WO2015016113A1 - Electronic device manufacturing method - Google Patents

Electronic device manufacturing method Download PDF

Info

Publication number
WO2015016113A1
WO2015016113A1 PCT/JP2014/069461 JP2014069461W WO2015016113A1 WO 2015016113 A1 WO2015016113 A1 WO 2015016113A1 JP 2014069461 W JP2014069461 W JP 2014069461W WO 2015016113 A1 WO2015016113 A1 WO 2015016113A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone resin
glass substrate
resin layer
electronic device
substrate
Prior art date
Application number
PCT/JP2014/069461
Other languages
French (fr)
Japanese (ja)
Inventor
純一 ▲角▼田
研一 江畑
祥孝 松山
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201480043262.4A priority Critical patent/CN105432147B/en
Priority to JP2015529529A priority patent/JPWO2015016113A1/en
Priority to KR1020167002335A priority patent/KR20160039192A/en
Publication of WO2015016113A1 publication Critical patent/WO2015016113A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to an electronic device manufacturing method, and more particularly, to an electronic device manufacturing method including a separation step in which a predetermined organic solvent is supplied to a separation line between a silicone resin layer and a glass substrate to perform separation (peeling). .
  • devices such as solar cells (PV), liquid crystal panels (LCD), and organic EL panels (OLED) have been made thinner and lighter, and the glass substrates used in these devices have been made thinner. Progressing. If the strength of the glass substrate is insufficient due to the thinning, the handling property of the glass substrate is lowered in the device manufacturing process. Therefore, conventionally, a method of forming a device member (for example, a thin film transistor) on a glass substrate thicker than the final thickness and then thinning the glass substrate by chemical etching is widely used.
  • a device member for example, a thin film transistor
  • the reinforcing plate has a support plate and a silicone resin layer fixed on the support plate, and the silicone resin layer and the thin glass substrate are in close contact with each other in a peelable manner.
  • the reinforcing plate separated from the thin glass substrate is peeled off from the interface between the silicone resin layer of the glass laminate and the thin glass substrate, and can be reused as a glass laminate by being laminated with a new thin glass substrate.
  • Patent Document 1 causes no particular problem in the treatment at 300 ° C. for 1 hour in the atmosphere.
  • the glass substrate is peeled from the silicone resin layer surface. Since the glass substrate is not peeled off from the resin layer surface, a part of the glass substrate is destroyed or a part of the resin of the resin layer remains on the glass substrate. As a result, the electronic device is separated after forming the electronic device member. May not be successful, leading to reduced productivity of electronic devices.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing an electronic device in which peeling between a silicone resin layer and a glass substrate easily proceeds even after high-temperature heat treatment conditions.
  • the present inventor has examined the problems of the prior art, and it is easy to peel off by supplying an organic solvent having a predetermined property to the peeling line that is the boundary line of the peeling interface between the silicone resin layer and the glass substrate.
  • the present invention has been completed.
  • the first aspect of the present invention is a laminate with an electronic device member having a support base, a silicone resin layer, a glass substrate, and an electronic device member in this order. From the interface including the silicone resin layer and the glass substrate as a release surface, a support substrate with a silicone resin layer including the support substrate and the silicone resin layer, and an electron including the glass substrate and the electronic device member.
  • a method of manufacturing an electronic device comprising a step of separating the device and obtaining the electronic device, wherein a solubility parameter is greater than 10 at a peeling line that is a boundary line of a peeling interface between the silicone resin layer and the glass substrate.
  • the organic solvent preferably contains an alcohol solvent that may have a halogen atom or an aprotic polar solvent.
  • the organic solvent is an alcohol solvent having 1 to 6 carbon atoms, dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), It is preferable to include at least one selected from the group consisting of sulfolane and acetonitrile.
  • the silicone resin in the silicone resin layer is preferably a reaction cured product of an organoalkenylpolysiloxane and an organohydrogenpolysiloxane.
  • the silicone resin is a cured product of an addition reaction type silicone
  • the addition reaction type silicone is a curable silicone resin composition including the following (a) and (b)
  • the silicone resin layer is It is preferably formed by curing a curable silicone resin composition on the surface of the support substrate: (a) a linear organopolysiloxane having at least two alkenyl groups per molecule, and (b) a silicon atom.
  • Linear organopolysiloxane having at least 3 bonded hydrogen atoms per molecule, and at least one hydrogen atom bonded to a silicon atom is present on the silicon atom at the molecular end .
  • FIG. 1A to FIG. 1C are schematic cross-sectional views sequentially showing the procedure of the separation step of the electronic device manufacturing method of the present invention.
  • 2A and 2B are a perspective cross-sectional view and a top view, respectively, in the state of FIG. 1B.
  • FIG. 3A and FIG. 3B are schematic cross-sectional views illustrating a configuration example of an electronic device.
  • 4 (A) to 4 (C) are schematic cross-sectional views sequentially showing the procedure of each step of the method of manufacturing the laminate with the electronic device member.
  • FIG. 5 is a schematic diagram of an apparatus for measuring peel strength.
  • an organic solvent exhibiting a predetermined solubility parameter (SP value) on a peeling line that is a boundary line of a peeling interface between a silicone resin layer and a glass substrate, or the above organic solvent And a mixed solution of water and water is supplied.
  • SP value solubility parameter
  • the organic solvent enters the surface layer of the silicone resin layer on the glass substrate side, and decreases the interfacial adhesive force between the silicone resin layer and the glass substrate. It is presumed that exfoliation proceeds with easier.
  • the manufacturing method of the electronic device of the present invention includes a support base, a silicone resin layer, a glass substrate, and a laminate with an electronic device member having an electronic device member in this order, and a silicone resin layer and a glass substrate. Step of separating the support substrate with a silicone resin layer including the support substrate and the silicone resin layer and the electronic device including the glass substrate and the electronic device member to obtain an electronic device (separation step) ) At least.
  • FIG. 1A to FIG. 1C are schematic cross-sectional views sequentially showing the procedure of the separation step of the electronic device manufacturing method of the present invention. Hereinafter, the procedure of the separation step will be described in detail with reference to FIGS. 1 (A) to 1 (C).
  • FIG. 1A is a schematic cross-sectional view of an example of a laminated body with a member for electronic devices according to the present invention.
  • the laminated body 10 with a member for electronic devices has the support base material 12, the silicone resin layer 14, the glass substrate 16, and the member 18 for electronic devices in this order.
  • the silicone resin layer 14 has one surface fixed to the layer of the support substrate 12 and the other surface in contact with the first main surface of the glass substrate 16. The interface is preferably in close contact with the peelable surface.
  • the two-layer part consisting of the layer of the support substrate 12 and the silicone resin layer 14 reinforces the glass substrate 16 in a member forming step described later for manufacturing a member for an electronic device such as a liquid crystal panel.
  • the two-layer portion composed of the layer of the support base 12 and the silicone resin layer 14 is also referred to as a support base 20 with a silicone resin layer.
  • the two-layer portion including the glass substrate 16 and the electronic device member 18 is also referred to as an electronic device 22.
  • each member which comprises the laminated body with a member for electronic devices, and its manufacturing procedure are demonstrated collectively in a back
  • the procedure for separating the support substrate with the silicone resin layer and the electronic device from the laminate with the electronic device member using the interface between the silicone resin layer and the glass substrate as the release surface will be described.
  • a trigger for peeling at the interface between the silicone resin layer and the glass substrate For example, a sharp blade-like object is inserted into the interface between the glass substrate 16 and the silicone resin layer 14 in FIG.
  • FIG. 1B the support base material 20 with the silicone resin layer and the electronic device 22 are separated.
  • 2A and 2B show a perspective sectional view and a top view of the state of FIG. 1B, and a peeling line X (peeling boundary line) is shown.
  • the peeling line X is a line indicating a boundary between a portion where the silicone resin layer 14 and the glass substrate 16 are not peeled and a portion where the silicone resin layer 14 and the glass substrate 16 are peeled.
  • the peeling line X extends from one end side of the electronic device to the other end side (see FIG. 2B). Move from right to left)
  • an organic solvent having a solubility parameter (SP value: cal / cm 3 ) of more than 10 is used.
  • the solubility parameter of the organic solvent is preferably 11 or more in that the peeling between the silicone resin layer and the glass substrate proceeds more favorably.
  • the upper limit is not particularly limited, but is usually preferably 23 or less from the viewpoint of wettability. Only one organic solvent may be used, or two or more organic solvents may be used in combination.
  • the contact angle of the organic solvent with respect to the silicone resin layer described later is not particularly limited, but is preferably 90 ° or less from the viewpoint that the peeling between the silicone resin layer and the glass substrate proceeds better.
  • the contact angle was measured by using PCA-1 manufactured by Kyowa Interface Science Co., Ltd. with a drop volume of 1 ⁇ l, dropping 5 points per sample surface at 23 ° C., and contact angle 60 seconds after dropping. Was measured.
  • the average value of the three contact angles excluding one of the maximum value and the minimum value of the five contact angles is obtained as the contact angle.
  • Examples of the solution supplied to the peeling line include a mixed solution of an organic solvent having a solubility parameter exceeding 10 and water.
  • the definition of the organic solvent is as described above.
  • the content of the organic solvent in the mixed solution is not particularly limited, but is preferably 10% by mass or more, and 20% by mass with respect to the total amount of the mixed solution in that the peeling between the silicone resin layer and the glass substrate proceeds better. The above is more preferable.
  • the upper limit is not particularly limited.
  • an alcoholic solvent which may have a halogen atom, which satisfies the above-mentioned solubility parameter, or aprotic in that the peeling between the silicone resin layer and the glass substrate proceeds better.
  • examples include polar solvents.
  • the alcohol solvent is preferably an alcohol solvent having 1 to 6 carbon atoms, more preferably an alcohol solvent having 1 to 3 carbon atoms, from the viewpoint that peeling between the silicone resin layer and the glass substrate proceeds better.
  • Specific examples include ethanol, propanol, butanol, pentanol, and hexanol.
  • the alcohol solvent may be linear, branched or cyclic.
  • the alcohol solvent may contain a halogen atom.
  • an alcohol solvent in which a hydrogen atom is substituted with a halogen atom may be used.
  • the halogen atom include a fluorine atom, a bromine atom, and an iodine atom.
  • the aprotic polar solvent include dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), sulfolane, and acetonitrile.
  • the supply method of the organic solvent or the mixed solution is not particularly limited, and a method of supplying the organic solvent or the mixed solution directly to the peeling line using a syringe or the like, a method of spraying the organic solvent or the mixed solution on the peeling line by spraying, etc. Can be mentioned. Also, once the organic solvent or mixed solution is supplied to the peeling line, the organic solvent or mixed solution also moves along the peeling line due to capillary action when the peeling line moves along with the peeling between the silicone resin layer and the glass substrate. For this reason, the peeling between the silicone resin layer and the glass substrate tends to proceed continuously. Further, during the peeling, an organic solvent or a mixed solution may be supplied continuously to the peeling line. Note that the supply amount of the organic solvent or the mixed solution is not particularly limited, but may be an amount that covers the peeling line.
  • the method for separating the support substrate 20 with the silicone resin layer from the electronic device 22 is not particularly limited, and a known method can be used.
  • the electronic device member-attached laminate 10 is placed on a surface plate so that the support base 12 is on the upper side and the electronic device member 18 side is on the lower side, and the electronic device member 18 side is vacuum-adsorbed on the surface plate.
  • the blade is first allowed to enter the interface between the silicone resin layer 14 and the glass substrate 16.
  • the support substrate 12 side is sucked by a plurality of vacuum suction pads, and the vacuum suction pads are raised in order from the vicinity of the place where the blade is inserted.
  • the laminated body 10 with a member for electronic devices can be isolate
  • the new glass substrate 16 and the member 18 for electronic devices are laminated
  • the electronic device 22 laminated body including the glass substrate 16 and the electronic device member 18 manufactured by the above method, a display panel having a glass substrate and a display device member, a glass substrate and a solar cell member.
  • a liquid crystal panel 80 shown in FIG. 3A includes a TFT substrate 82, a CF substrate 84, a liquid crystal layer 86, and the like.
  • the TFT substrate 82 is formed by patterning TFT elements (thin film transistors) 83 on the glass substrate 16.
  • the CF substrate 84 is formed by patterning color filter elements 85 on the glass substrate 16.
  • the TFT substrate 82 and the CF substrate 84 also correspond to the electronic device.
  • Another specific example of the electronic device is electronic paper illustrated in FIG. 3B, the electronic paper 90 includes, for example, a glass substrate 16, a TFT layer 92, a layer 94 containing an electrical engineering medium (for example, microcapsule), a transparent electrode 96, and a front plate 98.
  • the electronic paper element 91 is constituted by the TFT layer 92, the layer 94 of the electrical engineering medium, the transparent electrode 96, and the like.
  • the electronic paper element may be any of a microcapsule type, an in-plane type, a twist ball type, a particle movement type, an electronic jet type, and a polymer network type.
  • each structure (support base material 12, silicone resin layer 14, glass substrate 16, electronic device member 18) of the laminated body 10 with a member for electronic devices used above, and the laminated body with a member for electronic devices Ten manufacturing methods will be described.
  • the interface between the support substrate 12 and the silicone resin layer 14 has a peel strength (x), and a stress in the peeling direction exceeding the peel strength (x) is applied to the interface between the support substrate 12 and the silicone resin layer 14. And the interface of the support base material 12 and the silicone resin layer 14 peels.
  • the interface between the silicone resin layer 14 and the glass substrate 16 has a peel strength (y).
  • the peel strength (x) is higher than the peel strength (y).
  • the glass laminated body 10 with a member for electronic devices of this invention will be silicone. It peels at the interface of the resin layer 14 and the glass substrate 16, and it isolate
  • the peel strength (x) is preferably sufficiently higher than the peel strength (y).
  • Increasing the peel strength (x) means that the adhesion of the silicone resin layer 14 to the support base 12 can be increased, and a relatively higher adhesion to the glass substrate 16 can be maintained after the heat treatment. .
  • the silicone resin layer 14 bonded to the support substrate 12 with a high bonding force can be formed by the adhesive force at the time of crosslinking and curing.
  • the bond strength of the cured product of the crosslinkable organopolysiloxane after the crosslink curing to the glass substrate 16 is usually lower than the bond strength generated at the time of the crosslink curing. Therefore, it is preferable to crosslink and cure the crosslinkable organopolysiloxane on the support substrate 12 to form the silicone resin layer 14 and then laminate the glass substrate 16 on the surface of the silicone resin layer 14.
  • the support base material 12 supports and reinforces the glass substrate 16, and the glass substrate 16 is deformed and scratched when the electronic device member is manufactured in a member forming step (step of manufacturing an electronic device member) described later. Prevent damage.
  • the support substrate 12 for example, a metal plate such as a glass plate, a plastic plate, or a SUS plate is used.
  • the support base 12 is preferably formed of a material having a small difference in linear expansion coefficient from the glass substrate 16 and is formed of the same material as the glass substrate 16. Is more preferable, and the support substrate 12 is preferably a glass plate.
  • the support base 12 is preferably a glass plate made of the same glass material as the glass substrate 16.
  • the thickness of the support base 12 may be thicker or thinner than the glass substrate 16.
  • the thickness of the support base 12 is selected based on the thickness of the glass substrate 16 and the thickness of the silicone resin layer 14.
  • the thickness of the support base 12 is set to 0.4 mm. In general, the thickness of the support base 12 is preferably 0.2 to 5.0 mm.
  • the thickness of the glass plate is preferably 0.08 mm or more for reasons such as being easy to handle and difficult to break. Further, the thickness of the glass plate is preferably 1.0 mm or less because the rigidity is desired so that the glass plate is appropriately bent without being broken when it is peeled off after forming the electronic device member.
  • the difference in average linear expansion coefficient between the support base 12 and the glass substrate 16 at 25 to 300 ° C. is preferably 500 ⁇ 10 ⁇ 7 / ° C. or less, more preferably 300 ⁇ 10 ⁇ 7 / ° C. or less. More preferably, it is 200 ⁇ 10 ⁇ 7 / ° C. or less. If the difference is too large, the support base 12 and the glass substrate 16 may be peeled off at the time of heating and cooling in the member forming step described later. When the material of the support base material 12 is the same as the material of the glass substrate 16, it can suppress that such a problem arises.
  • the silicone resin layer 14 prevents misalignment of the glass substrate 16 until the operation of separating the support base material 20 with the silicone resin layer and the electronic device 22 is performed, and the glass substrate 16 and the like are damaged by the separation operation. To prevent.
  • the surface 14a of the silicone resin layer 14 that is in contact with the glass substrate 16 is in close contact with the first main surface 16a of the glass substrate 16 in a peelable manner.
  • the silicone resin layer 14 is bonded to the first main surface 16a of the glass substrate 16 with a weak bonding force, and the peeling strength (y) at the interface is the peeling at the interface between the silicone resin layer 14 and the support base 12.
  • the strength is preferably lower than (x).
  • the silicone resin layer 14 is in close contact with the first main surface 16a of the glass substrate 16, but has a surface characteristic that allows the glass substrate 16 to be easily peeled off. That is, the silicone resin layer 14 is bonded to the first main surface 16a of the glass substrate 16 with a certain amount of bonding force to prevent the glass substrate 16 from being displaced, and at the same time, when the glass substrate 16 is peeled off.
  • the glass substrate 16 is bonded with a bonding force that can be easily peeled without breaking the glass substrate 16.
  • the property that the surface of the silicone resin layer 14 can be easily peeled is called peelability.
  • the 1st main surface of the support base material 12 and the silicone resin layer 14 are couple
  • the bonding force at the interface between the silicone resin layer 14 and the glass substrate 16 may change before and after forming the electronic device member on the surface of the glass substrate 16 (second main surface 16b) (that is, peel strength). (X) and peel strength (y) may be changed). However, even after the electronic device member is formed, the peel strength (y) is preferably lower than the peel strength (x).
  • the silicone resin layer 14 and the layer of the glass substrate 16 are bonded to each other with a bonding force resulting from weak adhesive force or van der Waals force.
  • the silicone resin of the silicone resin layer 14 is sufficiently cross-linked so as not to exhibit an adhesive force, the binding force due to van der Waals force It is thought that it is combined with.
  • the silicone resin of the silicone resin layer 14 often has a certain weak adhesive force. Even when the adhesion is extremely low, when forming the electronic device member, the silicone resin of the silicone resin layer 14 is adhered to the surface of the glass substrate 16 by a heating operation or the like. The bonding force between the layers of the substrate 16 is considered to increase.
  • the surface of the silicone resin layer 14 before lamination or the first main surface 16a of the glass substrate 16 before lamination can be laminated by performing a treatment for weakening the bonding force between them.
  • a treatment for weakening the bonding force between them By performing non-adhesive treatment or the like on the surface to be laminated and then laminating, the bonding strength at the interface between the silicone resin layer 14 and the glass substrate 16 can be weakened, and the peel strength (y) can be lowered.
  • the silicone resin layer 14 is preferably bonded to the surface of the support substrate 12 with a strong bonding force such as an adhesive force or an adhesive force.
  • a strong bonding force such as an adhesive force or an adhesive force.
  • the thickness of the silicone resin layer 14 is not particularly limited, but is preferably 2 to 100 ⁇ m, more preferably 3 to 50 ⁇ m, and even more preferably 7 to 20 ⁇ m. When the thickness of the silicone resin layer 14 is within such a range, even if air bubbles or foreign matter may be present between the silicone resin layer 14 and the glass substrate 16, the occurrence of distortion defects in the glass substrate 16 is suppressed. can do. In addition, if the thickness of the silicone resin layer 14 is too thick, it takes time and materials to form it, which is not economical and the heat resistance may decrease. Moreover, when the thickness of the silicone resin layer 14 is too thin, the adhesiveness of the silicone resin layer 14 and the glass substrate 16 may fall.
  • the silicone resin layer 14 may be composed of two or more layers. In this case, “the thickness of the silicone resin layer 14” means the total thickness of all the layers. Moreover, when the silicone resin layer 14 consists of two or more layers, resin which forms each layer may consist of a different crosslinked silicone resin.
  • the silicone resin contained in the silicone resin layer 14 is a crosslinked product of a crosslinkable organopolysiloxane, and the silicone resin preferably forms a three-dimensional network structure.
  • the type of the crosslinkable organopolysiloxane is not particularly limited, and the structure is not particularly limited as long as it is cross-linked and cured through a predetermined cross-linking reaction to obtain a cross-linked product (cured product) constituting the silicone resin. What is necessary is just to have sex.
  • the form of crosslinking is not particularly limited, and a known form can be appropriately employed depending on the kind of the crosslinkable group contained in the crosslinkable organopolysiloxane.
  • Examples thereof include a hydrosilylation reaction, a condensation reaction, a heat treatment, a high energy ray treatment, or a radical reaction using a radical polymerization initiator. More specifically, when the crosslinkable organopolysiloxane has a radical reactive group such as an alkenyl group or an alkynyl group, the cured product (crosslinked silicone resin) is crosslinked by a reaction between the radical reactive groups via the radical reaction. ) Moreover, when crosslinkable organopolysiloxane has a silanol group, it crosslinks by the condensation reaction of silanol groups, and it becomes a hardened
  • a radical reactive group such as an alkenyl group or an alkynyl group
  • the crosslinkable organopolysiloxane has an organopolysiloxane having an alkenyl group (such as a vinyl group) bonded to a silicon atom (ie, an organoalkenylpolysiloxane) and a hydrogen atom bonded to a silicon atom (hydrosilyl group).
  • an organopolysiloxane having that is, organohydrogenpolysiloxane
  • it is crosslinked by a hydrosilylation reaction in the presence of a hydrosilylation catalyst (for example, a platinum-based catalyst) to form a cured product.
  • a hydrosilylation catalyst for example, a platinum-based catalyst
  • the crosslinkable organopolysiloxane is an organopolysiloxane having alkenyl groups at both ends and / or side chains (hereinafter referred to as organopolysiloxane as appropriate) because the silicone resin layer 14 can be easily formed and is excellent in the peelability of the glass substrate.
  • organopolysiloxane an organopolysiloxane having alkenyl groups at both ends and / or side chains
  • organopolysiloxane an embodiment including polysiloxane A) and organopolysiloxane having hydrosilyl groups at both ends and / or side chains (hereinafter also referred to as organopolysiloxane B as appropriate) is preferable.
  • the alkenyl group is not particularly limited, and examples thereof include a vinyl group (ethenyl group), an allyl group (2-propenyl group), a butenyl group, a pentenyl group, and a hexynyl group. Among them, the heat resistance is excellent. A vinyl group is preferred. Examples of the group other than the alkenyl group contained in the organopolysiloxane A and the group other than the hydrosilyl group contained in the organopolysiloxane B include an alkyl group (particularly an alkyl group having 4 or less carbon atoms).
  • the position of the alkenyl group in the organopolysiloxane A is not particularly limited. However, when the organopolysiloxane A is linear, the alkenyl group may be present in any one of the M unit and D unit shown below. And D units may be present. From the viewpoint of curing speed, it is preferably present at least in M units, and preferably present in both two M units.
  • the M unit and D unit are examples of basic structural units of organopolysiloxane.
  • the M unit is a monofunctional siloxane unit in which three organic groups are bonded.
  • the D unit is bonded to two organic groups. Bifunctional siloxane unit.
  • the siloxane bond is a bond in which two silicon atoms are bonded through one oxygen atom, so that the oxygen atom per silicon atom in the siloxane bond is regarded as 1 ⁇ 2, Expressed as O 1/2 .
  • the number of alkenyl groups in organopolysiloxane A is not particularly limited, but is preferably 1 to 3 and more preferably 2 per molecule.
  • the position of the hydrosilyl group in the organopolysiloxane B is not particularly limited. However, when the organopolysiloxane A is linear, the hydrosilyl group may be present in either the M unit or the D unit. It may be present in both D units. It is preferable that it exists in at least D unit from the point of a cure rate.
  • the number of hydrosilyl groups in the organopolysiloxane B is not particularly limited, but it is preferably at least 3 per molecule, and more preferably 3.
  • the mixing ratio of organopolysiloxane A and organopolysiloxane B is not particularly limited, but the molar ratio of hydrogen atoms bonded to silicon atoms in organopolysiloxane B and all alkenyl groups in organopolysiloxane A (hydrogen atoms / The alkenyl group is preferably adjusted to 0.7 to 1.05. In particular, it is preferable to adjust the mixing ratio so as to be 0.8 to 1.0.
  • a platinum group metal catalyst is preferably used as the hydrosilylation catalyst.
  • the platinum group metal-based catalyst include platinum-based, palladium-based, and rhodium-based catalysts, and it is particularly preferable to use as a platinum-based catalyst from the viewpoint of economy and reactivity.
  • known catalysts can be used. Specifically, platinum fine powder, platinum black, chloroplatinic acid such as chloroplatinic acid, chloroplatinic acid, platinum tetrachloride, alcohol compounds of chloroplatinic acid, aldehyde compounds, platinum olefin complexes, alkenyls Examples thereof include siloxane complexes and carbonyl complexes.
  • the amount of the hydrosilylation catalyst used is preferably 0.1 to 20 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the total mass of organopolysiloxane A and organopolysiloxane B.
  • the number average molecular weight of the crosslinkable organopolysiloxane is not particularly limited, but it is excellent in handleability, excellent in film formability, and is more resistant to decomposition of the silicone resin under high temperature processing conditions.
  • the weight average molecular weight in terms of polystyrene as measured by chromatography is preferably 1,000 to 5,000,000, and more preferably 2,000 to 3,000,000.
  • the viscosity of the crosslinkable organopolysiloxane is preferably 10 to 5000 mPa ⁇ s, more preferably 15 to 3000 mPa ⁇ s.
  • KNS-320A and KS-847 are used as the crosslinkable organopolysiloxane having no aromatic group.
  • TPR6700 made by Momentive Performance Materials Japan GK
  • vinyl silicone “8500” made by Arakawa Chemical Industries
  • methylhydrogenpolysiloxane “12031” made by Arakawa Chemical Industries
  • vinyl A combination of silicone “11364” (Arakawa Chemical Industries) and methylhydrogenpolysiloxane “12031” (Arakawa Chemical Industries)
  • vinyl silicone “11365” (Arakawa Chemical Industries) and methylhydrogenpolysiloxane “ 12031 "(Arakawa Chemical Industries Such as a combination of a Ltd.) and the like.
  • the silicone resin addition reaction type silicone is preferable. This is because the curing reaction is easy, the degree of peelability is good when the silicone resin layer is formed, and the heat resistance is also high.
  • the addition reaction type silicone is preferably a curable silicone resin composition containing the following linear organopolysiloxane (a) and the following linear organopolysiloxane (b) (linear organopolysiloxane (a): alkenyl.
  • the silicone resin layer 14 is more preferably a cured silicone resin layer formed by curing the curable silicone resin composition on the surface of the support substrate 12.
  • the 1st main surface 16a touches the silicone resin layer 14, and the member for electronic devices is provided in the 2nd main surface 16b on the opposite side to the silicone resin layer 14 side.
  • the glass substrate 16 may be of a general type, and examples thereof include a glass substrate for a display device such as an LCD or an OLED.
  • the glass substrate 16 is excellent in chemical resistance and moisture permeability and has a low heat shrinkage rate.
  • As an index of the heat shrinkage rate a linear expansion coefficient defined in JIS R 3102 (revised in 1995) is used.
  • the member forming process described later often involves a heat treatment, and various inconveniences are likely to occur.
  • the TFT may be displaced excessively due to thermal contraction of the glass substrate 16.
  • the glass substrate 16 is obtained by melting a glass raw material and molding the molten glass into a plate shape.
  • a molding method may be a general one, and for example, a float method, a fusion method, a slot down draw method, a full call method, a rubber method, or the like is used.
  • the glass substrate 16 having a particularly small thickness can be obtained by heating a glass once formed into a plate shape to a moldable temperature and then stretching it by means of stretching or the like to make it thin (redraw method).
  • the type of glass of the glass substrate 16 is not particularly limited, but non-alkali borosilicate glass, borosilicate glass, soda lime glass, high silica glass, and other oxide-based glasses mainly composed of silicon oxide are preferable.
  • oxide-based glass a glass having a silicon oxide content of 40 to 90% by mass in terms of oxide is preferable.
  • glass suitable for the type of electronic device member and the manufacturing process thereof is employed.
  • a glass substrate for a liquid crystal panel is made of glass (non-alkali glass) that does not substantially contain an alkali metal component because the elution of an alkali metal component easily affects the liquid crystal (however, usually an alkaline earth metal) Ingredients are included).
  • the glass of the glass substrate 16 is appropriately selected based on the type of device to be applied and its manufacturing process.
  • the thickness of the glass substrate 16 is preferably 0.3 mm or less, more preferably 0.15 mm or less, and even more preferably 0.10 mm or less, from the viewpoint of reducing the thickness and / or weight of the glass substrate 16. It is. In the case of 0.3 mm or less, it is possible to give good flexibility to the glass substrate 16. In the case of 0.15 mm or less, the glass substrate 16 can be rolled up. Further, the thickness of the glass substrate 16 is preferably 0.03 mm or more for reasons such as easy manufacture of the glass substrate 16 and easy handling of the glass substrate 16.
  • the glass substrate 16 may be composed of two or more layers.
  • the material forming each layer may be the same material or a different material.
  • the thickness of the glass substrate 16 means the total thickness of all the layers.
  • the electronic device member 18 is a member formed on the glass substrate 16 and constituting at least a part of the electronic device. More specifically, as the electronic device member 18, a member used for an electronic component such as a display panel, a solar cell, a thin film secondary battery, or a semiconductor wafer having a circuit formed on the surface (for example, Display member, solar cell member, thin film secondary battery member, electronic component circuit).
  • an electronic component such as a display panel, a solar cell, a thin film secondary battery, or a semiconductor wafer having a circuit formed on the surface (for example, Display member, solar cell member, thin film secondary battery member, electronic component circuit).
  • a silicon type includes a transparent electrode such as tin oxide of a positive electrode, a silicon layer represented by p layer / i layer / n layer, a metal of a negative electrode, and the like. And various members corresponding to the dye-sensitized type, the quantum dot type, and the like.
  • a transparent electrode such as a metal or a metal oxide of a positive electrode and a negative electrode, a lithium compound of an electrolyte layer, a metal of a current collecting layer, a resin as a sealing layer, etc.
  • various members corresponding to nickel hydrogen type, polymer type, ceramic electrolyte type and the like can be mentioned.
  • a circuit for an electronic component in a CCD or CMOS, a metal of a conductive part, a silicon oxide or a silicon nitride of an insulating part, and the like, various sensors such as a pressure sensor and an acceleration sensor, a rigid printed board, a flexible printed board And various members corresponding to a rigid flexible printed circuit board.
  • the manufacturing method of the laminated body 10 with a member for electronic devices is not specifically limited, in order to obtain a laminated body whose peel strength (x) is higher than the peel strength (y), a predetermined crosslinkable organo on the surface of the support substrate 12 is obtained. It is preferable to include a step of forming a silicone resin layer 14 by crosslinking and curing polysiloxane. That is, a layer containing a crosslinkable organopolysiloxane is formed on the surface of the support substrate 12, and the crosslinkable organopolysiloxane is crosslinked on the surface of the support substrate 12 to form a silicone resin layer 14 (crosslinked silicone resin).
  • the glass substrate 16 is laminated on the silicone resin surface of the silicone resin layer 14, and the electronic device member 18 is further formed on the glass substrate 16 to manufacture the laminated body 10 with the electronic device member.
  • the crosslinkable organopolysiloxane is cured on the surface of the support substrate 12, it is considered that the crosslinkable organopolysiloxane adheres due to the interaction with the surface of the support substrate 12 during the curing reaction, and the peel strength between the silicone resin and the surface of the support substrate 12 increases. . Therefore, even if the glass substrate 16 and the support base 12 are made of the same material, a difference can be provided in the peel strength between the silicone resin layer 14 and the both.
  • a step of forming a silicone resin layer 14 by forming a layer containing a crosslinkable organopolysiloxane on the surface of the support substrate 12 and crosslinking the crosslinkable organopolysiloxane on the surface of the support substrate 12 is a resin layer forming step.
  • the step of laminating the glass substrate 16 on the silicone resin surface of the silicone resin layer 14 is referred to as a laminating step, and the step of forming the electronic device member 18 on the glass substrate 16 is referred to as a member forming step. .
  • a layer containing a crosslinkable organopolysiloxane is formed on the surface of the support substrate 12, and the crosslinkable organopolysiloxane is crosslinked on the surface of the support substrate 12 to form the silicone resin layer 14.
  • a coating composition in which the crosslinkable organopolysiloxane is dissolved in a solvent is used, and this composition is formed on the support substrate 12. It is preferable to form a solution layer by coating, and then remove the solvent to form a layer containing a crosslinkable organopolysiloxane.
  • the thickness of the layer containing the crosslinkable organopolysiloxane can be controlled by adjusting the concentration of the crosslinkable organopolysiloxane in the composition.
  • the solvent is not particularly limited as long as it can easily dissolve the crosslinkable organopolysiloxane in a working environment and can be easily volatilized and removed. Specific examples include butyl acetate, heptane, 2-heptanone, 1-methoxy-2-propanol acetate, toluene, xylene, THF, chloroform and the like.
  • the method for applying the composition containing the crosslinkable organopolysiloxane on the surface of the support substrate 12 is not particularly limited, and a known method can be used. Examples thereof include spray coating, die coating, spin coating, dip coating, roll coating, bar coating, screen printing, and gravure coating. Then, if necessary, a drying process for removing the solvent may be performed.
  • the method for the drying treatment is not particularly limited, and examples thereof include a method of removing the solvent under reduced pressure conditions and a method of heating at a temperature at which the curing of the crosslinkable organopolysiloxane does not proceed.
  • the crosslinkable organopolysiloxane on the support substrate 12 is crosslinked to form the silicone resin layer 14. More specifically, as shown in FIG. 4A, in this step, a silicone resin layer 14 is formed on at least one surface of the support base 12.
  • the curing (crosslinking) method is appropriately selected according to the crosslinking type of the crosslinkable organopolysiloxane, and examples thereof include heat treatment and exposure treatment.
  • the crosslinkable organopolysiloxane is crosslinked by a hydrosilylation reaction, a condensation reaction, or a radical reaction, a silicone resin having excellent adhesion and heat resistance to the glass substrate 16 can be obtained. It is preferable to manufacture.
  • the aspect of thermosetting is explained in full detail.
  • the temperature condition for thermally curing the crosslinkable organopolysiloxane improves the heat resistance of the silicone resin layer 14 and is preferably 150 to 300 ° C, more preferably 180 to 250 ° C.
  • the heating time is usually preferably 10 to 120 minutes, more preferably 30 to 60 minutes.
  • the crosslinkable organopolysiloxane may be cured by precuring (precuring) and then by postcuring (main curing).
  • Precuring is preferably performed following the removal of the solvent. In that case, there is no particular distinction between the step of removing the solvent from the layer to form a layer containing a crosslinkable organopolysiloxane and the step of performing precuring.
  • the formation of the silicone resin layer 14 is not limited to the above method.
  • a crosslinkable organopolysiloxane is cured on some peelable surface to produce a silicone resin film, This film can be interposed between the glass substrate 16 and the support base 12 and laminated simultaneously.
  • the adhesiveness by hardening of crosslinkable organopolysiloxane is low enough with respect to the glass substrate 16, and the adhesiveness is high enough with respect to the support base material 12, it bridge
  • the silicone resin layer 14 can be formed by curing the functional organopolysiloxane.
  • the support base 12 is made of the same glass material as that of the glass substrate 16, it is possible to increase the peel strength with respect to the silicone resin layer 14 by performing a process for improving the adhesion of the support base 12 surface.
  • a chemical method that improves the fixing force chemically such as a silane coupling agent
  • a physical method that increases surface active groups such as a flame (flame) treatment
  • a surface such as a sandblast treatment
  • a mechanical processing method increase the catch by increasing the roughness of the material.
  • the glass substrate 16 is laminated on the silicone resin surface of the silicone resin layer 14 obtained in the resin layer forming step, and the layer of the supporting base 12, the silicone resin layer 14, and the glass substrate 16 are laminated.
  • This is a step of obtaining a glass laminate provided in this order. More specifically, as shown in FIG. 4B, a glass substrate having a surface 14a opposite to the support base 12 side of the silicone resin layer 14, and a first main surface 16a and a second main surface 16b.
  • the silicone resin layer 14 and the glass substrate 16 are laminated by using the first principal surface 16a of 16 as a lamination surface to obtain a glass laminate 26.
  • stacking the glass substrate 16 on the silicone resin layer 14 is not restrict
  • a well-known method is employable.
  • a method of stacking the glass substrate 16 on the surface of the silicone resin layer 14 under a normal pressure environment can be mentioned.
  • the glass substrate 16 may be pressure-bonded to the silicone resin layer 14 using a roll or a press. Air bubbles mixed between the silicone resin layer 14 and the glass substrate 16 can be removed relatively easily by pressure bonding using a roll or a press, which is preferable.
  • the surface of the glass substrate 16 in contact with the silicone resin layer 14 is sufficiently washed and laminated in an environment with a high cleanliness.
  • pre-annealing process heat processing
  • the adhesion of the laminated glass substrate 16 to the silicone resin layer 14 can be improved, and an appropriate peel strength (y) can be obtained. Misalignment of members is less likely to occur, and the productivity of electronic devices is improved.
  • the conditions for the pre-annealing treatment are appropriately selected according to the type of the silicone resin layer 14 to be used, but the peel strength (y) between the glass substrate 16 and the silicone resin layer 14 is more appropriate. In view of this, it is preferable to perform heat treatment at 300 ° C. or higher (preferably 300 to 400 ° C.) for 5 minutes or longer (preferably 5 to 30 minutes).
  • a member formation process is a process of forming the member for electronic devices on the glass substrate 16 in the glass laminated body 26 obtained in the said lamination process. More specifically, as shown in FIG. 4C, the electronic device member 18 is formed on the second main surface 16b (exposed surface) of the glass substrate 16 to obtain the laminated body 10 with the electronic device member. .
  • the procedure of this step is not particularly limited, and for the electronic device, on the surface of the second main surface 16b of the glass substrate 16 of the glass laminate 26 by a conventionally known method according to the type of the constituent member of the electronic device member.
  • the member 18 is formed.
  • the electronic device member 18 is not all of the members finally formed on the second main surface 16b of the glass substrate 16 (hereinafter referred to as “all members”), but a part of all members (hereinafter referred to as “parts”). May be referred to as a member.
  • the glass substrate with a partial member peeled from the silicone resin layer 14 can be used as a glass substrate with an all member (corresponding to an electronic device described later) in the subsequent steps.
  • the other electronic device member may be formed in the peeling surface (1st main surface 16a) in the glass substrate with all the members peeled from the silicone resin layer 14.
  • FIG. Moreover, an electronic device can also be manufactured by assembling a laminate with all members and then peeling the support substrate 12 from the laminate with all members. Furthermore, it is also possible to assemble using two laminates with all members, and then peel off the two support bases 12 from the laminate with all members to produce a glass substrate with a member having two glass substrates. it can.
  • an organic EL structure is formed on the surface of the glass substrate 16 opposite to the silicone resin layer 14 (corresponding to the second main surface 16b of the glass substrate 16).
  • a transparent electrode is formed, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, etc. are deposited on the surface on which the transparent electrode is formed, a back electrode is formed, and a sealing plate is used for sealing.
  • Various layer formation and processing such as stopping are performed. Specific examples of the layer formation and processing include film formation processing, vapor deposition processing, sealing plate adhesion processing, and the like.
  • a resist film is used on the second main surface 16b of the glass substrate 16 of the glass laminate 26 by a general film forming method such as a CVD method or a sputtering method.
  • a pattern is formed on the formed metal film and metal oxide film to form a thin film transistor (TFT), and a resist solution is patterned on the second main surface 16b of the glass substrate 16 of another glass laminate 26.
  • Various processes such as a CF forming step for forming a color filter (CF) to be used for forming, a laminating step for laminating a laminated body with TFT obtained in the TFT forming step and a laminated body with CF obtained in the CF forming step, etc. Process.
  • the TFT and the CF are formed on the second main surface 16b of the glass substrate 16 by using a well-known photolithography technique, etching technique, or the like. At this time, a resist solution is used as a coating solution for pattern formation.
  • a cleaning method known dry cleaning or wet cleaning can be used.
  • the thin film transistor forming surface of the laminated body with TFT and the color filter forming surface of the laminated body with CF are opposed to each other, and are bonded using a sealant (for example, an ultraviolet curable sealant for cell formation).
  • a sealant for example, an ultraviolet curable sealant for cell formation.
  • a liquid crystal material is injected into a cell formed by the laminate with TFT and the laminate with CF.
  • the method for injecting the liquid crystal material include a reduced pressure injection method and a drop injection method.
  • a support glass substrate (Asahi Glass Co., Ltd., AN100) having a length of 400 mm, a width of 300 mm, a thickness of 0.7 mm, and a linear expansion coefficient of 38 ⁇ 10 ⁇ 7 / ° C. is cleaned with pure water, UV cleaning, etc.
  • Solvent-free addition reaction type release paper silicone (KNS-320A manufactured by Shin-Etsu Silicone Co., Ltd., mixture of organoalkenylpolysiloxane and organohydrogenpolysiloxane) and platinum catalyst (manufactured by Shin-Etsu Silicone Co., Ltd.) (CAT-PL-56) 2 parts by weight of the mixture was applied with a spin coater (coating amount 10 g / m 2 ), and heated and cured in the air at 180 ° C. for 30 minutes to form a silicone resin layer having a thickness of 16 ⁇ m. Obtained.
  • the silicone resin layer forming surface of the supporting glass substrate and the thin glass substrate were bonded together by a vacuum press at room temperature to obtain a glass laminate A having a silicone resin layer.
  • the glass laminate A was heat-treated at 350 ° C. for 60 minutes in the atmosphere. Then, a stainless steel cutting tool having a thickness of 0.1 mm was inserted into the interface between the thin glass substrate and the silicone resin layer at one corner of the four portions of the glass laminate A to form a notch for peeling. Next, a vacuum suction pad is adsorbed on the surface of each of the thin glass substrate and the supporting glass substrate that is not on the separation surface side, and a syringe is used for the separation line that is the boundary line between the silicone resin layer and the thin glass substrate. While supplying methanol (solubility parameter: 14.5 cal / cm 3 ), when an external force was applied in a direction in which the thin glass substrate and the supporting glass substrate were separated, the thin glass substrate was separated without being damaged.
  • methanol solubility parameter: 14.5 cal / cm 3
  • the glass laminate A includes a supporting glass substrate 40, a silicone resin layer 30, and a thin glass substrate 50.
  • the glass laminate A is cut into a size of 50 mm in length and 50 mm in width, and a polycarbonate of 50 mm in length, 50 mm in width, and 5 mm in thickness on the glass (supporting glass substrate 40 and thin glass substrate 50) on both sides of the glass laminate A. 60 were bonded together with an adhesive for epoxy two-component glass.
  • polycarbonates 70 each having a length of 50 mm, a width of 50 mm, and a thickness of 5 mm were further vertically bonded to the surfaces of both the bonded polycarbonates 60.
  • the place where the polycarbonate 70 is bonded is the position where the vertical direction is the end of the polycarbonate 60 and the horizontal direction is parallel to the side of the polycarbonate 60.
  • the glass laminate A bonded with the polycarbonates 60 and 70 was placed so that the supporting glass substrate was on the lower side.
  • the polycarbonate 70 affixed to the thin glass substrate side was fixed with a jig, and the polycarbonate 70 affixed to the support glass substrate side was pulled vertically downward at a speed of 300 mm / min. As a result, 0.34 kg / cm 2 was applied.
  • the supporting glass substrate peeled off.
  • Example 2 The thin glass substrate was peeled according to the same procedure as in Example 1 except that ethanol (solubility parameter: 12.7 cal / cm 3 ) was used instead of methanol (solubility parameter: 14.5 cal / cm 3 ). As a result, the thin glass substrate was separated without breaking. Table 1 shows the measurement results of the peel strength.
  • Example 4> Instead of methanol (solubility parameter: 14.5 cal / cm 3 ), a mixed solution of ethanol and 1-propanol (content: ethanol 90 mass%, 1-propanol 10 mass%. Solubility parameter: ethanol 12.7 cal / cm 3) Except for using 1-propanol 12.0 cal / cm 3 ), the thin glass substrate was peeled according to the same procedure as in Example 1, and the thin glass substrate was separated without being damaged. Table 1 shows the measurement results of the peel strength.
  • Example 5 The thin glass substrate was peeled according to the same procedure as in Example 1 except that 1-propanol (solubility parameter: 12.0 cal / cm 3 ) was used instead of methanol (solubility parameter: 14.5 cal / cm 3 ). As a result, the thin glass substrate was separated without being damaged. Table 1 shows the measurement results of the peel strength.
  • Example 6 Methanol (solubility parameter: 14.5cal / cm 3) in place of isopropanol (solubility parameter: 11.5cal / cm 3) except for using, in accordance with the procedure as in Example 1, subjected to a peeling of the thin glass substrate As a result, the thin glass substrate was separated without breaking. Table 1 shows the measurement results of the peel strength.
  • Example 7 The thin glass substrate was peeled according to the same procedure as in Example 1 except that 1-butanol (solubility parameter: 11.4 cal / cm 3 ) was used instead of methanol (solubility parameter: 14.5 cal / cm 3 ). As a result, the thin glass substrate was separated without being damaged. Table 1 shows the measurement results of the peel strength.
  • Example 8 The thin glass substrate was peeled according to the same procedure as in Example 1 except that 1-hexanol (solubility parameter: 10.7 cal / cm 3 ) was used instead of methanol (solubility parameter: 14.5 cal / cm 3 ). As a result, the thin glass substrate was separated without being damaged. Table 1 shows the measurement results of the peel strength.
  • Example 9 The thin glass substrate was peeled according to the same procedure as in Example 1 except that dimethyl sulfoxide (solubility parameter: 12.0 cal / cm 3 ) was used instead of methanol (solubility parameter: 14.5 cal / cm 3 ). As a result, the thin glass substrate was separated without breaking. Table 1 shows the measurement results of the peel strength.
  • Example 10 The thin glass substrate was peeled according to the same procedure as in Example 1 except that dimethylformamide (solubility parameter: 12.1 cal / cm 3 ) was used instead of methanol (solubility parameter: 14.5 cal / cm 3 ). As a result, the thin glass substrate was separated without breaking. Table 1 shows the measurement results of the peel strength.
  • Example 11 A thin glass substrate was prepared in the same manner as in Example 1 except that N-methylpyrrolidone (solubility parameter: 11.3 cal / cm 3 ) was used instead of methanol (solubility parameter: 14.5 cal / cm 3 ). As a result of peeling, the thin glass substrate was separated without being damaged. Table 1 shows the measurement results of the peel strength.
  • the “Glass peeling” column is indicated by “ ⁇ ” when the peeling of the thin glass proceeds without any problem, and “X” when the breakage or peeling of the thin glass is difficult to proceed.
  • the “SP value” column of Example 3 shows the SP value of ethanol
  • the “SP value” column of Example 4 shows the SP value of ethanol and 1-propanol.
  • Example 12 an OLED was manufactured using the glass laminate A obtained in Example 1. More specifically, molybdenum was deposited on the thin glass substrate of the glass laminate A by a sputtering method, and a gate electrode was formed by etching using a photolithography method. Next, silicon nitride, intrinsic amorphous silicon, and n-type amorphous silicon are further formed in this order on the second main surface side of the peelable glass substrate provided with the gate electrode by plasma CVD, and then molybdenum is formed by sputtering. A gate insulating film, a semiconductor element portion, and source / drain electrodes were formed by film formation and etching using a photolithography method.
  • an indium tin oxide film is formed by a sputtering method.
  • a pixel electrode was formed by etching using.
  • 4,4 ′, 4 ′′ -tris (3-methylphenylphenylamino) triphenylamine as a hole injection layer was further deposited on the surface of the obtained laminate on the side of the thin glass substrate by vapor deposition.
  • the layer is bis [(N-naphthyl) -N-phenyl] benzidine, and the light-emitting layer is 8-quinolinol aluminum complex (Alq 3 ) with 2,6-bis [4- [N- (4-methoxyphenyl) -N-phenyl. Aminostyryl]
  • Alq 3 8-quinolinol aluminum complex
  • BSN-BCN naphthalene-1,5-dicarbonitrile
  • Alq 3 as an electron transport layer were formed in this order.
  • An aluminum film was formed on the substrate side surface by sputtering, and a counter electrode was formed by etching using a photolithography method.
  • Example 2 Except that the glass laminate A2 was used in place of the glass laminate A1, the silicone resin layer and the thin glass substrate were separated according to the same procedure as in Example 1, and the same degree of separation as in Example 1 was performed. Separation of both proceeded with strength, and an electronic device including a thin glass substrate and an electronic device member could be obtained.
  • SYMBOLS 10 Laminated body with member for electronic devices 12 Support base material 14,30 Silicone resin layer 14a 1st main surface of silicone resin layer 16 Glass substrate 16a 1st main surface of glass substrate 16b 2nd main surface of glass substrate 18 For electronic devices Member 20 Support substrate with silicone resin layer 22 Electronic device 24 Solution 26 Glass laminate 40 Support glass substrate 50 Thin glass substrate 60, 70 Polycarbonate 80 Liquid crystal panel 82 TFT substrate 83 TFT element 84 CF substrate 85 Color filter element 90 Electronic paper 91 Electronic paper elements 92 TFT layers 94 Layers of electrical engineering media 96 Transparent electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Photovoltaic Devices (AREA)
  • Liquid Crystal (AREA)

