WO2013146447A1 - Silver-particle containing film and manufacturing method therefor, and heat ray shielding material - Google Patents

Silver-particle containing film and manufacturing method therefor, and heat ray shielding material Download PDF

Info

Publication number
WO2013146447A1
WO2013146447A1 PCT/JP2013/057753 JP2013057753W WO2013146447A1 WO 2013146447 A1 WO2013146447 A1 WO 2013146447A1 JP 2013057753 W JP2013057753 W JP 2013057753W WO 2013146447 A1 WO2013146447 A1 WO 2013146447A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
particle
tabular
heat ray
layer
Prior art date
Application number
PCT/JP2013/057753
Other languages
French (fr)
Japanese (ja)
Inventor
威史 濱
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013146447A1 publication Critical patent/WO2013146447A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters

Definitions

  • the present invention relates to a silver particle-containing film, a production method thereof, and a heat ray shielding material. More specifically, the present invention relates to a natural color silver particle-containing film and a method for producing the same, and a heat ray shielding material capable of reflecting infrared light using the silver particle-containing film.
  • Silver particle-containing films containing silver particles in the film plane are applied to various fields by taking advantage of the characteristics of silver.
  • a silver particle-containing film in recent years, as one of energy saving measures for reducing carbon dioxide, it has been known to apply to a heat ray shielding material for automobiles and windows of buildings.
  • re-radiation is more effective than a heat ray absorption type in which re-radiation of absorbed light into the room (about 1/3 of the absorbed solar radiation energy) is present.
  • a heat ray reflective heat ray shielding material without re-radiation can be obtained by using a silver particle-containing film.
  • Patent Document 1 includes 60% by number or more of hexagonal or circular tabular silver particles, and the main plane of the hexagonal or circular tabular silver particles is one surface of the silver particle-containing film.
  • a heat ray shielding material having a plane orientation in an average range of 0 ° to ⁇ 30 ° is disclosed, and it is described that it has visible light transparency and can shield heat rays in the near infrared region. .
  • the heat ray shielding material is mainly used by sticking to a windshield of a car or a window glass for a building, and the heat ray shielding material having a large a * value or b * value in the L * a * b * color system.
  • the heat ray shielding material is required to have practical chromaticity adjustment of chromaticity and color balance from the viewpoint of ensuring visual safety and securing a natural field of view when pasted on the windshield of an automobile.
  • a heat ray shielding material having a natural (grayscale) color tone with a small b * value There has been a demand for a heat ray shielding material having a natural (grayscale) color tone with a small b * value.
  • Patent Document 2 discloses a color tone in the L * a * b * color system in a configuration containing at least an organic infrared absorbing dye such as diimonium or phthalocyanine and a transparent resin. Describes an example in which ⁇ 3 ⁇ a * ⁇ 3 and ⁇ 3 ⁇ b * ⁇ 3.
  • organic infrared absorbing dye such as diimonium or phthalocyanine
  • a transparent resin Describes an example in which ⁇ 3 ⁇ a * ⁇ 3 and ⁇ 3 ⁇ b * ⁇ 3.
  • chromaticity was adjusted or an example in which suitable chromaticity was suggested.
  • the problem to be solved by the present invention is to provide a silver particle-containing film whose color tone in the L * a * b * color system is
  • the present invention which is means for solving the above problems is as follows.
  • the silver particle-containing film according to [1] preferably has a color tone of
  • [3] including a step of preparing a silver nanoparticle dispersion from a silver seed crystal solution, the silver nitrate-containing solution being added to the silver seed crystal solution in an addition time of 5 minutes or more, and the addition of the silver nitrate-containing solution
  • a method for producing a silver particle-containing film comprising: adding a solution containing silver sulfite to a silver seed crystal solution; and controlling the pH of the silver nanoparticle dispersion after adding the solution containing silver sulfite to 8.0 or less.
  • [4] A silver particle-containing film produced by the method for producing a silver particle-containing film according to [3].
  • a heat ray shielding material comprising the silver particle-containing film according to any one of [1], [2] and [4] as a heat ray reflective layer.
  • the tabular silver nanoparticles in the silver particle-containing film are hexagonal tabular silver nanoparticles.
  • the heat ray shielding material according to [5] or [6] is such that a main plane of the tabular silver nanoparticles in the silver particle-containing film is on one surface of the silver tabular grain-containing layer.
  • the plane orientation is preferably in the range of 0 ° to ⁇ 30 ° on average.
  • the heat ray shielding material according to any one of [5] to [7] preferably has a visible light transmittance of 65% or more.
  • the silver tabular grain-containing layer in the silver particle-containing film is disposed on at least one surface of the substrate. preferable.
  • the metal oxide particle-containing layer is on the side opposite to the surface on which the silver tabular grain-containing layer of the substrate is disposed. It is preferable to arrange on the surface.
  • FIG. 1A is a schematic perspective view showing an example of the shape of tabular grains contained in the silver particle-containing film of the present invention, and shows circular tabular silver nanoparticles.
  • FIG. 1B is a schematic perspective view showing an example of the shape of a tabular grain contained in the silver particle-containing film of the present invention, and shows hexagonal tabular silver nanoparticles.
  • FIG. 1A is a schematic perspective view showing an example of the shape of tabular grains contained in the silver particle-containing film of the present invention, and shows circular tabular silver nanoparticles.
  • FIG. 1B is a schematic perspective view showing an example of the shape of a tabular grain contained in the silver particle-containing film of the present invention, and shows hexagonal tabular silver nanoparticles.
  • FIG. 1A is a schematic perspective view showing an example of the shape of tabular grains contained in the silver particle-containing film of the present invention, and shows circular tabular silver nanoparticles.
  • FIG. 1B is a schematic perspective view showing an example of the shape of
  • FIG. 2A is a schematic cross-sectional view showing the existence state of a silver tabular grain-containing layer containing tabular silver nanoparticles in the silver particle-containing film of the present invention, and is a silver tabular grain containing tabular silver nanoparticles
  • the figure explaining the angle ((theta)) which the containing layer (parallel also with the plane of a base material) and the main plane (plane which determines circle equivalent diameter D) of hexagonal flat silver nanoparticles is shown.
  • FIG. 2B is a schematic cross-sectional view showing the state of existence of a silver tabular grain-containing layer containing tabular silver nanoparticles in the silver particle-containing film of the present invention, wherein the silver grain-containing film of the silver tabular grain-containing layer is shown.
  • FIG. 2C is a schematic cross-sectional view showing an example of the presence state of a silver tabular grain-containing layer containing tabular silver nanoparticles in the silver particle-containing film of the present invention.
  • FIG. 2D is a schematic cross-sectional view showing another example of the presence state of a silver tabular grain-containing layer containing tabular silver nanoparticles in the silver particle-containing film of the present invention.
  • FIG. 2E is a schematic cross-sectional view showing another example of the existence state of the silver tabular grain-containing layer containing tabular silver nanoparticles in the silver particle-containing film of the present invention.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the silver particle-containing film of the present invention has a silver tabular grain-containing layer containing tabular silver nanoparticles having an average equivalent circle diameter of 70 nm to 500 nm, and the color tone is L * a * b * color system,
  • the heat ray shielding material of this invention is characterized by including the silver particle containing film
  • membrane of this invention and its preferable aspect are the same as the description and preferable aspect of the heat ray reflective layer in the heat ray shielding material of this invention.
  • the color tone in the L * a * b * color system is
  • the color tone in the L * a * b * color system is preferably
  • the color tone in the L * a * b * color system is preferably
  • the color tone in the L * a * b * color system is more preferably
  • the color tone in the L * a * b * color system is
  • the silver particle-containing film of the present invention particularly preferably has a color tone in the L * a * b * color system of
  • the color tone in the L * a * b * color system is more preferably
  • the solar reflectance of the silver particle-containing film of the present invention preferably has a maximum value in the range of 800 nm to 2,500 nm (preferably 800 nm to 1,800 nm) from the viewpoint of increasing the efficiency of heat ray reflectance. .
  • the visible light transmittance of the silver particle-containing film of the present invention is preferably 60% or more, more preferably 65% or more, and particularly preferably 70% or more. When the visible light transmittance is less than 60%, for example, when used as automotive glass or building glass, the outside may be difficult to see.
  • the solar reflectance of the silver particle-containing film of the present invention is preferably 13% or more, more preferably 17% or more, and particularly preferably 20% or more.
  • the silver particle-containing film of the present invention preferably has a wavelength band having a reflectance of 25% or more over a wavelength band of 800 nm to 2,500 nm over 800 nm, over 1000 nm, more preferably over 1200 nm. Is particularly preferred.
  • the ultraviolet transmittance of the silver particle-containing film of the present invention is preferably 5% or less, and more preferably 2% or less. When the ultraviolet transmittance exceeds 5%, the color of the silver nanoparticle layer may change due to ultraviolet rays of sunlight.
  • the haze of the silver particle-containing film of the present invention is preferably 20% or less. When the haze exceeds 20%, it may be unfavorable in terms of safety, for example, when it is used as glass for automobiles or glass for buildings, it becomes difficult to see the outside.
  • the silver particle-containing film of the present invention has a silver tabular grain-containing layer containing tabular silver nanoparticles having an average equivalent-circle diameter of 70 nm to 500 nm, and if necessary, an adhesive layer, an ultraviolet absorbing layer, a base layer
  • an adhesive layer if necessary, an adhesive layer, an ultraviolet absorbing layer, a base layer
  • the silver particle-containing film of the present invention preferably has a polymer layer 1 as a substrate.
  • membrane of this invention is demonstrated.
  • Silver tabular grain-containing layer The silver tabular grain-containing layer is not particularly limited except that it contains tabular silver nanoparticles having an average equivalent-circle diameter of 70 nm to 500 nm, and can be appropriately selected according to the purpose.
  • the silver tabular grain-containing layer when the thickness of the silver tabular grain-containing layer is d, 80% or more of the hexagonal silver nanoparticles are d / 2 from the surface of the silver tabular grain-containing layer. It is preferable that it exists in the range.
  • the present invention is not limited to any theory, and the silver particle-containing film of the present invention is not limited to the following production method, but a specific polymer (preferably latex) is preferably used when producing the silver tabular grain-containing layer. ) Can be segregated on one surface of the silver tabular grain-containing layer.
  • the silver nanoparticles are not particularly limited as long as they have a flat plate shape with an average equivalent circle diameter of 70 nm to 500 nm, and can be appropriately selected according to the purpose.
  • one surface of the said silver tabular grain content layer is a flat plane.
  • membrane of this invention has a base material, it is preferable that it is a substantially horizontal surface with the surface of a base material.
  • the silver particle-containing film may or may not have the base material, and may or may not have a temporary support.
  • the shape of the flat silver nanoparticles is a particle composed of two main planes (see FIGS. 1A and 1B), and the shape in the plane can be appropriately selected according to the purpose. Examples include a shape, a circular shape, and a triangular shape. Among these, in terms of high visible light transmittance, it is more preferably a hexagonal or more polygonal shape to a circular shape, particularly preferably a hexagonal shape or a circular shape, and more preferably a hexagonal shape. .
  • the hexagonal shape means a shape in which the number of sides having a length of 20% or more of the average equivalent circle diameter of tabular silver nanoparticles is 6 per silver tabular grain. .
  • the hexagonal silver nanoparticles are not particularly limited as long as they are hexagonal when the silver nanoparticles are observed from above the main plane with a transmission electron microscope (TEM) or SEM, and are appropriately selected according to the purpose.
  • the hexagonal corner may be acute or dull, but the corner is preferably dull in that the absorption in the visible light region can be reduced.
  • the corner is preferably dull in that the absorption in the visible light region can be reduced.
  • hexagonal tabular silver nanoparticles are preferably 60% by number or more, and 65% by number or more based on the total number of silver nanoparticles. Is more preferable, and 70% by number or more is more preferable. If the ratio of the hexagonal tabular silver nanoparticles is less than 60% by number, the visible light transmittance may be lowered.
  • the method for synthesizing the tabular silver nanoparticles is not particularly limited as long as it can synthesize tabular silver nanoparticles having a specific size (preferably hexagonal shape), and is appropriately selected depending on the purpose.
  • Examples thereof include liquid phase methods such as chemical reduction method, photochemical reduction method, and electrochemical reduction method.
  • a liquid phase method such as a chemical reduction method or a photochemical reduction method is particularly preferable in terms of shape and size controllability.
  • hexagonal to triangular tabular silver nanoparticles After synthesizing hexagonal to triangular tabular silver nanoparticles, for example, by performing etching treatment with a dissolved species that dissolves silver such as nitric acid and sodium sulfite, aging treatment by heating, etc., hexagonal to triangular shape Hexagonal to circular tabular silver nanoparticles may be obtained by dulling the corners of the silver nanoparticles.
  • the silver nanoparticles may be grown in a tabular form.
  • the method for controlling the color tone of the silver particle-containing film is not particularly limited, and can be achieved by, for example, synthesizing tabular silver nanoparticles under specific conditions during the production conditions of the silver particle-containing film. Can do.
  • the silver nitrate addition time during the preparation of the silver nanoparticle dispersion from the seed crystal solution if the scale during the preparation of the silver nanoparticle dispersion is the same condition, the silver nitrate addition rate In a specific range, or by adjusting the pH of the silver nanoparticle dispersion after addition of the silver sulfite precipitate mixture.
  • it is preferably produced by the method for producing a silver particle-containing film of the present invention.
  • the method includes a step of preparing a silver nanoparticle dispersion from a silver seed crystal solution, and a silver nitrate-containing solution is added to the silver seed crystal solution for 5 minutes or more, preferably 7 minutes or more, more preferably 15 minutes or more.
  • the solution containing silver sulfite is added to the silver seed crystal solution after the addition of the silver nitrate-containing solution, and the pH of the silver nanoparticle dispersion after the addition of the solution containing silver sulfite is 8.0 or less (preferably 3
  • the silver particle-containing film of the present invention is not limited by the production method described above, and those produced by other methods are also included in the silver particle-containing film of the present invention.
  • the tabular silver nanoparticles may be subjected to further treatment in order to impart desired characteristics.
  • the further treatment is not particularly limited and may be appropriately selected depending on the purpose.
  • the formation of a high refractive index shell layer the addition of various additives such as a dispersant and an antioxidant may be included. Can be mentioned.
  • the flat silver nanoparticles may be coated with a high refractive index material having high visible light region transparency in order to further enhance the visible light region transparency.
  • a high refractive index material is not particularly limited and may be appropriately selected depending on the purpose, for example, TiO x, BaTiO 3, ZnO, etc. SnO 2, ZrO 2, NbO x and the like.
  • an appropriate SiO 2 or polymer shell layer is formed. Further, the metal oxide layer may be formed on the shell layer.
  • TiO x is used as the material for the high refractive index metal oxide layer, since TiO x has photocatalytic activity, there is a concern that the matrix in which the silver nanoparticles are dispersed may be deteriorated. After forming the TiO x layer on the nanoparticles, an SiO 2 layer may be appropriately formed.
  • the tabular silver nanoparticles may contain an antioxidant such as mercaptotetrazole or ascorbic acid in order to prevent oxidation of metals such as silver constituting the tabular silver nanoparticles. It may be adsorbed.
  • an oxidation sacrificial layer such as Ni may be formed on the surface of the silver nanoparticles. Further, it may be covered with a metal oxide film such as SiO 2 for the purpose of blocking oxygen.
  • the tabular silver nanoparticles are, for example, a quaternary ammonium salt, a low molecular weight dispersant containing at least one of N element, S element, and P element such as amines, and high molecular weight dispersion. You may add dispersing agents, such as an agent.
  • the hexagonal tabular silver nanoparticles are such that the main plane is one surface of the silver tabular particle-containing layer (if the silver particle-containing film has a substrate, the substrate surface ) Is preferably in the range of 0 ° to ⁇ 30 ° on average, more preferably in the range of 0 ° to ⁇ 20 ° on average, more preferably 0 ° to ⁇ 10 on average. It is particularly preferable that the orientation is in the range of °.
  • the presence state of the silver nanoparticles is not particularly limited and may be appropriately selected according to the purpose. However, the silver nanoparticles are preferably arranged as shown in FIGS. 2D and 2E described later.
  • FIGS. 2A to 2E are schematic cross-sectional views showing the existence state of the silver tabular grain-containing layer containing silver nanoparticles in the silver particle-containing film of the present invention.
  • FIG. 2A is a diagram for explaining the angle ( ⁇ ⁇ ) formed by the surface plane of the silver particle-containing film (the plane of the substrate 1 when a substrate is included) and the plane of the silver nanoparticles 3.
  • FIG. 2B shows the existence region in the depth direction of the silver particle-containing film of the silver tabular grain-containing layer 2.
  • 2C, FIG. 2D, and FIG. 2E show the presence state of the tabular silver nanoparticles 3 in the silver tabular grain-containing layer 2.
  • FIG. 2A is a diagram for explaining the angle ( ⁇ ⁇ ) formed by the surface plane of the silver particle-containing film (the plane of the substrate 1 when a substrate is included) and the plane of the silver nanoparticles 3.
  • FIG. 2B shows the existence region in the depth direction of the silver particle-containing film of the silver tab
  • the angle ( ⁇ ⁇ ) formed between the surface of the substrate 1 and the like and the main plane of the tabular silver nanoparticles 3 or an extension line of the main plane corresponds to a predetermined range in the plane orientation. That is, the plane orientation refers to a state in which the tilt angle ( ⁇ ⁇ ) shown in FIG. 2A is small when the cross section of the silver particle-containing film is observed.
  • FIG. A state where the main plane of the particle 3 is in contact that is, a state where ⁇ is 0 ° is shown.
  • the main plane of the tabular silver nanoparticles is plane-oriented with respect to one surface of the silver tabular grain-containing layer (or the base material surface when the silver particle-containing film has a substrate)
  • it can be appropriately selected according to the purpose.
  • an appropriate cross-section slice is prepared, and a silver tabular grain-containing layer in this slice (if the silver particle-containing film has a substrate, the substrate ) And plate-like silver nanoparticles may be observed and evaluated.
  • a cross-section sample or a cross-section sample of the silver particle-containing film is prepared from the silver particle-containing film using a microtome or a focused ion beam (FIB), and this is used for various microscopes (for example, field emission scanning electrons). And a method of evaluating from an image obtained by observation using a microscope (FE-SEM, etc.).
  • FIB focused ion beam
  • the cross-section sample or the cross-section section is obtained by cutting a sample frozen in liquid nitrogen by a diamond cutter mounted on a microtome. A sample may be made.
  • membrane does not swell with water, you may produce the said cross-section sample or a cross-section slice sample.
  • the sample is flat with respect to one surface of the silver tabular grain-containing layer in the sample (or the base material surface when the silver particle-containing film has a base).
  • the sample can confirm whether or not the main plane of the silver nanoparticles is plane-oriented, and can be appropriately selected according to the purpose.
  • FE-SEM FE-SEM
  • TEM optical microscope
  • the observations used are mentioned.
  • observation may be performed by FE-SEM
  • observation may be performed by TEM.
  • TEM observation may be performed by TEM.
  • Variation coefficient of average particle size (average equivalent circle diameter) and average particle size (average equivalent circle diameter) particle size distribution The flat silver nanoparticles have an average particle diameter (average equivalent circle diameter) of 70 nm to 500 nm, preferably 100 nm to 400 nm.
  • average particle diameter (average equivalent circle diameter) is less than 70 nm, the contribution of the absorption of the tabular silver nanoparticles becomes larger than the reflection, so that sufficient heat ray reflectivity may not be obtained, which exceeds 500 nm. And haze (scattering) becomes large, and transparency may be impaired.
  • the average particle diameter is a main plane diameter (maximum length) of 200 tabular silver nanoparticles arbitrarily selected from images obtained by observing particles with a TEM. Mean value.
  • Two or more kinds of tabular silver nanoparticles having different average particle diameters can be contained in the silver tabular grain-containing layer.
  • the average particle diameter of the tabular silver nanoparticles ( The average circle equivalent diameter) peak may have two or more.
  • the silver particle-containing film of the present invention preferably has a coefficient of variation of 13% or more in the particle size distribution of tabular silver nanoparticles.
  • the coefficient of variation is 13% or more, the reflection wavelength region of heat rays in the silver particle-containing film can be broadened, and infrared light can be reflected over a wide band, which is preferable.
  • the upper limit of the coefficient of variation in the particle size distribution of the tabular silver nanoparticles is preferably 200% or less, more preferably 150% or less, and particularly preferably 100% or less.
  • the coefficient of variation in the particle size distribution of the silver nanoparticles is plotted, for example, by plotting the particle size distribution range of the 200 silver nanoparticles used for calculating the average value obtained as described above, and the standard deviation of the particle size distribution is It is the value (%) obtained by dividing the average value (average particle diameter (average equivalent circle diameter)) of the main plane diameter (maximum length) obtained as described above.
  • the aspect ratio of the tabular silver nanoparticles is not particularly limited and may be appropriately selected depending on the intended purpose. However, the reflectance in the infrared light region having a wavelength of 800 nm to 2,500 nm is increased. 8 to 40 are preferable, and 10 to 35 are more preferable. When the aspect ratio is less than 8, the reflection wavelength becomes smaller than 800 nm, and when it exceeds 40, the reflection wavelength becomes longer than 1,800 nm and sufficient heat ray reflectivity may not be obtained.
  • the aspect ratio means a value obtained by dividing the average particle diameter (average equivalent circle diameter) of tabular silver nanoparticles by the average particle thickness of tabular silver nanoparticles.
  • the average particle thickness corresponds to the distance between main planes of tabular silver nanoparticles, for example, as shown in FIGS. 1A and 1B, and was cut by an atomic force microscope (AFM) or a focused ion beam (FIB). It can be measured by observing the cross section of the particle by FE-SEM or TEM.
  • the method for measuring the average particle thickness is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a particle dispersion containing silver nanoparticles is dropped on a glass substrate and dried to obtain particles 1 The method of measuring the thickness of an individual etc. is mentioned.
  • the thickness of the flat silver nanoparticles is preferably 5 to 20 nm.
  • the silver particle-containing film of the present invention it is preferable that 80% by number or more of the hexagonal tabular silver nanoparticles are present in a range of d / 2 from the surface of the silver tabular particle-containing layer, d / 3 More preferably, 60% by number or more of the hexagonal tabular silver nanoparticles are exposed on one surface of the silver tabular grain-containing layer. That the tabular silver nanoparticles are present in the range of d / 2 from the surface of the silver tabular grain-containing layer means that at least a part of the tabular silver nanoparticles is in the range of d / 2 from the surface of the silver tabular grain-containing layer. Means included.
  • FIG. 2E means that only a part of the thickness direction of each silver nanoparticle is buried in the silver tabular grain-containing layer, and each silver nanoparticle is stacked on the surface of the silver tabular grain-containing layer. Do not mean.
  • the tabular silver nanoparticles are exposed on one surface of the silver tabular grain-containing layer, a part of one surface of the tabular silver nanoparticles is from the surface of the silver tabular grain-containing layer. Also means that it protrudes.
  • the presence distribution of silver nanoparticles in the silver tabular grain-containing layer can be measured, for example, from an image obtained by SEM observation of a cross-sectional sample of the silver particle-containing film.
  • the plasmon resonance wavelength ⁇ of the metal constituting the tabular silver nanoparticles in the silver tabular grain-containing layer is not particularly limited and can be appropriately selected according to the purpose, but in terms of imparting heat ray reflection performance,
  • the thickness is preferably 400 nm to 2,500 nm, and more preferably 700 nm to 2,500 nm from the viewpoint of imparting visible light transmittance.
  • the silver particle-containing film of the present invention preferably contains a polymer as a medium in the silver tabular grain-containing layer.
  • a polymer as a medium in the silver tabular grain-containing layer.
  • the polymer include polyvinyl acetal resin, polyvinyl alcohol resin, polyvinyl butyral resin, polyacrylate resin, polymethyl methacrylate resin, polycarbonate resin, polyvinyl chloride resin, (saturated) polyester resin, polyurethane resin, gelatin resin and cellulose.
  • polymers such as natural polymers.
  • the main polymer of the polymer is preferably a polyvinyl alcohol resin, a polyvinyl butyral resin, a polyvinyl chloride resin, a (saturated) polyester resin, a polyurethane resin, and preferably the polyester resin and the polyurethane resin. More preferably, 80% by number or more of hexagonal or circular silver nanoparticles are easily present in the range of d / 2 from the surface of the silver tabular grain-containing layer, and the polyester resin contains the silver particles of the present invention. This is particularly preferable from the viewpoint of further improving the cross-cut adhesion of the film.
  • the main polymer of the said polymer contained in the said silver tabular grain content layer means the polymer component which occupies 50 mass% or more of the polymer contained in the said silver tabular grain content layer.
  • the content of the polyester resin with respect to the tabular silver nanoparticles contained in the silver tabular particle-containing layer is preferably 1 to 10,000% by mass, and preferably 10 to 1000% by mass. More preferred is 20 to 500% by mass.
  • the refractive index n of the medium is preferably 1.4 to 1.7.
  • the thickness of the hexagonal tabular silver nanoparticles when the thickness of the hexagonal tabular silver nanoparticles is a, 80% by number or more of the hexagonal silver nanoparticles have a thickness of a / 10 or more.
  • the polymer is covered with a / 10 to 10a in the thickness direction, more preferably the polymer is covered with a / 8 to 4a, and particularly preferably a / 8 to 4a is covered with the polymer.
  • the silver particle-containing film of the present invention is preferably in the embodiment of FIG. 2D rather than the embodiment of FIG. 2E.
  • the silver nanoparticles are arranged in the form of a silver tabular grain-containing layer containing tabular silver nanoparticles, as shown in FIGS. 2A to 2E.
  • the silver tabular grain-containing layer may be composed of a single layer as shown in FIGS. 2A to 2E, or may be composed of a plurality of silver tabular grain-containing layers. When comprised with a several silver tabular grain content layer, it becomes possible to provide the shielding performance according to the wavelength range which wants to provide thermal insulation performance.
  • the silver particle-containing film of the present invention contains at least the outermost silver tabular grain-containing layer in the outermost silver tabular grain-containing layer.
  • the thickness of the layer is d ′, 80% by number or more of the hexagonal to circular tabular silver nanoparticles are in the range of d ′ / 2 from the surface of the outermost silver tabular grain-containing layer. It is preferable to do.
  • Thickness of silver tabular grain containing layer The thickness of the silver tabular grain-containing layer is preferably 10 to 160 nm, and more preferably 20 to 80 nm.
  • the thickness d of the silver tabular grain-containing layer is preferably a to 10a, more preferably 2a to 8a, where a is the thickness of the hexagonal to circular tabular silver nanoparticles. .
  • the thickness of each layer of the silver tabular grain-containing layer can be measured, for example, from an image obtained by SEM observation of a cross-sectional sample of the silver particle-containing film. Further, even when other layers such as an overcoat layer described later are provided on the silver tabular grain-containing layer of the silver particle-containing film, the boundary between the other layer and the silver tabular grain-containing layer is the same method. The thickness d of the silver tabular grain-containing layer can be determined. In addition, when coating on the said silver tabular grain content layer using the same kind of polymer as the polymer contained in the said silver tabular grain content layer, it is usually with the said silver tabular grain content layer by the image observed by SEM. The boundary can be discriminated, and the thickness d of the silver tabular grain-containing layer can be determined.
  • the silver particle-containing film of the present invention preferably has a base material.
  • the silver particle-containing film has a substrate on the surface opposite to the surface of the silver tabular particle-containing layer on which 60% by number or more of the hexagonal tabular silver nanoparticles are unevenly distributed. Is preferred.
  • the substrate is not particularly limited as long as it is an optically transparent substrate, and can be appropriately selected according to the purpose.
  • the substrate has a visible light transmittance of 70% or more, preferably 80% or more. And those with high transmittance in the near infrared region.
  • the shape include a flat plate shape, and the structure may be a single layer structure or a laminated structure, and the size may be the size of the silver particle-containing film. It can be appropriately selected depending on the size.
  • the material of the base material used in the silver particle-containing film of the present invention is not particularly limited, but is preferably a polymer film.
  • the polymer film is appropriately selected from various transparent plastic films depending on the situation. You can choose.
  • the transparent plastic film include polyolefin resins such as polyethylene, polypropylene, poly-4-methylpentene-1 and polybutene-1, polyester resins such as polyethylene terephthalate and polyethylene naphthalate, polycarbonate resins, and polyvinyl chloride.
  • Polyethylene terephthalate film is particularly preferable.
  • the thickness of the base film is not particularly limited and can be appropriately selected depending on the purpose of use of the solar shading film. Usually, the thickness is about 10 ⁇ m to 500 ⁇ m, preferably 12 ⁇ m to 300 ⁇ m, more preferably 16 ⁇ m to 125 ⁇ m. preferable.
  • the silver particle-containing film of the present invention preferably has an adhesive layer.
  • the adhesive layer may include an ultraviolet absorber.
  • the material that can be used for forming the adhesive layer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • An adhesive layer made of these materials can be formed by coating.
  • an antistatic agent, a lubricant, an antiblocking agent and the like may be added to the adhesive layer.
  • the thickness of the adhesive layer is preferably 0.1 ⁇ m to 30 ⁇ m.
  • the adhesive layer is preferably formed by coating.
  • it can be laminated on the surface of the lower layer such as the base material, the metal particle-containing layer, or the ultraviolet absorbing layer.
  • the coating method at this time A well-known method can be used.
  • a film in which the pressure-sensitive adhesive is previously coated and dried on the release film is prepared, and the film is left in a dry state by laminating the pressure-sensitive adhesive surface of the film and the heat ray shielding material surface of the present invention. It is possible to laminate an adhesive layer.
  • the laminating method at this time is not particularly limited, and a known method can be used.
  • Hard coat layer In order to add scratch resistance, it is also preferable to include a hard coat layer having hard coat properties.
  • the hard coat layer can contain metal oxide particles.
  • the kind and formation method can be selected suitably according to the objective, for example, acrylic resin, silicone resin, melamine resin, urethane resin, alkyd resin And thermosetting or photocurable resins such as fluorine-based resins.
  • the thickness of the hard coat layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 ⁇ m to 50 ⁇ m.
  • the hard coat layer may contain the metal oxide particles.
  • the silver particle-containing film of the present invention has a hexagonal shape to a circular shape in order to prevent oxidation and sulfidation of tabular silver nanoparticles due to mass transfer and to impart scratch resistance. You may have the overcoat layer closely_contact
  • an overcoat layer may be provided for prevention or the like.
  • the overcoat layer may contain an ultraviolet absorber.
  • the overcoat layer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the overcoat layer contains a binder, a matting agent, and a surfactant, and further contains other components as necessary. It becomes.
  • the binder is not particularly limited and may be appropriately selected depending on the purpose.
  • the thickness of the overcoat layer is preferably 0.01 ⁇ m to 1,000 ⁇ m, more preferably 0.02 ⁇ m to 500 ⁇ m, particularly preferably 0.1 to 10 ⁇ m, and particularly preferably 0.2 to 5 ⁇ m.
  • the layer containing the ultraviolet absorber can be appropriately selected according to the purpose in addition to the overcoat layer, and may be an adhesive layer, or between the adhesive layer and the silver tabular grain-containing layer. It may be a layer. In any case, the ultraviolet absorber is preferably added to a layer disposed on the side irradiated with sunlight with respect to the silver tabular grain-containing layer.
  • the ultraviolet absorber is not particularly limited and may be appropriately selected depending on the purpose.
  • a benzophenone ultraviolet absorber a benzotriazole ultraviolet absorber, a triazine ultraviolet absorber, a salicylate ultraviolet absorber, Examples include cyanoacrylate ultraviolet absorbers. These may be used individually by 1 type and may use 2 or more types together.
  • the benzophenone-based ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 2,4droxy-4-methoxy-5-sulfobenzophenone.
  • the benzotriazole ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the triazine ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include mono (hydroxyphenyl) triazine compounds, bis (hydroxyphenyl) triazine compounds, and tris (hydroxyphenyl) triazine compounds. Etc. Examples of the mono (hydroxyphenyl) triazine compound include 2- [4-[(2-hydroxy-3-dodecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethyl).
  • Phenyl) -1,3,5-triazine 2- [4-[(2-hydroxy-3-tridecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) ) -1,3,5-triazine, 2- (2,4-dihydroxyphenyl) -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2- (2-hydroxy- 4-isooctyloxyphenyl) -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2- (2-hydroxy-4-dodecyloxyphenyl) -4,6-bis ( 2,4-dimethylphenyl) -1,3,5-triazine, etc.
  • Examples of the bis (hydroxyphenyl) triazine compound include 2,4-bis (2-hydroxy-4-propyloxyphenyl) -6- (2,4-dimethylphenyl) -1,3,5-triazine, 2 , 4-Bis (2-hydroxy-3-methyl-4-propyloxyphenyl) -6- (4-methylphenyl) -1,3,5-triazine, 2,4-bis (2-hydroxy-3-methyl) -4-hexyloxyphenyl) -6- (2,4-dimethylphenyl) -1,3,5-triazine, 2-phenyl-4,6-bis [2-hydroxy-4- [3- (methoxyheptaethoxy ) -2-hydroxypropyloxy] phenyl] -1,3,5-triazine and the like.
  • tris (hydroxyphenyl) triazine compound examples include 2,4-bis (2-hydroxy-4-butoxyphenyl) -6- (2,4-dibutoxyphenyl) -1,3,5-triazine, 2 , 4,6-Tris (2-hydroxy-4-octyloxyphenyl) -1,3,5-triazine, 2,4,6-tris [2-hydroxy-4- (3-butoxy-2-hydroxypropyloxy) ) Phenyl] -1,3,5-triazine, 2,4-bis [2-hydroxy-4- [1- (isooctyloxycarbonyl) ethoxy] phenyl] -6- (2,4-dihydroxyphenyl) -1 , 3,5-triazine, 2,4,6-tris [2-hydroxy-4- [1- (isooctyloxycarbonyl) ethoxy] phenyl] -1,3,5-triazine, 2,4-bis [2 -Hydroxy-4
  • the salicylate-based ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include phenyl salicylate, p-tert-butylphenyl salicylate, p-octylphenyl salicylate, Examples include 2-ethylhexyl salicylate.
  • the cyanoacrylate-based ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the binder is not particularly limited and may be appropriately selected depending on the intended purpose, but preferably has higher visible light transparency and higher solar transparency, and examples thereof include acrylic resin, polyvinyl butyral, and polyvinyl alcohol. .
  • the ultraviolet absorbing layer formed between the heat ray source and the silver nanoparticles is absorbed in the region of 450 nm to 1,500 nm. It is preferable to select a material that does not have a thickness, or to reduce the thickness of the ultraviolet absorbing layer.
  • the ultraviolet transmittance is preferably 5% or less, and more preferably 2% or less. When the ultraviolet transmittance exceeds 5%, the color of the silver nanoparticle layer may change due to ultraviolet rays of sunlight.
  • the silver particle-containing film of the present invention preferably contains at least one metal oxide particle in order to absorb long-wave infrared light from the viewpoint of the balance between heat ray shielding and manufacturing cost.
  • the layer containing the metal oxide particles is the silver flat plate on which the hexagonal to circular flat plate silver nanoparticles of the silver flat plate particle-containing layer are exposed. It is preferable to have on the surface side opposite to the surface of the particle-containing layer.
  • the overcoat layer preferably contains metal oxide particles.
  • the said metal oxide particle content layer may be laminated
  • the silver particle-containing film of the present invention when the silver particle-containing film of the present invention is arranged so that the silver nanoparticle-containing layer is on the incident direction side of heat rays such as sunlight, a part of the heat rays in the silver nanoparticle-containing layer After reflecting (or all), the overcoat layer will absorb part of the heat rays, and it will not be absorbed by the metal oxide-containing layer, but will be caused by the heat rays that have passed through the silver particle-containing film.
  • the amount of heat directly received inside the film and the amount of heat absorbed by the metal oxide-containing layer of the silver particle-containing film and indirectly transmitted to the inside of the silver particle-containing film can be reduced.
  • a tin dope indium oxide (henceforth "ITO"), a tin dope antimony oxide (henceforth).
  • ATO tin dope indium oxide
  • CWO tungsten oxide
  • LaB 6 lanthanum hexaboride
  • ITO infrared rays of 1,200 nm or more are shielded by 90% or more and the visible light transmittance is 90% or more.
  • the volume average particle size of the primary particles of the metal oxide particles is preferably 0.1 ⁇ m or less in order not to reduce the visible light transmittance.
  • a shape of the said metal oxide particle According to the objective, it can select suitably, For example, spherical shape, needle shape, plate shape, etc. are mentioned.
  • the content of the metal oxide particles in the metal oxide particle-containing layer is not particularly limited and may be appropriately selected depending on the purpose, but is preferably 0.1 g / m 2 to 20 g / m 2 , 0.5 g / m 2 to 10 g / m 2 is more preferable, and 1.0 g / m 2 to 4.0 g / m 2 is more preferable. If the content is less than 0.1 g / m 2 , the amount of solar radiation felt on the skin may increase, and if it exceeds 20 g / m 2 , the visible light transmittance may deteriorate.
  • the content of the metal oxide particles in the metal oxide particle-containing layer is, for example, from the observation of the super foil section TEM image and surface SEM image of the heat ray shielding layer, and the number of metal oxide particles in a certain area and It can be calculated by measuring the average particle diameter and dividing the mass (g) calculated based on the number and average particle diameter and the specific gravity of the metal oxide particles by the constant area (m 2 ). .
  • metal oxide fine particles in a certain area of the metal oxide particle-containing layer are eluted in methanol, and the mass (g) of the metal oxide fine particles measured by fluorescent X-ray measurement is divided by the constant area (m 2 ). This can also be calculated.
  • distribution which has the said silver nanoparticle on the surface of lower layers, such as the said base material examples include a method in which the liquid is applied by a dip coater, a die coater, a slit coater, a bar coater, a gravure coater, or the like, and a method in which the liquid is aligned by a method such as an LB film method, a self-assembly method, or a spray coating method.
  • the composition of the silver tabular particle-containing layer used in the examples described later is used, and the hexagonal or circular tabular silver nanoparticles 80 are added by adding latex or the like. It is preferable that several% or more exist in a range of d / 2 from the surface of the silver tabular grain-containing layer. More preferably, 80% by number or more of the hexagonal or circular tabular silver nanoparticles are present in a range of d / 3 from the surface of the silver tabular grain-containing layer.
  • the amount of the latex added is not particularly limited.
  • the method for controlling the coefficient of variation of the average particle diameter (average equivalent circle diameter) of tabular silver nanoparticles in the silver tabular grain-containing layer is not particularly limited, and the average particle diameter (average equivalent circle diameter)
  • the shape of the flat silver nanoparticles contained in the dispersion containing silver nanoparticles may be controlled so that the coefficient of variation is large, and the silver nanoparticles with a small coefficient of variation of the average particle diameter (average equivalent circle diameter) You may control by mixing 2 or more types of dispersion liquid which has.
  • the variation coefficient of the average grain size (average equivalent circle diameter) is Prepare two or more kinds of small silver nanoparticle dispersions (average equivalent circle equivalent diameters) so that the average particle diameter (average equivalent circle diameter) of tabular silver nanoparticles has two or more peaks. It is preferable to form a silver tabular grain-containing layer. Such a configuration is preferable because infrared light can be easily shielded over a wide band.
  • the silver tabular grain-containing layer contains one kind of tabular silver nanoparticles having an average grain diameter (average equivalent circle diameter)
  • the coefficient of variation of the average grain diameter (average equivalent circle diameter) is It is preferable to prepare such that the silver tabular grain-containing layer is prepared by increasing the average equivalent circle diameter (not so uniform). Such a configuration is preferable because infrared light can be easily shielded over a wide band.
  • the heat ray shielding material of the present invention When using the heat ray shielding material of the present invention to provide functionality to the existing window glass, it is preferable to laminate an adhesive and attach it to the indoor side of the window glass. In that case, it is preferable that the infrared reflection layer is installed on the sunlight side as much as possible because it can reflect the infrared rays to be incident on the room in advance. From this viewpoint, the metal particle-containing layer is installed on the sunlight incidence side. It is preferable to laminate an adhesive layer on the substrate. Specifically, an adhesive layer is provided on a metal particle-containing layer or a functional layer such as an overcoat layer provided on the metal particle-containing layer, and is bonded to the window glass via the adhesive layer. Is preferred.
  • a heat ray shielding material provided by coating or laminating the adhesive layer, and pre-surfactant (mainly on the surface of the window glass and the adhesion layer surface of the heat ray shielding material)
  • pre-surfactant mainly on the surface of the window glass and the adhesion layer surface of the heat ray shielding material
  • the surface of the window glass is swept away from the center of the glass toward the edge using a squeegee or the like to leave moisture between the window glass and the heat ray shielding material.
  • the heat ray shielding material is fixed to the surface. In this way, it is possible to install the heat ray shielding material on the window glass.
  • laminated glass body using heat ray shielding material For the production of the laminated glass body, two glass plates, two polyvinyl butyral interlayer films (PVB sheet) for laminated glass, and the heat ray shielding material are prepared, and the glass plate (first sheet), PVB sheet (1 Sheet), heat ray shielding material, PVB sheet (second sheet), glass plate (second sheet).
  • This laminated body is preliminarily pressure-bonded at 95 ° C. for 30 minutes under vacuum, and then pressure-bonded with heating under conditions of 1.3 MPa and 120 ° C. in an autoflavor to obtain a laminated glass to which a heat ray shielding material is applied. be able to.
  • the silver particle-containing film of the present invention can be applied to various fields by taking advantage of the characteristics of silver.
  • heat ray shielding materials, antibacterial materials, transparent conductive materials, antistatic materials, packaging materials, heat dissipation materials From the viewpoint of utilizing the natural color tone that is a feature of the silver particle-containing film of the present invention, it can be preferably used for a heat ray shielding material, a transparent conductive material, an antistatic material, and the like.
  • the silver particle-containing film of the present invention can be preferably used for a heat ray shielding material used for selectively reflecting or absorbing heat rays (near infrared rays).
  • films for vehicles, films for building materials, agriculture Films for use For example, films for vehicles, films for building materials, agriculture Films for use.
  • heat rays mean near infrared rays (780 nm to 1,800 nm) contained in sunlight by about 50%.
  • Example 1 ⁇ Synthesis of hexagonal tabular silver tabular grains> (Preparation of seed crystal solution) 2.5 ml of a 0.5 g / l polystyrene sulfonic acid aqueous solution was added to 50 mL of a 2.5 mM sodium citrate aqueous solution and heated to 35 ° C. To this solution, 3 ml of 10 mM sodium borohydride aqueous solution was added, and 50 ml of 0.5 mM silver nitrate aqueous solution was added with stirring at 20 ml / min. This solution was stirred for 30 minutes to prepare a seed crystal solution.
  • Table 1 below shows the silver nitrate addition rate and the pH of the silver nanoparticle dispersion immediately after the addition of the silver sulfite precipitate mixture during the preparation of the silver nanoparticle dispersion from the seed crystal solution.
  • 200 mL of the silver nanoparticle dispersion A1 was extracted, and centrifuged at 7000 rpm for 60 minutes with a centrifuge (H200-N manufactured by Kokusan Co., Ltd.) to precipitate silver nanoparticles.
  • the shape uniformity of silver nanoparticles is the shape of 200 particles arbitrarily extracted from the observed SEM image, and hexagonal silver tabular grains, circular silver tabular grains, and irregular shaped grains such as teardrops. Image analysis was performed while distinguishing them from each other, and shapes containing 60% by number or more were obtained.
  • the silver tabular grain dispersion B1 was dropped on a silicon substrate and dried, and the individual thickness of the silver tabular grains was measured by the FIB-TEM method. Five silver tabular grains in the silver tabular grain dispersion B were measured, and the average thickness was 16 nm. As a result of calculating the average thickness for other examples and comparative examples by the same method, it was confirmed that the average thickness was 8 nm to 16 nm.
  • This coating liquid is applied to the wire coating bar No. 14 (RDS Webster NY Co., Ltd.) was applied onto a 50 ⁇ m thick PET film (A4300, manufactured by Toyobo Co., Ltd.), dried, and a hexagonal flat plate on the surface.
  • a film having a silver tabular grain-containing layer having a dry thickness of 100 nm to which silver tabular grains were fixed was obtained.
  • a silver particle-containing film having a tabular silver particle-containing layer was produced.
  • Example 2 A heat ray shielding material of Example 2 was obtained in the same manner as Example 1 except that 79.6 ml of 0.5 mM silver nitrate aqueous solution was added with stirring at 5 ml / min (addition time 15.9 minutes).
  • Example 3 A heat ray shielding material of Example 3 was obtained in the same manner as in Example 1 except that 79.6 ml of 0.5 mM silver nitrate aqueous solution was added with stirring at 10 ml / min (addition time: 8.0 minutes).
  • Example 4 After adding the silver sulfite precipitate mixed solution, immediately after adding 0.2 M NaOH aqueous solution, the pH of the silver nanoparticle dispersion was adjusted to 5.9. A shielding material was obtained.
  • Example 5 After adding the silver sulfite precipitate mixed solution, immediately after adding 0.2M NaOH aqueous solution, the pH of the silver nanoparticle dispersion was adjusted to 6.5, the heat ray of Example 5 A shielding material was obtained.
  • Example 6 After adding the silver sulfite precipitate mixed solution, immediately after adding 0.2 M NaOH aqueous solution, the pH of the silver nanoparticle dispersion liquid was set to 7.1. A shielding material was obtained.
  • Example 7 To 12.5 L of pure water, 995 mL of a 1% by mass aqueous sodium citrate solution and 678 mL of an 8 g / L aqueous sodium polystyrene sulfonate solution were added and heated to 35 ° C. To this solution, 40.7 mL of a 2.3 mass% sodium borohydride aqueous solution was added, and 10.8 L of a 0.5 mM aqueous silver nitrate solution was added with stirring. After stirring this solution for 20 minutes, 995 mL of 1 mass% sodium citrate aqueous solution, 1.34 L of 10 mM ascorbic acid aqueous solution and 12.5 L of pure water were added.
  • Ag hexagonal tabular grains having an average equivalent circle diameter of 125 nm.
  • a coating solution C2 for a metal particle-containing layer having the composition shown below was prepared using the silver nanoparticle dispersion B2. Moreover, the coating liquid C3 for metal oxide particle content layers of the composition shown below was prepared. The heat ray shielding material was produced by forming and applying these to the equipment. In addition, the solid content concentration in the following preparations was used after appropriately adjusting with pure water or a water-soluble alcohol such as methanol or ethanol.
  • composition of coating liquid C2 for metal particle-containing layer Polyester aqueous solution: Pluscoat Z687 (Saiyo Chemical Co., Ltd., solid concentration 25% by mass) 1.85 parts by mass
  • Crosslinker A Carbodilite V-02-L2 (Nisshinbo Co., Ltd., solid concentration 20% by mass) 1.15 parts by mass
  • Crosslinking agent B Epocross K-2020E (Nippon Shokubai Co., Ltd., solid content concentration 20% by mass) 0.51 parts by mass Surfactant A: F Ripar 8780P Ripar 870P (Lion Corporation, solid content 1% by mass) 0.96 parts by mass
  • Surfactant B Naroacty CL-95 (Manufactured by Sanyo Chemical Industries, Ltd., solid content 1 mass%) 1.18 parts by mass Silver nanoparticle dispersion B1 32.75 parts by mass 1- (m-methylureidophenyl) -5-mercaptotetrazole (Wako Pure Chemical ( Co., Ltd., solid
  • composition of coating liquid O1 for overcoat layer Colloidal silica fine particles: Snowtex XL (Average particle size 40 nm, manufactured by Nissan Chemical Industries, Ltd., solid content 10% by mass) 1.29 parts by mass of colloidal silica fine particles: Aerosil OX-50 (Average particle size 40 nm, manufactured by Nippon Aerosil Co., Ltd., (Preparing an aqueous dispersion having a solid content of 10% by mass) 0.29 parts by mass Acrylic polymer aqueous dispersion: AS563A (Daicel Finechem Co., Ltd., solid content 27.5% by mass) 0.49 parts by mass carnauba wax: cellosol 524 (manufactured by Chukyo Yushi Co., Ltd., solid content 3% by mass) 2.86 parts by weight cross-linking agent: Carbodilite V-02-L2 (Nisshinbo Chemical Co., Ltd., solid concentration 20% by mass) 1.71 parts by mass Surfactant A: Ripar 870
  • composition of coating liquid C3 for the metal oxide particle-containing layer UV-curable ITO coating PI-3 (Mitsubishi Materials Electronics Chemical Co., Ltd.) 25 parts by mass Toluene (Wako Pure Chemical Industries, Ltd.) 75 parts by mass
  • a coating solution C2 for a metal particle-containing layer was applied using a wire bar so that the average thickness after drying was 80 nm. Then, it heated at 130 degreeC for 1 minute, dried and solidified, and formed the metal particle content layer. Next, the overcoat layer coating solution O1 was applied using a wire bar so that the average thickness after drying was 350 nm. Then, it dried and solidified at 130 degreeC and formed the overcoat layer.
  • the coating liquid C3 for the metal oxide particle-containing layer is averaged after drying using a wire bar. It was applied so that the thickness was 1.5 ⁇ m.
  • the metal oxide particle-containing layer was cured by irradiating with ultraviolet rays using a high-pressure mercury lamp. The coating layer was irradiated with ultraviolet rays at 400 mJ / cm 2 .
  • the adhesive layer was provided with the method mentioned later with respect to the obtained heat ray shielding film.
  • the average thickness can be calculated by observing cross sections SEM and TEM of the heat ray shielding film. It selects suitably according to application
  • cross-section processing and cross-section observation were performed by FIB-TEM, and the average value obtained by measuring the thickness of the coating film at 10 points was defined as the film thickness.
  • cross-section processing can be performed by mechanical polishing, ion milling, microtome, or the like.
  • An adhesive was bonded to the surface of the overcoat layer of the obtained heat ray shielding film.
  • PD-S1 manufactured by Panac
  • the obtained heat ray shielding material was used as the heat ray shielding material of Example 7.
  • Example 8 A heat ray shielding material of Example 8 was obtained in the same manner as Example 7 except that 8.1 L of 0.5 mM silver nitrate aqueous solution was added with stirring at 1000 mL / min (addition time 8.1 minutes).
  • Example 9 A heat ray shielding material of Example 9 was produced in the same manner as Example 7 except that 8.1 L of 0.5 mM silver nitrate aqueous solution was added with stirring at 405 mL / min (addition time: 20 minutes).
  • Example 10 After adding the silver sulfite precipitate mixed solution, immediately after adding 0.2 M NaOH aqueous solution, the pH of the silver nanoparticle dispersion liquid was changed to 7.2. A shielding material was obtained.
  • Comparative Example 1 A heat ray shielding material of Comparative Example 1 was obtained in the same manner as in Example 1 except that 79.6 ml of 0.5 mM silver nitrate aqueous solution was added with stirring at 20 ml / min (addition time: 4.0 minutes).
  • Comparative Example 2 A heat ray shielding material of Comparative Example 2 was obtained in the same manner as in Example 1 except that 79.6 ml of 0.5 mM silver nitrate aqueous solution was added with stirring at 50 ml / min (addition time 1.6 minutes).
  • Comparative Example 3 A heat ray shielding material of Comparative Example 3 was obtained in the same manner as in Example 1 except that 79.6 ml of 0.5 mM silver nitrate aqueous solution was added with stirring at 100 ml / min (addition time 0.8 minutes).
  • Comparative Example 7 A heat ray shielding material of Comparative Example 7 was obtained in the same manner as in Example 7 except that 8.1 L of 0.5 mM aqueous silver nitrate solution was added with stirring at 2000 mL / min (addition time 4.1 minutes).
  • Comparative Example 8 A heat ray shielding material of Comparative Example 8 was obtained in the same manner as in Example 7 except that 8.1 L of 0.5 mM aqueous silver nitrate solution was added with stirring at 4000 mL / min (addition time: 2.0 minutes).
  • the visible light transmittance and the shielding coefficient of the heat ray shielding material can be changed depending on the coating amount when forming the metal particle-containing layer.
  • a large number of heat ray shielding materials were prepared by changing the coating amount of the coating liquid C1 for the metal particle-containing layer containing the metal tabular particle-containing liquid of each example and comparative example, The visible light transmittance and the shielding coefficient were calculated by the method.
  • Measuring method of visible light transmittance and shielding coefficient The transmission spectrum and reflection spectrum of the heat ray shielding material prepared in each example and comparative example were measured using an ultraviolet-visible-near infrared spectrometer (manufactured by JASCO Corporation, V-670, using an integrating sphere unit), and JIS R3106, JIS A5759. The visible light transmittance and shielding coefficient were calculated according to the above.
  • the heat ray shielding material of the present invention had a color tone of
  • the heat ray shielding material of each comparative example has a color tone in the L * a * b * color system of
  • the silver particle-containing film of the present invention is excellent in color tone, for example, when a landscape is observed through the silver particle-containing film when pasted on a window or the like as a film for a vehicle or a building material such as a car or a bus. Natural (grayscale) color tone is obtained and eye strain is low. Since the silver particle-containing film of the present invention has the above-mentioned characteristics, it is attached to a window or the like as various members that are required to prevent transmission of heat rays, for example, as a film for a vehicle such as an automobile or a bus or a film for a building material. It can be suitably used as a heat ray shielding material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optical Filters (AREA)

Abstract

Provided is a silver-particle containing film in which the color tone in a L*a*b* color system is | a* | ≤ 2 and | b* | ≤ 2. The silver-particle containing film has a silver plate-shaped particle containing layer that contains plate-shaped silver nano-particles having an average circle equivalent diameter of 70-500nm, and is characterized in that the color tone in a L*a*b* color system is | a* | ≤ 2 and | b* | ≤ 2.

