WO2018225407A1 - Pressed position detection sensor and electronic apparatus - Google Patents

Pressed position detection sensor and electronic apparatus Download PDF

Info

Publication number
WO2018225407A1
WO2018225407A1 PCT/JP2018/016397 JP2018016397W WO2018225407A1 WO 2018225407 A1 WO2018225407 A1 WO 2018225407A1 JP 2018016397 W JP2018016397 W JP 2018016397W WO 2018225407 A1 WO2018225407 A1 WO 2018225407A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
detection sensor
pressing
position detection
piezoelectric film
Prior art date
Application number
PCT/JP2018/016397
Other languages
French (fr)
Japanese (ja)
Inventor
大寺 昭三
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2019523388A priority Critical patent/JP6620912B2/en
Publication of WO2018225407A1 publication Critical patent/WO2018225407A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals

Definitions

  • An embodiment of the present invention relates to a push position detection sensor and an electronic device that detect a push position on a panel.
  • Patent Literature 1 panels constituting various display screens, long piezoelectric elements each fixed along at least two sides intersecting the peripheral edge of the panel, and the above-described pressure caused by pressing force on the panel are disclosed.
  • a touch panel provided with a pressed position calculating means for calculating a pressed position in the panel based on an output of a piezoelectric element.
  • the pressing position on the panel is detected using a long piezoelectric element fixed along the periphery of the panel constituting the display screen.
  • the location where the piezoelectric element is attached is uniformly deformed at any position. For example, if the location where the piezoelectric element is attached varies depending on the position, the voltage generated even when pressed with the same strength is affected by the deformation. Further, even if any position is uniformly deformed at the location where the piezoelectric element is pasted, the generated voltage may be affected by the pressing speed of the user or the like.
  • an object of an embodiment of the present invention is to provide a push position detection sensor and an electronic apparatus that can detect a position where a push operation is received without being affected by the degree of deformation or the push speed.
  • a pressing position detection sensor includes a piezoelectric film that is deformed by a pressing operation from a user, a first electrode formed on a first main surface of the piezoelectric film, and the first electrode of the piezoelectric film.
  • a second electrode formed on the main surface, and a reference electrode formed on the second main surface of the piezoelectric film, the first electrode and the second electrode are arranged side by side in the first direction, The difference in width between the first electrode and the second electrode in the first direction is different from each other along a second direction perpendicular to the first direction.
  • the first electrode and the second electrode arranged side by side in the first direction simultaneously output a voltage.
  • the voltage output from the first electrode and the second electrode corresponds to the area of each electrode.
  • the difference in width between the first electrode and the second electrode in the first direction is different from each other along a second direction perpendicular to the first direction. Regardless of the position at which the pressing operation in the second direction is received, the difference in width between the positions at which the pressing operation is received at the first electrode and the second electrode is different. Accordingly, the first electrode and the second electrode output voltages corresponding to different areas. Therefore, by calculating the ratio of the voltage output from the first electrode to the voltage output from the second electrode, the position where the pressing operation is received is detected without being affected by the degree of deformation or the pressing speed. it can
  • FIG. 1A is a perspective view of an electronic apparatus including a push position detection sensor according to the first embodiment.
  • FIG. 1B is a view for explaining the housing according to the first embodiment.
  • FIG. 2 is a view for explaining a piezoelectric element corresponding to a portion surrounded by a broken line ellipse A1 in FIG. 3A is an exploded perspective view of the piezoelectric element according to the first embodiment, and FIG. 3B is a sectional view thereof.
  • FIG. 4 is a diagram for explaining electrodes corresponding to a portion surrounded by a broken-line ellipse A1 in FIG.
  • FIG. 5 is a view for explaining the piezoelectric film according to the first embodiment.
  • FIG. 1A is a perspective view of an electronic apparatus including a push position detection sensor according to the first embodiment.
  • FIG. 1B is a view for explaining the housing according to the first embodiment.
  • FIG. 2 is a view for explaining a piezoelectric element corresponding to a portion
  • FIG. 6A is a diagram for explaining the relationship between the position where the pressing operation of the first electrode and the second electrode according to the first embodiment is received and the generated voltage.
  • FIG. 6B is a diagram for explaining the relationship between the ratio of the generated voltage in the first electrode and the second electrode and the position where the pressing operation is received.
  • FIGS. 7A to 7D are views for explaining modifications of the first electrode and the second electrode according to the first embodiment.
  • FIGS. 8A to 8D are views for explaining modifications of the first electrode and the second electrode according to the first embodiment.
  • FIG. 9A is a view for explaining the first electrode and the second electrode of the push position detection sensor according to the second embodiment.
  • FIG. 9B is a diagram for explaining the relationship between the ratio of the generated voltage in the first electrode and the second electrode according to the second embodiment and the position where the pressing operation is received.
  • FIG. 10 is a diagram for explaining the relationship between the ratio of the generated voltage in the first electrode and the second electrode according to the example and the reference example and the position where the pressing operation is received.
  • FIG. 11 is a conceptual diagram for explaining a push position detection sensor according to the third embodiment.
  • FIG. 12A is a view for explaining the first electrode and the second electrode of the push position detection sensor according to the fourth embodiment.
  • FIG. 12B is a diagram for explaining the positional relationship between the position to receive the pressing operation and the piezoelectric film according to the fourth embodiment.
  • FIG. 12C is a diagram for explaining the relationship between the ratio of the generated voltage in the first electrode and the second electrode and the position where the pressing operation is received.
  • FIGS. 13A to 13C are diagrams for explaining a modification according to the fourth embodiment.
  • FIG. 14A is a view for explaining the first electrode and the second electrode of the push position detection sensor according to the fifth embodiment.
  • FIG. 14B is a view for explaining the piezoelectric film according to the fifth embodiment.
  • FIG. 14C is a diagram for explaining the relationship between the generated voltage in the first electrode and the second electrode and the position where the pressing operation is received.
  • FIG. 15A and FIG. 15B are plan views of another example of the electronic apparatus including the push position detection sensor according to the first embodiment.
  • FIG. 15A and FIG. 15B are plan views of another example of the electronic apparatus including the push position detection sensor according to the first embodiment.
  • FIG. 16A is a view for explaining the first electrode and the second electrode of the push position detection sensor according to the sixth embodiment.
  • FIG. 16B and FIG. 16C are diagrams for explaining the relationship between the value based on the generated voltage in the first electrode and the second electrode according to the sixth embodiment and the position where the pressing operation is received.
  • FIG. 1A is a perspective view of an electronic device 1 including a push position detection sensor 100 according to the first embodiment.
  • FIG. 1B is a diagram for explaining the housing 2 according to the first embodiment.
  • FIG. 2 is a diagram for explaining the piezoelectric element 10 corresponding to a portion surrounded by a broken-line ellipse A1 in FIG.
  • FIG. 2 is a view of the housing 2 as seen from the inside. Note that the electronic device 1 illustrated in FIG. 1A is merely an example, and is not limited thereto, and can be changed as appropriate according to specifications.
  • the electronic apparatus 1 includes a substantially rectangular parallelepiped housing 2 having an open top surface.
  • the electronic device 1 includes a flat surface panel 4 disposed in an opening on the upper surface of the housing 2.
  • the front panel 4 functions as an operation surface on which a user performs a touch operation using a finger or a pen.
  • the housing 2 includes a side surface portion 3 and a bottom surface portion 7. Below, the width direction (horizontal direction) of the housing
  • the first pressing portion 51, the second pressing portion 52, and the third pressing portion 53 are formed on the side surface portion 3.
  • the first pressing portion 51, the second pressing portion 52, and the third pressing portion 53 are rectangular in plan view, and are formed side by side in the Y direction on the YZ plane.
  • the press part should just be formed 1 or more.
  • the first pressing portion 51, the second pressing portion 52, and the third pressing portion 53 may be formed at locations other than the YZ plane, or may be formed at the bottom surface portion 7 or the front panel 4. Good. For example, you may be made into the part enclosed by broken-line ellipse A2 of FIG. Further, for example, by arranging the first pressing portion 51 and the like side by side around the display portion of the front panel 4, that is, surrounding the periphery of the display portion, it is possible to detect which position on the display portion is pressed. Can do.
  • the first pressing portion 51, the second pressing portion 52, and the third pressing portion 53 are provided on the side surface portion 3 by color-coding a part of the side surface portion 3, adding a mark, or forming a groove around the side portion 3. It is distinguished from the part.
  • the shape of the 1st press part 51, the 2nd press part 52, and the 3rd press part 53 is not restricted to a rectangular shape, Another shape, such as circular, a polygon, or a triangular shape, may be sufficient.
  • the 1st press part 51, the 2nd press part 52, and the 3rd press part 53 are not limited to aligning in a Y direction, For example, in the state diagonally arranged with respect to the state aligned in a Z direction, or a Y direction There may be.
  • a push position detection sensor 100 is formed inside the housing 2. Since the push position detection sensor 100 is formed inside the housing 2, the push position detection sensor 100 is excellent in durability because it is not directly subjected to friction caused by a pressing operation. Moreover, it is not necessary to provide a through-hole in the side part 3 so that a mechanical switch may be installed. For this reason, the housing 2 can be thinned without requiring a complicated structure, and foreign matters such as moisture and dust can be prevented from entering the housing 2 from the outside through the through holes.
  • the push position detection sensor 100 includes the piezoelectric element 10 and the detection unit 18.
  • the piezoelectric element 10 is disposed on the inner side 8 of the side surface portion 3.
  • the push position detection sensor 100 may be formed outside the housing 2.
  • the 1st press part 51, the 2nd press part 52, and the 3rd press part 53 are shown by the dotted line.
  • the piezoelectric element 10 is disposed at a position corresponding to the first pressing portion 51, the second pressing portion 52, and the third pressing portion 53 with the side surface portion 3 of the housing 2 interposed therebetween.
  • the detection unit 18 is disposed inside the housing 2 and is connected to the piezoelectric element 10 by a wiring (not shown).
  • the piezoelectric element 10 When the user performs a touch operation on the first pressing portion 51, the second pressing portion 52, and the third pressing portion 53 using a finger or a pen, pressure is transmitted to the piezoelectric element 10. For this reason, the piezoelectric element 10 outputs a voltage corresponding to the operation received by the first pressing part 51, the second pressing part 52, and the third pressing part 53.
  • the detector 18 detects the voltage output from the piezoelectric element 10.
  • the detection unit 18 may be at any position as long as it is inside the housing 2.
  • FIG. 3A is an exploded perspective view of the piezoelectric element 10 according to the first embodiment
  • FIG. 3B is a cross-sectional view thereof.
  • the piezoelectric element 10 includes a first electrode 11, a second electrode 12, a reference electrode 13, and a piezoelectric film 14.
  • 3A illustration of the piezoelectric element 10 other than the first electrode 11, the second electrode 12, the reference electrode 13, and the piezoelectric film 14 is omitted.
  • the first electrode 11 and the second electrode 12 are arranged on the same plane.
  • the piezoelectric film 14 is laminated on the reference electrode 13, and the first electrode 11 and the second electrode 12 are laminated on the piezoelectric film 14. That is, the first electrode 11 and the second electrode 12 are formed on the first main surface 141 of the piezoelectric film 14, and the reference electrode 13 is formed on the second main surface 142 of the piezoelectric film 14.
  • the reference electrode 13 and the piezoelectric film 14 are formed in substantially the same shape.
  • the piezoelectric element 10 When the piezoelectric element 10 is viewed in plan view, at least one of the reference electrode 13 or the pair of the first electrode 11 and the second electrode 12 is completely overlapped with the piezoelectric film 14 in a top view or is located inward of the piezoelectric film 14 in the plane direction. Good to be. Thereby, the short circuit in the edge part of an electrode can be suppressed. Further, two sets of the reference electrode 13 and the piezoelectric film 14 may be formed in accordance with the shapes of the first electrode 11 and the second electrode 12, respectively. Thereby, since the size of the reference electrode 13 and the piezoelectric film 14 can be formed small, bulkiness can be reduced.
  • the first electrode 11 and the second electrode 12 are arranged side by side in the Z direction. Note that either the first electrode 11 or the second electrode 12 may be above the Z direction.
  • the first electrode 11 has a rectangular shape, and has a uniform width in the Z direction along the Y direction. When the first electrode 11 is divided into predetermined sections along the Y direction, the area of each predetermined section is uniform.
  • the second electrode 12 has a right triangle shape in which the width in the Z direction changes along the Y direction, that is, the area of each section changes.
  • the second electrode 12 has two sides parallel to the Y direction or the Z direction, respectively. Since the second electrode 12 has a right triangle shape, it is easy to manufacture.
  • the second electrode 12 is not limited to a right triangle shape as long as the area of the second electrode 12 changes along the Y direction. That is, the difference in the width in the Z direction between the first electrode 11 and the second electrode 12 is different from each other along the Y direction.
  • the Y direction corresponds to the second direction in the present invention
  • the Z direction corresponds to the first direction in the present invention.
  • FIG. 4 is a diagram for explaining the first electrode 11 and the second electrode 12 corresponding to the portion surrounded by the broken line ellipse A1 in FIG.
  • FIG. 4 is a view of the housing 2 as viewed from the inside.
  • the 1st press part 51, the 2nd press part 52, and the 3rd press part 53 are shown by the dotted line.
  • FIG. 4 only the first electrode 11 and the second electrode 12 of the piezoelectric element 10 are shown.
  • the first electrode 11 has a uniform width in the Z direction along the Y direction. For this reason, the area of the 1st electrode 11 of the location corresponding to the 1st press part 51, the 2nd press part 52, and the 3rd press part 53 is respectively the same.
  • the area of the second electrode 12 changes along the Y direction. For this reason, the area of the second electrode 12 at locations corresponding to the first pressing portion 51, the second pressing portion 52, and the third pressing portion 53 sequentially increases from the first pressing portion 51 toward the third pressing portion 53.
  • the 1st electrode 11 and the 2nd electrode 12 can also be suitably changed according to the shape of the 1st press part 51, the 2nd press part 52, and the 3rd press part 53.
  • FIG. 5 is a view for explaining the piezoelectric film 14 according to the first embodiment.
  • FIG. 5 is a plan view of the piezoelectric film 14.
  • the piezoelectric film 14 may be a film formed from a chiral polymer.
  • polylactic acid (PLA) particularly L-type polylactic acid (PLLA) is used as the chiral polymer.
  • PLLA made of a chiral polymer has a main chain with a helical structure.
  • PLLA has piezoelectricity when uniaxially stretched and molecules are oriented. The uniaxially stretched PLLA generates a voltage when the flat plate surface of the piezoelectric film 14 is pressed. At this time, the amount of voltage generated depends on the amount of displacement by which the flat plate surface is displaced in the direction perpendicular to the flat plate surface by the pressing amount.
  • the uniaxial stretching direction of the piezoelectric film 14 is a direction that forms an angle of 45 degrees with respect to the Y direction and the Z direction, as shown by arrows in FIG.
  • the 45 degrees includes an angle including about 45 degrees ⁇ 10 degrees, for example. Thereby, a voltage is generated when the piezoelectric film 14 is pressed.
  • PLLA generates piezoelectricity by molecular orientation treatment such as stretching, and does not need to be polled like other polymers such as PVDF or piezoelectric ceramics. That is, the piezoelectricity of PLLA that does not belong to ferroelectrics is not expressed by the polarization of ions like ferroelectrics such as PVDF or PZT, but is derived from a helical structure that is a characteristic structure of molecules. is there. For this reason, the pyroelectricity generated in other ferroelectric piezoelectric materials does not occur in PLLA. Since there is no pyroelectricity, the influence of the temperature of the user's finger or frictional heat does not occur, so that the front panel 4 can be formed thin.
  • PVDF or the like shows a change in piezoelectric constant over time, and in some cases, the piezoelectric constant may be significantly reduced, but the piezoelectric constant of PLLA is extremely stable over time. Therefore, it is possible to detect displacement due to pressing with high sensitivity without being affected by the surrounding environment.
  • the piezoelectric film 14 may be made of a film made of a ferroelectric material in which ions are polarized, such as PVDF or PZT subjected to poling treatment, instead of PLLA.
  • the first electrode 11, the second electrode 12, and the reference electrode 13 formed on both main surfaces of the piezoelectric film 14 are preferably metal electrodes such as aluminum or copper.
  • the charge generated by the piezoelectric film 14 can be acquired as a voltage, and a pressing amount detection signal having a voltage value corresponding to the pressing amount is output to the outside. Can be output.
  • FIG. 6A is a diagram for explaining the relationship between the position where the pressing operation of the first electrode 11 and the second electrode 12 according to the first embodiment is received and the generated voltage.
  • FIG. 6B is a diagram for explaining the relationship between the ratio of the generated voltage in the first electrode 11 and the second electrode 12 and the position where the pressing operation is received.
  • FIGS. 6 (A) and 6 (B) show voltage measurements on the assumption that a reference electrode 13, a piezoelectric film 14, and a first electrode 11 and a second electrode 12 are laminated on a polycarbonate flat plate (not shown). It is a simulation.
  • the first electrode 11, the second electrode 12, the reference electrode 13, and the piezoelectric film 14 are all fixed at both ends in the Y direction.
  • the flat plate of polycarbonate assumes a shape of 100 ⁇ 100 ⁇ 1 mm.
  • the first electrode 11 and the second electrode 12 are assumed to be formed so that the width in the Y direction is 90 mm, the maximum width in the Z direction is 5 mm, and the X thickness is 0.5 mm.
  • the center position in the Y direction is shown as 0 mm.
  • the pressing position is -45 mm to 45 mm.
  • the first electrode 11 and the second electrode 12 arranged side by side in the Y direction simultaneously output a voltage.
  • the voltages output from the first electrode 11 and the second electrode 12 respectively correspond to the area of the electrode at the position where the pressing operation is received, that is, the width in the Z direction.
  • the first electrode 11 has the same width at any position along the Y direction.
  • the area of each predetermined section is uniform. For this reason, as shown to FIG. 6 (A), the voltage according to this uniform area is output according to the position which receives pressing operation in a Y direction.
  • the voltage output from the first electrode 11 has a maximum value in the minus direction.
  • the position for accepting the pressing operation is ⁇ 45 mm or 45 mm in the Y direction, the piezoelectric film 14 is hardly deformed, and the voltage output from the first electrode 11 has a minimum value in the minus direction.
  • the voltage output from the first electrode 11 is represented as V1.
  • V1 corresponds to the first voltage in the present invention.
  • the first electrode 11 outputs a voltage of a quadratic curve (V1) with the center in the Y direction as a boundary.
  • the area of the second electrode 12 changes along the Y direction.
  • the 2nd electrode 12 outputs the voltage according to the position and area which receive pressing operation in a Y direction.
  • the first electrode 11 and the second electrode 12 are similarly deformed, but the areas of the places where the deformation is received are different.
  • the output from each electrode of the first electrode 11 and the second electrode 12 becomes an output ratio according to the area ratio of the first electrode 11 and the second electrode 12 that has been deformed.
  • the voltage output from the second electrode 12 is represented as V2.
  • V2 corresponds to the second voltage in the present invention.
  • the detection unit 18 detects voltages (V1 and V2) output from the piezoelectric element 10.
  • the calculation unit calculates the ratio ( ⁇ ) of the voltage (V1) output from the first electrode 11 to the voltage (V2) output from the second electrode 12.
  • the ratio ( ⁇ ) decreases linearly as the pressing position moves in the positive direction of the Y direction. For this reason, by storing a relationship in which the pressing position and the ratio ( ⁇ ) are associated in advance, it is possible to determine which position has been subjected to the pressing operation based on the value of the ratio ( ⁇ ) obtained from the calculation unit.
  • the width of the second electrode 12 decreases or increases linearly along the positive direction of the Y direction.
  • the ratio ( ⁇ ) monotonously decreases or increases as the width of the second electrode 12 monotonously decreases or increases along the Y direction.
  • the pressing position is detected by the ratio ( ⁇ ), it is possible to suppress the influence of deformation and the pressing speed.
  • the first pressing part 51, the 2nd press part 52, or the 3rd press part 53 the case where it is a button formed with the material from which the position of the 2nd press part 52 differs is mentioned.
  • the second pressing part 52 is made of a material that is hard and hardly distorted, and receives a pressing operation, the distortion of the piezoelectric film 14 at a portion corresponding to the second pressing part 52 is small. At this time, both V1 and V2 become small.
  • both V1 and V2 become large.
  • the ratio of V1 and V2 is calculated, so the degree of deformation is canceled out and is not affected by the degree of deformation of the pressed position. Similarly, the degree of deformation is canceled between V1 and V2 depending on the pressing speed and strength of the user. For this reason, the influence by a user's pushing speed and intensity
  • FIGS. 7A to 7D and FIGS. 8A to 8D are diagrams for explaining modifications of the first electrode 11 and the second electrode 12 according to the first embodiment. Also in the following modifications 1 to 8, when the pressing position moves along the positive direction of the Y direction as in the first electrode 11 and the second electrode 12 of the first embodiment, the ratio of V1 and V2 ( ⁇ ) Will change. Thereby, a press position is detectable.
  • the pressed position can be detected in the same manner as when the location where the electrode exists is pressed.
  • the pressing position in the Y-axis direction can be detected regardless of where the pressing is applied in the Z-axis direction. That is, the pressing position in the Y-axis direction can be recognized not only in the vicinity of the electrode forming portion but also in a case where a portion slightly away from the electrode is pressed. This will be described in detail in the embodiments described later.
  • Modification 1 includes a first electrode 21 and a second electrode 22.
  • the first electrode 21 is the same as the first electrode 11 according to the first embodiment.
