層を、キヤノン(株)製 MPA 5500CF(高圧水銀灯)を用いて、直径6μmホール形状のマスクパターンで露光した。そして、露光後の感光性樹脂組成物層を、アルカリ現像液(0.5%のテトラメチルアンモニウムヒドロキシド水溶液)で23℃/60秒間現像した後、超純水で20秒リンスした。これらの操作により、直径6μmのホールを解像する時の最適i線露光量(Eopt)を求め感度とした。以下の基準で評価し、1、2および3が実用レベルである。
 なお、実施例18、比較例1および比較例2については、露光後に90℃3分間ホットプレートで加熱した後(PEB(Post exposure bake)工程を追加した)に現像した。
1:80mJ/cm2未満
2:80mJ/cm2以上、100mJ/cm2未満
3:100mJ/cm2以上、140mJ/cm2未満
4:140mJ/cm2以上、180mJ/cm2未満
5:180mJ/cm2以上
<Evaluation of sensitivity>
A glass substrate (EAGLE XG, 0.7 mm thickness (manufactured by Corning)) was exposed to hexamethyldisilazane (HMDS) vapor for 30 seconds, and each photosensitive resin composition was slit-coated, and then heated at 90 ° C./120 seconds. Pre-baked on the plate to volatilize the solvent to form a photosensitive resin composition layer having a thickness of 3.0 μm.
Next, the obtained photosensitive resin composition layer was exposed with a mask pattern having a hole shape of 6 μm in diameter using MPA 5500CF (high pressure mercury lamp) manufactured by Canon Inc. The exposed photosensitive resin composition layer was developed with an alkali developer (0.5% tetramethylammonium hydroxide aqueous solution) at 23 ° C./60 seconds, and then rinsed with ultrapure water for 20 seconds. Through these operations, the optimum i-line exposure amount (Eopt) when resolving a hole having a diameter of 6 μm was determined and used as the sensitivity. Evaluation is based on the following criteria, and 1, 2 and 3 are practical levels.
In addition, Example 18, Comparative Example 1 and Comparative Example 2 were developed after being heated on a hot plate at 90 ° C. for 3 minutes after the exposure (added a post exposure bake (PEB) step).
1: 80mJ / cm 2 less than 2: 80mJ / cm 2 or more, 100 mJ / cm 2 less than 3: 100mJ / cm 2 or more and less than 140mJ / cm 2 4: 140mJ / cm 2 or more, 180 mJ / cm 2 less than 5: 180 mJ / cm 2 or more
<現像性の評価>
 ガラス基板(EAGLE XG、0.7mm厚(コーニング社製))を、ヘキサメチルジシラザン(HMDS)蒸気下に30秒曝し、各感光性樹脂組成物をスリット塗布した後、90℃/120秒ホットプレート上でプリベークして溶剤を揮発させ、膜厚3.0μmの感光性樹脂組成物層を形成した。
 次に、得られた感光性樹脂組成物層を、キヤノン(株)製 MPA 5500CF(高圧水銀灯)を用いて、5μmのラインアンドスペースのマスクパターンで感度評価で求めた最適露光量で露光した。そして、露光後の感光性樹脂組成物層を、アルカリ現像液(0.5%のテトラメチルアンモニウムヒドロキシド水溶液)で23℃/60秒間現像した後、超純水で20秒リンスした。このパターンを光学顕微鏡で観察し、下記基準で評価した。1、2が実用レベルである。
1:パターンの縁がきれい
2:パターンの縁に僅かにガタツキあり
3:パターンの縁にガタツキある。または、パターンが形成されない。
<Development evaluation>
A glass substrate (EAGLE XG, 0.7 mm thickness (manufactured by Corning)) was exposed to hexamethyldisilazane (HMDS) vapor for 30 seconds, and each photosensitive resin composition was slit-coated, and then heated at 90 ° C./120 seconds. Pre-baked on the plate to volatilize the solvent to form a photosensitive resin composition layer having a thickness of 3.0 μm.
Next, the obtained photosensitive resin composition layer was exposed at an optimum exposure amount obtained by sensitivity evaluation with a 5 μm line-and-space mask pattern using MPA 5500CF (high pressure mercury lamp) manufactured by Canon Inc. The exposed photosensitive resin composition layer was developed with an alkali developer (0.5% tetramethylammonium hydroxide aqueous solution) at 23 ° C./60 seconds, and then rinsed with ultrapure water for 20 seconds. This pattern was observed with an optical microscope and evaluated according to the following criteria. 1 and 2 are practical levels.
1: The edge of the pattern is clean 2: There is a slight backlash at the edge of the pattern 3: There is a backlash at the edge of the pattern Or a pattern is not formed.
<耐熱性の評価>
 ガラス基板(EAGLE XG、0.7mm厚(コーニング社製))を、ヘキサメチルジシラザン(HMDS)蒸気下に30秒曝し、各感光性樹脂組成物をスリット塗布した後、90℃/120秒ホットプレート上でプリベークして溶剤を揮発させ、膜厚3.0μmの感光性樹脂組成物層を形成した。
 次に、キヤノン(株)製 MPA 5500CF(高圧水銀灯)を用いて、300mJ/cm2の露光量で全面露光し、オーブン中で230℃、60分間加熱し、硬化膜を形成した。次に耐熱試験として、オーブン中で300℃、60分間加熱し、耐熱試験後の硬化膜を得た。この耐熱試験後の硬化膜の透過率を測定した。
透過率は分光光度計(U-3000:(株)日立製作所製)を用いて、波長400nmで測定した。単位は%で示した。以下の基準で評価し、1、2および3が実用レベルである。
 1:96%以上
 2:92%以上96%未満
 3:88%以上92%未満
 4:88%未満
<Evaluation of heat resistance>
A glass substrate (EAGLE XG, 0.7 mm thickness (manufactured by Corning)) was exposed to hexamethyldisilazane (HMDS) vapor for 30 seconds, and each photosensitive resin composition was slit-coated, and then heated at 90 ° C./120 seconds. Pre-baked on the plate to volatilize the solvent to form a photosensitive resin composition layer having a thickness of 3.0 μm.
Next, the entire surface was exposed with an exposure amount of 300 mJ / cm 2 using MPA 5500CF (high pressure mercury lamp) manufactured by Canon Inc., and heated in an oven at 230 ° C. for 60 minutes to form a cured film. Next, as a heat resistance test, it was heated in an oven at 300 ° C. for 60 minutes to obtain a cured film after the heat resistance test. The transmittance of the cured film after this heat test was measured.
The transmittance was measured at a wavelength of 400 nm using a spectrophotometer (U-3000: manufactured by Hitachi, Ltd.). The unit is expressed in%. Evaluation is based on the following criteria, and 1, 2 and 3 are practical levels.
1: 96% or more 2: 92% or more and less than 96% 3: 88% or more and less than 92% 4: less than 88%
<溶剤耐性の評価>
 ガラス基板(0.7mm厚(コーニング社製))上に、各感光性樹脂組成物をスリット塗布した後、90℃/120秒の条件でホットプレート上で加熱して溶剤を除去し、膜厚3.0μmの感光性樹脂組成物層を形成した。