Description

銀粒子含有膜およびその製造方法、ならびに、熱線遮蔽材Silver particle-containing film, method for producing the same, and heat ray shielding material
 本発明は、銀粒子含有膜およびその製造方法、ならびに、熱線遮蔽材に関する。より詳しくは、自然な色調な銀粒子含有膜およびその製造方法、ならびに、該銀粒子含有膜を用いた赤外光を反射することができる熱線遮蔽材に関する。 The present invention relates to a silver particle-containing film, a production method thereof, and a heat ray shielding material. More specifically, the present invention relates to a natural color silver particle-containing film and a method for producing the same, and a heat ray shielding material capable of reflecting infrared light using the silver particle-containing film.
 銀粒子をフィルム面内に含有する銀粒子含有膜は、銀の有する特性を生かして様々の分野へ応用されている。
 銀粒子含有膜の応用例として、近年、二酸化炭素削減のための省エネルギー施策の一つとして、自動車や建物の窓に対する熱線遮蔽性付与材料に応用することが知られている。このような熱線遮蔽性付与材料の分野では熱線遮蔽性の観点からは、吸収した光の室内への再放射(吸収した日射エネルギーの約1/3量)がある熱線吸収型より、再放射がない熱線反射型が望ましいが、銀粒子含有膜を用いることで再放射がない熱線反射型の熱線遮蔽材を得ることができる。例えば、特許文献1には、六角形状乃至円形状の平板状銀粒子を60個数%以上有し、前記六角形状乃至円形状の平板状銀粒子の主平面が前記銀粒子含有膜の一方の表面に対して平均0°~±30°の範囲で面配向している熱線遮蔽材が開示されており、可視光透明性を有し、かつ近赤外領域の熱線を遮蔽できると記載されている。
Silver particle-containing films containing silver particles in the film plane are applied to various fields by taking advantage of the characteristics of silver.
As an application example of a silver particle-containing film, in recent years, as one of energy saving measures for reducing carbon dioxide, it has been known to apply to a heat ray shielding material for automobiles and windows of buildings. In the field of such a heat ray shielding material, from the viewpoint of heat ray shielding properties, re-radiation is more effective than a heat ray absorption type in which re-radiation of absorbed light into the room (about 1/3 of the absorbed solar radiation energy) is present. However, a heat ray reflective heat ray shielding material without re-radiation can be obtained by using a silver particle-containing film. For example, Patent Document 1 includes 60% by number or more of hexagonal or circular tabular silver particles, and the main plane of the hexagonal or circular tabular silver particles is one surface of the silver particle-containing film. A heat ray shielding material having a plane orientation in an average range of 0 ° to ± 30 ° is disclosed, and it is described that it has visible light transparency and can shield heat rays in the near infrared region. .
 一方、熱線遮蔽性付与材料は主として自動車のフロントガラスや建物用の窓ガラスなどに張り付けて用いられるところ、L*a*b*表色系におけるa*値やb*値の大きな熱線遮蔽材の場合、窓から外を見た場合の景観が著しく損なわれてしまい、目の疲れも生じやすいという問題があった。特に、熱線遮蔽材は自動車のフロントガラスなどに張り付けたときには視認安全性や自然な視野の確保などの観点から、色度やカラーバランスの実用的な色度調整も求められており、a*値やb*値の小さい自然な(グレースケールの)色調の熱線遮蔽材が求められていた。このような問題に対し、例えば特許文献2には、ジイモニウムやフタロシアニンなどの有機物赤外吸収色素と透明性樹脂とを少なくとも含有するようにした構成において、L*a*b*表色系における色調が-3≦a*≦3かつ-3≦b*≦3にした例が記載されている。しかしながら、銀粒子含有膜を用いた熱線遮蔽材においては、色度の調整をした例や好適な色度が示唆された例はなかった。 On the other hand, the heat ray shielding material is mainly used by sticking to a windshield of a car or a window glass for a building, and the heat ray shielding material having a large a * value or b * value in the L * a * b * color system. In this case, there is a problem that the scenery when looking out from the window is remarkably damaged and eye fatigue is likely to occur. In particular, the heat ray shielding material is required to have practical chromaticity adjustment of chromaticity and color balance from the viewpoint of ensuring visual safety and securing a natural field of view when pasted on the windshield of an automobile. There has been a demand for a heat ray shielding material having a natural (grayscale) color tone with a small b * value. To deal with such a problem, for example, Patent Document 2 discloses a color tone in the L * a * b * color system in a configuration containing at least an organic infrared absorbing dye such as diimonium or phthalocyanine and a transparent resin. Describes an example in which −3 ≦ a * ≦ 3 and −3 ≦ b * ≦ 3. However, in the heat ray shielding material using the silver particle-containing film, there was no example in which chromaticity was adjusted or an example in which suitable chromaticity was suggested.
特開2011-118347号公報JP 2011-118347 A 特開2002-138203号公報JP 2002-138203 A
 本発明者が特許文献1に記載の銀粒子含有膜を用いた熱線遮蔽材の性能を検討したところ、熱線遮蔽材のL*a*b*表色系における色調(a*値、b*値)は、|a*|および|b*|がともに2以上であり、若干着色気味であることがわかった。そのため、熱線遮蔽性付与材料の分野などに応用することができる、色調が自然な銀粒子含有膜が求められていた。 When this inventor examined the performance of the heat ray shielding material using the silver particle containing film | membrane of patent document 1, the color tone (a * value, b * value) in the L * a * b * color system of a heat ray shielding material. ), Both | a * | and | b * | were 2 or more, and were found to be slightly colored. Therefore, there has been a demand for a silver particle-containing film having a natural color tone that can be applied to the field of heat ray shielding materials.
 本発明が解決しようとする課題は、L*a*b*表色系における色調が|a*|≦2かつ|b*|≦2である銀粒子含有膜を提供することにある。 The problem to be solved by the present invention is to provide a silver particle-containing film whose color tone in the L * a * b * color system is | a * | ≦ 2 and | b * | ≦ 2.
 本発明者が銀粒子含有膜の製造方法を様々な条件で振り、得られる銀粒子含有膜の色調を鋭意検討したところ、詳細なメカニズムは明らかではないが、L*a*b*表色系における色調が|a*|≦2かつ|b*|≦2である銀粒子含有膜が得られることを見出すに至った。 When the present inventor shakes the production method of the silver particle-containing film under various conditions and intensively examines the color tone of the resulting silver particle-containing film, the detailed mechanism is not clear, but the L * a * b * color system It was found that a silver particle-containing film having a color tone of | a * | ≦ 2 and | b * | ≦ 2 was obtained.
 前記課題を解決するための手段である本発明は、以下のとおりである。
[1] 平均円相当径が70nm~500nmである平板状の銀ナノ粒子を含有する銀平板粒子含有層を有し、色調がL*a*b*表色系において、|a*|≦2かつ|b*|≦2である銀粒子含有膜。
[2] [1]に記載の銀粒子含有膜は、色調が|a*|≦1.5かつ|b*|≦1.5であることが好ましい。
[3] 銀の種晶溶液から銀ナノ粒子分散液を調製する工程を含み、前記銀の種晶溶液に硝酸銀含有溶液を5分以上の添加時間で添加し、前記硝酸銀含有溶液を添加後の銀の種晶溶液に亜硫酸銀を含む溶液を添加し、前記亜硫酸銀を含む溶液を添加後の銀ナノ粒子分散液のpHを8.0以下に制御する銀粒子含有膜の製造方法。
[4] [3]に記載の銀粒子含有膜の製造方法で製造された銀粒子含有膜。
[5] [1]、[2]および[4]のいずれかに記載の銀粒子含有膜を熱線反射層として含む熱線遮蔽材。
[6] [5]に記載の熱線遮蔽材は、前記銀粒子含有膜中の前記平板状の銀ナノ粒子が、六角形状の平板状の銀ナノ粒子であることが好ましい。
[7] [5]または[6]に記載の熱線遮蔽材は、前記銀粒子含有膜中の前記平板状の銀ナノ粒子の主平面が、前記銀平板粒子含有層の一方の表面に対して平均0°~±30°の範囲で面配向していることが好ましい。
[8] [5]~[7]のいずれかに記載の熱線遮蔽材は、可視光透過率が65%以上であることが好ましい。
[9] [5]~[8]のいずれかに記載の熱線遮蔽材は、前記銀粒子含有膜中の前記銀平板粒子含有層が、基材の少なくとも一方の面上に配置されたことが好ましい。
[10] [5]~[9]のいずれかに記載の熱線遮蔽材は、金属酸化物粒子含有層が、前記基材の前記銀平板粒子含有層が配置されている面とは反対側の面上に配置されたことが好ましい。
The present invention which is means for solving the above problems is as follows.
[1] A silver tabular grain-containing layer containing tabular silver nanoparticles having an average equivalent-circle diameter of 70 nm to 500 nm and having a color tone of L * a * b * color system | a * | ≦ 2 And a silver particle-containing film satisfying | b * | ≦ 2.
[2] The silver particle-containing film according to [1] preferably has a color tone of | a * | ≦ 1.5 and | b * | ≦ 1.5.
[3] including a step of preparing a silver nanoparticle dispersion from a silver seed crystal solution, the silver nitrate-containing solution being added to the silver seed crystal solution in an addition time of 5 minutes or more, and the addition of the silver nitrate-containing solution A method for producing a silver particle-containing film, comprising: adding a solution containing silver sulfite to a silver seed crystal solution; and controlling the pH of the silver nanoparticle dispersion after adding the solution containing silver sulfite to 8.0 or less.
[4] A silver particle-containing film produced by the method for producing a silver particle-containing film according to [3].
[5] A heat ray shielding material comprising the silver particle-containing film according to any one of [1], [2] and [4] as a heat ray reflective layer.
[6] In the heat ray shielding material according to [5], it is preferable that the tabular silver nanoparticles in the silver particle-containing film are hexagonal tabular silver nanoparticles.
[7] The heat ray shielding material according to [5] or [6] is such that a main plane of the tabular silver nanoparticles in the silver particle-containing film is on one surface of the silver tabular grain-containing layer. The plane orientation is preferably in the range of 0 ° to ± 30 ° on average.
[8] The heat ray shielding material according to any one of [5] to [7] preferably has a visible light transmittance of 65% or more.
[9] In the heat ray shielding material according to any one of [5] to [8], the silver tabular grain-containing layer in the silver particle-containing film is disposed on at least one surface of the substrate. preferable.
[10] In the heat ray shielding material according to any one of [5] to [9], the metal oxide particle-containing layer is on the side opposite to the surface on which the silver tabular grain-containing layer of the substrate is disposed. It is preferable to arrange on the surface.
 本発明によれば、L*a*b*表色系における色調が|a*|≦2かつ|b*|≦2である銀粒子含有膜を提供することができる。 According to the present invention, it is possible to provide a silver particle-containing film whose color tone in the L * a * b * color system is | a * | ≦ 2 and | b * | ≦ 2.
図1Aは、本発明の銀粒子含有膜に含まれる平板粒子の形状の一例を示した概略斜視図であって、円形状の平板状の銀ナノ粒子を示す。FIG. 1A is a schematic perspective view showing an example of the shape of tabular grains contained in the silver particle-containing film of the present invention, and shows circular tabular silver nanoparticles. 図1Bは、本発明の銀粒子含有膜に含まれる平板粒子の形状の一例を示した概略斜視図であって、六角形状の平板状の銀ナノ粒子を示す。FIG. 1B is a schematic perspective view showing an example of the shape of a tabular grain contained in the silver particle-containing film of the present invention, and shows hexagonal tabular silver nanoparticles. 図2Aは、本発明の銀粒子含有膜において、平板状の銀ナノ粒子を含む銀平板粒子含有層の存在状態を示した概略断面図であって、平板状の銀ナノ粒子を含む銀平板粒子含有層(基材の平面とも平行)と六角形状の平板状の銀ナノ粒子の主平面(円相当径Dを決める面)とのなす角度(θ)を説明する図を示す。FIG. 2A is a schematic cross-sectional view showing the existence state of a silver tabular grain-containing layer containing tabular silver nanoparticles in the silver particle-containing film of the present invention, and is a silver tabular grain containing tabular silver nanoparticles The figure explaining the angle ((theta)) which the containing layer (parallel also with the plane of a base material) and the main plane (plane which determines circle equivalent diameter D) of hexagonal flat silver nanoparticles is shown. 図2Bは、本発明の銀粒子含有膜において、平板状の銀ナノ粒子を含む銀平板粒子含有層の存在状態を示した概略断面図であって、銀平板粒子含有層の銀粒子含有膜の深さ方向における銀ナノ粒子の存在領域を示す図である。FIG. 2B is a schematic cross-sectional view showing the state of existence of a silver tabular grain-containing layer containing tabular silver nanoparticles in the silver particle-containing film of the present invention, wherein the silver grain-containing film of the silver tabular grain-containing layer is shown. It is a figure which shows the presence area | region of the silver nanoparticle in a depth direction. 図2Cは、本発明の銀粒子含有膜において、平板状の銀ナノ粒子を含む銀平板粒子含有層の存在状態の一例を示した概略断面図である。FIG. 2C is a schematic cross-sectional view showing an example of the presence state of a silver tabular grain-containing layer containing tabular silver nanoparticles in the silver particle-containing film of the present invention. 図2Dは、本発明の銀粒子含有膜において、平板状の銀ナノ粒子を含む銀平板粒子含有層の存在状態の他の一例を示した概略断面図である。FIG. 2D is a schematic cross-sectional view showing another example of the presence state of a silver tabular grain-containing layer containing tabular silver nanoparticles in the silver particle-containing film of the present invention. 図2Eは、本発明の銀粒子含有膜において、平板状の銀ナノ粒子を含む銀平板粒子含有層の存在状態の他の一例を示した概略断面図である。FIG. 2E is a schematic cross-sectional view showing another example of the existence state of the silver tabular grain-containing layer containing tabular silver nanoparticles in the silver particle-containing film of the present invention.
 以下、本発明の銀粒子含有膜および本発明の銀粒子含有膜を用いた熱線遮蔽材について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
Hereinafter, the heat ray shielding material using the silver particle-containing film of the present invention and the silver particle-containing film of the present invention will be described in detail.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
[銀粒子含有膜、熱線遮蔽材]
 本発明の銀粒子含有膜は、平均円相当径が70nm~500nmである平板状の銀ナノ粒子を含有する銀平板粒子含有層を有し、色調がL*a*b*表色系において、|a*|≦2かつ|b*|≦2であることを特徴とする。
 また、本発明の熱線遮蔽材は、本発明の銀粒子含有膜を熱線反射層として含むことを特徴とする。なお、以下の本発明の銀粒子含有膜の説明およびその好ましい態様は、本発明の熱線遮蔽材における熱線反射層の説明および好ましい態様と同じである。
[Silver particle-containing film, heat ray shielding material]
The silver particle-containing film of the present invention has a silver tabular grain-containing layer containing tabular silver nanoparticles having an average equivalent circle diameter of 70 nm to 500 nm, and the color tone is L * a * b * color system, | A * | ≦ 2 and | b * | ≦ 2.
Moreover, the heat ray shielding material of this invention is characterized by including the silver particle containing film | membrane of this invention as a heat ray reflective layer. In addition, the description of the following silver particle containing film | membrane of this invention and its preferable aspect are the same as the description and preferable aspect of the heat ray reflective layer in the heat ray shielding material of this invention.
<銀粒子含有膜の特性>
(色調)
 本発明の銀粒子含有膜は、L*a*b*表色系における色調が|a*|≦2かつ|b*|≦2である。
 本発明の銀粒子含有膜は、L*a*b*表色系における色調が|a*|≦1.5であることが好ましい。また、本発明の銀粒子含有膜は、L*a*b*表色系における色調が|b*|≦1.5であることが好ましい。本発明の銀粒子含有膜は、L*a*b*表色系における色調が|a*|≦1.5かつ|b*|≦1.5であることがより好ましい。
 本発明の銀粒子含有膜は、L*a*b*表色系における色調が|a*|≦1.0であることが特に好ましい。また、本発明の銀粒子含有膜は、L*a*b*表色系における色調が|b*|≦1.0であることが特に好ましい。本発明の銀粒子含有膜は、L*a*b*表色系における色調が|a*|≦1.5かつ|b*|≦1.5であることがより特に好ましい。
<Characteristics of silver particle-containing film>
(Color tone)
In the silver particle-containing film of the present invention, the color tone in the L * a * b * color system is | a * | ≦ 2 and | b * | ≦ 2.
In the silver particle-containing film of the present invention, the color tone in the L * a * b * color system is preferably | a * | ≦ 1.5. In the silver particle-containing film of the present invention, the color tone in the L * a * b * color system is preferably | b * | ≦ 1.5. In the silver particle-containing film of the present invention, the color tone in the L * a * b * color system is more preferably | a * | ≦ 1.5 and | b * | ≦ 1.5.
In the silver particle-containing film of the present invention, it is particularly preferable that the color tone in the L * a * b * color system is | a * | ≦ 1.0. The silver particle-containing film of the present invention particularly preferably has a color tone in the L * a * b * color system of | b * | ≦ 1.0. In the silver particle-containing film of the present invention, the color tone in the L * a * b * color system is more preferably | a * | ≦ 1.5 and | b * | ≦ 1.5.
(その他の特性)
 本発明の銀粒子含有膜の日射反射率としては800nm~2,500nmの範囲(好ましくは800nm~1,800nm)で最大値を有することが、熱線反射率の効率を上げることができる点で好ましい。
 本発明の銀粒子含有膜の可視光線透過率としては、60%以上が好ましく、65%以上がより好ましく、70%以上であることが特に好ましい。前記可視光線透過率が、60%未満であると、例えば、自動車用ガラスや建物用ガラスとして用いた時に、外部が見にくくなることがある。
 本発明の銀粒子含有膜の日射反射率は13%以上であることが好ましく、17%以上であることがより好ましく、20%以上であることが特に好ましい。
 本発明の銀粒子含有膜は、800nm~2,500nmの波長帯域のうち、反射率が25%以上である波長帯域が800nm以上にわたることが好ましく、1000nm以上にわたることがより好ましく、1200nm以上にわたることが特に好ましい。
 本発明の銀粒子含有膜の紫外線透過率としては、5%以下が好ましく、2%以下がより好ましい。前記紫外線透過率が、5%を超えると、太陽光の紫外線により前記銀ナノ粒子層の色味が変化することがある。
 本発明の銀粒子含有膜のヘイズは、20%以下であることが好ましい。前記ヘイズが20%を超えると、例えば、自動車用ガラスや建物用ガラスとして用いた時に外部が見にくくなるなど、安全上好ましくないことがある。
(Other characteristics)
The solar reflectance of the silver particle-containing film of the present invention preferably has a maximum value in the range of 800 nm to 2,500 nm (preferably 800 nm to 1,800 nm) from the viewpoint of increasing the efficiency of heat ray reflectance. .
The visible light transmittance of the silver particle-containing film of the present invention is preferably 60% or more, more preferably 65% or more, and particularly preferably 70% or more. When the visible light transmittance is less than 60%, for example, when used as automotive glass or building glass, the outside may be difficult to see.
The solar reflectance of the silver particle-containing film of the present invention is preferably 13% or more, more preferably 17% or more, and particularly preferably 20% or more.
The silver particle-containing film of the present invention preferably has a wavelength band having a reflectance of 25% or more over a wavelength band of 800 nm to 2,500 nm over 800 nm, over 1000 nm, more preferably over 1200 nm. Is particularly preferred.
The ultraviolet transmittance of the silver particle-containing film of the present invention is preferably 5% or less, and more preferably 2% or less. When the ultraviolet transmittance exceeds 5%, the color of the silver nanoparticle layer may change due to ultraviolet rays of sunlight.
The haze of the silver particle-containing film of the present invention is preferably 20% or less. When the haze exceeds 20%, it may be unfavorable in terms of safety, for example, when it is used as glass for automobiles or glass for buildings, it becomes difficult to see the outside.
<銀粒子含有膜の構成>
 本発明の銀粒子含有膜は、平均円相当径が70nm~500nmである平板状の銀ナノ粒子を含有する銀平板粒子含有層を有し、必要に応じて、粘着層、紫外線吸収層、基材、金属酸化物粒子含有層などのその他の層を有する態様も好ましい。
<Configuration of silver particle-containing film>
The silver particle-containing film of the present invention has a silver tabular grain-containing layer containing tabular silver nanoparticles having an average equivalent-circle diameter of 70 nm to 500 nm, and if necessary, an adhesive layer, an ultraviolet absorbing layer, a base layer The aspect which has other layers, such as a material and a metal oxide particle content layer, is also preferable.
 本発明の銀粒子含有膜の層構成としては、図2A~図2Eに示すように、銀平板粒子含有層2を有し、その表面に平板状の銀ナノ粒子3が偏在している態様が挙げられる。本発明の銀粒子含有膜は、基材としてのポリマー層1を有していることも好ましい。
 以下、本発明の銀粒子含有膜および本発明の銀粒子含有膜を用いた熱線遮蔽材の好ましい態様について説明する。
As the layer structure of the silver particle-containing film of the present invention, as shown in FIGS. 2A to 2E, there is a mode in which the silver tabular particle-containing layer 2 is present and the tabular silver nanoparticles 3 are unevenly distributed on the surface thereof. Can be mentioned. The silver particle-containing film of the present invention preferably has a polymer layer 1 as a substrate.
Hereinafter, the preferable aspect of the heat ray shielding material using the silver particle containing film | membrane of this invention and the silver particle containing film | membrane of this invention is demonstrated.
1.銀平板粒子含有層
 前記銀平板粒子含有層は、平均円相当径が70nm~500nmである平板状の銀ナノ粒子を含有する以外は特に制限はなく、目的に応じて適宜選択することができる。
1. Silver tabular grain-containing layer The silver tabular grain-containing layer is not particularly limited except that it contains tabular silver nanoparticles having an average equivalent-circle diameter of 70 nm to 500 nm, and can be appropriately selected according to the purpose.
 なお、前記銀平板粒子含有層は、前記銀平板粒子含有層の厚みをdとしたとき、前記六角形状の銀ナノ粒子の80個数%以上が、前記銀平板粒子含有層の表面からd/2の範囲に存在していることが好ましい。いかなる理論に拘泥するものでもなく、また、本発明の銀粒子含有膜は以下の製造方法に限定されるものではないが、前記銀平板粒子含有層を製造するときに特定のポリマー(好ましくはラテックス)を添加することなどにより、銀ナノ粒子を前記銀平板粒子含有層の一方の表面に偏析させることができる。 In the silver tabular grain-containing layer, when the thickness of the silver tabular grain-containing layer is d, 80% or more of the hexagonal silver nanoparticles are d / 2 from the surface of the silver tabular grain-containing layer. It is preferable that it exists in the range. The present invention is not limited to any theory, and the silver particle-containing film of the present invention is not limited to the following production method, but a specific polymer (preferably latex) is preferably used when producing the silver tabular grain-containing layer. ) Can be segregated on one surface of the silver tabular grain-containing layer.
-1-1.銀ナノ粒子-
 前記銀ナノ粒子としては、平均円相当径が70nm~500nmである平板状であれば特に制限はなく、目的に応じて適宜選択することができる。
 なお、前記銀平板粒子含有層の一方の表面は、フラットな平面であることが好ましい。本発明の銀粒子含有膜の前記銀平板粒子含有層が基材を有する場合は、基材の表面とともに略水平面であることが好ましい。ここで、前記銀粒子含有膜は、前記基材を有していても有していなくてもよく、仮支持体として有していてもよく、有していなくてもよい。
1-1. Silver nanoparticles
The silver nanoparticles are not particularly limited as long as they have a flat plate shape with an average equivalent circle diameter of 70 nm to 500 nm, and can be appropriately selected according to the purpose.
In addition, it is preferable that one surface of the said silver tabular grain content layer is a flat plane. When the said silver tabular grain content layer of the silver particle containing film | membrane of this invention has a base material, it is preferable that it is a substantially horizontal surface with the surface of a base material. Here, the silver particle-containing film may or may not have the base material, and may or may not have a temporary support.
-1-2.銀ナノ粒子-
 前記平板状の銀ナノ粒子の形状は、2つの主平面からなる粒子(図1A及び図1B参照)であり、目的に応じてその平面面内の形状を適宜選択することができ、例えば、六角形状、円形状、三角形状などが挙げられる。これらの中でも、可視光透過率が高い点で、六角形状以上の多角形状~円形状であることがより好ましく、六角形状または円形状であることが特に好ましく、六角形状であることがより特に好ましい。
 本明細書中、六角形状とは、平板状の銀ナノ粒子の平均円相当径の20%以上の長さを有する辺の個数が1個の銀平板粒子当たり6個である形状のことを言う。なお、その他の多角形についても同様である。前記六角形状の銀ナノ粒子としては、透過型電子顕微鏡(TEM)またはSEMで銀ナノ粒子を主平面の上方から観察した際に、六角形状であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、六角形状の角が鋭角のものでも、鈍っているものでもよいが、可視光域の吸収を軽減し得る点で、角が鈍っているものであることが好ましい。角の鈍りの程度としては、特に制限はなく、目的に応じて適宜選択することができる。
-1-2. Silver nanoparticles
The shape of the flat silver nanoparticles is a particle composed of two main planes (see FIGS. 1A and 1B), and the shape in the plane can be appropriately selected according to the purpose. Examples include a shape, a circular shape, and a triangular shape. Among these, in terms of high visible light transmittance, it is more preferably a hexagonal or more polygonal shape to a circular shape, particularly preferably a hexagonal shape or a circular shape, and more preferably a hexagonal shape. .
In the present specification, the hexagonal shape means a shape in which the number of sides having a length of 20% or more of the average equivalent circle diameter of tabular silver nanoparticles is 6 per silver tabular grain. . The same applies to other polygons. The hexagonal silver nanoparticles are not particularly limited as long as they are hexagonal when the silver nanoparticles are observed from above the main plane with a transmission electron microscope (TEM) or SEM, and are appropriately selected according to the purpose. For example, the hexagonal corner may be acute or dull, but the corner is preferably dull in that the absorption in the visible light region can be reduced. There is no restriction | limiting in particular as a grade of the dullness of an angle, According to the objective, it can select suitably.
 前記銀平板粒子含有層に存在する銀ナノ粒子のうち、六角形状の平板状の銀ナノ粒子は、銀ナノ粒子の全個数に対して、60個数%以上であることが好ましく、65個数%以上がより好ましく、70個数%以上が更に好ましい。前記六角形状の平板状の銀ナノ粒子の割合が、60個数%未満であると、可視光線透過率が低くなってしまうことがある。 Of the silver nanoparticles present in the silver tabular grain-containing layer, hexagonal tabular silver nanoparticles are preferably 60% by number or more, and 65% by number or more based on the total number of silver nanoparticles. Is more preferable, and 70% by number or more is more preferable. If the ratio of the hexagonal tabular silver nanoparticles is less than 60% by number, the visible light transmittance may be lowered.
 前記平板状の銀ナノ粒子の合成方法としては、特定のサイズ(好ましくは形状が六角形状)の平板状の銀ナノ粒子を合成し得るものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、化学還元法、光化学還元法、電気化学還元法等の液相法などが挙げられる。これらの中でも、形状とサイズ制御性の点で、化学還元法、光化学還元法などの液相法が特に好ましい。六角形~三角形状の平板状の銀ナノ粒子を合成後、例えば、硝酸、亜硫酸ナトリウム等の銀を溶解する溶解種によるエッチング処理、加熱によるエージング処理などを行うことにより、六角形~三角形状の銀ナノ粒子の角を鈍らせて、六角形状~円形状の平板状の銀ナノ粒子を得てもよい。 The method for synthesizing the tabular silver nanoparticles is not particularly limited as long as it can synthesize tabular silver nanoparticles having a specific size (preferably hexagonal shape), and is appropriately selected depending on the purpose. Examples thereof include liquid phase methods such as chemical reduction method, photochemical reduction method, and electrochemical reduction method. Among these, a liquid phase method such as a chemical reduction method or a photochemical reduction method is particularly preferable in terms of shape and size controllability. After synthesizing hexagonal to triangular tabular silver nanoparticles, for example, by performing etching treatment with a dissolved species that dissolves silver such as nitric acid and sodium sulfite, aging treatment by heating, etc., hexagonal to triangular shape Hexagonal to circular tabular silver nanoparticles may be obtained by dulling the corners of the silver nanoparticles.