  • the second electrode 22 has a trapezoidal shape in which the width in the Z direction increases along the plus direction in the Y direction.
  • the second electrode 22 since the second electrode 22 has a trapezoidal shape, there is a width in the Z direction at the negative end in the Y direction. For this reason, even when the negative end portion in the Y direction is pressed, the output from the second electrode 22 has a certain level or more, so that the pressing position can be detected more accurately at the end portion.
  • Modification 2 includes a first electrode 23 and a second electrode 24.
  • the first electrode 23 is the same as the first electrode 11 according to the first embodiment.
  • the second electrode 24 has a shape in which the width in the Z direction increases at a predetermined rate for each predetermined section along the positive direction in the Y direction.
  • the third modification includes a first electrode 25 and a second electrode 26.
  • the first electrode 25 is the same as the first electrode 11 according to the first embodiment.
  • the second electrode 26 is formed in an isosceles triangle and has a shape in which the width in the Z direction increases along the positive direction in the Y direction.
  • Modification 4 includes a first electrode 27 and a second electrode 28.
  • the piezoelectric element of Modification 4 is attached to a conical casing 71.
  • the first electrode 27 is formed to have the same width in the Z direction.
  • the second electrode 28 is generally triangular and has a shape in which the width in the Z direction changes along the positive direction of the Y direction, which is the circumferential direction.
  • the modified example 5 includes a first electrode 31 and a second electrode 32.
  • the first electrode 31 has a trapezoidal shape in which the width in the Z direction increases along the plus direction in the Y direction.
  • the second electrode 32 has a trapezoidal shape in which the width in the Z direction increases along the negative direction in the Y direction.
  • the first electrode 31 and the second electrode 32 are generally arranged as a whole by arranging the sides whose angles with respect to the other sides are not perpendicular to each other. It is formed in a rectangular shape. For this reason, since a useless area
  • Modification 6 includes a first electrode 33 and two second electrodes 34.
  • the first electrode 33 has a triangular shape in which the width in the Z direction increases along the positive direction in the Y direction.
  • the second electrode 34 has a triangular shape whose width in the Z direction increases along the negative direction of the Y direction. Since two ratios between the voltage output from the first electrode 33 and the voltage output from each second electrode 34 are obtained, the accuracy of detecting the position can be further increased.
  • the first electrode 33 or the second electrode 34 may be plural or singular.
  • the modified example 7 includes a first electrode 35 and a second electrode 36.
  • the first electrode 35 has a trapezoidal shape in which the width in the Z direction increases along the plus direction in the Y direction.
  • the second electrode 36 is formed in a shape surrounding the first electrode 35.
  • the width of the second electrode 36 increases in the Z direction along the negative direction of the Y direction. Therefore, since the width of the first electrode 35 and the second electrode 36 in the Z direction changes along the Y direction, the pressing position in the Y direction can be detected.
  • the modified example 8 includes a first electrode 37 and a second electrode 38.
  • the first electrode 37 and the second electrode 38 have a rectangular shape as a whole, but the adjacent sides of the first electrode 37 and the second electrode 38 are formed in a curved shape. Therefore, the voltage output from the first electrode 37 has a relatively small change on the negative side in the Y direction, and the change can be increased toward the positive side in the Y direction. Thus, by increasing the change in the ratio ( ⁇ ), it can be formed so that even a short movement can be detected with high sensitivity.
  • FIG. 9A is a view for explaining the first electrode 81 and the second electrode 82 of the push position detection sensor 80 according to the second embodiment.
  • FIG. 9B is a diagram for explaining the relationship between the ratio of the generated voltage in the first electrode 81 and the second electrode 82 according to the second embodiment and the position where the pressing operation is received. In the push position detection sensor 80, only the first electrode 81 and the second electrode 82 are shown.
  • the push position detection sensor 80 includes a first electrode 81 and a second electrode 82.
  • the first electrode 81 includes a plurality of first protrusions 83 that protrude in the Z direction for each predetermined section.
  • the second electrode 82 includes a plurality of second protrusions 84 that protrude in the Z direction for each predetermined section.
  • the plurality of first protrusions 83 have the same area.
  • the 2nd protrusion part 84 the area of each 2nd protrusion part 84 reduces along a Y direction.
  • the first protrusions 83 and the second protrusions 84 are alternately arranged along the Y direction.
  • the push position detection sensor 80 is divided into sections R1, R2, and R3 of equal length in the Y direction as shown in FIG.
  • the area of the first electrode 81 is uniform in each of the sections R1, R2, and R3.
  • the area of each second protrusion 84 decreases along the Y direction, the area of the second electrode 82 decreases in the order of the sections R1, R2, and R3.
  • the first electrode 81 and the second electrode according to the position of the user's pressing operation. Each outputs a voltage. Since the first electrode 81 has a uniform area in each of the sections R1, R2, and R3, the same voltage (V1) is output regardless of which of the sections R1, R2, and R3 is subjected to the pressing operation. On the other hand, since the area of the second electrode 82 decreases in the order of the sections R1, R2, and R3, the voltage (V2) that the second electrode 82 outputs in the order of the sections R1, R2, and R3 decreases.
  • the ratio ⁇ of V1 and V2 obtained as shown in FIG. 9B decreases stepwise.
  • the push position detection sensor 80 can determine not only the pressed position but also the direction in which the user traces the push position detection sensor 80 (the direction in which the rubbing operation is accepted).
  • FIG. 10 is a diagram for explaining the relationship between the ratio of the generated voltage in the first electrode 11 and the second electrode 12 according to Examples 1 to 4 and Reference Examples 1 and 2 and the position where the pressing operation is received. Examples 1 to 4 and Reference Examples 1 and 2 will be described below.
  • a laminate of the reference electrode 13, the piezoelectric film 14, and the first electrode 11 and the second electrode 12 on a polycarbonate plate of 100 ⁇ 100 ⁇ 1 mm was used.
  • the first electrode 11 and the second electrode 12 were formed so that the width in the Y direction was 90 mm, the maximum width in the Z direction was 5 mm, and the X thickness was 0.5 mm.
  • As the piezoelectric film 14, a rectangular film formed by PVDF so that the width in the Y direction was 90 mm, the width in the Z direction was 10 mm, and the X thickness was 0.5 mm was used.
  • Example 1 while pressing the center of the first electrode 11 and the second electrode 12 in the Z direction along the Y direction with a force of about 1000 Pa, the pressing position was moved along the Y direction, and the output voltage was measured. .
  • the center position in the Y direction is shown as 0 mm.
  • the pressing position is -45 mm to 45 mm.
  • Example 2 the pressing position was measured as 10 mm in the Z direction from the center in the Z direction of the first electrode 11 and the second electrode 12. Similarly, as Example 3, it measured 20 mm from the center of Z direction to Z direction, and as Example 4, it measured as 30 mm from the center of Z direction to Z direction. In Reference Example 1, the pressing position was measured as ⁇ 10 mm in the Z direction from the center in the Z direction of the first electrode 11 and the second electrode 12, and in Reference Example 2 was measured as ⁇ 20 mm in the Z direction from the center in the Z direction.
  • Example 1 the ratio ( ⁇ ) decreased as the pressing position moved in the positive direction of the Y direction.
  • Examples 2 to 4 that is, when the pressing position is 10 mm to 30 mm in the Z direction from the center in the Z direction, the ratio ( ⁇ ) is slightly larger than that in Example 1, but the pressing position is a plus in the Y direction. It decreased like Example 1 as it moved to the direction.
  • Reference Examples 1 and 2 that is, when the pressing position is ⁇ 20 mm to ⁇ 10 mm in the Z direction from the center in the Z direction, the ratio ( ⁇ ) is slightly smaller than the example, and the pressing position moves in the Y direction. As a result, it was confirmed that it decreased in the vicinity of 0 mm in the Y direction as in the example.
  • FIG. 11 is a conceptual diagram for explaining the push position detection sensor 101 according to the third embodiment.
  • the pressing position detection sensor 101 and the pressing position detection sensor 102 according to the third embodiment are sensors that detect the pressing position in the detection region 110 on the XY plane. 11, a part of the detection region 110 is omitted.
  • the push position detection sensor 101 includes a first electrode 111, a second electrode 112, and a piezoelectric film 114. .
  • the first electrode 111 is the same as the first electrode 11 according to the first embodiment.
  • the second electrode 112 is the same as the second electrode 12 according to the first embodiment.
  • the second electrode 112 has a triangular shape in which the width in the Y direction increases along the positive direction in the X direction.
  • the push position detection sensor 102 includes a first electrode 115, a second electrode 116, and a piezoelectric film 117.
  • the first electrode 115 is the same as the first electrode 111.
  • the second electrode 116 has a triangular shape in which the width in the Y direction increases along the minus direction in the X direction.
  • the piezoelectric film 117 is the same as the piezoelectric film 114.
  • the rectangular first electrode 111 and the first electrode 115 are arranged on the side close to the detection region 110. For this reason, the output from the first electrode 111 and the first electrode 115 is relatively uniform and stable even when any position in the X direction of the detection region 110 receives a pressing operation.
  • the triangular second electrode 112 and the second electrode 116 are arranged on the end side of the housing 2 that is far from the detection region 110. For this reason, the second electrode 112 and the second electrode 116 are easily deformed. Therefore, the outputs from the second electrode 112 and the second electrode 116 are easily affected by deformation over the X direction of the detection region 110. Outputs from the second electrode 112 and the second electrode 116 change greatly in the X direction. As a result, the push position detection sensor 101 and the push position detection sensor 102 can accurately detect a change in the X direction.
  • the directions in which the second electrode 112 and the second electrode 116 are widened are opposite. Thereby, the opposite changes are obtained in the push position detection sensor 101 and the push position detection sensor 102, respectively.
  • the output from the second electrode 112 increases as the pressing position moves toward the plus side in the X direction.
  • the output from the second electrode 116 decreases as the pressed position moves toward the plus side in the X direction. Therefore, since the detection position can be detected from both the positive side and the negative side in the X direction, the detection position can be detected more accurately.
  • the voltage C1 is output from the first electrode 111 and the voltage D1 is output from the second electrode 112, respectively.
  • the voltage C2 is output from the first electrode 115 and the voltage D2 is output from the second electrode 116, respectively.
  • the ratio of the outputs of the push position detection sensor 101 and the push position detection sensor 102 in the case where the coordinate of each grid point has received a press operation is obtained in advance.
  • the pressed position can be detected with higher accuracy. If the accuracy of the pressing position is not required so much, it may be possible to realize only by the ratio of p and q.
  • the push position detection sensor 101 and the push position detection sensor 102 output voltages from the respective electrodes. At this time, the coordinates in the detection region 110 are obtained by the following Equation 1.
  • the variables x and y can be obtained from the actually obtained values.
  • FIG. 12A is a view for explaining the first electrode 41 and the second electrode 42 of the push position detection sensor 120 according to the fourth embodiment.
  • FIG. 12B is a view for explaining the positional relationship between the position to receive the pressing operation and the piezoelectric films 121 to 124 according to the fourth embodiment.
  • FIG. 12C is a diagram for explaining the relationship between the ratio of the generated voltages in the first electrode 41 and the second electrode 42 and the position where the pressing operation is received. In FIG. 12B, only a part of the housing 2 is shown.
  • the push position detection sensor 120 includes piezoelectric films 121 to 124, four first electrodes 41, and second electrodes 42 to 45.
  • the piezoelectric films 121 to 124 are arranged in pairs with one of the first electrodes 41 and one of the second electrodes 42 to 45, respectively.
  • the second electrodes 42 to 45 are arranged so as to be aligned with the first electrode 41 in the Y direction.
  • the wiring 46 is drawn out from the four first electrodes 41.
  • a wiring 47 is drawn out from the second electrodes 42 to 45.
  • the wiring 46 and the wiring 47 are actually formed in different layers by through holes or the like, they are configured not to contact each other.
  • the push position detection sensor 120 can be formed thinner. Further, since the first electrode 41 and the second electrodes 42 to 45 are present in the same layer, they are similarly deformed by the pressing operation. Thereby, the sensitivity of the push position detection sensor 120 can be further increased.
  • the push position detection sensor 120 may be configured by forming the first electrode 41 and the wiring 46, the second electrodes 42 to 45, and the wiring 47 in advance in different layers and laminating them.
  • button regions B1 to B4 are arranged in the housing 2 at locations corresponding to the piezoelectric films 121 to 124, respectively.
  • the button region B1 includes a piezoelectric film 121, a first electrode 41, and a second electrode 42.
  • the four first electrodes 41 have the same area in the YZ plane. For this reason, when the piezoelectric films 121 to 124 are similarly deformed by the pressing operation, voltages of the same magnitude are output from the respective piezoelectric films 121 to 124.
  • the second electrodes 42 to 45 have different sizes in the YZ plane. Therefore, when the piezoelectric films 121 to 124 are similarly deformed by the pressing operation, voltages corresponding to the areas of the respective piezoelectric films 121 to 124 are output from the respective piezoelectric films 121 to 124.
  • the generated voltages in the second electrodes 42 to 45 differ depending on the pressed positions of the button areas B1 to B4. Therefore, as shown in FIG. 12C, the ratio of the generated voltages in the first electrode 41 and the second electrodes 42 to 45 differs depending on the button regions B1 to B4. Therefore, it is possible to recognize which position in the button areas B1 to B4 has received the pressing operation based on the ratio of the generated voltages in the first electrode 41 and the second electrodes 42 to 45 detected.
  • FIGS. 13A to 13C are diagrams for explaining modified examples 9 to 11 according to the fourth embodiment. Note that in the description of the modification 9, the description of the same configuration as that of the fourth embodiment is omitted, and only different points will be described. In the description of the modified examples 10 to 11, the description of the same configuration as that of the modified example 9 is omitted, and only different points will be described.
  • the second electrodes 42 to 45 are arranged so as to be aligned in the Z direction with respect to the first electrode 41, respectively.
  • the first electrode 41 and the second electrodes 42 to 45 are equally arranged in the Y direction. For this reason, there is less blur in the Y direction. Therefore, the accuracy of the push position detection sensor 130 can be further increased.
  • the modified example 10 differs from the modified example 9 in the direction in which the wiring 46 and the wiring 47 are drawn from the first electrode 41 and the second electrodes 42 to 45.
  • the wiring 46 needs to be configured not to contact the wiring 47 and the second electrodes 42 to 45.
  • the push position detection sensor 131 can be easily manufactured, and the push position detection sensor 131 itself can be reduced in size and weight.
  • the modified example 11 includes a single piezoelectric film 125 instead of the plurality of piezoelectric films 121 to 124 as compared with the modified example 9.
  • the piezoelectric film 125 is comprised only by one sheet, manufacture of the pushing position detection sensor 132 becomes easy. Further, the push position detection sensor 132 itself can be reduced in size and weight.
  • FIG. 14A is a view for explaining the first electrode 41 and the second electrodes 42 to 45 of the push position detection sensor 140 according to the fifth embodiment.
  • FIG. 14B is a view for explaining the piezoelectric films 121 to 124 according to the fifth embodiment.
  • FIG. 14C is a diagram for explaining the relationship between the generated voltage in the first electrode 41 and the second electrodes 42 to 45 and the position where the pressing operation is received. In FIG. 14B, the first electrode 41 and the second electrodes 42 to 45 are omitted.
  • the description of the same configuration as that of the modification 9 is omitted, and only different points will be described.
  • FIG. 14C for convenience of explanation, the first electrode, the second electrode, and the piezoelectric film are further illustrated as being doubled in the Y direction.
  • the area of the second electrodes 42 to 45 in the YZ plane decreases in the positive direction of the Y direction. It is. Note that the area of the second electrodes 42 to 45 in the YZ plane may increase in the positive direction of the Y direction.
  • the piezoelectric films 121 to 124 have different uniaxial stretching directions alternately. That is, the uniaxial stretching direction of the piezoelectric film 121 and the piezoelectric film 123 (arrow 901 shown in FIG. 14B) and the uniaxial stretching direction of the piezoelectric film 122 and the piezoelectric film 124 (arrow 902 shown in FIG. 14B) Approximately 90 degrees. Thereby, the voltage output from the piezoelectric film 121 and the piezoelectric film 123 and the voltage output from the piezoelectric film 122 and the piezoelectric film 124 have opposite polarities.
  • Piezoelectric films 121 to 124 have different uniaxial stretching directions along the Y-axis direction. For this reason, when the piezoelectric films 121 to 124 are similarly deformed by the pressing operation, the magnitude of the voltage output from the first electrode 41 is increased as the pressing position goes in the positive direction of the Y direction, as shown in FIG. S (E1) repeats substantially the same displacement. In contrast, the magnitude (E2) of the voltage output from the second electrodes 42 to 45 gradually decreases as the pressing position moves in the positive direction of the Y direction.
  • the push position detection sensor 140 can detect the sliding direction when a finger or the like is slid in the pressing operation.
  • a stable signal intensity can be obtained by extracting and correcting the change.
  • 15 (A) and 15 (B) are plan views of another example of the electronic apparatus 1 including the push position detection sensor according to the first embodiment.
  • the description of the same configuration as that of the electronic device 1 including the push position detection sensor according to the first embodiment will be omitted, and only different points will be described. Further, the piezoelectric element 10 is transmitted for the sake of explanation and represents its position.
  • the electronic device 150 is an operation panel of a remote controller.
  • operation panels such as a washing machine and a rice cooker, are mentioned besides a remote controller.
  • the electronic device 150 includes a plurality of operation buttons 152, an operation surface 153, and two piezoelectric elements 10.
  • Each of the operation buttons 152 is a section of the operation surface 153 and is provided on the same plane as the operation surface 153. For this reason, the operation surface is flat and can be kept hygienic without dust and the like collecting.
  • the piezoelectric element 10 is attached to the back surface of the operation surface 153 on the side to be operated.
  • the piezoelectric element 10 is disposed outside the region where the plurality of operation buttons 152 are formed, with the plurality of operation buttons 152 being sandwiched therebetween in the Y-axis direction. Similar to the push position detection sensor according to the third embodiment, when any of the operation buttons 152 accepts a pressing operation, the output from the two piezoelectric elements 10 detects which of the operation buttons 152 accepts the pressing operation. can do.
  • the electronic device 151 differs from the electronic device 150 in the arrangement of the two piezoelectric elements 10.
  • the piezoelectric element 10 is disposed between the plurality of operation buttons 152 so as to be sandwiched between the plurality of operation buttons 152 in the Y-axis direction.
  • the distance between the piezoelectric elements 10 can be reduced compared to the case where the piezoelectric element 10 is disposed at the end of the region where the operation buttons 152 are formed as in the electronic device 150.
  • the piezoelectric element 10 is greatly separated from the operation location, so that there is a possibility that the piezoelectric element 10 cannot sufficiently detect deformation.
  • the piezoelectric element 10 can be arranged near the portion to be deformed. Can be improved.
  • the number of piezoelectric elements 10 is not limited to two, and may be three or more. Thereby, detection accuracy can be further improved.
  • the number of the piezoelectric elements 10 may be increased, and the operation buttons 152 may be arranged between the plurality of operation buttons 152 as in the electronic device 151. Thereby, detection accuracy can be further improved.
  • FIG. 16A is a diagram for explaining the first electrode 161 and the second electrode 162 of the push position detection sensor 160 according to the sixth embodiment.
  • FIGS. 16B and 16C are diagrams for explaining the relationship between the value calculated based on the generated voltage in the first electrode 161 and the second electrode 162 according to the sixth embodiment and the position where the pressing operation is received.
  • the push position detection sensor 160 includes a first electrode 161 and a second electrode 162.
  • the first electrode 161 and the second electrode 162 each change in the width in the Z direction along the Y direction.
  • the width of the first electrode 161 in the Z direction increases in the direction of increasing in the Y direction
  • the width of the second electrode 162 decreases in the direction of increasing in the Y direction.
  • the first electrode 161 and the second electrode 162 increase or decrease from each other along the Y direction so as to keep the sum of the widths in the Z direction constant. For this reason, the push position detection sensor 160 has a constant sum of voltages generated from the first electrode 161 and the second electrode 162 regardless of which position in the Y direction receives the pressing operation.
  • the first electrode 161 and the second electrode 162 When the pressing position detection sensor 160 receives a pressing operation from the user, the first electrode 161 and the second electrode 162 output voltages (V1 and V2) corresponding to the positions at which the pressing operation is received, respectively.
  • the push position detection sensor 160 calculates a value 1 (V1 / (V1 + V2)) and a value 2 (V2 / (V1 + V2)) from the values output from the first electrode 161 and the second electrode 162.
  • the value 1 increases as the position where the pressing operation is received proceeds in the increasing direction in the Y direction.
  • the value 2 decreases as the position where the pressing operation is received proceeds in the increasing direction in the Y direction. Therefore, it is possible to determine which position has received the pressing operation from the value 1 and the value 2. The position may be determined from either one of the value 1 and the value 2.
  • the corresponding position where the pressing operation is accepted can be obtained.
  • the pressing position is obtained with high accuracy.
  • the positioning accuracy can be increased by averaging. Thereby, the error which the pushing position detection sensor 160 detects can be suppressed. If the pressed position is far from the assumed value, it can be predicted that a problem has occurred in the pressed position detection sensor 160.
  • the case 2 has a rectangular parallelepiped shape and the case 71 has a conical shape.
  • the shape of the case 2 or the case 71 is not limited thereto.
  • Examples of the shape of the housing 2 include other shapes such as a cylinder, a polygonal column, a sphere, and a polygonal pyramid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Position Input By Displaying (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