 得られた感光性樹脂組成物層が形成された基板を、キヤノン(株)製PLA-501F露光機(超高圧水銀ランプ)で積算照射量が300mJ/cm2(照度:20mW/cm2、i線)となるように露光し、その後、この基板をオーブンにて220℃で60分加熱して硬化膜を得、膜厚を測定した(t0)。
 この硬化膜を60℃のNMPに10分浸漬させ、純水リンスを行った後の膜厚を測定した(t1)。浸漬前の膜厚をt0、浸漬リンス後の膜厚をt1としたときの変化率を以下の式から求めた。
 (t1―t0)/t0×100
 なお、評価基準は下記の通りである。1、2および3が実用上問題のないレベルである。
 1:変化率が0%以上5%未満
 2:変化率が5%以上8%未満
 3:変化率が8%以上10%未満
 4:変化率が10%以上
 5:変化率がマイナス(硬化膜が溶解)
<Evaluation of solvent resistance>
After each photosensitive resin composition is slit-coated on a glass substrate (0.7 mm thick (manufactured by Corning)), the solvent is removed by heating on a hot plate at 90 ° C./120 seconds. A photosensitive resin composition layer having a thickness of 3.0 μm was formed.
The substrate on which the obtained photosensitive resin composition layer was formed was subjected to a cumulative irradiation amount of 300 mJ / cm 2 (illuminance: 20 mW / cm 2 , i) with a PLA-501F exposure machine (extra-high pressure mercury lamp) manufactured by Canon Inc. The substrate was heated in an oven at 220 ° C. for 60 minutes to obtain a cured film, and the film thickness was measured (t0).
The cured film was immersed in NMP at 60 ° C. for 10 minutes, and the film thickness after rinsing with pure water was measured (t1). The rate of change when the film thickness before immersion was t0 and the film thickness after immersion rinse was t1 was determined from the following equation.
(T1-t0) / t0 × 100
The evaluation criteria are as follows. 1, 2 and 3 are practically problematic levels.
1: Change rate is 0% or more and less than 5% 2: Change rate is 5% or more and less than 8% 3: Change rate is 8% or more and less than 10% 4: Change rate is 10% or more 5: Change rate is negative (cured film) Is dissolved)
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-T000085
 上記結果より、実施例1~48に示す本発明の感光性樹脂組成物は、感度に優れ、溶剤耐性に優れた硬化膜を形成できた。また、実施例1~48に示す本発明の感光性樹脂組成物は、保存安定性および現像性に優れていた。更には、耐熱性に優れた硬化膜を形成できた。
 一方、カルボン酸が保護された基を有する構成単位を含み、架橋性基を有する構成単位を含まないポリシロキサン(A’-1)と、カルボン酸が保護された基を有する構成単位を含まず、エポキシ基を有する構成単位を含むポリシロキサン(A’’-1)とを併用した比較例1,2は、溶剤耐性に劣るものであった。
 また、シラノール基がアセタール保護された基を有する構成単位と、エポキシ基を有する構成単位と、を有するポリシロキサン(A‘-3)を使用した比較例3は、溶剤耐性に劣るものであった。更には、保存安定性に劣るものであった。
 また、光酸発生剤として、pKaが3を超える酸を発生する化合物であるB’-1を使用した比較例4は、感度に劣るものであった。
From the above results, the photosensitive resin compositions of the present invention shown in Examples 1 to 48 were able to form cured films having excellent sensitivity and excellent solvent resistance. In addition, the photosensitive resin compositions of the present invention shown in Examples 1 to 48 were excellent in storage stability and developability. Furthermore, a cured film excellent in heat resistance could be formed.
On the other hand, polysiloxane (A′-1) containing a structural unit having a carboxylic acid-protected group and not containing a crosslinkable group, and not containing a structural unit having a carboxylic acid-protected group In Comparative Examples 1 and 2 in combination with polysiloxane (A ″ -1) containing a structural unit having an epoxy group, the solvent resistance was poor.
Further, Comparative Example 3 using polysiloxane (A′-3) having a structural unit having a silanol group-protected acetal group and a structural unit having an epoxy group was inferior in solvent resistance. . Furthermore, the storage stability was poor.
Further, Comparative Example 4 using B′-1, which is a compound that generates an acid having a pKa exceeding 3 as a photoacid generator, was inferior in sensitivity.
<有機EL表示装置の作製>
(実施例101)
 薄膜トランジスター(TFT)を用いた有機EL表示装置を以下の方法で作製した(図3参照)。
 ガラス基板6上にボトムゲート型のTFT1を形成し、このTFT1を覆う状態でSi34から成る絶縁膜3を形成した。次に、この絶縁膜3に、ここでは図示を省略したコンタクトホールを形成した後、このコンタクトホールを介してTFT1に接続される配線2(高さ1.0μm)を絶縁膜3上に形成した。この配線2は、TFT1間または、後の工程で形成される有機EL素子とTFT1とを接続するためのものである。
 さらに、配線2の形成による凹凸を平坦化するために、配線2による凹凸を埋め込む状態で絶縁膜3上へ平坦化膜4を形成した。絶縁膜3上への平坦化膜4の形成は、実施例1の感光性樹脂組成物を基板上にスリット塗布し、ホットプレート上でプリベーク(90℃×2分)した後、マスク上から高圧水銀灯を用いてi線(365nm)を感度評価で求めた最適露光量照射した後、アルカリ水溶液にて現像してパターンを形成し、230℃で60分間の加熱処理を行った。
 感光性樹脂組成物を塗布する際の塗布性は良好で、露光、現像、焼成の後に得られた硬化膜には、しわやクラックの発生は認められなかった。さらに、配線2の平均段差は500nm、作製した平坦化膜4の膜厚は2,000nmであった。
 次に、得られた平坦化膜4上に、ボトムエミッション型の有機EL素子を形成した。まず、平坦化膜4上に、ITOからなる第一電極5を、コンタクトホール7を介して配線2に接続させて形成した。その後、市販のレジストを塗布、プリベークし、所望のパターンのマスクを介して露光し、現像した。このレジストパターンをマスクとして、ITOエッチャント用いたウエットエッチングによりパターン加工を行った。その後、レジスト剥離液(リムーバ100、AZエレクトロニックマテリアルズ社製)を用いて前記レジストパターンを50℃で剥離した。こうして得られた第一電極5は、有機EL素子の陽極に相当する。
<Production of organic EL display device>
(Example 101)
An organic EL display device using a thin film transistor (TFT) was produced by the following method (see FIG. 3).
A bottom gate type TFT 1 was formed on a glass substrate 6, and an insulating film 3 made of Si 3 N 4 was formed so as to cover the TFT 1. Next, a contact hole (not shown) is formed in the insulating film 3, and then a wiring 2 (height 1.0 μm) connected to the TFT 1 through the contact hole is formed on the insulating film 3. . The wiring 2 is used to connect the TFT 1 with an organic EL element formed between TFTs 1 or in a later process.