 前記平板状の銀ナノ粒子の合成方法としては、前記の他、予めフィルム、ガラスなどの透明基材の表面に種晶を固定後、平板状に銀ナノ粒子を結晶成長させてもよい。 As a method for synthesizing the tabular silver nanoparticles, in addition to the above, after seed crystals are fixed on the surface of a transparent substrate such as a film or glass, the silver nanoparticles may be grown in a tabular form.
 本発明では銀粒子含有膜の色調を制御する方法としては特に制限はなく、例えば、銀粒子含有膜の製造条件中、平板状の銀ナノ粒子を特定の条件で合成することなどで達成することができる。いかなる理論に拘泥するものでもないが、種晶溶液からの銀ナノ粒子分散液の調製時において、硝酸銀添加時間(銀ナノ粒子分散液の調製時のスケールが同様の条件の場合は、硝酸銀添加レートに相当する)を特定の範囲とすることや、亜硫酸銀沈殿物混合液添加後の銀ナノ粒子分散液のpHを調製することで達成することができる。
 具体的には、本発明の銀粒子含有膜の製造方法によって製造されることが好ましい。すなわち、銀の種晶溶液から銀ナノ粒子分散液を調製する工程を含み、前記銀の種晶溶液に硝酸銀含有溶液を5分以上、好ましくは7分以上、より好ましくは15分以上で添加し、前記硝酸銀含有溶液を添加後の銀の種晶溶液に亜硫酸銀を含む溶液を添加し、前記亜硫酸銀を含む溶液を添加後の銀ナノ粒子分散液のpHを8.0以下(好ましくは3~7.5、より好ましくは4~7)に制御することを特徴とする銀粒子含有膜の製造方法によって製造されることが好ましい。
 ただし、本発明の銀粒子含有膜は、上記の製造方法によって限定されるものではなく、その他の方法で製造されたものも本発明の銀粒子含有膜に含まれる。
In the present invention, the method for controlling the color tone of the silver particle-containing film is not particularly limited, and can be achieved by, for example, synthesizing tabular silver nanoparticles under specific conditions during the production conditions of the silver particle-containing film. Can do. Although not bound by any theory, the silver nitrate addition time during the preparation of the silver nanoparticle dispersion from the seed crystal solution (if the scale during the preparation of the silver nanoparticle dispersion is the same condition, the silver nitrate addition rate In a specific range, or by adjusting the pH of the silver nanoparticle dispersion after addition of the silver sulfite precipitate mixture.
Specifically, it is preferably produced by the method for producing a silver particle-containing film of the present invention. That is, the method includes a step of preparing a silver nanoparticle dispersion from a silver seed crystal solution, and a silver nitrate-containing solution is added to the silver seed crystal solution for 5 minutes or more, preferably 7 minutes or more, more preferably 15 minutes or more. The solution containing silver sulfite is added to the silver seed crystal solution after the addition of the silver nitrate-containing solution, and the pH of the silver nanoparticle dispersion after the addition of the solution containing silver sulfite is 8.0 or less (preferably 3 It is preferably produced by a method for producing a silver particle-containing film, characterized in that it is controlled to ˜7.5, more preferably 4 to 7).
However, the silver particle-containing film of the present invention is not limited by the production method described above, and those produced by other methods are also included in the silver particle-containing film of the present invention.
 本発明の銀粒子含有膜において、平板状の銀ナノ粒子は、所望の特性を付与するために、更なる処理を施してもよい。前記更なる処理としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、高屈折率シェル層の形成、分散剤、酸化防止剤等の各種添加剤を添加することなどが挙げられる。 In the silver particle-containing film of the present invention, the tabular silver nanoparticles may be subjected to further treatment in order to impart desired characteristics. The further treatment is not particularly limited and may be appropriately selected depending on the purpose. For example, the formation of a high refractive index shell layer, the addition of various additives such as a dispersant and an antioxidant may be included. Can be mentioned.
 前記平板状の銀ナノ粒子は、可視光域透明性を更に高めるために、可視光域透明性が高い高屈折率材料で被覆されてもよい。
 前記高屈折率材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、TiO、BaTiO、ZnO、SnO、ZrO、NbOなどが挙げられる。
The flat silver nanoparticles may be coated with a high refractive index material having high visible light region transparency in order to further enhance the visible light region transparency.
As the high refractive index material is not particularly limited and may be appropriately selected depending on the purpose, for example, TiO x, BaTiO 3, ZnO, etc. SnO 2, ZrO 2, NbO x and the like.
 前記被覆する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、Langmuir、2000年、16巻、p.2731-2735に報告されているようにテトラブトキシチタンを加水分解することにより銀の銀ナノ粒子の表面にTiO層を形成する方法であってもよい。 There is no restriction | limiting in particular as said coating method, According to the objective, it can select suitably, For example, Langmuir, 2000, 16 volumes, p. As reported in 2731-2735, a method of forming a TiO x layer on the surface of silver nanoparticles by hydrolyzing tetrabutoxytitanium may be used.
 また、前記平板状の銀ナノ粒子に直接高屈折率金属酸化物層シェルを形成することが困難な場合は、前記の通り銀ナノ粒子を合成した後、適宜SiOやポリマーのシェル層を形成し、更に、このシェル層上に前記金属酸化物層を形成してもよい。TiOを高屈折率金属酸化物層の材料として用いる場合には、TiOが光触媒活性を有することから、銀ナノ粒子を分散するマトリクスを劣化させてしまう懸念があるため、目的に応じて銀ナノ粒子にTiO層を形成した後、適宜SiO層を形成してもよい。 In addition, when it is difficult to form a high refractive index metal oxide layer shell directly on the flat silver nanoparticles, after synthesizing the silver nanoparticles as described above, an appropriate SiO 2 or polymer shell layer is formed. Further, the metal oxide layer may be formed on the shell layer. When TiO x is used as the material for the high refractive index metal oxide layer, since TiO x has photocatalytic activity, there is a concern that the matrix in which the silver nanoparticles are dispersed may be deteriorated. After forming the TiO x layer on the nanoparticles, an SiO 2 layer may be appropriately formed.
 本発明の銀粒子含有膜において、平板状の銀ナノ粒子は、該平板状の銀ナノ粒子を構成する銀などの金属の酸化を防止するために、メルカプトテトラゾール、アスコルビン酸等の酸化防止剤を吸着していてもよい。また、酸化防止を目的として、Ni等の酸化犠牲層が銀ナノ粒子の表面に形成されていてもよい。また、酸素を遮断することを目的として、SiOなどの金属酸化物膜で被覆されていてもよい。 In the silver particle-containing film of the present invention, the tabular silver nanoparticles may contain an antioxidant such as mercaptotetrazole or ascorbic acid in order to prevent oxidation of metals such as silver constituting the tabular silver nanoparticles. It may be adsorbed. For the purpose of preventing oxidation, an oxidation sacrificial layer such as Ni may be formed on the surface of the silver nanoparticles. Further, it may be covered with a metal oxide film such as SiO 2 for the purpose of blocking oxygen.
 前記平板状の銀ナノ粒子は、分散性付与を目的として、例えば、4級アンモニウム塩、アミン類等のN元素、S元素、及びP元素の少なくともいずれかを含む低分子量分散剤、高分子量分散剤などの分散剤を添加してもよい。 For the purpose of imparting dispersibility, the tabular silver nanoparticles are, for example, a quaternary ammonium salt, a low molecular weight dispersant containing at least one of N element, S element, and P element such as amines, and high molecular weight dispersion. You may add dispersing agents, such as an agent.
-1-2-1.面配向-
 本発明の銀粒子含有膜において、前記六角形状の平板状の銀ナノ粒子は、その主平面が銀平板粒子含有層の一方の表面(銀粒子含有膜が基材を有する場合は、基材表面)に対して、平均0°~±30°の範囲で面配向していることが好ましく、平均0°~±20°の範囲で面配向していることがより好ましく、平均0°~±10°の範囲で面配向していることが特に好ましい。
 前記銀ナノ粒子の存在状態は、特に制限はなく、目的に応じて適宜選択することができるが、後述する図2D、図2Eのように並んでいることが好ましい。
-1-2-1. Plane orientation
In the silver particle-containing film of the present invention, the hexagonal tabular silver nanoparticles are such that the main plane is one surface of the silver tabular particle-containing layer (if the silver particle-containing film has a substrate, the substrate surface ) Is preferably in the range of 0 ° to ± 30 ° on average, more preferably in the range of 0 ° to ± 20 ° on average, more preferably 0 ° to ± 10 on average. It is particularly preferable that the orientation is in the range of °.
The presence state of the silver nanoparticles is not particularly limited and may be appropriately selected according to the purpose. However, the silver nanoparticles are preferably arranged as shown in FIGS. 2D and 2E described later.
 ここで、図2A~図2Eは、本発明の銀粒子含有膜において、銀ナノ粒子を含む銀平板粒子含有層の存在状態を示した概略断面図である。図2Aは、銀粒子含有膜の表面平面(基材を含む場合は基材1の平面)と銀ナノ粒子3の平面とのなす角度(±θ)を説明する図である。図2Bは、銀平板粒子含有層2の銀粒子含有膜の深さ方向における存在領域を示すものである。図2C、図2Dおよび図2Eは、銀平板粒子含有層2中における平板状の銀ナノ粒子3の存在状態を示す。
 図2Aにおいて、基材1などの表面と、平板状の銀ナノ粒子3の主平面または主平面の延長線とのなす角度(±θ)は、前記の面配向における所定の範囲に対応する。即ち、面配向とは、銀粒子含有膜の断面を観察した際、図2Aに示す傾角(±θ)が小さい状態をいい、特に、図2Dは、基材1の表面と平板状の銀ナノ粒子3の主平面とが接している状態、即ち、θが0°である状態を示す。基材1の表面に対する平板状の銀ナノ粒子3の主平面の面配向の角度、即ち図2Aにおけるθが±30°を超えると、銀粒子含有膜の所定の波長(例えば、可視光域長波長側から近赤外光領域)の反射率が低下してしまう。
Here, FIGS. 2A to 2E are schematic cross-sectional views showing the existence state of the silver tabular grain-containing layer containing silver nanoparticles in the silver particle-containing film of the present invention. FIG. 2A is a diagram for explaining the angle (± θ) formed by the surface plane of the silver particle-containing film (the plane of the substrate 1 when a substrate is included) and the plane of the silver nanoparticles 3. FIG. 2B shows the existence region in the depth direction of the silver particle-containing film of the silver tabular grain-containing layer 2. 2C, FIG. 2D, and FIG. 2E show the presence state of the tabular silver nanoparticles 3 in the silver tabular grain-containing layer 2.
In FIG. 2A, the angle (± θ) formed between the surface of the substrate 1 and the like and the main plane of the tabular silver nanoparticles 3 or an extension line of the main plane corresponds to a predetermined range in the plane orientation. That is, the plane orientation refers to a state in which the tilt angle (± θ) shown in FIG. 2A is small when the cross section of the silver particle-containing film is observed. In particular, FIG. A state where the main plane of the particle 3 is in contact, that is, a state where θ is 0 ° is shown. When the plane orientation angle of the main plane of the tabular silver nanoparticles 3 with respect to the surface of the substrate 1, that is, θ in FIG. 2A exceeds ± 30 °, a predetermined wavelength of the silver particle-containing film (for example, the visible light region length) The reflectance in the near infrared light region (from the wavelength side) is reduced.
 前記銀平板粒子含有層の一方の表面(銀粒子含有膜が基材を有する場合は、基材表面)に対して平板状の銀ナノ粒子の主平面が面配向しているかどうかの評価としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、適当な断面切片を作製し、この切片における銀平板粒子含有層(銀粒子含有膜が基材を有する場合は、基材)及び平板状の銀ナノ粒子を観察して評価する方法であってもよい。具体的には、銀粒子含有膜を、ミクロトーム、集束イオンビーム(FIB)を用いて銀粒子含有膜の断面サンプルまたは断面切片サンプルを作製し、これを、各種顕微鏡(例えば、電界放射型走査電子顕微鏡(FE-SEM)等)を用いて観察して得た画像から評価する方法などが挙げられる。 As an evaluation of whether the main plane of the tabular silver nanoparticles is plane-oriented with respect to one surface of the silver tabular grain-containing layer (or the base material surface when the silver particle-containing film has a substrate) There is no particular limitation, and it can be appropriately selected according to the purpose. For example, an appropriate cross-section slice is prepared, and a silver tabular grain-containing layer in this slice (if the silver particle-containing film has a substrate, the substrate ) And plate-like silver nanoparticles may be observed and evaluated. Specifically, a cross-section sample or a cross-section sample of the silver particle-containing film is prepared from the silver particle-containing film using a microtome or a focused ion beam (FIB), and this is used for various microscopes (for example, field emission scanning electrons). And a method of evaluating from an image obtained by observation using a microscope (FE-SEM, etc.).
 前記銀粒子含有膜において、銀ナノ粒子を被覆するバインダーが水で膨潤する場合は、液体窒素で凍結した状態の試料を、ミクロトームに装着されたダイヤモンドカッター切断することで、前記断面サンプルまたは断面切片サンプルを作製してもよい。また、銀粒子含有膜において銀ナノ粒子を被覆するバインダーが水で膨潤しない場合は、前記断面サンプルまたは断面切片サンプルを作製してもよい。 In the silver particle-containing film, when the binder that covers the silver nanoparticles swells with water, the cross-section sample or the cross-section section is obtained by cutting a sample frozen in liquid nitrogen by a diamond cutter mounted on a microtome. A sample may be made. Moreover, when the binder which coat | covers a silver nanoparticle in a silver particle containing film | membrane does not swell with water, you may produce the said cross-section sample or a cross-section slice sample.
 前記の通り作製した断面サンプルまたは断面切片サンプルの観察としては、サンプルにおいて銀平板粒子含有層の一方の表面(銀粒子含有膜が基材を有する場合は、基材表面)に対して平板状の銀ナノ粒子の主平面が面配向しているかどうかを確認し得るものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、FE-SEM、TEM、光学顕微鏡などを用いた観察が挙げられる。前記断面サンプルの場合は、FE-SEMにより、前記断面切片サンプルの場合は、TEMにより観察を行ってもよい。FE-SEMで評価する場合は、銀ナノ粒子の形状と傾角(図2Aの±θ)が明瞭に判断できる空間分解能を有することが好ましい。 As an observation of the cross-section sample or cross-section sample prepared as described above, the sample is flat with respect to one surface of the silver tabular grain-containing layer in the sample (or the base material surface when the silver particle-containing film has a base). There is no particular limitation as long as it can confirm whether or not the main plane of the silver nanoparticles is plane-oriented, and can be appropriately selected according to the purpose. For example, FE-SEM, TEM, optical microscope, etc. The observations used are mentioned. In the case of the cross section sample, observation may be performed by FE-SEM, and in the case of the cross section sample, observation may be performed by TEM. When evaluating by FE-SEM, it is preferable to have a spatial resolution that can clearly determine the shape and inclination (± θ in FIG. 2A) of the silver nanoparticles.
-1-2-2.平均粒子径(平均円相当径)及び平均粒子径(平均円相当径)の粒度分布の変動係数-
 前記平板状の銀ナノ粒子の平均粒子径(平均円相当径)は70nm~500nmであり、100nm~400nmが好ましい。前記平均粒子径(平均円相当径)が、70nm未満であると、平板状の銀ナノ粒子の吸収の寄与が反射より大きくなるため十分な熱線反射能が得られなくなることがあり、500nmを超えると、ヘイズ(散乱)が大きくなり、透明性が損なわれてしまうことがある。
 ここで、前記平均粒子径(平均円相当径)とは、TEMで粒子を観察して得た像から任意に選んだ200個の平板状の銀ナノ粒子の主平面直径(最大長さ)の平均値を意味する。
 前記銀平板粒子含有層中に平均粒子径(平均円相当径)が異なる2種以上の平板状の銀ナノ粒子を含有することができ、この場合、平板状の銀ナノ粒子の平均粒子径(平均円相当径)のピークが2つ以上を有していてもよい。
-1-2-2. Variation coefficient of average particle size (average equivalent circle diameter) and average particle size (average equivalent circle diameter) particle size distribution-
The flat silver nanoparticles have an average particle diameter (average equivalent circle diameter) of 70 nm to 500 nm, preferably 100 nm to 400 nm. When the average particle diameter (average equivalent circle diameter) is less than 70 nm, the contribution of the absorption of the tabular silver nanoparticles becomes larger than the reflection, so that sufficient heat ray reflectivity may not be obtained, which exceeds 500 nm. And haze (scattering) becomes large, and transparency may be impaired.
Here, the average particle diameter (average equivalent circle diameter) is a main plane diameter (maximum length) of 200 tabular silver nanoparticles arbitrarily selected from images obtained by observing particles with a TEM. Mean value.
Two or more kinds of tabular silver nanoparticles having different average particle diameters (average equivalent circle diameters) can be contained in the silver tabular grain-containing layer. In this case, the average particle diameter of the tabular silver nanoparticles ( The average circle equivalent diameter) peak may have two or more.
 本発明の銀粒子含有膜は、平板状の銀ナノ粒子の粒度分布における変動係数が13%以上であることが好ましい。前記変動係数が、13%以上であると、銀粒子含有膜における熱線の反射波長域をブロードにすることができ、広帯域にわたって赤外光を反射することができ、好ましい。
 一方、平板状の銀ナノ粒子の粒度分布における変動係数の上限値は、200%以下であることが好ましく、150%以下であることがより好ましく、100%以下であることが特に好ましい。
 ここで、前記銀ナノ粒子の粒度分布における変動係数は、例えば前記の通り得た平均値の算出に用いた200個の銀ナノ粒子の粒子径の分布範囲をプロットし、粒度分布の標準偏差を求め、前記の通り得た主平面直径(最大長さ)の平均値(平均粒子径(平均円相当径))で割った値(%)である。
The silver particle-containing film of the present invention preferably has a coefficient of variation of 13% or more in the particle size distribution of tabular silver nanoparticles. When the coefficient of variation is 13% or more, the reflection wavelength region of heat rays in the silver particle-containing film can be broadened, and infrared light can be reflected over a wide band, which is preferable.
On the other hand, the upper limit of the coefficient of variation in the particle size distribution of the tabular silver nanoparticles is preferably 200% or less, more preferably 150% or less, and particularly preferably 100% or less.
Here, the coefficient of variation in the particle size distribution of the silver nanoparticles is plotted, for example, by plotting the particle size distribution range of the 200 silver nanoparticles used for calculating the average value obtained as described above, and the standard deviation of the particle size distribution is It is the value (%) obtained by dividing the average value (average particle diameter (average equivalent circle diameter)) of the main plane diameter (maximum length) obtained as described above.
-1-2-3.アスペクト比-
 前記平板状の銀ナノ粒子のアスペクト比としては、特に制限はなく、目的に応じて適宜選択することができるが、波長800nm~2,500nmの赤外光領域での反射率が高くなる点から、8~40が好ましく、10~35がより好ましい。前記アスペクト比が8未満であると反射波長が800nmより小さくなり、40を超えると、反射波長が1,800nmより長くなり、十分な熱線反射能が得られないことがある。
 前記アスペクト比は、平板状の銀ナノ粒子の平均粒子径(平均円相当径)を平板状の銀ナノ粒子の平均粒子厚みで除算した値を意味する。平均粒子厚みは、平板状の銀ナノ粒子の主平面間距離に相当し、例えば、図1A及び図1Bに示す通りであり、原子間力顕微鏡(AFM)や集束イオンビーム(FIB)によって切削した粒子の断面をFE-SEMやTEM観察することにより測定することができる。
 前記平均粒子厚みの測定方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガラス基板に銀ナノ粒子を含有する粒子分散液を滴下し、乾燥させて、粒子1個の厚みを測定する方法などが挙げられる。
 なお、平板状の前記銀ナノ粒子の厚みは5~20nmであることが好ましい。
-1-2-3. aspect ratio-
The aspect ratio of the tabular silver nanoparticles is not particularly limited and may be appropriately selected depending on the intended purpose. However, the reflectance in the infrared light region having a wavelength of 800 nm to 2,500 nm is increased. 8 to 40 are preferable, and 10 to 35 are more preferable. When the aspect ratio is less than 8, the reflection wavelength becomes smaller than 800 nm, and when it exceeds 40, the reflection wavelength becomes longer than 1,800 nm and sufficient heat ray reflectivity may not be obtained.
The aspect ratio means a value obtained by dividing the average particle diameter (average equivalent circle diameter) of tabular silver nanoparticles by the average particle thickness of tabular silver nanoparticles. The average particle thickness corresponds to the distance between main planes of tabular silver nanoparticles, for example, as shown in FIGS. 1A and 1B, and was cut by an atomic force microscope (AFM) or a focused ion beam (FIB). It can be measured by observing the cross section of the particle by FE-SEM or TEM.
The method for measuring the average particle thickness is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a particle dispersion containing silver nanoparticles is dropped on a glass substrate and dried to obtain particles 1 The method of measuring the thickness of an individual etc. is mentioned.
The thickness of the flat silver nanoparticles is preferably 5 to 20 nm.
-1-2-4.銀ナノ粒子の存在範囲-
 本発明の銀粒子含有膜では、前記六角形状の平板状の銀ナノ粒子の80個数%以上が、前記銀平板粒子含有層の表面からd/2の範囲に存在することが好ましく、d/3の範囲に存在することがより好ましく、前記六角形状の平板状の銀ナノ粒子の60個数%以上が前記銀平板粒子含有層の一方の表面に露出していることが更に好ましい。平板状の銀ナノ粒子が銀平板粒子含有層の表面からd/2の範囲に存在するとは、平板状の銀ナノ粒子の少なくとも一部が銀平板粒子含有層の表面からd/2の範囲に含まれていることを意味する。すなわち、平板状の銀ナノ粒子の一部が、銀平板粒子含有層の表面よりも突出している図2Eに記載される平板状の銀ナノ粒子も、銀平板粒子含有層の表面からd/2の範囲に存在する銀ナノ粒子として扱う。なお、図2Eは、各銀ナノ粒子の厚み方向のごく一部が銀平板粒子含有層に埋没してことを意味し、各銀ナノ粒子が銀平板粒子含有層の表面上に積まれているわけではない。
 また、平板状の銀ナノ粒子が前記銀平板粒子含有層の一方の表面に露出しているとは、平板状の銀ナノ粒子の一方の表面の一部が、銀平板粒子含有層の表面よりも突出していることを意味する。
 ここで、前記銀平板粒子含有層中の銀ナノ粒子存在分布は、例えば、銀粒子含有膜の断面試料をSEM観察した画像より測定することができる。
-1-2-4. Existence range of silver nanoparticles
In the silver particle-containing film of the present invention, it is preferable that 80% by number or more of the hexagonal tabular silver nanoparticles are present in a range of d / 2 from the surface of the silver tabular particle-containing layer, d / 3 More preferably, 60% by number or more of the hexagonal tabular silver nanoparticles are exposed on one surface of the silver tabular grain-containing layer. That the tabular silver nanoparticles are present in the range of d / 2 from the surface of the silver tabular grain-containing layer means that at least a part of the tabular silver nanoparticles is in the range of d / 2 from the surface of the silver tabular grain-containing layer. Means included. That is, the tabular silver nanoparticles described in FIG. 2E in which some of the tabular silver nanoparticles protrude from the surface of the silver tabular grain-containing layer are also d / 2 from the surface of the silver tabular grain-containing layer. Treat as silver nanoparticles present in the range. In addition, FIG. 2E means that only a part of the thickness direction of each silver nanoparticle is buried in the silver tabular grain-containing layer, and each silver nanoparticle is stacked on the surface of the silver tabular grain-containing layer. Do not mean.
Further, that the tabular silver nanoparticles are exposed on one surface of the silver tabular grain-containing layer, a part of one surface of the tabular silver nanoparticles is from the surface of the silver tabular grain-containing layer. Also means that it protrudes.
Here, the presence distribution of silver nanoparticles in the silver tabular grain-containing layer can be measured, for example, from an image obtained by SEM observation of a cross-sectional sample of the silver particle-containing film.
 前記銀平板粒子含有層における平板状の銀ナノ粒子を構成する金属のプラズモン共鳴波長λは、特に制限はなく、目的に応じて適宜選択することができるが、熱線反射性能を付与する点で、400nm~2,500nmであることが好ましく、可視光透過率を付与する点から、700nm~2,500nmであることがより好ましい。 The plasmon resonance wavelength λ of the metal constituting the tabular silver nanoparticles in the silver tabular grain-containing layer is not particularly limited and can be appropriately selected according to the purpose, but in terms of imparting heat ray reflection performance, The thickness is preferably 400 nm to 2,500 nm, and more preferably 700 nm to 2,500 nm from the viewpoint of imparting visible light transmittance.
-1-2-5.銀平板粒子含有層の媒質-
 本発明の銀粒子含有膜は、前記銀平板粒子含有層における媒質としてポリマーを含むことも好ましい。
 前記ポリマーとしては、特に制限はなく、目的に応じて適宜選択することができる。前記ポリマーとしては、例えば、ポリビニルアセタール樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリアクリレート樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、(飽和)ポリエステル樹脂、ポリウレタン樹脂、ゼラチンやセルロース等の天然高分子等の高分子などが挙げられる。その中でも、本発明では、前記ポリマーの主ポリマーがポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリ塩化ビニル樹脂、(飽和)ポリエステル樹脂、ポリウレタン樹脂であることが好ましく、ポリエステル樹脂およびポリウレタン樹脂であることが前記六角形状又は円形状の銀ナノ粒子の80個数%以上を前記銀平板粒子含有層の表面からd/2の範囲に存在させやすい観点からより好ましく、ポリエステル樹脂であることが本発明の銀粒子含有膜のクロスカット密着性をより改善する観点から特に好ましい。
 また、本明細書中、前記銀平板粒子含有層に含まれる前記ポリマーの主ポリマーとは、前記銀平板粒子含有層に含まれるポリマーの50質量%以上を占めるポリマー成分のことを言う。
 本発明の銀粒子含有膜は、前記銀平板粒子含有層に含まれる前記平板状の銀ナノ粒子に対する前記ポリエステル樹脂の含有量が1~10000質量%であることが好ましく、10~1000質量%であることがより好ましく、20~500質量%であることが特に好ましい。
 前記媒質の屈折率nは、1.4~1.7であることが好ましい。
 本発明の銀粒子含有膜は、前記六角形状の平板状の銀ナノ粒子の厚みをaとしたとき、前記六角形状の銀ナノ粒子の80個数%以上が、厚み方向のa/10以上を前記ポリマーに覆われていることが好ましく、厚み方向のa/10~10aを前記ポリマーに覆われていることがより好ましく、a/8~4aを前記ポリマーに覆われていることが特に好ましい。このように前記六角形状の平板状の銀ナノ粒子が前記銀平板粒子含有層に一定割合以上埋没していることにより、よりこすり耐性を高めることができる。すなわち、本発明の銀粒子含有膜は、図2Eの態様よりも、図2Dの態様の方が好ましい。
-1-2-5. Medium of silver tabular grain containing layer
The silver particle-containing film of the present invention preferably contains a polymer as a medium in the silver tabular grain-containing layer.
There is no restriction | limiting in particular as said polymer, According to the objective, it can select suitably. Examples of the polymer include polyvinyl acetal resin, polyvinyl alcohol resin, polyvinyl butyral resin, polyacrylate resin, polymethyl methacrylate resin, polycarbonate resin, polyvinyl chloride resin, (saturated) polyester resin, polyurethane resin, gelatin resin and cellulose. And polymers such as natural polymers. Among them, in the present invention, the main polymer of the polymer is preferably a polyvinyl alcohol resin, a polyvinyl butyral resin, a polyvinyl chloride resin, a (saturated) polyester resin, a polyurethane resin, and preferably the polyester resin and the polyurethane resin. More preferably, 80% by number or more of hexagonal or circular silver nanoparticles are easily present in the range of d / 2 from the surface of the silver tabular grain-containing layer, and the polyester resin contains the silver particles of the present invention. This is particularly preferable from the viewpoint of further improving the cross-cut adhesion of the film.