The present invention is provided with: a piezoelectric film (14) that deforms due to a pressing operation performed by a user; a first electrode (11) formed on a first main surface of the piezoelectric film (14); a second electrode (12) formed on the first main surface of the piezoelectric film (14); and a reference electrode (13) formed on a second main surface of the piezoelectric film (14). The first electrode (11) and the second electrode (12) are disposed by being aligned with each other in Z direction, and the width difference of the first electrode (11) in the first direction (Z), and the width difference of the second electrode (12) in the first direction are different from each other in second direction (Y) perpendicular to the Z direction.

Description

押し位置検出センサ及び電子機器Push position detection sensor and electronic device
 本発明の一実施形態は、パネル上での押し位置を検出する押し位置検出センサ及び電子機器に関する。 An embodiment of the present invention relates to a push position detection sensor and an electronic device that detect a push position on a panel.
 特許文献1には、各種のディスプレイ画面を構成するパネルと、該パネル周縁の交差する少なくとも2辺に沿って各々固定された長尺状の圧電素子と、該パネルへの押圧力に起因する前記圧電素子の出力を基に該パネル中の押圧箇所を演算する押圧位置演算手段とを備えたタッチパネルが開示されている。特許文献1に記載のタッチパネルにおいては、ディスプレイ画面を構成するパネル周縁に沿って固定された長尺状の圧電素子を用いて、パネル上の押圧位置を検知している。 In Patent Literature 1, panels constituting various display screens, long piezoelectric elements each fixed along at least two sides intersecting the peripheral edge of the panel, and the above-described pressure caused by pressing force on the panel are disclosed. There is disclosed a touch panel provided with a pressed position calculating means for calculating a pressed position in the panel based on an output of a piezoelectric element. In the touch panel described in Patent Document 1, the pressing position on the panel is detected using a long piezoelectric element fixed along the periphery of the panel constituting the display screen.
特開2007-86990号公報JP 2007-86990 A
 特許文献1に記載のタッチパネルにおいては、圧電素子を貼り付ける箇所がいずれの位置においても均一に変形する必要がある。例えば、圧電素子を貼り付ける箇所が位置によって変形具合が異なると、同じ強さで押しても生じる電圧は変形具合に影響される。また、仮に圧電素子を貼り付ける箇所においていずれの位置も均一に変形する場合であっても、ユーザの押す速度等によって、生じる電圧が影響を受ける場合がある。 In the touch panel described in Patent Document 1, it is necessary that the location where the piezoelectric element is attached is uniformly deformed at any position. For example, if the location where the piezoelectric element is attached varies depending on the position, the voltage generated even when pressed with the same strength is affected by the deformation. Further, even if any position is uniformly deformed at the location where the piezoelectric element is pasted, the generated voltage may be affected by the pressing speed of the user or the like.
 そこで、本発明の一実施形態の目的は、変形の具合や押す速度に影響されることなく、押圧操作を受け付けた位置を検知できる押し位置検出センサ及び電子機器を提供することにある。 Therefore, an object of an embodiment of the present invention is to provide a push position detection sensor and an electronic apparatus that can detect a position where a push operation is received without being affected by the degree of deformation or the push speed.
 本発明の一実施形態に係る押し位置検出センサは、ユーザからの押圧操作により変形する圧電フィルムと、前記圧電フィルムの第一主面に形成された第一電極と、前記圧電フィルムの前記第一主面に形成された第二電極と、前記圧電フィルムの第二主面に形成された基準電極と、を備え、前記第一電極及び前記第二電極は、第一方向に並んで配置され、前記第一電極及び前記第二電極の前記第一方向における幅の差は、前記第一方向に垂直な第二方向に沿って互いに異なることを特徴とする。 A pressing position detection sensor according to an embodiment of the present invention includes a piezoelectric film that is deformed by a pressing operation from a user, a first electrode formed on a first main surface of the piezoelectric film, and the first electrode of the piezoelectric film. A second electrode formed on the main surface, and a reference electrode formed on the second main surface of the piezoelectric film, the first electrode and the second electrode are arranged side by side in the first direction, The difference in width between the first electrode and the second electrode in the first direction is different from each other along a second direction perpendicular to the first direction.
 この構成では、圧電フィルムが押圧操作により変形するときに、第一方向に並んで配置されている第一電極及び第二電極は同時に電圧を出力する。第一電極及び第二電極から出力される電圧は、それぞれの電極の面積に対応する。前記第一電極及び前記第二電極の前記第一方向における幅の差は、前記第一方向に垂直な第二方向に沿って互いに異なる。第二方向における押圧操作を受け付ける位置がいずれの位置であっても、第一電極及び第二電極における押圧操作を受け付ける位置の幅の差が異なる。したがって、第一電極及び第二電極はそれぞれ異なる面積に応じた電圧を出力する。このため、第二電極から出力される電圧に対する、第一電極から出力される電圧の比を算出することにより、変形の具合や押す速度に影響されることなく、押圧操作を受け付けた位置を検知できる In this configuration, when the piezoelectric film is deformed by a pressing operation, the first electrode and the second electrode arranged side by side in the first direction simultaneously output a voltage. The voltage output from the first electrode and the second electrode corresponds to the area of each electrode. The difference in width between the first electrode and the second electrode in the first direction is different from each other along a second direction perpendicular to the first direction. Regardless of the position at which the pressing operation in the second direction is received, the difference in width between the positions at which the pressing operation is received at the first electrode and the second electrode is different. Accordingly, the first electrode and the second electrode output voltages corresponding to different areas. Therefore, by calculating the ratio of the voltage output from the first electrode to the voltage output from the second electrode, the position where the pressing operation is received is detected without being affected by the degree of deformation or the pressing speed. it can
 本発明の一実施形態によれば、変形の具合や押す速度に影響されることなく、押圧操作を受け付けた位置を検知できる。 According to one embodiment of the present invention, it is possible to detect the position where the pressing operation is received without being affected by the degree of deformation or the pressing speed.
図1(A)は、第一実施形態に係る押し位置検出センサを備えた電子機器の斜視図である。図1(B)は、第一実施形態に係る筐体を説明するための図である。FIG. 1A is a perspective view of an electronic apparatus including a push position detection sensor according to the first embodiment. FIG. 1B is a view for explaining the housing according to the first embodiment. 図2は、図1(A)の破線楕円A1で囲んだ部分に対応する圧電素子を説明するための図である。FIG. 2 is a view for explaining a piezoelectric element corresponding to a portion surrounded by a broken line ellipse A1 in FIG. 図3(A)は、第一実施形態に係る圧電素子の分解斜視図、図3(B)はその断面図である。3A is an exploded perspective view of the piezoelectric element according to the first embodiment, and FIG. 3B is a sectional view thereof. 図4は、図1(A)の破線楕円A1で囲んだ部分に対応する電極を説明するための図である。FIG. 4 is a diagram for explaining electrodes corresponding to a portion surrounded by a broken-line ellipse A1 in FIG. 図5は第一実施形態に係る圧電フィルムを説明するための図である。FIG. 5 is a view for explaining the piezoelectric film according to the first embodiment. 図6(A)は、第一実施形態に係る第一電極及び第二電極の押圧操作を受ける位置と発生電圧との関係を説明するための図である。図6(B)は、第一電極及び第二電極における発生電圧の比と押圧操作を受ける位置との関係を説明するための図である。FIG. 6A is a diagram for explaining the relationship between the position where the pressing operation of the first electrode and the second electrode according to the first embodiment is received and the generated voltage. FIG. 6B is a diagram for explaining the relationship between the ratio of the generated voltage in the first electrode and the second electrode and the position where the pressing operation is received. 図7(A)~(D)は、第一実施形態に係る第一電極及び第二電極の変形例を説明するための図である。FIGS. 7A to 7D are views for explaining modifications of the first electrode and the second electrode according to the first embodiment. 図8(A)~(D)は、第一実施形態に係る第一電極及び第二電極の変形例を説明するための図である。FIGS. 8A to 8D are views for explaining modifications of the first electrode and the second electrode according to the first embodiment. 図9(A)は、第二実施形態に係る押し位置検出センサの第一電極及び第二電極を説明するための図である。図9(B)は、第二実施形態に係る第一電極及び第二電極における発生電圧の比と押圧操作を受ける位置との関係を説明するための図である。FIG. 9A is a view for explaining the first electrode and the second electrode of the push position detection sensor according to the second embodiment. FIG. 9B is a diagram for explaining the relationship between the ratio of the generated voltage in the first electrode and the second electrode according to the second embodiment and the position where the pressing operation is received. 図10は、実施例及び参考例に係る第一電極及び第二電極における発生電圧の比と押圧操作を受ける位置との関係を説明するための図である。FIG. 10 is a diagram for explaining the relationship between the ratio of the generated voltage in the first electrode and the second electrode according to the example and the reference example and the position where the pressing operation is received. 図11は、第三実施形態に係る押し位置検出センサを説明するための概念図である。FIG. 11 is a conceptual diagram for explaining a push position detection sensor according to the third embodiment. 図12(A)は、第四実施形態に係る押し位置検出センサの第一電極及び第二電極を説明するための図である。図12(B)は、第四実施形態に係る押圧操作を受ける位置と圧電フィルムとの位置関係を説明するための図である。図12(C)は、第一電極及び第二電極における発生電圧の比と押圧操作を受ける位置との関係を説明するための図である。FIG. 12A is a view for explaining the first electrode and the second electrode of the push position detection sensor according to the fourth embodiment. FIG. 12B is a diagram for explaining the positional relationship between the position to receive the pressing operation and the piezoelectric film according to the fourth embodiment. FIG. 12C is a diagram for explaining the relationship between the ratio of the generated voltage in the first electrode and the second electrode and the position where the pressing operation is received. 図13(A)~(C)は、第四実施形態に係る変形例を説明するための図である。FIGS. 13A to 13C are diagrams for explaining a modification according to the fourth embodiment. 図14(A)は、第五実施形態に係る押し位置検出センサの第一電極及び第二電極を説明するための図である。図14(B)は、第五実施形態に係る圧電フィルムを説明するための図である。図14(C)は、第一電極及び第二電極における発生電圧と押圧操作を受ける位置との関係を説明するための図である。FIG. 14A is a view for explaining the first electrode and the second electrode of the push position detection sensor according to the fifth embodiment. FIG. 14B is a view for explaining the piezoelectric film according to the fifth embodiment. FIG. 14C is a diagram for explaining the relationship between the generated voltage in the first electrode and the second electrode and the position where the pressing operation is received. 図15(A)及び図15(B)は、第一実施形態に係る押し位置検出センサを備えた電子機器の別の一例の平面図である。FIG. 15A and FIG. 15B are plan views of another example of the electronic apparatus including the push position detection sensor according to the first embodiment. 図16(A)は、第六実施形態に係る押し位置検出センサの第一電極及び第二電極を説明するための図である。図16(B)及び図16(C)は、第六実施形態に係る第一電極及び第二電極における発生電圧に基づく値と押圧操作を受ける位置との関係を説明するための図である。FIG. 16A is a view for explaining the first electrode and the second electrode of the push position detection sensor according to the sixth embodiment. FIG. 16B and FIG. 16C are diagrams for explaining the relationship between the value based on the generated voltage in the first electrode and the second electrode according to the sixth embodiment and the position where the pressing operation is received.
 図1(A)は、第一実施形態に係る押し位置検出センサ100を備えた電子機器1の斜視図である。図1(B)は、第一実施形態に係る筐体2を説明するための図である。図2は、図1(A)の破線楕円A1で囲んだ部分に対応する圧電素子10を説明するための図である。図2は、筐体2を内側から見た図である。なお、図1(A)に示す電子機器1はあくまで一例であり、これに限るものではなく仕様に応じて適宜変更することができる。 FIG. 1A is a perspective view of an electronic device 1 including a push position detection sensor 100 according to the first embodiment. FIG. 1B is a diagram for explaining the housing 2 according to the first embodiment. FIG. 2 is a diagram for explaining the piezoelectric element 10 corresponding to a portion surrounded by a broken-line ellipse A1 in FIG. FIG. 2 is a view of the housing 2 as seen from the inside. Note that the electronic device 1 illustrated in FIG. 1A is merely an example, and is not limited thereto, and can be changed as appropriate according to specifications.
 図1(A)及び図1(B)に示すように、電子機器1は、上面が開口した略直方体形状の筐体2を備える。電子機器1は、筐体2の上面の開口部に配置された平板状の表面パネル4を備える。表面パネル4は、ユーザが指やペンなどを用いてタッチ操作を行う操作面として機能する。筐体2は側面部3及び底面部7を備える。以下では、筐体2の幅方向(横方向)をX方向とし、長さ方向(縦方向)をY方向とし、厚み方向をZ方向として説明する。 As shown in FIGS. 1 (A) and 1 (B), the electronic apparatus 1 includes a substantially rectangular parallelepiped housing 2 having an open top surface. The electronic device 1 includes a flat surface panel 4 disposed in an opening on the upper surface of the housing 2. The front panel 4 functions as an operation surface on which a user performs a touch operation using a finger or a pen. The housing 2 includes a side surface portion 3 and a bottom surface portion 7. Below, the width direction (horizontal direction) of the housing | casing 2 is set to X direction, a length direction (vertical direction) is set to Y direction, and the thickness direction is demonstrated as Z direction.
 側面部3には第一押圧部51、第二押圧部52、及び第三押圧部53が形成されている。本実施形態では、第一押圧部51、第二押圧部52、及び第三押圧部53は平面視で矩形状であり、Y-Z平面においてY方向に並んで形成されている。また、本実施形態においては、3つの押圧部を形成しているがこれに限られず、押圧部は一つ以上形成されていればよい。なお、第一押圧部51、第二押圧部52、及び第三押圧部53は、Y-Z平面以外の箇所に形成されていてもよく、底面部7又は表面パネル4に形成されていてもよい。例えば、図1(A)の破線楕円A2で囲んだ部分にされていてもよい。また、表面パネル4のうち例えば表示部の周辺に第一押圧部51等を並べて配置する、すなわち表示部の周辺を囲むように配置することにより、表示部のどの位置を押したかを検知することができる。 The first pressing portion 51, the second pressing portion 52, and the third pressing portion 53 are formed on the side surface portion 3. In the present embodiment, the first pressing portion 51, the second pressing portion 52, and the third pressing portion 53 are rectangular in plan view, and are formed side by side in the Y direction on the YZ plane. Moreover, in this embodiment, although the three press parts are formed, it is not restricted to this, The press part should just be formed 1 or more. The first pressing portion 51, the second pressing portion 52, and the third pressing portion 53 may be formed at locations other than the YZ plane, or may be formed at the bottom surface portion 7 or the front panel 4. Good. For example, you may be made into the part enclosed by broken-line ellipse A2 of FIG. Further, for example, by arranging the first pressing portion 51 and the like side by side around the display portion of the front panel 4, that is, surrounding the periphery of the display portion, it is possible to detect which position on the display portion is pressed. Can do.
 第一押圧部51、第二押圧部52、及び第三押圧部53は、側面部3の一部を色分けする、マークを付ける、又は周囲に溝を形成することなどによって、側面部3の他の部分と区別されている。また、第一押圧部51、第二押圧部52、及び第三押圧部53の形状は矩形状には限らず、円形、多角形、又は三角形状等別の形状であってもよい。さらに、第一押圧部51、第二押圧部52、及び第三押圧部53は、Y方向に並ぶことには限定されず、例えば、Z方向に並ぶ状態やY方向に対して斜めの方向であってもよい。 The first pressing portion 51, the second pressing portion 52, and the third pressing portion 53 are provided on the side surface portion 3 by color-coding a part of the side surface portion 3, adding a mark, or forming a groove around the side portion 3. It is distinguished from the part. Moreover, the shape of the 1st press part 51, the 2nd press part 52, and the 3rd press part 53 is not restricted to a rectangular shape, Another shape, such as circular, a polygon, or a triangular shape, may be sufficient. Furthermore, the 1st press part 51, the 2nd press part 52, and the 3rd press part 53 are not limited to aligning in a Y direction, For example, in the state diagonally arranged with respect to the state aligned in a Z direction, or a Y direction There may be.
 図1(B)に示すように、筐体2内部には、押し位置検出センサ100が形成されている。押し位置検出センサ100は筐体2内部に形成されているため、押圧操作による摩擦を直接に受けないため耐久性に優れる。また、メカニカルスウィッチを設置するように側面部3に貫通孔を設ける必要がない。このため、複雑な構造が必要とされずに筐体2の薄型化が図れ、かつ貫通孔を通して外部から水分やほこりなどの異物が筐体2内部へ侵入することを防止できる。 As shown in FIG. 1B, a push position detection sensor 100 is formed inside the housing 2. Since the push position detection sensor 100 is formed inside the housing 2, the push position detection sensor 100 is excellent in durability because it is not directly subjected to friction caused by a pressing operation. Moreover, it is not necessary to provide a through-hole in the side part 3 so that a mechanical switch may be installed. For this reason, the housing 2 can be thinned without requiring a complicated structure, and foreign matters such as moisture and dust can be prevented from entering the housing 2 from the outside through the through holes.
 押し位置検出センサ100は、圧電素子10及び検出部18を備える。圧電素子10は、側面部3の内側8に配置されている。なお、押し位置検出センサ100は筐体2外部に形成されていてもよい。 The push position detection sensor 100 includes the piezoelectric element 10 and the detection unit 18. The piezoelectric element 10 is disposed on the inner side 8 of the side surface portion 3. The push position detection sensor 100 may be formed outside the housing 2.