Further, in order to flatten the unevenness due to the formation of the wiring 2, the planarizing film 4 was formed on the insulating film 3 in a state where the unevenness due to the wiring 2 was embedded. The planarizing film 4 is formed on the insulating film 3 by slit-coating the photosensitive resin composition of Example 1 on the substrate, prebaking (90 ° C. × 2 minutes) on a hot plate, and then applying high pressure from above the mask. After irradiating the i-line (365 nm) with the optimum exposure amount obtained by sensitivity evaluation using a mercury lamp, a pattern was formed by developing with an alkaline aqueous solution, and a heat treatment was performed at 230 ° C. for 60 minutes.
The applicability when applying the photosensitive resin composition was good, and no wrinkles or cracks were observed in the cured film obtained after exposure, development and baking. Furthermore, the average step of the wiring 2 was 500 nm, and the thickness of the prepared planarizing film 4 was 2,000 nm.
Next, a bottom emission type organic EL element was formed on the obtained planarization film 4. First, a first electrode 5 made of ITO was formed on the planarizing film 4 so as to be connected to the wiring 2 through the contact hole 7. Thereafter, a commercially available resist was applied, prebaked, exposed through a mask having a desired pattern, and developed. Using this resist pattern as a mask, pattern processing was performed by wet etching using an ITO etchant. Thereafter, the resist pattern was stripped at 50 ° C. using a resist stripper (remover 100, manufactured by AZ Electronic Materials). The first electrode 5 thus obtained corresponds to the anode of the organic EL element.
 次に、第一電極5の周縁を覆う形状の絶縁膜8を形成した。絶縁膜8には、実施例1の感光性樹脂組成物を用い、前記と同様の方法で絶縁膜8を形成した。この絶縁膜8を設けることによって、第一電極5とこの後の工程で形成する第二電極との間のショートを防止することができる。
 さらに、真空蒸着装置内で所望のパターンマスクを介して、正孔輸送層、有機発光層、電子輸送層を順次蒸着して設けた。次いで、基板上方の全面にAlから成る第二電極を形成した。得られた上記基板を蒸着機から取り出し、封止用ガラス板と紫外線硬化型エポキシ樹脂を用いて貼り合わせることで封止した。
 以上のようにして、各有機EL素子にこれを駆動するためのTFT1が接続してなるアクティブマトリックス型の有機EL表示装置が得られた。駆動回路を介して電圧を印加したところ、良好な表示特性を示し、信頼性の高い有機EL表示装置であることが分かった。
Next, an insulating film 8 having a shape covering the periphery of the first electrode 5 was formed. As the insulating film 8, the photosensitive resin composition of Example 1 was used, and the insulating film 8 was formed by the same method as described above. By providing this insulating film 8, it is possible to prevent a short circuit between the first electrode 5 and the second electrode formed in the subsequent process.
Furthermore, a hole transport layer, an organic light emitting layer, and an electron transport layer were sequentially deposited through a desired pattern mask in a vacuum deposition apparatus. Next, a second electrode made of Al was formed on the entire surface above the substrate. The obtained board | substrate was taken out from the vapor deposition machine, and it sealed by bonding together using the glass plate for sealing, and an ultraviolet curable epoxy resin.
As described above, an active matrix type organic EL display device in which each organic EL element is connected to the TFT 1 for driving the organic EL element was obtained. When a voltage was applied via the drive circuit, it was found that the organic EL display device showed good display characteristics and high reliability.
(実施例102~148)
 実施例101において、実施例1の感光性樹脂組成物を実施例2~48の感光性樹脂組成物に換えたこと以外は、実施例101と同様に有機EL表示装置を作製した。得られた有機EL表示装置に対して、駆動電圧を印加したところ、良好な表示特性を示し、信頼性の高い有機EL表示装置であることが分かった。
(Examples 102 to 148)
In Example 101, an organic EL display device was produced in the same manner as in Example 101 except that the photosensitive resin composition of Example 1 was replaced with the photosensitive resin composition of Examples 2 to 48. When a drive voltage was applied to the obtained organic EL display device, it was found that the organic EL display device showed good display characteristics and had high reliability.
<液晶表示装置の作製>
(実施例201)
 特許第3321003号公報の図1に記載のアクティブマトリクス型液晶表示装置において、層間絶縁膜として硬化膜17を以下のようにして形成し、実施例201の液晶表示装置を得た。すなわち、実施例1の感光性樹脂組成物を用い、上記実施例101における有機EL表示装置の平坦化膜4の形成方法と同様の方法で、層間絶縁膜として硬化膜17を形成した。
 得られた液晶表示装置に対して、駆動電圧を印加したところ、良好な表示特性を示し、信頼性の高い液晶表示装置であることが分かった。
<Production of liquid crystal display device>
(Example 201)
In the active matrix liquid crystal display device described in FIG. 1 of Japanese Patent No. 3321003, a cured film 17 was formed as an interlayer insulating film as follows, and a liquid crystal display device of Example 201 was obtained. That is, using the photosensitive resin composition of Example 1, the cured film 17 was formed as an interlayer insulating film by the same method as the method for forming the planarizing film 4 of the organic EL display device in Example 101.
When a driving voltage was applied to the obtained liquid crystal display device, it was found that the liquid crystal display device showed good display characteristics and high reliability.
(実施例202~248)
 実施例201において、実施例1の感光性樹脂組成物を実施例2~48の感光性樹脂組成物に換えたこと以外は、実施例201と同様に液晶表示装置を作製した。得られた液晶表示装置に対して、駆動電圧を印加したところ、良好な表示特性を示し、信頼性の高い液晶表示装置であることが分かった。
(Examples 202 to 248)
A liquid crystal display device was produced in the same manner as in Example 201 except that in Example 201, the photosensitive resin composition of Example 1 was replaced with the photosensitive resin compositions of Examples 2 to 48. When a driving voltage was applied to the obtained liquid crystal display device, it was found that the liquid crystal display device showed good display characteristics and high reliability.
