WO2014196360A1 - Piezoelectric sensor and electronic device - Google Patents

Piezoelectric sensor and electronic device Download PDF

Info

Publication number
WO2014196360A1
WO2014196360A1 PCT/JP2014/063468 JP2014063468W WO2014196360A1 WO 2014196360 A1 WO2014196360 A1 WO 2014196360A1 JP 2014063468 W JP2014063468 W JP 2014063468W WO 2014196360 A1 WO2014196360 A1 WO 2014196360A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
piezoelectric
unit
piezoelectric layer
piezoelectric sensor
Prior art date
Application number
PCT/JP2014/063468
Other languages
French (fr)
Japanese (ja)
Inventor
裕次 渡津
喜子 末▲富▼
栄二 角谷
啓佑 尾▲崎▼
柴田 淳一
勝己 ▲徳▼野
奥村 秀三
面 了明
Original Assignee
日本写真印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本写真印刷株式会社 filed Critical 日本写真印刷株式会社
Publication of WO2014196360A1 publication Critical patent/WO2014196360A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • G01L1/146Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors for measuring force distributions, e.g. using force arrays

Definitions

  • the present invention relates to a piezoelectric sensor that generates a piezoelectric signal corresponding to a load, and more particularly to a piezoelectric sensor that can detect a position where a load is applied.
  • Patent Document 1 discloses a transparent piezoelectric sensor including a transparent pressure-sensitive layer and a pair of transparent conductive layers.
  • the transparent piezoelectric sensor of Patent Document 1 can detect a given load, but cannot detect the position in the transparent piezoelectric sensor.
  • the present invention is configured as follows.
  • the piezoelectric sensor includes a piezoelectric layer, a first electrode and a second electrode portion stacked on the first main surface of the piezoelectric layer, and a second main surface opposite to the first main surface of the piezoelectric layer. And a reference electrode.
  • the first electrode unit is composed of a plurality of first unit electrodes arranged at intervals. The first unit electrode extends from the first side to the second side opposite to the first side, and decreases in size in the width direction as it approaches the second side.
  • the second electrode portion is composed of a plurality of second unit electrodes arranged at intervals. The second unit electrode extends in the same direction as the first electrode, and decreases in size in the width direction as it approaches the first side.
  • the second unit electrode is arranged so as to mesh with the first unit electrode in plan view.
  • the proportion of the first unit electrode increases, and conversely, the proportion of the second unit electrode increases as it approaches the second side. Therefore, when the load is applied to the piezoelectric sensor and the charge is generated, the load amount is detected at the position where the load is applied by calculating the ratio between the unit electrode position where the charge is detected and the charge amount. Is possible.
  • the pitch length of the first unit electrode and the second unit electrode is designed to be shorter than the length of the short diameter of the contact surface formed between the input unit and the piezoelectric sensor when the input unit contacts the piezoelectric sensor. It may be.
  • the input means comes into contact with the piezoelectric sensor, the input means comes into contact with at least the first unit electrode and the second unit electrode.
  • the number of places where the input means can be detected increases, so that more accurate position detection is possible.
  • the pitch length of the first unit electrode and the pitch length of the second unit electrode may be 1 mm to 16 mm.
  • the piezoelectric layer may be composed of an active piezoelectric portion and an inactive piezoelectric portion, and a first electrode and a second electrode may be laminated on the active piezoelectric portion.
  • the first electrode may be provided on the first main surface side of the piezoelectric sensor, and the second electrode may be provided on the second main surface side of the piezoelectric sensor.
  • the crosstalk phenomenon that occurs between the first electrode and the second electrode is reduced. As a result, the accuracy of position detection and load detection is improved.
  • the upper electrode may contain indium tin oxide or polyethyldioxothiophene.
  • a piezoelectric sensor can be disposed on a display device such as a liquid crystal or an organic EL.
  • the lower electrode may contain indium tin oxide or polyethyldioxothiophene.
  • the piezoelectric sensor can be disposed on a display device such as a liquid crystal or an organic EL.
  • the piezoelectric layer may be composed of an organic piezoelectric material.
  • the piezoelectric sensor can be arranged on an R curved surface.
  • the organic piezoelectric material may contain polyvinylidene fluoride or polylactic acid.
  • the piezoelectric sensor can be disposed on a display device such as a liquid crystal or an organic EL.
  • the piezoelectric layer may be made of an inorganic material.
  • the pressure detection device may include a piezoelectric sensor and a touch panel.
  • the load position can be detected even when the load is hardly applied to the piezoelectric sensor.
  • the capacitive touch panel may be a capacitive touch panel. If it does so, the transparency of the whole pressure detection apparatus will improve.
  • position detection can be performed within the piezoelectric sensor.
  • FIG. 2 is a cross-sectional view taken along line A-A ′ of FIG. 1. It is the flowchart which showed the process which detects a position and a load. It is a top view of a piezoelectric sensor. It is a top view of a piezoelectric sensor. FIG. 6 is a B-B ′ sectional view of FIG. 5. It is a top view of a piezoelectric sensor. It is sectional drawing of a piezoelectric sensor. It is sectional drawing of the pressure detection apparatus which combined the piezoelectric sensor and the electrostatic touch panel. It is a top view of a piezoelectric sensor. It is a top view of a piezoelectric sensor. It is a top view of a piezoelectric sensor.
  • FIG. 1 is a schematic view of a pressure detection device.
  • FIG. 2 is a sectional view of the piezoelectric sensor.
  • FIG. 3 is a diagram showing a contact portion between the piezoelectric sensor and the finger when the piezoelectric sensor comes into contact with the finger.
  • the pressure detection device has a function of detecting the amount and position of a given load.
  • the pressure detection device 1 includes a piezoelectric sensor 10, a detection unit 20, and a control unit 30.
  • the piezoelectric sensor 10 is a device that generates an electric charge according to a given load.
  • the detection unit 20 includes a first detection unit 21 and a second detection unit 22, and the control unit 30 includes a first control unit 31 and a second control unit 32.
  • the first detection unit 21 and the second detection unit 22 are devices that detect charges generated by the piezoelectric sensor 10.
  • the first control unit 31 is a device that controls the switch S installed in the piezoelectric sensor 10 and the first detection unit 21, and the second control unit 32 is a switch installed in the piezoelectric sensor 10 and the second detection unit 22. It is a device for controlling S ′.
  • the structure of the pressure detection apparatus 1 is demonstrated in detail.
  • the piezoelectric sensor 10 includes a first electrode 11, a second electrode 12, a piezoelectric layer 13, a reference electrode 14, a substrate 15, and an adhesive 16. Composed.
  • the first electrode 11 includes first unit electrodes 11a, 11b,... 11e.
  • the second electrode 12 includes second unit electrodes 12a, 12b,.
  • the reference electrode 14 is a pattern that covers the first electrode 11 and the second electrode 12, and fixes the potential to the reference potential (GND) when detecting the charge.
  • the first unit electrodes 11a, 11b,... 11e are composed of isosceles triangles having a first side of the piezoelectric layer 13 as a base and a second side opposite to the first side as a vertex. .
  • the first unit electrodes 11a, 11b,... 11e each have a base length of L, and are arranged with an interval D in the Y-axis direction.
  • the second unit electrodes 12a, 12b,... 12e are composed of isosceles triangles having the second side as the base, the first side as the apex, and the base length being l in the piezoelectric layer 13. Yes.
  • the second unit electrodes 12a, 12b,... 12e are arranged in the Y-axis direction with an interval d so as to mesh with the first unit electrodes 11a, 11b,.
  • the length L of the bottom of the first unit electrode and the total length of the distance D are the same as the piezoelectric sensor 10 and the input means when the input means such as a finger contacts the piezoelectric sensor 10. Is preferably set to be shorter than the length of the minor axis of the contact surface formed therebetween.
  • the length l of the bottom of the second unit electrode and the total length of the distance d are also measured when the input means such as a finger and the piezoelectric sensor 10 come into contact with each other. It is preferable that the length of the short diameter of the contact surface formed between the input means and the input means is set to be shorter.
  • the number of contacts between the input means and the second unit electrodes 12a, 12b When configured as described above, the number of contacts between the input means and the second unit electrodes 12a, 12b,. As a result, the detection function of the piezoelectric sensor 10 is improved.
  • the input means refers to, for example, a finger or a stylus pen.
  • the pitch length of the first electrode 11 and the pitch length of the second electrode 12 are 1 mm to 16 mm. 0.5 mm to 4 mm.
  • Electrode The 1st electrode 11, the 2nd electrode 12, and the reference electrode 14 can be comprised with the material which has electroconductivity.
  • the conductive material include transparent conductive oxides such as indium-tin oxide (ITO), tin-zinc oxide (Tin), polyethylene dioxythiophene A conductive polymer such as (Polyethylenedioxythiophene, PEDOT) can be used.
  • the electrode can be formed by using vapor deposition or screen printing.
  • a conductive metal such as copper or silver may be used as the conductive material.
  • the electrode may be formed by vapor deposition, or may be formed using a metal paste such as a copper paste or a silver paste.
  • a conductive material in which conductive materials such as carbon nanotubes, metal particles, and metal nanofibers are dispersed may be used as the conductive material.
  • a conductive material in which conductive materials such as carbon nanotubes, metal particles, and metal nanofibers are dispersed may be used as the conductive material.
  • Piezoelectric layer Examples of the material constituting the piezoelectric layer 13 include inorganic piezoelectric materials and organic piezoelectric materials.
  • inorganic piezoelectric materials include barium titanate, lead titanate, lead zirconate titanate, potassium niobate, lithium niobate, and lithium tantalate.
  • Examples of the organic piezoelectric material include a fluoride polymer or a copolymer thereof, and a polymer material having chirality.
  • Examples of the fluoride polymer or a copolymer thereof include polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, and vinylidene fluoride-trifluoroethylene copolymer.
  • Examples of the polymer material having chirality include L-type polylactic acid and R-type polylactic acid.
  • the piezoelectric layer is made of a transparent material so that the display of the display device can be seen, or It is preferable that the thickness be thin enough to transmit light sufficiently.
  • Substrate The substrate 15 is a protective member that protects the piezoelectric sensor 10. From the viewpoint of protecting the piezoelectric sensor 10, the substrate 15 is preferably composed of a member having a hardness of 2H or higher. As a material constituting the substrate 15, an inorganic material, an organic material, or an inorganic-organic hybrid material can be used.