Abstract

This electronic device manufacturing method has a step for obtaining an electronic device by separating a silicone resin layer-laminated supporting base material and the electronic device from an electronic device member-laminated laminated body by having, as a peeling surface, an interface between a silicone resin layer and a glass substrate, said electronic device member-laminated laminated body having a supporting base material, the silicone resin layer, the glass substrate, and an electronic device member laminated therein in this order. In the electronic device manufacturing method, the silicone resin-laminated supporting base material and the electronic device are separated from each other by supplying an organic solvent having a solubility parameter of more than 10 or a mixed solution of the organic solvent and water to a peeling line, i.e., a boundary line, on the peeling interface between the silicone resin layer and the glass substrate.

Description

電子デバイスの製造方法Manufacturing method of electronic device
 本発明は、電子デバイスの製造方法に係り、特にシリコーン樹脂層とガラス基板との間の剥離線に所定の有機溶媒を供給して分離(剥離)を行う分離工程を有する電子デバイスの製造方法に関する。 The present invention relates to an electronic device manufacturing method, and more particularly, to an electronic device manufacturing method including a separation step in which a predetermined organic solvent is supplied to a separation line between a silicone resin layer and a glass substrate to perform separation (peeling). .
 近年、太陽電池(PV)、液晶パネル(LCD)、有機ELパネル(OLED)などのデバイス(電子機器)の薄型化、軽量化が進行しており、これらのデバイスに用いるガラス基板の薄板化が進行している。薄板化によりガラス基板の強度が不足すると、デバイスの製造工程において、ガラス基板のハンドリング性が低下する。
 そこで、従来から、最終厚さよりも厚いガラス基板上にデバイス用部材(例えば、薄膜トランジスタ)を形成した後、ガラス基板を化学エッチング処理により薄板化する方法が広く採用されている。
 しかしながら、この方法では、例えば、1枚のガラス基板の厚さを0.7mmから0.2mmや0.1mmに薄板化する場合、元々のガラス基板の材料の大半をエッチング液で削り落とすことになるので、生産性や原材料の使用効率という観点では好ましくない。また、上記の化学エッチングによるガラス基板の薄板化方法においては、ガラス基板表面に微細な傷が存在する場合、エッチング処理によって傷を起点として微細な窪み(エッチピット)が形成され、光学的な欠陥となる場合があった。
In recent years, devices (electronic devices) such as solar cells (PV), liquid crystal panels (LCD), and organic EL panels (OLED) have been made thinner and lighter, and the glass substrates used in these devices have been made thinner. Progressing. If the strength of the glass substrate is insufficient due to the thinning, the handling property of the glass substrate is lowered in the device manufacturing process.
Therefore, conventionally, a method of forming a device member (for example, a thin film transistor) on a glass substrate thicker than the final thickness and then thinning the glass substrate by chemical etching is widely used.
However, in this method, for example, when the thickness of one glass substrate is reduced from 0.7 mm to 0.2 mm or 0.1 mm, most of the original glass substrate material is scraped off with an etching solution. Therefore, it is not preferable from the viewpoint of productivity and use efficiency of raw materials. In addition, in the method of thinning a glass substrate by the above chemical etching, if a fine scratch exists on the surface of the glass substrate, a fine recess (etch pit) is formed from the scratch by the etching process, resulting in an optical defect. There was a case.
 最近では、上記の課題に対応するため、薄板ガラス基板と補強板とを積層したガラス積層体を用意し、ガラス積層体の薄板ガラス基板上に表示装置などの電子デバイス用部材を形成した後、薄板ガラス基板から支持板を分離する方法が提案されている(例えば、特許文献1参照)。補強板は、支持板と、該支持板上に固定されたシリコーン樹脂層とを有し、シリコーン樹脂層と薄板ガラス基板とが剥離可能に密着される。ガラス積層体のシリコーン樹脂層と薄板ガラス基板の界面が剥離され、薄板ガラス基板から分離された補強板は、新たな薄板ガラス基板と積層され、ガラス積層体として再利用することが可能である。 Recently, in order to cope with the above problems, after preparing a glass laminate in which a thin glass substrate and a reinforcing plate are laminated and forming a member for an electronic device such as a display device on the thin glass substrate of the glass laminate, A method for separating a support plate from a thin glass substrate has been proposed (see, for example, Patent Document 1). The reinforcing plate has a support plate and a silicone resin layer fixed on the support plate, and the silicone resin layer and the thin glass substrate are in close contact with each other in a peelable manner. The reinforcing plate separated from the thin glass substrate is peeled off from the interface between the silicone resin layer of the glass laminate and the thin glass substrate, and can be reused as a glass laminate by being laminated with a new thin glass substrate.
国際公開第2007/018028号International Publication No. 2007/018028
 近年、ガラス積層体のガラス基板上に形成される電子デバイス用部材の高機能化や複雑化に伴い、電子デバイス用部材を形成する際の温度がさらに高温になると共に、その高温に曝される時間も長時間を要する場合が少なくない。
 特許文献1に記載のガラス積層体は大気中300℃、1時間の処理では特に問題を生じない。しかし、本発明者らの検討によれば、特許文献1を参照して、ガラス積層体に対して350℃、1時間の処理を行った場合、ガラス基板をシリコーン樹脂層表面から剥離する際に、ガラス基板が樹脂層表面から剥がれずにその一部が破壊されたり、樹脂層の樹脂の一部がガラス基板上に残存したりするため、結果として電子デバイス用部材を形成後に電子デバイスの分離がうまくできず、電子デバイスの生産性の低下を招く場合があった。
In recent years, with the increase in functionality and complexity of electronic device members formed on glass substrates of glass laminates, the temperature at which electronic device members are formed is further increased and exposed to such high temperatures. In many cases, it takes a long time.
The glass laminate described in Patent Document 1 causes no particular problem in the treatment at 300 ° C. for 1 hour in the atmosphere. However, according to studies by the present inventors, referring to Patent Document 1, when the glass laminate is treated at 350 ° C. for 1 hour, the glass substrate is peeled from the silicone resin layer surface. Since the glass substrate is not peeled off from the resin layer surface, a part of the glass substrate is destroyed or a part of the resin of the resin layer remains on the glass substrate. As a result, the electronic device is separated after forming the electronic device member. May not be successful, leading to reduced productivity of electronic devices.
 本発明は、上記課題に鑑みてなされたものであって、高温加熱処理条件後であってもシリコーン樹脂層とガラス基板との剥離が容易に進行する電子デバイスの製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing an electronic device in which peeling between a silicone resin layer and a glass substrate easily proceeds even after high-temperature heat treatment conditions. And
 本発明者は、従来技術の問題点について検討を行ったところ、シリコーン樹脂層とガラス基板との剥離界面の境界線である剥離線に所定の性質の有機溶媒を供給することにより、剥離が容易に進行することを見出し、本発明を完成するに至った。 The present inventor has examined the problems of the prior art, and it is easy to peel off by supplying an organic solvent having a predetermined property to the peeling line that is the boundary line of the peeling interface between the silicone resin layer and the glass substrate. The present invention has been completed.
 すなわち、上記目的を達成するために、本発明の第1の態様は、支持基材と、シリコーン樹脂層と、ガラス基板と、電子デバイス用部材とをこの順で有する電子デバイス用部材付き積層体から、上記シリコーン樹脂層と上記ガラス基板との界面を剥離面として、上記支持基材および上記シリコーン樹脂層を含むシリコーン樹脂層付き支持基材と、上記ガラス基板および上記電子デバイス用部材を含む電子デバイスとを分離して、上記電子デバイスを得る工程を有する電子デバイスの製造方法であって、シリコーン樹脂層と上記ガラス基板との剥離界面の境界線である剥離線に、溶解度パラメータが10超の有機溶媒、または、上記有機溶媒と水との混合溶液を供給して、上記シリコーン樹脂層付き支持基材と上記電子デバイスとの分離を行う、電子デバイスの製造方法である。
 第1の態様において、有機溶媒が、ハロゲン原子を有していてもよいアルコール系溶媒、または、非プロトン性極性溶媒を含むことが好ましい。
 第1の態様において、有機溶媒が、炭素数1~6のアルコール系溶媒、ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、N-メチルピロリドン(NMP)、スルホラン、および、アセトニトリルからなる群から選択される少なくとも1種を含むことが好ましい。
 第1の態様において、シリコーン樹脂層中のシリコーン樹脂が、オルガノアルケニルポリシロキサンとオルガノハイドロジェンポリシロキサンの反応硬化物であることが好ましい。
 また、前記シリコーン樹脂は、付加反応型シリコーンの硬化物であり、前記付加反応型シリコーンは、下記(a)及び(b)を含む硬化性シリコーン樹脂組成物であり、前記シリコーン樹脂層は、前記硬化性シリコーン樹脂組成物を前記支持基材の表面で硬化させることにより形成されることが好ましい:(a)アルケニル基を1分子あたり少なくとも2個有する線状オルガノポリシロキサン、(b)ケイ素原子に結合した水素原子を1分子あたり少なくとも3個有する線状オルガノポリシロキサンであって、かつ、ケイ素原子に結合した水素原子の少なくとも1個が分子末端のケイ素原子に存在している線状オルガノポリシロキサン。
That is, in order to achieve the above object, the first aspect of the present invention is a laminate with an electronic device member having a support base, a silicone resin layer, a glass substrate, and an electronic device member in this order. From the interface including the silicone resin layer and the glass substrate as a release surface, a support substrate with a silicone resin layer including the support substrate and the silicone resin layer, and an electron including the glass substrate and the electronic device member. A method of manufacturing an electronic device comprising a step of separating the device and obtaining the electronic device, wherein a solubility parameter is greater than 10 at a peeling line that is a boundary line of a peeling interface between the silicone resin layer and the glass substrate. An organic solvent or a mixed solution of the organic solvent and water is supplied to separate the support substrate with the silicone resin layer from the electronic device. It is a method of manufacturing an electronic device.
In the first embodiment, the organic solvent preferably contains an alcohol solvent that may have a halogen atom or an aprotic polar solvent.
In the first embodiment, the organic solvent is an alcohol solvent having 1 to 6 carbon atoms, dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), It is preferable to include at least one selected from the group consisting of sulfolane and acetonitrile.
In the first aspect, the silicone resin in the silicone resin layer is preferably a reaction cured product of an organoalkenylpolysiloxane and an organohydrogenpolysiloxane.
The silicone resin is a cured product of an addition reaction type silicone, the addition reaction type silicone is a curable silicone resin composition including the following (a) and (b), and the silicone resin layer is It is preferably formed by curing a curable silicone resin composition on the surface of the support substrate: (a) a linear organopolysiloxane having at least two alkenyl groups per molecule, and (b) a silicon atom. Linear organopolysiloxane having at least 3 bonded hydrogen atoms per molecule, and at least one hydrogen atom bonded to a silicon atom is present on the silicon atom at the molecular end .
 本発明によれば、高温加熱処理条件後であってもシリコーン樹脂層とガラス基板との剥離が容易に進行する電子デバイスの製造方法を提供することができる。 According to the present invention, it is possible to provide an electronic device manufacturing method in which peeling between the silicone resin layer and the glass substrate easily proceeds even after high-temperature heat treatment conditions.
図1(A)~図1(C)は、本発明の電子デバイスの製造方法の分離工程の手順を順に示す模式的断面図である。FIG. 1A to FIG. 1C are schematic cross-sectional views sequentially showing the procedure of the separation step of the electronic device manufacturing method of the present invention. 図2(A)および図2(B)は、それぞれ図1(B)の状態の斜視断面図および上面図である。2A and 2B are a perspective cross-sectional view and a top view, respectively, in the state of FIG. 1B. 図3(A)および図3(B)は、電子デバイスの構成例を示す模式的断面図である。FIG. 3A and FIG. 3B are schematic cross-sectional views illustrating a configuration example of an electronic device. 図4(A)~図4(C)は、電子デバイス用部材付き積層体の製造方法の各工程の手順を順に示す模式的断面図である。4 (A) to 4 (C) are schematic cross-sectional views sequentially showing the procedure of each step of the method of manufacturing the laminate with the electronic device member. 図5は、剥離強度の測定装置の概要図である。FIG. 5 is a schematic diagram of an apparatus for measuring peel strength.
 以下、本発明を実施するための形態について図面を参照して説明するが、本発明は、以下の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、以下の実施形態に種々の変形および置換を加えることができる。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments, and the following embodiments are not deviated from the scope of the present invention. Various modifications and substitutions can be made.
 本発明の電子デバイスの製造方法の特徴点としては、シリコーン樹脂層とガラス基板との剥離界面の境界線である剥離線に、所定の溶解度パラメータ(SP値)を示す有機溶媒または、上記有機溶媒と水との混合溶液を供給している点が挙げられる。上記有機溶媒または混合溶液を供給することにより、シリコーン樹脂層のガラス基板側の表層に有機溶媒が侵入し、シリコーン樹脂層とガラス基板との界面接着力を低下させるため、シリコーン樹脂層とガラス基板との剥離がより容易に進行すると推測される。 As a feature of the method for producing an electronic device of the present invention, an organic solvent exhibiting a predetermined solubility parameter (SP value) on a peeling line that is a boundary line of a peeling interface between a silicone resin layer and a glass substrate, or the above organic solvent And a mixed solution of water and water is supplied. By supplying the organic solvent or the mixed solution, the organic solvent enters the surface layer of the silicone resin layer on the glass substrate side, and decreases the interfacial adhesive force between the silicone resin layer and the glass substrate. It is presumed that exfoliation proceeds with easier.
 本発明の電子デバイスの製造方法は、支持基材と、シリコーン樹脂層と、ガラス基板と、電子デバイス用部材とをこの順で有する電子デバイス用部材付き積層体から、シリコーン樹脂層とガラス基板との界面を剥離面として、支持基材およびシリコーン樹脂層を含むシリコーン樹脂層付き支持基材と、ガラス基板および電子デバイス用部材を含む電子デバイスとを分離して、電子デバイスを得る工程(分離工程)を少なくとも有する。
 図1(A)~図1(C)は、本発明の電子デバイスの製造方法の分離工程の手順を順に示す模式的断面図である。以下に、図1(A)~図1(C)を参照しながら、分離工程の手順について詳述する。
The manufacturing method of the electronic device of the present invention includes a support base, a silicone resin layer, a glass substrate, and a laminate with an electronic device member having an electronic device member in this order, and a silicone resin layer and a glass substrate. Step of separating the support substrate with a silicone resin layer including the support substrate and the silicone resin layer and the electronic device including the glass substrate and the electronic device member to obtain an electronic device (separation step) ) At least.
FIG. 1A to FIG. 1C are schematic cross-sectional views sequentially showing the procedure of the separation step of the electronic device manufacturing method of the present invention. Hereinafter, the procedure of the separation step will be described in detail with reference to FIGS. 1 (A) to 1 (C).
 まず、支持基材と、支持基材上に配置されたシリコーン樹脂層と、シリコーン樹脂層上に配置されたガラス基板と、ガラス基板上に配置された電子デバイス用部材と有する電子デバイス用部材付き積層体を用意する。図1(A)は、本発明に係る電子デバイス用部材付き積層体の一例の模式的断面図である。
 図1(A)に示すように、電子デバイス用部材付き積層体10は、支持基材12と、シリコーン樹脂層14と、ガラス基板16と、電子デバイス用部材18とをこの順で有する。なお、シリコーン樹脂層14は、その一方の面が支持基板12の層に固定されると共に、その他方の面がガラス基板16の第1主面に接し、シリコーン樹脂層14とガラス基板16との界面は剥離可能に密着されていることが好ましい。
 支持基材12の層およびシリコーン樹脂層14からなる2層部分は、液晶パネルなどの電子デバイス用部材を製造する後述の部材形成工程において、ガラス基板16を補強する。支持基材12の層およびシリコーン樹脂層14からなる2層部分は、シリコーン樹脂層付き支持基材20ともいう。
 また、ガラス基板16および電子デバイス用部材18からなる2層部分は、電子デバイス22ともいう。
 なお、電子デバイス用部材付き積層体を構成する各部材およびその製造手順については、後段においてまとめて説明する。
First, with a member for an electronic device having a supporting substrate, a silicone resin layer disposed on the supporting substrate, a glass substrate disposed on the silicone resin layer, and an electronic device member disposed on the glass substrate Prepare a laminate. FIG. 1A is a schematic cross-sectional view of an example of a laminated body with a member for electronic devices according to the present invention.
As shown to FIG. 1 (A), the laminated body 10 with a member for electronic devices has the support base material 12, the silicone resin layer 14, the glass substrate 16, and the member 18 for electronic devices in this order. The silicone resin layer 14 has one surface fixed to the layer of the support substrate 12 and the other surface in contact with the first main surface of the glass substrate 16. The interface is preferably in close contact with the peelable surface.
The two-layer part consisting of the layer of the support substrate 12 and the silicone resin layer 14 reinforces the glass substrate 16 in a member forming step described later for manufacturing a member for an electronic device such as a liquid crystal panel. The two-layer portion composed of the layer of the support base 12 and the silicone resin layer 14 is also referred to as a support base 20 with a silicone resin layer.
In addition, the two-layer portion including the glass substrate 16 and the electronic device member 18 is also referred to as an electronic device 22.
In addition, each member which comprises the laminated body with a member for electronic devices, and its manufacturing procedure are demonstrated collectively in a back | latter stage.
 まず、シリコーン樹脂層とガラス基板との界面を剥離面として、電子デバイス用部材付き積層体から、シリコーン樹脂層付き支持基材と、電子デバイスとを分離する手順について説明する。
 まず、電子デバイス用部材付き積層体から、シリコーン樹脂層付き支持基材と、電子デバイスとを分離する際には、シリコーン樹脂層とガラス基板との界面に剥離のきっかけを与えることが好ましい。例えば、図1(A)中のガラス基板16とシリコーン樹脂層14との界面に鋭利な刃物状のものを差し込み、剥離のきっかけを与える。
 次に、図1(B)に示すように、シリコーン樹脂層付き支持基材20と、電子デバイス22との分離を行う。その際、シリコーン樹脂層14とガラス基板16との剥離界面の境界線である剥離線に溶解度パラメータが10超の有機溶媒、または、該有機溶媒と水との混合溶液(これらを総称して溶液24)を供給する。
 図2(A)および図2(B)は、図1(B)の状態の斜視断面図および上面図を示し、剥離線X(剥離境界線)が示される。剥離線Xは、シリコーン樹脂層14とガラス基板16とが剥離されていない部分と、シリコーン樹脂層14とガラス基板16と剥離された部分との境界を示す線である。図2(A)および図2(B)に示すように、電子デバイス22の一端側を持ち上げながら剥離する場合は、剥離線Xは電子デバイスの一端側から他端側(図2(B)の右側から左側)に移動する。
First, the procedure for separating the support substrate with the silicone resin layer and the electronic device from the laminate with the electronic device member using the interface between the silicone resin layer and the glass substrate as the release surface will be described.
First, when separating a support base material with a silicone resin layer and an electronic device from a laminated body with a member for electronic devices, it is preferable to provide a trigger for peeling at the interface between the silicone resin layer and the glass substrate. For example, a sharp blade-like object is inserted into the interface between the glass substrate 16 and the silicone resin layer 14 in FIG.
Next, as shown in FIG. 1B, the support base material 20 with the silicone resin layer and the electronic device 22 are separated. At that time, an organic solvent having a solubility parameter of more than 10 or a mixed solution of the organic solvent and water (generically referred to as a solution) on a peeling line that is a boundary line of the peeling interface between the silicone resin layer 14 and the glass substrate 16. 24) is supplied.
2A and 2B show a perspective sectional view and a top view of the state of FIG. 1B, and a peeling line X (peeling boundary line) is shown. The peeling line X is a line indicating a boundary between a portion where the silicone resin layer 14 and the glass substrate 16 are not peeled and a portion where the silicone resin layer 14 and the glass substrate 16 are peeled. As shown in FIGS. 2A and 2B, in the case of peeling while lifting one end side of the electronic device 22, the peeling line X extends from one end side of the electronic device to the other end side (see FIG. 2B). Move from right to left)
 剥離線に供給される有機溶媒としては、溶解度パラメータ(SP値:cal/cm3)が10超の有機溶媒が使用される。なかでも、シリコーン樹脂層とガラス基板との剥離がより良好に進行する点で、有機溶媒の溶解度パラメータは、11以上が好ましい。上限は特に制限されないが、濡れ性の点から、通常、23以下が好ましい。
 有機溶媒は1種のみを使用してもよいし、2種以上を併用してもよい。
 なお、溶解度パラメータ(δ)とは、有機溶媒の1モル当たりの蒸発熱をΔH(cal/mol)、モル体積をV(cm3・mol)とする時、δ=(ΔH/V)1/2により、定義される値である。
 また、有機溶媒の後述するシリコーン樹脂層に対する接触角は特に制限されないが、シリコーン樹脂層とガラス基板との剥離がより良好に進行する点で、90°以下であることが好ましい。
 なお、接触角の測定方法は、協和界面科学株式会社製PCA-1を用いて、液滴の滴下量を1μlとし、23℃で1サンプル面あたり5点滴下し、滴下60秒後の接触角を測定した。5点の接触角うちの最大値、最小値の1点ずつを除いた3点の接触角の平均値を接触角として求める。
As an organic solvent supplied to the peeling line, an organic solvent having a solubility parameter (SP value: cal / cm 3 ) of more than 10 is used. Especially, the solubility parameter of the organic solvent is preferably 11 or more in that the peeling between the silicone resin layer and the glass substrate proceeds more favorably. The upper limit is not particularly limited, but is usually preferably 23 or less from the viewpoint of wettability.
Only one organic solvent may be used, or two or more organic solvents may be used in combination.
The solubility parameter (δ) means that when the heat of evaporation per mole of the organic solvent is ΔH (cal / mol) and the molar volume is V (cm 3 · mol), δ = (ΔH / V) 1 / The value defined by 2 .
Further, the contact angle of the organic solvent with respect to the silicone resin layer described later is not particularly limited, but is preferably 90 ° or less from the viewpoint that the peeling between the silicone resin layer and the glass substrate proceeds better.
The contact angle was measured by using PCA-1 manufactured by Kyowa Interface Science Co., Ltd. with a drop volume of 1 μl, dropping 5 points per sample surface at 23 ° C., and contact angle 60 seconds after dropping. Was measured. The average value of the three contact angles excluding one of the maximum value and the minimum value of the five contact angles is obtained as the contact angle.
 また、剥離線に供給される溶液として、溶解度パラメータが10超の有機溶媒と水との混合溶液も挙げられる。有機溶媒の定義は、上述の通りである。
 混合溶液中における有機溶媒の含有量は特に制限されないが、シリコーン樹脂層とガラス基板との剥離がより良好に進行する点で、混合溶液全量に対して、10質量%以上が好ましく、20質量%以上がより好ましい。上限は特に制限されない。