(実施例251)
 特開2007-328210号公報の図1に記載の液晶表示装置において、有機絶縁膜PASを以下の方法で形成し、液晶表示装置を得た。
 先ず、特開2007-328210号公報に従って、有機絶縁膜PASの直前まで形成したアレイ基板を作製した。
 次に、この基板をヘキサメチルジシラザン蒸気下に30秒曝し、その後、実施例1の感光性樹脂組成物をスリット塗布した後、90℃で2分ホットプレートでプリベークして溶剤を揮発させ、感光性樹脂組成物層を形成した。次に、得られた感光性樹脂組成物層を、キヤノン(株)製 MPA 7800CFを用いて、直径7μmのホールパターンのマスク上から高圧水銀灯を用いてi線(365nm)を感度評価で求めた最適露光量照射した。そして、露光後の感光性樹脂組成物層を、アルカリ現像液(0.5%のテトラメチルアンモニウムヒドロキシド水溶液)で23℃/60秒間現像した後、超純水で20秒リンスした。続いて超高圧水銀灯を用いて積算照射量が300mJ/cm2(エネルギー強度:20mW/cm2、i線で計測)となるように全面露光し、その後、この基板をオーブンにて300℃で30分加熱して有機絶縁膜PASを得た。
 以降の工程は、特開2007-328210号公報に従って液晶表示装置を得た。
 本実施例ではPASに耐熱性の高い材料を用いているため、層間絶縁膜IN3を層間絶縁膜IN2と同等の温度で製膜した。これによりIN3を緻密な膜とすることができた。
 得られた液晶表示装置に対して、駆動電圧を印加したところ、非常に良好な表示特性を示し、信頼性の高い液晶表示装置であることが分かった。
(Example 251)
In the liquid crystal display device described in FIG. 1 of JP-A-2007-328210, the organic insulating film PAS was formed by the following method to obtain a liquid crystal display device.
First, according to Japanese Patent Application Laid-Open No. 2007-328210, an array substrate formed up to just before the organic insulating film PAS was produced.
Next, this substrate was exposed to hexamethyldisilazane vapor for 30 seconds, after which the photosensitive resin composition of Example 1 was slit-coated and then pre-baked on a hot plate at 90 ° C. for 2 minutes to volatilize the solvent, A photosensitive resin composition layer was formed. Next, i-line (365 nm) was calculated | required by sensitivity evaluation for the obtained photosensitive resin composition layer using the high pressure mercury lamp from the mask of the hole pattern 7 micrometers in diameter using MPA 7800CF by Canon. Irradiated with optimum exposure. The exposed photosensitive resin composition layer was developed with an alkali developer (0.5% tetramethylammonium hydroxide aqueous solution) at 23 ° C./60 seconds, and then rinsed with ultrapure water for 20 seconds. Subsequently, the whole surface was exposed using an ultra-high pressure mercury lamp so that the integrated irradiation amount was 300 mJ / cm 2 (energy intensity: 20 mW / cm 2 , measured by i-line). The organic insulating film PAS was obtained by heating for minutes.
In the subsequent steps, a liquid crystal display device was obtained according to Japanese Patent Application Laid-Open No. 2007-328210.
In this embodiment, since a material having high heat resistance is used for PAS, the interlayer insulating film IN3 is formed at the same temperature as the interlayer insulating film IN2. Thereby, IN3 could be made into a dense film.
When a driving voltage was applied to the obtained liquid crystal display device, it was found that the liquid crystal display device showed very good display characteristics and had high reliability.
(実施例252~298)
実施例251において、実施例1の感光性樹脂組成物を実施例2~48の感光性樹脂組成物に換えたこと以外は、実施例251と同様に液晶表示装置を作製した。
 得られた液晶表示装置に対して、駆動電圧を印加したところ、非常に良好な表示特性を示し、信頼性の高い液晶表示装置であることが分かった。
(Examples 252 to 298)
In Example 251, a liquid crystal display device was produced in the same manner as in Example 251, except that the photosensitive resin composition of Example 1 was replaced with the photosensitive resin compositions of Examples 2 to 48.
When a driving voltage was applied to the obtained liquid crystal display device, it was found that the liquid crystal display device showed very good display characteristics and had high reliability.
 <タッチパネル表示装置の作製>
(実施例301)
 以下に述べる方法によりタッチパネル表示装置を作製した。
<第一の透明電極パターンの形成>
<<透明電極層の形成>>
 あらかじめマスク層が形成された強化処理ガラス(300mm×400mm×0.7mm)の前面板を、真空チャンバー内に導入し、SnO2含有率が10質量%のITOターゲット(インジウム:錫=95:5(モル比))を用いて、DCマグネトロンスパッタリング(条件:基材の温度250℃、アルゴン圧0.13Pa、酸素圧0.01Pa)により、厚さ40nmのITO薄膜を形成し、透明電極層を形成した前面板を得た。ITO薄膜の表面抵抗は80Ω/□であった。
<Production of touch panel display device>
(Example 301)
A touch panel display device was produced by the method described below.
<Formation of first transparent electrode pattern>
<< Formation of transparent electrode layer >>
A front plate of tempered glass (300 mm × 400 mm × 0.7 mm) with a mask layer formed in advance is introduced into a vacuum chamber, and an ITO target (indium: tin = 95: 5) with a SnO 2 content of 10% by mass. (Molar ratio)) was used to form an ITO thin film having a thickness of 40 nm by DC magnetron sputtering (conditions: substrate temperature 250 ° C., argon pressure 0.13 Pa, oxygen pressure 0.01 Pa), and a transparent electrode layer was formed. A formed front plate was obtained. The surface resistance of the ITO thin film was 80Ω / □.
 次いで、市販のエッチングレジストをITO上に塗布・乾燥し、エッチングレジスト層を形成した。露光マスク(透明電極パターンを有す石英露光マスク)面とエッチングレジスト層との間の距離を100μmに設定し、露光量50mJ/cm2(i線)でパターン露光したのち、現像液で現像を行い、更に130℃30分間のポストベーク処理を行って、透明電極層とエッチング用光感光性樹脂層パターンとを形成した前面板を得た。 Next, a commercially available etching resist was applied onto ITO and dried to form an etching resist layer. The distance between the exposure mask (quartz exposure mask having a transparent electrode pattern) surface and the etching resist layer is set to 100 μm, pattern exposure is performed at an exposure amount of 50 mJ / cm 2 (i-line), and development is performed with a developer. Then, a post-baking treatment at 130 ° C. for 30 minutes was performed to obtain a front plate on which a transparent electrode layer and a photosensitive resin layer pattern for etching were formed.