  • the inorganic material a glass plate or the like can be used.
  • resin materials such as polycarbonate, acrylic, and polyethylene terephthalate can be used.
  • the inorganic-organic hybrid material a resin material in which a fiber material such as glass fiber is kneaded can be used.
  • a hard coat material may be laminated on the substrate 10.
  • the first electrode 11 (first unit electrodes 11a to 11e) is connected to the first detection unit 21.
  • the second electrode 12 (second unit electrodes 12a to 12e) is connected to the second detection unit 22.
  • the reference electrode 14 is connected to ground.
  • the first detection unit 21 can detect the electric charge generated between the first electrode 11 and the reference electrode 40 when the piezoelectric layer 13 is pressed.
  • the charge generated between the second electrode 12 and the reference electrode 40 can be detected by the second detector 22.
  • the 1st detection part 21 and the 2nd detection part 22 can use the detection apparatus provided with amplifier and AD converter.
  • the first control unit 31 is connected to the switch S that connects the first electrode 11 and the first detection unit 21.
  • the second control unit 32 is connected to a switch S ′ that connects the second electrode 11 and the second detection unit 22.
  • the 1st control part 31 and the 2nd control part 32 are provided with the function which can output the switching signal of ON-OFF about switch S and switch S ', respectively.
  • the 1st control part 31 and the 2nd control part 32 can be included in the drive system of pressure detector 1, for example.
  • the drive system may be a microcomputer including a CPU (Central Processing Unit), a storage unit, and an interface for driving a piezoelectric sensor.
  • the drive system may be integrated into one IC by a custom IC or the like.
  • control unit may be realized by causing a CPU or a custom IC to execute a program stored in a storage unit such as the microcomputer or the custom IC.
  • the charge generated in the piezoelectric layer 13 disposed under the first electrode 11 can be detected by the first detection unit 20 and is disposed under the second electrode 12.
  • the charge generated in the piezoelectric layer 13 can be detected by the second detection unit 21. Then, it is possible to detect the position and amount of the load from the detected charge. A method for detecting the position and amount of the load will be described below.
  • the detection of the position and amount where the load is applied is achieved through the steps 1 to 5.
  • STEP1 ⁇ Applying load to the piezoelectric sensor> As shown in FIGS. 3 and 4, in STEP 1, a load is applied to the region A of the piezoelectric sensor 10 by the finger. Then, an electric charge is generated on the unit electrode arranged in the region A, that is, on the piezoelectric layer 13 arranged below the first unit electrode 11b, the second unit electrode 12b, and the second unit electrode 12c.
  • STEP2 ⁇ Charge detection in the first detection unit>
  • the charge generated on the first unit electrode 11 b is detected by the first detection unit 21.
  • the first detection unit 21 stores the information on the detected charge and the charge amount.
  • the charge Q1 passes through the first unit electrode 11b, and the charge amount q1 of the charge Q1 is stored in the first detection unit 21.
  • STEP3 ⁇ Charge detection in the second detection unit>
  • the charges Q2 and Q3 generated on the second unit electrode 12b and the second unit electrode 12c are detected by the second detector.
  • the route information of the charge Q2 and the charge Q3 and the charge amounts q2 and q3 are stored in the second detection unit.
  • the charge Q2 is stored through the second unit electrode 12b and the charge amount q2.
  • the fact that it has passed through the second unit electrode 12c and the charge amount q3 are stored.
  • STEP4 ⁇ Specification of Y direction>
  • the component in the Y-axis direction at the position where the load is applied is specified.
  • the route information stored in STEP2 and STEP3 is used.
  • the charge Q1 passes through the first unit electrode 11b, and that the charge Q2 and the charge Q3 pass through the second unit electrode 12b and the second unit electrode 12c, respectively. From these pieces of information, it is specified that the component in the Y-axis direction at the position where the load is applied extends from the second unit electrode 12b to the region of the second unit electrode 12c.
  • STEP5 ⁇ Specification of X direction>
  • the ratio between the charge amount q1 detected in STEP2 and the charge amounts q2 and q3 detected in STEP3 is calculated.
  • the contact between the finger and the first unit electrode increases.
  • the contact between the finger and the second unit electrode becomes larger as going to the second side. That is, the closer the contact between the piezoelectric sensor and the finger is to the first side (left side), the more charge is detected from the first unit electrode, and the contact between the piezoelectric sensor and the finger is on the second side.
  • the amount of charge detected from the second unit electrode increases as the value is (right side).
  • the position in the X direction can be specified by comparing the charge amounts detected by the first detector 21 and the second detector 22.
  • the charge amount q1 detected in STEP2 is compared with the charge amounts q2 and q3 detected in STEP3 to identify the component in the X-axis direction at the position where the load is applied.
  • STEP6 ⁇ Identification of load position>
  • the position information in the X direction and Y direction specified in STEP 4 and STEP 5 is combined. As a result, the position where the load is applied can be specified.
  • STEP7 ⁇ Specification of load amount>
  • the sum of the charge amount q1 stored in STEP 2 and the charge amounts q2 and q3 stored in STEP 3 is obtained.
  • the load amount given to the piezoelectric sensor 10 can be specified.
  • the amount of load applied to the piezoelectric sensor 10 can be specified by obtaining the total value of the charge amount q1 and the charge amount q2 and the charge amount q3.
  • the configuration as described above makes it possible to detect a given load and load amount. It should be noted that the same process can be used when a plurality of places are loaded. That is, the pressure detection device 1 can perform multi-force detection.
  • the first unit electrodes 11a to 11e and the first detection unit 21 are connected via the switch S.
  • the first unit electrodes 11a to 11e may be short-circuited to connect the first unit electrodes 11a to 11e and the first detection unit 21.
  • the switch S and the first control unit 31 are not necessary, and thus the overall configuration of the pressure detection device 1 can be simplified.
  • the second unit electrodes 12a to 12e may be short-circuited to connect the second unit electrodes 12a to 12e and the second detection unit 22.
  • the switch S ′ and the second control unit 32 are unnecessary, so that the overall configuration of the pressure detection device 1 can be further simplified.
  • the first electrode and the second electrode are arranged on one side of the piezoelectric layer.
  • the first electrode may be disposed on one surface side of the piezoelectric layer, and the second electrode may be disposed on the other surface side.
  • FIG. 5 is a plan view of the piezoelectric sensor according to the second embodiment. 6 is a cross-sectional view taken along the line B-B 'of FIG.
  • the piezoelectric sensor 10 includes a first electrode 11, a second electrode 12, piezoelectric layers 13 a and 13 b, and a reference electrode 14.
  • the first electrode 11 includes a plurality of first unit electrodes 11a to 11e
  • the second electrode 12 includes a plurality of second unit electrodes 12a to 12e.
  • the second electrode 12 is arranged on a surface different from the surface on which the first electrode 11 is laminated, and the first piezoelectric layer 13a in which the piezoelectric layer is in contact with the first electrode 11;
  • the second piezoelectric layer 13b is in contact with the second electrode 12, and the reference electrode 14 is disposed between the first piezoelectric layer 13a and the second piezoelectric layer 13b.
  • the 1st electrode 11 and the 2nd electrode 12 may be arrange
  • FIG. 7 is a plan view of a piezoelectric sensor according to a third embodiment.
  • the first unit electrodes 11a to 11e and the second unit electrodes 12a to 12e are isosceles triangles.
  • the pattern of the first unit electrodes 11a to 11e extends from the first side of the piezoelectric layer 13 to the second side on the opposite side, and becomes smaller as the size in the width direction approaches the second side.
  • the pattern of the two unit electrodes 12a to 12e extends in the same direction as the first unit electrodes 11a to 11e and is formed so that the size in the width direction becomes smaller as it approaches the first side, It is not limited to equilateral triangles. For example, as shown in FIG.
  • the first unit electrodes 11a to 11e may be right triangles having a base on the first side and a vertex on the second side.
  • the second unit electrodes 12a to 12e may also be right triangles having a base on the second side and a vertex on the first side.
  • the first unit electrodes 11a to 11e may be trapezoids having a base on the first side and an upper side on the second side.
  • the second unit electrodes 12a to 12e may also be trapezoids having a bottom side on the second side and an upper side on the first side.
  • two or more adjacent ones of the first unit electrodes 11a to 11e may be coupled on the first side.
  • two or more adjacent ones may be coupled on the second side.
  • the piezoelectric layer 13 may include an active piezoelectric portion 130 and an inactive piezoelectric portion 131.
  • FIG. 8 is a cross-sectional view of the piezoelectric sensor according to the fourth embodiment.
  • the piezoelectric layer 13 may be composed of an active piezoelectric portion 130 and an inactive piezoelectric portion 131.
  • the active piezoelectric portion 130 is a portion where electric charges are generated when a load is applied to the piezoelectric sensor 10.
  • the inactive piezoelectric portion 131 is a portion where no charge is generated even when a load is applied.
  • the piezoelectric layer 13 includes the active piezoelectric portion 130 and the inactive piezoelectric portion 131, and the first electrode 11 and the second electrode 12 are provided only on the active piezoelectric portion 130. It differs from the piezoelectric sensor of the first embodiment in that it is laminated.
  • the first electrode 11 and the second electrode 12 are directly laminated on the active piezoelectric portion 130. However, the active piezoelectric portion 130 and the upper electrode 2 or the active piezoelectric portion 130 and the lower electrode are illustrated. Between 3, an insulating material such as an adhesive or a film may be laminated.
  • the position of the applied load can be detected using the touch panel 50 even when the applied load is so small that it cannot be detected by the piezoelectric sensor 10 (in the case of feather touch). .
  • Pressure detection device 10 Piezoelectric sensor 11: First electrode 11a-11e: First unit electrode 12: Second electrode 12a-12e: Second unit electrode 13: Piezoelectric layer 14: Reference electrode 15: Substrate 16: Adhesive 20: detection unit 21: first detection unit 22: second detection unit 30: control unit 31: first control unit 32: second control unit 40: reference electrode 50: touch panel 130: active piezoelectric unit 131: inactive piezoelectric unit S: Switch S ′: Switch Q1, Q2, Q3: Charge q1, q2, q3: Charge amount