Moreover, in this specification, the main polymer of the said polymer contained in the said silver tabular grain content layer means the polymer component which occupies 50 mass% or more of the polymer contained in the said silver tabular grain content layer.
In the silver particle-containing film of the present invention, the content of the polyester resin with respect to the tabular silver nanoparticles contained in the silver tabular particle-containing layer is preferably 1 to 10,000% by mass, and preferably 10 to 1000% by mass. More preferred is 20 to 500% by mass.
The refractive index n of the medium is preferably 1.4 to 1.7.
In the silver particle-containing film of the present invention, when the thickness of the hexagonal tabular silver nanoparticles is a, 80% by number or more of the hexagonal silver nanoparticles have a thickness of a / 10 or more. Preferably, the polymer is covered with a / 10 to 10a in the thickness direction, more preferably the polymer is covered with a / 8 to 4a, and particularly preferably a / 8 to 4a is covered with the polymer. Thus, since the hexagonal tabular silver nanoparticles are buried in the silver tabular grain-containing layer in a certain ratio or more, the rubbing resistance can be further increased. That is, the silver particle-containing film of the present invention is preferably in the embodiment of FIG. 2D rather than the embodiment of FIG. 2E.
-1-3.銀平板粒子含有層の層構成-
 本発明の銀粒子含有膜において、銀ナノ粒子は、図2A~図2Eに示すように、平板状の銀ナノ粒子を含む銀平板粒子含有層の形態で配置される。
 前記銀平板粒子含有層としては、図2A~図2Eに示すように単層で構成されてもよく、複数の銀平板粒子含有層で構成されてもよい。複数の銀平板粒子含有層で構成される場合、遮熱性能を付与したい波長帯域に応じた遮蔽性能を付与することが可能となる。なお、前記銀平板粒子含有層が複数の銀平板粒子含有層で構成される場合、本発明の銀粒子含有膜は、少なくとも最表面の銀平板粒子含有層において、該最表面の銀平板粒子含有層の厚みをd’としたとき、前記六角形状~円形状の平板状の銀ナノ粒子の80個数%以上が、該最表面の銀平板粒子含有層の表面からd’/2の範囲に存在することが好ましい。
-1-3. Layer structure of silver tabular grain containing layer
In the silver particle-containing film of the present invention, the silver nanoparticles are arranged in the form of a silver tabular grain-containing layer containing tabular silver nanoparticles, as shown in FIGS. 2A to 2E.
The silver tabular grain-containing layer may be composed of a single layer as shown in FIGS. 2A to 2E, or may be composed of a plurality of silver tabular grain-containing layers. When comprised with a several silver tabular grain content layer, it becomes possible to provide the shielding performance according to the wavelength range which wants to provide thermal insulation performance. When the silver tabular grain-containing layer is composed of a plurality of silver tabular grain-containing layers, the silver particle-containing film of the present invention contains at least the outermost silver tabular grain-containing layer in the outermost silver tabular grain-containing layer. When the thickness of the layer is d ′, 80% by number or more of the hexagonal to circular tabular silver nanoparticles are in the range of d ′ / 2 from the surface of the outermost silver tabular grain-containing layer. It is preferable to do.
-1-4.銀平板粒子含有層の厚み-
 前記銀平板粒子含有層の厚みは、10~160nmであることが好ましく、20~80nmであることがより好ましい。前記銀平板粒子含有層の厚みdは、前記六角形状~円形状の平板状の銀ナノ粒子の厚みをaとしたとき、a~10aであることが好ましく、2a~8aであることがより好ましい。
-1-4. Thickness of silver tabular grain containing layer
The thickness of the silver tabular grain-containing layer is preferably 10 to 160 nm, and more preferably 20 to 80 nm. The thickness d of the silver tabular grain-containing layer is preferably a to 10a, more preferably 2a to 8a, where a is the thickness of the hexagonal to circular tabular silver nanoparticles. .
 ここで、前記銀平板粒子含有層の各層の厚みは、例えば、銀粒子含有膜の断面試料をSEM観察した画像より測定することができる。
 また、銀粒子含有膜の前記銀平板粒子含有層の上に、例えば後述するオーバーコート層などの他の層を有する場合においても、他の層と前記銀平板粒子含有層の境界は同様の方法によって決定することができ、前記銀平板粒子含有層の厚みdを決定することができる。なお、前記銀平板粒子含有層に含まれるポリマーと同じ種類のポリマーを用いて、前記銀平板粒子含有層の上にコーティングをする場合は通常はSEM観察した画像によって前記銀平板粒子含有層との境界を判別できることができ、前記銀平板粒子含有層の厚みdを決定することができる。
Here, the thickness of each layer of the silver tabular grain-containing layer can be measured, for example, from an image obtained by SEM observation of a cross-sectional sample of the silver particle-containing film.
Further, even when other layers such as an overcoat layer described later are provided on the silver tabular grain-containing layer of the silver particle-containing film, the boundary between the other layer and the silver tabular grain-containing layer is the same method. The thickness d of the silver tabular grain-containing layer can be determined. In addition, when coating on the said silver tabular grain content layer using the same kind of polymer as the polymer contained in the said silver tabular grain content layer, it is usually with the said silver tabular grain content layer by the image observed by SEM. The boundary can be discriminated, and the thickness d of the silver tabular grain-containing layer can be determined.
2.基材
 本発明の銀粒子含有膜は、基材を有することが好ましい。
 前記銀粒子含有膜は、前記六角形状の平板状の銀ナノ粒子の60個数%以上が偏在している方の前記銀平板粒子含有層の表面とは反対側の表面に、基材を有することが好ましい。
2. Base Material The silver particle-containing film of the present invention preferably has a base material.
The silver particle-containing film has a substrate on the surface opposite to the surface of the silver tabular particle-containing layer on which 60% by number or more of the hexagonal tabular silver nanoparticles are unevenly distributed. Is preferred.
 前記基材としては、光学的に透明な基材であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、可視光線透過率が70%以上のもの、好ましくは80%以上のもの、近赤外線域の透過率が高いものなどが挙げられる。
 前記基材としては、その形状、構造、大きさ、材料などについては、特に制限はなく、目的に応じて適宜選択することができる。前記形状としては、例えば、平板状などが挙げられ、前記構造としては、単層構造であってもよいし、積層構造であってもよく、前記大きさとしては、前記銀粒子含有膜の大きさなどに応じて適宜選択することができる。
The substrate is not particularly limited as long as it is an optically transparent substrate, and can be appropriately selected according to the purpose. For example, the substrate has a visible light transmittance of 70% or more, preferably 80% or more. And those with high transmittance in the near infrared region.
There is no restriction | limiting in particular about the shape, a structure, a magnitude | size, material, etc. as said base material, According to the objective, it can select suitably. Examples of the shape include a flat plate shape, and the structure may be a single layer structure or a laminated structure, and the size may be the size of the silver particle-containing film. It can be appropriately selected depending on the size.
 本発明の銀粒子含有膜に用いられる前記基材の材料としては、特に制限はないがポリマーフィルムであることが好ましく、該ポリマーフィルムとしては様々な透明プラスチックフィルムの中から、状況に応じて適宜選択することができる。この透明プラスチックフィルムとしては、例えば、ポリエチレン、ポリプロピレン、ポリ4-メチルペンテン-1、ポリブテン-1等のポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリカーボネート系樹脂;ポリ塩化ビニル系樹脂;ポリフェニレンサルファイド系樹脂;ポリエーテルサルフォン系樹脂;ポリエチレンサルファイド系樹脂;ポリフェニレンエーテル系樹脂;スチレン系樹脂;アクリル系樹脂;ポリアミド系樹脂;ポリイミド系樹脂;セルロースアセテート等のセルロース系樹脂などからなるフィルム;又はこれらの積層フィルムが挙げられる。これらの中で、特にポリエチレンテレフタレートフィルムが好適である。 The material of the base material used in the silver particle-containing film of the present invention is not particularly limited, but is preferably a polymer film. The polymer film is appropriately selected from various transparent plastic films depending on the situation. You can choose. Examples of the transparent plastic film include polyolefin resins such as polyethylene, polypropylene, poly-4-methylpentene-1 and polybutene-1, polyester resins such as polyethylene terephthalate and polyethylene naphthalate, polycarbonate resins, and polyvinyl chloride. Resin; Polyphenylene sulfide resin; Polyethersulfone resin; Polyethylene sulfide resin; Polyphenylene ether resin; Styrene resin; Acrylic resin; Polyamide resin; Polyimide resin; Cellulose resin such as cellulose acetate Film; or a laminated film thereof. Among these, a polyethylene terephthalate film is particularly preferable.
 この基材フィルムの厚みとしては、特に制限はなく、日射遮蔽フィルムの使用目的に応じて適宜選択することができ、通常は10μm~500μm程度であり、12μm~300μmが好ましく、16μm~125μmがより好ましい。 The thickness of the base film is not particularly limited and can be appropriately selected depending on the purpose of use of the solar shading film. Usually, the thickness is about 10 μm to 500 μm, preferably 12 μm to 300 μm, more preferably 16 μm to 125 μm. preferable.
3.その他の層
-3-1.粘着層-
 本発明の銀粒子含有膜は、粘着層を有することが好ましい。前記粘着層は、紫外線吸収剤を含むことができる。
 前記粘着層の形成に利用可能な材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリビニルブチラール(PVB)樹脂、アクリル樹脂、スチレン/アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、シリコーン樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの材料からなる粘着層は、塗布により形成することができる。
 さらに、前記粘着層には帯電防止剤、滑剤、ブロッキング防止剤などを添加してもよい。
 前記粘着層の厚みとしては、0.1μm~30μmが好ましい。
 前記粘着層は、塗布により形成することが好ましい。例えば、前記基材、前記金属粒子含有層、前記紫外線吸収層などの下層の表面上に積層することができる。このときの塗布方法としては、特に限定はなく、公知の方法を用いることができる。
 粘着剤を予め離型フィルム上に塗工及び乾燥させたフィルムを作製しておいて、当該フィルムの粘着剤面と本発明の熱線遮蔽材表面とをラミネートすることにより、ドライな状態のままの粘着層を積層することが可能である。このときのラミネートの方法としては、特に限定はなく、公知の方法を用いることができる。
3. Other layers-3-1. Adhesive layer
The silver particle-containing film of the present invention preferably has an adhesive layer. The adhesive layer may include an ultraviolet absorber.
The material that can be used for forming the adhesive layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, polyvinyl butyral (PVB) resin, acrylic resin, styrene / acrylic resin, urethane resin, polyester Examples thereof include resins and silicone resins. These may be used individually by 1 type and may use 2 or more types together. An adhesive layer made of these materials can be formed by coating.
Furthermore, an antistatic agent, a lubricant, an antiblocking agent and the like may be added to the adhesive layer.
The thickness of the adhesive layer is preferably 0.1 μm to 30 μm.
The adhesive layer is preferably formed by coating. For example, it can be laminated on the surface of the lower layer such as the base material, the metal particle-containing layer, or the ultraviolet absorbing layer. There is no limitation in particular as the coating method at this time, A well-known method can be used.
A film in which the pressure-sensitive adhesive is previously coated and dried on the release film is prepared, and the film is left in a dry state by laminating the pressure-sensitive adhesive surface of the film and the heat ray shielding material surface of the present invention. It is possible to laminate an adhesive layer. The laminating method at this time is not particularly limited, and a known method can be used.
-3-2.ハードコート層-
 耐擦傷性を付加するために、ハードコート性を有するハードコート層を含むことも好適である。ハードコート層には金属酸化物粒子を含むことができる。
 前記ハードコート層としては、特に制限はなく、目的に応じて適宜その種類も形成方法も選択することができ、例えば、アクリル系樹脂、シリコーン系樹脂、メラミン系樹脂、ウレタン系樹脂、アルキド系樹脂、フッ素系樹脂等の熱硬化型又は光硬化型樹脂などが挙げられる。前記ハードコート層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、1μm~50μmが好ましい。前記ハードコート層上に更に反射防止層及び/又は防眩層を形成すると、耐擦傷性に加え、反射防止性及び/又は防眩性を有する機能性フィルムが得られ好適である。また、前記ハードコート層に前記金属酸化物粒子を含有してもよい。
-3-2. Hard coat layer
In order to add scratch resistance, it is also preferable to include a hard coat layer having hard coat properties. The hard coat layer can contain metal oxide particles.
There is no restriction | limiting in particular as said hard-coat layer, The kind and formation method can be selected suitably according to the objective, for example, acrylic resin, silicone resin, melamine resin, urethane resin, alkyd resin And thermosetting or photocurable resins such as fluorine-based resins. The thickness of the hard coat layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 μm to 50 μm. When an antireflection layer and / or an antiglare layer are further formed on the hard coat layer, a functional film having antireflection properties and / or antiglare properties in addition to scratch resistance is preferably obtained. The hard coat layer may contain the metal oxide particles.
-3-3.オーバーコート層-
 本発明の銀粒子含有膜において、物質移動による平板状の銀ナノ粒子の酸化・硫化を防止し、耐擦傷性を付与するため、本発明の銀粒子含有膜は、前記六角形状~円形状の平板状の銀ナノ粒子が露出している方の前記銀平板粒子含有層の表面に密接するオーバーコート層を有していてもよい。また、前記銀平板粒子含有層と後述の紫外線吸収層との間にオーバーコート層を有していてもよい。本発明の銀粒子含有膜は特に銀ナノ粒子が銀平板粒子含有層の表面に偏在するため場合は、銀ナノ粒子の剥落による製造工程のコンタミ防止、別層塗布時の銀ナノ粒子配列乱れの防止、などのため、オーバーコート層を有していてもよい。
 前記オーバーコート層には紫外線吸収剤を含んでもよい。
 前記オーバーコート層としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、バインダー、マット剤、及び界面活性剤を含有し、更に必要に応じてその他の成分を含有してなる。
 前記バインダーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アクリル系樹脂、シリコーン系樹脂、メラミン系樹脂、ウレタン系樹脂、アルキド系樹脂、フッ素系樹脂等の熱硬化型又は光硬化型樹脂などが挙げられる。
 前記オーバーコート層の厚みとしては、0.01μm~1,000μmが好ましく、0.02μm~500μmがより好ましく、0.1~10μmが特に好ましく、0.2~5μmがより特に好ましい。
3-3. Overcoat layer
In the silver particle-containing film of the present invention, the silver particle-containing film of the present invention has a hexagonal shape to a circular shape in order to prevent oxidation and sulfidation of tabular silver nanoparticles due to mass transfer and to impart scratch resistance. You may have the overcoat layer closely_contact | adhered to the surface of the said silver tabular grain content layer in which the tabular silver nanoparticle is exposed. Moreover, you may have an overcoat layer between the said silver tabular grain content layer and the below-mentioned ultraviolet absorption layer. In the silver particle-containing film of the present invention, particularly when silver nanoparticles are unevenly distributed on the surface of the silver tabular particle-containing layer, the contamination of the manufacturing process due to the peeling of the silver nanoparticles is prevented, and the disorder of the silver nanoparticle arrangement during the coating of another layer An overcoat layer may be provided for prevention or the like.
The overcoat layer may contain an ultraviolet absorber.
The overcoat layer is not particularly limited and may be appropriately selected depending on the intended purpose.For example, the overcoat layer contains a binder, a matting agent, and a surfactant, and further contains other components as necessary. It becomes.
The binder is not particularly limited and may be appropriately selected depending on the purpose. For example, thermosetting of acrylic resin, silicone resin, melamine resin, urethane resin, alkyd resin, fluorine resin, etc. Mold or photo-curable resin.
The thickness of the overcoat layer is preferably 0.01 μm to 1,000 μm, more preferably 0.02 μm to 500 μm, particularly preferably 0.1 to 10 μm, and particularly preferably 0.2 to 5 μm.
 前記紫外線吸収剤を含有する層は、オーバーコート層の他、目的に応じて適宜選択することができ、粘着層であってもよく、また、前記粘着層と前記銀平板粒子含有層との間の層であってもよい。いずれの場合も、前記紫外線吸収剤は、前記銀平板粒子含有層に対して、太陽光が照射される側に配置される層に添加されることが好ましい。 The layer containing the ultraviolet absorber can be appropriately selected according to the purpose in addition to the overcoat layer, and may be an adhesive layer, or between the adhesive layer and the silver tabular grain-containing layer. It may be a layer. In any case, the ultraviolet absorber is preferably added to a layer disposed on the side irradiated with sunlight with respect to the silver tabular grain-containing layer.
 前記紫外線吸収剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤、サリチレート系紫外線吸収剤、シアノアクリレート系紫外線吸収剤などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 The ultraviolet absorber is not particularly limited and may be appropriately selected depending on the purpose. For example, a benzophenone ultraviolet absorber, a benzotriazole ultraviolet absorber, a triazine ultraviolet absorber, a salicylate ultraviolet absorber, Examples include cyanoacrylate ultraviolet absorbers. These may be used individually by 1 type and may use 2 or more types together.
 前記ベンゾフェノン系紫外線吸収剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、2,4ドロキシ-4-メトキシ-5-スルホベンゾフェノンなどが挙げられる。 The benzophenone-based ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 2,4droxy-4-methoxy-5-sulfobenzophenone.
 前記ベンゾトリアゾール系紫外線吸収剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、2-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-4-メチル-6-tert-ブチルフェノール(チヌビン326)、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-ターシャリーブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3-5-ジターシャリーブチルフェニル)-5-クロロベンゾトリアゾールなどが挙げられる。 The benzotriazole ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose. For example, 2- (5-chloro-2H-benzotriazol-2-yl) -4-methyl-6 -Tert-butylphenol (tinuvin 326), 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-tertiarybutylphenyl) benzotriazole, 2- (2-hydroxy-3- 5-ditertiary butylphenyl) -5-chlorobenzotriazole and the like.
 前記トリアジン系紫外線吸収剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、モノ(ヒドロキシフェニル)トリアジン化合物、ビス(ヒドロキシフェニル)トリアジン化合物、トリス(ヒドロキシフェニル)トリアジン化合物などが挙げられる。
 前記モノ(ヒドロキシフェニル)トリアジン化合物としては、例えば、2-[4-[(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-[(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-(2,4-ジヒドロキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-(2-ヒドロキシ-4-イソオクチルオキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-(2-ヒドロキシ-4-ドデシルオキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジンなどが挙げられる。前記ビス(ヒドロキシフェニル)トリアジン化合物としては、例えば、2,4-ビス(2-ヒドロキシ-4-プロピルオキシフェニル)-6-(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4-ビス(2-ヒドロキシ-3-メチル-4-プロピルオキシフェニル)-6-(4-メチルフェニル)-1,3,5-トリアジン、2,4-ビス(2-ヒドロキシ-3-メチル-4-ヘキシルオキシフェニル)-6-(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-フェニル-4,6-ビス[2-ヒドロキシ-4-[3-(メトキシヘプタエトキシ)-2-ヒドロキシプロピルオキシ]フェニル]-1,3,5-トリアジンなどが挙げられる。前記トリス(ヒドロキシフェニル)トリアジン化合物としては、例えば、2,4-ビス(2-ヒドロキシ-4-ブトキシフェニル)-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4,6-トリス[2-ヒドロキシ-4-(3-ブトキシ-2-ヒドロキシプロピルオキシ)フェニル]-1,3,5-トリアジン、2,4-ビス[2-ヒドロキシ-4-[1-(イソオクチルオキシカルボニル)エトキシ]フェニル]-6-(2,4-ジヒドロキシフェニル)-1,3,5-トリアジン、2,4,6-トリス[2-ヒドロキシ-4-[1-(イソオクチルオキシカルボニル)エトキシ]フェニル]-1,3,5-トリアジン、2,4-ビス[2-ヒドロキシ-4-[1-(イソオクチルオキシカルボニル)エトキシ]フェニル]-6-[2,4-ビス[1-(イソオクチルオキシカルボニル)エトキシ]フェニル]-1,3,5-トリアジンなどが挙げられる。
The triazine ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include mono (hydroxyphenyl) triazine compounds, bis (hydroxyphenyl) triazine compounds, and tris (hydroxyphenyl) triazine compounds. Etc.
Examples of the mono (hydroxyphenyl) triazine compound include 2- [4-[(2-hydroxy-3-dodecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethyl). Phenyl) -1,3,5-triazine, 2- [4-[(2-hydroxy-3-tridecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) ) -1,3,5-triazine, 2- (2,4-dihydroxyphenyl) -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2- (2-hydroxy- 4-isooctyloxyphenyl) -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2- (2-hydroxy-4-dodecyloxyphenyl) -4,6-bis ( 2,4-dimethylphenyl) -1,3,5-triazine, etc. Is mentioned. Examples of the bis (hydroxyphenyl) triazine compound include 2,4-bis (2-hydroxy-4-propyloxyphenyl) -6- (2,4-dimethylphenyl) -1,3,5-triazine, 2 , 4-Bis (2-hydroxy-3-methyl-4-propyloxyphenyl) -6- (4-methylphenyl) -1,3,5-triazine, 2,4-bis (2-hydroxy-3-methyl) -4-hexyloxyphenyl) -6- (2,4-dimethylphenyl) -1,3,5-triazine, 2-phenyl-4,6-bis [2-hydroxy-4- [3- (methoxyheptaethoxy ) -2-hydroxypropyloxy] phenyl] -1,3,5-triazine and the like. Examples of the tris (hydroxyphenyl) triazine compound include 2,4-bis (2-hydroxy-4-butoxyphenyl) -6- (2,4-dibutoxyphenyl) -1,3,5-triazine, 2 , 4,6-Tris (2-hydroxy-4-octyloxyphenyl) -1,3,5-triazine, 2,4,6-tris [2-hydroxy-4- (3-butoxy-2-hydroxypropyloxy) ) Phenyl] -1,3,5-triazine, 2,4-bis [2-hydroxy-4- [1- (isooctyloxycarbonyl) ethoxy] phenyl] -6- (2,4-dihydroxyphenyl) -1 , 3,5-triazine, 2,4,6-tris [2-hydroxy-4- [1- (isooctyloxycarbonyl) ethoxy] phenyl] -1,3,5-triazine, 2,4-bis [2 -Hydroxy-4- [1- (isooctyloxy) Carbonyl) ethoxy] phenyl] -6- [2,4-bis [1- (iso-octyloxy) ethoxy] phenyl] -1,3,5-triazine.
 前記サリチレート系紫外線吸収剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フェニルサリチレート、p-tert-ブチルフェニルサリチレート、p-オクチルフェニルサリチレート、2-エチルヘキシルサリチレートなどが挙げられる。 The salicylate-based ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include phenyl salicylate, p-tert-butylphenyl salicylate, p-octylphenyl salicylate, Examples include 2-ethylhexyl salicylate.
 前記シアノアクリレート系紫外線吸収剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、2-エチルヘキシル-2-シアノ-3,3-ジフェニルアクリレート、エチル-2-シアノ-3,3-ジフェニルアクリレートなどが挙げられる。 The cyanoacrylate-based ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose. For example, 2-ethylhexyl-2-cyano-3,3-diphenylacrylate, ethyl-2-cyano-3 , 3-diphenyl acrylate and the like.
 前記バインダーとしては、特に制限はなく、目的に応じて適宜選択することができるが、可視光透明性や日射透明性が高い方が好ましく、例えば、アクリル樹脂、ポリビニルブチラール、ポリビニルアルコールなどが挙げられる。なお、バインダーが熱線を吸収すると、銀ナノ粒子による反射効果が弱まってしまうことから、熱線源と銀ナノ粒子との間に形成される紫外線吸収層としては、450nm~1,500nmの領域に吸収を持たない材料を選択したり、該紫外線吸収層の厚みを薄くしたりすることが好ましい。
 前記紫外線透過率としては、5%以下が好ましく、2%以下がより好ましい。前記紫外線透過率が、5%を超えると、太陽光の紫外線により前記銀ナノ粒子層の色味が変化することがある。
The binder is not particularly limited and may be appropriately selected depending on the intended purpose, but preferably has higher visible light transparency and higher solar transparency, and examples thereof include acrylic resin, polyvinyl butyral, and polyvinyl alcohol. . Note that when the binder absorbs heat rays, the reflection effect of the silver nanoparticles is weakened. Therefore, the ultraviolet absorbing layer formed between the heat ray source and the silver nanoparticles is absorbed in the region of 450 nm to 1,500 nm. It is preferable to select a material that does not have a thickness, or to reduce the thickness of the ultraviolet absorbing layer.
The ultraviolet transmittance is preferably 5% or less, and more preferably 2% or less. When the ultraviolet transmittance exceeds 5%, the color of the silver nanoparticle layer may change due to ultraviolet rays of sunlight.
-3-4.金属酸化物粒子含有層-
 本発明の銀粒子含有膜は、長波赤外線を吸収するために、少なくとも1種の金属酸化物粒子を含有することが、熱線遮蔽と製造コストのバランスの観点から、好ましい。本発明の銀粒子含有膜では、前記金属酸化物粒子を含有する層が、前記銀平板粒子含有層の前記六角形状~円形状の平板状の銀ナノ粒子が露出している方の前記銀平板粒子含有層の表面とは反対側の表面側に、有することが好ましい。この場合、例えば前記オーバーコート層に金属酸化物粒子を含むことが好ましい。一方、前記金属酸化物粒子含有層は、基材を介して、オーバーコート層とは異なる層としてこの順に積層されていてもよい。このような構成であると、銀ナノ粒子含有層が太陽光などの熱線の入射方向側となるように本発明の銀粒子含有膜を配置したときに、銀ナノ粒子含有層で熱線の一部(または全部でもよい)を反射した後、オーバーコート層で熱線の一部を吸収することとなり、金属酸化物含有層で吸収されずに銀粒子含有膜を透過した熱線に起因して銀粒子含有膜の内側で直接受ける熱量と、銀粒子含有膜の金属酸化物含有層で吸収されて間接的に銀粒子含有膜の内側に伝わる熱量の合計としての熱量を低減することができる。
 前記金属酸化物粒子の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、錫ドープ酸化インジウム(以下、「ITO」と略記する。)、錫ドープ酸化アンチモン(以下、「ATO」と略記する。)、酸化亜鉛、酸化チタン、酸化インジウム、酸化錫、酸化アンチモン、ガラスセラミックス、酸化タングステン(以下、「CWO」と略記する。)、6硼化ランタン(LaB)などが挙げられる。これらの中でも、熱線吸収能力に優れ、平板状の銀ナノ粒子と組み合わせることにより幅広い熱線吸収能を有する銀粒子含有膜が製造できる点で、ITO、ATO、酸化亜鉛、CWO、6硼化ランタン(LaB)がより好ましく、1,200nm以上の赤外線を90%以上遮蔽し、可視光透過率が90%以上である点で、ITOが特に好ましい。
 前記金属酸化物粒子の一次粒子の体積平均粒径としては、可視光透過率を低下させないため、0.1μm以下が好ましい。
 前記金属酸化物粒子の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、球状、針状、板状などが挙げられる。
-3-4. Metal oxide particle-containing layer
The silver particle-containing film of the present invention preferably contains at least one metal oxide particle in order to absorb long-wave infrared light from the viewpoint of the balance between heat ray shielding and manufacturing cost. In the silver particle-containing film of the present invention, the layer containing the metal oxide particles is the silver flat plate on which the hexagonal to circular flat plate silver nanoparticles of the silver flat plate particle-containing layer are exposed. It is preferable to have on the surface side opposite to the surface of the particle-containing layer. In this case, for example, the overcoat layer preferably contains metal oxide particles. On the other hand, the said metal oxide particle content layer may be laminated | stacked in this order as a layer different from an overcoat layer through a base material. With such a configuration, when the silver particle-containing film of the present invention is arranged so that the silver nanoparticle-containing layer is on the incident direction side of heat rays such as sunlight, a part of the heat rays in the silver nanoparticle-containing layer After reflecting (or all), the overcoat layer will absorb part of the heat rays, and it will not be absorbed by the metal oxide-containing layer, but will be caused by the heat rays that have passed through the silver particle-containing film. The amount of heat directly received inside the film and the amount of heat absorbed by the metal oxide-containing layer of the silver particle-containing film and indirectly transmitted to the inside of the silver particle-containing film can be reduced.