 透明電極層とエッチング用光感光性樹脂層パターンとを形成した前面板を、ITOエッチャント(塩酸、塩化カリウム水溶液。液温30℃)を入れたエッチング槽に浸漬し、100秒処理し、エッチングレジスト層で覆われていない露出した領域の透明電極層を溶解除去し、エッチングレジスト層パターンのついた透明電極層パターン付の前面板を得た。
 次に、エッチングレジスト層パターンのついた透明電極層パターン付の前面板を、専用のレジスト剥離液に浸漬し、エッチング用光感光性樹脂層を除去し、マスク層と第一の透明電極パターンとを形成した前面板を得た。
The front plate on which the transparent electrode layer and the photo-sensitive resin layer pattern for etching are formed is immersed in an etching tank containing ITO etchant (hydrochloric acid, potassium chloride aqueous solution, liquid temperature 30 ° C.), treated for 100 seconds, and etched resist. The exposed transparent electrode layer not covered with the layer was dissolved and removed to obtain a front plate with a transparent electrode layer pattern with an etching resist layer pattern.
Next, the front plate with the transparent electrode layer pattern with the etching resist layer pattern is immersed in a dedicated resist stripping solution, the photosensitive resin layer for etching is removed, and the mask layer and the first transparent electrode pattern A front plate formed was obtained.
<<絶縁層の形成>>
 マスク層と第一の透明電極パターンとを形成した前面板の上に、実施例1の感光性樹脂組成物を塗布・乾燥(膜厚1μm、90℃120秒)し、感光性樹脂組成物層を得た。露光マスク(絶縁層用パターンを有す石英露光マスク)面と感光性樹脂組成物層との間の距離を30μmに設定し、感度評価で求めた最適露光量でパターン露光した。
 次に、2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液により23℃で15秒間液盛り法にて現像し、更に超純水で10秒間リンスした。続いて220℃45分のポストベーク処理を行って、マスク層、第一の透明電極パターン、絶縁層パターンを形成した前面板を得た。
<< Formation of insulating layer >>
On the front plate on which the mask layer and the first transparent electrode pattern were formed, the photosensitive resin composition of Example 1 was applied and dried (film thickness: 1 μm, 90 ° C., 120 seconds) to form a photosensitive resin composition layer. Got. The distance between the surface of the exposure mask (quartz exposure mask having a pattern for insulating layer) and the photosensitive resin composition layer was set to 30 μm, and pattern exposure was performed with the optimum exposure amount obtained by sensitivity evaluation.
Next, the film was developed with a 2.38 mass% tetramethylammonium hydroxide aqueous solution at 23 ° C. for 15 seconds and rinsed with ultrapure water for 10 seconds. Subsequently, a post-bake treatment at 220 ° C. for 45 minutes was performed to obtain a front plate on which a mask layer, a first transparent electrode pattern, and an insulating layer pattern were formed.
<第二の透明電極パターンの形成>
<<透明電極層の形成>>
 上記第一の透明電極パターンの形成と同様にして、絶縁層パターンまで形成した前面板をDCマグネトロンスパッタリング処理し(条件:基材の温度50℃、アルゴン圧0.13Pa、酸素圧0.01Pa)、厚さ80nmのITO薄膜を形成し、透明電極層を形成した前面板を得た。ITO薄膜の表面抵抗は110Ω/□であった。
 第一の透明電極パターンの形成と同様にして、市販のエッチングレジストを用いて、第一の透明電極パターン、実施例1の感光性樹脂組成物を用いて形成した絶縁層パターン、透明電極層、エッチングレジストパターンを形成した前面板を得た(ポストベーク処理;130℃30分間)。
 更に、第一の透明電極パターンの形成と同様にして、エッチングし、エッチングレジスト層を除去することにより、マスク層、第一の透明電極パターン、実施例1の感光性樹脂組成物用いて形成した絶縁層パターン、第二の透明電極パターンを形成した前面板を得た。
<Formation of second transparent electrode pattern>
<< Formation of transparent electrode layer >>
In the same manner as the formation of the first transparent electrode pattern, the front plate formed up to the insulating layer pattern was subjected to DC magnetron sputtering treatment (conditions: substrate temperature 50 ° C., argon pressure 0.13 Pa, oxygen pressure 0.01 Pa). An ITO thin film having a thickness of 80 nm was formed to obtain a front plate on which a transparent electrode layer was formed. The surface resistance of the ITO thin film was 110Ω / □.
Similarly to the formation of the first transparent electrode pattern, using a commercially available etching resist, the first transparent electrode pattern, an insulating layer pattern formed using the photosensitive resin composition of Example 1, a transparent electrode layer, A front plate on which an etching resist pattern was formed was obtained (post-baking treatment; 130 ° C. for 30 minutes).
Further, etching was performed in the same manner as the formation of the first transparent electrode pattern, and the etching resist layer was removed to form the mask layer, the first transparent electrode pattern, and the photosensitive resin composition of Example 1. A front plate on which an insulating layer pattern and a second transparent electrode pattern were formed was obtained.
<第一及び第二の透明電極パターンとは別の導電性要素の形成>
 上記第一、及び、第二の透明電極パターンの形成と同様にして、第一の透明電極パターン、実施例1の感光性樹脂組成物を用いて形成した絶縁層パターン、第二の透明電極パターンを形成した前面板をDCマグネトロンスパッタリング処理し、厚さ200nmのアルミニウム(Al)薄膜を形成した前面板を得た。
 上記第一、及び、第二の透明電極パターンの形成と同様にして、市販のエッチングレジストを用いて、第一の透明電極パターン、実施例1の感光性樹脂組成物を用いて形成した絶縁層パターン、第二の透明電極パターン、エッチングレジストパターンを形成した前面板を得た(ポストベーク処理;130℃30分間)。
 更に、第一の透明電極パターンの形成と同様にして、エッチング(30℃50秒間)し、エッチングレジスト層を除去(45℃200秒間)することにより、マスク層、第一の透明電極パターン、実施例1の感光性樹脂組成物を用いて形成した絶縁層パターン、第二の透明電極パターン、第一及び第二の透明電極パターンとは別の導電性要素を形成した前面板を得た。
<Formation of Conductive Element Different from First and Second Transparent Electrode Pattern>