Examples of the solution supplied to the peeling line include a mixed solution of an organic solvent having a solubility parameter exceeding 10 and water. The definition of the organic solvent is as described above.
The content of the organic solvent in the mixed solution is not particularly limited, but is preferably 10% by mass or more, and 20% by mass with respect to the total amount of the mixed solution in that the peeling between the silicone resin layer and the glass substrate proceeds better. The above is more preferable. The upper limit is not particularly limited.
 有機溶媒の好適態様としては、シリコーン樹脂層とガラス基板との剥離がより良好に進行する点で、上記溶解度パラメータを満たす、ハロゲン原子を有していてもよいアルコール系溶媒、または、非プロトン性極性溶媒が挙げられる。
 アルコール系溶媒としては、シリコーン樹脂層とガラス基板との剥離がより良好に進行する点で、炭素数1~6のアルコール系溶媒が好ましく挙げられ、炭素数1~3のアルコール系溶媒がより好ましい。具体的には、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノールなどが挙げられる。なお、アルコール系溶媒は、直鎖状、分岐鎖状、環状のいずれでもよい。
 また、アルコール系溶媒には、ハロゲン原子が含まれていてもよい。つまり、水素原子がハロゲン原子に置換されたアルコール系溶媒であってもよい。ハロゲン原子としては、フッ素原子、臭素原子、ヨウ素原子などが挙げられる。
 非プロトン性極性溶媒としては、ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、N-メチルピロリドン(NMP)、スルホラン、または、アセトニトリルなどが挙げられる。
As a preferred embodiment of the organic solvent, an alcoholic solvent which may have a halogen atom, which satisfies the above-mentioned solubility parameter, or aprotic in that the peeling between the silicone resin layer and the glass substrate proceeds better. Examples include polar solvents.
The alcohol solvent is preferably an alcohol solvent having 1 to 6 carbon atoms, more preferably an alcohol solvent having 1 to 3 carbon atoms, from the viewpoint that peeling between the silicone resin layer and the glass substrate proceeds better. . Specific examples include ethanol, propanol, butanol, pentanol, and hexanol. The alcohol solvent may be linear, branched or cyclic.
The alcohol solvent may contain a halogen atom. That is, an alcohol solvent in which a hydrogen atom is substituted with a halogen atom may be used. Examples of the halogen atom include a fluorine atom, a bromine atom, and an iodine atom.
Examples of the aprotic polar solvent include dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), sulfolane, and acetonitrile.
 有機溶媒または混合溶液の供給方法は特に制限されず、シリンジなどを用いて剥離線に直接有機溶媒または混合溶液を供給する方法や、スプレーにて有機溶媒または混合溶液を剥離線に吹き付ける方法などが挙げられる。
 また、有機溶媒または混合溶液を一旦剥離線に供給すると、シリコーン樹脂層とガラス基板との剥離に伴って剥離線が移動する際に、有機溶媒または混合溶液も毛管現象により剥離線に沿って移動するため、シリコーン樹脂層とガラス基板との剥離が継続して進行しやすい。また、剥離の最中、剥離線に連続して有機溶媒または混合溶液を供給してもよい。
 なお、有機溶媒または混合溶液の供給量は特に制限されないが、剥離線を覆う程度の量を供給すればよい。
The supply method of the organic solvent or the mixed solution is not particularly limited, and a method of supplying the organic solvent or the mixed solution directly to the peeling line using a syringe or the like, a method of spraying the organic solvent or the mixed solution on the peeling line by spraying, etc. Can be mentioned.
Also, once the organic solvent or mixed solution is supplied to the peeling line, the organic solvent or mixed solution also moves along the peeling line due to capillary action when the peeling line moves along with the peeling between the silicone resin layer and the glass substrate. For this reason, the peeling between the silicone resin layer and the glass substrate tends to proceed continuously. Further, during the peeling, an organic solvent or a mixed solution may be supplied continuously to the peeling line.
Note that the supply amount of the organic solvent or the mixed solution is not particularly limited, but may be an amount that covers the peeling line.
 シリコーン樹脂層付き支持基材20と、電子デバイス22との分離を行う方法は特に制限されず、公知の方法を使用できる。
 例えば、電子デバイス用部材付き積層体10の支持基材12が上側、電子デバイス用部材18側が下側となるように定盤上に設置し、電子デバイス用部材18側を定盤上に真空吸着させ、この状態でまず刃物をシリコーン樹脂層14-ガラス基板16界面に刃物を侵入させる。そして、その後に支持基材12側を複数の真空吸着パッドで吸着し、刃物を差し込んだ箇所付近から順に真空吸着パッドを上昇させる。
The method for separating the support substrate 20 with the silicone resin layer from the electronic device 22 is not particularly limited, and a known method can be used.
For example, the electronic device member-attached laminate 10 is placed on a surface plate so that the support base 12 is on the upper side and the electronic device member 18 side is on the lower side, and the electronic device member 18 side is vacuum-adsorbed on the surface plate. In this state, the blade is first allowed to enter the interface between the silicone resin layer 14 and the glass substrate 16. Then, the support substrate 12 side is sucked by a plurality of vacuum suction pads, and the vacuum suction pads are raised in order from the vicinity of the place where the blade is inserted.
 上記処理を実施することにより、図1(C)に示すように、電子デバイス用部材付き積層体10を、シリコーン樹脂層付き支持基材20と、電子デバイス22とに分離することができる。
 なお、シリコーン樹脂層付き支持基材20には新たなガラス基板16および電子デバイス用部材18が積層され、電子デバイス用部材付きガラス積層体10として再利用することができる。
 また、上記方法で製造された電子デバイス22(ガラス基板16および電子デバイス用部材18を含む積層体)としては、ガラス基板と表示装置用部材を有する表示装置用パネル、ガラス基板と太陽電池用部材を有する太陽電池、ガラス基板と薄膜2次電池用部材を有する薄膜2次電池、ガラス基板と電子デバイス用部材を有する電子部品などとして使用することができる。表示装置用パネルとしては、液晶パネル、有機ELパネル、プラズマディスプレイパネル、フィールドエミッションパネルなどを含む。
 なお、電子デバイスのより具体的な例としては、後述する部材形成工程にて述べるTFT-LCDの製造を行った場合、図3(A)に示すような液晶パネルを得ることができる。図3(A)に示す、液晶パネル80は、TFT基板82、CF基板84、および液晶層86などで構成される。TFT基板82は、ガラス基板16上にTFT素子(薄膜トランジスタ)83などをパターン形成してなる。CF基板84は、ガラス基板16上にカラーフィルタ素子85をパターン形成してなる。TFT基板82およびCF基板84も、上記電子デバイスに相当する。
 また、電子デバイスの他の具体的な例としては、図3(B)に示す電子ペーパが挙げられる。図3(B)中、電子ペーパ90は、例えば、ガラス基板16、TFT層92、電気工学媒体(例えばマイクロカプセル)を含む層94、透明電極96、および前面板98で構成される。TFT層92、電気工学媒体の層94、および、透明電極96などで、電子ペーパ素子91が構成される。電子ペーパ素子は、マイクロカプセル型、インプレーン型、ツイストボール型、粒子移動型、電子噴流型、ポリマーネットワーク型のいずれでもよい。
By performing the said process, as shown to FIG.1 (C), the laminated body 10 with a member for electronic devices can be isolate | separated into the support base material 20 with a silicone resin layer, and the electronic device 22. FIG.
In addition, the new glass substrate 16 and the member 18 for electronic devices are laminated | stacked on the support base material 20 with a silicone resin layer, and can be reused as the glass laminated body 10 with a member for electronic devices.
Moreover, as the electronic device 22 (laminated body including the glass substrate 16 and the electronic device member 18) manufactured by the above method, a display panel having a glass substrate and a display device member, a glass substrate and a solar cell member. It can be used as a solar cell having a glass substrate, a thin film secondary battery having a glass substrate and a member for a thin film secondary battery, an electronic component having a glass substrate and a member for an electronic device, and the like. Examples of the display device panel include a liquid crystal panel, an organic EL panel, a plasma display panel, a field emission panel, and the like.
As a more specific example of the electronic device, when a TFT-LCD described in a member forming process described later is manufactured, a liquid crystal panel as shown in FIG. 3A can be obtained. A liquid crystal panel 80 shown in FIG. 3A includes a TFT substrate 82, a CF substrate 84, a liquid crystal layer 86, and the like. The TFT substrate 82 is formed by patterning TFT elements (thin film transistors) 83 on the glass substrate 16. The CF substrate 84 is formed by patterning color filter elements 85 on the glass substrate 16. The TFT substrate 82 and the CF substrate 84 also correspond to the electronic device.
Another specific example of the electronic device is electronic paper illustrated in FIG. In FIG. 3B, the electronic paper 90 includes, for example, a glass substrate 16, a TFT layer 92, a layer 94 containing an electrical engineering medium (for example, microcapsule), a transparent electrode 96, and a front plate 98. The electronic paper element 91 is constituted by the TFT layer 92, the layer 94 of the electrical engineering medium, the transparent electrode 96, and the like. The electronic paper element may be any of a microcapsule type, an in-plane type, a twist ball type, a particle movement type, an electronic jet type, and a polymer network type.
 以下、上記で使用した電子デバイス用部材付き積層体10の各構成(支持基材12、シリコーン樹脂層14、ガラス基板16、電子デバイス用部材18)の説明、および、電子デバイス用部材付き積層体10の製造方法について記載する。 Hereinafter, each structure (support base material 12, silicone resin layer 14, glass substrate 16, electronic device member 18) of the laminated body 10 with a member for electronic devices used above, and the laminated body with a member for electronic devices Ten manufacturing methods will be described.
 なお、支持基材12とシリコーン樹脂層14の界面は剥離強度(x)を有し、支持基材12とシリコーン樹脂層14の界面に剥離強度(x)を越える引き剥がし方向の応力が加えられると、支持基材12とシリコーン樹脂層14との界面が剥離する。シリコーン樹脂層14とガラス基板16の界面は剥離強度(y)を有し、シリコーン樹脂層14とガラス基板16の界面に剥離強度(y)を越える引き剥がし方向の応力が加えられると、シリコーン樹脂14層とガラス基板16との界面が剥離する。
 電子デバイス用部材付き積層体10においては、通常、上記剥離強度(x)は上記剥離強度(y)よりも高いことが好ましい。該態様であれば、電子デバイス用部材付き積層体10に支持基材12とガラス基板16とを引き剥がす方向の応力が加えられると、本発明の電子デバイス用部材付きガラス積層体10は、シリコーン樹脂層14とガラス基板16の界面で剥離して、電子デバイス22とシリコーン樹脂層付き支持基材20とにより容易に分離する。
The interface between the support substrate 12 and the silicone resin layer 14 has a peel strength (x), and a stress in the peeling direction exceeding the peel strength (x) is applied to the interface between the support substrate 12 and the silicone resin layer 14. And the interface of the support base material 12 and the silicone resin layer 14 peels. The interface between the silicone resin layer 14 and the glass substrate 16 has a peel strength (y). When a stress in the peeling direction exceeding the peel strength (y) is applied to the interface between the silicone resin layer 14 and the glass substrate 16, the silicone resin The interface between the 14 layers and the glass substrate 16 peels off.
In the laminated body 10 with a member for electronic devices, it is usually preferable that the peel strength (x) is higher than the peel strength (y). If it is this aspect, when the stress of the direction which peels the support base material 12 and the glass substrate 16 will be applied to the laminated body 10 with a member for electronic devices, the glass laminated body 10 with a member for electronic devices of this invention will be silicone. It peels at the interface of the resin layer 14 and the glass substrate 16, and it isolate | separates easily with the electronic device 22 and the support base material 20 with a silicone resin layer.
 剥離強度(x)は、剥離強度(y)と比較して、充分高いことが好ましい。剥離強度(x)を高めることは、支持基材12に対するシリコーン樹脂層14の付着力を高め、かつ加熱処理後においてガラス基板16に対してよりも相対的に高い付着力を維持できることを意味する。
 支持基材12に対するシリコーン樹脂層14の付着力を高めるためには、例えば、架橋性オルガノポリシロキサンを支持基材12上で架橋硬化させてシリコーン樹脂層14を形成することが好ましい。架橋硬化の際の接着力で、支持基材12に対して高い結合力で結合したシリコーン樹脂層14を形成することができる。
 一方、架橋硬化後の架橋性オルガノポリシロキサンの硬化物のガラス基板16に対する結合力は、上記架橋硬化時に生じる結合力よりも低いのが通例である。したがって、支持基材12上で架橋性オルガノポリシロキサンを架橋硬化させてシリコーン樹脂層14を形成し、その後シリコーン樹脂層14の面にガラス基板16を積層することが好ましい。
The peel strength (x) is preferably sufficiently higher than the peel strength (y). Increasing the peel strength (x) means that the adhesion of the silicone resin layer 14 to the support base 12 can be increased, and a relatively higher adhesion to the glass substrate 16 can be maintained after the heat treatment. .
In order to increase the adhesion of the silicone resin layer 14 to the support substrate 12, for example, it is preferable to form a silicone resin layer 14 by crosslinking and curing a crosslinkable organopolysiloxane on the support substrate 12. The silicone resin layer 14 bonded to the support substrate 12 with a high bonding force can be formed by the adhesive force at the time of crosslinking and curing.
On the other hand, the bond strength of the cured product of the crosslinkable organopolysiloxane after the crosslink curing to the glass substrate 16 is usually lower than the bond strength generated at the time of the crosslink curing. Therefore, it is preferable to crosslink and cure the crosslinkable organopolysiloxane on the support substrate 12 to form the silicone resin layer 14 and then laminate the glass substrate 16 on the surface of the silicone resin layer 14.
[支持基材]
 支持基材12は、ガラス基板16を支持して補強し、後述する部材形成工程(電子デバイス用部材を製造する工程)において電子デバイス用部材の製造の際にガラス基板16の変形、傷付き、破損などを防止する。
 支持基材12としては、例えば、ガラス板、プラスチック板、SUS板などの金属板などが用いられる。通常、後述する部材形成工程が熱処理を伴うため、支持基材12はガラス基板16との線膨張係数の差の小さい材料で形成されることが好ましく、ガラス基板16と同一材料で形成されることがより好ましく、支持基材12はガラス板であることが好ましい。特に、支持基材12は、ガラス基板16と同じガラス材料からなるガラス板であることが好ましい。
[Supporting substrate]
The support base material 12 supports and reinforces the glass substrate 16, and the glass substrate 16 is deformed and scratched when the electronic device member is manufactured in a member forming step (step of manufacturing an electronic device member) described later. Prevent damage.
As the support substrate 12, for example, a metal plate such as a glass plate, a plastic plate, or a SUS plate is used. Usually, since the member forming process described later involves heat treatment, the support base 12 is preferably formed of a material having a small difference in linear expansion coefficient from the glass substrate 16 and is formed of the same material as the glass substrate 16. Is more preferable, and the support substrate 12 is preferably a glass plate. In particular, the support base 12 is preferably a glass plate made of the same glass material as the glass substrate 16.
 支持基材12の厚さは、ガラス基板16よりも厚くてもよいし、薄くてもよい。好ましくは、ガラス基板16の厚さ、シリコーン樹脂層14の厚さに基づいて、支持基材12の厚さが選択される。例えば、現行の部材形成工程が厚さ0.5mmの基板を処理するように設計されたものであって、ガラス基板16の厚さとシリコーン樹脂層14の厚さとの和が0.1mmの場合、支持基材12の厚さを0.4mmとする。支持基材12の厚さは、通常の場合、0.2~5.0mmであることが好ましい。 The thickness of the support base 12 may be thicker or thinner than the glass substrate 16. Preferably, the thickness of the support base 12 is selected based on the thickness of the glass substrate 16 and the thickness of the silicone resin layer 14. For example, when the current member forming process is designed to process a substrate having a thickness of 0.5 mm, and the sum of the thickness of the glass substrate 16 and the thickness of the silicone resin layer 14 is 0.1 mm, The thickness of the support base 12 is set to 0.4 mm. In general, the thickness of the support base 12 is preferably 0.2 to 5.0 mm.
 支持基材12がガラス板の場合、ガラス板の厚さは、扱いやすく、割れにくいなどの理由から、0.08mm以上であることが好ましい。また、ガラス板の厚さは、電子デバイス用部材形成後に剥離する際に、割れずに適度に撓むような剛性が望まれる理由から、1.0mm以下であることが好ましい。 When the support substrate 12 is a glass plate, the thickness of the glass plate is preferably 0.08 mm or more for reasons such as being easy to handle and difficult to break. Further, the thickness of the glass plate is preferably 1.0 mm or less because the rigidity is desired so that the glass plate is appropriately bent without being broken when it is peeled off after forming the electronic device member.
 支持基材12とガラス基板16との25~300℃における平均線膨張係数の差は、好ましくは500×10-7/℃以下であり、より好ましくは300×10-7/℃以下であり、さらに好ましくは200×10-7/℃以下である。差が大き過ぎると、後述する部材形成工程における加熱冷却時に、支持基材12とガラス基板16とが剥離したりする可能性がある。支持基材12の材料がガラス基板16の材料と同じ場合、このような問題が生じるのを抑制することができる。 The difference in average linear expansion coefficient between the support base 12 and the glass substrate 16 at 25 to 300 ° C. is preferably 500 × 10 −7 / ° C. or less, more preferably 300 × 10 −7 / ° C. or less. More preferably, it is 200 × 10 −7 / ° C. or less. If the difference is too large, the support base 12 and the glass substrate 16 may be peeled off at the time of heating and cooling in the member forming step described later. When the material of the support base material 12 is the same as the material of the glass substrate 16, it can suppress that such a problem arises.
[シリコーン樹脂層]
 シリコーン樹脂層14は、シリコーン樹脂層付き支持基材20と、電子デバイス22とを分離する操作が行われるまでガラス基板16の位置ずれを防止すると共に、ガラス基板16などが分離操作によって破損するのを防止する。シリコーン樹脂層14のガラス基板16と接する表面14aは、ガラス基板16の第1主面16aに剥離可能に密着する。シリコーン樹脂層14はガラス基板16の第1主面16aに弱い結合力で結合しており、その界面の剥離強度(y)は、シリコーン樹脂層14と支持基材12との間の界面の剥離強度(x)よりも低いことが好ましい。
 すなわち、ガラス基板16と支持基材12とを分離する際には、ガラス基板16の第1主面16aとシリコーン樹脂層14との界面で剥離し、支持基材12とシリコーン樹脂層14との界面では剥離し難いことが好ましい。この好適態様においては、シリコーン樹脂層14はガラス基板16の第1主面16aと密着するが、ガラス基板16を容易に剥離することができる表面特性を有する。すなわち、シリコーン樹脂層14は、ガラス基板16の第1主面16aに対してある程度の結合力で結合してガラス基板16の位置ずれなどを防止していると同時に、ガラス基板16を剥離する際には、ガラス基板16を破壊することなく、容易に剥離できる程度の結合力で結合している。このシリコーン樹脂層14表面の容易に剥離できる性質を剥離性という。一方、支持基材12の第1主面とシリコーン樹脂層14とは相対的に剥離しがたい結合力で結合している。
 なお、シリコーン樹脂層14とガラス基板16の界面の結合力は、ガラス基板16の面(第2主面16b)上に電子デバイス用部材を形成する前後に変化してもよい(すなわち、剥離強度(x)や剥離強度(y)が変化してもよい)。しかし、電子デバイス用部材を形成した後であっても、剥離強度(y)は、剥離強度(x)よりも低いことが好ましい。
[Silicone resin layer]
The silicone resin layer 14 prevents misalignment of the glass substrate 16 until the operation of separating the support base material 20 with the silicone resin layer and the electronic device 22 is performed, and the glass substrate 16 and the like are damaged by the separation operation. To prevent. The surface 14a of the silicone resin layer 14 that is in contact with the glass substrate 16 is in close contact with the first main surface 16a of the glass substrate 16 in a peelable manner. The silicone resin layer 14 is bonded to the first main surface 16a of the glass substrate 16 with a weak bonding force, and the peeling strength (y) at the interface is the peeling at the interface between the silicone resin layer 14 and the support base 12. The strength is preferably lower than (x).
That is, when separating the glass substrate 16 and the support base material 12, the glass substrate 16 is peeled off at the interface between the first main surface 16 a of the glass substrate 16 and the silicone resin layer 14, and the support base material 12 and the silicone resin layer 14 are separated. It is preferable that peeling at the interface is difficult. In this preferred embodiment, the silicone resin layer 14 is in close contact with the first main surface 16a of the glass substrate 16, but has a surface characteristic that allows the glass substrate 16 to be easily peeled off. That is, the silicone resin layer 14 is bonded to the first main surface 16a of the glass substrate 16 with a certain amount of bonding force to prevent the glass substrate 16 from being displaced, and at the same time, when the glass substrate 16 is peeled off. The glass substrate 16 is bonded with a bonding force that can be easily peeled without breaking the glass substrate 16. The property that the surface of the silicone resin layer 14 can be easily peeled is called peelability. On the other hand, the 1st main surface of the support base material 12 and the silicone resin layer 14 are couple | bonded by the bonding force which cannot be peeled relatively.
The bonding force at the interface between the silicone resin layer 14 and the glass substrate 16 may change before and after forming the electronic device member on the surface of the glass substrate 16 (second main surface 16b) (that is, peel strength). (X) and peel strength (y) may be changed). However, even after the electronic device member is formed, the peel strength (y) is preferably lower than the peel strength (x).
 シリコーン樹脂層14とガラス基板16の層とは、弱い接着力やファンデルワールス力に起因する結合力で結合していることが好ましい。シリコーン樹脂層14を形成した後その表面にガラス基板16を積層する場合、シリコーン樹脂層14のシリコーン樹脂が接着力を示さないほど充分に架橋している場合はファンデルワールス力に起因する結合力で結合していると考えられる。しかし、シリコーン樹脂層14のシリコーン樹脂は、ある程度の弱い接着力を有することが少なくない。たとえ接着性が極めて低い場合であっても、電子デバイス用部材を形成する際には、加熱操作などにより、シリコーン樹脂層14のシリコーン樹脂はガラス基板16表面に接着し、シリコーン樹脂層14とガラス基板16の層との間の結合力は上昇すると考えられる。
 場合により、積層前のシリコーン樹脂層14の表面や積層前のガラス基板16の第1主面16aに両者間の結合力を弱める処理を行って積層することもできる。積層する面に非接着性処理などを行い、その後積層することにより、シリコーン樹脂層14とガラス基板16の層の界面の結合力を弱め、剥離強度(y)を低くすることができる。
It is preferable that the silicone resin layer 14 and the layer of the glass substrate 16 are bonded to each other with a bonding force resulting from weak adhesive force or van der Waals force. When the glass substrate 16 is laminated on the surface after the silicone resin layer 14 is formed, if the silicone resin of the silicone resin layer 14 is sufficiently cross-linked so as not to exhibit an adhesive force, the binding force due to van der Waals force It is thought that it is combined with. However, the silicone resin of the silicone resin layer 14 often has a certain weak adhesive force. Even when the adhesion is extremely low, when forming the electronic device member, the silicone resin of the silicone resin layer 14 is adhered to the surface of the glass substrate 16 by a heating operation or the like. The bonding force between the layers of the substrate 16 is considered to increase.