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Power Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

[Problem] To provide a piezoelectric sensor in which position detection and load detection can be carried out within the sensor. [Solution] This piezoelectric sensor (10) is provided with a piezoelectric layer (13), a first electrode (11) laminated on a first main surface of the piezoelectric layer (13), a second electrode (12) laminated on the first main surface of the piezoelectric layer (13) with the first electrode (11), a reference electrode (14) laminated on a second main surface of the piezoelectric layer (13) that is on the opposite side from the first main surface, and this piezoelectric sensor is such that the first electrode is provided with a plurality of first unit electrodes that extend from a first side of the piezoelectric layer (13) to a second side opposite from the first side and have widths that become smaller as the first unit electrodes approach the second side, the second electrode is provided with a plurality of second unit electrodes that extend in the same direction as the first unit electrodes and have widths that become smaller as the second unit electrodes approach the first side, and the first unit electrodes and second unit electrodes are configured so as to engage in a planar view.

Description

圧電センサおよび電子機器Piezoelectric sensor and electronic device
 本発明は、荷重に応じた圧電信号を発生する圧電センサに関し、特に荷重が与えられた位置を検出できる圧電センサに関する。 The present invention relates to a piezoelectric sensor that generates a piezoelectric signal corresponding to a load, and more particularly to a piezoelectric sensor that can detect a position where a load is applied.
 与えられた荷重を検出するため、圧電層を用いた圧電センサが知られている。例えば、特許文献1には、透明感圧層と、一対の透明導電層からなる透明圧電センサが開示されている。 A piezoelectric sensor using a piezoelectric layer is known to detect a given load. For example, Patent Document 1 discloses a transparent piezoelectric sensor including a transparent pressure-sensitive layer and a pair of transparent conductive layers.
特開2004-125571号公報JP 2004-125571 A
 しかし、特許文献1の透明圧電センサでは、与えられた荷重を検出できるものの、透明圧電センサ内において位置検出をすることはできない。 However, the transparent piezoelectric sensor of Patent Document 1 can detect a given load, but cannot detect the position in the transparent piezoelectric sensor.
 上記目的を達成するために、本発明は以下のように構成する。 In order to achieve the above object, the present invention is configured as follows.
 本発明の圧電センサは、圧電層と、圧電層の第1主面に積層される第1電極及び第2電極部と、圧電層の第1主面とは反対側の第2主面に積層される基準電極とからなる。第1電極部は、間隔を空けて配置される複数の第1単位電極からなる。第1単位電極は、第1の辺から第1の辺と反対側の第2の辺にかけて延在し、幅方向の大きさが第2の辺に近づくにつれ小さくなっている。
 第2電極部は、間隔を空けて配置される複数の第2単位電極からなる。第2単位電極は、第1電極と同じ方向に延在し、幅方向の大きさが第1の辺近づくにつれ小さくなっている。なお、第2単位電極は、前記第1単位電極と平面視で噛み合うように配置されている。
The piezoelectric sensor according to the present invention includes a piezoelectric layer, a first electrode and a second electrode portion stacked on the first main surface of the piezoelectric layer, and a second main surface opposite to the first main surface of the piezoelectric layer. And a reference electrode. The first electrode unit is composed of a plurality of first unit electrodes arranged at intervals. The first unit electrode extends from the first side to the second side opposite to the first side, and decreases in size in the width direction as it approaches the second side.
The second electrode portion is composed of a plurality of second unit electrodes arranged at intervals. The second unit electrode extends in the same direction as the first electrode, and decreases in size in the width direction as it approaches the first side. The second unit electrode is arranged so as to mesh with the first unit electrode in plan view.
 そうすると、上記圧電センサにおいて第1の辺側に近づくほど、第1単位電極の占める割合が大きくなり、反対に第2の辺側に近づくほど第2単位電極の占める割合は大きくなる。そのため、圧電センサに荷重が与えられ電荷が発生したとき、上記電荷を検出した単位電極の位置と電荷量の割合を計算することにより、荷重が与えられた箇所の位置を荷重量を検出することが可能になっている。 Then, as the piezoelectric sensor approaches the first side, the proportion of the first unit electrode increases, and conversely, the proportion of the second unit electrode increases as it approaches the second side. Therefore, when the load is applied to the piezoelectric sensor and the charge is generated, the load amount is detected at the position where the load is applied by calculating the ratio between the unit electrode position where the charge is detected and the charge amount. Is possible.
 第1単位電極と第2単位電極のピッチ長さは、入力手段が圧電センサに接触したときに、入力手段と圧電センサとの間で形成される接触面の短径の長さよりも短く設計されていてもよい。 The pitch length of the first unit electrode and the second unit electrode is designed to be shorter than the length of the short diameter of the contact surface formed between the input unit and the piezoelectric sensor when the input unit contacts the piezoelectric sensor. It may be.
 そうすると、入力手段が圧電センサに接触したときに、入力手段は、少なくとも第1単位電極と第2単位電極に接する。その結果、入力手段を検出できる箇所が増えるので、り正確な位置検出が可能となる。 Then, when the input means comes into contact with the piezoelectric sensor, the input means comes into contact with at least the first unit electrode and the second unit electrode. As a result, the number of places where the input means can be detected increases, so that more accurate position detection is possible.
 第1単位電極のピッチ長さと第2単位電極のピッチ長さは、1mm~16mmであってもよい。 The pitch length of the first unit electrode and the pitch length of the second unit electrode may be 1 mm to 16 mm.
 そうすると、指が圧電センサに接触したときに、指は第1単位電極と第2単位電極に接触する。その結果、正確な位置検出が可能となる。 Then, when the finger contacts the piezoelectric sensor, the finger contacts the first unit electrode and the second unit electrode. As a result, accurate position detection is possible.
 圧電層が活性圧電部と不活性圧電部とからなり、活性圧電部の上には第1電極と第2電極が積層されていてもよい。 The piezoelectric layer may be composed of an active piezoelectric portion and an inactive piezoelectric portion, and a first electrode and a second electrode may be laminated on the active piezoelectric portion.
 そうすると、クロストーク現象の発生を防止できる。その結果、圧電センサにかかった位置と荷重の検出精度が向上する。 Then, the occurrence of the crosstalk phenomenon can be prevented. As a result, the detection accuracy of the position applied to the piezoelectric sensor and the load is improved.
 第1電極が圧電センサの第1主面側に設けられ、前記第2電極が圧電センサの第2主面側に設けられていてもよい。 The first electrode may be provided on the first main surface side of the piezoelectric sensor, and the second electrode may be provided on the second main surface side of the piezoelectric sensor.
 そうすると、第1電極と第2電極は、圧電層を介して設けられるので、第1電極と第2電極との間で発生するクロストーク現象が減少する。その結果、位置検出と荷重検出の精度が向上する。 Then, since the first electrode and the second electrode are provided via the piezoelectric layer, the crosstalk phenomenon that occurs between the first electrode and the second electrode is reduced. As a result, the accuracy of position detection and load detection is improved.
 上部電極は、酸化インジウム錫、またはポリエチルジオキソチオフェンを含んでいてもよい。 The upper electrode may contain indium tin oxide or polyethyldioxothiophene.
 そうすると、上部電極の透明性が高くなるので、液晶や有機ELなどの表示装置の上に圧電センサを配置できる。 Then, since the transparency of the upper electrode is increased, a piezoelectric sensor can be disposed on a display device such as a liquid crystal or an organic EL.
 下部電極は、酸化インジウム錫、またはポリエチルジオキソチオフェンを含でいてもよい。 The lower electrode may contain indium tin oxide or polyethyldioxothiophene.
 そうすると、下部電極の透明性が高くなるので、液晶や有機ELなどの表示装置の上に圧電センサを配置できる。 Then, since the transparency of the lower electrode is increased, the piezoelectric sensor can be disposed on a display device such as a liquid crystal or an organic EL.
 圧電層は、有機圧電材料から構成されていてもよい。 The piezoelectric layer may be composed of an organic piezoelectric material.
 そうすると、圧電層の柔軟性が大きくなるので、圧電センサの耐屈曲性が向上する。その結果、上記圧電センサをR曲面などに配置できる。 Then, since the flexibility of the piezoelectric layer is increased, the bending resistance of the piezoelectric sensor is improved. As a result, the piezoelectric sensor can be arranged on an R curved surface.
 有機圧電材料は、ポリフッ化ビニリデンまたはポリ乳酸を含んでいてもよい。 The organic piezoelectric material may contain polyvinylidene fluoride or polylactic acid.
 そうすると、圧電層の透明性が高くなるので、液晶や有機ELなどの表示装置の上に圧電センサを配置できる。 Then, since the transparency of the piezoelectric layer is increased, the piezoelectric sensor can be disposed on a display device such as a liquid crystal or an organic EL.
 圧電層は、無機材料から構成されていてもよい。 The piezoelectric layer may be made of an inorganic material.
 そうすると、圧電層の圧電定数が大きくなるため、力を検出する検出感度が向上する。 Then, since the piezoelectric constant of the piezoelectric layer is increased, the detection sensitivity for detecting force is improved.
 圧力検出装置は、圧電センサとタッチパネルを備えていてもよい。 The pressure detection device may include a piezoelectric sensor and a touch panel.
 そうすると、圧電センサに対し荷重がほとんどかからないような場合でも、荷重の位置検出ができる。 In that case, the load position can be detected even when the load is hardly applied to the piezoelectric sensor.
 上記タッチパネルは静電容量型のタッチパネルであってもよい。そうすると、圧力検出装置全体の透明性が向上する。 The capacitive touch panel may be a capacitive touch panel. If it does so, the transparency of the whole pressure detection apparatus will improve.
 本発明に係る圧電センサでは、圧電センサ内で位置検出ができる。 In the piezoelectric sensor according to the present invention, position detection can be performed within the piezoelectric sensor.
圧力検出装置の概念図である。It is a conceptual diagram of a pressure detection apparatus. 図1のA-A’断面図である。FIG. 2 is a cross-sectional view taken along line A-A ′ of FIG. 1. 位置と荷重を検出する過程を示したフロチャートである。It is the flowchart which showed the process which detects a position and a load. 圧電センサの平面図である。It is a top view of a piezoelectric sensor. 圧電センサの平面図である。It is a top view of a piezoelectric sensor. 図5のB-B’断面図である。FIG. 6 is a B-B ′ sectional view of FIG. 5. 圧電センサの平面図である。It is a top view of a piezoelectric sensor. 圧電センサの断面図である。It is sectional drawing of a piezoelectric sensor. 圧電センサと静電型タッチパネルを組合わせた圧力検出装置の断面図である。It is sectional drawing of the pressure detection apparatus which combined the piezoelectric sensor and the electrostatic touch panel. 圧電センサの平面図である。It is a top view of a piezoelectric sensor. 圧電センサの平面図である。It is a top view of a piezoelectric sensor.