There is no restriction | limiting in particular as a material of the said metal oxide particle, According to the objective, it can select suitably, For example, a tin dope indium oxide (henceforth "ITO"), a tin dope antimony oxide (henceforth). , Abbreviated as “ATO”), zinc oxide, titanium oxide, indium oxide, tin oxide, antimony oxide, glass ceramics, tungsten oxide (hereinafter abbreviated as “CWO”), lanthanum hexaboride (LaB 6 ) Etc. Among these, ITO, ATO, zinc oxide, CWO, lanthanum hexaboride (which is excellent in heat ray absorption ability and can produce a silver particle-containing film having a wide range of heat ray absorption ability when combined with tabular silver nanoparticles ( LaB 6 ) is more preferable, and ITO is particularly preferable in that infrared rays of 1,200 nm or more are shielded by 90% or more and the visible light transmittance is 90% or more.
The volume average particle size of the primary particles of the metal oxide particles is preferably 0.1 μm or less in order not to reduce the visible light transmittance.
There is no restriction | limiting in particular as a shape of the said metal oxide particle, According to the objective, it can select suitably, For example, spherical shape, needle shape, plate shape, etc. are mentioned.
 前記金属酸化物粒子の前記金属酸化物粒子含有層における含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.1g/m~20g/mが好ましく、0.5g/m~10g/mがより好ましく、1.0g/m~4.0g/mがより好ましい。
 前記含有量が、0.1g/m未満であると、肌に感じる日射量が上昇することがあり、20g/mを超えると、可視光透過率が悪化することがある。一方、前記含有量が、1.0g/m~4.0g/mであると、上記2点を回避できる点で有利である。
 なお、前記金属酸化物粒子の前記金属酸化物粒子含有層における含有量は、例えば、前記熱線遮蔽層の超箔切片TEM像及び表面SEM像の観察から、一定面積における金属酸化物粒子の個数及び平均粒子径を測定し、該個数及び平均粒子径と、金属酸化物粒子の比重とに基づいて算出した質量(g)を、前記一定面積(m)で除することにより算出することができる。また、前記金属酸化物粒子含有層の一定面積における金属酸化物微粒子をメタノールに溶出させ、蛍光X線測定により測定した金属酸化物微粒子の質量(g)を、前記一定面積(m)で除することにより算出することもできる。
The content of the metal oxide particles in the metal oxide particle-containing layer is not particularly limited and may be appropriately selected depending on the purpose, but is preferably 0.1 g / m 2 to 20 g / m 2 , 0.5 g / m 2 to 10 g / m 2 is more preferable, and 1.0 g / m 2 to 4.0 g / m 2 is more preferable.
If the content is less than 0.1 g / m 2 , the amount of solar radiation felt on the skin may increase, and if it exceeds 20 g / m 2 , the visible light transmittance may deteriorate. On the other hand, when the content is 1.0 g / m 2 to 4.0 g / m 2, it is advantageous in that the above two points can be avoided.
The content of the metal oxide particles in the metal oxide particle-containing layer is, for example, from the observation of the super foil section TEM image and surface SEM image of the heat ray shielding layer, and the number of metal oxide particles in a certain area and It can be calculated by measuring the average particle diameter and dividing the mass (g) calculated based on the number and average particle diameter and the specific gravity of the metal oxide particles by the constant area (m 2 ). . Further, metal oxide fine particles in a certain area of the metal oxide particle-containing layer are eluted in methanol, and the mass (g) of the metal oxide fine particles measured by fluorescent X-ray measurement is divided by the constant area (m 2 ). This can also be calculated.
<銀粒子含有膜の製造方法>
 本発明の銀粒子含有膜の製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、塗布方法により、前記基材の表面に前記銀平板粒子含有層、前記紫外線吸収層、更に必要に応じてその他の層を形成する方法が挙げられる。
<Method for producing silver particle-containing film>
There is no restriction | limiting in particular as a manufacturing method of the silver particle containing film | membrane of this invention, According to the objective, it can select suitably, For example, the said silver tabular grain containing layer, the said ultraviolet-ray by the coating method on the surface of the said base material Examples thereof include a method of forming an absorption layer and, if necessary, other layers.
 本発明の銀平板粒子含有層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記基材などの下層の表面上に、前記銀ナノ粒子を有する分散液を、ディップコーター、ダイコーター、スリットコーター、バーコーター、グラビアコーター等により塗布する方法、LB膜法、自己組織化法、スプレー塗布などの方法で面配向させる方法が挙げられる。本発明の銀粒子含有膜を製造するとき、後述の実施例で用いた銀平板粒子含有層の組成とし、ラテックスを添加する等によって、前記六角形状又は円形状の平板状の銀ナノ粒子の80個数%以上が、前記銀平板粒子含有層の表面からd/2の範囲に存在するようにすることが好ましい。前記六角形状又は円形状の平板状の銀ナノ粒子の80個数%以上が、前記銀平板粒子含有層の表面からd/3の範囲に存在するようにすることがより好ましい。前記ラテックスの添加量に特に制限は無いが、例えば銀平板粒子に対して、1~10000質量%添加することが好ましく、10~1000質量%添加することがより好ましく、20~500質量%添加することが特に好ましい。
 なお、面配向を促進するために、銀ナノ粒子を塗布後、カレンダーローラーやラミローラーなどの圧着ローラーを通すことにより促進させてもよい。
There is no restriction | limiting in particular as a formation method of the silver tabular grain content layer of this invention, According to the objective, it can select suitably, For example, the dispersion | distribution which has the said silver nanoparticle on the surface of lower layers, such as the said base material Examples include a method in which the liquid is applied by a dip coater, a die coater, a slit coater, a bar coater, a gravure coater, or the like, and a method in which the liquid is aligned by a method such as an LB film method, a self-assembly method, or a spray coating method. When the silver particle-containing film of the present invention is produced, the composition of the silver tabular particle-containing layer used in the examples described later is used, and the hexagonal or circular tabular silver nanoparticles 80 are added by adding latex or the like. It is preferable that several% or more exist in a range of d / 2 from the surface of the silver tabular grain-containing layer. More preferably, 80% by number or more of the hexagonal or circular tabular silver nanoparticles are present in a range of d / 3 from the surface of the silver tabular grain-containing layer. The amount of the latex added is not particularly limited. For example, it is preferably added in an amount of 1 to 10,000% by mass, more preferably 10 to 1000% by mass, and more preferably 20 to 500% by mass with respect to silver tabular grains. It is particularly preferred.
In addition, in order to accelerate | stimulate plane orientation, after apply | coating a silver nanoparticle, you may promote by passing through pressure-bonding rollers, such as a calender roller and a laminating roller.
 本発明では銀平板粒子含有層中の平板状の銀ナノ粒子の平均粒子径(平均円相当径)の変動係数を制御する方法としては特に制限はなく、平均粒子径(平均円相当径)の変動係数が大きくなるように銀ナノ粒子を有する分散液中に含まれる平板状の銀ナノ粒子の形状を制御してもよく、平均粒子径(平均円相当径)の変動係数が小さい銀ナノ粒子を有する分散液を2種以上混合して制御してもよい。
 本発明では前記銀平板粒子含有層中に平均粒子径(平均円相当径)が異なる2種以上の平板状の銀ナノ粒子を含有する場合、平均粒子径(平均円相当径)の変動係数が小さい(平均円相当径がある程度揃った)銀ナノ粒子分散液を2種以上用い、平板状の銀ナノ粒子の平均粒子径(平均円相当径)のピークが2つ以上となるように調製し、銀平板粒子含有層を形成することが好ましい。このような構成とすることにより、赤外光を広帯域にわたって遮蔽しやすくなり、好ましい。
 一方、本発明では前記銀平板粒子含有層中に平均粒子径(平均円相当径)が1種の平板状の銀ナノ粒子を含有する場合、平均粒子径(平均円相当径)の変動係数が大きくなる(平均円相当径があまり揃わない)ように調製し、銀平板粒子含有層を形成することが好ましい。このような構成とすることにより、赤外光を広帯域にわたって遮蔽しやすくなり、好ましい。
In the present invention, the method for controlling the coefficient of variation of the average particle diameter (average equivalent circle diameter) of tabular silver nanoparticles in the silver tabular grain-containing layer is not particularly limited, and the average particle diameter (average equivalent circle diameter) The shape of the flat silver nanoparticles contained in the dispersion containing silver nanoparticles may be controlled so that the coefficient of variation is large, and the silver nanoparticles with a small coefficient of variation of the average particle diameter (average equivalent circle diameter) You may control by mixing 2 or more types of dispersion liquid which has.
In the present invention, when the silver tabular grain-containing layer contains two or more kinds of tabular silver nanoparticles having different average grain sizes (average equivalent circle diameter), the variation coefficient of the average grain size (average equivalent circle diameter) is Prepare two or more kinds of small silver nanoparticle dispersions (average equivalent circle equivalent diameters) so that the average particle diameter (average equivalent circle diameter) of tabular silver nanoparticles has two or more peaks. It is preferable to form a silver tabular grain-containing layer. Such a configuration is preferable because infrared light can be easily shielded over a wide band.
On the other hand, in the present invention, when the silver tabular grain-containing layer contains one kind of tabular silver nanoparticles having an average grain diameter (average equivalent circle diameter), the coefficient of variation of the average grain diameter (average equivalent circle diameter) is It is preferable to prepare such that the silver tabular grain-containing layer is prepared by increasing the average equivalent circle diameter (not so uniform). Such a configuration is preferable because infrared light can be easily shielded over a wide band.
[熱線遮蔽材付き窓ガラスの作製]
 本発明の熱線遮蔽材を使って、既設窓ガラスの類に機能性付与する場合は、粘着剤を積層して窓ガラスの室内側に貼り付けることが好ましい。その際、赤外線反射層をなるべく太陽光側に設置されている方が、室内へ入射しようとする赤外線をあらかじめ反射できるため好ましく、この観点において金属粒子含有層を太陽光入射側に設置されるように粘着層を積層することが好ましい。具体的には金属粒子含有層の上、または、金属粒子含有層上に設けられたオーバーコート層等の機能層の上に粘着層を設け、その粘着層を介して窓ガラスへ貼合することが好ましい。窓ガラスに熱線遮蔽材を貼り付ける際、粘着層を塗工、あるいは、ラミネートにより設けた熱線遮蔽材を準備し、あらかじめ窓ガラス表面と前記熱線遮蔽材の粘着層表面に界面活性剤(主にノニオン系)を含んだ水溶液を噴霧してから、粘着層を介して窓ガラスに熱線遮蔽材を設置すると良い。水分が蒸発するまでの間、粘着層の粘着力は落ちるため、ガラス表面では熱線遮蔽材の位置の調整が可能である。窓ガラスに対する前記熱線遮蔽材の貼り付け位置が定まった後、スキージー等を用いて窓ガラスと前記熱線遮蔽材の間に残る水分をガラス中央から、端部に向けて掃き出すことにより、窓ガラス表面に前記熱線遮蔽材を固定される。このようにして、窓ガラスに熱線遮蔽材を設置することが可能である。
[Production of window glass with heat ray shielding material]
When using the heat ray shielding material of the present invention to provide functionality to the existing window glass, it is preferable to laminate an adhesive and attach it to the indoor side of the window glass. In that case, it is preferable that the infrared reflection layer is installed on the sunlight side as much as possible because it can reflect the infrared rays to be incident on the room in advance. From this viewpoint, the metal particle-containing layer is installed on the sunlight incidence side. It is preferable to laminate an adhesive layer on the substrate. Specifically, an adhesive layer is provided on a metal particle-containing layer or a functional layer such as an overcoat layer provided on the metal particle-containing layer, and is bonded to the window glass via the adhesive layer. Is preferred. When sticking the heat ray shielding material to the window glass, prepare a heat ray shielding material provided by coating or laminating the adhesive layer, and pre-surfactant (mainly on the surface of the window glass and the adhesion layer surface of the heat ray shielding material) After spraying an aqueous solution containing a nonionic system, it is preferable to install a heat ray shielding material on the window glass through an adhesive layer. Until the moisture evaporates, the adhesive force of the adhesive layer decreases, so that the position of the heat ray shielding material can be adjusted on the glass surface. After the position where the heat ray shielding material is attached to the window glass, the surface of the window glass is swept away from the center of the glass toward the edge using a squeegee or the like to leave moisture between the window glass and the heat ray shielding material. The heat ray shielding material is fixed to the surface. In this way, it is possible to install the heat ray shielding material on the window glass.
[熱線遮蔽材を適用した合わせガラス体の作製]
 合わせガラス体の作製には、2枚のガラス板、2枚の合わせガラス用ポリビニルブチラール中間膜シート(PVBシート)、前記熱線遮蔽材を準備し、ガラス板(1枚目)、PVBシート(1枚目)、熱線遮蔽材、PVBシート(2枚目)、ガラス板(2枚目)の順に重ねる。この積層体を真空下、95℃で30分間予備圧着を行い、その後、オートフレーブ内で1.3MPa、120℃の条件で加熱しながら圧着処理することで熱線遮蔽材を適用した合わせガラスを得ることができる。
[Production of laminated glass body using heat ray shielding material]
For the production of the laminated glass body, two glass plates, two polyvinyl butyral interlayer films (PVB sheet) for laminated glass, and the heat ray shielding material are prepared, and the glass plate (first sheet), PVB sheet (1 Sheet), heat ray shielding material, PVB sheet (second sheet), glass plate (second sheet). This laminated body is preliminarily pressure-bonded at 95 ° C. for 30 minutes under vacuum, and then pressure-bonded with heating under conditions of 1.3 MPa and 120 ° C. in an autoflavor to obtain a laminated glass to which a heat ray shielding material is applied. be able to.
<用途>
 本発明の銀粒子含有膜は、銀の有する特性を生かして様々の分野に応用することが可能であり、例えば、熱線遮蔽材、抗菌材、透明導電材、帯電防止材、包装材、放熱材などに利用することができ、本発明の銀粒子含有膜の特徴である自然な色調を生かす観点からは熱線遮蔽材、透明導電材、帯電防止材などに好ましく利用することができる。
 その中でも本発明の銀粒子含有膜は、熱線(近赤外線)を選択的に反射または吸収するために使用される熱線遮蔽材により好ましく用いることができ、例えば、乗り物用フィルム、建材用フィルム、農業用フィルムなどが挙げられる。これらの中でも、省エネルギー効果の点で、乗り物用フィルム(好ましくは自動車用であり、より好ましくは自動車のフロントガラス用)または建材用フィルム(好ましくは窓用)であることが好ましい。
 なお、本発明において、熱線(近赤外線)とは、太陽光に約50%含まれる近赤外線(780nm~1,800nm)を意味する。
<Application>
The silver particle-containing film of the present invention can be applied to various fields by taking advantage of the characteristics of silver. For example, heat ray shielding materials, antibacterial materials, transparent conductive materials, antistatic materials, packaging materials, heat dissipation materials From the viewpoint of utilizing the natural color tone that is a feature of the silver particle-containing film of the present invention, it can be preferably used for a heat ray shielding material, a transparent conductive material, an antistatic material, and the like.
Among them, the silver particle-containing film of the present invention can be preferably used for a heat ray shielding material used for selectively reflecting or absorbing heat rays (near infrared rays). For example, films for vehicles, films for building materials, agriculture Films for use. Among these, a film for vehicles (preferably for automobiles, more preferably for automobile windshields) or a film for building materials (preferably for windows) is preferable from the viewpoint of energy saving effect.
In the present invention, heat rays (near infrared rays) mean near infrared rays (780 nm to 1,800 nm) contained in sunlight by about 50%.
 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。
 以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
The features of the present invention will be described more specifically with reference to the following examples.
The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
[実施例1]
<六角形状の平板状の銀平板粒子の合成>
(種晶溶液の作製)
 2.5mMのクエン酸ナトリウム水溶液50mLに、0.5g/lのポリスチレンスルホン酸水溶液を2.5ml添加し、35℃まで加熱した。この溶液に10mMの水素化ほう素ナトリウム水溶液を3ml添加し、0.5mMの硝酸銀水溶液50mlを20ml/minで攪拌しながら添加した。この溶液を30分間攪拌し、種晶溶液を作製した。
[Example 1]
<Synthesis of hexagonal tabular silver tabular grains>
(Preparation of seed crystal solution)
2.5 ml of a 0.5 g / l polystyrene sulfonic acid aqueous solution was added to 50 mL of a 2.5 mM sodium citrate aqueous solution and heated to 35 ° C. To this solution, 3 ml of 10 mM sodium borohydride aqueous solution was added, and 50 ml of 0.5 mM silver nitrate aqueous solution was added with stirring at 20 ml / min. This solution was stirred for 30 minutes to prepare a seed crystal solution.
(銀ナノ粒子分散液の調製)
 反応釜に、2.5mMのクエン酸ナトリウム水溶液132.7mlを入れ、イオン交換水87.1mlを添加し、35℃まで加熱した。反応釜中の上記溶液に、10mMのアスコルビン酸水溶液を2ml添加し、前記種晶溶液を42.4ml添加し、0.5mMの硝酸銀水溶液79.6mlを2ml/min(添加時間39.8分)で攪拌しながら添加した。30分間攪拌した後、0.35Mのヒドロキノンスルホン酸カリウム水溶液71.1mlを反応釜に添加し、7質量%ゼラチン水溶液200gを反応釜に添加した。反応釜中の上記溶液に亜硫酸銀沈殿物混合液〔0.25Mの亜硫酸ナトリウム水溶液107mlと、0.47Mの硝酸銀水溶液107mlを混合してできた、白色の亜硫酸銀沈殿物混合液〕を添加した。亜硫酸銀沈殿物混合液を添加した直後の液pHは5.6であった。これを、300分攪拌し、銀ナノ粒子分散液A1を得た。
 種晶溶液からの銀ナノ粒子分散液の調製中、硝酸銀添加レートと、亜硫酸銀沈殿物混合液添加直後の銀ナノ粒子分散液のpHを、下記表1に記載した。
 銀ナノ粒子分散液A1を200mL抽出し、遠心分離機(コクサン社製H200-N)で7000rpm、60分遠心分離を行い、銀ナノ粒子を沈殿させた。遠心分離後の上澄み液を190mL捨て、0.2mMのNaOH水溶液を90mL添加し、卓上型ホモジナイザー(三井電気精機社製、SpinMix08)にて15000rpmで20分間分散させることで、銀ナノ粒子分散液B1を調液した。
(Preparation of silver nanoparticle dispersion)
The reaction kettle was charged with 132.7 ml of a 2.5 mM sodium citrate aqueous solution, 87.1 ml of ion-exchanged water was added, and the mixture was heated to 35 ° C. 2 ml of 10 mM ascorbic acid aqueous solution is added to the above solution in the reaction kettle, 42.4 ml of the seed crystal solution is added, and 79.6 ml of 0.5 mM silver nitrate aqueous solution is 2 ml / min (addition time 39.8 minutes). With stirring. After stirring for 30 minutes, 71.1 ml of a 0.35M potassium hydroquinonesulfonate aqueous solution was added to the reaction kettle, and 200 g of a 7 mass% gelatin aqueous solution was added to the reaction kettle. To the above solution in the reaction vessel was added a silver sulfite precipitate mixture (white silver sulfite precipitate mixture formed by mixing 107 ml of a 0.25 M aqueous sodium sulfite solution and 107 ml of a 0.47 M aqueous silver nitrate solution). . The solution pH immediately after the addition of the silver sulfite precipitate mixture was 5.6. This was stirred for 300 minutes to obtain a silver nanoparticle dispersion liquid A1.
Table 1 below shows the silver nitrate addition rate and the pH of the silver nanoparticle dispersion immediately after the addition of the silver sulfite precipitate mixture during the preparation of the silver nanoparticle dispersion from the seed crystal solution.
200 mL of the silver nanoparticle dispersion A1 was extracted, and centrifuged at 7000 rpm for 60 minutes with a centrifuge (H200-N manufactured by Kokusan Co., Ltd.) to precipitate silver nanoparticles. 190 mL of the supernatant after centrifugation was discarded, 90 mL of 0.2 mM NaOH aqueous solution was added, and the mixture was dispersed at 15000 rpm for 20 minutes with a desktop homogenizer (Mitsui Denki Seiki Co., Ltd., SpinMix08), whereby silver nanoparticle dispersion B1 Was prepared.
<六角平板状の銀平板粒子の評価>
 この銀ナノ粒子分散液A1中には、平均円相当径230nm、平均粒子厚み16nmの銀の六角平板粒子(以下、六角平板状の銀平板粒子と称する)が主として生成していることを以下の評価方法にしたがって確認した。銀ナノ粒子分散液B1に関しても、銀ナノ分散液A1と同様のとほぼ同じ結果であった。
 以下に、銀ナノ粒子分散液中の得られた銀ナノ平板粒子について、諸特性を評価した方法を示す。また、評価した結果のうち、銀ナノ粒子の形状と平均円相当径の測定結果を表1に示す。
<Evaluation of hexagonal tabular silver tabular grains>
In this silver nanoparticle dispersion A1, silver hexagonal tabular grains (hereinafter referred to as hexagonal tabular silver tabular grains) having an average equivalent circular diameter of 230 nm and an average grain thickness of 16 nm are mainly generated. It confirmed according to the evaluation method. Regarding the silver nanoparticle dispersion B1, the result was almost the same as that of the silver nanodispersion A1.
Below, the method which evaluated various characteristics about the obtained silver nano tabular grain in a silver nanoparticle dispersion liquid is shown. Moreover, among the evaluated results, Table 1 shows the measurement results of the shape of the silver nanoparticles and the average equivalent circle diameter.
-銀ナノ粒子の形状-
 銀ナノ粒子の形状均一性は、観察したSEM画像から任意に抽出した200個の粒子の形状を、六角形状の銀平板粒子、円形状の銀平板粒子、涙型などの不定形形状の粒子を互いに区別して画像解析を行い、60個数%以上含まれる形状を求めた。
-Shape of silver nanoparticles-
The shape uniformity of silver nanoparticles is the shape of 200 particles arbitrarily extracted from the observed SEM image, and hexagonal silver tabular grains, circular silver tabular grains, and irregular shaped grains such as teardrops. Image analysis was performed while distinguishing them from each other, and shapes containing 60% by number or more were obtained.
-六角形状の銀平板粒子の平均円相当径-
 銀ナノ粒子分散液A1、B1それぞれの分散液に関してTEM観察により得られた像を、画像処理ソフトImageJに取り込み、画像処理を施した。数視野のTEM像から任意に抽出した500個の粒子に関して画像解析を行い、同面積円相当直径を算出した。これらの母集団に基づき統計処理した結果、A1、B1共に平均直径は230nmであった。
-Average circle equivalent diameter of hexagonal silver tabular grains-
Images obtained by TEM observation for the dispersions of the silver nanoparticle dispersions A1 and B1 were taken into image processing software ImageJ and subjected to image processing. Image analysis was performed on 500 particles arbitrarily extracted from TEM images of several fields of view, and the equivalent circle diameter was calculated. As a result of statistical processing based on these populations, both A1 and B1 had an average diameter of 230 nm.
-平均粒子厚み-
 銀平板粒子分散液B1をシリコン基板上に滴下して乾燥し、銀平板粒子の個々の厚みをFIB-TEM法により測定した。銀平板粒子分散液B中の銀平板粒子5個を測定して平均厚みは16nmであった。その他の実施例、比較例に関して同様の手法で平均厚みを算出した結果、平均厚みが8nm~16nmであることを確認した。
-Average particle thickness-
The silver tabular grain dispersion B1 was dropped on a silicon substrate and dried, and the individual thickness of the silver tabular grains was measured by the FIB-TEM method. Five silver tabular grains in the silver tabular grain dispersion B were measured, and the average thickness was 16 nm. As a result of calculating the average thickness for other examples and comparative examples by the same method, it was confirmed that the average thickness was 8 nm to 16 nm.
-アスペクト比-
 得られた六角形状の銀平板粒子の平均円相当径及び平均粒子厚みから、平均円相当径を平均粒子厚みで除算して、六角形状の銀平板粒子のアスペクト比を算出した。
-aspect ratio-
From the average equivalent circle diameter and the average grain thickness of the obtained hexagonal silver tabular grains, the average equivalent circle diameter was divided by the average grain thickness to calculate the aspect ratio of the hexagonal silver tabular grains.
<銀平板粒子含有層の作製>
 銀平板粒子分散液16mlに1NのNaOHを0.75ml添加し、イオン交換水24ml添加し、遠心分離器(コクサン社製H-200N、アンブルローターBN)で5,000rpm、5分間、遠心分離を行い、六角形状の平板状の銀平板粒子を沈殿させた。遠心分離後の上澄み液を捨て、水を5ml添加し、沈殿した六角形状の平板状の銀平板粒子を再分散させた。この分散液に2質量%の下記W-1の水メタノール溶液(水:メタノール=1:1(質量比))を1.6ml添加し、塗布液を作製した。
化合物W-1
Figure JPOXMLDOC01-appb-C000001
<Preparation of silver tabular grain containing layer>
Add 0.75 ml of 1N NaOH to 16 ml of silver tabular grain dispersion, add 24 ml of ion-exchanged water, and centrifuge at 5,000 rpm for 5 minutes using a centrifuge (Hokusan H-200N, Amble Rotor BN). Then, hexagonal tabular silver tabular grains were precipitated. The supernatant liquid after centrifugation was discarded, 5 ml of water was added, and the precipitated hexagonal tabular silver tabular grains were redispersed. 1.6 ml of 2% by weight of the following W-1 aqueous methanol solution (water: methanol = 1: 1 (mass ratio)) was added to this dispersion to prepare a coating solution.
Compound W-1
Figure JPOXMLDOC01-appb-C000001
 この塗布液をワイヤー塗布バーNo.14(R.D.S Webster N.Y.社製)を用いて50μm厚のPETフィルム(A4300、東洋紡績(株)製)上に塗布し、乾燥させて、表面に六角形状の平板状の銀平板粒子が固定された乾燥厚み100nmの銀平板粒子含有層を有するフィルムを得た。以上により、銀平板粒子含有層を有する銀粒子含有膜を作製した。 This coating liquid is applied to the wire coating bar No. 14 (RDS Webster NY Co., Ltd.) was applied onto a 50 μm thick PET film (A4300, manufactured by Toyobo Co., Ltd.), dried, and a hexagonal flat plate on the surface. A film having a silver tabular grain-containing layer having a dry thickness of 100 nm to which silver tabular grains were fixed was obtained. Thus, a silver particle-containing film having a tabular silver particle-containing layer was produced.
<熱線遮蔽材の作製>
 次に、上記PETフィルムの銀平板粒子含有層が形成された面の裏側の面に、ITOハードコート塗布液(三菱マテリアル(株)製EI-1)を乾膜厚1.5μmとなるようワイヤー塗布バーNo.10(R.D.S Webster N.Y.社製)を用いて塗布し、実施例1の熱線遮蔽材を得た。
<Production of heat ray shielding material>
Next, an ITO hard coat coating solution (EI-1 manufactured by Mitsubishi Materials Co., Ltd.) is formed on the back surface of the PET film on which the silver tabular grain-containing layer is formed, so that the dry film thickness becomes 1.5 μm. Application bar No. 10 (manufactured by R.D.S. Webster NY) was used to obtain a heat ray shielding material of Example 1.
[実施例2]
 0.5mMの硝酸銀水溶液79.6mlを5ml/min(添加時間15.9分)で攪拌しながら添加した以外は実施例1と同様にして実施例2の熱線遮蔽材を得た。
[Example 2]
A heat ray shielding material of Example 2 was obtained in the same manner as Example 1 except that 79.6 ml of 0.5 mM silver nitrate aqueous solution was added with stirring at 5 ml / min (addition time 15.9 minutes).
[実施例3]
 0.5mMの硝酸銀水溶液79.6mlを10ml/min(添加時間8.0分)で攪拌しながら添加した以外は実施例1と同様にして実施例3の熱線遮蔽材を得た。
[Example 3]
A heat ray shielding material of Example 3 was obtained in the same manner as in Example 1 except that 79.6 ml of 0.5 mM silver nitrate aqueous solution was added with stirring at 10 ml / min (addition time: 8.0 minutes).
[実施例4]
 亜硫酸銀沈殿物混合液を添加した後、すぐに0.2MのNaOH水溶液を添加し、銀ナノ粒子分散液のpHを5.9とした以外は実施例1と同様にして実施例4の熱線遮蔽材を得た。
[Example 4]
After adding the silver sulfite precipitate mixed solution, immediately after adding 0.2 M NaOH aqueous solution, the pH of the silver nanoparticle dispersion was adjusted to 5.9. A shielding material was obtained.
[実施例5]
 亜硫酸銀沈殿物混合液を添加した後、すぐに0.2MのNaOH水溶液を添加し、銀ナノ粒子分散液のpHを6.5とした以外は実施例1と同様にして実施例5の熱線遮蔽材を得た。
[Example 5]