Similar to the formation of the first and second transparent electrode patterns, the first transparent electrode pattern, the insulating layer pattern formed using the photosensitive resin composition of Example 1, and the second transparent electrode pattern The front plate on which was formed was subjected to DC magnetron sputtering to obtain a front plate on which an aluminum (Al) thin film having a thickness of 200 nm was formed.
Insulating layer formed using the first transparent electrode pattern, the photosensitive resin composition of Example 1, using a commercially available etching resist in the same manner as the formation of the first and second transparent electrode patterns. A front plate on which a pattern, a second transparent electrode pattern, and an etching resist pattern were formed was obtained (post-bake treatment; 130 ° C. for 30 minutes).
Further, in the same manner as the formation of the first transparent electrode pattern, etching (30 ° C. for 50 seconds) is performed, and the etching resist layer is removed (45 ° C. for 200 seconds). A front plate on which a conductive element different from the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns formed using the photosensitive resin composition of Example 1 was obtained was obtained.
<透明保護層の形成>
 絶縁層の形成と同様にして、上記第一及び第二の透明電極パターンとは別の導電性要素まで形成した前面板に、実施例1の感光性樹脂組成物を塗布・乾燥(膜厚1μm、90℃120秒)し、感光性樹脂組成物膜を得た。更に、露光、現像、ポスト露光(1,000mJ/cm2)、ポストベーク処理を行って、マスク層、第一の透明電極パターン、実施例1の感光性樹脂組成物を用いて形成した絶縁層パターン、第二の透明電極パターン、第一及び第二の透明電極パターンとは別の導電性要素の全てを覆うように実施例1の感光性樹脂組成物を用いて形成した絶縁層(透明保護層)を積層した前面板を得た。
<Formation of transparent protective layer>
In the same manner as the formation of the insulating layer, the photosensitive resin composition of Example 1 was applied and dried (film thickness: 1 μm) on the front plate formed up to the conductive element different from the first and second transparent electrode patterns. , 90 ° C. for 120 seconds) to obtain a photosensitive resin composition film. Furthermore, exposure, development, post-exposure (1,000 mJ / cm 2 ), post-bake treatment were performed, and the insulating layer formed using the mask layer, the first transparent electrode pattern, and the photosensitive resin composition of Example 1 Insulating layer (transparent protection) formed using the photosensitive resin composition of Example 1 so as to cover all the conductive elements different from the pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns Layer) was obtained.
<タッチパネル表示装置の作製>
 特開2009-47936号公報に記載の方法で製造した液晶表示素子に、先に製造した前面板を貼り合わせ、公知の方法で静電容量型入力装置を構成要素として備えたタッチパネル表示装置を作製した。
<Production of touch panel display device>
A liquid crystal display device manufactured by the method described in Japanese Patent Application Laid-Open No. 2009-47936 is bonded to the previously manufactured front plate, and a touch panel display device including a capacitive input device as a constituent element is manufactured by a known method. did.
<前面板、及び、タッチパネル表示装置の評価>
 第一の透明電極パターン、第二の透明電極パターン、及び、これらとは別の導電性要素の、各々の導電性には問題がなく、一方で、第一の透明電極パターンと第二の透明電極パターンの間では絶縁性を有しており、タッチパネルとして良好な表示特性が得られた。更に、第一及び第二の透明電極パターンは視認されにくく、表示特性に優れたタッチパネル表示装置が得られた。
<Evaluation of front plate and touch panel display>
There is no problem in the conductivity of each of the first transparent electrode pattern, the second transparent electrode pattern, and other conductive elements, while the first transparent electrode pattern and the second transparent electrode pattern Between the electrode patterns, there was insulation, and good display characteristics as a touch panel were obtained. Furthermore, the 1st and 2nd transparent electrode pattern was hard to be visually recognized, and the touchscreen display apparatus excellent in the display characteristic was obtained.
(実施例302~348)
 実施例301において、実施例1の感光性樹脂組成物を実施例2~48の感光性樹脂組成物に換えたこと以外は、実施例301と同様にタッチパネル表示装置を作製した。得られたタッチパネル表示装置は、第一の透明電極パターン、第二の透明電極パターン、及び、これらとは別の導電性要素の、各々の導電性には問題がなく、一方で、第一の透明電極パターンと第二の透明電極パターンの間では絶縁性を有しており、タッチパネルとして良好な表示特性が得られた。更に、第一及び第二の透明電極パターンは視認されにくく、優れた表示特性が得られた。
(Examples 302 to 348)
In Example 301, a touch panel display device was produced in the same manner as in Example 301 except that the photosensitive resin composition of Example 1 was replaced with the photosensitive resin compositions of Examples 2 to 48. The obtained touch panel display device has no problem in the conductivity of each of the first transparent electrode pattern, the second transparent electrode pattern, and a conductive element different from these, while the first transparent electrode pattern Between the transparent electrode pattern and the second transparent electrode pattern, there was insulation, and good display characteristics as a touch panel were obtained. Furthermore, the first and second transparent electrode patterns were hardly visible and excellent display characteristics were obtained.
 1:TFT(薄膜トランジスター)
 2:配線
 3:絶縁膜
 4:平坦化膜
 5:第一電極
 6:ガラス基板
 7:コンタクトホール
 8:絶縁膜
 10:液晶表示装置
 12:バックライトユニット
 14,15:ガラス基板
 16:TFT
 17:硬化膜
 18:コンタクトホール
 19:ITO透明電極
 20:液晶
 22:カラーフィルター
1: TFT (Thin Film Transistor)
2: Wiring 3: Insulating film 4: Flattened film 5: First electrode 6: Glass substrate 7: Contact hole 8: Insulating film 10: Liquid crystal display device 12: Backlight unit 14, 15: Glass substrate 16: TFT
17: Cured film 18: Contact hole 19: ITO transparent electrode 20: Liquid crystal 22: Color filter