 下記で、本発明に係る実施形態を図面に基づいてさらに詳細に説明する。なお、本発明の実施例に記載した部位や部分の寸法、材質、形状、その相対位置などは、とくに特定的な記載がない限り、この発明の範囲をそれらのみに限定する趣旨のものではなく、単なる説明例にすぎない。 Hereinafter, embodiments according to the present invention will be described in more detail with reference to the drawings. It should be noted that the dimensions, materials, shapes, relative positions, etc. of the parts and portions described in the embodiments of the present invention are not intended to limit the scope of the present invention only to those unless otherwise specified. This is just an illustrative example.
1. 第1実施形態
(1)圧力検出装置の全体構造
 図1、図2を用いて、本発明の第1実施形態に係る圧力検出装置の全体構造を説明する。図1は圧力検出装置の概略図である。図2は圧電センサの断面図である。図3は、圧電センサが指と接触したとき、圧電センサと指の接触箇所を示した図である。
1. First Embodiment (1) Overall Structure of Pressure Detection Device The overall structure of a pressure detection device according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic view of a pressure detection device. FIG. 2 is a sectional view of the piezoelectric sensor. FIG. 3 is a diagram showing a contact portion between the piezoelectric sensor and the finger when the piezoelectric sensor comes into contact with the finger.
 圧力検出装置は、与えられた荷重の量と位置を検出する機能を有している。
 図1に示すように、圧力検出装置1は、圧電センサ10と、検出部20と、制御部30を備えている。圧電センサ10は、与えられた荷重に応じて電荷を発生させる装置である。検出部20は、第1検出部21と、第2検出部22からなり、制御部30は、第1制御部31と、第2制御部32からなる。第1検出部21、第2検出部22は、圧電センサ10で発生した電荷を検出する装置である。第1制御部31は、圧電センサ10と第1検出部21に設置されたスイッチSを制御する装置であり、第2制御部32は、圧電センサ10と第2検出部22に設置されたスイッチS’を制御する装置である。以下で、圧力検出装置1の構成を詳細に説明する。
The pressure detection device has a function of detecting the amount and position of a given load.
As shown in FIG. 1, the pressure detection device 1 includes a piezoelectric sensor 10, a detection unit 20, and a control unit 30. The piezoelectric sensor 10 is a device that generates an electric charge according to a given load. The detection unit 20 includes a first detection unit 21 and a second detection unit 22, and the control unit 30 includes a first control unit 31 and a second control unit 32. The first detection unit 21 and the second detection unit 22 are devices that detect charges generated by the piezoelectric sensor 10. The first control unit 31 is a device that controls the switch S installed in the piezoelectric sensor 10 and the first detection unit 21, and the second control unit 32 is a switch installed in the piezoelectric sensor 10 and the second detection unit 22. It is a device for controlling S ′. Below, the structure of the pressure detection apparatus 1 is demonstrated in detail.
 (2)圧電センサ
 図1、図2に示すように、圧電センサ10は、第1電極11と、第2電極12と、圧電層13と、基準電極14と、基板15と、接着剤16から構成される。第1電極11は、第1単位電極11a,11b,・・・11eを備えている。第2電極12は、第2単位電極12a,12b,・・・12eを備えている。基準電極14は、第1電極11と第2電極12を全て覆うパターンであり、電荷を検出するときは電位を基準電位(GND)に固定する。
(2) Piezoelectric Sensor As shown in FIGS. 1 and 2, the piezoelectric sensor 10 includes a first electrode 11, a second electrode 12, a piezoelectric layer 13, a reference electrode 14, a substrate 15, and an adhesive 16. Composed. The first electrode 11 includes first unit electrodes 11a, 11b,... 11e. The second electrode 12 includes second unit electrodes 12a, 12b,. The reference electrode 14 is a pattern that covers the first electrode 11 and the second electrode 12, and fixes the potential to the reference potential (GND) when detecting the charge.
 第1単位電極11a,11b,・・・11eは、圧電層13の第1の辺を底辺とし、第1の辺と反対側の第2の辺を頂点とした二等辺三角形から構成されている。第1単位電極11a,11b,・・・11eは、底辺の長さがそれぞれLであり、Y軸方向に間隔Dを空けて配列されている。 The first unit electrodes 11a, 11b,... 11e are composed of isosceles triangles having a first side of the piezoelectric layer 13 as a base and a second side opposite to the first side as a vertex. . The first unit electrodes 11a, 11b,... 11e each have a base length of L, and are arranged with an interval D in the Y-axis direction.
 第2単位電極12a,12b,・・・12eは、圧電層13において、第2の辺を底辺とし、第1の辺を頂点とした、底辺の長さがlの二等辺三角形から構成されている。また、第2単位電極12a,12b,・・・12eは、第1単位電極11a,11b,・・・11eと平面視で噛み合うように間隔dを空けてY軸方向に配列されている。 The second unit electrodes 12a, 12b,... 12e are composed of isosceles triangles having the second side as the base, the first side as the apex, and the base length being l in the piezoelectric layer 13. Yes. In addition, the second unit electrodes 12a, 12b,... 12e are arranged in the Y-axis direction with an interval d so as to mesh with the first unit electrodes 11a, 11b,.
 第1単位電極の底辺の長さLと、間隔Dの合計長さ(第1電極11のピッチ長さ)は、指などの入力手段が圧電センサ10に接触したとき、圧電センサ10と入力手段との間で形成される接触面の短径の長さよりも短くなるように設定されていることが好ましい。 The length L of the bottom of the first unit electrode and the total length of the distance D (the pitch length of the first electrode 11) are the same as the piezoelectric sensor 10 and the input means when the input means such as a finger contacts the piezoelectric sensor 10. Is preferably set to be shorter than the length of the minor axis of the contact surface formed therebetween.
 上記のように構成されると、入力手段と第1単位電極11a,11b,・・・11eとの接触個数が増える。その結果、圧電センサ10の検出機能が向上する。 When configured as described above, the number of contacts between the input means and the first unit electrodes 11a, 11b,. As a result, the detection function of the piezoelectric sensor 10 is improved.
 なお、第2単位電極の底辺の長さlと、間隔dの合計長さ(第2電極12のピッチ長さ)についても、指などの入力手段と圧電センサ10が接触したとき、圧電センサ10と入力手段との間で形成される接触面の短径の長さよりも短くなるように設定されていることが好ましい。 Note that the length l of the bottom of the second unit electrode and the total length of the distance d (pitch length of the second electrode 12) are also measured when the input means such as a finger and the piezoelectric sensor 10 come into contact with each other. It is preferable that the length of the short diameter of the contact surface formed between the input means and the input means is set to be shorter.
 上記のように構成されると、入力手段と第2単位電極12a,12b,・・・12eとの接触個数が増える。その結果、圧電センサ10の検出機能が向上する。 When configured as described above, the number of contacts between the input means and the second unit electrodes 12a, 12b,. As a result, the detection function of the piezoelectric sensor 10 is improved.
 上記で入力手段とは、例えば指やスタイラスペンを指し、入力手段が指の場合、第1電極11のピッチ長さと第2電極12のピッチ長さは、1mm~16mmであり、スタイラスペンの場合、0.5mm~4mmである。 In the above description, the input means refers to, for example, a finger or a stylus pen. When the input means is a finger, the pitch length of the first electrode 11 and the pitch length of the second electrode 12 are 1 mm to 16 mm. 0.5 mm to 4 mm.
 (3)電極
 第1電極11、第2電極12及び基準電極14は、導電性を有する材料により構成できる。導電性を有する材料としては、インジウム-スズ酸化物(Indium-Tin-Oxide、ITO)、スズ-亜鉛酸化物(Tin-Zinc-Oxide、TZO)などのような透明導電酸化物、ポリエチレンジオキシチオフェン(Polyethylenedioxythiophene、PEDOT)などの導電性高分子、などを用いることができる。この場合、上記の電極は、蒸着やスクリーン印刷などを用いて形成できる。
(3) Electrode The 1st electrode 11, the 2nd electrode 12, and the reference electrode 14 can be comprised with the material which has electroconductivity. Examples of the conductive material include transparent conductive oxides such as indium-tin oxide (ITO), tin-zinc oxide (Tin), polyethylene dioxythiophene A conductive polymer such as (Polyethylenedioxythiophene, PEDOT) can be used. In this case, the electrode can be formed by using vapor deposition or screen printing.
 また、導電性を有する材料として、銅、銀などの導電性の金属を用いてもよい。この場合、上記の電極は、蒸着により形成してもよく、銅ペースト、銀ペーストなどの金属ペーストを用いて形成してもよい。 Also, a conductive metal such as copper or silver may be used as the conductive material. In this case, the electrode may be formed by vapor deposition, or may be formed using a metal paste such as a copper paste or a silver paste.
 さらに、導電性を有する材料として、バインダー中に、カーボンナノチューブ、金属粒子、 金属ナノファイバーなどの導電材料が分散したものを用いてもよい。
 (4)圧電層
 圧電層13を構成する材料としては、無機圧電材料や有機圧電材料が挙げられる。
Furthermore, a conductive material in which conductive materials such as carbon nanotubes, metal particles, and metal nanofibers are dispersed may be used as the conductive material.
(4) Piezoelectric layer Examples of the material constituting the piezoelectric layer 13 include inorganic piezoelectric materials and organic piezoelectric materials.
 無機圧電材料としては、チタン酸バリウム、チタン酸鉛、チタン酸ジルコン酸鉛、ニオブ酸カリウム、ニオブ酸リチウム、タンタル酸リチウムなどが挙げられる。 Examples of inorganic piezoelectric materials include barium titanate, lead titanate, lead zirconate titanate, potassium niobate, lithium niobate, and lithium tantalate.
 有機圧電材料としては、フッ化物重合体又はその共重合体、キラリティーを有する高分子材料などが挙げられる。フッ化物重合体又はその共重合体としては、ポリフッ化ビニリデン、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体などが挙げられる。キラリティーを有する高分子材料としては、L型ポリ乳酸や、R型ポリ乳酸などが挙げられる。 Examples of the organic piezoelectric material include a fluoride polymer or a copolymer thereof, and a polymer material having chirality. Examples of the fluoride polymer or a copolymer thereof include polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, and vinylidene fluoride-trifluoroethylene copolymer. Examples of the polymer material having chirality include L-type polylactic acid and R-type polylactic acid.
 また、圧力検出装置1を、液晶装置や有機EL装置のような表示装置の上に配置する場合には、表示装置のディスプレイが見えるように、圧電層を透明な材料により構成するか、又は、光が十分に透過できる程度に薄く構成することが好ましい。 When the pressure detection device 1 is arranged on a display device such as a liquid crystal device or an organic EL device, the piezoelectric layer is made of a transparent material so that the display of the display device can be seen, or It is preferable that the thickness be thin enough to transmit light sufficiently.
 (5)基板
 基板15は、圧電センサ10を保護する保護部材である。圧電センサ10を保護するという観点から、基板15は2H以上の硬度を有する部材から構成されることが好ましい。基板15を構成する材料としては、無機材料、有機材料、無機-有機ハイブリッド材料を用いることができる。
(5) Substrate The substrate 15 is a protective member that protects the piezoelectric sensor 10. From the viewpoint of protecting the piezoelectric sensor 10, the substrate 15 is preferably composed of a member having a hardness of 2H or higher. As a material constituting the substrate 15, an inorganic material, an organic material, or an inorganic-organic hybrid material can be used.