After adding the silver sulfite precipitate mixed solution, immediately after adding 0.2M NaOH aqueous solution, the pH of the silver nanoparticle dispersion was adjusted to 6.5, the heat ray of Example 5 A shielding material was obtained.
[実施例6]
 亜硫酸銀沈殿物混合液を添加した後、すぐに0.2MのNaOH水溶液を添加し、銀ナノ粒子分散液のpHを7.1とした以外は実施例1と同様にして実施例6の熱線遮蔽材を得た。
[Example 6]
After adding the silver sulfite precipitate mixed solution, immediately after adding 0.2 M NaOH aqueous solution, the pH of the silver nanoparticle dispersion liquid was set to 7.1. A shielding material was obtained.
[実施例7]
 純水12.5Lに1質量%のクエン酸ナトリウム水溶液995mLおよび8g/Lのポリスチレンスルホン酸ナトリウム水溶液678mLを添加し、35℃まで加熱した。この溶液に2.3質量%の水素化ほう素ナトリウム水溶液を40.7mL添加し、0.5mMの硝酸銀水溶液10.8Lを攪拌しながら添加した。この溶液を20分間攪拌した後、1質量%のクエン酸ナトリウム水溶液995mLと10mMのアスコルビン酸水溶液1.34Lおよび純水12.5Lを添加した。さらに0.5mMの硝酸銀水溶液8.1Lを1600mL/min(添加時間5.1分)で攪拌しながら添加した。30分間攪拌した後、0.35Mのヒドロキノンスルホン酸カリウム水溶液8.0L、および、平均分子量20万の不活性ゼラチン1.5Kgを純水13.1Lに溶解したゼラチン水溶液を反応釜に添加した。次に、予め、13.5%の亜硫酸ナトリウム水溶液2.7L、10%硝酸銀水溶液9.3Lおよび純水15.0Lを混合してできた亜硫酸銀の白色沈殿物混合液を反応釜に添加した。この溶液を300分間攪拌した後、1NのNaOHを5.7Lと2質量%の1-(5-メチルウレイドフェニル)-5-メルカプトテトラゾールメルカプトテトラゾール水溶液を181mL添加して、銀ナノ粒子分散液A2を得た。次いで、実施例1と同様の方法で銀ナノ粒子分散液B2を作製した。この銀ナノ粒子分散液A2、B2には、実施例1と同様の方法で平均円相当径を算出し、平均円相当径125nmの銀の六角平板粒子(以後Ag六角平板粒子と称する)が生成していることを確認した。
 銀ナノ粒子分散液B2を用いて、下記に示す組成の金属粒子含有層用の塗布液C2を調液した。
 また、下記に示す組成の金属酸化物粒子含有層用の塗布液C3を調液した。これらを機材に形成塗布することで、熱線遮蔽材を作製した。なお、以下の調液における固形分濃度は、純水もしくはメタノール、エタノールなどの水溶性アルコールなどにより、適宜調整した後に使用した。
[Example 7]
To 12.5 L of pure water, 995 mL of a 1% by mass aqueous sodium citrate solution and 678 mL of an 8 g / L aqueous sodium polystyrene sulfonate solution were added and heated to 35 ° C. To this solution, 40.7 mL of a 2.3 mass% sodium borohydride aqueous solution was added, and 10.8 L of a 0.5 mM aqueous silver nitrate solution was added with stirring. After stirring this solution for 20 minutes, 995 mL of 1 mass% sodium citrate aqueous solution, 1.34 L of 10 mM ascorbic acid aqueous solution and 12.5 L of pure water were added. Furthermore, 8.1 L of 0.5 mM silver nitrate aqueous solution was added with stirring at 1600 mL / min (addition time 5.1 minutes). After stirring for 30 minutes, 8.0 L of a 0.35 M potassium hydroquinonesulfonate aqueous solution and a gelatin aqueous solution in which 1.5 kg of inert gelatin having an average molecular weight of 200,000 was dissolved in 13.1 L of pure water were added to the reaction kettle. Next, a white precipitate mixed solution of silver sulfite obtained by mixing 2.7 L of 13.5% sodium sulfite aqueous solution 9.3 L, 10% silver nitrate aqueous solution 9.3 L and pure water 15.0 L was added to the reaction kettle in advance. . After stirring this solution for 300 minutes, 5.7 L of 1N NaOH and 181 mL of 2% by mass of 1- (5-methylureidophenyl) -5-mercaptotetrazole mercaptotetrazole aqueous solution were added, and silver nanoparticle dispersion A2 Got. Next, a silver nanoparticle dispersion liquid B2 was produced in the same manner as in Example 1. In these silver nanoparticle dispersions A2 and B2, the average equivalent circle diameter was calculated in the same manner as in Example 1 to produce silver hexagonal tabular grains (hereinafter referred to as Ag hexagonal tabular grains) having an average equivalent circle diameter of 125 nm. I confirmed that
A coating solution C2 for a metal particle-containing layer having the composition shown below was prepared using the silver nanoparticle dispersion B2.
Moreover, the coating liquid C3 for metal oxide particle content layers of the composition shown below was prepared. The heat ray shielding material was produced by forming and applying these to the equipment. In addition, the solid content concentration in the following preparations was used after appropriately adjusting with pure water or a water-soluble alcohol such as methanol or ethanol.
金属粒子含有層用の塗布液C2の組成:
 ポリエステル水溶液:プラスコートZ687
 (互応化学(株)製、固形分濃度25質量%)     1.85質量部
 架橋剤A:カルボジライトV-02-L2
 (日清紡(株)製、固形分濃度20質量%)      1.15質量部
 架橋剤B:エポクロスK-2020E
 ((株)日本触媒製、固形分濃度20質量%)     0.51質量部
 界面活性剤A:Fリパール8780Pリパール870P
 (ライオン(株)製、固形分1質量%)        0.96質量部
 界面活性剤B:ナロアクティーCL-95
 (三洋化成工業(株)製、固形分1質量%)      1.18質量部
 銀ナノ粒子分散液B1               32.75質量部
 1-(m-メチルウレイドフェニル)-5-メルカプトテトラゾール
 (和光純薬(株)製、固形分2質量%)        0.62質量部
 水                        30.97質量部
 メタノール                       30質量部
Composition of coating liquid C2 for metal particle-containing layer:
Polyester aqueous solution: Pluscoat Z687
(Saiyo Chemical Co., Ltd., solid concentration 25% by mass) 1.85 parts by mass Crosslinker A: Carbodilite V-02-L2
(Nisshinbo Co., Ltd., solid concentration 20% by mass) 1.15 parts by mass Crosslinking agent B: Epocross K-2020E
(Nippon Shokubai Co., Ltd., solid content concentration 20% by mass) 0.51 parts by mass Surfactant A: F Ripar 8780P Ripar 870P
(Lion Corporation, solid content 1% by mass) 0.96 parts by mass Surfactant B: Naroacty CL-95
(Manufactured by Sanyo Chemical Industries, Ltd., solid content 1 mass%) 1.18 parts by mass Silver nanoparticle dispersion B1 32.75 parts by mass 1- (m-methylureidophenyl) -5-mercaptotetrazole (Wako Pure Chemical ( Co., Ltd., solid content 2% by mass) 0.62 parts by mass Water 30.97 parts by mass Methanol 30 parts by mass
オーバーコート層用の塗布液O1の組成:
コロイド状シリカ微粒子:スノーテックスXL
(平均粒子径40nm、日産化学工業(株)製、固形分10質量%)
                           1.29質量部
コロイド状シリカ微粒子:アエロジルOX-50
(平均粒子径40nm、日本アエロジル(株)製、
固形分10質量%の水分散物を調製)          0.29質量部
アクリルポリマー水分散物:AS563A
 (ダイセルファインケム(株)製、固形分27.5質量%)
                           0.49質量部
カルナバワックス:セロゾール524(中京油脂(株)製、固形分3質量%
)                          2.86質量部
架橋剤:カルボジライトV-02-L2
 (日清紡ケミカル(株)製、固形分濃度20質量%)  1.71質量部
界面活性剤A:リパール870P(ライオン(株)製、固形分1質量%)
                           2.32質量部
界面活性剤B:ナロアクティーCL-95
 (三洋化成工業(株)製、固形分1質量%)      3.22質量部
ウレタンポリマー水溶液:オレスターUD350
 (三井化学(株)製、固形分38質量%)       4.14質量部
水                         83.68質量部
Composition of coating liquid O1 for overcoat layer:
Colloidal silica fine particles: Snowtex XL
(Average particle size 40 nm, manufactured by Nissan Chemical Industries, Ltd., solid content 10% by mass)
1.29 parts by mass of colloidal silica fine particles: Aerosil OX-50
(Average particle size 40 nm, manufactured by Nippon Aerosil Co., Ltd.,
(Preparing an aqueous dispersion having a solid content of 10% by mass) 0.29 parts by mass Acrylic polymer aqueous dispersion: AS563A
(Daicel Finechem Co., Ltd., solid content 27.5% by mass)
0.49 parts by mass carnauba wax: cellosol 524 (manufactured by Chukyo Yushi Co., Ltd., solid content 3% by mass)
2.86 parts by weight cross-linking agent: Carbodilite V-02-L2
(Nisshinbo Chemical Co., Ltd., solid concentration 20% by mass) 1.71 parts by mass Surfactant A: Ripar 870P (Lion Corporation, solid content 1% by mass)
2.32 parts by mass Surfactant B: NAROACTY CL-95
(Manufactured by Sanyo Chemical Industries, Ltd., solid content 1% by mass) 3.22 parts by mass urethane polymer aqueous solution: Olester UD350
(Mitsui Chemicals, Inc., solid content 38% by mass) 4.14 parts by mass water 83.68 parts by mass
金属酸化物粒子含有層用の塗布液C3の組成:
 UV-硬化型 ITO塗料 PI-3(三菱マテリアル電子化成(株)製
)                            25質量部
 トルエン(和光純薬(株)製)              75質量部
Composition of coating liquid C3 for the metal oxide particle-containing layer:
UV-curable ITO coating PI-3 (Mitsubishi Materials Electronics Chemical Co., Ltd.) 25 parts by mass Toluene (Wako Pure Chemical Industries, Ltd.) 75 parts by mass
 PETフィルム(東洋紡(株)製 A4300、厚み:75μm)の表面上に、金属粒子含有層用の塗布液C2をワイヤーバーを用いて、乾燥後の平均厚みが80nmになるように塗布した。その後、130℃で1分間加熱し、乾燥、固化し、金属粒子含有層を形成した。
 次いで、オーバーコート層用塗布液O1を、ワイヤーバーを用いて、乾燥後の平均厚みが350nmとなるように塗布した。その後、130℃で乾燥、固化し、オーバーコート層を形成した。
 次いで、形成した金属粒子含有層の裏面、即ち、PETフィルムの塗布液C2を塗布していない面に、金属酸化物粒子含有層用の塗布液C3を、ワイヤーバーを用いて、乾燥後の平均厚みが1.5μmになるように塗布した。次いで、高圧水銀灯を用いて紫外線を照射することにより金属酸化物粒子含有層を硬化させた。なお、塗布層に対して紫外線を400mJ/cm照射した。
 得られた熱線遮蔽フィルムに対して、後述の方法で粘着層を設けた。
 なお、前記平均厚みは熱線遮蔽フィルムの断面SEM、TEMを観察することにより算出できる。塗布厚みに応じて適宜選択する。本実施例ではFIB-TEM法で断面加工、断面観察を行い、塗布膜の厚みを10点測定した平均値を膜厚とした。この他にも、機械研磨、イオンミリング法、ミクロトーム法などでも断面加工は可能である。
 得られた熱線遮蔽フィルムのオーバーコート層の表面に粘着剤を貼り合わせた。粘着層として、PD-S1(パナック社製)を用い、一方の離型シートを剥がした面を前記オーバーコート層と貼り合わせた。得られた熱線遮蔽材を実施例7の熱線遮蔽材とした。
On the surface of a PET film (Toyobo Co., Ltd. A4300, thickness: 75 μm), a coating solution C2 for a metal particle-containing layer was applied using a wire bar so that the average thickness after drying was 80 nm. Then, it heated at 130 degreeC for 1 minute, dried and solidified, and formed the metal particle content layer.
Next, the overcoat layer coating solution O1 was applied using a wire bar so that the average thickness after drying was 350 nm. Then, it dried and solidified at 130 degreeC and formed the overcoat layer.
Next, on the back surface of the formed metal particle-containing layer, that is, the surface on which the coating liquid C2 for the PET film is not applied, the coating liquid C3 for the metal oxide particle-containing layer is averaged after drying using a wire bar. It was applied so that the thickness was 1.5 μm. Next, the metal oxide particle-containing layer was cured by irradiating with ultraviolet rays using a high-pressure mercury lamp. The coating layer was irradiated with ultraviolet rays at 400 mJ / cm 2 .
The adhesive layer was provided with the method mentioned later with respect to the obtained heat ray shielding film.
The average thickness can be calculated by observing cross sections SEM and TEM of the heat ray shielding film. It selects suitably according to application | coating thickness. In this example, cross-section processing and cross-section observation were performed by FIB-TEM, and the average value obtained by measuring the thickness of the coating film at 10 points was defined as the film thickness. In addition, cross-section processing can be performed by mechanical polishing, ion milling, microtome, or the like.
An adhesive was bonded to the surface of the overcoat layer of the obtained heat ray shielding film. PD-S1 (manufactured by Panac) was used as the adhesive layer, and the surface from which one release sheet was peeled was bonded to the overcoat layer. The obtained heat ray shielding material was used as the heat ray shielding material of Example 7.
[実施例8]
 0.5mMの硝酸銀水溶液8.1Lを1000mL/min(添加時間8.1分)で攪拌しながら添加した以外は実施例7と同様にして実施例8の熱線遮蔽材を得た。
[Example 8]
A heat ray shielding material of Example 8 was obtained in the same manner as Example 7 except that 8.1 L of 0.5 mM silver nitrate aqueous solution was added with stirring at 1000 mL / min (addition time 8.1 minutes).
[実施例9]
 0.5mMの硝酸銀水溶液8.1Lを405mL/min(添加時間20分)で攪拌しながら添加した以外は実施例7と同様にして実施例9の熱線遮蔽材を作製した。
[Example 9]
A heat ray shielding material of Example 9 was produced in the same manner as Example 7 except that 8.1 L of 0.5 mM silver nitrate aqueous solution was added with stirring at 405 mL / min (addition time: 20 minutes).
[実施例10]
 亜硫酸銀沈殿物混合液を添加した後、すぐに0.2MのNaOH水溶液を添加し、銀ナノ粒子分散液のpHを7.2とした以外は実施例7と同様にして実施例10の熱線遮蔽材を得た。
[Example 10]
After adding the silver sulfite precipitate mixed solution, immediately after adding 0.2 M NaOH aqueous solution, the pH of the silver nanoparticle dispersion liquid was changed to 7.2. A shielding material was obtained.
[比較例1]
 0.5mMの硝酸銀水溶液79.6mlを20ml/min(添加時間4.0分)で攪拌しながら添加した以外は実施例1と同様にして比較例1の熱線遮蔽材を得た。
[Comparative Example 1]
A heat ray shielding material of Comparative Example 1 was obtained in the same manner as in Example 1 except that 79.6 ml of 0.5 mM silver nitrate aqueous solution was added with stirring at 20 ml / min (addition time: 4.0 minutes).
[比較例2]
 0.5mMの硝酸銀水溶液79.6mlを50ml/min(添加時間1.6分)で攪拌しながら添加した以外は実施例1と同様にして比較例2の熱線遮蔽材を得た。
[Comparative Example 2]
A heat ray shielding material of Comparative Example 2 was obtained in the same manner as in Example 1 except that 79.6 ml of 0.5 mM silver nitrate aqueous solution was added with stirring at 50 ml / min (addition time 1.6 minutes).
[比較例3]
 0.5mMの硝酸銀水溶液79.6mlを100ml/min(添加時間0.8分)で攪拌しながら添加した以外は実施例1と同様にして比較例3の熱線遮蔽材を得た。
[Comparative Example 3]
A heat ray shielding material of Comparative Example 3 was obtained in the same manner as in Example 1 except that 79.6 ml of 0.5 mM silver nitrate aqueous solution was added with stirring at 100 ml / min (addition time 0.8 minutes).
[比較例4]
 亜硫酸銀沈殿物混合液を添加した後、すぐに0.2MのNaOH水溶液を添加し、銀ナノ粒子分散液のpHを8.5とした以外は実施例1と同様にして比較例4の熱線遮蔽材を得た。
[Comparative Example 4]
After adding the silver sulfite precipitate mixture, immediately after adding 0.2 M NaOH aqueous solution, the pH of the silver nanoparticle dispersion was 8.5, the heat ray of Comparative Example 4 A shielding material was obtained.
[比較例5]
 亜硫酸銀沈殿物混合液を添加した後、すぐに0.2MのNaOH水溶液を添加し、銀ナノ粒子分散液のpHを9.5とした以外は実施例1と同様にして比較例5の熱線遮蔽材を得た。
[Comparative Example 5]
After adding the silver sulfite precipitate mixed solution, immediately after adding 0.2 M NaOH aqueous solution, the pH of the silver nanoparticle dispersion was adjusted to 9.5. A shielding material was obtained.
[比較例6]
 亜硫酸銀沈殿物混合液を添加した後、すぐに0.2MのNaOH水溶液を添加し、銀ナノ粒子分散液のpHを10.1とした以外は実施例1と同様にして比較例6の熱線遮蔽材を得た。
[Comparative Example 6]
After adding the silver sulfite precipitate mixed solution, immediately after adding 0.2 M NaOH aqueous solution, the pH of the silver nanoparticle dispersion was changed to 10.1, the heat ray of Comparative Example 6 A shielding material was obtained.
[比較例7]
 0.5mMの硝酸銀水溶液8.1Lを2000mL/min(添加時間4.1分)で攪拌しながら添加した以外は実施例7と同様にして比較例7の熱線遮蔽材を得た。
[Comparative Example 7]
A heat ray shielding material of Comparative Example 7 was obtained in the same manner as in Example 7 except that 8.1 L of 0.5 mM aqueous silver nitrate solution was added with stirring at 2000 mL / min (addition time 4.1 minutes).
[比較例8]
 0.5mMの硝酸銀水溶液8.1Lを4000mL/min(添加時間2.0分)で攪拌しながら添加した以外は実施例7と同様にして比較例8の熱線遮蔽材を得た。
[Comparative Example 8]
A heat ray shielding material of Comparative Example 8 was obtained in the same manner as in Example 7 except that 8.1 L of 0.5 mM aqueous silver nitrate solution was added with stirring at 4000 mL / min (addition time: 2.0 minutes).
[比較例9]
 亜硫酸銀沈殿物混合液を添加した後、すぐに0.2MのNaOH水溶液を添加し、銀ナノ粒子分散液のpHを8.3とした以外は実施例7と同様にして比較例9の熱線遮蔽材を得た。
[Comparative Example 9]
After adding the silver sulfite precipitate mixed solution, immediately after adding 0.2 M NaOH aqueous solution, the pH of the silver nanoparticle dispersion was adjusted to 8.3. A shielding material was obtained.
[比較例10]
 亜硫酸銀沈殿物混合液を添加した後、すぐに0.2MのNaOH水溶液を添加し、銀ナノ粒子分散液のpHを9.7とした以外は実施例7と同様にして比較例10の熱線遮蔽材を得た。
[Comparative Example 10]
After adding the silver sulfite precipitate mixed solution, immediately after adding 0.2 M NaOH aqueous solution, the pH of the silver nanoparticle dispersion was changed to 9.7. A shielding material was obtained.
<熱線遮蔽材の評価>
 各実施例および比較例にて得られた熱線遮蔽材の評価を行った。
<Evaluation of heat ray shielding material>
The heat ray shielding material obtained in each Example and Comparative Example was evaluated.
-色調-
 得られた熱線遮蔽材について、L*a*b*表色系における色調を、分光測色計(CM-700d、コニカミノルタ社製)を用いて測定した。その結果から、L*と、a*と、b*の値を算出し、それぞれ下記表1に記載した。なお、色調測定時には、X-rite社製 マクベスカラーチャート 「カラーチェッカー CLASSIC」のNo.24 Blackを下地として、金属酸化物粒子含有層が下地と接するように配置して、色調測定を行った。
-Color tone-
About the obtained heat ray shielding material, the color tone in the L * a * b * color system was measured using a spectrocolorimeter (CM-700d, manufactured by Konica Minolta). From the results, L *, a *, and b * values were calculated and listed in Table 1 below. When measuring the color tone, the Macbeth color chart “Color Checker CLASSIC” No. 24 Black was used as a base, and the metal oxide particle-containing layer was placed in contact with the base, and color tone measurement was performed.
-光学特性-
 得られた熱線遮蔽フィルムのもう一方の離型シートを剥がして、厚さ3mmのフロートガラスと張り合わせた状態で光学特性の評価を行った。
-optical properties-
The other release sheet of the obtained heat ray shielding film was peeled off, and the optical properties were evaluated in a state of being bonded to a float glass having a thickness of 3 mm.
(光学特性評価)
 金属粒子含有層を形成時の塗布量によって熱線遮蔽材の可視光透過率と遮蔽係数を変化させることができる。各実施例、各比較例において、各実施例および比較例の金属平板粒子含有液を含む金属粒子含有層用の塗布液C1の塗布量を変化させて多数の熱線遮蔽材を作製し、以下の方法で可視光透過率と遮蔽係数を算出した。
(Optical property evaluation)
The visible light transmittance and the shielding coefficient of the heat ray shielding material can be changed depending on the coating amount when forming the metal particle-containing layer. In each example and each comparative example, a large number of heat ray shielding materials were prepared by changing the coating amount of the coating liquid C1 for the metal particle-containing layer containing the metal tabular particle-containing liquid of each example and comparative example, The visible light transmittance and the shielding coefficient were calculated by the method.
可視光透過率と遮蔽係数の測定方法:
 各実施例、比較例において作製した熱線遮蔽材の透過スペクトル、反射スペクトルは紫外可視近赤外分光機(日本分光社製、V-670、積分球ユニット使用)を用いて測定し、JISR3106、JISA5759に従って可視光透過率、遮蔽係数を算定した。
Measuring method of visible light transmittance and shielding coefficient:
The transmission spectrum and reflection spectrum of the heat ray shielding material prepared in each example and comparative example were measured using an ultraviolet-visible-near infrared spectrometer (manufactured by JASCO Corporation, V-670, using an integrating sphere unit), and JIS R3106, JIS A5759. The visible light transmittance and shielding coefficient were calculated according to the above.
(1)可視光透過率
 各熱線遮蔽材について、380nm~780nmまで測定した各波長の透過率を、各波長の分光視感度により補正することで算出した。
(2)遮蔽係数の測定方法
 各熱線遮蔽材について、300nm~2500nmまで測定した各波長の透過率から、JISA5759記載の方法に基づき算出した。
(1) Visible light transmittance For each heat ray shielding material, the transmittance of each wavelength measured from 380 nm to 780 nm was calculated by correcting the transmittance with the spectral visibility of each wavelength.
(2) Measuring method of shielding coefficient Each heat ray shielding material was calculated from the transmittance of each wavelength measured from 300 nm to 2500 nm based on the method described in JISA5759.
-遮蔽係数0.680における可視光透過率-
 得られた可視光透過率と遮蔽係数を基に、x軸を可視光透過率(単位%)、y軸を遮蔽係数(単位なし)として、可視光透過率と遮蔽係数の関係をプロットしたグラフを作成した。
 プロットを一次曲線(直線)に近似し、得られた一次曲線を外挿して、ある遮蔽係数での可視光透過率の値(単位%)を求めた。本発明明細書中では、遮蔽係数0.680における可視光透過率を光学特性の評価に用いた。
 得られた結果を下記表1に記載した。なお、下記表中の「可視光透過率」は、遮蔽係数0.680における可視光透過率を表す。
-Visible light transmittance at a shielding factor of 0.680-
A graph plotting the relationship between the visible light transmittance and the shielding coefficient based on the obtained visible light transmittance and the shielding coefficient, with the x-axis being the visible light transmittance (unit%) and the y-axis being the shielding coefficient (no unit). It was created.
The plot was approximated to a linear curve (straight line), and the obtained linear curve was extrapolated to obtain the visible light transmittance value (unit%) at a certain shielding coefficient. In the present specification, the visible light transmittance at a shielding coefficient of 0.680 was used for evaluation of optical characteristics.
The obtained results are shown in Table 1 below. “Visible light transmittance” in the following table represents the visible light transmittance at a shielding coefficient of 0.680.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表1の結果から、本発明の熱線遮蔽材は、L*a*b*表色系における色調が|a*|≦2かつ|b*|≦2であることがわかった。
 一方、各比較例の熱線遮蔽材は、L*a*b*表色系における色調が|a*|>2、または、|b*|>2であり、熱線遮蔽材を通して景観を観察した場合の景観が著しく損なわれてしまうことがわかった。
From the results of Table 1 above, it was found that the heat ray shielding material of the present invention had a color tone of | a * | ≦ 2 and | b * | ≦ 2 in the L * a * b * color system.
On the other hand, the heat ray shielding material of each comparative example has a color tone in the L * a * b * color system of | a * |> 2 or | b * |> 2, and when the landscape is observed through the heat ray shielding material It has been found that the scenery of is significantly damaged.
-電波透過性-
 各実施例および比較例にて得られた熱線遮蔽材について東京都立産業技術センターにてKEC法を用いて測定すると、いずれもシールド効果5dB以下であったことから、電波透過性ありと判断した。
-Radio wave transmission-
When the heat ray shielding materials obtained in each of the examples and comparative examples were measured using the KEC method at the Tokyo Metropolitan Industrial Technology Center, both had a shielding effect of 5 dB or less, and thus were judged to have radio wave permeability.
-粒子傾き角-
 エポキシ樹脂で、各実施例および比較例にて得られた熱線遮蔽材を包埋処理した後、液体窒素で凍結した状態で剃刀で割断し、熱線遮蔽材の垂直方向断面試料を作製した。この垂直方向断面試料を走査型電子顕微鏡(SEM)で観察して、100個の銀ナノ粒子について、基板の水平面に対する傾角(図2Aにおいて±θに相当)の平均値を算出した。いずれも傾角は±30°以下であった。
-Particle tilt angle-
After embedding the heat ray shielding material obtained in each Example and Comparative Example with an epoxy resin, it was cleaved with a razor in a frozen state with liquid nitrogen to prepare a vertical cross-sectional sample of the heat ray shielding material. This vertical cross-sectional sample was observed with a scanning electron microscope (SEM), and the average value of the inclination angle (corresponding to ± θ in FIG. 2A) of the 100 silver nanoparticles with respect to the horizontal plane of the substrate was calculated. In all cases, the tilt angle was ± 30 ° or less.
[熱線遮蔽材付き窓ガラスの作製]
 窓ガラス表面と、粘着層を有する実施例7~10の熱線遮蔽材の粘着層表面にフイルム施工液リアルパーフェクト(リンテック株式会社製)を含んだ水溶液を噴霧してから、粘着層を介して窓ガラスに熱線遮蔽材を設置した。窓ガラスに対する熱線遮蔽材の貼り付け位置が定まった後、スキージーを用いて窓ガラスと前記熱線遮蔽材の間に残る水分をガラス中央から、端部に向けて掃き出すことにより、窓ガラス表面に前記熱線遮蔽材を固定した。このようにして、窓ガラスに粘着層を有する実施例7~10の熱線遮蔽材を設置することが可能であることを確認した。
[Production of window glass with heat ray shielding material]
An aqueous solution containing the film construction liquid Real Perfect (manufactured by Lintec Corporation) is sprayed on the surface of the window glass and the adhesive layer surface of the heat ray shielding material of Examples 7 to 10 having the adhesive layer, and then the window is passed through the adhesive layer. A heat-shielding material was installed on the glass. After the position where the heat ray shielding material is attached to the window glass is determined, the water remaining between the window glass and the heat ray shielding material is swept out from the center of the glass toward the edge using a squeegee. A heat ray shielding material was fixed. Thus, it was confirmed that the heat ray shielding materials of Examples 7 to 10 having an adhesive layer on the window glass could be installed.
[熱線遮蔽材を適用した合わせガラス体の作製]
 2枚のガラス板、2枚の合わせガラス用ポリビニルブチラール中間膜シート(PVBシート)、各実施例の熱線遮蔽材を準備し、ガラス板(1枚目)、PVBシート(1枚目)、熱線遮蔽材、PVBシート(2枚目)、ガラス板(2枚目)の順に重ねて、積層体を得た。この積層体を真空下、95℃で30分間予備圧着を行い、その後、オートフレーブ内で1.3MPa、120℃の条件で加熱しながら圧着処理することで、各実施例の熱線遮蔽材を適用した合わせガラスを得ることができることを確認した。
[Production of laminated glass body using heat ray shielding material]
Two glass plates, two polyvinyl butyral interlayer films (PVB sheets) for laminated glass, and heat ray shielding materials for each example were prepared. A glass plate (first sheet), a PVB sheet (first sheet), and heat rays A shielding material, a PVB sheet (second sheet), and a glass plate (second sheet) were stacked in this order to obtain a laminate. This laminate is pre-pressed under vacuum at 95 ° C. for 30 minutes, and then heat-shielded in the autoflave under conditions of 1.3 MPa and 120 ° C. to apply the heat ray shielding material of each example. It was confirmed that the laminated glass can be obtained.
 本発明の銀粒子含有膜は、色調に優れるために、例えば自動車、バス等の乗り物用フィルムや建材用フィルムなどとして、窓などに張り付けたときに、銀粒子含有膜を通して景観を観察した場合に自然な(グレースケールの)色調が得られ、目の疲れも少ない。本発明の銀粒子含有膜は、上記の特性を有するため、例えば自動車、バス等の乗り物用フィルムや建材用フィルムなどとして、熱線の透過を防止することの求められる種々の部材として窓などに張り付ける熱線遮蔽材として好適に利用可能である。 The silver particle-containing film of the present invention is excellent in color tone, for example, when a landscape is observed through the silver particle-containing film when pasted on a window or the like as a film for a vehicle or a building material such as a car or a bus. Natural (grayscale) color tone is obtained and eye strain is low. Since the silver particle-containing film of the present invention has the above-mentioned characteristics, it is attached to a window or the like as various members that are required to prevent transmission of heat rays, for example, as a film for a vehicle such as an automobile or a bus or a film for a building material. It can be suitably used as a heat ray shielding material.
   1   基材
   2   銀平板粒子含有層(熱線反射層)
   3   平板状の銀ナノ粒子
   D    直径
   L    厚み
   f(λ) 粒子存在域厚み
1 base material 2 silver tabular grain content layer (heat ray reflective layer)
3 Flat silver nanoparticles D Diameter L Thickness f (λ) Grain existing region thickness