 図2においては、第一押圧部51、第二押圧部52、及び第三押圧部53は、点線で示されている。図2に示すように、筐体2の側面部3を挟んで、第一押圧部51、第二押圧部52、及び第三押圧部53に対応する位置に、圧電素子10が配置されている。検出部18は、筐体2内部に配置され、不図示の配線で圧電素子10と接続されている。 In FIG. 2, the 1st press part 51, the 2nd press part 52, and the 3rd press part 53 are shown by the dotted line. As shown in FIG. 2, the piezoelectric element 10 is disposed at a position corresponding to the first pressing portion 51, the second pressing portion 52, and the third pressing portion 53 with the side surface portion 3 of the housing 2 interposed therebetween. . The detection unit 18 is disposed inside the housing 2 and is connected to the piezoelectric element 10 by a wiring (not shown).
 第一押圧部51、第二押圧部52、及び第三押圧部53にユーザが指やペンなどを用いてタッチ操作を行うと、圧電素子10に圧力が伝わる。このため、圧電素子10は、第一押圧部51、第二押圧部52、及び第三押圧部53で受け付けた操作に応じた電圧を出力する。検出部18は、圧電素子10が出力する電圧を検出する。なお、検出部18は、筐体2内部であればいずれの位置であっても構わない。 When the user performs a touch operation on the first pressing portion 51, the second pressing portion 52, and the third pressing portion 53 using a finger or a pen, pressure is transmitted to the piezoelectric element 10. For this reason, the piezoelectric element 10 outputs a voltage corresponding to the operation received by the first pressing part 51, the second pressing part 52, and the third pressing part 53. The detector 18 detects the voltage output from the piezoelectric element 10. The detection unit 18 may be at any position as long as it is inside the housing 2.
 図3(A)は、第一実施形態に係る圧電素子10の分解斜視図、図3(B)はその断面図である。図3(A)及び図3(B)に示すように、圧電素子10は、第一電極11、第二電極12、基準電極13、及び圧電フィルム14を備える。なお、図3(A)では、圧電素子10は、第一電極11、第二電極12、基準電極13、及び圧電フィルム14以外の図示は省略している。 3A is an exploded perspective view of the piezoelectric element 10 according to the first embodiment, and FIG. 3B is a cross-sectional view thereof. As shown in FIGS. 3A and 3B, the piezoelectric element 10 includes a first electrode 11, a second electrode 12, a reference electrode 13, and a piezoelectric film 14. 3A, illustration of the piezoelectric element 10 other than the first electrode 11, the second electrode 12, the reference electrode 13, and the piezoelectric film 14 is omitted.
 第一電極11及び第二電極12は、同一平面上に配置されている。圧電フィルム14は基準電極13に積層され、第一電極11及び第二電極12は、圧電フィルム14に積層されている。すなわち、第一電極11及び第二電極12は圧電フィルム14の第一主面141に、基準電極13は圧電フィルム14の第二主面142に形成されている。基準電極13及び圧電フィルム14は概ね同様の形状に形成されている。 The first electrode 11 and the second electrode 12 are arranged on the same plane. The piezoelectric film 14 is laminated on the reference electrode 13, and the first electrode 11 and the second electrode 12 are laminated on the piezoelectric film 14. That is, the first electrode 11 and the second electrode 12 are formed on the first main surface 141 of the piezoelectric film 14, and the reference electrode 13 is formed on the second main surface 142 of the piezoelectric film 14. The reference electrode 13 and the piezoelectric film 14 are formed in substantially the same shape.
 圧電素子10を平面視した時、基準電極13又は第一電極11及び第二電極12の対の少なくとも一方は、上面視で圧電フィルム14と完全に重なるか、圧電フィルム14より面方向内側に位置していると良い。これにより、電極の端部における短絡を抑制できる。また、基準電極13及び圧電フィルム14はそれぞれ、第一電極11及び第二電極12の形状に併せて二組形成されていてもよい。これにより、基準電極13及び圧電フィルム14のサイズを小さく形成することができるため、嵩張りを減らすことができる。 When the piezoelectric element 10 is viewed in plan view, at least one of the reference electrode 13 or the pair of the first electrode 11 and the second electrode 12 is completely overlapped with the piezoelectric film 14 in a top view or is located inward of the piezoelectric film 14 in the plane direction. Good to be. Thereby, the short circuit in the edge part of an electrode can be suppressed. Further, two sets of the reference electrode 13 and the piezoelectric film 14 may be formed in accordance with the shapes of the first electrode 11 and the second electrode 12, respectively. Thereby, since the size of the reference electrode 13 and the piezoelectric film 14 can be formed small, bulkiness can be reduced.
 第一電極11及び第二電極12は、Z方向に並んで配置されている。なお、第一電極11及び第二電極12は、いずれがZ方向上方であってもよい。第一電極11は、矩形状であり、Y方向へ沿ってZ方向の幅が均一に形成されている。第一電極11は、Y方向へ沿って所定の区分毎に区切ると、それぞれの所定の区分毎の面積が一様である。第二電極12は、Y方向へ沿ってZ方向の幅が変化する、すなわち区分毎の面積が変化する直角三角形状である。第二電極12は、二辺がそれぞれY方向又はZ方向へ平行である。第二電極12は、直角三角形状であるため、製造が容易である。なお、変形例で示すように、第二電極12は、Y方向へ沿って面積が変化すればよく、直角三角形状には限定されない。すなわち、第一電極11及び第二電極12のZ方向における幅の差は、Y方向に沿って互いに異なる。Y方向は本発明における第二方向に相当し、Z方向は本発明における第一方向に相当する。 The first electrode 11 and the second electrode 12 are arranged side by side in the Z direction. Note that either the first electrode 11 or the second electrode 12 may be above the Z direction. The first electrode 11 has a rectangular shape, and has a uniform width in the Z direction along the Y direction. When the first electrode 11 is divided into predetermined sections along the Y direction, the area of each predetermined section is uniform. The second electrode 12 has a right triangle shape in which the width in the Z direction changes along the Y direction, that is, the area of each section changes. The second electrode 12 has two sides parallel to the Y direction or the Z direction, respectively. Since the second electrode 12 has a right triangle shape, it is easy to manufacture. As shown in the modification, the second electrode 12 is not limited to a right triangle shape as long as the area of the second electrode 12 changes along the Y direction. That is, the difference in the width in the Z direction between the first electrode 11 and the second electrode 12 is different from each other along the Y direction. The Y direction corresponds to the second direction in the present invention, and the Z direction corresponds to the first direction in the present invention.
 図4は、図1(A)の破線楕円A1で囲んだ部分に対応する第一電極11及び第二電極12を説明するための図である。図4は、筐体2を内側から見た図である。図4においては、第一押圧部51、第二押圧部52、及び第三押圧部53は、点線で示されている。また、図4においては、圧電素子10のうち第一電極11及び第二電極12のみを示す。 FIG. 4 is a diagram for explaining the first electrode 11 and the second electrode 12 corresponding to the portion surrounded by the broken line ellipse A1 in FIG. FIG. 4 is a view of the housing 2 as viewed from the inside. In FIG. 4, the 1st press part 51, the 2nd press part 52, and the 3rd press part 53 are shown by the dotted line. In FIG. 4, only the first electrode 11 and the second electrode 12 of the piezoelectric element 10 are shown.
 図4に示すように、第一電極11は、Y方向へ沿ってZ方向の幅が均一である。このため、第一押圧部51、第二押圧部52、及び第三押圧部53に対応する箇所の第一電極11の面積は、それぞれ同一である。これに対して、第二電極12は、Y方向へ沿って面積が変化する。このため、第一押圧部51、第二押圧部52、及び第三押圧部53に対応する箇所の第二電極12の面積は、第一押圧部51から第三押圧部53へ向かって順に増加する。なお、第一電極11及び第二電極12は、第一押圧部51、第二押圧部52、及び第三押圧部53の形状に併せて適宜変更することも可能である。 As shown in FIG. 4, the first electrode 11 has a uniform width in the Z direction along the Y direction. For this reason, the area of the 1st electrode 11 of the location corresponding to the 1st press part 51, the 2nd press part 52, and the 3rd press part 53 is respectively the same. On the other hand, the area of the second electrode 12 changes along the Y direction. For this reason, the area of the second electrode 12 at locations corresponding to the first pressing portion 51, the second pressing portion 52, and the third pressing portion 53 sequentially increases from the first pressing portion 51 toward the third pressing portion 53. To do. In addition, the 1st electrode 11 and the 2nd electrode 12 can also be suitably changed according to the shape of the 1st press part 51, the 2nd press part 52, and the 3rd press part 53. FIG.
 図5は第一実施形態に係る圧電フィルム14を説明するための図である。図5は、圧電フィルム14を平面視した図である。 FIG. 5 is a view for explaining the piezoelectric film 14 according to the first embodiment. FIG. 5 is a plan view of the piezoelectric film 14.
 図5に示すように、圧電フィルム14はキラル高分子から形成されるフィルムであってもよい。キラル高分子として、第一実施形態では、ポリ乳酸(PLA)、特にL型ポリ乳酸(PLLA)を用いている。キラル高分子からなるPLLAは、主鎖が螺旋構造を有する。PLLAは、一軸延伸されて分子が配向すると圧電性を有する。そして、一軸延伸されたPLLAは、圧電フィルム14の平板面が押圧されることにより、電圧を発生する。この際、発生する電圧量は、押圧量により平板面が当該平板面に直交する方向へ変位する変位量に依存する。 As shown in FIG. 5, the piezoelectric film 14 may be a film formed from a chiral polymer. In the first embodiment, polylactic acid (PLA), particularly L-type polylactic acid (PLLA) is used as the chiral polymer. PLLA made of a chiral polymer has a main chain with a helical structure. PLLA has piezoelectricity when uniaxially stretched and molecules are oriented. The uniaxially stretched PLLA generates a voltage when the flat plate surface of the piezoelectric film 14 is pressed. At this time, the amount of voltage generated depends on the amount of displacement by which the flat plate surface is displaced in the direction perpendicular to the flat plate surface by the pressing amount.
 第一実施形態では、圧電フィルム14(PLLA)の一軸延伸方向は、図5の矢印に示すように、Y方向及びZ方向に対して45度の角度を成す方向としている。この45度には、例えば45度±10度程度を含む角度を含む。これにより、圧電フィルム14が押圧されることにより電圧が発生する。 In the first embodiment, the uniaxial stretching direction of the piezoelectric film 14 (PLLA) is a direction that forms an angle of 45 degrees with respect to the Y direction and the Z direction, as shown by arrows in FIG. The 45 degrees includes an angle including about 45 degrees ± 10 degrees, for example. Thereby, a voltage is generated when the piezoelectric film 14 is pressed.
 PLLAは、延伸等による分子の配向処理で圧電性を生じ、PVDF等の他のポリマーや圧電セラミックスのように、ポーリング処理を行う必要がない。すなわち、強誘電体に属さないPLLAの圧電性は、PVDF又はPZT等の強誘電体のようにイオンの分極によって発現するものではなく、分子の特徴的な構造である螺旋構造に由来するものである。このため、PLLAには、他の強誘電性の圧電体で生じる焦電性が生じない。焦電性がないため、ユーザの指の温度や摩擦熱による影響が生じないため、表面パネル4を薄く形成することができる。さらに、PVDF等は経時的に圧電定数の変動が見られ、場合によっては圧電定数が著しく低下する場合があるが、PLLAの圧電定数は経時的に極めて安定している。したがって、周囲環境に影響されることなく、押圧による変位を高感度に検出することができる。 PLLA generates piezoelectricity by molecular orientation treatment such as stretching, and does not need to be polled like other polymers such as PVDF or piezoelectric ceramics. That is, the piezoelectricity of PLLA that does not belong to ferroelectrics is not expressed by the polarization of ions like ferroelectrics such as PVDF or PZT, but is derived from a helical structure that is a characteristic structure of molecules. is there. For this reason, the pyroelectricity generated in other ferroelectric piezoelectric materials does not occur in PLLA. Since there is no pyroelectricity, the influence of the temperature of the user's finger or frictional heat does not occur, so that the front panel 4 can be formed thin. Further, PVDF or the like shows a change in piezoelectric constant over time, and in some cases, the piezoelectric constant may be significantly reduced, but the piezoelectric constant of PLLA is extremely stable over time. Therefore, it is possible to detect displacement due to pressing with high sensitivity without being affected by the surrounding environment.
 なお、圧電フィルム14は、PLLAに代えて、ポーリング処理を行ったPVDF又はPZT等のようなイオンが分極した強誘電体から形成されるフィルムからなるものであってもよい。 Note that the piezoelectric film 14 may be made of a film made of a ferroelectric material in which ions are polarized, such as PVDF or PZT subjected to poling treatment, instead of PLLA.
 圧電フィルム14の両主面に形成されている第一電極11、第二電極12、及び基準電極13は、アルミニウムや銅等の金属系の電極を用いるのが好適である。このような第一電極11、第二電極12、及び基準電極13を設けることで、圧電フィルム14が発生する電荷を電圧として取得でき、押圧量に応じた電圧値の押圧量検出信号を外部へ出力することができる。 The first electrode 11, the second electrode 12, and the reference electrode 13 formed on both main surfaces of the piezoelectric film 14 are preferably metal electrodes such as aluminum or copper. By providing the first electrode 11, the second electrode 12, and the reference electrode 13 as described above, the charge generated by the piezoelectric film 14 can be acquired as a voltage, and a pressing amount detection signal having a voltage value corresponding to the pressing amount is output to the outside. Can be output.
 ここで、電子機器1が押圧操作を受けたときに発生する電圧及び位置の検出方法について説明する。図6(A)は、第一実施形態に係る第一電極11及び第二電極12の押圧操作を受ける位置と発生電圧との関係を説明するための図である。図6(B)は、第一電極11及び第二電極12における発生電圧の比と押圧操作を受ける位置との関係を説明するための図である。 Here, the detection method of the voltage and position which generate | occur | produce when the electronic device 1 receives pressing operation is demonstrated. FIG. 6A is a diagram for explaining the relationship between the position where the pressing operation of the first electrode 11 and the second electrode 12 according to the first embodiment is received and the generated voltage. FIG. 6B is a diagram for explaining the relationship between the ratio of the generated voltage in the first electrode 11 and the second electrode 12 and the position where the pressing operation is received.
 図6(A)及び図6(B)は、不図示のポリカーボネイトの平板に基準電極13、圧電フィルム14、並びに第一電極11及び第二電極12を積層したものを想定して電圧の測定をシミュレーションしたものである。第一電極11、第二電極12、基準電極13、及び圧電フィルム14はすべてY方向の両端において固定されている。ポリカーボネイトの平板は、100×100×1mmの形状を想定する。第一電極11及び第二電極12は、Y方向の幅が90mm、Z方向の最大幅が5mm、X厚みが0.5mmとなるように形成したものを想定する。なお、Y方向の中心の位置を0mmとして示す。押圧位置は、-45mm~45mmである。 6 (A) and 6 (B) show voltage measurements on the assumption that a reference electrode 13, a piezoelectric film 14, and a first electrode 11 and a second electrode 12 are laminated on a polycarbonate flat plate (not shown). It is a simulation. The first electrode 11, the second electrode 12, the reference electrode 13, and the piezoelectric film 14 are all fixed at both ends in the Y direction. The flat plate of polycarbonate assumes a shape of 100 × 100 × 1 mm. The first electrode 11 and the second electrode 12 are assumed to be formed so that the width in the Y direction is 90 mm, the maximum width in the Z direction is 5 mm, and the X thickness is 0.5 mm. The center position in the Y direction is shown as 0 mm. The pressing position is -45 mm to 45 mm.
 この構成では、圧電フィルム14が押圧操作により変形したときに、Y方向に並んで配置されている第一電極11及び第二電極12は同時に電圧を出力する。第一電極11及び第二電極12から出力される電圧は、押圧操作を受け付けた位置の電極の面積、すなわちZ方向の幅にそれぞれ対応する。図4に示すように、第一電極11は、Y方向へ沿っていずれの位置においても幅が同一である。第一電極11は、Y方向へ沿って所定の区分毎に区切ると、それぞれの所定の区分毎の面積が一様である。このため、図6(A)に示すように、Y方向における押圧操作を受け付ける位置に応じて、該一様の面積に応じた電圧を出力する。例えば、押圧操作を受け付ける位置がY方向に0mmである場合、第一電極11から出力される電圧はマイナス方向に最大値となる。押圧操作を受け付ける位置がY方向に-45mm又は45mmである場合、圧電フィルム14は殆ど変形せず、第一電極11から出力される電圧はマイナス方向に最小値となる。ここで、第一電極11が出力する電圧をV1として表す。V1は、本発明における第一電圧に相当する。第一電極11は、Y方向の中心を境に二次曲線の電圧(V1)を出力する。 In this configuration, when the piezoelectric film 14 is deformed by a pressing operation, the first electrode 11 and the second electrode 12 arranged side by side in the Y direction simultaneously output a voltage. The voltages output from the first electrode 11 and the second electrode 12 respectively correspond to the area of the electrode at the position where the pressing operation is received, that is, the width in the Z direction. As shown in FIG. 4, the first electrode 11 has the same width at any position along the Y direction. When the first electrode 11 is divided into predetermined sections along the Y direction, the area of each predetermined section is uniform. For this reason, as shown to FIG. 6 (A), the voltage according to this uniform area is output according to the position which receives pressing operation in a Y direction. For example, when the position where the pressing operation is received is 0 mm in the Y direction, the voltage output from the first electrode 11 has a maximum value in the minus direction. When the position for accepting the pressing operation is −45 mm or 45 mm in the Y direction, the piezoelectric film 14 is hardly deformed, and the voltage output from the first electrode 11 has a minimum value in the minus direction. Here, the voltage output from the first electrode 11 is represented as V1. V1 corresponds to the first voltage in the present invention. The first electrode 11 outputs a voltage of a quadratic curve (V1) with the center in the Y direction as a boundary.
 これに対して、第二電極12はY方向へ沿って面積が変化する。このため、第二電極12はY方向における押圧操作を受け付ける位置及び面積に応じた電圧を出力する。圧電フィルム14が押圧操作により変形するとき、第一電極11及び第二電極12は同様に変形するが、変形を受ける場所の面積が異なる。これにより、第一電極11及び第二電極12それぞれの電極からの出力は、第一電極11及び第二電極12それぞれの変形を受けた面積比に応じた出力の比となる。ここで、第二電極12が出力する電圧をV2として表す。V2は、本発明における第二電圧に相当する。検出部18は、圧電素子10が出力する電圧(V1及びV2)を検出する。 On the other hand, the area of the second electrode 12 changes along the Y direction. For this reason, the 2nd electrode 12 outputs the voltage according to the position and area which receive pressing operation in a Y direction. When the piezoelectric film 14 is deformed by the pressing operation, the first electrode 11 and the second electrode 12 are similarly deformed, but the areas of the places where the deformation is received are different. Thereby, the output from each electrode of the first electrode 11 and the second electrode 12 becomes an output ratio according to the area ratio of the first electrode 11 and the second electrode 12 that has been deformed. Here, the voltage output from the second electrode 12 is represented as V2. V2 corresponds to the second voltage in the present invention. The detection unit 18 detects voltages (V1 and V2) output from the piezoelectric element 10.