 無機材料としては、ガラス板などを用いることができる。有機材料としては、ポリカーボネ―ト、アクリル、ポリエチレンテレフタラートなどの樹脂材料を用いることができる。無機-有機ハイブリッド材料としては、樹脂材料にガラス繊維などの繊維材料を練りこんだものを用いることができる。また、基板10の上にはハードコート材料が積層されていてもよい。 As the inorganic material, a glass plate or the like can be used. As the organic material, resin materials such as polycarbonate, acrylic, and polyethylene terephthalate can be used. As the inorganic-organic hybrid material, a resin material in which a fiber material such as glass fiber is kneaded can be used. A hard coat material may be laminated on the substrate 10.
 (6)検出部
 図1に示すように、第1電極11(第1単位電極11a~11e)は、第1検出部21と接続されている。第2電極12(第2単位電極12a~12e)は、第2検出部22と接続されている。基準電極14は、アースに接続されている。上記のように構成すると、圧電層13が押圧されたときに、第1電極11と基準電極40との間に発生する電荷については、第1検出部21で検出できる。第2電極12と基準電極40との間に発生する電荷について、第2検出部22で検出できる。なお、第1検出部21と第2検出部22には、アンプとADコンバータを備えた検出機器を用いることができる。
(6) Detection Unit As shown in FIG. 1, the first electrode 11 (first unit electrodes 11a to 11e) is connected to the first detection unit 21. The second electrode 12 (second unit electrodes 12a to 12e) is connected to the second detection unit 22. The reference electrode 14 is connected to ground. When configured as described above, the first detection unit 21 can detect the electric charge generated between the first electrode 11 and the reference electrode 40 when the piezoelectric layer 13 is pressed. The charge generated between the second electrode 12 and the reference electrode 40 can be detected by the second detector 22. In addition, the 1st detection part 21 and the 2nd detection part 22 can use the detection apparatus provided with amplifier and AD converter.
 (7)制御部
 第1制御部31は、第1電極11と第1検出部21を接続するスイッチSに接続されている。第2制御部32は、第2電極11と第2検出部22を接続するスイッチS’に接続されている。第1制御部31と第2制御部32は、スイッチSとスイッチS’について、ON-OFFの切替信号をそれぞれ出力できる機能を備えている。
(7) Control Unit The first control unit 31 is connected to the switch S that connects the first electrode 11 and the first detection unit 21. The second control unit 32 is connected to a switch S ′ that connects the second electrode 11 and the second detection unit 22. The 1st control part 31 and the 2nd control part 32 are provided with the function which can output the switching signal of ON-OFF about switch S and switch S ', respectively.
 第1制御部31と第2制御部32は、例えば、圧力検出装置1のドライブシステムに含めることができる。当該ドライブシステムは、CPU(Central Processing Unit)、記憶部、及び圧電センサをドライブするためのインターフェースなどを備えたマイコンであってもよい。又は、当該ドライブシステムは、カスタムICなどにより1つのICに集約されていてもよい。 The 1st control part 31 and the 2nd control part 32 can be included in the drive system of pressure detector 1, for example. The drive system may be a microcomputer including a CPU (Central Processing Unit), a storage unit, and an interface for driving a piezoelectric sensor. Alternatively, the drive system may be integrated into one IC by a custom IC or the like.
 また、制御部の上記機能は、上記マイコンやカスタムICなどの記憶部に記憶されたプログラムを、CPUやカスタムICなどに実行させることにより実現してもよい。 Further, the above functions of the control unit may be realized by causing a CPU or a custom IC to execute a program stored in a storage unit such as the microcomputer or the custom IC.
 上記のように、圧力検出装置1を構成すると、第1電極11の下に配置された圧電層13で発生した電荷を第1検出部20で検出でき、第2電極12の下に配置された圧電層13で発生した電荷を第2検出部21で検出できる。そうすると、検出した電荷から荷重のかかった位置と量を検出することができる。荷重のかかった位置と量を検出方法については、以下で説明する。 As described above, when the pressure detection device 1 is configured, the charge generated in the piezoelectric layer 13 disposed under the first electrode 11 can be detected by the first detection unit 20 and is disposed under the second electrode 12. The charge generated in the piezoelectric layer 13 can be detected by the second detection unit 21. Then, it is possible to detect the position and amount of the load from the detected charge. A method for detecting the position and amount of the load will be described below.
 図3に示すように、荷重のかかった位置と量の検出は、STEP1~5の工程を経て達成される。 As shown in FIG. 3, the detection of the position and amount where the load is applied is achieved through the steps 1 to 5.
1) STEP1:
  <圧電センサへの荷重付加>
 図3、図4に示すように、STEP1では、指によって圧電センサ10の領域Aに荷重が加えられる。すると、領域Aに配置された単位電極、すなわち、第1単位電極11bと、第2単位電極12bと、第2単位電極12cの下に配置された圧電層13上で電荷が発生する。
1) STEP1:
<Applying load to the piezoelectric sensor>
As shown in FIGS. 3 and 4, in STEP 1, a load is applied to the region A of the piezoelectric sensor 10 by the finger. Then, an electric charge is generated on the unit electrode arranged in the region A, that is, on the piezoelectric layer 13 arranged below the first unit electrode 11b, the second unit electrode 12b, and the second unit electrode 12c.
2) STEP2:
  <第1検出部での電荷検出>
 STEP2では、上記電極のうち、第1単位電極11b上で発生した電荷が第1検出部21で検出される。このとき、第1検出部21では、検出した電荷の経由情報と、電荷量が記憶される。図4の場合、電荷Q1が第1単位電極11bを経由したこと、および電荷Q1の電荷量q1が第1検出部21で記憶される。
2) STEP2:
<Charge detection in the first detection unit>
In STEP 2, among the electrodes, the charge generated on the first unit electrode 11 b is detected by the first detection unit 21. At this time, the first detection unit 21 stores the information on the detected charge and the charge amount. In the case of FIG. 4, the charge Q1 passes through the first unit electrode 11b, and the charge amount q1 of the charge Q1 is stored in the first detection unit 21.
3) STEP3:
  <第2検出部での電荷検出>
 STEP3では、第2単位電極12bと第2単位電極12c上で発生した電荷Q2、Q3が第2検出部で検出される。このとき、電荷Q2と電荷Q3の経由情報と、その電荷量q2とq3が第2検出部で記憶される。上記の場合、電荷Q2については、第2単位電極12bを経由したこと、及びその電荷量q2が記憶される。電荷Q3ついては、第2単位電極12cを経由したことと、及びその電荷量q3が記憶される。
3) STEP3:
<Charge detection in the second detection unit>
In STEP 3, the charges Q2 and Q3 generated on the second unit electrode 12b and the second unit electrode 12c are detected by the second detector. At this time, the route information of the charge Q2 and the charge Q3 and the charge amounts q2 and q3 are stored in the second detection unit. In the above case, the charge Q2 is stored through the second unit electrode 12b and the charge amount q2. For the charge Q3, the fact that it has passed through the second unit electrode 12c and the charge amount q3 are stored.
4) STEP4:
<Y方向の特定>
 STEP4では、荷重のかかった位置のY軸方向の成分を特定する。上記成分の特定には、STEP2とSTEP3で記憶された経由情報を用いる。図4の場合、電荷Q1が第1単位電極11bを経由したこと、電荷Q2と電荷Q3が、それぞれ第2単位電極12bと第2単位電極12cを経由したことを用いる。これらの情報により、荷重のかかった位置のY軸方向の成分は、第2単位電極12bから第2単位電極12cの領域に広がっていることが特定される。
4) STEP4:
<Specification of Y direction>
In STEP 4, the component in the Y-axis direction at the position where the load is applied is specified. For specifying the component, the route information stored in STEP2 and STEP3 is used. In the case of FIG. 4, it is used that the charge Q1 passes through the first unit electrode 11b, and that the charge Q2 and the charge Q3 pass through the second unit electrode 12b and the second unit electrode 12c, respectively. From these pieces of information, it is specified that the component in the Y-axis direction at the position where the load is applied extends from the second unit electrode 12b to the region of the second unit electrode 12c.
5) STEP5:
<X方向の特定>
 STEP5では、STEP2で検出された電荷量q1と、STEP3で検出された電荷量q2、q3の割合を計算する。図4に示すように、圧電センサ10は第1の辺側にいくにつれて、指と第1単位電極の接点が大きくなる。反対に第2の辺側にいくにつれて指と第2単位電極の接点が大きくなる。
 すなわち、圧電センサと指との接点が第1の辺側(左側)であるほど、第1単位電極から検出される電荷の量は多くなり、圧電センサと指との接点が第2の辺側(右側)であるほど第2単位電極から検出される電荷の量は多くなっている。これから、第1検出器21と第2検出器22で検出された電荷量を比較することでX方向の位置を特定することができるようになっている。STEP5では、STEP2で検出された電荷量q1と、STEP3で検出された電荷量q2、q3を比較することで、荷重のかかった位置についてX軸方向の成分を特定する。
5) STEP5:
<Specification of X direction>
In STEP5, the ratio between the charge amount q1 detected in STEP2 and the charge amounts q2 and q3 detected in STEP3 is calculated. As shown in FIG. 4, as the piezoelectric sensor 10 moves toward the first side, the contact between the finger and the first unit electrode increases. On the other hand, the contact between the finger and the second unit electrode becomes larger as going to the second side.
That is, the closer the contact between the piezoelectric sensor and the finger is to the first side (left side), the more charge is detected from the first unit electrode, and the contact between the piezoelectric sensor and the finger is on the second side. The amount of charge detected from the second unit electrode increases as the value is (right side). From this, the position in the X direction can be specified by comparing the charge amounts detected by the first detector 21 and the second detector 22. In STEP5, the charge amount q1 detected in STEP2 is compared with the charge amounts q2 and q3 detected in STEP3 to identify the component in the X-axis direction at the position where the load is applied.
6) STEP6:
<荷重位置の特定>
 STEP6では、STEP4とSTEP5で特定されたX方向とY方向の位置情報を組合わせる。これにより荷重のかかった位置を特定できるようになっている。
6) STEP6:
<Identification of load position>
In STEP 6, the position information in the X direction and Y direction specified in STEP 4 and STEP 5 is combined. As a result, the position where the load is applied can be specified.
7) STEP7:
<荷重量の特定>
 STEP7では、STEP2で記憶された電荷量q1と、STEP3で記憶された電荷量q2、q3の合計を求める。これにより圧電センサ10に与えられた荷重量を特定できる。図4の場合、電荷量q1と電荷量q2電荷量q3の合計値を求めることで圧電センサ10に与えられた荷重量を特定できる。
7) STEP7:
<Specification of load amount>
In STEP 7, the sum of the charge amount q1 stored in STEP 2 and the charge amounts q2 and q3 stored in STEP 3 is obtained. Thereby, the load amount given to the piezoelectric sensor 10 can be specified. In the case of FIG. 4, the amount of load applied to the piezoelectric sensor 10 can be specified by obtaining the total value of the charge amount q1 and the charge amount q2 and the charge amount q3.
 上記のように構成することで、与えられた荷重と荷重量を検出できるようになっている。なお、荷重のかかった箇所が複数に及んだ場合も同様の工程で検出できる。すなわち、圧力検出装置1は、マルチフォース検出が可能となっている。 The configuration as described above makes it possible to detect a given load and load amount. It should be noted that the same process can be used when a plurality of places are loaded. That is, the pressure detection device 1 can perform multi-force detection.