Claims (10)

  1.  平均円相当径が70nm~500nmである平板状の銀ナノ粒子を含有する銀平板粒子含有層を有し、
     色調がL*a*b*表色系において、|a*|≦2かつ|b*|≦2であることを特徴とする銀粒子含有膜。
    A silver tabular grain-containing layer containing tabular silver nanoparticles having an average equivalent-circle diameter of 70 nm to 500 nm;
    A silver particle-containing film having a color tone of | a * | ≦ 2 and | b * | ≦ 2 in the L * a * b * color system.
  2.  色調が|a*|≦1.5かつ|b*|≦1.5であることを特徴とする請求項1に記載の銀粒子含有膜。 The silver particle-containing film according to claim 1, wherein the color tone is | a * | ≦ 1.5 and | b * | ≦ 1.5.
  3.  銀の種晶溶液から銀ナノ粒子分散液を調製する工程を含み、
     前記銀の種晶溶液に硝酸銀含有溶液を5分以上の添加時間で添加し、
     前記硝酸銀含有溶液を添加後の銀の種晶溶液に亜硫酸銀を含む溶液を添加し、
     前記亜硫酸銀を含む溶液を添加後の銀ナノ粒子分散液のpHを8.0以下に制御することを特徴とする銀粒子含有膜の製造方法。
    Preparing a silver nanoparticle dispersion from a silver seed crystal solution,
    Adding a silver nitrate-containing solution to the silver seed crystal solution for an addition time of 5 minutes or more;
    Add a solution containing silver sulfite to the silver seed crystal solution after adding the silver nitrate-containing solution,
    A method for producing a silver particle-containing film, wherein the pH of the silver nanoparticle dispersion liquid after the addition of the solution containing silver sulfite is controlled to 8.0 or less.
  4.  請求項3に記載の銀粒子含有膜の製造方法で製造されたことを特徴とする銀粒子含有膜。 A silver particle-containing film produced by the method for producing a silver particle-containing film according to claim 3.
  5.  請求項1、2および4のいずれか一項に記載の銀粒子含有膜を熱線反射層として含むことを特徴とする熱線遮蔽材。 A heat ray shielding material comprising the silver particle-containing film according to any one of claims 1, 2, and 4 as a heat ray reflective layer.
  6.  前記銀粒子含有膜中の前記平板状の銀ナノ粒子が、六角形状の平板状の銀ナノ粒子であることを特徴とする請求項5に記載の熱線遮蔽材。 The heat ray shielding material according to claim 5, wherein the tabular silver nanoparticles in the silver particle-containing film are hexagonal tabular silver nanoparticles.
  7.  前記銀粒子含有膜中の前記平板状の銀ナノ粒子の主平面が、前記銀平板粒子含有層の一方の表面に対して平均0°~±30°の範囲で面配向していることを特徴とする請求項5または6に記載の熱線遮蔽材。 The main plane of the tabular silver nanoparticles in the silver particle-containing film is plane-oriented in an average range of 0 ° to ± 30 ° with respect to one surface of the silver tabular grain-containing layer. The heat ray shielding material according to claim 5 or 6.
  8.  可視光透過率が65%以上であることを特徴とする請求項5~7のいずれか一項に記載の熱線遮蔽材。 The heat ray shielding material according to any one of claims 5 to 7, wherein the visible light transmittance is 65% or more.
  9.  前記銀粒子含有膜中の前記銀平板粒子含有層が、基材の少なくとも一方の面上に配置されたことを特徴とする請求項5~8のいずれか一項に記載の熱線遮蔽材。 The heat ray shielding material according to any one of claims 5 to 8, wherein the silver tabular grain-containing layer in the silver particle-containing film is disposed on at least one surface of the substrate.
  10.  金属酸化物粒子含有層が、前記基材の前記銀平板粒子含有層が配置されている面とは反対側の面上に配置されたことを特徴とする請求項5~9のいずれか一項に記載の熱線遮蔽材。 10. The metal oxide particle-containing layer is disposed on a surface of the substrate opposite to a surface on which the silver tabular particle-containing layer is disposed. The heat ray shielding material described in 1.
PCT/JP2013/057753 2012-03-27 2013-03-19 Silver-particle containing film and manufacturing method therefor, and heat ray shielding material WO2013146447A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012072475 2012-03-27
JP2012-072475 2012-03-27