 不図示の算出部は、第二電極12から出力される電圧(V2)に対する第一電極11から出力される電圧(V1)の比(μ)を算出する。比(μ)は、μ=V2/V1の式で算出される。図6(B)に示すように、比(μ)は、押圧位置がY方向のプラス方向へ移動するにつれて線形に減少する。このため、予め押圧位置と比(μ)とを対応付けた関係を記憶しておくことにより、算出部から得らえる比(μ)の値によってどの位置が押圧操作を受けたかを判別できる。 The calculation unit (not shown) calculates the ratio (μ) of the voltage (V1) output from the first electrode 11 to the voltage (V2) output from the second electrode 12. The ratio (μ) is calculated by the equation μ = V2 / V1. As shown in FIG. 6B, the ratio (μ) decreases linearly as the pressing position moves in the positive direction of the Y direction. For this reason, by storing a relationship in which the pressing position and the ratio (μ) are associated in advance, it is possible to determine which position has been subjected to the pressing operation based on the value of the ratio (μ) obtained from the calculation unit.
 第二電極12は、Y方向のプラス方向へ沿って線形にZ方向の幅が減少又は増加することが好ましい。第二電極12がY方向へ沿って単調にZ方向の幅が減少又は増加することにより、比(μ)は単調に減少又は増加する。これにより、押圧位置と比(μ)との関係が1対1となるため、比(μ)を得ることにより押圧位置を明確に検出することができる。したがって、第一押圧部51、第二押圧部52、又は第三押圧部53のうちのいずれかが押圧操作を受けた場合、それぞれに対応する位置の比(μ)が得られる。これにより、第一押圧部51、第二押圧部52、又は第三押圧部53のうちのいずれが押圧操作を受けたかを判別することができる。 It is preferable that the width of the second electrode 12 decreases or increases linearly along the positive direction of the Y direction. The ratio (μ) monotonously decreases or increases as the width of the second electrode 12 monotonously decreases or increases along the Y direction. Thereby, since the relationship between the pressed position and the ratio (μ) is 1: 1, the pressed position can be clearly detected by obtaining the ratio (μ). Therefore, when any of the first pressing part 51, the second pressing part 52, or the third pressing part 53 is subjected to a pressing operation, a ratio (μ) of positions corresponding to each is obtained. Thereby, it is possible to determine which of the first pressing part 51, the second pressing part 52, or the third pressing part 53 has undergone the pressing operation.
 また、比(μ)によって押圧位置を検知するため、変形の具合や押す速度に影響されることを抑制できる。例えば、第一押圧部51、第二押圧部52、又は第三押圧部53において、第二押圧部52の位置が異なった素材で形成されたボタンである場合が挙げられる。第二押圧部52が堅く歪み難い素材で形成され、押圧操作を受けた場合第二押圧部52に対応する部分の圧電フィルム14の歪は小さい。このとき、V1及びV2は共に小さくなる。逆に第二押圧部52が柔らかく歪み易い素材で形成されたボタンである場合、V1及びV2は共に大きくなる。押圧位置を検知するためにはV1及びV2の比を算出するため、変形の具合が相殺され、押圧位置の変形の具合によっては影響を受けない。また、同様にユーザの押す速度や強さによっても、それぞれのV1及びV2の間で変形具合が相殺される。このため、ユーザの押す速度や強さによる影響を抑制することができる。 Moreover, since the pressing position is detected by the ratio (μ), it is possible to suppress the influence of deformation and the pressing speed. For example, in the 1st press part 51, the 2nd press part 52, or the 3rd press part 53, the case where it is a button formed with the material from which the position of the 2nd press part 52 differs is mentioned. When the second pressing part 52 is made of a material that is hard and hardly distorted, and receives a pressing operation, the distortion of the piezoelectric film 14 at a portion corresponding to the second pressing part 52 is small. At this time, both V1 and V2 become small. Conversely, when the second pressing portion 52 is a button formed of a soft and easily distorted material, both V1 and V2 become large. In order to detect the pressed position, the ratio of V1 and V2 is calculated, so the degree of deformation is canceled out and is not affected by the degree of deformation of the pressed position. Similarly, the degree of deformation is canceled between V1 and V2 depending on the pressing speed and strength of the user. For this reason, the influence by a user's pushing speed and intensity | strength can be suppressed.
 図7(A)~(D)及び図8(A)~(D)は、第一実施形態に係る第一電極11及び第二電極12の変形例を説明するための図である。以下の変形例1~8においても、第一実施形態の第一電極11及び第二電極12と同様にY方向のプラス方向に沿って押圧位置が移動すると、得られるV1及びV2の比(μ)が変化する。これにより、押圧位置を検出することができる。 FIGS. 7A to 7D and FIGS. 8A to 8D are diagrams for explaining modifications of the first electrode 11 and the second electrode 12 according to the first embodiment. Also in the following modifications 1 to 8, when the pressing position moves along the positive direction of the Y direction as in the first electrode 11 and the second electrode 12 of the first embodiment, the ratio of V1 and V2 (μ ) Will change. Thereby, a press position is detectable.
 また、電極から少し離れた箇所を押した場合であっても、電極の存在する箇所を押した場合と同様に押圧位置を検出することができる。例えば、図7(A)の場合、Z軸方向のどの箇所に押圧を加えたとしても、Y軸方向の押圧位置を検知することができる。すなわち、電極形成部付近だけでなく、電極から少し離れた箇所を押した場合であっても、Y軸方向の押圧位置が分かる。これについては、後述の実施例において詳細に説明する。 Also, even when a location slightly away from the electrode is pressed, the pressed position can be detected in the same manner as when the location where the electrode exists is pressed. For example, in the case of FIG. 7A, the pressing position in the Y-axis direction can be detected regardless of where the pressing is applied in the Z-axis direction. That is, the pressing position in the Y-axis direction can be recognized not only in the vicinity of the electrode forming portion but also in a case where a portion slightly away from the electrode is pressed. This will be described in detail in the embodiments described later.
 図7(A)に示すように、変形例1は、第一電極21及び第二電極22を備える。第一電極21は第一実施形態に係る第一電極11と同様のものである。第二電極22は、Z方向の幅がY方向のプラス方向に沿って増加する台形の形状である。変形例1においては、第二電極22は台形の形状でるため、Y方向のマイナス側の端部においてZ方向に幅がある。このため、Y方向のマイナス側の端部を押した場合でも、第二電極22からの出力が一定以上の大きさとなるため、端部においてより正確に押圧位置を検知することができる。 As shown in FIG. 7A, Modification 1 includes a first electrode 21 and a second electrode 22. The first electrode 21 is the same as the first electrode 11 according to the first embodiment. The second electrode 22 has a trapezoidal shape in which the width in the Z direction increases along the plus direction in the Y direction. In the first modification, since the second electrode 22 has a trapezoidal shape, there is a width in the Z direction at the negative end in the Y direction. For this reason, even when the negative end portion in the Y direction is pressed, the output from the second electrode 22 has a certain level or more, so that the pressing position can be detected more accurately at the end portion.
 図7(B)に示すように、変形例2は、第一電極23及び第二電極24を備える。第一電極23は第一実施形態に係る第一電極11と同様のものである。第二電極24は、Y方向のプラス方向に沿ってZ方向の幅が所定の区間毎に所定の割合で増加する形状である。 As shown in FIG. 7B, Modification 2 includes a first electrode 23 and a second electrode 24. The first electrode 23 is the same as the first electrode 11 according to the first embodiment. The second electrode 24 has a shape in which the width in the Z direction increases at a predetermined rate for each predetermined section along the positive direction in the Y direction.
 図7(C)に示すように、変形例3は、第一電極25及び第二電極26を備える。第一電極25は第一実施形態に係る第一電極11と同様のものである。第二電極26は二等辺三角形に形成されており、Y方向のプラス方向に沿ってZ方向の幅が増加する形状である。 As shown in FIG. 7C, the third modification includes a first electrode 25 and a second electrode 26. The first electrode 25 is the same as the first electrode 11 according to the first embodiment. The second electrode 26 is formed in an isosceles triangle and has a shape in which the width in the Z direction increases along the positive direction in the Y direction.
 図7(D)に示すように、変形例4は、第一電極27及び第二電極28を備える。変形例4の圧電素子は、円錐形の筐体71に貼り付けられている。第一電極27は、Z方向に対して幅が同一に形成されている。また、第二電極28は、概ね三角形状であり、周方向であるY方向のプラス方向に沿ってZ方向の幅が変化する形状である。 As shown in FIG. 7D, Modification 4 includes a first electrode 27 and a second electrode 28. The piezoelectric element of Modification 4 is attached to a conical casing 71. The first electrode 27 is formed to have the same width in the Z direction. The second electrode 28 is generally triangular and has a shape in which the width in the Z direction changes along the positive direction of the Y direction, which is the circumferential direction.
 図8(A)に示すように、変形例5は、第一電極31及び第二電極32を備える。第一電極31は、Z方向の幅がY方向のプラス方向に沿って増加する台形の形状である。第二電極32は、Z方向の幅がY方向のマイナス方向に沿って増加する台形の形状である。変形例5においては、図8(A)に示すように、他の辺に対する角度が垂直ではない辺同士が向かい合うように配置されることにより、第一電極31及び第二電極32は全体として概ね矩形状に形成されている。このためZ方向において無駄な領域が生じることがないため、押し位置検出センサ100の小型化が可能となる。 As shown in FIG. 8A, the modified example 5 includes a first electrode 31 and a second electrode 32. The first electrode 31 has a trapezoidal shape in which the width in the Z direction increases along the plus direction in the Y direction. The second electrode 32 has a trapezoidal shape in which the width in the Z direction increases along the negative direction in the Y direction. In the modified example 5, as shown in FIG. 8A, the first electrode 31 and the second electrode 32 are generally arranged as a whole by arranging the sides whose angles with respect to the other sides are not perpendicular to each other. It is formed in a rectangular shape. For this reason, since a useless area | region does not arise in a Z direction, size reduction of the pushing position detection sensor 100 is attained.
 図8(B)に示すように、変形例6は、第一電極33及び二枚の第二電極34を備える。第一電極33は、Z方向の幅がY方向のプラス方向に沿って増加する三角形状である。第二電極34は、Z方向の幅がY方向のマイナス方向に沿って増加する三角形状である。第一電極33から出力される電圧と、それぞれの第二電極34から出力される電圧との比が二つ得られるため、位置を検出する精度をさらに高めることができる。なお、第一電極33又は第二電極34はそれぞれ複数であっても単数であってもよい。 As shown in FIG. 8B, Modification 6 includes a first electrode 33 and two second electrodes 34. The first electrode 33 has a triangular shape in which the width in the Z direction increases along the positive direction in the Y direction. The second electrode 34 has a triangular shape whose width in the Z direction increases along the negative direction of the Y direction. Since two ratios between the voltage output from the first electrode 33 and the voltage output from each second electrode 34 are obtained, the accuracy of detecting the position can be further increased. The first electrode 33 or the second electrode 34 may be plural or singular.
 図8(C)に示すように、変形例7は、第一電極35及び第二電極36を備える。第一電極35は、Z方向の幅がY方向のプラス方向に沿って増加する台形の形状である。第二電極36は、第一電極35を囲むような形状に形成されている。第二電極36は、Z方向の幅がY方向のマイナス方向に沿って増加する。したがって、第一電極35及び第二電極36のZ方向の幅がY方向に沿ってそれぞれ変化するため、Y方向における押圧位置を検知することができる。 As shown in FIG. 8C, the modified example 7 includes a first electrode 35 and a second electrode 36. The first electrode 35 has a trapezoidal shape in which the width in the Z direction increases along the plus direction in the Y direction. The second electrode 36 is formed in a shape surrounding the first electrode 35. The width of the second electrode 36 increases in the Z direction along the negative direction of the Y direction. Therefore, since the width of the first electrode 35 and the second electrode 36 in the Z direction changes along the Y direction, the pressing position in the Y direction can be detected.
 図8(D)に示すように、変形例8は、第一電極37及び第二電極38を備える。第一電極37及び第二電極38は、全体として矩形状であるが、第一電極37と第二電極38との近接する辺は曲線状に形成されている。したがって、第一電極37から出力される電圧は、Y方向のマイナス側では変化が比較的少なく、Y方向のプラス側に向かうほど変化を大きくすることができる。これにより、比(μ)の変化を大きくすることで短い移動でも高感度で検知できるよう形成することができる。 As shown in FIG. 8D, the modified example 8 includes a first electrode 37 and a second electrode 38. The first electrode 37 and the second electrode 38 have a rectangular shape as a whole, but the adjacent sides of the first electrode 37 and the second electrode 38 are formed in a curved shape. Therefore, the voltage output from the first electrode 37 has a relatively small change on the negative side in the Y direction, and the change can be increased toward the positive side in the Y direction. Thus, by increasing the change in the ratio (μ), it can be formed so that even a short movement can be detected with high sensitivity.
 図9(A)は、第二実施形態に係る押し位置検出センサ80の第一電極81及び第二電極82を説明するための図である。図9(B)は、第二実施形態に係る第一電極81及び第二電極82における発生電圧の比と押圧操作を受ける位置との関係を説明するための図である。なお、押し位置検出センサ80において、第一電極81及び第二電極82のみを示す。 FIG. 9A is a view for explaining the first electrode 81 and the second electrode 82 of the push position detection sensor 80 according to the second embodiment. FIG. 9B is a diagram for explaining the relationship between the ratio of the generated voltage in the first electrode 81 and the second electrode 82 according to the second embodiment and the position where the pressing operation is received. In the push position detection sensor 80, only the first electrode 81 and the second electrode 82 are shown.
 図9(A)に示すように、第二実施形態に係る押し位置検出センサ80は、第一電極81及び第二電極82を備える。第一電極81は、所定の区分毎にZ方向に突出する複数の第一突出部83を備える。第二電極82は、所定の区分毎にZ方向に突出する複数の第二突出部84を備える。複数の第一突出部83はそれぞれ同一の面積を有する。第二突出部84は、Y方向へ沿って各第二突出部84の面積が減少する。第一突出部83及び第二突出部84は交互にY方向へ沿って並ぶ。 As shown in FIG. 9A, the push position detection sensor 80 according to the second embodiment includes a first electrode 81 and a second electrode 82. The first electrode 81 includes a plurality of first protrusions 83 that protrude in the Z direction for each predetermined section. The second electrode 82 includes a plurality of second protrusions 84 that protrude in the Z direction for each predetermined section. The plurality of first protrusions 83 have the same area. As for the 2nd protrusion part 84, the area of each 2nd protrusion part 84 reduces along a Y direction. The first protrusions 83 and the second protrusions 84 are alternately arranged along the Y direction.
 押し位置検出センサ80を、図9(A)に示すようにY方向へ均等な長さの区分R1、R2、及びR3に分ける。第一電極81の面積は、区分R1、R2、及びR3においてそれぞれ均一である。これに対して、Y方向へ沿って各第二突出部84の面積が減少するため、第二電極82の面積は、区分R1、R2、R3の順に減少する。 The push position detection sensor 80 is divided into sections R1, R2, and R3 of equal length in the Y direction as shown in FIG. The area of the first electrode 81 is uniform in each of the sections R1, R2, and R3. On the other hand, since the area of each second protrusion 84 decreases along the Y direction, the area of the second electrode 82 decreases in the order of the sections R1, R2, and R3.
 押し位置検出センサ80において、図9(A)に示す矢印801のようにユーザが押し位置検出センサ80をY方向になぞると、ユーザの押圧操作の位置に応じて第一電極81及び第二電極82はそれぞれ電圧を出力する。第一電極81は区分R1、R2、及びR3においてそれぞれ面積が均一であるため、区分R1、R2、及びR3のいずれが押圧操作を受けた場合であても同様の電圧(V1)を出力する。これに対して、第二電極82の面積は区分R1、R2、R3の順に減少するため、第二電極82は、区分R1、R2、R3の順に出力する電圧(V2)は減少する。したがって、ユーザの押圧操作の位置が区分R1、R2、R3の順に移動するにつれ、図9(B)に示すように得られるV1及びV2の比μは段階的に減少する。ユーザが矢印801と逆の向きに押し位置検出センサ80をY方向になぞると、得られるV1及びV2の比μは段階的に増加する。したがって、押し位置検出センサ80においては、押した位置だけでなく、ユーザが押し位置検出センサ80をなぞる方向(こすり操作を受け付けた方向)を判別することができる。 In the push position detection sensor 80, when the user traces the push position detection sensor 80 in the Y direction as indicated by an arrow 801 shown in FIG. 9A, the first electrode 81 and the second electrode according to the position of the user's pressing operation. Each outputs a voltage. Since the first electrode 81 has a uniform area in each of the sections R1, R2, and R3, the same voltage (V1) is output regardless of which of the sections R1, R2, and R3 is subjected to the pressing operation. On the other hand, since the area of the second electrode 82 decreases in the order of the sections R1, R2, and R3, the voltage (V2) that the second electrode 82 outputs in the order of the sections R1, R2, and R3 decreases. Therefore, as the position of the pressing operation of the user moves in the order of the sections R1, R2, and R3, the ratio μ of V1 and V2 obtained as shown in FIG. 9B decreases stepwise. When the user traces the push position detection sensor 80 in the direction opposite to the arrow 801 in the Y direction, the obtained ratio μ of V1 and V2 increases stepwise. Therefore, the push position detection sensor 80 can determine not only the pressed position but also the direction in which the user traces the push position detection sensor 80 (the direction in which the rubbing operation is accepted).
 図10は、実施例1~4及び参考例1、2に係る第一電極11及び第二電極12における発生電圧の比と押圧操作を受ける位置との関係を説明するための図である。以下、実施例1~4及び参考例1、2について説明する。 FIG. 10 is a diagram for explaining the relationship between the ratio of the generated voltage in the first electrode 11 and the second electrode 12 according to Examples 1 to 4 and Reference Examples 1 and 2 and the position where the pressing operation is received. Examples 1 to 4 and Reference Examples 1 and 2 will be described below.
 電圧の測定には、100×100×1mmのポリカーボネイトの平板に、基準電極13、圧電フィルム14、並びに第一電極11及び第二電極12を積層したものを使用した。第一電極11及び第二電極12は、Y方向の幅が90mm、Z方向の最大幅が5mm、X厚みが0.5mmとなるように形成したものを用いた。圧電フィルム14としては、PVDFをY方向の幅が90mm、Z方向の幅が10mm、X厚みが0.5mmとなるように形成した矩形状のフィルムを用いた。基準電極13としては、Y方向の幅が90mm、Z方向の幅が10mmとなるように形成した矩形状のものを用いた。 For voltage measurement, a laminate of the reference electrode 13, the piezoelectric film 14, and the first electrode 11 and the second electrode 12 on a polycarbonate plate of 100 × 100 × 1 mm was used. The first electrode 11 and the second electrode 12 were formed so that the width in the Y direction was 90 mm, the maximum width in the Z direction was 5 mm, and the X thickness was 0.5 mm. As the piezoelectric film 14, a rectangular film formed by PVDF so that the width in the Y direction was 90 mm, the width in the Z direction was 10 mm, and the X thickness was 0.5 mm was used. As the reference electrode 13, a rectangular electrode formed so that the width in the Y direction was 90 mm and the width in the Z direction was 10 mm was used.