Claims (16)

  1.  カルボキシ基が酸分解性基で保護された基、および、フェノール性水酸基が酸分解性基で保護された基から選ばれる少なくとも1種を有する構成単位a1と、架橋性基を有する構成単位a2とを有するポリシロキサンAと、
     pKaが3以下の酸を発生する光酸発生剤Bと、
     溶剤Cと、
     を含有する感光性樹脂組成物。
    A structural unit a1 having at least one selected from a group in which a carboxy group is protected by an acid-decomposable group, and a group in which a phenolic hydroxyl group is protected by an acid-decomposable group, and a structural unit a2 having a crosslinkable group Polysiloxane A having
    a photoacid generator B that generates an acid having a pKa of 3 or less;
    Solvent C;
    Containing a photosensitive resin composition.
  2.  前記酸分解性基がアセタール基である請求項1に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 1, wherein the acid-decomposable group is an acetal group.
  3.  前記構成単位a1が、下記一般式a1-1で表される構成単位、および、下記一般式a1-2で表される構成単位から選ばれる少なくとも1種である、請求項1または2に記載の感光性樹脂組成物;
    Figure JPOXMLDOC01-appb-C000001
    一般式a1-1、a1-2中、aは0または1を表し、R1およびR2は、それぞれ独立に、水素原子、アルキル基またはアリール基を表し、R1およびR2の少なくとも一方がアルキル基またはアリール基を表し、R3は、アルキル基またはアリール基を表し、R1またはR2と、R3とが連結して環状エーテルを形成してもよく、R4は、アルキル基、アリール基、または、アラルキル基を表し、L1は、単結合または2価の連結基を表し、L2は、単結合または2価の連結基を表し、Rxは、アルキル基またはハロゲン原子を表し、m1は、0~4の整数を表す。
    The structural unit a1 is at least one selected from structural units represented by the following general formula a1-1 and structural units represented by the following general formula a1-2. Photosensitive resin composition;
    Figure JPOXMLDOC01-appb-C000001
    In general formulas a1-1 and a1-2, a represents 0 or 1, R 1 and R 2 each independently represents a hydrogen atom, an alkyl group or an aryl group, and at least one of R 1 and R 2 is Represents an alkyl group or an aryl group, R 3 represents an alkyl group or an aryl group, and R 1 or R 2 and R 3 may be linked to form a cyclic ether, and R 4 represents an alkyl group, An aryl group or an aralkyl group, L 1 represents a single bond or a divalent linking group, L 2 represents a single bond or a divalent linking group, and R x represents an alkyl group or a halogen atom. M1 represents an integer of 0 to 4.
  4.  前記構成単位a2が有する架橋性基が、環状エーテル、および、エチレン性不飽和結合を有する基から選ばれる少なくとも1種である請求項1~3のいずれか1項に記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 3, wherein the crosslinkable group of the structural unit a2 is at least one selected from a cyclic ether and a group having an ethylenically unsaturated bond. .
  5.  前記構成単位a2が、下記一般式a2-1で表される構成単位、および、下記一般式a2-2で表される構成単位から選ばれる少なくとも1種である、請求項1~4のいずれか1項に記載の感光性樹脂組成物;
    Figure JPOXMLDOC01-appb-C000002
    一般式a2-1、a2-2中、aは0または1を表し、R5は、アルキル基、アリール基またはアラルキル基を表し、RYは、アルキル基またはハロゲン原子を表し、L3は、単結合、または、2価の連結基を表し、nは、0または1を表し、m2は、nが0の場合は0~2の整数を表し、nが1の場合は0~3の整数を表し、m3は、0~6の整数を表す。
    The structural unit a2 is at least one selected from a structural unit represented by the following general formula a2-1 and a structural unit represented by the following general formula a2-2. The photosensitive resin composition according to item 1;
    Figure JPOXMLDOC01-appb-C000002
    In general formulas a2-1 and a2-2, a represents 0 or 1, R 5 represents an alkyl group, an aryl group, or an aralkyl group, R Y represents an alkyl group or a halogen atom, and L 3 represents Represents a single bond or a divalent linking group, n represents 0 or 1, m2 represents an integer of 0 to 2 when n is 0, and an integer of 0 to 3 when n is 1 M3 represents an integer of 0-6.
  6.  ポリシロキサンAが、さらに酸基を有する構成単位a3を含む、請求項1~5のいずれか1項に記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 5, wherein the polysiloxane A further contains a structural unit a3 having an acid group.
  7.  前記構成単位a3は、酸基として、カルボキシ基、および、フェノール性水酸基から選ばれる少なくとも1種を有する、請求項6に記載の感光性樹脂組成物。 The photosensitive unit composition according to claim 6, wherein the structural unit a3 has at least one selected from a carboxy group and a phenolic hydroxyl group as an acid group.
  8.  感光性樹脂組成物に含まれるポリシロキサンA全量中、構成単位a1のモル数および構成単位a3のモル数の合計と、構成単位a2のモル数との比が、10:90~90:10である、請求項6または7に記載の感光性樹脂組成物。 In the total amount of polysiloxane A contained in the photosensitive resin composition, the ratio of the total number of moles of the structural unit a1 and the mole number of the structural unit a3 to the number of moles of the structural unit a2 is 10:90 to 90:10. The photosensitive resin composition of Claim 6 or 7.
  9.  感光性樹脂組成物の固形分中の架橋性基当量が1500以下である、請求項1~8のいずれか1項に記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 8, wherein the crosslinkable group equivalent in the solid content of the photosensitive resin composition is 1500 or less.
  10.  前記光酸発生剤Bが、オニウム塩化合物、オキシムスルホネート化合物、およびイミドスルホネート化合物から選ばれる少なくとも1種である、請求項1~9のいずれか1項に記載感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 9, wherein the photoacid generator B is at least one selected from an onium salt compound, an oxime sulfonate compound, and an imide sulfonate compound.
  11.  請求項1~10のいずれか1項に記載の感光性樹脂組成物を基板上に塗布する工程、
     前記基板に塗布された感光性樹脂組成物から溶剤を除去する工程、
     溶剤が除去された感光性樹脂組成物を露光する工程、
     露光された感光性樹脂組成物を現像する工程、および、
     現像された感光性樹脂組成物を熱硬化する工程、
    を含む硬化膜の製造方法。
    Applying the photosensitive resin composition according to any one of claims 1 to 10 on a substrate;
    Removing the solvent from the photosensitive resin composition applied to the substrate;
    Exposing the photosensitive resin composition from which the solvent has been removed,
    Developing the exposed photosensitive resin composition; and
    A step of thermosetting the developed photosensitive resin composition;
    The manufacturing method of the cured film containing this.
  12.  請求項1~10のいずれか1項に記載の感光性樹脂組成物を硬化した硬化膜、または、請求項11に記載の硬化膜の製造方法により形成された硬化膜。 A cured film obtained by curing the photosensitive resin composition according to any one of claims 1 to 10, or a cured film formed by the method for producing a cured film according to claim 11.
  13.  層間絶縁膜である、請求項12に記載の硬化膜。 The cured film according to claim 12, which is an interlayer insulating film.
  14.  請求項12または13に記載の硬化膜を有する、液晶表示装置。 A liquid crystal display device having the cured film according to claim 12.
  15.  請求項12または13に記載の硬化膜を有する、有機EL表示装置。 An organic EL display device having the cured film according to claim 12 or 13.
  16.  請求項12または13に記載の硬化膜を有する、タッチパネル表示装置。 A touch panel display device comprising the cured film according to claim 12 or 13.
PCT/JP2015/052636 2014-02-13 2015-01-30 Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device, organic el display device, and touch panel display device WO2015122293A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167020248A KR20160102538A (en) 2014-02-13 2015-01-30 Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device, organic el display device, and touch panel display device
JP2015562781A JPWO2015122293A1 (en) 2014-02-13 2015-01-30 Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device, organic EL display device, touch panel display device
CN201580008378.9A CN105980931A (en) 2014-02-13 2015-01-30 Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device, organic el display device, and touch panel display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-025343 2014-02-13
JP2014025343 2014-02-13