In some cases, the surface of the silicone resin layer 14 before lamination or the first main surface 16a of the glass substrate 16 before lamination can be laminated by performing a treatment for weakening the bonding force between them. By performing non-adhesive treatment or the like on the surface to be laminated and then laminating, the bonding strength at the interface between the silicone resin layer 14 and the glass substrate 16 can be weakened, and the peel strength (y) can be lowered.
 また、シリコーン樹脂層14は、接着力や粘着力などの強い結合力で支持基材12表面に結合されていることが好ましい。たとえば、上述したように、架橋性オルガノポリシロキサンを支持基材12表面で架橋硬化させることにより、架橋物であるシリコーン樹脂を支持基材12表面に接着して、高い結合力を得ることができる。また、支持基材12表面とシリコーン樹脂層14との間に強い結合力を生じさせる処理(例えば、カップリング剤を使用した処理)を施して支持基材12表面とシリコーン樹脂層14との間の結合力を高めることができる。
 シリコーン樹脂層14と支持基材12の層とが高い結合力で結合していることは、両者の界面の剥離強度(x)が高いことを意味する。
The silicone resin layer 14 is preferably bonded to the surface of the support substrate 12 with a strong bonding force such as an adhesive force or an adhesive force. For example, as described above, by crosslinking and curing the crosslinkable organopolysiloxane on the surface of the support substrate 12, a silicone resin as a crosslinked product can be adhered to the surface of the support substrate 12 and high bonding strength can be obtained. . Moreover, the process (for example, process using a coupling agent) which produces strong bond strength between the support base material 12 surface and the silicone resin layer 14 is given, and between the support base material 12 surface and the silicone resin layer 14 The binding power of can be increased.
The fact that the silicone resin layer 14 and the layer of the supporting substrate 12 are bonded with a high bonding force means that the peel strength (x) at the interface between them is high.
 シリコーン樹脂層14の厚さは特に限定されないが、2~100μmであることが好ましく、3~50μmであることがより好ましく、7~20μmであることがさらに好ましい。シリコーン樹脂層14の厚さがこのような範囲であると、シリコーン樹脂層14とガラス基板16との間に気泡や異物が介在することがあっても、ガラス基板16のゆがみ欠陥の発生を抑制することができる。また、シリコーン樹脂層14の厚さが厚すぎると、形成するのに時間および材料を要するため経済的ではなく、耐熱性が低下する場合がある。また、シリコーン樹脂層14の厚さが薄すぎると、シリコーン樹脂層14とガラス基板16との密着性が低下する場合がある。
 なお、シリコーン樹脂層14は2層以上からなっていてもよい。この場合「シリコーン樹脂層14の厚さ」は全ての層の合計の厚さを意味するものとする。
 また、シリコーン樹脂層14が2層以上からなる場合は、各々の層を形成する樹脂が異なる架橋シリコーン樹脂からなってもよい。
The thickness of the silicone resin layer 14 is not particularly limited, but is preferably 2 to 100 μm, more preferably 3 to 50 μm, and even more preferably 7 to 20 μm. When the thickness of the silicone resin layer 14 is within such a range, even if air bubbles or foreign matter may be present between the silicone resin layer 14 and the glass substrate 16, the occurrence of distortion defects in the glass substrate 16 is suppressed. can do. In addition, if the thickness of the silicone resin layer 14 is too thick, it takes time and materials to form it, which is not economical and the heat resistance may decrease. Moreover, when the thickness of the silicone resin layer 14 is too thin, the adhesiveness of the silicone resin layer 14 and the glass substrate 16 may fall.
The silicone resin layer 14 may be composed of two or more layers. In this case, “the thickness of the silicone resin layer 14” means the total thickness of all the layers.
Moreover, when the silicone resin layer 14 consists of two or more layers, resin which forms each layer may consist of a different crosslinked silicone resin.
 シリコーン樹脂層14に含まれるシリコーン樹脂は架橋性オルガノポリシロキサンの架橋物であり、シリコーン樹脂は3次元網目構造を形成していることが好ましい。
 架橋性オルガノポリシロキサンの種類は特に制限されず、所定の架橋反応を介して、架橋硬化し、シリコーン樹脂を構成する架橋物(硬化物)となれば特にその構造は限定されず、所定の架橋性を有していればよい。架橋の形式は特に制限されず、架橋性オルガノポリシロキサン中に含まれる架橋性基の種類に応じて適宜公知の形式を採用できる。例えば、ヒドロシリル化反応、縮合反応、または、加熱処理、高エネルギー線処理若しくはラジカル重合開始剤によるラジカル反応などが挙げられる。
 より具体的には、架橋性オルガノポリシロキサンがアルケニル基またはアルキニル基などのラジカル反応性基を有する場合、上記ラジカル反応を介したラジカル反応性基同士の反応により架橋して硬化物(架橋シリコーン樹脂)となる。
 また、架橋性オルガノポリシロキサンがシラノール基を有する場合、シラノール基同士の縮合反応により架橋して硬化物となる。
 さらに、架橋性オルガノポリシロキサンが、ケイ素原子に結合したアルケニル基(ビニル基など)を有するオルガノポリシロキサン(すなわち、オルガノアルケニルポリシロキサン)、および、ケイ素原子に結合した水素原子(ハイドロシリル基)を有するオルガノポリシロキサン(すなわち、オルガノハイドロジェンポリシロキサン)を含む場合、ヒドロシリル化触媒(例えば、白金系触媒)の存在下、ヒドロシリル化反応により架橋して硬化物となる。
The silicone resin contained in the silicone resin layer 14 is a crosslinked product of a crosslinkable organopolysiloxane, and the silicone resin preferably forms a three-dimensional network structure.
The type of the crosslinkable organopolysiloxane is not particularly limited, and the structure is not particularly limited as long as it is cross-linked and cured through a predetermined cross-linking reaction to obtain a cross-linked product (cured product) constituting the silicone resin. What is necessary is just to have sex. The form of crosslinking is not particularly limited, and a known form can be appropriately employed depending on the kind of the crosslinkable group contained in the crosslinkable organopolysiloxane. Examples thereof include a hydrosilylation reaction, a condensation reaction, a heat treatment, a high energy ray treatment, or a radical reaction using a radical polymerization initiator.
More specifically, when the crosslinkable organopolysiloxane has a radical reactive group such as an alkenyl group or an alkynyl group, the cured product (crosslinked silicone resin) is crosslinked by a reaction between the radical reactive groups via the radical reaction. )
Moreover, when crosslinkable organopolysiloxane has a silanol group, it crosslinks by the condensation reaction of silanol groups, and it becomes a hardened | cured material.
In addition, the crosslinkable organopolysiloxane has an organopolysiloxane having an alkenyl group (such as a vinyl group) bonded to a silicon atom (ie, an organoalkenylpolysiloxane) and a hydrogen atom bonded to a silicon atom (hydrosilyl group). In the case of containing the organopolysiloxane having (that is, organohydrogenpolysiloxane), it is crosslinked by a hydrosilylation reaction in the presence of a hydrosilylation catalyst (for example, a platinum-based catalyst) to form a cured product.
 なかでも、シリコーン樹脂層14の形成が容易で、ガラス基板の剥離性により優れる点で、架橋性オルガノポリシロキサンが、両末端および/または側鎖にアルケニル基を有するオルガノポリシロキサン(以後、適宜オルガノポリシロキサンAとも称する)と、両末端および/または側鎖にハイドロシリル基を有するオルガノポリシロキサン(以後、適宜オルガノポリシロキサンBとも称する)とを含む態様が好ましい。
 なお、アルケニル基としては特に限定されないが、例えば、ビニル基(エテニル基)、アリル基(2-プロペニル基)、ブテニル基、ペンテニル基、ヘキシニル基などが挙げられ、なかでも耐熱性に優れる点から、ビニル基が好ましい。
 また、オルガノポリシロキサンAに含まれるアルケニル基以外の基、および、オルガノポリシロキサンBに含まれるハイドロシリル基以外の基としては、アルキル基(特に、炭素数4以下のアルキル基)が挙げられる。
Of these, the crosslinkable organopolysiloxane is an organopolysiloxane having alkenyl groups at both ends and / or side chains (hereinafter referred to as organopolysiloxane as appropriate) because the silicone resin layer 14 can be easily formed and is excellent in the peelability of the glass substrate. An embodiment including polysiloxane A) and organopolysiloxane having hydrosilyl groups at both ends and / or side chains (hereinafter also referred to as organopolysiloxane B as appropriate) is preferable.
The alkenyl group is not particularly limited, and examples thereof include a vinyl group (ethenyl group), an allyl group (2-propenyl group), a butenyl group, a pentenyl group, and a hexynyl group. Among them, the heat resistance is excellent. A vinyl group is preferred.
Examples of the group other than the alkenyl group contained in the organopolysiloxane A and the group other than the hydrosilyl group contained in the organopolysiloxane B include an alkyl group (particularly an alkyl group having 4 or less carbon atoms).
 オルガノポリシロキサンA中におけるアルケニル基の位置は特に制限されないが、オルガノポリシロキサンAが直鎖状の場合、アルケニル基は下記に示すM単位およびD単位のいずれかに存在してもよく、M単位とD単位の両方に存在していてもよい。硬化速度の点から、少なくともM単位に存在していることが好ましく、2個のM単位の両方に存在していることが好ましい。
 なお、M単位およびD単位とは、オルガノポリシロキサンの基本構成単位の例であり、M単位とは有機基が3つ結合した1官能性のシロキサン単位、D単位とは有機基が2つ結合した2官能性のシロキサン単位である。シロキサン単位において、シロキサン結合は2個のケイ素原子が1個の酸素原子を介して結合した結合であることより、シロキサン結合におけるケイ素原子1個当たりの酸素原子は1/2個とみなし、式中O1/2と表現される。
The position of the alkenyl group in the organopolysiloxane A is not particularly limited. However, when the organopolysiloxane A is linear, the alkenyl group may be present in any one of the M unit and D unit shown below. And D units may be present. From the viewpoint of curing speed, it is preferably present at least in M units, and preferably present in both two M units.
The M unit and D unit are examples of basic structural units of organopolysiloxane. The M unit is a monofunctional siloxane unit in which three organic groups are bonded. The D unit is bonded to two organic groups. Bifunctional siloxane unit. In the siloxane unit, the siloxane bond is a bond in which two silicon atoms are bonded through one oxygen atom, so that the oxygen atom per silicon atom in the siloxane bond is regarded as ½, Expressed as O 1/2 .
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 オルガノポリシロキサンA中におけるアルケニル基の数は特に制限されないが、1分子中に1~3個が好ましく、2個がより好ましい。
 オルガノポリシロキサンB中におけるハイドロシリル基の位置は特に制限されないが、オルガノポリシロキサンAが直鎖状の場合、ハイドロシリル基はM単位およびD単位のいずれかに存在してもよく、M単位とD単位の両方に存在していてもよい。硬化速度の点から、少なくともD単位に存在していることが好ましい。
 オルガノポリシロキサンB中におけるハイドロシリル基の数は特に制限されないが、1分子中に少なくとも3個有することが好ましく、3個がより好ましい。
The number of alkenyl groups in organopolysiloxane A is not particularly limited, but is preferably 1 to 3 and more preferably 2 per molecule.
The position of the hydrosilyl group in the organopolysiloxane B is not particularly limited. However, when the organopolysiloxane A is linear, the hydrosilyl group may be present in either the M unit or the D unit. It may be present in both D units. It is preferable that it exists in at least D unit from the point of a cure rate.
The number of hydrosilyl groups in the organopolysiloxane B is not particularly limited, but it is preferably at least 3 per molecule, and more preferably 3.
 オルガノポリシロキサンAとオルガノポリシロキサンBとの混合比率は特に制限されないが、オルガノポリシロキサンB中のケイ素原子に結合した水素原子と、オルガノポリシロキサンA中の全アルケニル基のモル比(水素原子/アルケニル基)が0.7~1.05となるように調整することが好ましい。なかでも、0.8~1.0となるように混合比率を調整することが好ましい。 The mixing ratio of organopolysiloxane A and organopolysiloxane B is not particularly limited, but the molar ratio of hydrogen atoms bonded to silicon atoms in organopolysiloxane B and all alkenyl groups in organopolysiloxane A (hydrogen atoms / The alkenyl group is preferably adjusted to 0.7 to 1.05. In particular, it is preferable to adjust the mixing ratio so as to be 0.8 to 1.0.
 ヒドロシリル化触媒としては、白金族金属系触媒を用いることが好ましい。白金族金属系触媒としては、白金系、パラジウム系、ロジウム系などの触媒が挙げられ、特に白金系触媒として用いることが経済性、反応性の点から好ましい。白金族金属系触媒としては、公知のものを用いることができる。具体的には、白金微粉末、白金黒、塩化第一白金酸、塩化第二白金酸などの塩化白金酸、四塩化白金、塩化白金酸のアルコール化合物、アルデヒド化合物、あるいは白金のオレフィン錯体、アルケニルシロキサン錯体、カルボニル錯体などがあげられる。
 ヒドロシリル化触媒の使用量としては、オルガノポリシロキサンAとオルガノポリシロキサンBとの合計質量100質量部に対して、0.1~20質量部が好ましく、1~10質量部がより好ましい。
As the hydrosilylation catalyst, a platinum group metal catalyst is preferably used. Examples of the platinum group metal-based catalyst include platinum-based, palladium-based, and rhodium-based catalysts, and it is particularly preferable to use as a platinum-based catalyst from the viewpoint of economy and reactivity. As the platinum group metal catalyst, known catalysts can be used. Specifically, platinum fine powder, platinum black, chloroplatinic acid such as chloroplatinic acid, chloroplatinic acid, platinum tetrachloride, alcohol compounds of chloroplatinic acid, aldehyde compounds, platinum olefin complexes, alkenyls Examples thereof include siloxane complexes and carbonyl complexes.
The amount of the hydrosilylation catalyst used is preferably 0.1 to 20 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the total mass of organopolysiloxane A and organopolysiloxane B.
 架橋性オルガノポリシロキサンの数平均分子量は特に制限されないが、取扱い性に優れると共に、成膜性にも優れ、高温処理条件下におけるシリコーン樹脂の分解がより抑制される点で、GPC(ゲルパーミエーションクロマトグラフィー)測定による、ポリスチレン換算の重量平均分子量は1,000~5,000,000が好ましく、2,000~3,000,000がより好ましい。
 架橋性オルガノポリシロキサンの粘度は10~5000mPa・sが好ましく、15~3000mPa・sがより好ましい。
The number average molecular weight of the crosslinkable organopolysiloxane is not particularly limited, but it is excellent in handleability, excellent in film formability, and is more resistant to decomposition of the silicone resin under high temperature processing conditions. The weight average molecular weight in terms of polystyrene as measured by chromatography is preferably 1,000 to 5,000,000, and more preferably 2,000 to 3,000,000.
The viscosity of the crosslinkable organopolysiloxane is preferably 10 to 5000 mPa · s, more preferably 15 to 3000 mPa · s.
 また、架橋性オルガノポリシロキサンの具体的に市販されている商品名または型番としては、芳香族基を有さない架橋性オルガノポリシロキサンとして、KNS-320A、KS-847(いずれも信越シリコーン社製)、TPR6700(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)、ビニルシリコーン「8500」(荒川化学工業社製)とメチルハイドロジェンポリシロキサン「12031」(荒川化学工業社製)との組み合わせ、ビニルシリコーン「11364」(荒川化学工業社製)とメチルハイドロジェンポリシロキサン「12031」(荒川化学工業社製)との組み合わせ、ビニルシリコーン「11365」(荒川化学工業社製)とメチルハイドロジェンポリシロキサン「12031」(荒川化学工業社製)との組み合わせなどが挙げられる。シリコーン樹脂としては、付加反応型シリコーンが好ましい。これは、硬化反応のしやすさ、シリコーン樹脂層を形成した際に剥離性の程度が良好で、耐熱性も高いからである。付加反応型シリコーンは、下記線状オルガノポリシロキサン(a)と下記線状オルガノポリシロキサン(b)とを含む硬化性シリコーン樹脂組成物であるのが好ましい(線状オルガノポリシロキサン(a):アルケニル基を1分子あたり少なくとも2個有する線状オルガノポリシロキサン。線状オルガノポリシロキサン(b):ケイ素原子に結合した水素原子を1分子あたり少なくとも3個有する線状オルガノポリシロキサンであって、かつ、ケイ素原子に結合した水素原子の少なくとも1個が分子末端のケイ素原子に存在している線状オルガノポリシロキサン。)。
 シリコーン樹脂層14は、この硬化性シリコーン樹脂組成物を支持基材12の表面で硬化させることにより形成された硬化シリコーン樹脂層であるのがより好ましい。
In addition, as a commercially available product name or model number of the crosslinkable organopolysiloxane, KNS-320A and KS-847 (both manufactured by Shin-Etsu Silicone Co., Ltd.) are used as the crosslinkable organopolysiloxane having no aromatic group. ), TPR6700 (made by Momentive Performance Materials Japan GK), vinyl silicone “8500” (made by Arakawa Chemical Industries) and methylhydrogenpolysiloxane “12031” (made by Arakawa Chemical Industries), vinyl A combination of silicone “11364” (Arakawa Chemical Industries) and methylhydrogenpolysiloxane “12031” (Arakawa Chemical Industries), vinyl silicone “11365” (Arakawa Chemical Industries) and methylhydrogenpolysiloxane “ 12031 "(Arakawa Chemical Industries Such as a combination of a Ltd.) and the like. As the silicone resin, addition reaction type silicone is preferable. This is because the curing reaction is easy, the degree of peelability is good when the silicone resin layer is formed, and the heat resistance is also high. The addition reaction type silicone is preferably a curable silicone resin composition containing the following linear organopolysiloxane (a) and the following linear organopolysiloxane (b) (linear organopolysiloxane (a): alkenyl. A linear organopolysiloxane having at least two groups per molecule, a linear organopolysiloxane (b): a linear organopolysiloxane having at least three hydrogen atoms bonded to silicon atoms per molecule, and A linear organopolysiloxane in which at least one hydrogen atom bonded to a silicon atom is present on the silicon atom at the molecular end.)
The silicone resin layer 14 is more preferably a cured silicone resin layer formed by curing the curable silicone resin composition on the surface of the support substrate 12.
[ガラス基板]
 ガラス基板16は、第1主面16aがシリコーン樹脂層14と接し、シリコーン樹脂層14側とは反対側の第2主面16bに電子デバイス用部材が設けられる。
 ガラス基板16の種類は、一般的なものであってよく、例えば、LCD、OLEDといった表示装置用のガラス基板などが挙げられる。ガラス基板16は耐薬品性、耐透湿性に優れ、且つ、熱収縮率が低い。熱収縮率の指標としては、JIS R 3102(1995年改正)に規定されている線膨張係数が用いられる。
[Glass substrate]
As for the glass substrate 16, the 1st main surface 16a touches the silicone resin layer 14, and the member for electronic devices is provided in the 2nd main surface 16b on the opposite side to the silicone resin layer 14 side.
The glass substrate 16 may be of a general type, and examples thereof include a glass substrate for a display device such as an LCD or an OLED. The glass substrate 16 is excellent in chemical resistance and moisture permeability and has a low heat shrinkage rate. As an index of the heat shrinkage rate, a linear expansion coefficient defined in JIS R 3102 (revised in 1995) is used.
 ガラス基板16の線膨張係数が大きいと、後述する部材形成工程は加熱処理を伴うことが多いので、様々な不都合が生じやすい。例えば、ガラス基板16上にTFTを形成する場合、加熱下でTFTが形成されたガラス基板16を冷却すると、ガラス基板16の熱収縮によって、TFTの位置ずれが過大になるおそれがある。 If the linear expansion coefficient of the glass substrate 16 is large, the member forming process described later often involves a heat treatment, and various inconveniences are likely to occur. For example, when a TFT is formed on the glass substrate 16, if the glass substrate 16 on which the TFT is formed is cooled under heating, the TFT may be displaced excessively due to thermal contraction of the glass substrate 16.
 ガラス基板16は、ガラス原料を溶融し、溶融ガラスを板状に成形して得られる。このような成形方法は、一般的なものであってよく、例えば、フロート法、フュージョン法、スロットダウンドロー法、フルコール法、ラバース法などが用いられる。また、特に厚さが薄いガラス基板16は、いったん板状に成形したガラスを成形可能温度に加熱し、延伸などの手段で引き伸ばして薄くする方法(リドロー法)で成形して得られる。 The glass substrate 16 is obtained by melting a glass raw material and molding the molten glass into a plate shape. Such a molding method may be a general one, and for example, a float method, a fusion method, a slot down draw method, a full call method, a rubber method, or the like is used. The glass substrate 16 having a particularly small thickness can be obtained by heating a glass once formed into a plate shape to a moldable temperature and then stretching it by means of stretching or the like to make it thin (redraw method).
 ガラス基板16のガラスの種類は特に限定されないが、無アルカリホウケイ酸ガラス、ホウケイ酸ガラス、ソーダライムガラス、高シリカガラス、その他の酸化ケイ素を主な成分とする酸化物系ガラスが好ましい。酸化物系ガラスとしては、酸化物換算による酸化ケイ素の含有量が40~90質量%のガラスが好ましい。 The type of glass of the glass substrate 16 is not particularly limited, but non-alkali borosilicate glass, borosilicate glass, soda lime glass, high silica glass, and other oxide-based glasses mainly composed of silicon oxide are preferable. As the oxide-based glass, a glass having a silicon oxide content of 40 to 90% by mass in terms of oxide is preferable.
 ガラス基板16のガラスとしては、電子デバイス用部材の種類やその製造工程に適したガラスが採用される。例えば、液晶パネル用のガラス基板は、アルカリ金属成分の溶出が液晶に影響を与えやすいことから、アルカリ金属成分を実質的に含まないガラス(無アルカリガラス)からなる(ただし、通常アルカリ土類金属成分は含まれる)。このように、ガラス基板16のガラスは、適用されるデバイスの種類およびその製造工程に基づいて適宜選択される。 As the glass of the glass substrate 16, glass suitable for the type of electronic device member and the manufacturing process thereof is employed. For example, a glass substrate for a liquid crystal panel is made of glass (non-alkali glass) that does not substantially contain an alkali metal component because the elution of an alkali metal component easily affects the liquid crystal (however, usually an alkaline earth metal) Ingredients are included). Thus, the glass of the glass substrate 16 is appropriately selected based on the type of device to be applied and its manufacturing process.
 ガラス基板16の厚さは、ガラス基板16の薄型化および/または軽量化の観点から、0.3mm以下であることが好ましく、より好ましくは0.15mm以下であり、さらに好ましくは0.10mm以下である。0.3mm以下の場合、ガラス基板16に良好なフレキシブル性を与えることが可能である。0.15mm以下の場合、ガラス基板16をロール状に巻き取ることが可能である。
 また、ガラス基板16の厚さは、ガラス基板16の製造が容易であること、ガラス基板16の取り扱いが容易であることなどの理由から、0.03mm以上であることが好ましい。
The thickness of the glass substrate 16 is preferably 0.3 mm or less, more preferably 0.15 mm or less, and even more preferably 0.10 mm or less, from the viewpoint of reducing the thickness and / or weight of the glass substrate 16. It is. In the case of 0.3 mm or less, it is possible to give good flexibility to the glass substrate 16. In the case of 0.15 mm or less, the glass substrate 16 can be rolled up.
Further, the thickness of the glass substrate 16 is preferably 0.03 mm or more for reasons such as easy manufacture of the glass substrate 16 and easy handling of the glass substrate 16.
 なお、ガラス基板16は2層以上からなっていてもよく、この場合、各々の層を形成する材料は同種材料であってもよいし、異種材料であってもよい。また、この場合、「ガラス基板16の厚さ」は全ての層の合計の厚さを意味するものとする。 The glass substrate 16 may be composed of two or more layers. In this case, the material forming each layer may be the same material or a different material. In this case, “the thickness of the glass substrate 16” means the total thickness of all the layers.
[電子デバイス用部材(機能性素子)]
 電子デバイス用部材18は、ガラス基板16上に形成され電子デバイスの少なくとも一部を構成する部材である。より具体的には、電子デバイス用部材18としては、表示装置用パネル、太陽電池、薄膜2次電池、または、表面に回路が形成された半導体ウェハ等の電子部品などに用いられる部材(例えば、表示装置用部材、太陽電池用部材、薄膜2次電池用部材、電子部品用回路)が挙げられる。
[Electronic device components (functional elements)]
The electronic device member 18 is a member formed on the glass substrate 16 and constituting at least a part of the electronic device. More specifically, as the electronic device member 18, a member used for an electronic component such as a display panel, a solar cell, a thin film secondary battery, or a semiconductor wafer having a circuit formed on the surface (for example, Display member, solar cell member, thin film secondary battery member, electronic component circuit).