 実施例1として、第一電極11及び第二電極12のZ方向の中心をY方向に沿って、1000Pa程度の力で押圧しながら、押圧位置をY方向に沿って移動させ出力電圧を測定した。なお、Y方向の中心の位置を0mmとして示した。押圧位置は、-45mm~45mmである。 As Example 1, while pressing the center of the first electrode 11 and the second electrode 12 in the Z direction along the Y direction with a force of about 1000 Pa, the pressing position was moved along the Y direction, and the output voltage was measured. . The center position in the Y direction is shown as 0 mm. The pressing position is -45 mm to 45 mm.
 実施例2としては、押圧位置を第一電極11及び第二電極12のZ方向の中心からZ方向に10mmとして測定した。同様に、実施例3としてはZ方向の中心からZ方向に20mm、実施例4としてはZ方向の中心からZ方向に30mmとして測定した。また、参考例1として押圧位置が第一電極11及び第二電極12のZ方向の中心からZ方向に-10mm、参考例2としてはZ方向の中心からZ方向に-20mmとして測定した。 As Example 2, the pressing position was measured as 10 mm in the Z direction from the center in the Z direction of the first electrode 11 and the second electrode 12. Similarly, as Example 3, it measured 20 mm from the center of Z direction to Z direction, and as Example 4, it measured as 30 mm from the center of Z direction to Z direction. In Reference Example 1, the pressing position was measured as −10 mm in the Z direction from the center in the Z direction of the first electrode 11 and the second electrode 12, and in Reference Example 2 was measured as −20 mm in the Z direction from the center in the Z direction.
 図10に示すように、実施例1においては、比(μ)は、押圧位置がY方向のプラス方向へ移動するにつれて減少した。実施例2~4において、すなわち押圧位置がZ方向の中心からZ方向に10mm~30mmである場合、比(μ)は、実施例1より多少大きい値となるが、押圧位置がY方向のプラス方向へ移動するにつれて実施例1と同様に減少した。参考例1、2において、すなわち押圧位置がZ方向の中心からZ方向に-20mm~-10mmである場合、比(μ)は、実施例より多少小さい値となり、押圧位置がY方向へ移動するにつれてY方向の0mm付近では実施例と同様に減少することが確認された。 As shown in FIG. 10, in Example 1, the ratio (μ) decreased as the pressing position moved in the positive direction of the Y direction. In Examples 2 to 4, that is, when the pressing position is 10 mm to 30 mm in the Z direction from the center in the Z direction, the ratio (μ) is slightly larger than that in Example 1, but the pressing position is a plus in the Y direction. It decreased like Example 1 as it moved to the direction. In Reference Examples 1 and 2, that is, when the pressing position is −20 mm to −10 mm in the Z direction from the center in the Z direction, the ratio (μ) is slightly smaller than the example, and the pressing position moves in the Y direction. As a result, it was confirmed that it decreased in the vicinity of 0 mm in the Y direction as in the example.
 図11は、第三実施形態に係る押し位置検出センサ101を説明するための概念図である。第三実施形態に係る押し位置検出センサ101及び押し位置検出センサ102は、X-Y平面上の検知領域110における押圧位置を検出するセンサである。なお、図11において、検知領域110の一部は省略して示されている
 図11に示すように、押し位置検出センサ101は、第一電極111、第二電極112、及び圧電フィルム114を備える。第一電極111は第一実施形態に係る第一電極11と同様のものである。第二電極112は、第一実施形態に係る第二電極12と同様のものである。第二電極112は、Y方向の幅がX方向のプラス方向に沿って増加する三角形状である。
FIG. 11 is a conceptual diagram for explaining the push position detection sensor 101 according to the third embodiment. The pressing position detection sensor 101 and the pressing position detection sensor 102 according to the third embodiment are sensors that detect the pressing position in the detection region 110 on the XY plane. 11, a part of the detection region 110 is omitted. As shown in FIG. 11, the push position detection sensor 101 includes a first electrode 111, a second electrode 112, and a piezoelectric film 114. . The first electrode 111 is the same as the first electrode 11 according to the first embodiment. The second electrode 112 is the same as the second electrode 12 according to the first embodiment. The second electrode 112 has a triangular shape in which the width in the Y direction increases along the positive direction in the X direction.
 押し位置検出センサ102は、第一電極115、第二電極116、及び圧電フィルム117を備える。第一電極115は第一電極111と同様のものである。第二電極116は、Y方向の幅がX方向のマイナス方向に沿って増加する三角形状である。圧電フィルム117は圧電フィルム114と同様のものである。 The push position detection sensor 102 includes a first electrode 115, a second electrode 116, and a piezoelectric film 117. The first electrode 115 is the same as the first electrode 111. The second electrode 116 has a triangular shape in which the width in the Y direction increases along the minus direction in the X direction. The piezoelectric film 117 is the same as the piezoelectric film 114.
 押し位置検出センサ101及び押し位置検出センサ102において、検知領域110に近い側に、矩形形状の第一電極111及び第一電極115が配置されている。このため、第一電極111及び第一電極115からの出力は、検知領域110のX方向に亘るいずれの位置が押圧操作を受け付けた場合であっても比較的均一な安定したものとなる。また、検知領域110に遠い側である筐体2の端部側に、三角形状の第二電極112及び第二電極116が配置されている。このため、第二電極112及び第二電極116は変形し易い。したがって、第二電極112及び第二電極116からの出力は、検知領域110のX方向に亘って変形の影響を受けやすくなる。第二電極112及び第二電極116からの出力は、X方向に亘って大きく変化する。これにより、押し位置検出センサ101及び押し位置検出センサ102において、X方向に亘って変化を精度よく検知することができる。 In the push position detection sensor 101 and the push position detection sensor 102, the rectangular first electrode 111 and the first electrode 115 are arranged on the side close to the detection region 110. For this reason, the output from the first electrode 111 and the first electrode 115 is relatively uniform and stable even when any position in the X direction of the detection region 110 receives a pressing operation. Further, the triangular second electrode 112 and the second electrode 116 are arranged on the end side of the housing 2 that is far from the detection region 110. For this reason, the second electrode 112 and the second electrode 116 are easily deformed. Therefore, the outputs from the second electrode 112 and the second electrode 116 are easily affected by deformation over the X direction of the detection region 110. Outputs from the second electrode 112 and the second electrode 116 change greatly in the X direction. As a result, the push position detection sensor 101 and the push position detection sensor 102 can accurately detect a change in the X direction.
 押し位置検出センサ101及び押し位置検出センサ102において、第二電極112及び第二電極116の幅の広くなる向きは逆である。これにより、押し位置検出センサ101及び押し位置検出センサ102において、それぞれ逆の変化が得られる。例えば、押圧位置がX方向のプラス側に向かうほど、第二電極112からの出力は大きくなる。逆に、押圧位置がX方向のプラス側に向かうほど、第二電極116からの出力は小さくなる。したがって、X方向においてプラス側及びマイナス側の両側から検出位置を検知することができるため、より検出位置の検出の精度を高めることができる。 In the push position detection sensor 101 and the push position detection sensor 102, the directions in which the second electrode 112 and the second electrode 116 are widened are opposite. Thereby, the opposite changes are obtained in the push position detection sensor 101 and the push position detection sensor 102, respectively. For example, the output from the second electrode 112 increases as the pressing position moves toward the plus side in the X direction. Conversely, the output from the second electrode 116 decreases as the pressed position moves toward the plus side in the X direction. Therefore, since the detection position can be detected from both the positive side and the negative side in the X direction, the detection position can be detected more accurately.
 検知領域110で押圧操作を受け付けると、押圧操作の受け付けた位置によって圧電フィルム114及び圧電フィルム117が変形する。例えば、検知領域110を格子状に分割した場合における、格子点の座標(x,y=i,j)が押圧操作の受け付けた場合について説明する。なお、ここでは説明の便宜上、第一電極111からは電圧C1、第二電極112からは電圧D1がそれぞれ出力されることとして説明する。また、第一電極115からは電圧C2、第二電極116からは電圧D2がそれぞれ出力されることとして説明する。 When a pressing operation is received in the detection area 110, the piezoelectric film 114 and the piezoelectric film 117 are deformed depending on the position where the pressing operation is received. For example, a case will be described in which the coordinates (x, y = i, j) of lattice points when a detection region 110 is divided into a lattice shape have received a pressing operation. Here, for convenience of explanation, it is assumed that the voltage C1 is output from the first electrode 111 and the voltage D1 is output from the second electrode 112, respectively. In addition, it is assumed that the voltage C2 is output from the first electrode 115 and the voltage D2 is output from the second electrode 116, respectively.
 予め、各格子点の座標が押圧操作を受け付けた場合における、押し位置検出センサ101及び押し位置検出センサ102の出力の比を求めておく。例えば、p=C1/D1、q=C2/D2、r=D1/D2の3つの比である。また、各格子点の座標における3つの比p、q、及びrの基準マップを作成しておく。すなわち、検知領域110の座標(x,y=i,j)毎における、p、qij、rijを求めておく。さらにs=C1/C2を加えた4つの比を用いることで、押し位置をより精度よく検知することができる。なお押し位置の精度がそれほど要求されない場合は、p、qの2つの比だけでも実現可能な場合がある。 The ratio of the outputs of the push position detection sensor 101 and the push position detection sensor 102 in the case where the coordinate of each grid point has received a press operation is obtained in advance. For example, there are three ratios: p = C1 / D1, q = C2 / D2, and r = D1 / D2. Further, a reference map of three ratios p, q, and r in the coordinates of each lattice point is created. That is, the coordinates of the detection region 110 (x, y = i, j) in each, p i, q ij, previously obtained the r ij. Furthermore, by using four ratios including s = C1 / C2, the pressed position can be detected with higher accuracy. If the accuracy of the pressing position is not required so much, it may be possible to realize only by the ratio of p and q.
 検知領域110が押圧操作の受け付けると、押し位置検出センサ101及び押し位置検出センサ102は、それぞれの電極から電圧を出力する。このとき、検知領域110内の座標は、以下の式1によって求められる。 When the detection area 110 receives a pressing operation, the push position detection sensor 101 and the push position detection sensor 102 output voltages from the respective electrodes. At this time, the coordinates in the detection region 110 are obtained by the following Equation 1.
 式1:fij(p,q,r)=f(p-pij,q-qij,r-rij
 式1において、(p-pij+(q-qij+(r-rijが最小値になる点を計算する。これにより、検知領域110において押圧操作を受け付けた座標(x,y=i,j)が得られる。これにより、予め所定の座標毎にスイッチを割り当てることにより、どこの座標のスイッチが押圧操作を受け付けたかを識別することが可能となる。
Formula 1: f ij (p, q, r) = f (p−p ij , q−q ij , r−r ij )
In Equation 1, the point where (p−p ij ) 2 + (q−q ij ) 2 + (r−r ij ) 2 becomes the minimum value is calculated. Thereby, the coordinates (x, y = i, j) at which the pressing operation is received in the detection area 110 are obtained. Thus, by assigning a switch for each predetermined coordinate in advance, it becomes possible to identify which coordinate switch has received the pressing operation.
 なおp、q、r、sを、x、yを変数とする適当な回帰モデルで表すことにより、実際に得られた値から、変数x、yを求めることもできる。 In addition, by expressing p, q, r, and s with an appropriate regression model with x and y as variables, the variables x and y can be obtained from the actually obtained values.
 図12(A)は、第四実施形態に係る押し位置検出センサ120の第一電極41及び第二電極42を説明するための図である。図12(B)は、第四実施形態に係る押圧操作を受ける位置と圧電フィルム121~124との位置関係を説明するための図である。図12(C)は、第一電極41及び第二電極42における発生電圧の比と押圧操作を受ける位置との関係を説明するための図である。なお、図12(B)においては、筐体2の一部のみを示している。 FIG. 12A is a view for explaining the first electrode 41 and the second electrode 42 of the push position detection sensor 120 according to the fourth embodiment. FIG. 12B is a view for explaining the positional relationship between the position to receive the pressing operation and the piezoelectric films 121 to 124 according to the fourth embodiment. FIG. 12C is a diagram for explaining the relationship between the ratio of the generated voltages in the first electrode 41 and the second electrode 42 and the position where the pressing operation is received. In FIG. 12B, only a part of the housing 2 is shown.
 図12(A)に示すように、第四実施形態に係る押し位置検出センサ120は、圧電フィルム121~124、4つの第一電極41、及び第二電極42~45を備える。圧電フィルム121~124は、第一電極41のうちの一つと、第二電極42~45のうちの一つと、それぞれ対をなして配置されている。第二電極42~45はそれぞれ、第一電極41に対してY方向に並ぶように配置されている。 As shown in FIG. 12A, the push position detection sensor 120 according to the fourth embodiment includes piezoelectric films 121 to 124, four first electrodes 41, and second electrodes 42 to 45. The piezoelectric films 121 to 124 are arranged in pairs with one of the first electrodes 41 and one of the second electrodes 42 to 45, respectively. The second electrodes 42 to 45 are arranged so as to be aligned with the first electrode 41 in the Y direction.
 4つの第一電極41からは配線46が引き出されている。第二電極42~45からは配線47が引き出されている。ここで、配線46と配線47とは、実際はスルーホール等により別の層に形成されているため、接触しない構成となっている。 The wiring 46 is drawn out from the four first electrodes 41. A wiring 47 is drawn out from the second electrodes 42 to 45. Here, since the wiring 46 and the wiring 47 are actually formed in different layers by through holes or the like, they are configured not to contact each other.
 4つの第一電極41、及び第二電極42~45が同一の層に形成されているため、押し位置検出センサ120をより薄く形成することができる。また、第一電極41、及び第二電極42~45が同一の層に存在するため押圧操作による変形を同様にうける。これにより、押し位置検出センサ120の感度をより高めることができる。なお、第一電極41及び配線46と、第二電極42~45及び配線47と、をそれぞれ別の層に予め形成し、これを積層させることによって押し位置検出センサ120を構成してもよい。 Since the four first electrodes 41 and the second electrodes 42 to 45 are formed in the same layer, the push position detection sensor 120 can be formed thinner. Further, since the first electrode 41 and the second electrodes 42 to 45 are present in the same layer, they are similarly deformed by the pressing operation. Thereby, the sensitivity of the push position detection sensor 120 can be further increased. The push position detection sensor 120 may be configured by forming the first electrode 41 and the wiring 46, the second electrodes 42 to 45, and the wiring 47 in advance in different layers and laminating them.
 図12(B)に示すように、筐体2には、圧電フィルム121~124に対応する箇所にそれぞれボタン領域B1~B4が配置されている。例えば、ボタン領域B1には、圧電フィルム121、第一電極41、及び第二電極42が備えられている。 As shown in FIG. 12 (B), button regions B1 to B4 are arranged in the housing 2 at locations corresponding to the piezoelectric films 121 to 124, respectively. For example, the button region B1 includes a piezoelectric film 121, a first electrode 41, and a second electrode 42.
 4つの第一電極41は、それぞれY-Z平面における面積が同一の大きさである。このため、圧電フィルム121~124が押圧操作により同様に変形すると、それぞれの圧電フィルム121~124から同様の大きさの電圧が出力される。これに対して、第二電極42~45は、Y-Z平面における面積がそれぞれ異なる大きさである。このため、圧電フィルム121~124が押圧操作により同様に変形すると、それぞれの圧電フィルム121~124から、それぞれの圧電フィルム121~124の面積に相当する大きさの電圧が出力される。 The four first electrodes 41 have the same area in the YZ plane. For this reason, when the piezoelectric films 121 to 124 are similarly deformed by the pressing operation, voltages of the same magnitude are output from the respective piezoelectric films 121 to 124. On the other hand, the second electrodes 42 to 45 have different sizes in the YZ plane. Therefore, when the piezoelectric films 121 to 124 are similarly deformed by the pressing operation, voltages corresponding to the areas of the respective piezoelectric films 121 to 124 are output from the respective piezoelectric films 121 to 124.
 このように、ボタン領域B1~B4のそれぞれの押圧位置に応じて、第二電極42~45における発生電圧が異なる。したがって図12(C)に示すように、ボタン領域B1~B4によって、第一電極41及び第二電極42~45における発生電圧の比が異なる。よって、検出される第一電極41及び第二電極42~45における発生電圧の比によって、ボタン領域B1~B4のいずれの位置が押圧操作を受け付けたかを認識することが可能となる。 As described above, the generated voltages in the second electrodes 42 to 45 differ depending on the pressed positions of the button areas B1 to B4. Therefore, as shown in FIG. 12C, the ratio of the generated voltages in the first electrode 41 and the second electrodes 42 to 45 differs depending on the button regions B1 to B4. Therefore, it is possible to recognize which position in the button areas B1 to B4 has received the pressing operation based on the ratio of the generated voltages in the first electrode 41 and the second electrodes 42 to 45 detected.
 図13(A)~(C)は、第四実施形態に係る変形例9~11を説明するための図である。なお、変形例9の説明において、第四実施形態と同様の構成については説明を省略し、異なる点についてのみ説明する。また、変形例10~11の説明において、変形例9と同様の構成については説明を省略し、異なる点についてのみ説明する。 FIGS. 13A to 13C are diagrams for explaining modified examples 9 to 11 according to the fourth embodiment. Note that in the description of the modification 9, the description of the same configuration as that of the fourth embodiment is omitted, and only different points will be described. In the description of the modified examples 10 to 11, the description of the same configuration as that of the modified example 9 is omitted, and only different points will be described.
 図13(A)に示すように、変形例9においては、第二電極42~45はそれぞれ、第一電極41に対してZ方向に並ぶように配置されている。ボタン領域B1~B4において、第一電極41及び第二電極42~45はY方向に対して、それぞれ均等に配置されている。このためY方向に対するぶれが少なくなる。したがって、押し位置検出センサ130の精度をより高めることができる。 As shown in FIG. 13A, in the modified example 9, the second electrodes 42 to 45 are arranged so as to be aligned in the Z direction with respect to the first electrode 41, respectively. In the button regions B1 to B4, the first electrode 41 and the second electrodes 42 to 45 are equally arranged in the Y direction. For this reason, there is less blur in the Y direction. Therefore, the accuracy of the push position detection sensor 130 can be further increased.