Publications (1)

Publication Number Publication Date
WO2015122293A1 true WO2015122293A1 (en) 2015-08-20

Family

ID=53800041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052636 WO2015122293A1 (en) 2014-02-13 2015-01-30 Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device, organic el display device, and touch panel display device

Country Status (4)

Country Link
JP (1) JPWO2015122293A1 (en)
KR (1) KR20160102538A (en)
CN (1) CN105980931A (en)
WO (1) WO2015122293A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016212350A (en) * 2015-05-13 2016-12-15 東京応化工業株式会社 Photosensitive composition for forming insulating film and method for forming insulating film pattern
WO2017043344A1 (en) * 2015-09-09 2017-03-16 日産化学工業株式会社 Silicon-containing planarizing pattern-reversal coating agent
JP2017171748A (en) * 2016-03-22 2017-09-28 Jsr株式会社 Cured film, display element, material for forming cured film and method for forming cured film
WO2020090746A1 (en) * 2018-10-30 2020-05-07 セントラル硝子株式会社 Resin composition, photosensitive resin composition, cured film, production method for cured film, patterned cured film, and production method for patterned cured film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113318945A (en) * 2021-07-01 2021-08-31 漳州建晟家具有限公司 Children's furniture panel surface UV colored paint photocuring equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10324748A (en) * 1997-01-31 1998-12-08 Shin Etsu Chem Co Ltd Macromolecular silicone, chemically amplifiable positive type resist material and pattern-formation process
JPH11302382A (en) * 1997-08-06 1999-11-02 Shin Etsu Chem Co Ltd Polymeric silicone compound, resist material and pattern formation
JP2001100417A (en) * 1999-09-28 2001-04-13 Fuji Photo Film Co Ltd Positive type photoresist composition
JP2001147538A (en) * 1999-11-22 2001-05-29 Fuji Photo Film Co Ltd Positive type resist laminated body
JP2001330957A (en) * 2000-05-22 2001-11-30 Fuji Photo Film Co Ltd Positive type silicon-containing photosensitive composition
JP2002006494A (en) * 2000-06-22 2002-01-09 Fuji Photo Film Co Ltd Positive resist laminate
JP2004334107A (en) * 2003-05-12 2004-11-25 Fuji Photo Film Co Ltd Positive resist composition
JP2014115438A (en) * 2012-12-10 2014-06-26 Jsr Corp Radiation-sensitive resin composition for display element, cured film, method for producing cured film, semiconductor element, and display element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100452670B1 (en) * 1997-08-06 2005-10-11 신에쓰 가가꾸 고교 가부시끼가이샤 High Molecular Weight Silicone Compounds, Resist Compositions and Patterning Method
JP4373082B2 (en) 2001-12-28 2009-11-25 富士通株式会社 Alkali-soluble siloxane polymer, positive resist composition, resist pattern and method for producing the same, and electronic circuit device and method for producing the same
JP5136777B2 (en) 2008-04-25 2013-02-06 信越化学工業株式会社 Polyorganosiloxane compound, resin composition containing the same, and pattern forming method thereof
JP2013092633A (en) 2011-10-25 2013-05-16 Adeka Corp Positive photosensitive composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10324748A (en) * 1997-01-31 1998-12-08 Shin Etsu Chem Co Ltd Macromolecular silicone, chemically amplifiable positive type resist material and pattern-formation process
JPH11302382A (en) * 1997-08-06 1999-11-02 Shin Etsu Chem Co Ltd Polymeric silicone compound, resist material and pattern formation
JP2001100417A (en) * 1999-09-28 2001-04-13 Fuji Photo Film Co Ltd Positive type photoresist composition
JP2001147538A (en) * 1999-11-22 2001-05-29 Fuji Photo Film Co Ltd Positive type resist laminated body
JP2001330957A (en) * 2000-05-22 2001-11-30 Fuji Photo Film Co Ltd Positive type silicon-containing photosensitive composition
JP2002006494A (en) * 2000-06-22 2002-01-09 Fuji Photo Film Co Ltd Positive resist laminate
JP2004334107A (en) * 2003-05-12 2004-11-25 Fuji Photo Film Co Ltd Positive resist composition
JP2014115438A (en) * 2012-12-10 2014-06-26 Jsr Corp Radiation-sensitive resin composition for display element, cured film, method for producing cured film, semiconductor element, and display element

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016212350A (en) * 2015-05-13 2016-12-15 東京応化工業株式会社 Photosensitive composition for forming insulating film and method for forming insulating film pattern
WO2017043344A1 (en) * 2015-09-09 2017-03-16 日産化学工業株式会社 Silicon-containing planarizing pattern-reversal coating agent
CN108055851A (en) * 2015-09-09 2018-05-18 日产化学工业株式会社 Planarization pattern reversion coating agent containing silicon
JPWO2017043344A1 (en) * 2015-09-09 2018-07-19 日産化学工業株式会社 Silicon-containing planarizing pattern reversal coating
US10508174B2 (en) 2015-09-09 2019-12-17 Nissan Chemical Industries, Ltd. Silicon-containing coating agent for reversing planarization pattern
TWI712629B (en) * 2015-09-09 2020-12-11 日商日產化學工業股份有限公司 Coating for inverting silicon-containing flattened pattern
CN108055851B (en) * 2015-09-09 2021-03-30 日产化学工业株式会社 Coating agent for planarizing pattern reverse containing silicon
JP2017171748A (en) * 2016-03-22 2017-09-28 Jsr株式会社 Cured film, display element, material for forming cured film and method for forming cured film
WO2020090746A1 (en) * 2018-10-30 2020-05-07 セントラル硝子株式会社 Resin composition, photosensitive resin composition, cured film, production method for cured film, patterned cured film, and production method for patterned cured film
KR20210084595A (en) * 2018-10-30 2021-07-07 샌트랄 글래스 컴퍼니 리미티드 A resin composition, a photosensitive resin composition, a cured film, the manufacturing method of a cured film, the manufacturing method of a pattern cured film, and a pattern cured film
JPWO2020090746A1 (en) * 2018-10-30 2021-10-14 セントラル硝子株式会社 Resin composition, photosensitive resin composition, cured film, method for producing cured film, method for producing pattern cured film and pattern cured film
KR102593420B1 (en) * 2018-10-30 2023-10-25 샌트랄 글래스 컴퍼니 리미티드 Resin composition, photosensitive resin composition, cured film, method for producing a cured film, patterned cured film, and method for producing a patterned cured film

Also Published As

Publication number Publication date
CN105980931A (en) 2016-09-28
JPWO2015122293A1 (en) 2017-03-30
KR20160102538A (en) 2016-08-30

Similar Documents

Publication Publication Date Title
JP6283117B2 (en) Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device, organic electroluminescence display device, and touch panel
KR101807630B1 (en) Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device and organic el display device
KR101823424B1 (en) Photosensitive resin composition, method of producing cured film, cured film, liquid crystal display device and organic el display device
TWI629560B (en) Photo sensitive resin composition, method for manufacturing cured film, cured film, liquid crystal display device, organic el display device and touch panel displayn device
WO2015087830A1 (en) Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device and organic el display device
KR101729599B1 (en) Photosensitive resin composition and production method for pattern using same
TWI710839B (en) Method for manufacturing thin film transistor substrate, organic electroluminescence display device and manufacturing method thereof, liquid crystal display device and manufacturing method thereof
TWI624719B (en) Photosensitive resin composition, method for manufacturing cured film using the same, cured film and liquid crystal display device and organic el display device
JP6038951B2 (en) Photosensitive resin composition, method for producing cured film, cured film, organic EL display device and liquid crystal display device
WO2016043203A1 (en) Positive photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device, organic electroluminescent display device and touch panel
KR101791024B1 (en) Photo-sensitive resin composition, method for manufacturing cured film, cured film, organic el display device and liquid crystal display device
WO2015122293A1 (en) Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device, organic el display device, and touch panel display device
JPWO2014136922A1 (en) Photosensitive resin composition, cured product and production method thereof, resin pattern production method, cured film, liquid crystal display device, organic EL display device, and touch panel display device
WO2016052389A1 (en) Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device, organic electroluminescent display device, and touch panel
WO2016052390A1 (en) Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device, organic electroluminescent display device, and touch panel
TWI649615B (en) Photo-sensitive resin composition, method for manufacturing cured film, cured film, liquid crystal display device and organic el display device
TW201608337A (en) Photosensitive resin composition, hardened film manufacturing method, hardened film, liquid crystal display device, organic electroluminescence display device, and touch panel
JP2015121643A (en) Photosensitive resin composition, production method of cured film, cured film, liquid crystal display device, and organic electroluminescence (el) display device
KR101747771B1 (en) Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device and organic el display device
JP6147218B2 (en) Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device, organic EL display device, touch panel display device
WO2015087832A1 (en) Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device and organic el display device
WO2015133357A1 (en) Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device, organic el display device and touch panel display device
WO2016052391A1 (en) Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device, organic electroluminescent display device, and touch panel
WO2015087829A1 (en) Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device and organic el display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15749573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167020248

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015562781

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15749573

Country of ref document: EP

Kind code of ref document: A1