 上記では、第1単位電極11a~11eと第1検出部21とは、スイッチSを介して接続されていた。しかし、Y軸方向の精細な位置検出が不要な場合には、第1単位電極11a~11eをショートさせて、第1単位電極11a~11eと第1検出部21を接続させてもよい。このように構成することで、スイッチSと第1制御部31が不要になるので、圧力検出装置1の全体構成を簡略化できる。 In the above description, the first unit electrodes 11a to 11e and the first detection unit 21 are connected via the switch S. However, if fine position detection in the Y-axis direction is unnecessary, the first unit electrodes 11a to 11e may be short-circuited to connect the first unit electrodes 11a to 11e and the first detection unit 21. With this configuration, the switch S and the first control unit 31 are not necessary, and thus the overall configuration of the pressure detection device 1 can be simplified.
 なお、Y軸方向の位置検出が全く不要な場合には、第2単位電極12a~12eをショートさせて、第2単位電極12a~12eと第2検出部22を接続させてもよい。このように構成することで、さらにスイッチS’と第2制御部32が不要になるので、圧力検出装置1の全体構成をさらに簡略化できる。 If position detection in the Y-axis direction is not required at all, the second unit electrodes 12a to 12e may be short-circuited to connect the second unit electrodes 12a to 12e and the second detection unit 22. With this configuration, the switch S ′ and the second control unit 32 are unnecessary, so that the overall configuration of the pressure detection device 1 can be further simplified.
2. 第2実施形態
 第1実施形態では、第1電極と第2電極は圧電層の一方面側に配置されている。しかし、第1電極が圧電層の一方の面側に配置され、第2電極が他方の面側に配置されていてもよい。
2. Second Embodiment In the first embodiment, the first electrode and the second electrode are arranged on one side of the piezoelectric layer. However, the first electrode may be disposed on one surface side of the piezoelectric layer, and the second electrode may be disposed on the other surface side.
 図5は、第2実施形態にかかる圧電センサの平面図である。図6は、図5のB-B’断面図である。 FIG. 5 is a plan view of the piezoelectric sensor according to the second embodiment. 6 is a cross-sectional view taken along the line B-B 'of FIG.
 図5に示すように、第2実施形態にかかる圧電センサ10は、第1電極11と、第2電極12と、圧電層13a、13bと、基準電極14から構成されている。第1電極11は、複数の第1単位電極11a~11eを備え、第2電極12は、複数の第2単位電極12a~12eを備えている。第1実施形態とは、第2電極12が、第1電極11が積層された面とは異なる面に配置されている点と、圧電層が、第1電極11と接する第1圧電層13aと、第2電極12と接する第2圧電層13bとを備え、第1圧電層13aと第2圧電層13bの間の基準電極14が配置されている点で異なる。 As shown in FIG. 5, the piezoelectric sensor 10 according to the second embodiment includes a first electrode 11, a second electrode 12, piezoelectric layers 13 a and 13 b, and a reference electrode 14. The first electrode 11 includes a plurality of first unit electrodes 11a to 11e, and the second electrode 12 includes a plurality of second unit electrodes 12a to 12e. In the first embodiment, the second electrode 12 is arranged on a surface different from the surface on which the first electrode 11 is laminated, and the first piezoelectric layer 13a in which the piezoelectric layer is in contact with the first electrode 11; The second piezoelectric layer 13b is in contact with the second electrode 12, and the reference electrode 14 is disposed between the first piezoelectric layer 13a and the second piezoelectric layer 13b.
 なお、第1電極11と第2電極12とは、その周縁部が圧電層を介して重なるように配置されていても良い。上記のように構成されていると、第1電極11のみが積層された領域と第2電極12のみが積層された領域に加えて、第1電極11と第2電極12が積層された領域が作られる。その結果、検出種類が増えるので、圧電センサ10の機能が向上する。 In addition, the 1st electrode 11 and the 2nd electrode 12 may be arrange | positioned so that the peripheral part may overlap through a piezoelectric layer. If comprised as mentioned above, in addition to the area | region where only the 1st electrode 11 was laminated | stacked and the area | region where only the 2nd electrode 12 was laminated | stacked, the area | region where the 1st electrode 11 and the 2nd electrode 12 were laminated | stacked Made. As a result, since the number of detection types increases, the function of the piezoelectric sensor 10 is improved.
3.第3実施形態
 図7は、第3実施形態にかかる圧電センサの平面図である。
3. Third Embodiment FIG. 7 is a plan view of a piezoelectric sensor according to a third embodiment.
 上記第1、第2実施形態では、第1単位電極11a~11eと、第2単位電極12a~12eは、二等辺三角形であった。しかし 第1単位電極11a~11eのパターンは、圧電層13の第1の辺から反対側の第2の辺にかけて延在し、幅方向の大きさが第2の辺に近づくにつれ小さくなり、第2単位電極12a~12eのパターンは、第1単位電極11a~11eとと同じ方向に延在し、幅方向の大きさが第1の辺に近づくにつれ小さくなるように形成されていれば、二等辺三角形に限定されない。例えば、図7に示すように、第1単位電極11a~11eは、第1の辺に底辺を有し、第2の辺に頂点を有している直角三角形でもよい。第2単位電極12a~12eについても、第2の辺に底辺を有し、第1の辺に頂点を有している直角三角形でもよい。 In the first and second embodiments, the first unit electrodes 11a to 11e and the second unit electrodes 12a to 12e are isosceles triangles. However, the pattern of the first unit electrodes 11a to 11e extends from the first side of the piezoelectric layer 13 to the second side on the opposite side, and becomes smaller as the size in the width direction approaches the second side. If the pattern of the two unit electrodes 12a to 12e extends in the same direction as the first unit electrodes 11a to 11e and is formed so that the size in the width direction becomes smaller as it approaches the first side, It is not limited to equilateral triangles. For example, as shown in FIG. 7, the first unit electrodes 11a to 11e may be right triangles having a base on the first side and a vertex on the second side. The second unit electrodes 12a to 12e may also be right triangles having a base on the second side and a vertex on the first side.
 また、図10に示すように、第1単位電極11a~11eは、第1の辺に底辺を有し、第2の辺に上辺を有している台形でもよい。第2単位電極12a~12eについても、第2の辺に底辺を有し、第1の辺に上辺を有している台形でもよい。 Further, as shown in FIG. 10, the first unit electrodes 11a to 11e may be trapezoids having a base on the first side and an upper side on the second side. The second unit electrodes 12a to 12e may also be trapezoids having a bottom side on the second side and an upper side on the first side.
 また、図11に示すように、第1単位電極11a~11eは、2以上の隣り合うものどうしが第1の辺側で結合してもよい。第2単位電極12a~12eについても、2以上の隣り合うものどうしが第2の辺側で結合してもよい。 In addition, as shown in FIG. 11, two or more adjacent ones of the first unit electrodes 11a to 11e may be coupled on the first side. As for the second unit electrodes 12a to 12e, two or more adjacent ones may be coupled on the second side.
4.第4実施形態
 圧電層13は、活性圧電部130と不活性圧電部131を備えていてもよい。
4). Fourth Embodiment The piezoelectric layer 13 may include an active piezoelectric portion 130 and an inactive piezoelectric portion 131.
 図8は、第4実施形態にかかる圧電センサの断面図である。 FIG. 8 is a cross-sectional view of the piezoelectric sensor according to the fourth embodiment.
 図8に示すように、圧電層13は、活性圧電部130と不活性圧電部131から構成されていてもよい。活性圧電部130は、圧電センサ10に荷重が与えられたときに電荷が発生する部分である。不活性圧電部131は、荷重が与えられても電荷が発生しない部分である。 As shown in FIG. 8, the piezoelectric layer 13 may be composed of an active piezoelectric portion 130 and an inactive piezoelectric portion 131. The active piezoelectric portion 130 is a portion where electric charges are generated when a load is applied to the piezoelectric sensor 10. The inactive piezoelectric portion 131 is a portion where no charge is generated even when a load is applied.
 第4実施形態にかかる圧電センサ10は、圧電層13が活性圧電部130と不活性圧電部131から構成される点や、活性圧電部130の上にのみ第1電極11や第2電極12が積層されている点で第1実施形態の圧電センサと異なる。 In the piezoelectric sensor 10 according to the fourth embodiment, the piezoelectric layer 13 includes the active piezoelectric portion 130 and the inactive piezoelectric portion 131, and the first electrode 11 and the second electrode 12 are provided only on the active piezoelectric portion 130. It differs from the piezoelectric sensor of the first embodiment in that it is laminated.
 このように構成されていると、圧電層13の第1電極11や第2電極12が積層されていない箇所で発生した電荷が漏れ出して、第1電極11や第2電極12で検出されるのを防止できる(クロストーク現象を防止できる)。その結果、位置検出精度と荷重検出精度が向上させることができる。また上記では、活性圧電部130の上に第1電極11や第2電極12が直接積層された例を示したが、活性圧電部130と上部電極2の間、または活性圧電部130と下部電極3の間には、接着剤やフィルムなどの絶縁材料が積層されていてもよい。 When configured in this way, the charges generated at the portion of the piezoelectric layer 13 where the first electrode 11 and the second electrode 12 are not laminated leak out and are detected by the first electrode 11 and the second electrode 12. Can be prevented (crosstalk phenomenon can be prevented). As a result, position detection accuracy and load detection accuracy can be improved. In the above description, the first electrode 11 and the second electrode 12 are directly laminated on the active piezoelectric portion 130. However, the active piezoelectric portion 130 and the upper electrode 2 or the active piezoelectric portion 130 and the lower electrode are illustrated. Between 3, an insulating material such as an adhesive or a film may be laminated.
5.その他の実施形態
 上記では、与えられた荷重の位置と量を圧電センサ10で検出する例を示した。しかし、図9に示すように、圧電センサ10の上に基板15を積層する代わりに、タッチパネル50を積層することで、与えられた荷重の位置と量を検出してもよい。
5. Other Embodiments In the above, the example in which the position and amount of the applied load are detected by the piezoelectric sensor 10 has been described. However, as shown in FIG. 9, instead of laminating the substrate 15 on the piezoelectric sensor 10, the position and amount of the applied load may be detected by laminating the touch panel 50.
 圧電センサ10の上にタッチパネル50を積層することにより、与えられた荷重が圧電センサ10で検出できないほど小さい場合(フェザータッチの場合)でも、タッチパネル50を用いて与えられた荷重の位置を検出できる。 By laminating the touch panel 50 on the piezoelectric sensor 10, the position of the applied load can be detected using the touch panel 50 even when the applied load is so small that it cannot be detected by the piezoelectric sensor 10 (in the case of feather touch). .
  1:圧力検出装置
  10:圧電センサ
  11:第1電極
  11a~11e:第1単位電極
  12:第2電極
  12a~12e:第2単位電極
  13: 圧電層
  14:基準電極
  15:基板
  16:接着剤
  20:検出部
  21:第1検出部
  22:第2検出部
  30:制御部
  31:第1制御部
  32:第2制御部
  40:基準電極
  50:タッチパネル
  130:活性圧電部
  131:不活性圧電部
  S:スイッチ
  S’:スイッチ
  Q1,Q2,Q3:電荷
  q1,q2,q3:電荷量
1: Pressure detection device 10: Piezoelectric sensor 11: First electrode 11a-11e: First unit electrode 12: Second electrode 12a-12e: Second unit electrode 13: Piezoelectric layer 14: Reference electrode 15: Substrate 16: Adhesive 20: detection unit 21: first detection unit 22: second detection unit 30: control unit 31: first control unit 32: second control unit 40: reference electrode 50: touch panel 130: active piezoelectric unit 131: inactive piezoelectric unit S: Switch S ′: Switch Q1, Q2, Q3: Charge q1, q2, q3: Charge amount