 図13(B)に示すように、変形例10は、変形例9と比べると、配線46及び配線47の第一電極41及び第二電極42~45からの引き出し方向が異なる。ここで、配線46は、配線47及び第二電極42~45と接触しない構成とする必要がある。これにより、配線46及び配線47が形成される長さが短くなるため、押し位置検出センサ131の製造が容易となり、また押し位置検出センサ131自体を小型化及び軽量化することが可能となる。 As shown in FIG. 13B, the modified example 10 differs from the modified example 9 in the direction in which the wiring 46 and the wiring 47 are drawn from the first electrode 41 and the second electrodes 42 to 45. Here, the wiring 46 needs to be configured not to contact the wiring 47 and the second electrodes 42 to 45. Thereby, since the length in which the wiring 46 and the wiring 47 are formed becomes short, the push position detection sensor 131 can be easily manufactured, and the push position detection sensor 131 itself can be reduced in size and weight.
 図13(C)に示すように、変形例11は、変形例9と比べると、複数の圧電フィルム121~124の代わりに一枚の圧電フィルム125を備える。これにより、圧電フィルム125が一枚のみで構成されるため、押し位置検出センサ132の製造が容易となる。また、押し位置検出センサ132自体を小型化及び軽量化することが可能となる。 As shown in FIG. 13C, the modified example 11 includes a single piezoelectric film 125 instead of the plurality of piezoelectric films 121 to 124 as compared with the modified example 9. Thereby, since the piezoelectric film 125 is comprised only by one sheet, manufacture of the pushing position detection sensor 132 becomes easy. Further, the push position detection sensor 132 itself can be reduced in size and weight.
 図14(A)は、第五実施形態に係る押し位置検出センサ140の第一電極41及び第二電極42~45を説明するための図である。図14(B)は、第五実施形態に係る圧電フィルム121~124を説明するための図である。図14(C)は、第一電極41及び第二電極42~45における発生電圧と押圧操作を受ける位置との関係を説明するための図である。なお、図14(B)においては、第一電極41及び第二電極42~45を省略している。また、第五実施形態に係る押し位置検出センサの説明において、変形例9と同様の構成については説明を省略し、異なる点についてのみ説明する。図14(C)においては、説明の便宜上、第一電極、第二電極、及び圧電フィルムがさらにY方向に倍に増えた状態のものについて表している。 FIG. 14A is a view for explaining the first electrode 41 and the second electrodes 42 to 45 of the push position detection sensor 140 according to the fifth embodiment. FIG. 14B is a view for explaining the piezoelectric films 121 to 124 according to the fifth embodiment. FIG. 14C is a diagram for explaining the relationship between the generated voltage in the first electrode 41 and the second electrodes 42 to 45 and the position where the pressing operation is received. In FIG. 14B, the first electrode 41 and the second electrodes 42 to 45 are omitted. In the description of the push position detection sensor according to the fifth embodiment, the description of the same configuration as that of the modification 9 is omitted, and only different points will be described. In FIG. 14C, for convenience of explanation, the first electrode, the second electrode, and the piezoelectric film are further illustrated as being doubled in the Y direction.
 図14(A)に示すように、第五実施形態に係る押し位置検出センサ140においては、Y方向のプラス方向に向かって、Y-Z平面における第二電極42~45の面積が減少する構成である。なお、Y方向のプラス方向に向かって、Y-Z平面における第二電極42~45の面積が増加する構成であってもよい。 As shown in FIG. 14A, in the push position detection sensor 140 according to the fifth embodiment, the area of the second electrodes 42 to 45 in the YZ plane decreases in the positive direction of the Y direction. It is. Note that the area of the second electrodes 42 to 45 in the YZ plane may increase in the positive direction of the Y direction.
 図14(B)に示すように、押し位置検出センサ140においては、圧電フィルム121~124は、交互に一軸延伸方向が異なる。すなわち、圧電フィルム121及び圧電フィルム123の一軸延伸方向(図14(B)で示す矢印901)と、圧電フィルム122及び圧電フィルム124の一軸延伸方向(図14(B)で示す矢印902)とは概ね90度異なる。これにより、圧電フィルム121及び圧電フィルム123から出力される電圧と、圧電フィルム122及び圧電フィルム124から出力される電圧とは逆の極性となる。 As shown in FIG. 14B, in the push position detection sensor 140, the piezoelectric films 121 to 124 have different uniaxial stretching directions alternately. That is, the uniaxial stretching direction of the piezoelectric film 121 and the piezoelectric film 123 (arrow 901 shown in FIG. 14B) and the uniaxial stretching direction of the piezoelectric film 122 and the piezoelectric film 124 (arrow 902 shown in FIG. 14B) Approximately 90 degrees. Thereby, the voltage output from the piezoelectric film 121 and the piezoelectric film 123 and the voltage output from the piezoelectric film 122 and the piezoelectric film 124 have opposite polarities.
 圧電フィルム121~124は、Y軸方向に沿って交互に一軸延伸方向が異なる。このため、圧電フィルム121~124が押圧操作により同様に変形すると、押圧位置がY方向のプラス方向に向かうにつれて、図14(C)に示すように、第一電極41から出力される電圧の大きさ(E1)は、概ね同様の変位を繰り返す。これに対して、第二電極42~45から出力される電圧の大きさ(E2)は、押圧位置がY方向のプラス方向に向かうにつれて、徐々に変位が小さくなる。 Piezoelectric films 121 to 124 have different uniaxial stretching directions along the Y-axis direction. For this reason, when the piezoelectric films 121 to 124 are similarly deformed by the pressing operation, the magnitude of the voltage output from the first electrode 41 is increased as the pressing position goes in the positive direction of the Y direction, as shown in FIG. S (E1) repeats substantially the same displacement. In contrast, the magnitude (E2) of the voltage output from the second electrodes 42 to 45 gradually decreases as the pressing position moves in the positive direction of the Y direction.
 したがって、これらの電圧の比(E1/E2、又はE2/E1)の変化から、Y方向におけるいずれの方向へ押圧位置が移動しているかを検知することが可能となる。すなわち、押し位置検出センサ140においては、押圧操作において指等をスライドさせた場合に、そのスライド方向を検出することができる。なお、ここでは交流の信号が得られるため、センサの特性が温度変化によってドリフト変化した場合でも、その変化分を抽出し補正することで安定した信号強度を取得することができる。 Therefore, it is possible to detect in which direction in the Y direction the pressing position has moved from the change in the ratio of these voltages (E1 / E2 or E2 / E1). That is, the push position detection sensor 140 can detect the sliding direction when a finger or the like is slid in the pressing operation. Here, since an AC signal is obtained, even when the sensor characteristic drifts due to a temperature change, a stable signal intensity can be obtained by extracting and correcting the change.
 図15(A)及び図15(B)は、第一実施形態に係る押し位置検出センサを備えた電子機器1の別の一例の平面図である。なお、電子機器1の別の一例においては、第一実施形態に係る押し位置検出センサを備えた電子機器1と同様の構成については説明を省略し、異なる点についてのみ説明する。また、圧電素子10は説明のために透過してその位置を表している。 15 (A) and 15 (B) are plan views of another example of the electronic apparatus 1 including the push position detection sensor according to the first embodiment. In another example of the electronic device 1, the description of the same configuration as that of the electronic device 1 including the push position detection sensor according to the first embodiment will be omitted, and only different points will be described. Further, the piezoelectric element 10 is transmitted for the sake of explanation and represents its position.
 図15(A)に示すように、電子機器150は、リモートコントローラの操作パネルである。電子機器150としては、リモートコントローラ以外に、洗濯機、炊飯器等の操作パネルが挙げられる。 As shown in FIG. 15A, the electronic device 150 is an operation panel of a remote controller. As the electronic device 150, operation panels, such as a washing machine and a rice cooker, are mentioned besides a remote controller.
 電子機器150は、複数の操作ボタン152、操作面153及び、2つの圧電素子10を備える。操作ボタン152は、それぞれ操作面153の一区画であり、操作面153と同一平面上に設けられている。このため、操作面は平坦でありほこりなどのごみが溜まることなく衛生的に保つことができる。 The electronic device 150 includes a plurality of operation buttons 152, an operation surface 153, and two piezoelectric elements 10. Each of the operation buttons 152 is a section of the operation surface 153 and is provided on the same plane as the operation surface 153. For this reason, the operation surface is flat and can be kept hygienic without dust and the like collecting.
 圧電素子10は、操作面153の操作される側の裏面に貼り付けられている。圧電素子10は、複数の操作ボタン152を挟むようにY軸方向に隔てて、複数の操作ボタン152の形成されている領域の外側に配置されている。第三実施形態に係る押し位置検出センサと同様に、操作ボタン152のいずれかが押圧操作を受け付けると、2つの圧電素子10からの出力によって、操作ボタン152のいずれが押圧操作を受け付けたかを検知することができる。 The piezoelectric element 10 is attached to the back surface of the operation surface 153 on the side to be operated. The piezoelectric element 10 is disposed outside the region where the plurality of operation buttons 152 are formed, with the plurality of operation buttons 152 being sandwiched therebetween in the Y-axis direction. Similar to the push position detection sensor according to the third embodiment, when any of the operation buttons 152 accepts a pressing operation, the output from the two piezoelectric elements 10 detects which of the operation buttons 152 accepts the pressing operation. can do.
 図15(B)に示すように、電子機器151は、電子機器150と比べると、2つの圧電素子10の配置がそれぞれ異なる。電子機器151において、圧電素子10は、複数の操作ボタン152を挟むようにY軸方向に隔てて、複数の操作ボタン152の間に配置されている。 As shown in FIG. 15 (B), the electronic device 151 differs from the electronic device 150 in the arrangement of the two piezoelectric elements 10. In the electronic device 151, the piezoelectric element 10 is disposed between the plurality of operation buttons 152 so as to be sandwiched between the plurality of operation buttons 152 in the Y-axis direction.
 電子機器150のように、操作ボタン152の形成されている領域の端に圧電素子10を配置する場合とくらべて、電子機器151の配置の場合、圧電素子10間の距離を近づけることができる。例えば、電子機器150の操作面153の表面積が大きい場合、中心付近の操作ボタン152を操作すると、圧電素子10が操作箇所から大きく離れるために、圧電素子10で十分に変形を検知できないおそれがある。これに対して、電子機器151の配置の場合、圧電素子10が操作ボタン152の間に配置されているため、変形する箇所の近くに圧電素子10を配置することができるため、さらに検知精度を向上させることができる。なお、電子機器151において、圧電素子10は2つに限られず、3以上であってもよい。これにより、さらに検知精度を向上させることができる。 When the electronic device 151 is disposed, the distance between the piezoelectric elements 10 can be reduced compared to the case where the piezoelectric element 10 is disposed at the end of the region where the operation buttons 152 are formed as in the electronic device 150. For example, when the surface area of the operation surface 153 of the electronic device 150 is large, if the operation button 152 near the center is operated, the piezoelectric element 10 is greatly separated from the operation location, so that there is a possibility that the piezoelectric element 10 cannot sufficiently detect deformation. . On the other hand, in the case of the arrangement of the electronic device 151, since the piezoelectric element 10 is arranged between the operation buttons 152, the piezoelectric element 10 can be arranged near the portion to be deformed. Can be improved. In the electronic device 151, the number of piezoelectric elements 10 is not limited to two, and may be three or more. Thereby, detection accuracy can be further improved.
 なお、電子機器150において、圧電素子10の数を増やして、電子機器151のように操作ボタン152を複数の操作ボタン152の間に配置してもよい。これにより、さらに検知精度を向上させることができる。 In the electronic device 150, the number of the piezoelectric elements 10 may be increased, and the operation buttons 152 may be arranged between the plurality of operation buttons 152 as in the electronic device 151. Thereby, detection accuracy can be further improved.
 図16(A)は、第六実施形態に係る押し位置検出センサ160の第一電極161及び第二電極162を説明するための図である。図16(B)及び図16(C)は、第六実施形態に係る第一電極161及び第二電極162における発生電圧に基づいて算出した値と押圧操作を受け付ける位置との関係を説明するための図である。なお、押し位置検出センサ160において、第一電極161及び第二電極162のみを示す。 FIG. 16A is a diagram for explaining the first electrode 161 and the second electrode 162 of the push position detection sensor 160 according to the sixth embodiment. FIGS. 16B and 16C are diagrams for explaining the relationship between the value calculated based on the generated voltage in the first electrode 161 and the second electrode 162 according to the sixth embodiment and the position where the pressing operation is received. FIG. In the push position detection sensor 160, only the first electrode 161 and the second electrode 162 are shown.
 図16(A)に示すように、第六実施形態に係る押し位置検出センサ160は、第一電極161及び第二電極162を備える。第一電極161及び第二電極162は、それぞれY方向へ沿ってZ方向の幅が変化する。第一電極161はY方向の増加する向きへ向かってZ方向の幅が増加し、第二電極162はY方向の増加する向きへ向かってZ方向の幅が減少する。第一電極161及び第二電極162は、互いにZ方向の幅の和を一定に保つように、Y方向へ沿って互いに増減する。このため、押し位置検出センサ160は、Y方向へ沿っていずれの位置が押圧操作を受け付けても、第一電極161及び第二電極162から発生する電圧の和は一定である。 As shown in FIG. 16A, the push position detection sensor 160 according to the sixth embodiment includes a first electrode 161 and a second electrode 162. The first electrode 161 and the second electrode 162 each change in the width in the Z direction along the Y direction. The width of the first electrode 161 in the Z direction increases in the direction of increasing in the Y direction, and the width of the second electrode 162 decreases in the direction of increasing in the Y direction. The first electrode 161 and the second electrode 162 increase or decrease from each other along the Y direction so as to keep the sum of the widths in the Z direction constant. For this reason, the push position detection sensor 160 has a constant sum of voltages generated from the first electrode 161 and the second electrode 162 regardless of which position in the Y direction receives the pressing operation.
 押し位置検出センサ160がユーザから押圧操作を受け付けると、第一電極161及び第二電極162は、それぞれ押圧操作を受け付けた位置に応じた電圧(V1及びV2)を出力する。押し位置検出センサ160は、第一電極161及び第二電極162が出力する値から、値1(V1/(V1+V2))、及び値2(V2/(V1+V2))を算出する。 When the pressing position detection sensor 160 receives a pressing operation from the user, the first electrode 161 and the second electrode 162 output voltages (V1 and V2) corresponding to the positions at which the pressing operation is received, respectively. The push position detection sensor 160 calculates a value 1 (V1 / (V1 + V2)) and a value 2 (V2 / (V1 + V2)) from the values output from the first electrode 161 and the second electrode 162.
 図16(B)に示すように、押し位置検出センサ160において、押圧操作を受け付けた位置がY方向の増加する向きへ向かうほど、値1は増加する。これに対して、図16(C)に示すように、押し位置検出センサ160において、押圧操作を受け付けた位置がY方向の増加する向きへ向かうほど、値2は減少する。このため、値1及び値2からいずれの位置が押圧操作を受け付けたかを判別することができる。なお、値1及び値2のうちいずれか一方から位置を判別してもよい。 As shown in FIG. 16B, in the push position detection sensor 160, the value 1 increases as the position where the pressing operation is received proceeds in the increasing direction in the Y direction. On the other hand, as shown in FIG. 16C, in the push position detection sensor 160, the value 2 decreases as the position where the pressing operation is received proceeds in the increasing direction in the Y direction. Therefore, it is possible to determine which position has received the pressing operation from the value 1 and the value 2. The position may be determined from either one of the value 1 and the value 2.
 ここで、押し位置検出センサ160において、押圧操作を受け付けた位置と得られる値1及び値2との関係を予め求めておく場合について説明する。例えば、押し位置検出センサ160が、図16(A)に示すP1においてユーザから押圧操作を受け付けた場合、図16(B)に示すように、値1としてC1が得られる。また、同時に図16(C)に示すように、値2としてC2が得られる。 Here, the case where the relationship between the position where the pressing operation is received and the obtained value 1 and value 2 in the push position detection sensor 160 is obtained in advance will be described. For example, when the pressing position detection sensor 160 receives a pressing operation from the user at P1 shown in FIG. 16A, C1 is obtained as a value 1 as shown in FIG. At the same time, C2 is obtained as a value 2 as shown in FIG.
 得られたC1及びC2から、それぞれに対応する、押圧操作を受け付けた位置が得られる。得られた押圧位置が同一の場合、高い精度で押圧位置が得られたこととなる。これに対して、得られた押圧位置が異なる場合、平均することにより位置精度を高めることができる。これにより、押し位置検出センサ160の検出する誤差を抑制することができる。また、押圧位置が想定された値と大きくかけ離れている場合は、押し位置検出センサ160に不具合が生じたことを予想できる。 From the obtained C1 and C2, the corresponding position where the pressing operation is accepted can be obtained. When the obtained pressing position is the same, the pressing position is obtained with high accuracy. On the other hand, when the obtained pressing positions are different, the positioning accuracy can be increased by averaging. Thereby, the error which the pushing position detection sensor 160 detects can be suppressed. If the pressed position is far from the assumed value, it can be predicted that a problem has occurred in the pressed position detection sensor 160.
 なお、実施形態において筐体2として直方体形状のものや、筐体71として円錐形状のものを挙げたが、筐体2又は筐体71の形状はこれに限らない。筐体2の形状として、例えば、円柱、多角柱、球体、多角錐等の他の形状が挙げられる。 In the embodiment, the case 2 has a rectangular parallelepiped shape and the case 71 has a conical shape. However, the shape of the case 2 or the case 71 is not limited thereto. Examples of the shape of the housing 2 include other shapes such as a cylinder, a polygonal column, a sphere, and a polygonal pyramid.
 最後に、本実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 Finally, the description of the present embodiment should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above embodiments but by the claims. Furthermore, the scope of the present invention is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
1,150,151…電子機器
2,71…筐体
10…圧電素子
11,21,23,25,27,31,33,35,37,41,81,111,115,161…第一電極
12,22,24,26,28,32,34,36,38,42,43,44,45,82,112,116,162…第二電極
13…基準電極
14,114,117,121,122,123,124,125,…圧電フィルム
18…検出部
83…第一突出部
84…第二突出部
80,100,101,102,120,130,131,132,140,160…押し位置検出センサ
R1,R2,R3…区分
Y…第二方向
Z…第一方向
DESCRIPTION OF SYMBOLS 1,150,151 ... Electronic device 2,71 ... Housing | casing 10 ... Piezoelectric element 11,21,23,25,27,31,33,35,37,41,81,111,115,161 ... 1st electrode 12 , 22, 24, 26, 28, 32, 34, 36, 38, 42, 43, 44, 45, 82, 112, 116, 162 ... second electrode 13 ... reference electrodes 14, 114, 117, 121, 122, 123, 124, 125, ... Piezoelectric film 18 ... Detection part 83 ... First protrusion 84 ... Second protrusion 80, 100, 101, 102, 120, 130, 131, 132, 140, 160 ... Push position detection sensor R1 , R2, R3 ... section Y ... second direction Z ... first direction