Publications (1)

Publication Number Publication Date
WO2013146447A1 true WO2013146447A1 (en) 2013-10-03

Family

ID=49259705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057753 WO2013146447A1 (en) 2012-03-27 2013-03-19 Silver-particle containing film and manufacturing method therefor, and heat ray shielding material

Country Status (2)

Country Link
JP (1) JP2013228698A (en)
WO (1) WO2013146447A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111095A1 (en) * 2014-01-23 2015-07-30 西松建設株式会社 Method for manufacturing silver nanoparticles
JP2015172687A (en) * 2014-03-12 2015-10-01 凸版印刷株式会社 Optical material and optical filter
WO2018061678A1 (en) * 2016-09-29 2018-04-05 富士フイルム株式会社 Antireflection structure

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6012527B2 (en) * 2013-03-27 2016-10-25 富士フイルム株式会社 Heat ray shielding material, interlayer film for laminated glass and laminated glass
JP6569201B2 (en) * 2014-09-29 2019-09-04 大日本印刷株式会社 Daylight
JP2016173499A (en) * 2015-03-17 2016-09-29 富士フイルム株式会社 Heat insulation film, heat insulation glass and window
JP6972541B2 (en) * 2016-11-29 2021-11-24 凸版印刷株式会社 Method for manufacturing silver nanoparticle laminate and silver nanoparticle laminate
JP6903974B2 (en) * 2017-03-21 2021-07-14 凸版印刷株式会社 Method for manufacturing silver nanoparticle laminate and silver nanoparticle laminate
JP7125742B2 (en) * 2018-09-03 2022-08-25 国立大学法人 筑波大学 Method for producing hexagonal plate-like silver nanoparticles, Hexagonal plate-like silver nanoparticles
JP7389443B2 (en) * 2018-12-25 2023-11-30 国立研究開発法人産業技術総合研究所 An infrared reflective thin film, an ink for forming the same, an infrared reflective seal and an infrared reflector comprising the infrared reflective thin film, and a building or vehicle equipped with the infrared reflective body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152169A1 (en) * 2010-06-03 2011-12-08 富士フイルム株式会社 Heat-ray shielding material
JP2011253093A (en) * 2010-06-03 2011-12-15 Fujifilm Corp Heat ray shield
JP2012018223A (en) * 2010-07-06 2012-01-26 Fujifilm Corp Heat-ray reflecting member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152169A1 (en) * 2010-06-03 2011-12-08 富士フイルム株式会社 Heat-ray shielding material
JP2011253093A (en) * 2010-06-03 2011-12-15 Fujifilm Corp Heat ray shield
JP2012018223A (en) * 2010-07-06 2012-01-26 Fujifilm Corp Heat-ray reflecting member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111095A1 (en) * 2014-01-23 2015-07-30 西松建設株式会社 Method for manufacturing silver nanoparticles
JP5970638B2 (en) * 2014-01-23 2016-08-17 西松建設株式会社 Method for producing silver nanoparticles
JP2015172687A (en) * 2014-03-12 2015-10-01 凸版印刷株式会社 Optical material and optical filter
WO2018061678A1 (en) * 2016-09-29 2018-04-05 富士フイルム株式会社 Antireflection structure

Also Published As

Publication number Publication date
JP2013228698A (en) 2013-11-07

Similar Documents

Publication Publication Date Title
WO2013146447A1 (en) Silver-particle containing film and manufacturing method therefor, and heat ray shielding material
JP5956291B2 (en) Multi-layer structure and laminated structure
WO2013137373A1 (en) Infrared-ray-shielding film
JP5878139B2 (en) Heat ray shielding material and bonded structure
JP5771584B2 (en) Heat ray shielding material
JP5709707B2 (en) Heat ray shielding material
JP5833518B2 (en) Heat ray shielding material
WO2012070477A1 (en) Heat ray shielding material
WO2013035802A1 (en) Heat ray shielding material
WO2014156528A1 (en) Heat ray shielding material, windowpane using heat ray shielding material, intermediate film for laminated glass, and laminated glass
JP6284762B2 (en) Heat shield and window glass
JP5703156B2 (en) Heat ray shielding material
JP5833516B2 (en) Far-infrared shielding material
JP2013205810A (en) Infrared ray shielding film
JP5922919B2 (en) Heat ray shielding material and bonded structure
WO2012157655A1 (en) Heat ray-shielding material, laminated structure, and laminated glass
WO2014038457A1 (en) Infrared blocking film
WO2013039215A1 (en) Heat-ray shielding material
JP6166528B2 (en) Heat ray shielding material, heat shielding glass, interlayer film for laminated glass and laminated glass
JP6012527B2 (en) Heat ray shielding material, interlayer film for laminated glass and laminated glass
JP6063846B2 (en) Electromagnetic wave permeable laminate
JP5878050B2 (en) Heat ray shielding material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13769661

Country of ref document: EP

Kind code of ref document: A1