Claims (14)

  1.  圧電層と、
     前記圧電層の第1主面に積層される第1電極と、
     前記圧電層の前記第1主面に前記第1電極とともに積層される第2電極と、
     前記圧電層の前記第1主面とは反対側の第2主面に積層される基準電極と、を備える圧電センサであって、
     前記第1電極は、前記圧電層の第1の辺から前記第1の辺と反対側の第2の辺にかけて延在し、幅方向の大きさが前記第2の辺に近づくにつれ小さくなる複数の第1単位電極を備え、
     前記第2電極は、前記第1単位電極と同じ方向に延在し、幅方向の大きさが前記第1の辺に近づくにつれ小さくなる複数の第2単位電極を備え、
     前記第1単位電極と前記第2単位電極は、平面視で噛み合うように配置された圧電センサ。
    A piezoelectric layer;
    A first electrode laminated on the first main surface of the piezoelectric layer;
    A second electrode laminated with the first electrode on the first main surface of the piezoelectric layer;
    A reference electrode laminated on a second main surface opposite to the first main surface of the piezoelectric layer, and a piezoelectric sensor comprising:
    The first electrode extends from a first side of the piezoelectric layer to a second side opposite to the first side, and a plurality of the first electrodes become smaller as the size in the width direction approaches the second side. A first unit electrode of
    The second electrode includes a plurality of second unit electrodes which extend in the same direction as the first unit electrode and become smaller as the size in the width direction approaches the first side,
    The first unit electrode and the second unit electrode are piezoelectric sensors arranged to mesh with each other in plan view.
  2.  圧電層と、
     前記圧電層の第1主面上に積層される第1電極と、
     前記圧電層の前記第1主面とは反対側の第2主面に積層される第2電極と、を備える圧電センサであって、
     前記圧電層は、前記第1電極と接する第1圧電層と、前記第2電極と接する第2圧電層と、前記第1圧電層と前記第2圧電層の間の基準電極とを備え
     前記第1電極は、前記圧電層の第1の辺から前記第1の辺と反対側の第2の辺にかけて延在し、幅方向の大きさが前記第2の辺に近づくにつれ小さくなる複数の第1単位電極を備え、
     前記第2電極は、前記第1単位電極と同じ方向に延在し、幅方向の大きさが前記第1の辺に近づくにつれ小さくなる複数の第2単位電極を備え、
     前記第1単位電極と前記第2単位電極は、平面視で噛み合うように配置された圧電センサ。
    A piezoelectric layer;
    A first electrode laminated on a first main surface of the piezoelectric layer;
    A piezoelectric sensor comprising: a second electrode stacked on a second main surface opposite to the first main surface of the piezoelectric layer;
    The piezoelectric layer includes a first piezoelectric layer in contact with the first electrode, a second piezoelectric layer in contact with the second electrode, and a reference electrode between the first piezoelectric layer and the second piezoelectric layer. One electrode extends from a first side of the piezoelectric layer to a second side opposite to the first side, and a plurality of first electrodes that become smaller as the size in the width direction approaches the second side. With one unit electrode,
    The second electrode includes a plurality of second unit electrodes which extend in the same direction as the first unit electrode and become smaller as the size in the width direction approaches the first side,
    The first unit electrode and the second unit electrode are piezoelectric sensors arranged to mesh with each other in plan view.
  3.  前記第1単位電極が、前記圧電層の第1の辺に底辺を有し、前記第2の辺に頂点を有する三角形からなり、
     前記第2単位電極が、前記圧電層の第2の辺に底辺を有し、前記第1辺に頂点を有する三角形からなりる請求項1~2の圧電センサ。
    The first unit electrode comprises a triangle having a base on the first side of the piezoelectric layer and a vertex on the second side;
    3. The piezoelectric sensor according to claim 1, wherein the second unit electrode is formed of a triangle having a base on the second side of the piezoelectric layer and a vertex on the first side.
  4.  2以上の隣り合う前記第1単位電極どうしが前記第1の辺側で結合し、2以上の隣り合う前記第2単位電極どうしが前記第2の辺側で結合している請求項1~3の圧電センサ。 Two or more adjacent first unit electrodes are coupled on the first side, and two or more adjacent second unit electrodes are coupled on the second side. Piezoelectric sensor.
  5.  前記第1単位電極と前記第2単位電極のピッチ長さは、入力手段が前記圧電センサに接触したときに、前記入力手段と前記圧電センサとの間で形成される接触面の短径の長さよりも短い請求項1~4の圧電センサ。 The pitch length of the first unit electrode and the second unit electrode is the length of the short diameter of the contact surface formed between the input unit and the piezoelectric sensor when the input unit contacts the piezoelectric sensor. The piezoelectric sensor according to any one of claims 1 to 4, wherein the piezoelectric sensor is shorter.
  6.  前記第1単位電極のピッチ長さと前記第2単位電極のピッチ長さは、1mm~16mmである請求項5の圧電センサ。 The piezoelectric sensor according to claim 5, wherein the pitch length of the first unit electrode and the pitch length of the second unit electrode are 1 mm to 16 mm.
  7.  前記圧電層が、活性圧電部と不活性圧電部とからなり、前記第1単位電極と前記第2単位電極が前記活性圧電部上に配置されている請求項1~6の圧電センサ。 The piezoelectric sensor according to any one of claims 1 to 6, wherein the piezoelectric layer includes an active piezoelectric portion and an inactive piezoelectric portion, and the first unit electrode and the second unit electrode are disposed on the active piezoelectric portion.
  8.  前記第1電極が、酸化インジウム錫、ポリエチルジオキソチオフェンを含む請求項1~7の圧電センサ。 The piezoelectric sensor according to any one of claims 1 to 7, wherein the first electrode includes indium tin oxide and polyethyldioxothiophene.
  9.  前記第2電極が、酸化インジウム錫、またはポリエチルジオキソチオフェンを含む請求項1~8の圧電センサ。 The piezoelectric sensor according to any one of claims 1 to 8, wherein the second electrode contains indium tin oxide or polyethyldioxothiophene.
  10.  前記圧電層が、有機圧電材料からなる請求項1~9の圧電センサ。 10. The piezoelectric sensor according to claim 1, wherein the piezoelectric layer is made of an organic piezoelectric material.
  11.  前記有機圧電材料が、ポリフッ化ビニリデンまたはポリ乳酸を含む請求項10の圧電センサ。 The piezoelectric sensor according to claim 10, wherein the organic piezoelectric material contains polyvinylidene fluoride or polylactic acid.
  12.  前記圧電層が、無機材料からなる請求項1~9の圧電センサ。 10. The piezoelectric sensor according to claim 1, wherein the piezoelectric layer is made of an inorganic material.
  13.  請求項1~12の圧電センサとタッチパネルを備える電子機器。 An electronic device comprising the piezoelectric sensor of claim 1 to 12 and a touch panel.
  14.  前記タッチパネルが静電容量型の請求項13の電子機器。 The electronic device according to claim 13, wherein the touch panel is a capacitance type.
PCT/JP2014/063468 2013-06-04 2014-05-21 Piezoelectric sensor and electronic device WO2014196360A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013118299 2013-06-04
JP2013-118299 2013-06-04