Claims (6)

  1.  ユーザからの押圧操作により変形する圧電フィルムと、
     前記圧電フィルムの第一主面に形成された第一電極と、
     前記圧電フィルムの前記第一主面に形成された第二電極と、
     前記圧電フィルムの第二主面に形成された基準電極と、
     を備え、
     前記第一電極及び前記第二電極は、第一方向に並んで配置され、
     前記第一電極及び前記第二電極の前記第一方向における幅の差は、前記第一方向に垂直な第二方向に沿って互いに異なる押し位置検出センサ。
    A piezoelectric film deformed by a pressing operation from a user;
    A first electrode formed on the first main surface of the piezoelectric film;
    A second electrode formed on the first main surface of the piezoelectric film;
    A reference electrode formed on the second main surface of the piezoelectric film;
    With
    The first electrode and the second electrode are arranged side by side in a first direction,
    The difference in width between the first electrode and the second electrode in the first direction is a push position detection sensor that is different from each other along a second direction perpendicular to the first direction.
  2.  前記第一電極は、前記第二方向へ沿って面積が一様である請求項1に記載の押し位置検出センサ。 The push position detection sensor according to claim 1, wherein the first electrode has a uniform area along the second direction.
  3.  前記第二電極は、前記第二方向に沿って一様に面積が増加又は減少する請求項1に記載の押し位置検出センサ。 The pressing position detection sensor according to claim 1, wherein the second electrode has an area that increases or decreases uniformly along the second direction.
  4.  前記第一電極は、所定の区分毎に前記第一方向に突出する複数の第一突出部を備え、
     前記第二電極は、所定の区分毎に前記第一方向に突出する複数の第二突出部を備え、
     前記第一突出部はそれぞれ同一の面積を有し、
     前記第二突出部は前記第二方向へ沿って各第二突出部の面積が増加又は減少し、
     前記第一突出部及び前記第二突出部は交互に前記第二方向へ沿って並ぶ請求項2に記載の押し位置検出センサ。
    The first electrode includes a plurality of first protrusions protruding in the first direction for each predetermined section,
    The second electrode includes a plurality of second protrusions protruding in the first direction for each predetermined section,
    The first protrusions have the same area,
    The second projecting portion increases or decreases the area of each second projecting portion along the second direction,
    The push position detection sensor according to claim 2, wherein the first protrusions and the second protrusions are alternately arranged along the second direction.
  5.  前記第二電極から出力される第二電圧に対する、前記第一電極から出力される第一電圧の比を算出することにより、前記圧電フィルムの押圧操作により変形する位置を検出する検出部を備えた請求項1乃至請求項4のいずれかに記載の押し位置検出センサ。 A detector for detecting a position deformed by a pressing operation of the piezoelectric film by calculating a ratio of the first voltage output from the first electrode to a second voltage output from the second electrode; The push position detection sensor according to any one of claims 1 to 4.
  6.  請求項1乃至請求項4のいずれかに記載の押し位置検出センサを備える電子機器。 An electronic device comprising the push position detection sensor according to any one of claims 1 to 4.
PCT/JP2018/016397 2017-06-05 2018-04-23 Pressed position detection sensor and electronic apparatus WO2018225407A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019523388A JP6620912B2 (en) 2017-06-05 2018-04-23 Push position detection sensor and electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017110592 2017-06-05
JP2017-110592 2017-06-05
JP2017-193142 2017-10-03
JP2017193142 2017-10-03

Publications (1)

Publication Number Publication Date
WO2018225407A1 true WO2018225407A1 (en) 2018-12-13

Family

ID=64565768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016397 WO2018225407A1 (en) 2017-06-05 2018-04-23 Pressed position detection sensor and electronic apparatus

Country Status (2)

Country Link
JP (1) JP6620912B2 (en)
WO (1) WO2018225407A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020230486A1 (en) * 2019-05-10 2020-11-19

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196360A1 (en) * 2013-06-04 2014-12-11 日本写真印刷株式会社 Piezoelectric sensor and electronic device
JP2014235135A (en) * 2013-06-04 2014-12-15 日本写真印刷株式会社 Pressure detection device and electronic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196360A1 (en) * 2013-06-04 2014-12-11 日本写真印刷株式会社 Piezoelectric sensor and electronic device
JP2014235135A (en) * 2013-06-04 2014-12-15 日本写真印刷株式会社 Pressure detection device and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020230486A1 (en) * 2019-05-10 2020-11-19
JP7006842B2 (en) 2019-05-10 2022-01-24 株式会社村田製作所 Press sensor

Also Published As

Publication number Publication date
JP6620912B2 (en) 2019-12-18
JPWO2018225407A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
JP5871111B1 (en) Touch panel and electronic equipment
JP5924405B2 (en) Pressure sensor
JP6179635B2 (en) Touch sensor
JP6123947B2 (en) Press sensor and electronic device
JP6635237B2 (en) Press sensor and electronic device used for folding structure
JP5950053B2 (en) Press detection sensor
JP6624343B2 (en) Sensors, touch panels, and electronic devices
JP6677355B2 (en) Operation detection device and display device
US20190212863A1 (en) Piezoelectric device and display device
WO2018131674A1 (en) Rub detecting sensor and electronic instrument
JP6620912B2 (en) Push position detection sensor and electronic device
JP6132076B2 (en) Press detection touch panel and display device
WO2018025693A1 (en) Interface for vending machine, and pressing sensor
US20170177156A1 (en) Touch input device and touch input detecting method
JP6693602B2 (en) Pressure detection sensor and electronic device
WO2016098652A1 (en) Pressing force detection device
JP6468403B2 (en) Piezoelectric sensor, touch input device
JP2018060308A (en) Pressing force detection sensor and electronic device
JP6638560B2 (en) Deformation detection sensor and electronic equipment
WO2015194446A1 (en) Touch panel and input operation terminal
WO2020202631A1 (en) Pressing sensor placement structure and electronic device
JP2018113165A (en) Housing operation part

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18812918

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523388

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18812918

Country of ref document: EP

Kind code of ref document: A1