 例えば、太陽電池用部材としては、シリコン型では、正極の酸化スズなど透明電極、p層/i層/n層で表されるシリコン層、および負極の金属等が挙げられ、その他に、化合物型、色素増感型、量子ドット型などに対応する各種部材等を挙げることができる。
 また、薄膜2次電池用部材としては、リチウムイオン型では、正極および負極の金属または金属酸化物等の透明電極、電解質層のリチウム化合物、集電層の金属、封止層としての樹脂等が挙げられ、その他に、ニッケル水素型、ポリマー型、セラミックス電解質型などに対応する各種部材等を挙げることができる。
 また、電子部品用回路としては、CCDやCMOSでは、導電部の金属、絶縁部の酸化ケイ素や窒化珪素等が挙げられ、その他に圧力センサ・加速度センサなど各種センサやリジッドプリント基板、フレキシブルプリント基板、リジッドフレキシブルプリント基板などに対応する各種部材等を挙げることができる。
For example, as a member for a solar cell, a silicon type includes a transparent electrode such as tin oxide of a positive electrode, a silicon layer represented by p layer / i layer / n layer, a metal of a negative electrode, and the like. And various members corresponding to the dye-sensitized type, the quantum dot type, and the like.
Further, as a member for a thin film secondary battery, in the lithium ion type, a transparent electrode such as a metal or a metal oxide of a positive electrode and a negative electrode, a lithium compound of an electrolyte layer, a metal of a current collecting layer, a resin as a sealing layer, etc. In addition, various members corresponding to nickel hydrogen type, polymer type, ceramic electrolyte type and the like can be mentioned.
In addition, as a circuit for an electronic component, in a CCD or CMOS, a metal of a conductive part, a silicon oxide or a silicon nitride of an insulating part, and the like, various sensors such as a pressure sensor and an acceleration sensor, a rigid printed board, a flexible printed board And various members corresponding to a rigid flexible printed circuit board.
[電子デバイス用部材付き積層体の製造方法]
 電子デバイス用部材付き積層体10の製造方法は特に制限されないが、剥離強度(x)が剥離強度(y)よりも高い積層体を得るために、支持基材12表面上で所定の架橋性オルガノポリシロキサンを架橋硬化させてシリコーン樹脂層14を形成する工程を含むことが好ましい。すなわち、架橋性オルガノポリシロキサンを含む層を支持基材12の表面に形成し、支持基材12表面上で架橋性オルガノポリシロキサンを架橋させてシリコーン樹脂層14(架橋シリコーン樹脂)を形成し、次いで、シリコーン樹脂層14のシリコーン樹脂面にガラス基板16を積層して、さらにガラス基板16上に電子デバイス用部材18を形成して、電子デバイス用部材付き積層体10を製造する方法である。
 架橋性オルガノポリシロキサンを支持基材12表面で硬化させると、硬化反応時の支持基材12表面との相互作用により接着し、シリコーン樹脂と支持基材12表面との剥離強度は高くなると考えられる。したがって、ガラス基板16と支持基材12とが同じ材質からなるものであっても、シリコーン樹脂層14と両者間の剥離強度に差を設けることができる。
 以下、架橋性オルガノポリシロキサンを含む層を支持基材12の表面に形成し、支持基材12表面上で架橋性オルガノポリシロキサンを架橋させてシリコーン樹脂層14を形成する工程を樹脂層形成工程、シリコーン樹脂層14のシリコーン樹脂面にガラス基板16を積層する工程を積層工程、ガラス基板16上に電子デバイス用部材18を形成する工程を部材形成工程といい、各工程の手順について詳述する。
[Method for producing laminate with electronic device member]
Although the manufacturing method of the laminated body 10 with a member for electronic devices is not specifically limited, in order to obtain a laminated body whose peel strength (x) is higher than the peel strength (y), a predetermined crosslinkable organo on the surface of the support substrate 12 is obtained. It is preferable to include a step of forming a silicone resin layer 14 by crosslinking and curing polysiloxane. That is, a layer containing a crosslinkable organopolysiloxane is formed on the surface of the support substrate 12, and the crosslinkable organopolysiloxane is crosslinked on the surface of the support substrate 12 to form a silicone resin layer 14 (crosslinked silicone resin). Next, the glass substrate 16 is laminated on the silicone resin surface of the silicone resin layer 14, and the electronic device member 18 is further formed on the glass substrate 16 to manufacture the laminated body 10 with the electronic device member.
When the crosslinkable organopolysiloxane is cured on the surface of the support substrate 12, it is considered that the crosslinkable organopolysiloxane adheres due to the interaction with the surface of the support substrate 12 during the curing reaction, and the peel strength between the silicone resin and the surface of the support substrate 12 increases. . Therefore, even if the glass substrate 16 and the support base 12 are made of the same material, a difference can be provided in the peel strength between the silicone resin layer 14 and the both.
Hereinafter, a step of forming a silicone resin layer 14 by forming a layer containing a crosslinkable organopolysiloxane on the surface of the support substrate 12 and crosslinking the crosslinkable organopolysiloxane on the surface of the support substrate 12 is a resin layer forming step. The step of laminating the glass substrate 16 on the silicone resin surface of the silicone resin layer 14 is referred to as a laminating step, and the step of forming the electronic device member 18 on the glass substrate 16 is referred to as a member forming step. .
(樹脂層形成工程)
 樹脂層形成工程では、架橋性オルガノポリシロキサンを含む層を支持基材12の表面に形成し、支持基材12表面上で架橋性オルガノポリシロキサンを架橋させてシリコーン樹脂層14を形成する。
 支持基材12上に架橋性オルガノポリシロキサンを含む層を形成するためには、架橋性オルガノポリシロキサンを溶媒に溶解させたコーティング用組成物を使用し、この組成物を支持基材12上に塗布して溶液の層を形成し、次いで溶媒を除去して架橋性オルガノポリシロキサンを含む層とすることが好ましい。組成物中における架橋性オルガノポリシロキサンの濃度の調整などにより、架橋性オルガノポリシロキサンを含む層の厚さを制御することができる。
 溶媒としては、作業環境下で架橋性オルガノポリシロキサンを容易に溶解でき、かつ、容易に揮発除去させることのできる溶媒であれば、特に限定されるものではない。具体的には、例えば、酢酸ブチル、ヘプタン、2-ヘプタノン、1-メトキシ-2-プロパノールアセテート、トルエン、キシレン、THF、クロロホルム等を例示することができる。
(Resin layer forming process)
In the resin layer forming step, a layer containing a crosslinkable organopolysiloxane is formed on the surface of the support substrate 12, and the crosslinkable organopolysiloxane is crosslinked on the surface of the support substrate 12 to form the silicone resin layer 14.
In order to form a layer containing a crosslinkable organopolysiloxane on the support substrate 12, a coating composition in which the crosslinkable organopolysiloxane is dissolved in a solvent is used, and this composition is formed on the support substrate 12. It is preferable to form a solution layer by coating, and then remove the solvent to form a layer containing a crosslinkable organopolysiloxane. The thickness of the layer containing the crosslinkable organopolysiloxane can be controlled by adjusting the concentration of the crosslinkable organopolysiloxane in the composition.
The solvent is not particularly limited as long as it can easily dissolve the crosslinkable organopolysiloxane in a working environment and can be easily volatilized and removed. Specific examples include butyl acetate, heptane, 2-heptanone, 1-methoxy-2-propanol acetate, toluene, xylene, THF, chloroform and the like.
 支持基材12表面上に架橋性オルガノポリシロキサンを含む組成物を塗布する方法は特に限定されず、公知の方法を使用することができる。例えば、スプレーコート法、ダイコート法、スピンコート法、ディップコート法、ロールコート法、バーコート法、スクリーン印刷法、グラビアコート法などが挙げられる。
 その後、必要に応じて、溶媒を除去するための乾燥処理が実施されてもよい。乾燥処理の方法は特に制限されないが、例えば、減圧条件下で溶媒を除去する方法や、架橋性オルガノポリシロキサンの硬化が進行しないような温度で加熱する方法などが挙げられる。
The method for applying the composition containing the crosslinkable organopolysiloxane on the surface of the support substrate 12 is not particularly limited, and a known method can be used. Examples thereof include spray coating, die coating, spin coating, dip coating, roll coating, bar coating, screen printing, and gravure coating.
Then, if necessary, a drying process for removing the solvent may be performed. The method for the drying treatment is not particularly limited, and examples thereof include a method of removing the solvent under reduced pressure conditions and a method of heating at a temperature at which the curing of the crosslinkable organopolysiloxane does not proceed.
 次いで、支持基材12上の架橋性オルガノポリシロキサンを架橋させて、シリコーン樹脂層14を形成する。より具体的には、図4(A)に示すように、該工程では支持基材12の少なくとも片面の表面上にシリコーン樹脂層14が形成される。
 硬化(架橋)の方法は、上述したように、架橋性オルガノポリシロキサンの架橋形式に応じて適宜最適な方法が選択され、例えば、加熱処理や露光処理が挙げられる。なかでも、架橋性オルガノポリシロキサンがヒドロシリル化反応、縮合反応、ラジカル反応により架橋する場合、ガラス基板16に対する密着性および耐熱性に優れるシリコーン樹脂が得られる点で、熱硬化によりシリコーン樹脂層14を製造することが好ましい。
 以下、熱硬化の態様について詳述する。
Next, the crosslinkable organopolysiloxane on the support substrate 12 is crosslinked to form the silicone resin layer 14. More specifically, as shown in FIG. 4A, in this step, a silicone resin layer 14 is formed on at least one surface of the support base 12.
As described above, the curing (crosslinking) method is appropriately selected according to the crosslinking type of the crosslinkable organopolysiloxane, and examples thereof include heat treatment and exposure treatment. In particular, when the crosslinkable organopolysiloxane is crosslinked by a hydrosilylation reaction, a condensation reaction, or a radical reaction, a silicone resin having excellent adhesion and heat resistance to the glass substrate 16 can be obtained. It is preferable to manufacture.
Hereinafter, the aspect of thermosetting is explained in full detail.
 架橋性オルガノポリシロキサンを熱硬化させる温度条件は、シリコーン樹脂層14の耐熱性を向上し、150~300℃が好ましく、180~250℃がより好ましい。また、加熱時間は、通常、10~120分が好ましく、30~60分がより好ましい。 The temperature condition for thermally curing the crosslinkable organopolysiloxane improves the heat resistance of the silicone resin layer 14 and is preferably 150 to 300 ° C, more preferably 180 to 250 ° C. The heating time is usually preferably 10 to 120 minutes, more preferably 30 to 60 minutes.
 なお、架橋性オルガノポリシロキサンはプレキュア(予備硬化)を行った後、後硬化(本硬化)を行って硬化させてもよい。プレキュアを行うことにより、耐熱性により優れたシリコーン樹脂層14を得ることができる。プレキュアは溶媒の除去に引き続き行うことが好ましく、その場合、層から溶媒を除去して架橋性オルガノポリシロキサンを含む層を形成する工程とプレキュアを行う工程とは特に区別されない。 The crosslinkable organopolysiloxane may be cured by precuring (precuring) and then by postcuring (main curing). By performing the pre-cure, the silicone resin layer 14 having better heat resistance can be obtained. Precuring is preferably performed following the removal of the solvent. In that case, there is no particular distinction between the step of removing the solvent from the layer to form a layer containing a crosslinkable organopolysiloxane and the step of performing precuring.
 なお、シリコーン樹脂層14の形成は、上記方法に限られるものではない。
 例えば、シリコーン樹脂表面に対する密着性がガラス基板16よりも高い材質の支持基材12を用いる場合には、架橋性オルガノポリシロキサンを何らかの剥離性表面上で硬化してシリコーン樹脂のフィルムを製造し、このフィルムをガラス基板16と支持基材12との間に介在させ同時に積層することができる。
 また、架橋性オルガノポリシロキサンの硬化による接着性がガラス基板16に対して充分低くかつその接着性が支持基材12に対して充分高い場合は、ガラス基板16と支持基材12の間で架橋性オルガノポリシロキサンを硬化させてシリコーン樹脂層14を形成することができる。
 さらに、支持基材12がガラス基板16と同様のガラス材料からなる場合であっても、支持基材12表面の接着性を高める処理を施してシリコーン樹脂層14に対する剥離強度を高めることもできる。例えば、シランカップリング剤のような化学的に固定力を向上させる化学的方法(プライマー処理)や、フレーム(火炎)処理のように表面活性基を増加させる物理的方法、サンドブラスト処理のように表面の粗度を増加させることにより引っかかりを増加させる機械的処理方法などが例示される。
The formation of the silicone resin layer 14 is not limited to the above method.
For example, in the case of using a support base material 12 having a higher adhesion to the silicone resin surface than the glass substrate 16, a crosslinkable organopolysiloxane is cured on some peelable surface to produce a silicone resin film, This film can be interposed between the glass substrate 16 and the support base 12 and laminated simultaneously.
Moreover, when the adhesiveness by hardening of crosslinkable organopolysiloxane is low enough with respect to the glass substrate 16, and the adhesiveness is high enough with respect to the support base material 12, it bridge | crosslinks between the glass substrate 16 and the support base material 12. The silicone resin layer 14 can be formed by curing the functional organopolysiloxane.
Furthermore, even when the support base 12 is made of the same glass material as that of the glass substrate 16, it is possible to increase the peel strength with respect to the silicone resin layer 14 by performing a process for improving the adhesion of the support base 12 surface. For example, a chemical method (primer treatment) that improves the fixing force chemically such as a silane coupling agent, a physical method that increases surface active groups such as a flame (flame) treatment, or a surface such as a sandblast treatment Examples of such a mechanical processing method increase the catch by increasing the roughness of the material.
(積層工程)
 積層工程は、上記の樹脂層形成工程で得られたシリコーン樹脂層14のシリコーン樹脂面上にガラス基板16を積層し、支持基材12の層とシリコーン樹脂層14とガラス基板16の層とをこの順で備えるガラス積層体を得る工程である。より具体的には、図4(B)に示すように、シリコーン樹脂層14の支持基材12側とは反対側の表面14aと、第1主面16aおよび第2主面16bを有するガラス基板16の第1主面16aとを積層面として、シリコーン樹脂層14とガラス基板16とを積層し、ガラス積層体26を得る。
(Lamination process)
In the laminating step, the glass substrate 16 is laminated on the silicone resin surface of the silicone resin layer 14 obtained in the resin layer forming step, and the layer of the supporting base 12, the silicone resin layer 14, and the glass substrate 16 are laminated. This is a step of obtaining a glass laminate provided in this order. More specifically, as shown in FIG. 4B, a glass substrate having a surface 14a opposite to the support base 12 side of the silicone resin layer 14, and a first main surface 16a and a second main surface 16b. The silicone resin layer 14 and the glass substrate 16 are laminated by using the first principal surface 16a of 16 as a lamination surface to obtain a glass laminate 26.
 ガラス基板16をシリコーン樹脂層14上に積層する方法は特に制限されず、公知の方法を採用することができる。
 例えば、常圧環境下でシリコーン樹脂層14の表面上にガラス基板16を重ねる方法が挙げられる。なお、必要に応じて、シリコーン樹脂層14の表面上にガラス基板16を重ねた後、ロールやプレスを用いてシリコーン樹脂層14にガラス基板16を圧着させてもよい。ロールまたはプレスによる圧着により、シリコーン樹脂層14とガラス基板16の層との間に混入している気泡が比較的容易に除去されるので好ましい。
The method in particular of laminating | stacking the glass substrate 16 on the silicone resin layer 14 is not restrict | limited, A well-known method is employable.
For example, a method of stacking the glass substrate 16 on the surface of the silicone resin layer 14 under a normal pressure environment can be mentioned. If necessary, after the glass substrate 16 is overlaid on the surface of the silicone resin layer 14, the glass substrate 16 may be pressure-bonded to the silicone resin layer 14 using a roll or a press. Air bubbles mixed between the silicone resin layer 14 and the glass substrate 16 can be removed relatively easily by pressure bonding using a roll or a press, which is preferable.
 真空ラミネート法や真空プレス法により圧着すると、気泡の混入の抑制や良好な密着の確保が行われるのでより好ましい。真空下で圧着することにより、微小な気泡が残存した場合でも、加熱により気泡が成長することがなく、ガラス基板16のゆがみ欠陥につながりにくいという利点もある。 It is more preferable to perform pressure bonding by a vacuum laminating method or a vacuum pressing method because it can suppress mixing of bubbles and ensure good adhesion. By press-bonding under vacuum, even if minute bubbles remain, there is an advantage that the bubbles do not grow by heating and are not likely to lead to a distortion defect of the glass substrate 16.
 ガラス基板16を積層する際には、シリコーン樹脂層14に接触するガラス基板16の表面を十分に洗浄し、クリーン度の高い環境で積層することが好ましい。クリーン度が高いほど、ガラス基板16の平坦性は良好となるので好ましい。 When laminating the glass substrate 16, it is preferable that the surface of the glass substrate 16 in contact with the silicone resin layer 14 is sufficiently washed and laminated in an environment with a high cleanliness. The higher the degree of cleanliness, the better the flatness of the glass substrate 16, which is preferable.
 なお、ガラス基板16を積層した後、必要に応じて、プレアニール処理(加熱処理)を行ってもよい。該プレアニール処理を行うことにより、積層されたガラス基板16のシリコーン樹脂層14に対する密着性が向上し、適切な剥離強度(y)とすることができ、後述する部材形成工程の際に電子デバイス用部材の位置ずれなどが生じにくくなり、電子デバイスの生産性が向上する。
 プレアニール処理の条件は使用されるシリコーン樹脂層14の種類に応じて適宜最適な条件が選択されるが、ガラス基板16とシリコーン樹脂層14の間の剥離強度(y)をより適切なものとする点から、300℃以上(好ましくは、300~400℃)で5分間以上(好ましく、5~30分間)加熱処理を行うことが好ましい。
In addition, after laminating | stacking the glass substrate 16, you may perform a pre-annealing process (heat processing) as needed. By performing the pre-annealing treatment, the adhesion of the laminated glass substrate 16 to the silicone resin layer 14 can be improved, and an appropriate peel strength (y) can be obtained. Misalignment of members is less likely to occur, and the productivity of electronic devices is improved.
The conditions for the pre-annealing treatment are appropriately selected according to the type of the silicone resin layer 14 to be used, but the peel strength (y) between the glass substrate 16 and the silicone resin layer 14 is more appropriate. In view of this, it is preferable to perform heat treatment at 300 ° C. or higher (preferably 300 to 400 ° C.) for 5 minutes or longer (preferably 5 to 30 minutes).
(部材形成工程)
 部材形成工程は、上記積層工程において得られたガラス積層体26中のガラス基板16上に電子デバイス用部材を形成する工程である。より具体的には、図4(C)に示すように、ガラス基板16の第2主面16b(露出表面)上に電子デバイス用部材18を形成し、電子デバイス用部材付き積層体10を得る。
(Member formation process)
A member formation process is a process of forming the member for electronic devices on the glass substrate 16 in the glass laminated body 26 obtained in the said lamination process. More specifically, as shown in FIG. 4C, the electronic device member 18 is formed on the second main surface 16b (exposed surface) of the glass substrate 16 to obtain the laminated body 10 with the electronic device member. .
 本工程の手順は特に限定されず、電子デバイス用部材の構成部材の種類に応じて従来公知の方法にて、ガラス積層体26のガラス基板16の第2主面16b表面上に、電子デバイス用部材18を形成する。
 なお、電子デバイス用部材18は、ガラス基板16の第2主面16bに最終的に形成される部材の全部(以下、「全部材」という)ではなく、全部材の一部(以下、「部分部材」という)であってもよい。シリコーン樹脂層14から剥離された部分部材付きガラス基板を、その後の工程で全部材付きガラス基板(後述する電子デバイスに相当)とすることもできる。
 また、シリコーン樹脂層14から剥離された、全部材付きガラス基板には、その剥離面(第1主面16a)に他の電子デバイス用部材が形成されてもよい。また、全部材付き積層体を組み立て、その後、全部材付き積層体から支持基材12を剥離して、電子デバイスを製造することもできる。さらに、全部材付き積層体を2枚用いて組み立て、その後、全部材付き積層体から2枚の支持基材12を剥離して、2枚のガラス基板を有する部材付きガラス基板を製造することもできる。
The procedure of this step is not particularly limited, and for the electronic device, on the surface of the second main surface 16b of the glass substrate 16 of the glass laminate 26 by a conventionally known method according to the type of the constituent member of the electronic device member. The member 18 is formed.
The electronic device member 18 is not all of the members finally formed on the second main surface 16b of the glass substrate 16 (hereinafter referred to as “all members”), but a part of all members (hereinafter referred to as “parts”). May be referred to as a member. The glass substrate with a partial member peeled from the silicone resin layer 14 can be used as a glass substrate with an all member (corresponding to an electronic device described later) in the subsequent steps.
Moreover, the other electronic device member may be formed in the peeling surface (1st main surface 16a) in the glass substrate with all the members peeled from the silicone resin layer 14. FIG. Moreover, an electronic device can also be manufactured by assembling a laminate with all members and then peeling the support substrate 12 from the laminate with all members. Furthermore, it is also possible to assemble using two laminates with all members, and then peel off the two support bases 12 from the laminate with all members to produce a glass substrate with a member having two glass substrates. it can.
 例えば、OLEDを製造する場合を例にとると、ガラス基板16のシリコーン樹脂層14側とは反対側の表面上(ガラス基板16の第2主面16bに該当)に有機EL構造体を形成するために、透明電極を形成する、さらに透明電極を形成した面上にホール注入層・ホール輸送層・発光層・電子輸送層等を蒸着する、裏面電極を形成する、封止板を用いて封止する、等の各種の層形成や処理が行われる。これらの層形成や処理として、具体的には、例えば、成膜処理、蒸着処理、封止板の接着処理等が挙げられる。 For example, taking the case of manufacturing an OLED as an example, an organic EL structure is formed on the surface of the glass substrate 16 opposite to the silicone resin layer 14 (corresponding to the second main surface 16b of the glass substrate 16). For this purpose, a transparent electrode is formed, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, etc. are deposited on the surface on which the transparent electrode is formed, a back electrode is formed, and a sealing plate is used for sealing. Various layer formation and processing such as stopping are performed. Specific examples of the layer formation and processing include film formation processing, vapor deposition processing, sealing plate adhesion processing, and the like.
 また、例えば、TFT-LCDを製造する場合は、ガラス積層体26のガラス基板16の第2主面16b上に、レジスト液を用いて、CVD法およびスパッター法など、一般的な成膜法により形成される金属膜および金属酸化膜等にパターン形成して薄膜トランジスタ(TFT)を形成するTFT形成工程と、別のガラス積層体26のガラス基板16の第2主面16b上に、レジスト液をパターン形成に用いてカラーフィルタ(CF)を形成するCF形成工程と、TFT形成工程で得られたTFT付き積層体とCF形成工程で得られたCF付き積層体とを積層する貼合わせ工程等の各種工程を有する。 Further, for example, when manufacturing a TFT-LCD, a resist film is used on the second main surface 16b of the glass substrate 16 of the glass laminate 26 by a general film forming method such as a CVD method or a sputtering method. A pattern is formed on the formed metal film and metal oxide film to form a thin film transistor (TFT), and a resist solution is patterned on the second main surface 16b of the glass substrate 16 of another glass laminate 26. Various processes such as a CF forming step for forming a color filter (CF) to be used for forming, a laminating step for laminating a laminated body with TFT obtained in the TFT forming step and a laminated body with CF obtained in the CF forming step, etc. Process.
 TFT形成工程やCF形成工程では、周知のフォトリソグラフィ技術やエッチング技術等を用いて、ガラス基板16の第2主面16bにTFTやCFを形成する。この際、パターン形成用のコーティング液としてレジスト液が用いられる。
 なお、TFTやCFを形成する前に、必要に応じて、ガラス基板16の第2主面16bを洗浄してもよい。洗浄方法としては、周知のドライ洗浄やウェット洗浄を用いることができる。
In the TFT formation process and the CF formation process, the TFT and the CF are formed on the second main surface 16b of the glass substrate 16 by using a well-known photolithography technique, etching technique, or the like. At this time, a resist solution is used as a coating solution for pattern formation.
In addition, before forming TFT and CF, you may wash | clean the 2nd main surface 16b of the glass substrate 16 as needed. As a cleaning method, known dry cleaning or wet cleaning can be used.
 貼合わせ工程では、TFT付き積層体の薄膜トランジスタ形成面と、CF付き積層体のカラーフィルタ形成面とを対向させて、シール剤(例えば、セル形成用紫外線硬化型シール剤)を用いて貼り合わせる。その後、TFT付き積層体とCF付き積層体とで形成されたセル内に、液晶材を注入する。液晶材を注入する方法としては、例えば、減圧注入法、滴下注入法がある。 In the laminating step, the thin film transistor forming surface of the laminated body with TFT and the color filter forming surface of the laminated body with CF are opposed to each other, and are bonded using a sealant (for example, an ultraviolet curable sealant for cell formation). Thereafter, a liquid crystal material is injected into a cell formed by the laminate with TFT and the laminate with CF. Examples of the method for injecting the liquid crystal material include a reduced pressure injection method and a drop injection method.
 以下に、実施例などにより本発明を具体的に説明するが、本発明はこれらの例によって限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples and the like, but the present invention is not limited to these examples.
<実施例1>
 縦400mm、横300mm、厚さ0.7mm、線膨張係数38×10-7/℃の支持ガラス基板(旭硝子株式会社製、AN100)を純水洗浄、UV洗浄等で洗浄化した後、支持ガラス基板上に、無溶剤付加反応型剥離紙用シリコーン(信越シリコーン株式会社製 KNS-320A。オルガノアルケニルポリシロキサンとオルガノハイドロジェンポリシロキサンとの混合物)100質量部と白金系触媒(信越シリコーン株式会社製 CAT-PL-56)2質量部の混合物をスピンコーターにて塗工し(塗工量10g/m2)、180℃にて30分間大気中で加熱硬化して膜厚16μmのシリコーン樹脂層を得た。
 縦400mm、横300mm、厚さ0.7mm、線膨張係数38×10-7/℃の薄板ガラス基板(AN100)のシリコーン樹脂層と接触させる側の面を純水洗浄、UV洗浄等で清浄化した後、支持ガラス基板のシリコーン樹脂層形成面と、薄板ガラス基板とを、室温下真空プレスにて貼り合わせ、シリコーン樹脂層を有するガラス積層体Aを得た。
<Example 1>
A support glass substrate (Asahi Glass Co., Ltd., AN100) having a length of 400 mm, a width of 300 mm, a thickness of 0.7 mm, and a linear expansion coefficient of 38 × 10 −7 / ° C. is cleaned with pure water, UV cleaning, etc. Solvent-free addition reaction type release paper silicone (KNS-320A manufactured by Shin-Etsu Silicone Co., Ltd., mixture of organoalkenylpolysiloxane and organohydrogenpolysiloxane) and platinum catalyst (manufactured by Shin-Etsu Silicone Co., Ltd.) (CAT-PL-56) 2 parts by weight of the mixture was applied with a spin coater (coating amount 10 g / m 2 ), and heated and cured in the air at 180 ° C. for 30 minutes to form a silicone resin layer having a thickness of 16 μm. Obtained.
Clean the surface of the thin glass substrate (AN100) with a length of 400 mm, width of 300 mm, thickness of 0.7 mm, and linear expansion coefficient of 38 × 10 −7 / ° C. with pure water cleaning, UV cleaning, etc. Then, the silicone resin layer forming surface of the supporting glass substrate and the thin glass substrate were bonded together by a vacuum press at room temperature to obtain a glass laminate A having a silicone resin layer.
 次に、ガラス積層体Aを大気下で350℃にて60分間加熱処理を行った。
 そして、ガラス積層体Aの4箇所のうち1箇所のコーナー部における薄板ガラス基板とシリコーン樹脂層との界面に、厚さ0.1mmのステンレス製刃物を挿入させて剥離の切欠部を形成した。次に、薄板ガラス基板と支持ガラス基板のそれぞれの剥離面側でない面に真空吸着パッドを吸着させ、シリコーン樹脂層と薄板ガラス基板との剥離界面の境界線である剥離線に、シリンジを用いてメタノール(溶解度パラメータ:14.5cal/cm3)を供給しながら、薄板ガラス基板と支持ガラス基板とが分離する方向に外力を加えたところ、薄板ガラス基板は破損すること無く分離した。
Next, the glass laminate A was heat-treated at 350 ° C. for 60 minutes in the atmosphere.
Then, a stainless steel cutting tool having a thickness of 0.1 mm was inserted into the interface between the thin glass substrate and the silicone resin layer at one corner of the four portions of the glass laminate A to form a notch for peeling. Next, a vacuum suction pad is adsorbed on the surface of each of the thin glass substrate and the supporting glass substrate that is not on the separation surface side, and a syringe is used for the separation line that is the boundary line between the silicone resin layer and the thin glass substrate. While supplying methanol (solubility parameter: 14.5 cal / cm 3 ), when an external force was applied in a direction in which the thin glass substrate and the supporting glass substrate were separated, the thin glass substrate was separated without being damaged.
(剥離強度の測定)
 日本国特許第5200538号の段落0050に記載の治具を用いて、剥離試験を行った。使用した治具を図5に示す。図5中、ガラス積層体Aは、支持ガラス基板40、シリコーン樹脂層30、薄板ガラス基板50を有する。
 ガラス積層体Aを縦50mm×横50mmの大きさに切断し、ガラス積層体Aの両側のガラス(支持ガラス基板40および薄板ガラス基板50)表面に、縦50mm×横50mm×厚さ5mmのポリカーボネート60をエポキシ2液ガラス用接着剤で各々貼り合わせた。さらに、両方の貼り合わせたポリカーボネート60の表面に、縦50mm×横50mm×厚さ5mmのポリカーボネート70をそれぞれさらに垂直に貼り合わせた。ポリカーボネート70の貼り合わせた場所は、図5のとおり、縦方向はポリカーボネート60の最も端の位置に、横方向はポリカーボネート60の辺と平行な位置とした。
 ポリカーボネート60および70を貼り合わせたガラス積層体Aを支持ガラス基板が下側になるように設置した。薄板ガラス基板側に貼り付けたポリカーボネート70を治具で固定し、支持ガラス基板側に貼り付けたポリカーボネート70を垂直下方に300mm/minの速度で引き離したところ、0.34kg/cmがかかったときに支持ガラス基板がはがれた。
(Measurement of peel strength)
A peel test was performed using the jig described in paragraph 0050 of Japanese Patent No. 5200538. The jig used is shown in FIG. In FIG. 5, the glass laminate A includes a supporting glass substrate 40, a silicone resin layer 30, and a thin glass substrate 50.
The glass laminate A is cut into a size of 50 mm in length and 50 mm in width, and a polycarbonate of 50 mm in length, 50 mm in width, and 5 mm in thickness on the glass (supporting glass substrate 40 and thin glass substrate 50) on both sides of the glass laminate A. 60 were bonded together with an adhesive for epoxy two-component glass. Further, polycarbonates 70 each having a length of 50 mm, a width of 50 mm, and a thickness of 5 mm were further vertically bonded to the surfaces of both the bonded polycarbonates 60. As shown in FIG. 5, the place where the polycarbonate 70 is bonded is the position where the vertical direction is the end of the polycarbonate 60 and the horizontal direction is parallel to the side of the polycarbonate 60.
The glass laminate A bonded with the polycarbonates 60 and 70 was placed so that the supporting glass substrate was on the lower side. The polycarbonate 70 affixed to the thin glass substrate side was fixed with a jig, and the polycarbonate 70 affixed to the support glass substrate side was pulled vertically downward at a speed of 300 mm / min. As a result, 0.34 kg / cm 2 was applied. Sometimes the supporting glass substrate peeled off.
<実施例2>
 メタノール(溶解度パラメータ:14.5cal/cm3)の代わりに、エタノール(溶解度パラメータ:12.7cal/cm3)を用いた以外は、実施例1と同様の手順に従い、薄板ガラス基板の剥離を行ったところ、薄板ガラス基板は破損すること無く分離した。なお、剥離強度の測定結果を表1に示す。
<Example 2>
The thin glass substrate was peeled according to the same procedure as in Example 1 except that ethanol (solubility parameter: 12.7 cal / cm 3 ) was used instead of methanol (solubility parameter: 14.5 cal / cm 3 ). As a result, the thin glass substrate was separated without breaking. Table 1 shows the measurement results of the peel strength.
<実施例3>
 メタノール(溶解度パラメータ:14.5cal/cm3)の代わりに、エタノール(溶解度パラメータ:12.7cal/cm3)と水との混合溶液(エタノール:水(質量比)=1:1)を用いた以外は、実施例1と同様の手順に従い、薄板ガラス基板の剥離を行ったところ、薄板ガラス基板は破損すること無く分離した。なお、剥離強度の測定結果を表1に示す。
<Example 3>
Instead of, ethanol (solubility parameter: 12.7cal / cm 3): methanol (14.5cal / cm 3 Solubility Parameter) mixed solution of water (ethanol: water (mass ratio) = 1: 1) was used Except for the above, the thin glass substrate was peeled according to the same procedure as in Example 1, and the thin glass substrate was separated without being damaged. Table 1 shows the measurement results of the peel strength.
<実施例4>
 メタノール(溶解度パラメータ:14.5cal/cm3)の代わりに、エタノールおよび1-プロパノールの混合溶液(含有量:エタノール90質量%、1-プロパノール10質量%。溶解度パラメータ:エタノール12.7cal/cm3、1-プロパノール12.0cal/cm3)を用いた以外は、実施例1と同様の手順に従い、薄板ガラス基板の剥離を行ったところ、薄板ガラス基板は破損すること無く分離した。なお、剥離強度の測定結果を表1に示す。
<Example 4>
Instead of methanol (solubility parameter: 14.5 cal / cm 3 ), a mixed solution of ethanol and 1-propanol (content: ethanol 90 mass%, 1-propanol 10 mass%. Solubility parameter: ethanol 12.7 cal / cm 3) Except for using 1-propanol 12.0 cal / cm 3 ), the thin glass substrate was peeled according to the same procedure as in Example 1, and the thin glass substrate was separated without being damaged. Table 1 shows the measurement results of the peel strength.
<実施例5>
 メタノール(溶解度パラメータ:14.5cal/cm3)の代わりに、1-プロパノール(溶解度パラメータ:12.0cal/cm3)を用いた以外は、実施例1と同様の手順に従い、薄板ガラス基板の剥離を行ったところ、薄板ガラス基板は破損すること無く分離した。なお、剥離強度の測定結果を表1に示す。
<Example 5>
The thin glass substrate was peeled according to the same procedure as in Example 1 except that 1-propanol (solubility parameter: 12.0 cal / cm 3 ) was used instead of methanol (solubility parameter: 14.5 cal / cm 3 ). As a result, the thin glass substrate was separated without being damaged. Table 1 shows the measurement results of the peel strength.
<実施例6>
 メタノール(溶解度パラメータ:14.5cal/cm3)の代わりに、イソプロパノール(溶解度パラメータ:11.5cal/cm3)を用いた以外は、実施例1と同様の手順に従い、薄板ガラス基板の剥離を行ったところ、薄板ガラス基板は破損すること無く分離した。なお、剥離強度の測定結果を表1に示す。
<Example 6>
Methanol (solubility parameter: 14.5cal / cm 3) in place of isopropanol (solubility parameter: 11.5cal / cm 3) except for using, in accordance with the procedure as in Example 1, subjected to a peeling of the thin glass substrate As a result, the thin glass substrate was separated without breaking. Table 1 shows the measurement results of the peel strength.
<実施例7>
 メタノール(溶解度パラメータ:14.5cal/cm3)の代わりに、1-ブタノール(溶解度パラメータ:11.4cal/cm3)を用いた以外は、実施例1と同様の手順に従い、薄板ガラス基板の剥離を行ったところ、薄板ガラス基板は破損すること無く分離した。なお、剥離強度の測定結果を表1に示す。
<Example 7>
The thin glass substrate was peeled according to the same procedure as in Example 1 except that 1-butanol (solubility parameter: 11.4 cal / cm 3 ) was used instead of methanol (solubility parameter: 14.5 cal / cm 3 ). As a result, the thin glass substrate was separated without being damaged. Table 1 shows the measurement results of the peel strength.
<実施例8>
 メタノール(溶解度パラメータ:14.5cal/cm3)の代わりに、1-ヘキサノール(溶解度パラメータ:10.7cal/cm3)を用いた以外は、実施例1と同様の手順に従い、薄板ガラス基板の剥離を行ったところ、薄板ガラス基板は破損すること無く分離した。なお、剥離強度の測定結果を表1に示す。
<Example 8>
The thin glass substrate was peeled according to the same procedure as in Example 1 except that 1-hexanol (solubility parameter: 10.7 cal / cm 3 ) was used instead of methanol (solubility parameter: 14.5 cal / cm 3 ). As a result, the thin glass substrate was separated without being damaged. Table 1 shows the measurement results of the peel strength.
<実施例9>
 メタノール(溶解度パラメータ:14.5cal/cm3)の代わりに、ジメチルスルホキシド(溶解度パラメータ:12.0cal/cm3)を用いた以外は、実施例1と同様の手順に従い、薄板ガラス基板の剥離を行ったところ、薄板ガラス基板は破損すること無く分離した。なお、剥離強度の測定結果を表1に示す。
<Example 9>
The thin glass substrate was peeled according to the same procedure as in Example 1 except that dimethyl sulfoxide (solubility parameter: 12.0 cal / cm 3 ) was used instead of methanol (solubility parameter: 14.5 cal / cm 3 ). As a result, the thin glass substrate was separated without breaking. Table 1 shows the measurement results of the peel strength.
<実施例10>
 メタノール(溶解度パラメータ:14.5cal/cm3)の代わりに、ジメチルホルムアミド(溶解度パラメータ:12.1cal/cm3)を用いた以外は、実施例1と同様の手順に従い、薄板ガラス基板の剥離を行ったところ、薄板ガラス基板は破損すること無く分離した。なお、剥離強度の測定結果を表1に示す。
<Example 10>
The thin glass substrate was peeled according to the same procedure as in Example 1 except that dimethylformamide (solubility parameter: 12.1 cal / cm 3 ) was used instead of methanol (solubility parameter: 14.5 cal / cm 3 ). As a result, the thin glass substrate was separated without breaking. Table 1 shows the measurement results of the peel strength.
<実施例11>
 メタノール(溶解度パラメータ:14.5cal/cm3)の代わりに、N-メチルピロリドン(溶解度パラメータ:11.3cal/cm3)を用いた以外は、実施例1と同様の手順に従い、薄板ガラス基板の剥離を行ったところ、薄板ガラス基板は破損すること無く分離した。なお、剥離強度の測定結果を表1に示す。
<Example 11>
A thin glass substrate was prepared in the same manner as in Example 1 except that N-methylpyrrolidone (solubility parameter: 11.3 cal / cm 3 ) was used instead of methanol (solubility parameter: 14.5 cal / cm 3 ). As a result of peeling, the thin glass substrate was separated without being damaged. Table 1 shows the measurement results of the peel strength.
<比較例1>
 メタノール(溶解度パラメータ:14.5cal/cm3)の供給を行わなかった以外は、実施例1と同様の手順に従い、薄板ガラス基板の剥離を行ったところ、薄板ガラス基板は剥離し難く、薄板ガラス基板の破損が見られた。なお、剥離強度の結果を表1に示す。
<Comparative Example 1>
The thin glass substrate was peeled off according to the same procedure as in Example 1 except that methanol (solubility parameter: 14.5 cal / cm 3 ) was not supplied. Damage to the substrate was observed. The results of peel strength are shown in Table 1.
<比較例2>
 メタノール(溶解度パラメータ:14.5cal/cm3)の代わりに、ヘプタン(溶解度パラメータ:7.4cal/cm3)を用いた以外は、実施例1と同様の手順に従い、薄板ガラス基板の剥離を行ったところ、薄板ガラス基板は剥離し難く、薄板ガラス基板の破損が見られた。なお、剥離強度の結果を表1に示す。
<Comparative example 2>
The thin glass substrate was peeled according to the same procedure as in Example 1 except that heptane (solubility parameter: 7.4 cal / cm 3 ) was used instead of methanol (solubility parameter: 14.5 cal / cm 3 ). As a result, the thin glass substrate was hardly peeled off, and the thin glass substrate was damaged. The results of peel strength are shown in Table 1.
 表1中、「ガラス剥離」欄は、薄板ガラスの剥離が問題なく進行した場合を「○」、薄板ガラスの破損や剥離が進行しにくかった場合を「×」とした。
 なお、表1中、実施例3の「SP値」欄はエタノールのSP値を、実施例4の「SP値」欄はエタノールと1-プロパノールのSP値をそれぞれ示す。
In Table 1, the “Glass peeling” column is indicated by “◯” when the peeling of the thin glass proceeds without any problem, and “X” when the breakage or peeling of the thin glass is difficult to proceed.
In Table 1, the “SP value” column of Example 3 shows the SP value of ethanol, and the “SP value” column of Example 4 shows the SP value of ethanol and 1-propanol.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、所定のSP値を示す有機溶媒、または、該有機溶媒と水との混合溶液を使用した場合は、剥離強度が低下し、剥離の際に薄板ガラス基板の破損が見られなかった。
 一方、上記有機溶媒または混合溶液を使用しなかった比較例1、および、SP値が所定の範囲外である有機溶媒を使用した比較例2では、剥離強度が大きく、剥離の際に薄板ガラス基板の破損が見られた。
As shown in Table 1, when an organic solvent exhibiting a predetermined SP value or a mixed solution of the organic solvent and water is used, the peel strength decreases, and the thin glass substrate is damaged during the peeling. I couldn't.
On the other hand, in Comparative Example 1 in which the above organic solvent or mixed solution was not used and in Comparative Example 2 in which an organic solvent having an SP value outside the predetermined range was used, the peel strength was large, and a thin glass substrate was used for peeling. Damage was seen.
<実施例12>
 本実施例では、実施例1で得たガラス積層体Aを用いてOLEDを製造した。
 より具体的には、ガラス積層体Aの薄板ガラス基板に、スパッタリング法によりモリブデンを成膜し、フォトリソグラフィ法を用いたエッチングによりゲート電極を形成した。次に、プラズマCVD法により、ゲート電極を設けた剥離性ガラス基板の第2主面側に、さらに窒化シリコン、真性アモルファスシリコン、n型アモルファスシリコンの順に成膜し、続いてスパッタリング法によりモリブデンを成膜し、フォトリソグラフィ法を用いたエッチングにより、ゲート絶縁膜、半導体素子部およびソース/ドレイン電極を形成した。次に、プラズマCVD法により、剥離性ガラス基板の第2主面側に、さらに窒化シリコンを成膜してパッシベーション層を形成した後に、スパッタリング法により酸化インジウム錫を成膜して、フォトリソグラフィ法を用いたエッチングにより、画素電極を形成した。
 続いて、得られた積層体の薄板ガラス基板側表面上に、さらに蒸着法により正孔注入層として4,4’,4”-トリス(3-メチルフェニルフェニルアミノ)トリフェニルアミン、正孔輸送層としてビス[(N-ナフチル)-N-フェニル]ベンジジン、発光層として8-キノリノールアルミニウム錯体(Alq3)に2,6-ビス[4-[N-(4-メトキシフェニル)-N-フェニル]アミノスチリル]ナフタレン-1,5-ジカルボニトリル(BSN-BCN)を40体積%混合したもの、電子輸送層としてAlq3をこの順に成膜した。次に、得られた積層体の薄板ガラス基板側表面上に、スパッタリング法によりアルミニウムを成膜し、フォトリソグラフィ法を用いたエッチングにより対向電極を形成した。次に、対向電極を形成した面上に、紫外線硬化型の接着層を介してもう一枚のガラス基板を貼り合わせて封止した。上記手順によって得られた、薄板ガラス基板上に有機EL構造体を有するガラス積層体A2は、電子デバイス用部材付き積層体に該当する。
 なお、上記製造プロセスにおいて、加熱処理としては、350℃にて1時間の処理が最も高温での処理であった。
<Example 12>
In this example, an OLED was manufactured using the glass laminate A obtained in Example 1.
More specifically, molybdenum was deposited on the thin glass substrate of the glass laminate A by a sputtering method, and a gate electrode was formed by etching using a photolithography method. Next, silicon nitride, intrinsic amorphous silicon, and n-type amorphous silicon are further formed in this order on the second main surface side of the peelable glass substrate provided with the gate electrode by plasma CVD, and then molybdenum is formed by sputtering. A gate insulating film, a semiconductor element portion, and source / drain electrodes were formed by film formation and etching using a photolithography method. Next, after forming a passivation layer by forming a silicon nitride film on the second main surface side of the peelable glass substrate by a plasma CVD method, an indium tin oxide film is formed by a sputtering method. A pixel electrode was formed by etching using.
Subsequently, 4,4 ′, 4 ″ -tris (3-methylphenylphenylamino) triphenylamine as a hole injection layer was further deposited on the surface of the obtained laminate on the side of the thin glass substrate by vapor deposition. The layer is bis [(N-naphthyl) -N-phenyl] benzidine, and the light-emitting layer is 8-quinolinol aluminum complex (Alq 3 ) with 2,6-bis [4- [N- (4-methoxyphenyl) -N-phenyl. Aminostyryl] A mixture of 40% by volume of naphthalene-1,5-dicarbonitrile (BSN-BCN), and Alq 3 as an electron transport layer were formed in this order. An aluminum film was formed on the substrate side surface by sputtering, and a counter electrode was formed by etching using a photolithography method. A glass substrate A2 having an organic EL structure on a thin glass substrate, obtained by the above procedure, was sealed on the surface with another glass substrate bonded via an ultraviolet curable adhesive layer. It corresponds to the laminated body with the member for electronic devices.
In the above manufacturing process, the heat treatment at 350 ° C. for 1 hour was the treatment at the highest temperature.
 ガラス積層体A1の代わりに上記ガラス積層体A2を用いた以外は、実施例1と同様の手順に従って、シリコーン樹脂層と薄板ガラス基板との剥離を行ったところ、実施例1と同程度の剥離強度にて両者の剥離が進行し、薄板ガラス基板および電子デバイス用部材を含む電子デバイスを得ることができた。 Except that the glass laminate A2 was used in place of the glass laminate A1, the silicone resin layer and the thin glass substrate were separated according to the same procedure as in Example 1, and the same degree of separation as in Example 1 was performed. Separation of both proceeded with strength, and an electronic device including a thin glass substrate and an electronic device member could be obtained.
 また、上記実施例1の手順の代わりに、実施例2~11のそれぞれの手順を実施した場合でも、それぞれ実施例2~11と同程度の剥離強度にて、シリコーン樹脂層と薄板ガラス基板との剥離を行うことができ、薄板ガラス基板および電子デバイス用部材を含む電子デバイスを得ることができた。 Further, even when the procedures of Examples 2 to 11 were carried out instead of the procedure of Example 1, the silicone resin layer and the thin glass substrate were peeled off at the same degree as those of Examples 2 to 11, respectively. The electronic device including the thin glass substrate and the electronic device member could be obtained.
 一方、上記実施例1の手順の代わりに、比較例1~2のそれぞれの手順を実施した場合、シリコーン樹脂層と薄板ガラス基板との剥離に際して、薄板ガラス基板の破損が生じ、所望の電子デバイスを得ることができなかった。 On the other hand, when the procedures of Comparative Examples 1 and 2 are carried out instead of the procedure of Example 1, the thin glass substrate is damaged when the silicone resin layer is peeled off from the thin glass substrate, and the desired electronic device Could not get.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の範囲と精神を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2013年7月31日出願の日本特許出願2013-159724に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the scope and spirit of the invention.
This application is based on Japanese Patent Application No. 2013-159724 filed on July 31, 2013, the contents of which are incorporated herein by reference.
 10  電子デバイス用部材付き積層体
 12  支持基材
 14,30  シリコーン樹脂層
 14a シリコーン樹脂層の第1主面
 16  ガラス基板
 16a ガラス基板の第1主面
 16b ガラス基板の第2主面
 18  電子デバイス用部材
 20  シリコーン樹脂層付き支持基材
 22  電子デバイス
 24  溶液
 26  ガラス積層体
 40  支持ガラス基板
 50  薄板ガラス基板
 60,70  ポリカーボネート
 80  液晶パネル
 82  TFT基板
 83  TFT素子
 84  CF基板
 85  カラーフィルタ素子
 90  電子ペーパ
 91  電子ペーパ素子
 92  TFT層
 94  電気工学媒体の層
 96  透明電極
DESCRIPTION OF SYMBOLS 10 Laminated body with member for electronic devices 12 Support base material 14,30 Silicone resin layer 14a 1st main surface of silicone resin layer 16 Glass substrate 16a 1st main surface of glass substrate 16b 2nd main surface of glass substrate 18 For electronic devices Member 20 Support substrate with silicone resin layer 22 Electronic device 24 Solution 26 Glass laminate 40 Support glass substrate 50 Thin glass substrate 60, 70 Polycarbonate 80 Liquid crystal panel 82 TFT substrate 83 TFT element 84 CF substrate 85 Color filter element 90 Electronic paper 91 Electronic paper elements 92 TFT layers 94 Layers of electrical engineering media 96 Transparent electrodes

Claims (5)

  1.  支持基材と、シリコーン樹脂層と、ガラス基板と、電子デバイス用部材とをこの順で有する電子デバイス用部材付き積層体から、前記シリコーン樹脂層と前記ガラス基板との界面を剥離面として、前記支持基材および前記シリコーン樹脂層を含むシリコーン樹脂層付き支持基材と、前記ガラス基板および前記電子デバイス用部材を含む電子デバイスとを分離して、前記電子デバイスを得る工程を有する電子デバイスの製造方法であって、
     前記シリコーン樹脂層と前記ガラス基板との剥離界面の境界線である剥離線に、溶解度パラメータが10超の有機溶媒、または、前記有機溶媒と水との混合溶液を供給して、前記シリコーン樹脂層付き支持基材と前記電子デバイスとの分離を行う、電子デバイスの製造方法。
    From a laminate with an electronic device member having a support base material, a silicone resin layer, a glass substrate, and an electronic device member in this order, the interface between the silicone resin layer and the glass substrate as a release surface, Manufacturing of an electronic device having a step of obtaining the electronic device by separating the supporting substrate with a silicone resin layer including the supporting substrate and the silicone resin layer, and the electronic device including the glass substrate and the electronic device member. A method,
    An organic solvent having a solubility parameter of more than 10 or a mixed solution of the organic solvent and water is supplied to a peeling line which is a boundary line of a peeling interface between the silicone resin layer and the glass substrate, and the silicone resin layer The manufacturing method of an electronic device which performs isolation | separation with a support substrate with an attachment, and the said electronic device.
  2.  前記有機溶媒が、ハロゲン原子を有していてもよいアルコール系溶媒、または、非プロトン性極性溶媒を含む、請求項1に記載の電子デバイスの製造方法。 The method for producing an electronic device according to claim 1, wherein the organic solvent includes an alcohol solvent that may have a halogen atom or an aprotic polar solvent.
  3.  前記有機溶媒が、炭素数1~6のアルコール系溶媒、ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、N-メチルピロリドン(NMP)、スルホラン、および、アセトニトリルからなる群から選択される少なくとも1種を含む、請求項1または2に記載の電子デバイスの製造方法。 The organic solvent is an alcohol solvent having 1 to 6 carbon atoms, dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), sulfolane, and acetonitrile. The manufacturing method of the electronic device of Claim 1 or 2 containing at least 1 sort (s) selected from the group which consists of these.
  4.  前記シリコーン樹脂層中のシリコーン樹脂が、オルガノアルケニルポリシロキサンとオルガノハイドロジェンポリシロキサンの反応硬化物である、請求項1~3のいずれか1項に記載の電子デバイスの製造方法。 The method for producing an electronic device according to any one of claims 1 to 3, wherein the silicone resin in the silicone resin layer is a reaction cured product of an organoalkenylpolysiloxane and an organohydrogenpolysiloxane.
  5.  前記シリコーン樹脂は、付加反応型シリコーンの硬化物であり、
     前記付加反応型シリコーンは、下記(a)及び(b)を含む硬化性シリコーン樹脂組成物であり、
     前記シリコーン樹脂層は、前記硬化性シリコーン樹脂組成物を前記支持基材の表面で硬化させることにより形成される請求項4に記載の電子デバイスの製造方法:
    (a)アルケニル基を1分子あたり少なくとも2個有する線状オルガノポリシロキサン、
    (b)ケイ素原子に結合した水素原子を1分子あたり少なくとも3個有する線状オルガノポリシロキサンであって、かつ、ケイ素原子に結合した水素原子の少なくとも1個が分子末端のケイ素原子に存在している線状オルガノポリシロキサン。
    The silicone resin is a cured product of addition reaction type silicone,
    The addition reaction type silicone is a curable silicone resin composition containing the following (a) and (b):
    The said silicone resin layer is a manufacturing method of the electronic device of Claim 4 formed by hardening the said curable silicone resin composition on the surface of the said support base material:
    (A) a linear organopolysiloxane having at least two alkenyl groups per molecule;
    (B) a linear organopolysiloxane having at least three hydrogen atoms bonded to a silicon atom per molecule, and at least one of the hydrogen atoms bonded to the silicon atom is present on the silicon atom at the molecular end. Linear organopolysiloxane.
PCT/JP2014/069461 2013-07-31 2014-07-23 Electronic device manufacturing method WO2015016113A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480043262.4A CN105432147B (en) 2013-07-31 2014-07-23 The manufacture method of electronic equipment
JP2015529529A JPWO2015016113A1 (en) 2013-07-31 2014-07-23 Manufacturing method of electronic device
KR1020167002335A KR20160039192A (en) 2013-07-31 2014-07-23 Electronic device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013159724 2013-07-31
JP2013-159724 2013-07-31

Publications (1)

Publication Number Publication Date
WO2015016113A1 true WO2015016113A1 (en) 2015-02-05

Family

ID=52431649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069461 WO2015016113A1 (en) 2013-07-31 2014-07-23 Electronic device manufacturing method

Country Status (5)

Country Link
JP (1) JPWO2015016113A1 (en)
KR (1) KR20160039192A (en)
CN (1) CN105432147B (en)
TW (1) TW201518083A (en)
WO (1) WO2015016113A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017041391A (en) * 2015-08-21 2017-02-23 旭硝子株式会社 Peeling device for laminate, peeling method, and manufacturing method of electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110969931B (en) * 2018-09-29 2022-08-23 杰宜斯科技有限公司 Reworking device and method for display module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03205465A (en) * 1990-01-08 1991-09-06 Nippon Telegr & Teleph Corp <Ntt> Resist releasing liquid
JP2005189397A (en) * 2003-12-25 2005-07-14 Nikon Corp Splice method of thin film filters
JP2011022818A (en) * 2009-07-16 2011-02-03 Semiconductor Energy Lab Co Ltd Touch panel and method for producing the same
WO2011024775A1 (en) * 2009-08-28 2011-03-03 荒川化学工業株式会社 Support, glass substrate laminate, support-equipped display device panel, and method for manufacturing a display device panel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6326130B1 (en) * 1993-10-07 2001-12-04 Mallinckrodt Baker, Inc. Photoresist strippers containing reducing agents to reduce metal corrosion
TW594947B (en) * 2001-10-30 2004-06-21 Semiconductor Energy Lab Semiconductor device and method of manufacturing the same
ATE450595T1 (en) * 2004-08-03 2009-12-15 Mallinckrodt Baker Inc CLEANING AGENT FOR MICROELECTRONICS SUBSTRATES

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03205465A (en) * 1990-01-08 1991-09-06 Nippon Telegr & Teleph Corp <Ntt> Resist releasing liquid
JP2005189397A (en) * 2003-12-25 2005-07-14 Nikon Corp Splice method of thin film filters
JP2011022818A (en) * 2009-07-16 2011-02-03 Semiconductor Energy Lab Co Ltd Touch panel and method for producing the same
WO2011024775A1 (en) * 2009-08-28 2011-03-03 荒川化学工業株式会社 Support, glass substrate laminate, support-equipped display device panel, and method for manufacturing a display device panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017041391A (en) * 2015-08-21 2017-02-23 旭硝子株式会社 Peeling device for laminate, peeling method, and manufacturing method of electronic device
CN106469682A (en) * 2015-08-21 2017-03-01 旭硝子株式会社 The stripping off device of duplexer and the manufacture method of stripping means and electronic device

Also Published As

Publication number Publication date
KR20160039192A (en) 2016-04-08
JPWO2015016113A1 (en) 2017-03-02
TW201518083A (en) 2015-05-16
CN105432147B (en) 2017-10-20
CN105432147A (en) 2016-03-23

Similar Documents

Publication Publication Date Title
JP5924344B2 (en) LAMINATE, METHOD FOR PRODUCING LAMINATE, AND METHOD FOR PRODUCING GLASS SUBSTRATE WITH ELECTRONIC DEVICE MEMBER
JP6136909B2 (en) Manufacturing method of support substrate with resin layer, manufacturing method of glass laminate, manufacturing method of electronic device
JP5796449B2 (en) Manufacturing method of electronic device, manufacturing method of carrier substrate with resin layer
JP6443350B2 (en) Glass laminate
JP6252490B2 (en) GLASS LAMINATE, PROCESS FOR PRODUCING THE SAME, AND SUPPORT SUBSTRATE WITH SILICONE RESIN LAYER
WO2015156395A1 (en) Glass laminate, method for producing same and method for manufacturing electronic device
TWI613073B (en) Glass laminate, method of manufacturing the same, and support substrate with oxy-resin layer
KR20130039701A (en) Method for producing electronic device
JP6610563B2 (en) Glass laminate, electronic device manufacturing method, glass laminate manufacturing method, glass plate package
TW201113155A (en) Manufacturing method for electronic device
WO2015146920A1 (en) Glass laminate
WO2016080312A1 (en) Glass laminate, method for producing same and method for manufacturing electronic device
WO2018092688A1 (en) Laminated substrate and method for manufacturing electronic device
KR102526047B1 (en) Glass laminate and method for producing same
JP5978912B2 (en) Manufacturing method of glass laminate and manufacturing method of electronic device
WO2015016113A1 (en) Electronic device manufacturing method
JP2015231668A (en) Glass laminate and method for producing the same, and supporting substrate having silicone resin layer and method for producing the same
JP2014080348A (en) Method of manufacturing glass laminate and method of manufacturing electronic device
TWI656967B (en) Glass laminated body, manufacturing method thereof, and manufacturing method of electronic device
JP2014079730A (en) Method of manufacturing glass laminate, and method of manufacturing electronic device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480043262.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832293

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015529529

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167002335

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832293

Country of ref document: EP

Kind code of ref document: A1