Publications (1)

Publication Number Publication Date
WO2014196360A1 true WO2014196360A1 (en) 2014-12-11

Family

ID=52008012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063468 WO2014196360A1 (en) 2013-06-04 2014-05-21 Piezoelectric sensor and electronic device

Country Status (1)

Country Link
WO (1) WO2014196360A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117434A1 (en) * 2015-01-20 2016-07-28 株式会社村田製作所 Sensor module, pressing detection device
WO2018225407A1 (en) * 2017-06-05 2018-12-13 株式会社村田製作所 Pressed position detection sensor and electronic apparatus
US10254894B2 (en) 2015-12-23 2019-04-09 Cambridge Touch Technologies Ltd. Pressure-sensitive touch panel
US10282046B2 (en) 2015-12-23 2019-05-07 Cambridge Touch Technologies Ltd. Pressure-sensitive touch panel
US10310659B2 (en) 2014-12-23 2019-06-04 Cambridge Touch Technologies Ltd. Pressure-sensitive touch panel
US10318038B2 (en) 2014-12-23 2019-06-11 Cambridge Touch Technologies Ltd. Pressure-sensitive touch panel
US10496210B2 (en) 2012-04-07 2019-12-03 Cambridge Touch Technologies Ltd. Pressure sensing display device
US10817116B2 (en) 2017-08-08 2020-10-27 Cambridge Touch Technologies Ltd. Device for processing signals from a pressure-sensing touch panel
US11093088B2 (en) 2017-08-08 2021-08-17 Cambridge Touch Technologies Ltd. Device for processing signals from a pressure-sensing touch panel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5054323A (en) * 1989-04-04 1991-10-08 The Charles Stark Draper Laboratory, Inc. Pressure distribution characterization system
JP2000321013A (en) * 1999-05-13 2000-11-24 Sony Corp Shape recognizing device utilizing pressure detection and motion capture device using it
JP2002504223A (en) * 1995-11-03 2002-02-05 トラスティーズ オブ ボストン ユニバーシティ Real-time side impact detection and offline diagnostics
WO2010095581A1 (en) * 2009-02-18 2010-08-26 株式会社クラレ Multi-layered deformation sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5054323A (en) * 1989-04-04 1991-10-08 The Charles Stark Draper Laboratory, Inc. Pressure distribution characterization system
JP2002504223A (en) * 1995-11-03 2002-02-05 トラスティーズ オブ ボストン ユニバーシティ Real-time side impact detection and offline diagnostics
JP2000321013A (en) * 1999-05-13 2000-11-24 Sony Corp Shape recognizing device utilizing pressure detection and motion capture device using it
WO2010095581A1 (en) * 2009-02-18 2010-08-26 株式会社クラレ Multi-layered deformation sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10496210B2 (en) 2012-04-07 2019-12-03 Cambridge Touch Technologies Ltd. Pressure sensing display device
US10310659B2 (en) 2014-12-23 2019-06-04 Cambridge Touch Technologies Ltd. Pressure-sensitive touch panel
US10318038B2 (en) 2014-12-23 2019-06-11 Cambridge Touch Technologies Ltd. Pressure-sensitive touch panel
WO2016117434A1 (en) * 2015-01-20 2016-07-28 株式会社村田製作所 Sensor module, pressing detection device
JPWO2016117434A1 (en) * 2015-01-20 2017-10-12 株式会社村田製作所 Press detection device
US10254894B2 (en) 2015-12-23 2019-04-09 Cambridge Touch Technologies Ltd. Pressure-sensitive touch panel
US10282046B2 (en) 2015-12-23 2019-05-07 Cambridge Touch Technologies Ltd. Pressure-sensitive touch panel
WO2018225407A1 (en) * 2017-06-05 2018-12-13 株式会社村田製作所 Pressed position detection sensor and electronic apparatus
US10817116B2 (en) 2017-08-08 2020-10-27 Cambridge Touch Technologies Ltd. Device for processing signals from a pressure-sensing touch panel
US11093088B2 (en) 2017-08-08 2021-08-17 Cambridge Touch Technologies Ltd. Device for processing signals from a pressure-sensing touch panel

Similar Documents

Publication Publication Date Title
WO2014196360A1 (en) Piezoelectric sensor and electronic device
US9864450B2 (en) Piezoelectric sensor and pressure detection apparatus
JP5797692B2 (en) Piezoelectric sensor and pressure detection device
US9417725B1 (en) Touch panel having press detection function
US10591368B2 (en) Force sensor with strain relief
US9519378B2 (en) Pressure detector and touch panel provided with pressure detector
KR102175810B1 (en) Touch panel and manufacturing method thereof
KR102267357B1 (en) Touch sensor device
JP5897055B2 (en) Pressure sensor and touch panel
KR101386327B1 (en) Display device equipped with touch panel
US20120306777A1 (en) Flexible touch screen panel
KR20160053919A (en) Sensor device, input device, and electronic device
JP6104721B2 (en) Piezoelectric sensor and pressure detection device
KR20170040071A (en) Touch pad, touch screen and electronic apparatus using the same and method for producing touch pad
JP5797866B1 (en) Piezoelectric sensor and pressure detection device
US20150212635A1 (en) Display device including a touch panel
JP5797693B2 (en) Piezoelectric sensor and pressure detection device
JP5797865B1 (en) Piezoelectric sensor and pressure detection device
JP5797694B2 (en) Pressure detecting device and electronic device
JP5797867B1 (en) Pressure detecting device and electronic device
US20230010682A1 (en) Touch Panel Device
JP2014238269A (en) Piezoelectric sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14807794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP