WO2014038457A1 - Infrared blocking film - Google Patents

Infrared blocking film Download PDF

Info

Publication number
WO2014038457A1
WO2014038457A1 PCT/JP2013/073096 JP2013073096W WO2014038457A1 WO 2014038457 A1 WO2014038457 A1 WO 2014038457A1 JP 2013073096 W JP2013073096 W JP 2013073096W WO 2014038457 A1 WO2014038457 A1 WO 2014038457A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
shielding film
metal
infrared shielding
infrared
Prior art date
Application number
PCT/JP2013/073096
Other languages
French (fr)
Japanese (ja)
Inventor
大関 勝久
清都 尚治
亮 松野
峻也 加藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014038457A1 publication Critical patent/WO2014038457A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0008Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0008Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
    • C09B23/0033Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being bound through a sulfur atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0008Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
    • C09B23/0041Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being bound through a nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0008Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
    • C09B23/005Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof
    • C09B23/0058Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof the substituent being CN
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0066Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain being part of a carbocyclic ring,(e.g. benzene, naphtalene, cyclohexene, cyclobutenene-quadratic acid)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/08Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups more than three >CH- groups, e.g. polycarbocyanines
    • C09B23/083Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups more than three >CH- groups, e.g. polycarbocyanines five >CH- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/08Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups more than three >CH- groups, e.g. polycarbocyanines
    • C09B23/086Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups more than three >CH- groups, e.g. polycarbocyanines more than five >CH- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/004Diketopyrrolopyrrole dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0033Blends of pigments; Mixtured crystals; Solid solutions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/006Transparent parts other than made from inorganic glass, e.g. polycarbonate glazings

Definitions

  • the present invention relates to an infrared shielding film.
  • heat ray shielding materials for automobiles and building windows have been developed as an energy-saving measure for reducing carbon dioxide. From the viewpoint of the heat ray shielding property (acquisition rate of solar heat), the heat ray reflection type without re-radiation is better than the heat ray absorption type with re-radiation of absorbed light into the room (about 1/3 of the absorbed solar energy).
  • Various proposals have been made.
  • Patent Document 1 discloses a heat ray shielding material having a metal particle-containing layer containing at least one kind of metal particles and a cholesteric liquid crystal layer, wherein the metal particles are substantially hexagonal or disk-shaped metal tabular particles. And a selective reflection wavelength of the cholesteric liquid crystal layer is in the infrared region, and is excellent in visible light transmission and radio wave transmission, and has a short wavelength side infrared ray. It is described that it is possible to provide a heat ray shielding material that has a high shielding rate, can shield infrared rays in a wide band, has low brittleness, and can be thinned.
  • Patent Document 1 when attempting to obtain a reflection peak using liquid crystal, the layer becomes thick even in a narrow band, and thinning is insufficient. In fact, the example of Patent Document 1 also discloses a layer thickness of 20 ⁇ m. Further, in order to form the liquid crystal layer, there is a problem that manufacturing is complicated and cost burden is large, such as smoothing the substrate. Further, Patent Document 1 discloses an example containing metal fine particles and showing a reflection peak in the infrared region, but there was no example of using it together with an infrared absorbing dye.
  • Patent Document 2 discloses a highly robust near-infrared ray having absorption in the near-infrared region and having no absorption in the 400-700 nm region and excellent invisibility due to a pigment fine particle having a pyrrolopyrrole structure and its coating. Absorbable compounds are described. Patent Document 2 discloses an absorption spectrum of a dye, but reflection by the dye cannot be read and is not described. Further, Patent Document 2 neither disclosed nor suggested that an infrared light absorbing material using an infrared dye is used in combination with metal particles.
  • Patent Document 3 has a film-like support, and a near-infrared absorbing layer formed on the support using a near-infrared absorbing composition containing an aqueous dispersion of a near-infrared absorbing dye and a polymer.
  • a near-infrared absorption filter having improved haze value and particularly durability under high temperature and high humidity can be provided by a near-infrared absorption filter having a haze value of 4% or less.
  • Patent Document 3 did not describe reflection by a dye. Further, Patent Document 3 neither disclosed nor suggested that an infrared light absorbing material using an infrared dye is used in combination with metal particles.
  • the problem to be solved by the present invention is to provide an infrared shielding film that can easily reflect infrared light and has high heat ray reflectivity.
  • the present inventors have found that a reflection band due to a dye is generated near the maximum absorption wavelength (spectral wavelength) by applying a thin layer of the dye (hereinafter referred to as abnormal reflection). Also called). Further, by combining the metal particles and the infrared absorbing dye, infrared light can be reflected more easily than the infrared shielding films described in Patent Documents 1 to 3, and the above problems are caused because the heat ray reflectance is increased. The inventors have found that the problem can be solved and have completed the present invention.
  • the present invention which is a specific means for solving the above problems, is as follows.
  • An infrared shielding film comprising a metal particle-containing layer containing metal particles and a compound having absorption in the infrared region.
  • the metal particles preferably have 60% by number or more of flat metal particles.
  • the compound having absorption in the infrared region is a compound represented by the following general formula (1) or the following general formula ( It is preferable that it is a compound represented by 2).
  • Z 1 and Z 2 are each independently a non-metallic atom group that forms a 5- or 6-membered nitrogen-containing heterocycle.
  • R 1 and R 2 are each independently a fatty group.
  • L 1 is a methine chain composed of 3 methines.
  • a and b are each independently 0 or 1.
  • R 1a and R 1b may be the same or different and each independently represents an alkyl group, an aryl group or a heteroaryl group.
  • R 2 and R 3 each independently represent a hydrogen atom. Or at least one is an electron-withdrawing group, and R 2 and R 3 may combine to form a ring, and R 4 represents a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, a substituted group Represents a boron or metal atom, and may be a covalent bond or a coordinate bond with at least one group of R 1a , R 1b and R 3. ) [5]
  • the compound having absorption in the infrared region is preferably a compound represented by the general formula (2).
  • the metal particles preferably include at least silver.
  • the metal particles it is preferable that the metal particles have 60% by number or more of hexagonal or circular silver tabular grains.
  • the metal particles are preferably silver tabular grains having an average grain thickness of 20 nm or less.
  • the metal particles are silver tabular grains having an aspect ratio (average particle diameter / average particle thickness) of 3 to 100. Is preferred.
  • the infrared shielding film according to any one of [1] to [10] preferably has a transmission peak between 800 nm and the reflection peak of the metal particle in the transmission spectrum.
  • the infrared shielding film according to any one of [1] to [11] preferably contains an ultraviolet absorber.
  • the infrared shielding film according to [12] includes an adhesive layer, and the ultraviolet absorber is contained in the adhesive layer or a layer between the adhesive layer and the metal particle-containing layer. preferable.
  • the infrared shielding film according to any one of [1] to [13] preferably includes a support.
  • the infrared shielding film according to [14] preferably includes a dye-containing layer containing a compound having absorption in the infrared region on the same side of the support as the metal particle-containing layer.
  • the infrared shielding film according to [14] or [15] preferably has an undercoat layer between the support and the metal particle-containing layer.
  • the infrared shielding film according to any one of [14] to [16] preferably has a backcoat layer on the surface of the support opposite to the metal particle-containing layer.
  • the infrared shielding film according to [17] preferably includes a compound having absorption in the infrared region in at least one of the metal particle-containing layer, the undercoat layer, and the backcoat layer. .
  • an infrared shielding film that can easily reflect infrared light and has high heat ray reflectivity can be provided.
  • FIG. 1 is a schematic view showing an example of the infrared shielding film of the present invention.
  • FIG. 2 is a schematic view showing another example of the infrared shielding film of the present invention.
  • FIG. 3 is a schematic view showing another example of the infrared shielding film of the present invention.
  • FIG. 4 is a schematic view showing another example of the infrared shielding film of the present invention.
  • FIG. 5 is a schematic view showing another example of the infrared shielding film of the present invention.
  • FIG. 1 is a schematic view showing an example of the infrared shielding film of the present invention.
  • FIG. 2 is a schematic view showing another example of the infrared shielding film of the present invention.
  • FIG. 3 is a schematic view showing another example of the infrared shielding film of the present invention.
  • FIG. 4 is a schematic view showing another example of the infrared shielding film of the present invention.
  • FIG. 5 is a schematic view showing another example
  • FIG. 6A is a schematic cross-sectional view showing the presence state of a metal particle-containing layer containing metal tabular grains in the infrared shielding film of the present invention, and is a metal particle-containing layer containing metal tabular grains (parallel to the plane of the substrate). ) And the main plane of the metal tabular grain (the plane that determines the equivalent circle diameter D).
  • FIG. 6B is a schematic cross-sectional view showing the existence state of a metal particle-containing layer containing metal tabular grains in the infrared shielding film of the present invention, and the metal tabular grains in the depth direction of the heat ray shielding material of the metal particle-containing layer.
  • FIG. 6C is a schematic cross-sectional view showing an example of the presence state of a metal particle-containing layer containing metal tabular grains in the infrared shielding film of the present invention.
  • FIG. 6D is a schematic cross-sectional view showing another example of the presence state of a metal particle-containing layer containing tabular metal particles in the infrared shielding film of the present invention.
  • FIG. 6E is a schematic cross-sectional view showing another example of the presence state of a metal particle-containing layer containing metal tabular grains in the infrared shielding film of the present invention.
  • FIG. 7A is a schematic perspective view showing an example of the shape of a metal tabular grain preferably used in the infrared shielding film of the present invention, and shows a circular metal tabular grain.
  • FIG. 7B is a schematic perspective view showing an example of the shape of a metal tabular grain preferably used for the infrared shielding film of the present invention, and shows a hexagonal metal tabular grain.
  • FIG. 8 is a graph showing the reflection spectrum and transmission spectrum of the infrared shielding film and the Blunk film of Example 5 and Comparative Examples 1 and 6.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the infrared shielding film of this invention has the metal particle content layer containing a metal particle, and contains the compound which has absorption in an infrared region. With such a configuration, infrared light can be easily reflected and an infrared shielding film with high heat ray reflectivity is obtained. Although not bound by any theory, such a configuration can cause abnormal reflection of the dye, increase the reflectance in the infrared region, and improve the heat ray reflectance.
  • the more preferable aspect of the infrared shielding film of this invention is demonstrated concretely.
  • the infrared ray shielding film of the present invention has an average heat ray reflectance at 700 to 1200 nm of preferably 5% or more, more preferably 7% or more, particularly preferably 8% or more, and 10% or more. More particularly preferred.
  • the infrared shielding film of the present invention it is preferable that at least one layer has the lowest peak of the transmission spectrum in the region of 800 to 2000 nm from the viewpoint of lowering the heat ray transmittance.
  • the minimum peak wavelength of the transmission spectrum is more preferably in the band of 750 to 1400 nm, and particularly preferably in the band of 800 to 1100 nm.
  • the metal particle-containing layer preferably has the lowest peak of the transmission spectrum in the region of 800 to 2000 nm.
  • the infrared shielding film of the present invention preferably has a transmission peak between 800 nm and the reflection peak of the metal particle in the transmission spectrum from the viewpoint of effectively shielding near infrared rays.
  • the infrared shielding film of the present invention preferably has a maximum reflection wavelength in a band of 700 to 1800 nm from the viewpoint of increasing the efficiency of heat ray reflection.
  • the maximum reflection wavelength is more preferably in the band of 750 to 1400 nm, and particularly preferably in the band of 800 to 1100 nm.
  • the visible light transmittance of the infrared shielding film of the present invention is preferably 60% or more, more preferably 65% or more, and particularly preferably 70% or more.
  • the visible light transmittance is 60% or more, for example, when used as glass for automobiles or glass for buildings, the outside is easy to see.
  • an ultraviolet-ray transmittance of the infrared shielding film of this invention 5% or less is preferable and 2% or less is more preferable.
  • the infrared shielding film of this invention has a metal particle content layer containing at least 1 type of metal particle, and contains the compound which has absorption in an infrared region. Furthermore, it has other layers such as an undercoat layer, an overcoat layer, an adhesive layer, an ultraviolet absorbing layer, a support (hereinafter also referred to as a base material), a metal oxide particle-containing layer, and a backcoat layer as necessary. Embodiments are also preferred.
  • the layer containing the compound having absorption in the infrared region is not particularly limited, and may be the metal particle-containing layer or any one or more of the other layers.
  • the preferable structure of the infrared shielding film of this invention is demonstrated based on drawing.
  • the layer structure of the infrared shielding film 10 includes metal particles containing at least one kind of metal particles on the support 1 through one or more undercoat layers 5.
  • a structure having the layer 2 can be given.
  • the metal particles are preferably metal tabular grains, and an embodiment in which the metal tabular grains 3 are unevenly distributed on the surface of the metal particle-containing layer 2 is preferable.
  • the compound having absorption in the infrared region is preferably added to at least one of the metal particle-containing layer 2 and the undercoat layer 5.
  • the compound having absorption in the infrared region is preferably added to at least one of the metal particle-containing layer 2, the undercoat layer 5, and the backcoat layer 12.
  • the metal particle-containing layer 2 and the overcoat layer 4 are provided on the metal particle-containing layer 2 and the metal tabular grains 3 are unevenly distributed on the surface thereof.
  • the aspect which has the adhesive layer 11 further on the overcoat layer 4 is mentioned suitably.
  • the compound having absorption in the infrared region may be added to any layer, but is added to at least one of the metal particle-containing layer 2, the undercoat layer 5, and the backcoat layer 12.
  • the infrared shielding film 10 preferably includes an ultraviolet absorber in the overcoat layer 4 or the pressure-sensitive adhesive layer 11 in FIG. 3.
  • a metal oxide particle layer 14 including metal oxide particles 13 is provided instead of the backcoat layer 12 on the surface of the support 1 opposite to the metal particle-containing layer 2.
  • the compound having absorption in the infrared region may be added to any layer, but is preferably added to at least one of the metal particle-containing layer 2 and an unillustrated undercoat layer.
  • the aspect which has the metal oxide particle layer 14 containing the metal oxide particle 13, the support body 1, the undercoat layer 5, the metal particle content layer 2, the overcoat layer 4, and the adhesive layer 11 is also preferable.
  • the compound having absorption in the infrared region may be added to any layer, but is preferably added to at least one of the metal particle-containing layer 2 and the undercoat layer 5.
  • the metal particle-containing layer is a layer containing at least one metal particle. There is no restriction
  • the thickness of the metal particle-containing layer is d, 80% by number or more of the hexagonal or circular tabular metal particles are present in a range of d / 2 from the surface of the metal particle-containing layer. It is more preferable that it exists in the range of d / 3 from the surface of the said metal-particle content layer.
  • the present invention is not limited to any theory, and the infrared shielding film of the present invention is not limited to the following production method.
  • a specific polymer preferably latex
  • the metal tabular grains can be segregated on one surface of the metal particle-containing layer.
  • the metal particles preferably have 60% by number or more of flat metal particles, and more preferably have 60% by number or more of hexagonal or circular plate metal particles.
  • the form of the hexagonal or circular plate-like metal particles is one surface of the metal particle-containing layer (the surface of the substrate when the infrared shielding film of the present invention has a substrate).
  • the main planes of hexagonal or circular plate-like metal particles are preferably plane-oriented in the range of average 0 ° to ⁇ 30 °, and plane-oriented in the range of average 0 ° to ⁇ 20 °.
  • the plane orientation is particularly preferably in the range of 0 ° to ⁇ 10 ° on average.
  • one surface of the said metal particle content layer is a flat plane.
  • the metal particle-containing layer of the infrared ray shielding film of the present invention has a base material as a temporary support, it is preferably substantially horizontal with the surface of the base material.
  • the said infrared shielding film may have the said temporary support body, and does not need to have it.
  • the material of the metal particles is not particularly limited and can be appropriately selected according to the purpose. From the viewpoint of high heat ray (near infrared) reflectance, silver, gold, aluminum, copper, rhodium, nickel, Platinum or the like is preferable, and silver is more preferable among them.
  • the reflection peak of the metal particles is preferably 850 to 1600 nm, and more preferably 900 to 1300 nm.
  • the reflection peak of the metal particles is a reflection peak of the metal particles in the metal particle-containing layer.
  • the reflection peak of the metal particles can be controlled by the material and shape of the metal particles.
  • the metal tabular grain is not particularly limited as long as it is a grain composed of two main planes (see FIGS. 7A and 7B), and can be appropriately selected according to the purpose.
  • hexagonal shape, circular shape, triangular shape Examples include shape.
  • a polygonal shape or a circular shape having a hexagonal shape or more is more preferable, and a hexagonal shape or a circular shape is particularly preferable.
  • the circular shape means 0 per side of a metal tabular grain having a length of 50% or more of the average equivalent circle diameter of a tabular metal grain (synonymous with tabular metal grain) described later. Say the shape that is.
  • the circular tabular metal grains are not particularly limited as long as they have no corners and round shapes when observed from above the main plane with a transmission electron microscope (TEM), depending on the purpose. It can be selected appropriately.
  • the hexagonal shape means a shape in which the number of sides having a length of 20% or more of the average equivalent circle diameter of the metal tabular grains described later is 6 per one metal tabular grain. The same applies to other polygons.
  • the hexagonal metal tabular grain is not particularly limited as long as it is a hexagonal shape when the metal tabular grain is observed from above the main plane with a transmission electron microscope (TEM), and is appropriately selected according to the purpose.
  • the hexagonal corner may be acute or dull, but the corner is preferably dull in that the absorption in the visible light region can be reduced.
  • the metal tabular grain preferably contains at least silver.
  • the hexagonal or circular plate-like metal particles are preferably 60% by number or more, more preferably 65% by number or more based on the total number of metal particles. Preferably, 70% by number or more is particularly preferable.
  • the ratio of the metal tabular grains is 60% by number or more, the visible light transmittance is increased.
  • the hexagonal or circular plate-like metal particles have a main plane on one surface of the metal particle-containing layer (when the infrared shielding film has a substrate, the substrate surface).
  • the plane orientation is preferably in the range of average 0 ° to ⁇ 30 °, more preferably the plane is oriented in the range of average 0 ° to ⁇ 20 °, and the average is 0 ° to ⁇ 10 °. It is particularly preferable that the surface is oriented in a range.
  • the presence state of the metal tabular grains is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably arranged as shown in FIGS. 6D and 6E described later.
  • FIGS. 6A to 6E are schematic cross-sectional views showing the existence state of the metal particle-containing layer containing the metal tabular grains in the infrared shielding film of the present invention.
  • 6C, FIG. 6D, and FIG. 6E show the presence state of the metal tabular grain 3 in the metal particle-containing layer 2.
  • FIG. 6A is a view for explaining an angle ( ⁇ ⁇ ) formed by the plane of the substrate 1 and the main plane of the metal tabular grain 3 (plane that determines the equivalent circle diameter D).
  • FIG. 6B shows the existence region in the depth direction of the infrared shielding film of the metal particle-containing layer 2.
  • ⁇ ⁇ an angle formed by the plane of the substrate 1 and the main plane of the metal tabular grain 3 (plane that determines the equivalent circle diameter D).
  • FIG. 6B shows the existence region in the depth direction of the infrared shielding film of the metal particle-containing layer 2.
  • the angle ( ⁇ ⁇ ) formed by the surface of the substrate 1 and the main plane of the metal tabular grain 3 (the plane that determines the equivalent circle diameter D) or the extension of the main plane is a predetermined value in the plane orientation described above.
  • the plane orientation means a state where the inclination angle ( ⁇ ⁇ ) shown in FIG. 6A is small when the cross section of the infrared shielding film is observed.
  • FIG. 6D shows the main surface of the substrate 1 and the metal tabular grain 3. A state where the flat surface is in contact, that is, a state where ⁇ is 0 ° is shown.
  • ⁇ in FIG. 6A exceeds ⁇ 30 °, a predetermined wavelength of the infrared shielding film (for example, near the visible light region long wavelength side) The reflectance in the infrared light region is reduced.
  • the evaluation of whether or not the main plane of the metal tabular grain is plane-oriented with respect to one surface of the metal particle-containing layer (the surface of the substrate when the infrared shielding film has a substrate).
  • it can be appropriately selected.
  • a suitable cross section is prepared, and the metal particle-containing layer (base material if the infrared shielding film has a base material) and flat metal particles in this section are observed. It may be a method of evaluating.
  • a cross-section sample or a cross-section sample of the infrared shielding film is prepared from the infrared shielding film using a microtome and a focused ion beam (FIB), and this is used for various microscopes (for example, a field emission scanning electron microscope (FE-SEM) etc.), and a method of evaluating from an image obtained by observation.
  • FIB focused ion beam
  • the binder that coats the metal tabular grains swells with water
  • the sample frozen in liquid nitrogen is cut with a diamond cutter attached to a microtome, so that the cross section sample or cross section sample May be produced.
  • covers a metal tabular grain in an infrared shielding film does not swell with water, you may produce the said cross-section sample or a cross-section slice sample.
  • the main surface of the metal tabular grains is one surface of the metal particle-containing layer in the sample (the surface of the base material when the infrared shielding film has a base material).
  • the plane is plane-oriented, and it can be appropriately selected according to the purpose.
  • observation using an FE-SEM, TEM, optical microscope, or the like can be given. It is done.
  • observation may be performed by FE-SEM, and in the case of the cross section sample, observation may be performed by TEM.
  • the coefficient of variation in the particle size distribution of the metal tabular grains is preferably 35% or less, more preferably 30% or less, and particularly preferably 20% or less.
  • the variation coefficient is preferably 35% or less because the reflection wavelength region of heat rays in the infrared shielding film becomes sharp.
  • the coefficient of variation in the particle size distribution of the metal tabular grains is, for example, plotting the distribution range of the particle diameters of the 200 metal tabular grains used for calculating the average value obtained as described above, and calculating the standard deviation of the particle size distribution. It is the value (%) obtained by dividing the average value (average particle diameter (average equivalent circle diameter)) of the main plane diameter (maximum length) obtained as described above.
  • the thickness of the metal tabular grain is preferably 14 nm or less, more preferably 5 to 14 nm, and particularly preferably 5 to 12 nm.
  • the aspect ratio of the metal tabular grain is not particularly limited and may be appropriately selected depending on the intended purpose. However, since the reflectance in the infrared region with a wavelength of 800 nm to 1,800 nm is high, 40 is preferable, and 10 to 35 is more preferable. When the aspect ratio is less than 6, the reflection wavelength becomes smaller than 800 nm, and when it exceeds 40, the reflection wavelength becomes longer than 1,800 nm, and sufficient heat ray reflectivity may not be obtained.
  • the aspect ratio means a value obtained by dividing the average particle diameter (average circle equivalent diameter) of the tabular metal grains by the average grain thickness of the tabular metal grains.
  • the average grain thickness corresponds to the distance between the main planes of the metal tabular grain, and is, for example, as shown in FIGS. 7A and 7B and can be measured by an atomic force microscope (AFM).
  • the method for measuring the average particle thickness by the AFM is not particularly limited and can be appropriately selected depending on the purpose.For example, a particle dispersion containing metal tabular particles is dropped onto a glass substrate and dried. For example, a method of measuring the thickness of one particle may be used.
  • the thickness of the region where the metal tabular grains are present is preferably 5 to 60 nm, more preferably 11 to 60 nm, and particularly preferably 20 to 60 nm.
  • the presence of the metal tabular grains in the range of d / 2 from the surface of the metal particle-containing layer means that at least a part of the metal tabular grains is included in the range of d / 2 from the surface of the metal particle-containing layer. . That is, the metal tabular grain described in FIG. 6E in which a part of the metal tabular grain protrudes from the surface of the metal particle-containing layer is also in the range of d / 2 from the surface of the metal particle-containing layer. Treat as. FIG. 6E means that only a part of each metal tabular grain in the thickness direction is buried in the metal particle-containing layer, and each metal tabular grain is not stacked on the surface of the metal particle-containing layer. Absent.
  • the metal tabular grain is exposed on one surface of the metal particle-containing layer means that a part of one surface of the metal tabular grain protrudes from the surface of the metal particle-containing layer.
  • the distribution of the tabular metal particles in the metal particle-containing layer can be measured, for example, from an image obtained by SEM observation of a cross-sectional sample of the infrared shielding film.
  • the plasmon resonance wavelength of the metal constituting the metal tabular grain 3 in the metal particle-containing layer 2 is ⁇
  • the refractive index of the medium in the metal particle-containing layer 2 is n.
  • the said metal-particle content layer 2 exists in the range of ((lambda) / n) / 4 in the depth direction from the horizontal surface of an infrared rays shielding film.
  • the plasmon resonance wavelength ⁇ of the metal constituting the metal tabular grain in the metal particle-containing layer is not particularly limited and can be appropriately selected according to the purpose. However, in terms of imparting heat ray reflection performance, 400 nm to 2, The thickness is preferably 500 nm, and more preferably 700 nm to 2,500 nm from the viewpoint of imparting visible light transmittance.
  • the metal particle-containing layer preferably contains a polymer, and more preferably contains a transparent polymer.
  • the polymer include polyvinyl acetal resin, polyvinyl alcohol resin, polyvinyl butyral resin, polyacrylate resin, polymethyl methacrylate resin, polycarbonate resin, polyvinyl chloride resin, (saturated) polyester resin, polyurethane resin, gelatin, and cellulose. And polymers such as natural polymers.
  • the main polymer of the polymer is preferably a polyvinyl alcohol resin, a polyvinyl butyral resin, a polyvinyl chloride resin, a (saturated) polyester resin, a polyurethane resin, and preferably the polyester resin and the polyurethane resin. More preferably, 80% by number or more of the metal tabular grains of hexagonal or circular tabular metal particles are present in the range of d / 2 from the surface of the metal particle-containing layer, and are polyester resin and polyurethane resin. Is particularly preferable from the viewpoint of further improving the rubbing resistance of the infrared shielding film of the present invention.
  • a saturated polyester resin is more particularly preferable from the viewpoint of imparting excellent weather resistance since it does not contain a double bond.
  • Commercially available polymers can be preferably used as the polymer, and examples thereof include Plus Coat Z-867, which is a water-soluble polyester resin manufactured by Kyoyo Chemical Industry Co., Ltd.
  • the main polymer of the polymer contained in the metal-containing layer refers to a polymer component occupying 50% by mass or more of the polymer contained in the metal-containing layer.
  • the content of the polyester resin and the polyurethane resin with respect to the metal particles contained in the metal particle-containing layer is preferably 1 to 10000% by mass, more preferably 10 to 1000% by mass, and 20 to 500% by mass. It is particularly preferred that By setting the binder contained in the metal particle-containing layer to be in the above range or more, physical properties such as rubbing resistance can be improved.
  • the refractive index n of the medium is preferably 1.4 to 1.7.
  • the thickness of the hexagonal or circular plate-like metal particles when the thickness of the hexagonal or circular plate-like metal particles is a, 80% by number or more of the hexagonal or circular plate-like metal particles are a / in the thickness direction. It is preferable that 10 or more is covered with the polymer, a / 10 to 10a in the thickness direction is more preferably covered with the polymer, and a / 8 to 4a is covered with the polymer. Particularly preferred.
  • the hexagonal or circular plate-like metal particles are buried in the metal particle-containing layer at a certain ratio or more, whereby the rubbing resistance can be further increased. That is, the aspect of FIG. 6D is more preferable than the aspect of FIG. 6E for the infrared shielding film of the present invention.
  • the area ratio can be measured, for example, by image-processing an image obtained by SEM observation of the infrared shielding film substrate from above or an image obtained by AFM (atomic force microscope) observation. .
  • the average inter-particle distance between the metal tabular grains adjacent in the horizontal direction in the metal particle-containing layer is preferably 1/10 or more of the average particle diameter of the metal tabular grains in terms of visible light transmittance and maximum heat ray reflectance. .
  • the horizontal average inter-grain distance of the metal tabular grains is less than 1/10 of the average grain diameter of the metal tabular grains, the maximum reflectance of the heat rays is lowered.
  • the average interparticle distance in the horizontal direction is preferably non-uniform (random) in terms of visible light transmittance. If it is not random, that is, if it is uniform, absorption of visible light occurs, and the transmittance may decrease.
  • the average inter-particle distance in the horizontal direction of the metal tabular grains means an average value of inter-particle distances between two adjacent grains.
  • the average inter-particle distance is random as follows: “When taking a two-dimensional autocorrelation of luminance values when binarizing an SEM image including 100 or more metal tabular grains, other than the origin. It has no significant local maximum.
  • the metal tabular grains are arranged in the form of a metal particle-containing layer containing metal tabular grains, as shown in FIGS. 6A to 6E.
  • the metal particle-containing layer may be composed of a single layer as shown in FIGS. 6A to 6E, or may be composed of a plurality of metal particle-containing layers. When comprised with a several metal particle content layer, it becomes possible to provide the shielding performance according to the wavelength range
  • the infrared shielding film of the present invention has a thickness d of the outermost metal particle-containing layer at least in the outermost metal particle-containing layer. It is preferable that 80% by number or more of the hexagonal or circular tabular metal particles are present in the range of d ′ / 2 from the surface of the outermost metal particle-containing layer.
  • the thickness of the metal particle-containing layer is preferably 5 to 80 nm, and more preferably 6 to 20 nm.
  • the thickness d of the metal particle-containing layer is preferably a to 10a, more preferably 2a to 8a, and more preferably 1a to 1a, where a is the thickness of the hexagonal or circular plate-like metal particles. Particularly preferred is 5a.
  • the thickness of each layer of the metal particle-containing layer can be measured from, for example, an image obtained by SEM observation of a cross-sectional sample of the infrared shielding film. Moreover, even when it has other layers, such as an overcoat layer mentioned later, on the said metal particle content layer of an infrared shielding film, the boundary of another layer and the said metal particle content layer is determined by the same method. And the thickness d of the metal particle-containing layer can be determined. When coating the metal particle-containing layer using the same type of polymer as the polymer contained in the metal particle-containing layer, the boundary between the metal particle-containing layer and the metal particle-containing layer is usually determined by an SEM observation image. And the thickness d of the metal particle-containing layer can be determined.
  • the method for synthesizing the metal tabular grains is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a liquid phase method such as a chemical reduction method, a photochemical reduction method, an electrochemical reduction method, etc. It is mentioned as what can synthesize circular flat metal particles.
  • a liquid phase method such as a chemical reduction method or a photochemical reduction method is particularly preferable in terms of shape and size controllability.
  • hexagonal to triangular tabular metal grains can be obtained by, for example, etching treatment with a dissolved species that dissolves silver such as nitric acid and sodium sulfite, and aging treatment by heating.
  • the flat metal particles having a hexagonal shape or a circular shape may be obtained.
  • a seed crystal may be previously fixed on the surface of a transparent substrate such as a film or glass, and then metal grains (for example, Ag) may be grown in a tabular form.
  • metal grains for example, Ag
  • the metal tabular grain may be subjected to further treatment in order to impart desired characteristics.
  • the further treatment is not particularly limited and may be appropriately selected depending on the purpose.
  • the formation of a high refractive index shell layer the addition of various additives such as a dispersant and an antioxidant may be included. Can be mentioned.
  • the metal tabular grain may be coated with a high refractive index material having high visible light region transparency.
  • the high refractive index material is not particularly limited and may be appropriately selected depending on the purpose, for example, TiO x, BaTiO 3, ZnO, etc. SnO 2, ZrO 2, NbO x and the like.
  • the metal oxide layer may be formed on the shell layer.
  • TiO x is used as a material for the high refractive index metal oxide layer, since TiO x has photocatalytic activity, there is a concern of deteriorating the matrix in which the metal tabular grains are dispersed. After forming the TiO x layer on the tabular grains, an SiO 2 layer may be appropriately formed.
  • the metal particle-containing layer contains a polymer and the main polymer of the polymer is a polyester resin
  • a crosslinking agent from the viewpoint of film strength.
  • the crosslinking agent is not particularly limited, and examples thereof include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents. Of these, carbodiimide and oxazoline crosslinking agents are preferred.
  • carbodiimide-based crosslinking agent examples include, for example, Carbodilite V-02-L2 (manufactured by Nisshinbo Industries, Inc.). It is preferable to contain 1 to 20% by mass of a crosslinking agent-derived component with respect to the total binder in the metal particle-containing layer, and more preferably 2 to 20% by mass.
  • a crosslinking agent-derived component with respect to the total binder in the metal particle-containing layer, and more preferably 2 to 20% by mass.
  • the infrared shielding film of this invention when the said metal particle content layer contains a polymer, it is preferable from a viewpoint from which generation
  • surfactants examples include known anionic and nonionic surfactants such as Lapisol A-90 (manufactured by NOF Corporation), Narrow Acty HN-100 (manufactured by Sanyo Chemical Industries) is available.
  • the surfactant is preferably contained in an amount of 0.05 to 10% by weight, more preferably 0.1 to 5% by weight, based on the total binder in the metal particle-containing layer.
  • the metal tabular grains may adsorb an antioxidant such as mercaptotetrazole or ascorbic acid in order to prevent oxidation of metals such as silver constituting the metal tabular grains.
  • an oxidation sacrificial layer such as Ni may be formed on the surface of the metal tabular grain for the purpose of preventing oxidation. Further, it may be covered with a metal oxide film such as SiO 2 for the purpose of blocking oxygen.
  • the metal tabular grain is, for example, a low molecular weight dispersant or a high molecular weight dispersant containing at least one of N elements such as quaternary ammonium salts and amines, S elements, and P elements. A dispersant may be added.
  • the infrared shielding film of the present invention preferably has a support.
  • limiting in particular as said support body A well-known support body can be used.
  • the support is not particularly limited as long as it is an optically transparent support and can be appropriately selected according to the purpose.
  • the visible light transmittance is 70% or more, preferably 80% or more. And those with high transmittance in the near infrared region.
  • size, material, etc. as said support body According to the objective, it can select suitably.
  • the shape examples include a flat plate shape, and the structure may be a single layer structure or a laminated structure, and the size may be the size of the infrared shielding film. It can be appropriately selected according to the above.
  • the material for the support is not particularly limited and may be appropriately selected depending on the intended purpose.
  • polyolefin resins such as polyethylene, polypropylene, poly-4-methylpentene-1, polybutene-1, polyethylene terephthalate
  • Polyester resins such as polyethylene naphthalate
  • polycarbonate resins polyvinyl chloride resins
  • polyphenylene sulfide resins polyether sulfone resins
  • polyethylene sulfide resins polyphenylene ether resins
  • styrene resins acrylic resins
  • polyamides examples thereof include a film made of a cellulose resin such as a cellulose resin, a polyimide resin, and cellulose acetate, or a laminated film thereof.
  • a polyethylene terephthalate film is particularly preferable.
  • the thickness of the support is not particularly limited and can be appropriately selected depending on the purpose of use of the infrared shielding film. Usually, the thickness is about 10 ⁇ m to 500 ⁇ m, but it is thinner from the viewpoint of the demand for thinning. preferable.
  • the thickness of the support is preferably 10 ⁇ m to 100 ⁇ m, more preferably 20 to 75 ⁇ m, and particularly preferably 35 to 75 ⁇ m. When the thickness of the support is sufficiently thick, adhesion failure tends to hardly occur. Moreover, when the thickness of the said support body is thin enough, when it bonds together to a building material or a motor vehicle as an infrared shielding film, there exists a tendency for the construction as it is not too strong and to be constructed easily. Furthermore, when the support is sufficiently thin, the visible light transmittance is increased, and the raw material cost tends to be suppressed.
  • the infrared shielding film of the present invention is characterized by containing a compound having absorption in the infrared region.
  • a layer containing a compound having absorption in the infrared region is also referred to as a dye-containing layer.
  • dye content layer may fulfill
  • the absorption peak wavelength of the compound having absorption in the infrared region is preferably shorter than the reflection peak wavelength of the metal particles from the viewpoint of efficiently shielding heat rays.
  • the layer containing a compound having absorption in the infrared region preferably contains 20 to 190 mg / m 2 of the compound having absorption in the infrared region.
  • the planar shape of an infrared shielding film can be improved by making the pigment
  • a method for controlling the pigment contained in the pigment-containing layer within this range a method of adjusting the pigment coating amount when forming the pigment-containing layer by coating can be used.
  • the upper limit of the content of the dye contained in the dye-containing layer is preferably 150 mg / m 2 or less from the viewpoint of improving the surface shape, and 120 mg / m 2 or less is the maximum reflection of the infrared shielding film. From the viewpoint of increasing the rate and suppressing the transmittance at the maximum reflection wavelength, it is particularly preferably 100 mg / m 2 or less.
  • the lower limit of the content of the dye contained in the dye-containing layer is 10 mg / m 2 or more in view of increasing the maximum reflectance of the infrared shielding film and suppressing the transmittance at the maximum reflection wavelength. From the same viewpoint, it is more preferably 20 mg / m 2 or more, and particularly preferably 30 mg / m 2 or more from the same viewpoint.
  • the density of the dye in the dye-containing layer is preferably 0.25 g / cm 3 or more from the viewpoint of lowering the transmittance at the maximum reflection wavelength and lowering the warming rate, and is 0.30 to 1.0 g / cm 3. 3 is more preferable, 0.40 to 0.90 g / cm 3 is particularly preferable, and 0.50 to 0.70 g / cm 3 is particularly preferable.
  • the thickness of the dye-containing layer is preferably 200 nm or less from the viewpoint of improving the surface state, more preferably 50 to 200 nm, and most preferably 100 to 200 nm. This is particularly preferable from the viewpoint of increasing the transmittance and reducing the transmittance at the maximum reflection wavelength.
  • the dye-containing layer may be disposed adjacent to the support or may be disposed via another layer therebetween.
  • the dye-containing layer is preferably a layer disposed adjacent to the support, a layer disposed adjacent to the metal particle-containing layer, or the metal particle-containing layer. .
  • dye can be used.
  • the pigment include dyes and pigments.
  • the pigment is not particularly limited, and a known pigment can be used.
  • a well-known dye can be used.
  • Dyes that can be stably dissolved or dispersed in an aqueous dispersion of the polymer are preferred, and these dyes preferably have a water-soluble group.
  • the water-soluble group include a carboxyl group and a salt thereof, a sulfo group and a salt thereof.
  • water-soluble dyes such as cyanine dyes and barbituric acid oxonol dyes described below can be applied as aqueous solutions without dissolving them in organic solvents.
  • These dyes are preferably used as aggregates, and particularly preferably used as J aggregates.
  • J-aggregate it becomes easy to set the absorption wavelength of a dye having an absorption maximum in the visible region in a desired near-infrared region in a non-association state.
  • durability such as heat resistance of a dye, heat-and-moisture resistance, and light resistance, can be improved.
  • the dye is preferably an infrared absorbing dye from the viewpoint of selectively reflecting heat rays (near infrared rays).
  • the infrared absorbing dye include a near infrared absorbing dye described in JP-A-2008-181096, JP-A-2001-228324, JP-A-2009-244493, and the like, and JP-A 2010-90313. Near infrared absorbing compounds and the like can be preferably used.
  • the infrared absorbing pigment include cyanine dyes, oxonol dyes, and pyrrolopyrrole compounds.
  • the compound having absorption in the infrared region is preferably a compound represented by the following general formula (1) or a compound represented by the following general formula (2).
  • a pyrrolopyrrole compound represented by the formula (2) is more preferable from the viewpoint of improving fastness and improving storage stability.
  • Z 1 and Z 2 are each independently a non-metallic atom group that forms a 5- or 6-membered nitrogen-containing heterocycle.
  • R 1 and R 2 are each independently a fatty group.
  • L 1 is a methine chain composed of 3 methines.
  • a and b are each independently 0 or 1.
  • R 1a and R 1b may be the same or different and each independently represents an alkyl group, an aryl group or a heteroaryl group.
  • R 2 and R 3 each independently represent a hydrogen atom. Or at least one is an electron-withdrawing group, and R 2 and R 3 may combine to form a ring, and
  • R 4 represents a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, a substituted group Represents a boron or metal atom, and may be a covalent bond or a coordinate bond with at least one group of R 1a , R 1b and R 3.
  • the preferred range of the compound represented by the general formula (1) is the same as the preferred range of the general formula (I) in JP-A-2001-228324.
  • the preferred range of the compound represented by the general formula (2) is the same as the preferred range of the general formula (1) in JP-A-2009-263614.
  • Cyanine dye is preferably a methine dye such as a pentamethine cyanine dye, a heptamethine cyanine dye, or a nonamethine cyanine dye, and a methine dye described in JP-A-2001-228324 is preferred.
  • a methine dye such as a pentamethine cyanine dye, a heptamethine cyanine dye, or a nonamethine cyanine dye
  • a methine dye described in JP-A-2001-228324 is preferred.
  • the cyclic group of the cyanine dye those having a thiazole ring, an indolenine ring or a benzoindolenine ring are preferable.
  • Examples of the cyanine dye used in the present invention include the cyanine dye represented by the general formula (1), that is, the general formula (I) of JP-A-2001-228324, and among them, a pentamethine cyanine dye.
  • Heptamethine cyanine dyes or nonamethine cyanine dyes (especially their aggregates) are preferred, and pentamethine cyanine dye, heptamethine cyanine dye or nonamethine cyanine represented by the general formula (II) of JP-A No. 2001-228324 Dyes (particularly, aggregates thereof) are more preferable, and heptamethine cyanine dyes represented by the general formula (II) in JP-A-2001-228324 are particularly preferable.
  • the oxonol dye is preferably an oxonol dye represented by the general formula (II) of JP-A No. 2009-244493, and more preferably a barbituric acid oxonol dye having a barbituric acid ring.
  • Examples of oxonol dyes represented by the general formula (II) in JP-A-2009-244493 are shown below, but the present invention is not limited to the following specific examples.
  • the pyrrolopyrrole compound As the pyrrolopyrrole compound, the pyrrolopyrrole compound represented by the above general formula (2), that is, the general formula (1) of JP2009-263614A or JP2010-90313A is exemplified. A pyrrolopyrrole compound represented by any one of the general formulas (2), (3), and (4) described in JP-A-2009-263614 and 2010-90313 is more preferable.
  • pyrrolopyrrole compound (dye) represented by the general formula (2) that is, any one of the general formulas (1) to (4) in JP2009-263614A and JP2010-90313A is described below. Specific examples will be shown, but the present invention is not limited to the following specific examples.
  • the infrared shielding film of the present invention preferably contains a polymer in the dye-containing layer.
  • the polymer can be used as a so-called binder in the dye-containing layer.
  • the mass ratio of the polymer to the dye (polymer / dye ratio) in the dye-containing layer is 5 or less to reduce the transmittance at the maximum reflection wavelength and to reduce the warming rate. From the viewpoint of The mass ratio of the polymer to the dye in the dye-containing layer is more preferably 0.1 to 4, particularly preferably 0.2 to 3.0, and preferably 0.5 to 3.0. More particularly preferred.
  • the preferred range of the content of the polymer contained in the dye-containing layer is also related to the preferred range of the mass ratio of the polymer to the dye, but is preferably 350 mg / m 2 or less, for example, from a planar viewpoint, It is preferable from a viewpoint of contact
  • the type of the polymer is not particularly limited, and a known polymer can be used, and a transparent polymer is more preferable.
  • the polymer include polyvinyl acetal resin, polyvinyl alcohol resin, polyvinyl butyral resin, polyacrylate resin, polymethyl methacrylate resin, polycarbonate resin, polyvinyl chloride resin, (saturated) polyester resin, polyurethane resin, gelatin, and cellulose.
  • polymers such as natural polymers.
  • the polymer is preferably polyester, polyurethane, or polyacrylate resin, and polyester is more preferable from the viewpoint of adhesion to the support.
  • the polymer is an aqueous dispersion from the viewpoint of environmental influence and the reduction of coating cost.
  • Plus Coat Z-592 manufactured by Kyoyo Chemical Co., Ltd.
  • Kyoyo Chemical Co., Ltd. which is a water-soluble polyester resin
  • the infrared shielding film of the present invention preferably has a pressure-sensitive adhesive layer (hereinafter also referred to as a pressure-sensitive adhesive layer).
  • the adhesive layer may include an ultraviolet absorber.
  • the material that can be used for forming the adhesive layer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • An adhesive layer made of these materials can be formed by coating.
  • an antistatic agent, a lubricant, an antiblocking agent and the like may be added to the adhesive layer.
  • the thickness of the adhesive layer is preferably 0.1 ⁇ m to 10 ⁇ m.
  • the functional film includes a hard coat layer having hard coat properties.
  • the hard coat layer can contain metal oxide particles.
  • the kind and formation method can be selected suitably according to the objective, For example, acrylic resin, silicone resin, melamine resin, urethane resin, alkyd resin And thermosetting or photocurable resins such as fluorine-based resins.
  • the thickness of the hard coat layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 ⁇ m to 50 ⁇ m.
  • the hard coat layer may contain the metal oxide particles.
  • the infrared shielding film of the present invention in order to prevent oxidation and sulfidation of the metal tabular grains due to mass transfer and to provide scratch resistance, the infrared shielding film of the present invention has the hexagonal or circular tabular metal particles. You may have the overcoat layer closely_contact
  • an overcoat layer may be provided.
  • the overcoat layer may contain an ultraviolet absorber.
  • the overcoat layer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the overcoat layer contains a binder, a matting agent, and a surfactant, and further contains other components as necessary. It becomes.
  • the binder is not particularly limited and may be appropriately selected depending on the purpose.
  • the thickness of the overcoat layer is preferably 0.01 ⁇ m to 1,000 ⁇ m, more preferably 0.02 ⁇ m to 500 ⁇ m, particularly preferably 0.1 to 10 ⁇ m, and particularly preferably 0.2 to 5 ⁇ m.
  • an undercoat layer may be provided between the support and the metal particle-containing layer.
  • the undercoat layer is not particularly limited and may be appropriately selected depending on the purpose, but may be a layer containing a compound having absorption in the infrared region, and may be a compound having absorption in the infrared region.
  • a preferable composition and thickness in the case where the layer is not an included layer are the same as the preferable composition and thickness of the overcoat layer.
  • a plurality of the undercoat layers may be provided. In that case, it is preferable to provide only one layer containing a compound having absorption in the infrared region, and only one layer is provided on the side in contact with the support. It is more preferable.
  • the infrared shielding film of the present invention may have a back coat layer on the surface of the support opposite to the metal particle-containing layer.
  • the backcoat layer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the backcoat layer may be a layer containing a compound having absorption in the infrared region, or may be a metal oxide particle-containing layer described later.
  • the preferred composition and thickness in the case of a layer containing a compound having absorption in the infrared region or a metal oxide particle-containing layer described later are the same as the preferred composition and thickness of the overcoat layer.
  • the infrared shielding film of the present invention preferably has a layer containing an ultraviolet absorber.
  • the layer containing the ultraviolet absorber can be appropriately selected depending on the purpose, and may be an adhesive layer, or a layer (for example, an overcoat) between the adhesive layer and the metal particle-containing layer. Layer). In any case, it is preferable that the ultraviolet absorber is added to a layer disposed on the side irradiated with sunlight with respect to the metal particle-containing layer.
  • the ultraviolet absorber is not particularly limited and may be appropriately selected depending on the purpose.
  • a benzophenone ultraviolet absorber a benzotriazole ultraviolet absorber, a triazine ultraviolet absorber, a salicylate ultraviolet absorber, Examples include cyanoacrylate ultraviolet absorbers. These may be used individually by 1 type and may use 2 or more types together.
  • the benzophenone-based ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 2,4droxy-4-methoxy-5-sulfobenzophenone.
  • the benzotriazole ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the triazine-based ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include mono (hydroxyphenyl) triazine compounds, bis (hydroxyphenyl) triazine compounds, and tris (hydroxyphenyl) triazine compounds. Etc. Examples of the mono (hydroxyphenyl) triazine compound include 2- [4-[(2-hydroxy-3-dodecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethyl).
  • Phenyl) -1,3,5-triazine 2- [4-[(2-hydroxy-3-tridecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) ) -1,3,5-triazine, 2- (2,4-dihydroxyphenyl) -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2- (2-hydroxy- 4-isooctyloxyphenyl) -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2- (2-hydroxy-4-dodecyloxyphenyl) -4,6-bis ( 2,4-dimethylphenyl) -1,3,5-triazine, etc.
  • Examples of the bis (hydroxyphenyl) triazine compound include 2,4-bis (2-hydroxy-4-propyloxyphenyl) -6- (2,4-dimethylphenyl) -1,3,5-triazine, 2 , 4-Bis (2-hydroxy-3-methyl-4-propyloxyphenyl) -6- (4-methylphenyl) -1,3,5-triazine, 2,4-bis (2-hydroxy-3-methyl) -4-hexyloxyphenyl) -6- (2,4-dimethylphenyl) -1,3,5-triazine, 2-phenyl-4,6-bis [2-hydroxy-4- [3- (methoxyheptaethoxy ) -2-hydroxypropyloxy] phenyl] -1,3,5-triazine and the like.
  • tris (hydroxyphenyl) triazine compound examples include 2,4-bis (2-hydroxy-4-butoxyphenyl) -6- (2,4-dibutoxyphenyl) -1,3,5-triazine, 2 , 4,6-Tris (2-hydroxy-4-octyloxyphenyl) -1,3,5-triazine, 2,4,6-tris [2-hydroxy-4- (3-butoxy-2-hydroxypropyloxy) ) Phenyl] -1,3,5-triazine, 2,4-bis [2-hydroxy-4- [1- (isooctyloxycarbonyl) ethoxy] phenyl] -6- (2,4-dihydroxyphenyl) -1 , 3,5-triazine, 2,4,6-tris [2-hydroxy-4- [1- (isooctyloxycarbonyl) ethoxy] phenyl] -1,3,5-triazine, 2,4-bis [2 -Hydroxy-4
  • the salicylate-based ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include phenyl salicylate, p-tert-butylphenyl salicylate, p-octylphenyl salicylate, Examples include 2-ethylhexyl salicylate.
  • the cyanoacrylate-based ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the binder is not particularly limited and may be appropriately selected depending on the intended purpose, but preferably has higher visible light transparency and higher solar transparency, and examples thereof include acrylic resin, polyvinyl butyral, and polyvinyl alcohol. .
  • the binder absorbs heat rays, the reflection effect of the metal tabular grains is weakened. Therefore, the ultraviolet absorbing layer formed between the heat ray source and the metal tabular grains is absorbed in the region of 450 nm to 1,500 nm. It is preferable to select a material that does not have a thickness, or to reduce the thickness of the ultraviolet absorbing layer.
  • the thickness of the ultraviolet absorbing layer is preferably 0.01 ⁇ m to 1,000 ⁇ m, more preferably 0.02 ⁇ m to 500 ⁇ m.
  • the thickness is less than 0.01 ⁇ m, ultraviolet absorption may be insufficient, and when it exceeds 1,000 ⁇ m, the visible light transmittance may be reduced.
  • the content of the ultraviolet absorbing layer varies depending on the ultraviolet absorbing layer to be used and cannot be generally defined, but it is preferable to appropriately select a content that gives a desired ultraviolet transmittance in the infrared shielding film of the present invention.
  • the ultraviolet transmittance is preferably 5% or less, and more preferably 2% or less. When the ultraviolet transmittance exceeds 5%, the color of the metal tabular grain layer may change due to ultraviolet rays of sunlight.
  • the infrared ray shielding film of the present invention is preferable from the viewpoint of balance between heat ray shielding and production cost even if it contains at least one kind of metal oxide particles.
  • the overcoat layer 5 preferably contains metal oxide particles.
  • the overcoat layer 5 may be laminated with the metal oxide particle-containing layer 2 via the substrate 1.
  • the infrared shielding film of this invention is arrange
  • the heat ray After the reflection, a part of the heat ray is absorbed by the overcoat layer 5, and the amount of heat directly received inside the infrared ray shielding film due to the heat ray that is not absorbed by the metal oxide containing layer 2 and is transmitted through the infrared ray shielding film.
  • heat amount as the sum total of the calorie
  • a tin dope indium oxide (henceforth "ITO"), a tin dope antimony oxide (henceforth).
  • ATO tin dope indium oxide
  • ATO tin dope antimony oxide
  • zinc oxide titanium oxide, indium oxide, tin oxide, antimony oxide, glass ceramics, and the like.
  • ITO, ATO, and zinc oxide are more preferable, and infrared rays having a wavelength of 1,200 nm or more are applied in that they are excellent in heat ray absorption ability and can produce an infrared shielding film having a wide range of heat ray absorption ability when combined with metal tabular grains.
  • ITO is preferable in that it has a visible light transmittance of 90% or more.
  • the volume average particle size of the primary particles of the metal oxide particles is preferably 0.1 ⁇ m or less in order not to reduce the visible light transmittance.
  • the content of the metal oxide particles in the metal oxide particle-containing layer is not particularly limited and may be appropriately selected depending on the purpose, but is preferably 0.1 g / m 2 to 20 g / m 2 , 0.5 g / m 2 to 10 g / m 2 is more preferable, and 1.0 g / m 2 to 4.0 g / m 2 is more preferable. If the content is less than 0.1 g / m 2 , the amount of solar radiation felt on the skin may increase, and if it exceeds 20 g / m 2 , the visible light transmittance may deteriorate.
  • the content of the metal oxide particles in the metal oxide particle-containing layer is, for example, from the observation of the super foil section TEM image and surface SEM image of the heat ray shielding layer, and the number of metal oxide particles in a certain area and It can be calculated by measuring the average particle diameter and dividing the mass (g) calculated based on the number and average particle diameter and the specific gravity of the metal oxide particles by the constant area (m 2 ). .
  • metal oxide fine particles in a certain area of the metal oxide particle-containing layer are eluted in methanol, and the mass (g) of the metal oxide fine particles measured by fluorescent X-ray measurement is divided by the constant area (m 2 ). This can also be calculated.
  • the method for producing the infrared shielding film of the present invention is not particularly limited and can be appropriately selected according to the purpose.
  • a dispersion having the dye on the surface of the lower layer such as the support examples thereof include a method of coating by a dip coater, a die coater, a slit coater, a bar coater, a gravure coater, and the like, and a method of surface orientation by a method such as an LB film method, a self-organization method, and spray coating.
  • the dye-containing layer is preferably formed by coating. That is, the dye-containing layer is preferably a dye coating layer. Among them, the method of applying with a bar coater is preferable.
  • additives such as a solvent and a surfactant may be added to the coating solution in addition to the dye and the polymer.
  • the solvent is not particularly limited and water or a known organic solvent can be used.
  • the solvent may be used in combination of two or more, in addition to being used alone. In the present invention, specifically, it is more preferable to use as an aqueous solvent in which water and methanol are combined.
  • Examples of other additives include surfactants and additives described in paragraph numbers [0027] to [0031] of JP-A-2005-17322.
  • the surfactant is not particularly limited, but may be any of aliphatic, aromatic, and fluorine surfactants, and may be any nonionic, anionic, or cationic surfactant.
  • Examples of the surfactant include those described in JP 2011-218807 A.
  • As the surfactant specifically, Rapisol A-90 manufactured by NOF Corporation, Aronacty CL95 manufactured by Sanyo Chemical Industries, Ltd., and the like are preferably used.
  • the surfactants may be used in combination of two or more in addition to being used alone.
  • preferred ranges of the dye coating amount and the polymer coating amount are the same as the preferred ranges of the dye content and the polymer content contained in the dye-containing layer, respectively. is there.
  • the dye-containing layer by coating, it is preferable to form the dye-containing layer by applying the coating solution and then drying and solidifying by a known method.
  • a drying method drying by heating is preferable.
  • Method for forming metal particle-containing layer The method for forming the metal particle-containing layer of the present invention is not particularly limited and may be appropriately selected depending on the purpose.
  • a dispersion having the metal tabular particles on the surface of the lower layer such as the substrate. May be applied by a dip coater, a die coater, a slit coater, a bar coater, a gravure coater, or the like, or may be subjected to surface orientation by a method such as an LB film method, a self-organization method, or spray coating.
  • the composition of the metal particle-containing layer used in the examples described later is used, and by adding latex or the like, the hexagonal or circular tabular metal particles 80
  • the number% or more is made to exist in the range of d / 2 from the surface of the metal particle-containing layer. It is preferable that 80% by number or more of the metal tabular grains of the hexagonal or circular tabular metal particles exist in a range of d / 3 from the surface of the metal particle-containing layer.
  • the amount of the latex added is not particularly limited, but for example, it is preferable to add 1 to 10000 mass% with respect to the metal tabular grains.
  • a pressure roller such as a calender roller or a lami roller.
  • the overcoat layer is preferably formed by coating.
  • the coating method at this time is not particularly limited, and a known method can be used.
  • a dispersion containing the ultraviolet absorber can be used as a dip coater, a die coater, a slit coater, a bar coater, a gravure coater, or the like. The method of apply
  • coating by etc. is mentioned.
  • the hard coat layer is preferably formed by coating.
  • the coating method at this time is not particularly limited, and a known method can be used.
  • a dispersion containing the ultraviolet absorber can be used as a dip coater, a die coater, a slit coater, a bar coater, a gravure coater, or the like. The method of apply
  • coating by etc. is mentioned.
  • the adhesive layer is preferably formed by coating.
  • it can be laminated on the surface of the lower layer such as the substrate, the metal particle-containing layer, or the ultraviolet absorbing layer.
  • the coating method at this time A well-known method can be used.
  • a coating solution containing a pressure-sensitive adhesive can be applied directly to the surface, but various additives, plasticizers and solvents used in the pressure-sensitive adhesive However, in some cases, the arrangement of the silver nanodisk layer may be disturbed, or the silver nanodisk itself may be altered.
  • a film is prepared by previously applying and drying an adhesive on a release film, and the adhesive surface of the film and the silver nanodisk layer surface of the film of the present invention are prepared. It is effective to laminate in a dry state.
  • the infrared shielding film of this invention may be used independently as a heat ray shielding material, and may be laminated
  • the infrared shielding film of the present invention may be a bonded structure bonded to glass or the like. If the infrared shielding film of this invention is an aspect used in order to selectively reflect (absorb as needed) a heat ray (near infrared rays), there will be no restriction
  • the film include a vehicle film and a laminated structure, a building material film and a laminated structure, and an agricultural film. Among these, in terms of energy saving effect, a vehicle film and a laminated structure, a building material film and a laminated structure are preferable.
  • heat rays mean near infrared rays (780 nm to 1,800 nm) contained in sunlight by about 50%.
  • the obtained silver tabular grain dispersion A1 is dropped on a glass substrate and dried, and the thickness of each metal tabular grain corresponding to A is measured by an atomic force microscope (AFM) (Nanocute II, manufactured by Seiko Instruments Inc.). It measured using.
  • the measurement conditions using the AFM were a self-detecting sensor, DFM mode, a measurement range of 5 ⁇ m, a scanning speed of 180 seconds / frame, and a data point of 256 ⁇ 256.
  • the average grain thickness of the tabular grains corresponding to A in the silver tabular grain dispersion A1 was 10 nm.
  • a coating solution M1 for a metal particle-containing layer having the composition shown below was prepared.
  • Surfactant B Aronactee CL-95 (Manufactured by Sanyo Chemical Industries, Ltd., solid content: 1% by mass) 1.19 parts by mass Silver tabular particle dispersion B1 26.6 parts by mass 1- (5-methylureidophenyl) -5-mercaptotetrazole (Wako Pure Chemical ( Co., Ltd., solid content 2% by mass) 0.61 parts by mass water 44.87 parts by mass methanol 30 parts by
  • coating solution U1 for coating layer U1 A coating solution U1 for the coating layer U1 having the composition shown below was prepared.
  • Polyurethane aqueous solution Hydran HW-350 (DIC Co., Ltd., solid content concentration 30% by mass) 1.83 parts by mass
  • Binder polymer Pluscoat Z-592 (Solid Chemical Industries, Ltd., solid content 25%) 3.3 parts by mass
  • Surfactant B Aronactee CL-95 (Manufactured by Sanyo Chemical Industries, Ltd., solid content 1% by mass) 1.18 parts by mass water 64.63 parts by mass IPA 25.94 parts by mass
  • the coating liquid U1 for the coating layer U1 is used as a U1 layer so that the average thickness after drying becomes 100 nm using a wire bar. Applied. Then, it heated at 130 degreeC for 1 minute, dried and solidified, and formed U1 layer. Furthermore, the coating liquid M1 for metal particle content layers was apply
  • Example 2 Preparation of aqueous dye dispersion BD-10- Water was added to 3 parts by mass of pyrrolopyrrole dye (D-10) having the structure shown below and 2 parts by mass of DisperBYK2091 (manufactured by Big Chemie) to make 100 parts by mass. Further, 50 parts by mass of 0.1 mm ⁇ zirconia beads were added, and the mixture was treated with a planetary ball mill at 300 rpm for 5 hours to prepare an aqueous dye dispersion BD-10 composed of pyrrolopyrrole dye (D-10) fine particles. did. Thereafter, beads were separated and removed from the water product by filtration. When the obtained fine particles were observed with an electron microscope, they were irregular fine particles having an average particle diameter of 40 nm.
  • a coating solution M0 for a layer not containing metal particles having the composition shown below was prepared.
  • the coating liquid D10 for the pigment dispersion-containing layer is applied to the pigment D-10 coating amount to 60 mg / m 2 using a wire bar. It was applied as follows. Then, it heated at 130 degreeC for 1 minute, dried and solidified, and formed D10 layer. Further, on the D10 layer, a coating liquid M0 for a layer not containing metal particles was applied using a wire bar so that the average thickness after drying was 20 nm. Then, it heated at 130 degreeC for 1 minute, dried and solidified, and produced the coating film 2 for infrared shielding films of the comparative example 2.
  • Example 1 -Production of coating film 3-
  • the coating solution D10 was applied using a wire bar so that the coating amount of the dye D-10 was 60 mg / m 2 . Then, it heated at 130 degreeC for 1 minute, dried and solidified, and formed D10 layer.
  • the coating liquid M1 was applied using a wire bar so that the average thickness after drying was 20 nm. Then, it heated at 130 degreeC for 1 minute, dried and solidified, and produced the coating film 3 for infrared shielding films of Example 1.
  • the coating solution D10 is applied to the opposite side of the surface of the coating film on which M0 is applied so that the coating amount of the dye D-10 is 60 mg / m 2. It was applied, heated at 130 ° C. for 1 minute, dried and solidified to form a D10 layer. Thus, the coating film 4 for the infrared shielding film of Comparative Example 3 was produced.
  • Example 2 -Production of coating film 5-
  • a coating film 5 for an infrared shielding film of Example 2 was produced in the same manner as in Comparative Example 3 except that the coating liquid M0 was changed to the coating liquid M1.
  • a coating film 6 for an infrared shielding film of Comparative Example 4 was produced in the same manner as Comparative Example 2 except that the coating liquid D10 was changed to the coating liquid D28.
  • Example 3 -Creation of coating film 7-
  • a coating film 7 for an infrared shielding film of Example 3 was produced in the same manner as in Example 1 except that the coating liquid D10 was changed to the coating liquid D28.
  • Comparative Example 5 -Creation of coating film 8-
  • a coating film 8 for an infrared shielding film of Comparative Example 5 was produced in the same manner as Comparative Example 3 except that the coating liquid D10 was changed to the coating liquid D28.
  • Example 4 -Creation of coating film 9-
  • a coating film 9 for an infrared shielding film of Example 4 was produced in the same manner as in Example 2 except that the coating liquid D10 was changed to the coating liquid D28.
  • a coating solution DI-2 having the following composition was prepared using a heptamethine dye (I-2) having the structure shown below.
  • Polyurethane aqueous solution Hydran HW-350 (DIC Co., Ltd., solid content concentration 30% by mass) 1.83 parts by mass
  • Binder polymer Pluscoat Z-592 (Solid Chemical Industries, Ltd., solid content 25%) 3.3 parts by mass
  • Surfactant B Aronactee CL-95 (Manufactured by Sanyo Chemical Industries, Ltd., solid content 1% by mass) 1.18 parts by mass Heptamethine dye (I-2) 0.42 parts by mass Water 66.64 parts by mass IPA 25.94 parts by mass
  • the coating liquid DI-2 for the pigment dispersion-containing layer was applied using a wire bar, and the coating amount of the pigment I-2 was 30 mg / m. 2 was applied. Thereafter, the mixture was heated at 130 ° C. for 1 minute, dried and solidified to form a DI-2 layer. Further, on the DI-2 layer, a coating solution M0 for a layer not containing metal particles was applied using a wire bar so that the average thickness after drying was 20 nm. Then, it heated at 130 degreeC for 1 minute, dried and solidified, and produced the coating film 10 for infrared shielding films of the comparative example 6.
  • Example 5 -Creation of coating film 11-
  • a coating film 11 for an infrared shielding film of Example 5 was prepared in the same manner as in Comparative Example 6 except that the coating liquid M0 was changed to the coating liquid M1.
  • Example 6 -Creation of coating film 13-
  • a coating film 13 for an infrared shielding film of Example 6 was produced in the same manner as in Comparative Example 7 except that the coating liquid M0 was changed to the coating liquid M1.
  • a coating solution DM0 having the following composition was prepared. -Preparation of DM0 layer coating solution DM0 containing infrared dye- Polyurethane aqueous solution: Hydran HW-350 (DIC Co., Ltd., solid content concentration: 30% by mass) 0.27 parts by mass Surfactant A: F Ripar 8780P (Made by Lion Co., Ltd., solid content 1% by mass) 0.96 parts by mass Surfactant B: Aronactee CL-95 (Manufactured by Sanyo Chemical Industries, Ltd., solid content: 1% by mass) 1.19 parts by mass 1% inert aqueous gelatin solution 32.74 parts by mass 1- (5-methylureidophenyl) -5-mercaptotetrazole (Wako Pure Chemical ( Co., Ltd., solid content 2% by mass) 0.61 parts by mass Heptamethine dye (I-2) 0.66 parts by mass Water 33.57 parts by mass Methanol 30.00 parts by mass
  • the coating liquid U1 for the coating layer U1 is used as a U1 layer so that the average thickness after drying becomes 100 nm using a wire bar. Applied. Then, it heated at 130 degreeC for 1 minute, dried and solidified, and formed U1 layer. Furthermore, the coating liquid M1 for metal particle content layers was apply
  • Example 15 Preparation of DM1 layer coating solution DM1 containing infrared dye- A coating solution DM1 was prepared in the same manner as the coating solution DM0 except that the 1% gelatin inert aqueous solution was changed to the silver tabular grain dispersion B1.
  • a coating film 15 for an infrared shielding film of Example 7 was prepared in the same manner as in Comparative Example 8 except that the coating liquid DM0 was changed to the coating liquid DM1.
  • a coating film 16 for a Blank film was prepared in the same manner as in Comparative Example 1 except that the coating liquid M1 was changed to the coating liquid M0.
  • the adhesive layer of the infrared shielding film of each Example and the comparative example was affixed on the blue plate glass of thickness 3mm.
  • the reflection spectrum and transmission spectrum of the bonded structure thus obtained were measured using an ultraviolet-visible near-infrared spectrometer (manufactured by JASCO Corporation, V-670).
  • An integrating sphere unit (INS-723, manufactured by JASCO Corporation) was used for reflection spectrum and transmission spectrum measurement.
  • FIG. 8 shows the reflection spectrum and the transmission spectrum of Comparative Examples 1 and 6, Example 5 and the Blunk film using the coating films 1, 10, 11, and 16, respectively.
  • the difference with respect to the Blunk film of the reflection spectrum obtained with respect to each sample was calculated
  • Table 1 shows the total film thickness of the coated material excluding the support.
  • Example 1 the comparison between Examples 1, 3 and 5 shows that when the I-2 dye is used, the heat ray reflectance is higher than when the D-10 or D-28 dye is used. Was found to be preferable. In particular, it was found from the comparison between Examples 5 to 7 that the reflectance was high when the dye was introduced into the silver tabular grain-containing layer. In addition, the storage stability largely depends on the dye, but in any dye, Example 2 in which the dye was introduced into the backcoat layer on the lower layer side (opposite side of the support) of the silver tabular grain-containing layer with respect to incident light.
  • the total thickness of all the coating layers (referred to as the total film thickness) is 0.4 ⁇ m or less, which is significantly thinner than the example described in Patent Document 1, High trackability and many uses.
  • Examples 11 and 12 In the coating films 3 and 5 prepared in Examples 1 and 2, the ITO hard coat coating solution (EI-1 manufactured by Mitsubishi Materials Corporation) was dried on the surface opposite to the coated surface of the silver tabular grain dispersion of the PET film.
  • the wire coating bar no. 10 RDS Webster NY Co., Ltd.
  • An adhesive layer was provided on the metal particle-containing layer in the same manner as in Examples 1 and 2 except that the obtained coating film was used, and infrared shielding films of Examples 11 and 12 were produced.
  • grains measured as follows is 3.0 g / m ⁇ 2 >.
  • the content of the ITO particles with respect to the mass of the entire infrared shielding film is obtained by eluting the ITO particles in a fixed area of the entire heat ray shielding infrared shielding film into methanol, measuring the mass of the ITO particles by fluorescent X-ray measurement, Calculated by dividing by a constant area.
  • Example 22 Preparation of coating solution UV1 for UV absorbing layer- A coating solution UV1 for an ultraviolet absorbing layer having the composition shown below was prepared.
  • Composition of coating solution UV1 for ultraviolet absorbing layer Ultraviolet absorber: Tinuvin 326 10 parts by mass (Ciba Japan)
  • Binder 10 mass% polyvinyl alcohol solution 10 mass parts Water 30 mass parts These were mixed and the volume average particle diameter was adjusted to 0.6 micrometer using the ball mill.
  • the coating solution UV1 for the ultraviolet absorbing layer is dried to an average thickness of 0.5 ⁇ m using a wire bar. It was applied as follows. Then, it heated at 100 degreeC for 2 minute (s), dried and solidified, and formed the ultraviolet absorption layer which serves as an overcoat layer. Thereafter, in the same manner as in Example 12, a metal oxide particle-containing layer was provided as a backcoat layer on the back side of the PET film on which the silver tabular particle dispersion was applied, and the metal oxide particle-containing layer / PET film. The laminated body laminated in the order of / undercoat layer U1 / metal particle containing layer containing tabular grains / ultraviolet absorbing layer serving as an overcoat layer was used as an infrared shielding film.
  • the adhesive layer was bonded together.
  • a pressure-sensitive adhesive layer pressure-sensitive adhesive
  • PET-W manufactured by Sanritz Co., Ltd. was used, and the surface of one of the PET-W peeled sheets was bonded to the surface of the ultraviolet ray absorbing layer of the infrared shielding film.
  • a film was prepared.
  • the infrared shielding film of the present invention has a high heat ray reflectivity and excellent heat shielding performance, for example, as a film for automobiles, buses, etc., a laminated structure, a film for building materials, a laminated structure, etc. It can be suitably used as various members that are required to prevent this.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Optical Filters (AREA)

Abstract

This infrared blocking film, which has a metal particle-containing layer having metal particles contained therein, and which contains a compound having absorbing characteristics in an infrared region, is capable of easily reflecting infrared, and has high heat ray reflectivity.

Description

赤外線遮蔽フィルムInfrared shielding film
 本発明は、赤外線遮蔽フィルムに関する。 The present invention relates to an infrared shielding film.
 近年、二酸化炭素削減のための省エネルギー施策の一つとして、自動車や建物の窓に対する熱線遮蔽性付与材料が開発されている。熱線遮蔽性(日射熱取得率)の観点からは、吸収した光の室内への再放射(吸収した日射エネルギーの約1/3量)がある熱線吸収型より、再放射がない熱線反射型が望ましく、様々な提案がなされている。 In recent years, heat ray shielding materials for automobiles and building windows have been developed as an energy-saving measure for reducing carbon dioxide. From the viewpoint of the heat ray shielding property (acquisition rate of solar heat), the heat ray reflection type without re-radiation is better than the heat ray absorption type with re-radiation of absorbed light into the room (about 1/3 of the absorbed solar energy). Various proposals have been made.
 特許文献1には、少なくとも1種の金属粒子を含有する金属粒子含有層と、コレステリック液晶層とを有する熱線遮蔽材であって、前記金属粒子が、略六角形状乃至略円盤形状の金属平板粒子を60個数%以上有し、前記コレステリック液晶層の選択反射波長が、赤外光領域であることを特徴とする熱線遮蔽材により、可視光線透過性及び電波透過性に優れ、短波長側の赤外線の遮蔽率が高く、赤外線を広帯域に遮蔽でき、脆性が低く、薄層化可能な熱線遮蔽材の提供ができることが記載されている。しかしながら、液晶を用いて反射ピークを得ようとすると狭帯域でも層が厚くなり、薄層化は不十分であった。事実、特許文献1の実施例でも20μmの層の厚みが開示されている。また、液晶層を形成するには基板の平滑化等、製造が複雑で、コスト負荷が大きいという問題があった。さらに、特許文献1には、金属微粒子を含み、かつ赤外領域に反射ピークを示す例が開示されているが、赤外吸収色素と併用した例はなかった。 Patent Document 1 discloses a heat ray shielding material having a metal particle-containing layer containing at least one kind of metal particles and a cholesteric liquid crystal layer, wherein the metal particles are substantially hexagonal or disk-shaped metal tabular particles. And a selective reflection wavelength of the cholesteric liquid crystal layer is in the infrared region, and is excellent in visible light transmission and radio wave transmission, and has a short wavelength side infrared ray. It is described that it is possible to provide a heat ray shielding material that has a high shielding rate, can shield infrared rays in a wide band, has low brittleness, and can be thinned. However, when attempting to obtain a reflection peak using liquid crystal, the layer becomes thick even in a narrow band, and thinning is insufficient. In fact, the example of Patent Document 1 also discloses a layer thickness of 20 μm. Further, in order to form the liquid crystal layer, there is a problem that manufacturing is complicated and cost burden is large, such as smoothing the substrate. Further, Patent Document 1 discloses an example containing metal fine particles and showing a reflection peak in the infrared region, but there was no example of using it together with an infrared absorbing dye.
 特許文献2にはピロロピロール構造を有する色素微粒子およびその塗布物により、近赤外領域に吸収を有し、400~700nmの領域に吸収を有さず不可視性に優れた、高堅牢な近赤外線吸収性化合物が記載されている。特許文献2には色素の吸収スペクトルが開示されているが、色素による反射は読み取ることができず、記載もなかった。また、特許文献2には、赤外色素による赤外光吸収材料を、金属粒子と併用することについて開示も示唆もなかった。 Patent Document 2 discloses a highly robust near-infrared ray having absorption in the near-infrared region and having no absorption in the 400-700 nm region and excellent invisibility due to a pigment fine particle having a pyrrolopyrrole structure and its coating. Absorbable compounds are described. Patent Document 2 discloses an absorption spectrum of a dye, but reflection by the dye cannot be read and is not described. Further, Patent Document 2 neither disclosed nor suggested that an infrared light absorbing material using an infrared dye is used in combination with metal particles.
 特許文献3にはフィルム状の支持体と、前記支持体上に、近赤外吸収染料とポリマーの水性分散物を含有する近赤外線吸収組成物を用いて形成された近赤外線吸収層とを有し、ヘイズ値が4%以下であることを特徴とする近赤外線吸収フィルターにより、ヘイズ値及び特に高温高湿下での耐久性が改良された近赤外線吸収フィルムを提供できると記載されている。特許文献3には色素による反射について記載はなかった。また、特許文献3には、赤外色素による赤外光吸収材料を、金属粒子と併用することについて開示も示唆もなかった。 Patent Document 3 has a film-like support, and a near-infrared absorbing layer formed on the support using a near-infrared absorbing composition containing an aqueous dispersion of a near-infrared absorbing dye and a polymer. In addition, it is described that a near-infrared absorption filter having improved haze value and particularly durability under high temperature and high humidity can be provided by a near-infrared absorption filter having a haze value of 4% or less. Patent Document 3 did not describe reflection by a dye. Further, Patent Document 3 neither disclosed nor suggested that an infrared light absorbing material using an infrared dye is used in combination with metal particles.
特開2012-108207号公報JP 2012-108207 A 特開2009-263614号公報JP 2009-263614 A 特開2008-181096号公報JP 2008-181096 A
 これらの文献に記載された赤外色素を単独で用いた態様では熱線遮蔽能力が不十分であり、更なる改良が望まれていた。 In the embodiment in which the infrared dye described in these documents is used alone, the heat ray shielding ability is insufficient, and further improvement has been desired.
 本発明が解決しようとする課題は、簡便に赤外光を反射することができ、熱線反射率が高い赤外線遮蔽フィルムを提供することである。 The problem to be solved by the present invention is to provide an infrared shielding film that can easily reflect infrared light and has high heat ray reflectivity.
 本発明者らは、前記目的を解決すべく、鋭意検討した結果、色素を薄層塗布することで、極大吸収波長(分光波長)の近傍に色素による反射帯域が発生すること(以下、異常反射とも言う)を発見した。そして、金属粒子と赤外吸収色素を組み合わせることで、特許文献1~3に記載の赤外線遮蔽フィルムよりも簡便に赤外光を反射することができ、熱線反射率が高くなるために上記課題を解決できることを見出し、本発明の完成に至った。 As a result of intensive studies to solve the above-mentioned object, the present inventors have found that a reflection band due to a dye is generated near the maximum absorption wavelength (spectral wavelength) by applying a thin layer of the dye (hereinafter referred to as abnormal reflection). Also called). Further, by combining the metal particles and the infrared absorbing dye, infrared light can be reflected more easily than the infrared shielding films described in Patent Documents 1 to 3, and the above problems are caused because the heat ray reflectance is increased. The inventors have found that the problem can be solved and have completed the present invention.
 上記課題を解決するための具体的な手段である本発明は、以下のとおりである。
[1] 金属粒子を含有する金属粒子含有層を有し、赤外領域に吸収を有する化合物を含有することを特徴とする赤外線遮蔽フィルム。
[2] [1]に記載の赤外線遮蔽フィルムは、前記金属粒子が、平板状の金属粒子を60個数%以上有することが好ましい。
[3] [1]または[2]に記載の赤外線遮蔽フィルムは、少なくともひとつの層が800~2000nmの領域に透過スペクトルのピークを有することが好ましい。
[4] [1]~[3]のいずれか一項に記載の赤外線遮蔽フィルムは、前記赤外領域に吸収を有する化合物が、下記一般式(1)で表される化合物または下記一般式(2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000003
(一般式(1)中、ZおよびZは、それぞれ独立に5員または6員の含窒素複素環を形成する非金属原子群である。RおよびRは、それぞれ独立に、脂肪族基または芳香族基である。Lは、3個のメチンからなるメチン鎖である。aおよびbは、それぞれ独立に0または1である。)
Figure JPOXMLDOC01-appb-C000004
(一般式(2)中、R1a及びR1bは同じであっても異なってもよく、各々独立にアルキル基、アリール基またはヘテロアリール基を表す。R及びRは各々独立に水素原子または置換基を表し、少なくとも一方は電子吸引性基であり、R及びRは結合して環を形成してもよい。Rは水素原子、アルキル基、アリール基、ヘテロアリール基、置換ホウ素または金属原子を表し、R1a、R1bおよびRの少なくとも1以上の基と共有結合もしくは配位結合してもよい。)
[5] [4]に記載の赤外線遮蔽フィルムは、前記赤外領域に吸収を有する化合物が前記一般式(2)で表される化合物であることが好ましい。
[6] [1]~[5]のいずれか一項に記載の赤外線遮蔽フィルムは、前記赤外領域に吸収を有する化合物を含む層において、前記赤外領域に吸収を有する化合物が20~190mg/m含まれることが好ましい。
[7] [1]~[6]のいずれか一項に記載の赤外線遮蔽フィルムは、前記金属粒子が、少なくとも銀を含むことが好ましい。
[8] [1]~[7]のいずれか一項に記載の赤外線遮蔽フィルムは、前記金属粒子が、六角形状乃至円形状の銀平板粒子を60個数%以上有することが好ましい。
[9] [1]~[8]のいずれか一項に記載の赤外線遮蔽フィルムは、前記金属粒子が、平均粒子厚みが20nm以下の銀平板粒子であることが好ましい。
[10] [1]~[9]のいずれか一項に記載の赤外線遮蔽フィルムは、前記金属粒子が、アスペクト比(平均粒子径/平均粒子厚み)が3~100の銀平板粒子であることが好ましい。
[11] [1]~[10]のいずれか一項に記載の赤外線遮蔽フィルムは、透過スペクトルにおいて800nm~前記金属粒子の反射ピークの間に透過ピークを有することが好ましい。
[12] [1]~[11]のいずれか一項に記載の赤外線遮蔽フィルムは、紫外線吸収剤を含むことが好ましい。
[13] [12]に記載の赤外線遮蔽フィルムは、粘着剤層を有し、前記粘着剤層または前記粘着剤層と前記金属粒子含有層の間の層に前記紫外線吸収剤が含まれることが好ましい。
[14] [1]~[13]のいずれか一項に記載の赤外線遮蔽フィルムは、支持体を含むことが好ましい。
[15] [14]に記載の赤外線遮蔽フィルムは、前記支持体の、前記金属粒子含有層と同じ側に、前記赤外領域に吸収を有する化合物を含有する色素含有層を含むことが好ましい。
[16] [14]または[15]に記載の赤外線遮蔽フィルムは、前記支持体と、前記金属粒子含有層の間に、アンダーコート層を有することが好ましい。
[17] [14]~[16]のいずれか一項に記載の赤外線遮蔽フィルムは、前記支持体の、前記金属粒子含有層とは反対側の面上にバックコート層を有することが好ましい。
[18] [17]に記載の赤外線遮蔽フィルムは、前記赤外領域に吸収を有する化合物を、前記金属粒子含有層、前記アンダーコート層および前記バックコート層のうち少なくとも1層に含むことが好ましい。
The present invention, which is a specific means for solving the above problems, is as follows.
[1] An infrared shielding film comprising a metal particle-containing layer containing metal particles and a compound having absorption in the infrared region.
[2] In the infrared shielding film according to [1], the metal particles preferably have 60% by number or more of flat metal particles.
[3] In the infrared shielding film according to [1] or [2], it is preferable that at least one layer has a transmission spectrum peak in a region of 800 to 2000 nm.
[4] In the infrared shielding film according to any one of [1] to [3], the compound having absorption in the infrared region is a compound represented by the following general formula (1) or the following general formula ( It is preferable that it is a compound represented by 2).
Figure JPOXMLDOC01-appb-C000003
(In the general formula (1), Z 1 and Z 2 are each independently a non-metallic atom group that forms a 5- or 6-membered nitrogen-containing heterocycle. R 1 and R 2 are each independently a fatty group. L 1 is a methine chain composed of 3 methines. A and b are each independently 0 or 1.)
Figure JPOXMLDOC01-appb-C000004
(In General Formula (2), R 1a and R 1b may be the same or different and each independently represents an alkyl group, an aryl group or a heteroaryl group. R 2 and R 3 each independently represent a hydrogen atom. Or at least one is an electron-withdrawing group, and R 2 and R 3 may combine to form a ring, and R 4 represents a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, a substituted group Represents a boron or metal atom, and may be a covalent bond or a coordinate bond with at least one group of R 1a , R 1b and R 3. )
[5] In the infrared shielding film according to [4], the compound having absorption in the infrared region is preferably a compound represented by the general formula (2).
[6] In the infrared shielding film according to any one of [1] to [5], in the layer containing a compound having absorption in the infrared region, 20 to 190 mg of the compound having absorption in the infrared region. / M 2 is preferably included.
[7] In the infrared shielding film according to any one of [1] to [6], the metal particles preferably include at least silver.
[8] In the infrared shielding film according to any one of [1] to [7], it is preferable that the metal particles have 60% by number or more of hexagonal or circular silver tabular grains.
[9] In the infrared shielding film according to any one of [1] to [8], the metal particles are preferably silver tabular grains having an average grain thickness of 20 nm or less.
[10] In the infrared shielding film according to any one of [1] to [9], the metal particles are silver tabular grains having an aspect ratio (average particle diameter / average particle thickness) of 3 to 100. Is preferred.
[11] The infrared shielding film according to any one of [1] to [10] preferably has a transmission peak between 800 nm and the reflection peak of the metal particle in the transmission spectrum.
[12] The infrared shielding film according to any one of [1] to [11] preferably contains an ultraviolet absorber.
[13] The infrared shielding film according to [12] includes an adhesive layer, and the ultraviolet absorber is contained in the adhesive layer or a layer between the adhesive layer and the metal particle-containing layer. preferable.
[14] The infrared shielding film according to any one of [1] to [13] preferably includes a support.
[15] The infrared shielding film according to [14] preferably includes a dye-containing layer containing a compound having absorption in the infrared region on the same side of the support as the metal particle-containing layer.
[16] The infrared shielding film according to [14] or [15] preferably has an undercoat layer between the support and the metal particle-containing layer.
[17] The infrared shielding film according to any one of [14] to [16] preferably has a backcoat layer on the surface of the support opposite to the metal particle-containing layer.
[18] The infrared shielding film according to [17] preferably includes a compound having absorption in the infrared region in at least one of the metal particle-containing layer, the undercoat layer, and the backcoat layer. .
 本発明によると、簡便に赤外光を反射することができ、熱線反射率が高い赤外線遮蔽フィルムを提供することができる。 According to the present invention, an infrared shielding film that can easily reflect infrared light and has high heat ray reflectivity can be provided.
図1は、本発明の赤外線遮蔽フィルムの一例を示す概略図である。FIG. 1 is a schematic view showing an example of the infrared shielding film of the present invention. 図2は、本発明の赤外線遮蔽フィルムの他の一例を示す概略図である。FIG. 2 is a schematic view showing another example of the infrared shielding film of the present invention. 図3は、本発明の赤外線遮蔽フィルムの他の一例を示す概略図である。FIG. 3 is a schematic view showing another example of the infrared shielding film of the present invention. 図4は、本発明の赤外線遮蔽フィルムの他の一例を示す概略図である。FIG. 4 is a schematic view showing another example of the infrared shielding film of the present invention. 図5は、本発明の赤外線遮蔽フィルムの他の一例を示す概略図である。FIG. 5 is a schematic view showing another example of the infrared shielding film of the present invention. 図6Aは、本発明の赤外線遮蔽フィルムにおいて、金属平板粒子を含む金属粒子含有層の存在状態を示した概略断面図であって、金属平板粒子を含む金属粒子含有層(基材の平面とも平行)と金属平板粒子の主平面(円相当径Dを決める面)とのなす角度(θ)を説明する図を示す。FIG. 6A is a schematic cross-sectional view showing the presence state of a metal particle-containing layer containing metal tabular grains in the infrared shielding film of the present invention, and is a metal particle-containing layer containing metal tabular grains (parallel to the plane of the substrate). ) And the main plane of the metal tabular grain (the plane that determines the equivalent circle diameter D). 図6Bは、本発明の赤外線遮蔽フィルムにおいて、金属平板粒子を含む金属粒子含有層の存在状態を示した概略断面図であって、金属粒子含有層の熱線遮蔽材の深さ方向における金属平板粒子の存在領域を示す図である。FIG. 6B is a schematic cross-sectional view showing the existence state of a metal particle-containing layer containing metal tabular grains in the infrared shielding film of the present invention, and the metal tabular grains in the depth direction of the heat ray shielding material of the metal particle-containing layer. FIG. 図6Cは、本発明の赤外線遮蔽フィルムにおいて、金属平板粒子を含む金属粒子含有層の存在状態の一例を示した概略断面図である。FIG. 6C is a schematic cross-sectional view showing an example of the presence state of a metal particle-containing layer containing metal tabular grains in the infrared shielding film of the present invention. 図6Dは、本発明の赤外線遮蔽フィルムにおいて、金属平板粒子を含む金属粒子含有層の存在状態の他の一例を示した概略断面図である。FIG. 6D is a schematic cross-sectional view showing another example of the presence state of a metal particle-containing layer containing tabular metal particles in the infrared shielding film of the present invention. 図6Eは、本発明の赤外線遮蔽フィルムにおいて、金属平板粒子を含む金属粒子含有層の存在状態の他の一例を示した概略断面図である。FIG. 6E is a schematic cross-sectional view showing another example of the presence state of a metal particle-containing layer containing metal tabular grains in the infrared shielding film of the present invention. 図7Aは、本発明の赤外線遮蔽フィルムに好ましく用いられる金属平板粒子の形状の一例を示した概略斜視図であって、円形状の金属平板粒子を示す。FIG. 7A is a schematic perspective view showing an example of the shape of a metal tabular grain preferably used in the infrared shielding film of the present invention, and shows a circular metal tabular grain. 図7Bは、本発明の赤外線遮蔽フィルムに好ましく用いられる金属平板粒子の形状の一例を示した概略斜視図であって、六角形状の金属平板粒子を示す。FIG. 7B is a schematic perspective view showing an example of the shape of a metal tabular grain preferably used for the infrared shielding film of the present invention, and shows a hexagonal metal tabular grain. 図8は、実施例5、比較例1および6の赤外線遮蔽フィルムとBlunkフィルムの反射スペクトルおよび透過スペクトルを示すグラフである。FIG. 8 is a graph showing the reflection spectrum and transmission spectrum of the infrared shielding film and the Blunk film of Example 5 and Comparative Examples 1 and 6.
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。 The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
[赤外線遮蔽フィルム]
 本発明の赤外線遮蔽フィルムは、金属粒子を含有する金属粒子含有層を有し、赤外領域に吸収を有する化合物を含有することを特徴とする。
 このような構成により、簡便に赤外光を反射することができ、熱線反射率が高い赤外線遮蔽フィルムとなる。いかなる理論に拘泥するものでもないが、このような構成により、色素の異常反射を起こすことができて赤外領域における反射率を高められ、熱線反射率を改善することができる。
 以下、本発明の赤外線遮蔽フィルムのより好ましい態様について、具体的に説明する。
[Infrared shielding film]
The infrared shielding film of this invention has the metal particle content layer containing a metal particle, and contains the compound which has absorption in an infrared region.
With such a configuration, infrared light can be easily reflected and an infrared shielding film with high heat ray reflectivity is obtained. Although not bound by any theory, such a configuration can cause abnormal reflection of the dye, increase the reflectance in the infrared region, and improve the heat ray reflectance.
Hereinafter, the more preferable aspect of the infrared shielding film of this invention is demonstrated concretely.
<赤外線遮蔽フィルムの特性>
 本発明の赤外線遮蔽フィルムは、700~1200nmにおける平均熱線反射率が5%以上であることが好ましく、7%以上であることがより好ましく、8%以上であることが特に好ましく、10%以上であることがより特に好ましい。
<Characteristics of infrared shielding film>
The infrared ray shielding film of the present invention has an average heat ray reflectance at 700 to 1200 nm of preferably 5% or more, more preferably 7% or more, particularly preferably 8% or more, and 10% or more. More particularly preferred.
 本発明の赤外線遮蔽フィルムは、少なくともひとつの層が800~2000nmの領域に透過スペクトルの最低ピークを有することが、熱線透過率を低くする観点から好ましい。前記透過スペクトルの最低ピーク波長は、750~1400nmの帯域に存在することがより好ましく、800~1100nmの帯域に存在することが特に好ましい。また、本発明の赤外線遮蔽フィルムは金属粒子含有層が800~2000nmの領域に透過スペクトルの最低ピークを有することが好ましい。
 本発明の赤外線遮蔽フィルムは、透過スペクトルにおいて800nm~前記金属粒子の反射ピークの間に透過ピークを有することが近赤外を有効に遮蔽する観点から好ましい。
In the infrared shielding film of the present invention, it is preferable that at least one layer has the lowest peak of the transmission spectrum in the region of 800 to 2000 nm from the viewpoint of lowering the heat ray transmittance. The minimum peak wavelength of the transmission spectrum is more preferably in the band of 750 to 1400 nm, and particularly preferably in the band of 800 to 1100 nm. In the infrared shielding film of the present invention, the metal particle-containing layer preferably has the lowest peak of the transmission spectrum in the region of 800 to 2000 nm.
The infrared shielding film of the present invention preferably has a transmission peak between 800 nm and the reflection peak of the metal particle in the transmission spectrum from the viewpoint of effectively shielding near infrared rays.
 本発明の赤外線遮蔽フィルムは、極大反射波長が700~1800nmの帯域に存在することが熱線反射の効率を上げる観点から好ましい。前記極大反射波長は、750~1400nmの帯域に存在することがより好ましく、800~1100nmの帯域に存在することが特に好ましい。 The infrared shielding film of the present invention preferably has a maximum reflection wavelength in a band of 700 to 1800 nm from the viewpoint of increasing the efficiency of heat ray reflection. The maximum reflection wavelength is more preferably in the band of 750 to 1400 nm, and particularly preferably in the band of 800 to 1100 nm.
 本発明の赤外線遮蔽フィルムの可視光線透過率としては、60%以上であることが好ましく、65%以上であることがより好ましく、70%以上であることが特に好ましい。前記可視光線透過率が、60%以上であると、例えば、自動車用ガラスや建物用ガラスとして用いた時に、外部が見やすい。
 本発明の赤外線遮蔽フィルムの紫外線透過率としては、5%以下が好ましく、2%以下がより好ましい。
The visible light transmittance of the infrared shielding film of the present invention is preferably 60% or more, more preferably 65% or more, and particularly preferably 70% or more. When the visible light transmittance is 60% or more, for example, when used as glass for automobiles or glass for buildings, the outside is easy to see.
As an ultraviolet-ray transmittance of the infrared shielding film of this invention, 5% or less is preferable and 2% or less is more preferable.
<赤外線遮蔽フィルムの構成>
 本発明の赤外線遮蔽フィルムは、少なくとも1種の金属粒子を含有する金属粒子含有層を有し、赤外領域に吸収を有する化合物を含有する。さらに、必要に応じて、アンダーコート層、オーバーコート層、粘着層、紫外線吸収層、支持体(以下、基材ともいう)、金属酸化物粒子含有層、バックコート層などのその他の層を有する態様も好ましい。前記赤外領域に吸収を有する化合物の含まれる層は特に制限はなく、前記金属粒子含有層であっても、前記その他の層のいずれかまたは複数であってもよい。
 以下、図面をもとに本発明の赤外線遮蔽フィルムの好ましい構成について説明する。
<Configuration of infrared shielding film>
The infrared shielding film of this invention has a metal particle content layer containing at least 1 type of metal particle, and contains the compound which has absorption in an infrared region. Furthermore, it has other layers such as an undercoat layer, an overcoat layer, an adhesive layer, an ultraviolet absorbing layer, a support (hereinafter also referred to as a base material), a metal oxide particle-containing layer, and a backcoat layer as necessary. Embodiments are also preferred. The layer containing the compound having absorption in the infrared region is not particularly limited, and may be the metal particle-containing layer or any one or more of the other layers.
Hereinafter, the preferable structure of the infrared shielding film of this invention is demonstrated based on drawing.
 赤外線遮蔽フィルム10の層構成としては、図1に示すように、支持体1の上に、1層または複数層のアンダーコート層5を介して、少なくとも1種の金属粒子を含有する金属粒子含有層2を有する構成を挙げることができる。前記金属粒子は、金属平板粒子であることが好ましく、金属粒子含有層2の表面に金属平板粒子3が偏在している態様が好ましく挙げられる。図1の構成において、赤外領域に吸収を有する化合物は、金属粒子含有層2およびアンダーコート層5のうち少なくとも1層に添加することが好ましい。 As shown in FIG. 1, the layer structure of the infrared shielding film 10 includes metal particles containing at least one kind of metal particles on the support 1 through one or more undercoat layers 5. A structure having the layer 2 can be given. The metal particles are preferably metal tabular grains, and an embodiment in which the metal tabular grains 3 are unevenly distributed on the surface of the metal particle-containing layer 2 is preferable. In the configuration of FIG. 1, the compound having absorption in the infrared region is preferably added to at least one of the metal particle-containing layer 2 and the undercoat layer 5.
 図2に示すように、図1の構成に加えて、さらに支持体1の金属粒子含有層2とは反対側の面上にバックコート層12を有することが好ましい。図2の構成において、赤外領域に吸収を有する化合物は、金属粒子含有層2、アンダーコート層5およびバックコート層12のうち少なくとも1層に添加することが好ましい。 As shown in FIG. 2, in addition to the structure of FIG. 1, it is preferable to further have a back coat layer 12 on the surface of the support 1 opposite to the metal particle-containing layer 2. In the configuration of FIG. 2, the compound having absorption in the infrared region is preferably added to at least one of the metal particle-containing layer 2, the undercoat layer 5, and the backcoat layer 12.
 図3に示すように、金属粒子含有層2と、該金属粒子含有層2上にオーバーコート層4とを有し、その表面に金属平板粒子3が偏在している態様が挙げられる。また、さらにオーバーコート層4上に、粘着剤層11を有する態様が好適に挙げられる。図3の構成において、赤外領域に吸収を有する化合物は、いずれの層に添加しても良いが金属粒子含有層2、アンダーコート層5およびバックコート層12のうち少なくとも1層に添加することが好ましい。また、赤外線遮蔽フィルム10は、図3において、前記オーバーコート層4または、前記粘着剤層11に紫外線吸収剤を含むことが好ましい。 As shown in FIG. 3, there is an embodiment in which the metal particle-containing layer 2 and the overcoat layer 4 are provided on the metal particle-containing layer 2 and the metal tabular grains 3 are unevenly distributed on the surface thereof. Furthermore, the aspect which has the adhesive layer 11 further on the overcoat layer 4 is mentioned suitably. In the configuration of FIG. 3, the compound having absorption in the infrared region may be added to any layer, but is added to at least one of the metal particle-containing layer 2, the undercoat layer 5, and the backcoat layer 12. Is preferred. In addition, the infrared shielding film 10 preferably includes an ultraviolet absorber in the overcoat layer 4 or the pressure-sensitive adhesive layer 11 in FIG. 3.
 図4に示すように、支持体1の金属粒子含有層2とは反対側の面上には、バックコート層12の代わりに、金属酸化物粒子13を含む金属酸化物粒子層14を有することも好ましい。図4の構成において、赤外領域に吸収を有する化合物は、いずれの層に添加しても良いが金属粒子含有層2および不図示のアンダーコート層のうち少なくとも1層に添加することが好ましい。 As shown in FIG. 4, a metal oxide particle layer 14 including metal oxide particles 13 is provided instead of the backcoat layer 12 on the surface of the support 1 opposite to the metal particle-containing layer 2. Is also preferable. In the configuration of FIG. 4, the compound having absorption in the infrared region may be added to any layer, but is preferably added to at least one of the metal particle-containing layer 2 and an unillustrated undercoat layer.
 図5に示すように、金属酸化物粒子13を含む金属酸化物粒子層14、支持体1、アンダーコート層5、金属粒子含有層2、オーバーコート層4および粘着剤層11を有する態様も好ましい。図5の構成において、赤外領域に吸収を有する化合物は、いずれの層に添加しても良いが金属粒子含有層2、アンダーコート層5のうち少なくとも1層に添加することが好ましい。 As shown in FIG. 5, the aspect which has the metal oxide particle layer 14 containing the metal oxide particle 13, the support body 1, the undercoat layer 5, the metal particle content layer 2, the overcoat layer 4, and the adhesive layer 11 is also preferable. . In the configuration of FIG. 5, the compound having absorption in the infrared region may be added to any layer, but is preferably added to at least one of the metal particle-containing layer 2 and the undercoat layer 5.
<金属粒子含有層>
 前記金属粒子含有層は、少なくとも1種の金属粒子を含有する層である。
 前記金属粒子は、特に制限はなく、目的に応じて適宜選択することができる。
 前記金属粒子含有層の厚みをdとしたとき、前記六角形状乃至円形状の平板状金属粒子の80個数%以上が、前記金属粒子含有層の表面からd/2の範囲に存在していることが好ましく、前記金属粒子含有層の表面からd/3の範囲に存在することよりが好ましい。いかなる理論に拘泥するものでもなく、また、本発明の赤外線遮蔽フィルムは以下の製造方法に限定されるものではないが、前記金属粒子含有層を製造するときに特定のポリマー(好ましくはラテックス)を添加することなどにより、金属平板粒子を前記金属粒子含有層の一方の表面に偏析させることができる。
<Metal particle content layer>
The metal particle-containing layer is a layer containing at least one metal particle.
There is no restriction | limiting in particular in the said metal particle, According to the objective, it can select suitably.
When the thickness of the metal particle-containing layer is d, 80% by number or more of the hexagonal or circular tabular metal particles are present in a range of d / 2 from the surface of the metal particle-containing layer. It is more preferable that it exists in the range of d / 3 from the surface of the said metal-particle content layer. The present invention is not limited to any theory, and the infrared shielding film of the present invention is not limited to the following production method. However, when the metal particle-containing layer is produced, a specific polymer (preferably latex) is used. By adding it, the metal tabular grains can be segregated on one surface of the metal particle-containing layer.
-1-1.金属粒子-
 本発明の赤外線遮蔽フィルムでは、前記金属粒子は、平板状の金属粒子を60個数%以上有することが好ましく、六角形状乃至円形状の平板状金属粒子を60個数%以上有することがより好ましい。
 前記金属粒子含有層において、六角形状乃至円形状の平板状金属粒子の存在形態としては、金属粒子含有層の一方の表面(本発明の赤外線遮蔽フィルムが基材を有する場合は、基材表面)に対して六角形状乃至円形状の平板状金属粒子の主平面が平均0°~±30°の範囲で面配向していることが好ましく、平均0°~±20°の範囲で面配向していることがより好ましく、平均0°~±10°の範囲で面配向していることが特に好ましい。
 なお、前記金属粒子含有層の一方の表面は、フラットな平面であることが好ましい。本発明の赤外線遮蔽フィルムの前記金属粒子含有層が仮支持体としての基材を有する場合は、基材の表面とともに略水平面であることが好ましい。ここで、前記赤外線遮蔽フィルムは、前記仮支持体を有していてもよく、有していなくてもよい。
 前記金属粒子の大きさとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、500nm以下の平均粒子径を有するものであってもよい。
 前記金属粒子の材料としては、特に制限はなく、目的に応じて適宜選択することができるが、熱線(近赤外線)の反射率が高い点から、銀、金、アルミニウム、銅、ロジウム、ニッケル、白金などが好ましく、その中でも銀がより好ましい。
 前記金属粒子の反射ピークは、850~1600nmであることが好ましく、900~1300nmであることがより好ましい。ここで、前記金属粒子の反射ピークとは、前記金属粒子含有層中の前記金属粒子の反射ピークである。前記金属粒子の反射ピークは金属粒子の材料や形状などによって制御できる。
1-1. Metal particles
In the infrared shielding film of the present invention, the metal particles preferably have 60% by number or more of flat metal particles, and more preferably have 60% by number or more of hexagonal or circular plate metal particles.
In the metal particle-containing layer, the form of the hexagonal or circular plate-like metal particles is one surface of the metal particle-containing layer (the surface of the substrate when the infrared shielding film of the present invention has a substrate). On the other hand, the main planes of hexagonal or circular plate-like metal particles are preferably plane-oriented in the range of average 0 ° to ± 30 °, and plane-oriented in the range of average 0 ° to ± 20 °. More preferably, the plane orientation is particularly preferably in the range of 0 ° to ± 10 ° on average.
In addition, it is preferable that one surface of the said metal particle content layer is a flat plane. When the metal particle-containing layer of the infrared ray shielding film of the present invention has a base material as a temporary support, it is preferably substantially horizontal with the surface of the base material. Here, the said infrared shielding film may have the said temporary support body, and does not need to have it.
There is no restriction | limiting in particular as a magnitude | size of the said metal particle, According to the objective, it can select suitably, For example, you may have an average particle diameter of 500 nm or less.
The material of the metal particles is not particularly limited and can be appropriately selected according to the purpose. From the viewpoint of high heat ray (near infrared) reflectance, silver, gold, aluminum, copper, rhodium, nickel, Platinum or the like is preferable, and silver is more preferable among them.
The reflection peak of the metal particles is preferably 850 to 1600 nm, and more preferably 900 to 1300 nm. Here, the reflection peak of the metal particles is a reflection peak of the metal particles in the metal particle-containing layer. The reflection peak of the metal particles can be controlled by the material and shape of the metal particles.
-1-2.金属平板粒子-
 前記金属平板粒子としては、2つの主平面からなる粒子(図7A及び図7B参照)であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、六角形状、円形状、三角形状などが挙げられる。これらの中でも、可視光透過率が高い点で、六角形状以上の多角形状~円形状であることがより好ましく、六角形状または円形状であることが特に好ましい。
 本明細書中、円形状とは、後述する金属平板粒子(平板状金属粒子と同義)の平均円相当径の50%以上の長さを有する辺の個数が1個の金属平板粒子当たり0個である形状のことを言う。前記円形状の金属平板粒子としては、透過型電子顕微鏡(TEM)で金属平板粒子を主平面の上方から観察した際に、角が無く、丸い形状であれば特に制限はなく、目的に応じて適宜選択することができる。
 本明細書中、六角形状とは、後述する金属平板粒子の平均円相当径の20%以上の長さを有する辺の個数が1個の金属平板粒子当たり6個である形状のことを言う。なお、その他の多角形についても同様である。前記六角形状の金属平板粒子としては、透過型電子顕微鏡(TEM)で金属平板粒子を主平面の上方から観察した際に、六角形状であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、六角形状の角が鋭角のものでも、鈍っているものでもよいが、可視光域の吸収を軽減し得る点で、角が鈍っているものであることが好ましい。角の鈍りの程度としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記金属平板粒子の材料としては、特に制限はなく、前記金属粒子と同じものを目的に応じて適宜選択することができる。前記金属平板粒子は、少なくとも銀を含むことが好ましい。
-1-2. Tabular grain metal
The metal tabular grain is not particularly limited as long as it is a grain composed of two main planes (see FIGS. 7A and 7B), and can be appropriately selected according to the purpose. For example, hexagonal shape, circular shape, triangular shape Examples include shape. Among these, in terms of high visible light transmittance, a polygonal shape or a circular shape having a hexagonal shape or more is more preferable, and a hexagonal shape or a circular shape is particularly preferable.
In the present specification, the circular shape means 0 per side of a metal tabular grain having a length of 50% or more of the average equivalent circle diameter of a tabular metal grain (synonymous with tabular metal grain) described later. Say the shape that is. The circular tabular metal grains are not particularly limited as long as they have no corners and round shapes when observed from above the main plane with a transmission electron microscope (TEM), depending on the purpose. It can be selected appropriately.
In the present specification, the hexagonal shape means a shape in which the number of sides having a length of 20% or more of the average equivalent circle diameter of the metal tabular grains described later is 6 per one metal tabular grain. The same applies to other polygons. The hexagonal metal tabular grain is not particularly limited as long as it is a hexagonal shape when the metal tabular grain is observed from above the main plane with a transmission electron microscope (TEM), and is appropriately selected according to the purpose. For example, the hexagonal corner may be acute or dull, but the corner is preferably dull in that the absorption in the visible light region can be reduced. There is no restriction | limiting in particular as a grade of the dullness of an angle | corner, According to the objective, it can select suitably.
There is no restriction | limiting in particular as a material of the said metal tabular grain, The same thing as the said metal particle can be suitably selected according to the objective. The metal tabular grain preferably contains at least silver.
 前記金属粒子含有層に存在する金属粒子のうち、六角形状乃至円形状の平板状金属粒子は、金属粒子の全個数に対して、60個数%以上であることが好ましく、65個数%以上がより好ましく、70個数%以上が特に好ましい。前記金属平板粒子の割合が、60個数%以上であると、可視光線透過率が高くなる。 Of the metal particles present in the metal particle-containing layer, the hexagonal or circular plate-like metal particles are preferably 60% by number or more, more preferably 65% by number or more based on the total number of metal particles. Preferably, 70% by number or more is particularly preferable. When the ratio of the metal tabular grains is 60% by number or more, the visible light transmittance is increased.
[1-2-1.面配向]
 本発明の赤外線遮蔽フィルムにおいて、前記六角形状乃至円形状の平板状金属粒子は、その主平面が金属粒子含有層の一方の表面(赤外線遮蔽フィルムが基材を有する場合は、基材表面)に対して、平均0°~±30°の範囲で面配向していることが好ましく、平均0°~±20°の範囲で面配向していることがより好ましく、平均0°~±10°の範囲で面配向していることが特に好ましい。
 前記金属平板粒子の存在状態は、特に制限はなく、目的に応じて適宜選択することができるが、後述する図6D、図6Eのように並んでいることが好ましい。
[1-2-1. Planar orientation]
In the infrared shielding film of the present invention, the hexagonal or circular plate-like metal particles have a main plane on one surface of the metal particle-containing layer (when the infrared shielding film has a substrate, the substrate surface). On the other hand, the plane orientation is preferably in the range of average 0 ° to ± 30 °, more preferably the plane is oriented in the range of average 0 ° to ± 20 °, and the average is 0 ° to ± 10 °. It is particularly preferable that the surface is oriented in a range.
The presence state of the metal tabular grains is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably arranged as shown in FIGS. 6D and 6E described later.
 ここで、図6A~図6Eは、本発明の赤外線遮蔽フィルムにおいて、金属平板粒子を含む金属粒子含有層の存在状態を示した概略断面図である。図6C、図6Dおよび図6Eは、金属粒子含有層2中における金属平板粒子3の存在状態を示す。図6Aは、基材1の平面と金属平板粒子3の主平面(円相当径Dを決める面)とのなす角度(±θ)を説明する図である。図6Bは、金属粒子含有層2の赤外線遮蔽フィルムの深さ方向における存在領域を示すものである。
 図6Aにおいて、基材1の表面と、金属平板粒子3の主平面(円相当径Dを決める面)または主平面の延長線とのなす角度(±θ)は、前記の面配向における所定の範囲に対応する。即ち、面配向とは、赤外線遮蔽フィルムの断面を観察した際、図6Aに示す傾角(±θ)が小さい状態をいい、特に、図6Dは、基材1の表面と金属平板粒子3の主平面とが接している状態、即ち、θが0°である状態を示す。基材1の表面に対する金属平板粒子3の主平面の面配向の角度、即ち図6Aにおけるθが±30°を超えると、赤外線遮蔽フィルムの所定の波長(例えば、可視光域長波長側から近赤外光領域)の反射率が低下してしまう。
Here, FIGS. 6A to 6E are schematic cross-sectional views showing the existence state of the metal particle-containing layer containing the metal tabular grains in the infrared shielding film of the present invention. 6C, FIG. 6D, and FIG. 6E show the presence state of the metal tabular grain 3 in the metal particle-containing layer 2. FIG. 6A is a view for explaining an angle (± θ) formed by the plane of the substrate 1 and the main plane of the metal tabular grain 3 (plane that determines the equivalent circle diameter D). FIG. 6B shows the existence region in the depth direction of the infrared shielding film of the metal particle-containing layer 2.
In FIG. 6A, the angle (± θ) formed by the surface of the substrate 1 and the main plane of the metal tabular grain 3 (the plane that determines the equivalent circle diameter D) or the extension of the main plane is a predetermined value in the plane orientation described above. Corresponds to the range. That is, the plane orientation means a state where the inclination angle (± θ) shown in FIG. 6A is small when the cross section of the infrared shielding film is observed. In particular, FIG. 6D shows the main surface of the substrate 1 and the metal tabular grain 3. A state where the flat surface is in contact, that is, a state where θ is 0 ° is shown. When the angle of the plane orientation of the main plane of the metal tabular grain 3 with respect to the surface of the substrate 1, that is, θ in FIG. 6A exceeds ± 30 °, a predetermined wavelength of the infrared shielding film (for example, near the visible light region long wavelength side) The reflectance in the infrared light region is reduced.
 前記金属粒子含有層の一方の表面(赤外線遮蔽フィルムが基材を有する場合は、基材表面)に対して金属平板粒子の主平面が面配向しているかどうかの評価としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、適当な断面切片を作製し、この切片における金属粒子含有層(赤外線遮蔽フィルムが基材を有する場合は、基材)及び金属平板粒子を観察して評価する方法であってもよい。具体的には、赤外線遮蔽フィルムを、ミクロトーム、集束イオンビーム(FIB)を用いて赤外線遮蔽フィルムの断面サンプルまたは断面切片サンプルを作製し、これを、各種顕微鏡(例えば、電界放射型走査電子顕微鏡(FE-SEM)等)を用いて観察して得た画像から評価する方法などが挙げられる。 There is no particular limitation on the evaluation of whether or not the main plane of the metal tabular grain is plane-oriented with respect to one surface of the metal particle-containing layer (the surface of the substrate when the infrared shielding film has a substrate). Depending on the purpose, it can be appropriately selected. For example, a suitable cross section is prepared, and the metal particle-containing layer (base material if the infrared shielding film has a base material) and flat metal particles in this section are observed. It may be a method of evaluating. Specifically, a cross-section sample or a cross-section sample of the infrared shielding film is prepared from the infrared shielding film using a microtome and a focused ion beam (FIB), and this is used for various microscopes (for example, a field emission scanning electron microscope ( FE-SEM) etc.), and a method of evaluating from an image obtained by observation.
 前記赤外線遮蔽フィルムにおいて、金属平板粒子を被覆するバインダーが水で膨潤する場合は、液体窒素で凍結した状態の試料を、ミクロトームに装着されたダイヤモンドカッター切断することで、前記断面サンプルまたは断面切片サンプルを作製してもよい。また、赤外線遮蔽フィルムにおいて金属平板粒子を被覆するバインダーが水で膨潤しない場合は、前記断面サンプルまたは断面切片サンプルを作製してもよい。 In the infrared shielding film, when the binder that coats the metal tabular grains swells with water, the sample frozen in liquid nitrogen is cut with a diamond cutter attached to a microtome, so that the cross section sample or cross section sample May be produced. Moreover, when the binder which coat | covers a metal tabular grain in an infrared shielding film does not swell with water, you may produce the said cross-section sample or a cross-section slice sample.
 前記の通り作製した断面サンプルまたは断面切片サンプルの観察としては、サンプルにおいて金属粒子含有層の一方の表面(赤外線遮蔽フィルムが基材を有する場合は、基材表面)に対して金属平板粒子の主平面が面配向しているかどうかを確認し得るものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、FE-SEM、TEM、光学顕微鏡などを用いた観察が挙げられる。前記断面サンプルの場合は、FE-SEMにより、前記断面切片サンプルの場合は、TEMにより観察を行ってもよい。FE-SEMで評価する場合は、金属平板粒子の形状と傾角(図6Aの±θ)が明瞭に判断できる空間分解能を有することが好ましい。 As the observation of the cross-section sample or cross-section sample prepared as described above, the main surface of the metal tabular grains is one surface of the metal particle-containing layer in the sample (the surface of the base material when the infrared shielding film has a base material). There is no particular limitation as long as it can confirm whether or not the plane is plane-oriented, and it can be appropriately selected according to the purpose. For example, observation using an FE-SEM, TEM, optical microscope, or the like can be given. It is done. In the case of the cross section sample, observation may be performed by FE-SEM, and in the case of the cross section sample, observation may be performed by TEM. When evaluating by FE-SEM, it is preferable to have a spatial resolution with which the shape and tilt angle (± θ in FIG. 6A) of the metal tabular grains can be clearly determined.
[1-2-2.平均粒子径(平均円相当径)の粒度分布における変動係数]
 本発明の赤外線遮蔽フィルムにおいて、金属平板粒子の粒度分布における変動係数としては、35%以下が好ましく、30%以下がより好ましく、20%以下が特に好ましい。前記変動係数が、35%以下であることが赤外線遮蔽フィルムにおける熱線の反射波長域がシャープになることから好ましい。
 ここで、前記金属平板粒子の粒度分布における変動係数は、例えば前記の通り得た平均値の算出に用いた200個の金属平板粒子の粒子径の分布範囲をプロットし、粒度分布の標準偏差を求め、前記の通り得た主平面直径(最大長さ)の平均値(平均粒子径(平均円相当径))で割った値(%)である。
[1-2-2. Coefficient of variation in particle size distribution of average particle diameter (average equivalent circle diameter)]
In the infrared shielding film of the present invention, the coefficient of variation in the particle size distribution of the metal tabular grains is preferably 35% or less, more preferably 30% or less, and particularly preferably 20% or less. The variation coefficient is preferably 35% or less because the reflection wavelength region of heat rays in the infrared shielding film becomes sharp.
Here, the coefficient of variation in the particle size distribution of the metal tabular grains is, for example, plotting the distribution range of the particle diameters of the 200 metal tabular grains used for calculating the average value obtained as described above, and calculating the standard deviation of the particle size distribution. It is the value (%) obtained by dividing the average value (average particle diameter (average equivalent circle diameter)) of the main plane diameter (maximum length) obtained as described above.
[1-2-3.金属平板粒子の厚み・アスペクト比]
 本発明の赤外線遮蔽フィルムでは、前記金属平板粒子の厚みは14nm以下であることが好ましく、5~14nmであることがより好ましく、5~12nmであることが特に好ましい。
 前記金属平板粒子のアスペクト比としては、特に制限はなく、目的に応じて適宜選択することができるが、波長800nm~1,800nmの赤外光領域での反射率が高くなる点から、6~40が好ましく、10~35がより好ましい。前記アスペクト比が6未満であると反射波長が800nmより小さくなり、40を超えると、反射波長が1,800nmより長くなり、十分な熱線反射能が得られないことがある。
 前記アスペクト比は、金属平板粒子の平均粒子径(平均円相当径)を金属平板粒子の平均粒子厚みで除算した値を意味する。平均粒子厚みは、金属平板粒子の主平面間距離に相当し、例えば、図7A及び図7Bに示す通りであり、原子間力顕微鏡(AFM)により測定することができる。
 前記AFMによる平均粒子厚みの測定方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガラス基板に金属平板粒子を含有する粒子分散液を滴下し、乾燥させて、粒子1個の厚みを測定する方法などが挙げられる。
[1-2-3. Metal tabular grain thickness / aspect ratio]
In the infrared shielding film of the present invention, the thickness of the metal tabular grain is preferably 14 nm or less, more preferably 5 to 14 nm, and particularly preferably 5 to 12 nm.
The aspect ratio of the metal tabular grain is not particularly limited and may be appropriately selected depending on the intended purpose. However, since the reflectance in the infrared region with a wavelength of 800 nm to 1,800 nm is high, 40 is preferable, and 10 to 35 is more preferable. When the aspect ratio is less than 6, the reflection wavelength becomes smaller than 800 nm, and when it exceeds 40, the reflection wavelength becomes longer than 1,800 nm, and sufficient heat ray reflectivity may not be obtained.
The aspect ratio means a value obtained by dividing the average particle diameter (average circle equivalent diameter) of the tabular metal grains by the average grain thickness of the tabular metal grains. The average grain thickness corresponds to the distance between the main planes of the metal tabular grain, and is, for example, as shown in FIGS. 7A and 7B and can be measured by an atomic force microscope (AFM).
The method for measuring the average particle thickness by the AFM is not particularly limited and can be appropriately selected depending on the purpose.For example, a particle dispersion containing metal tabular particles is dropped onto a glass substrate and dried. For example, a method of measuring the thickness of one particle may be used.
[1-2-4.金属平板粒子の存在範囲]
 本発明の赤外線遮蔽フィルムにおいて、前記金属平板粒子の存在領域の厚みは、5~60nmであることが好ましく、11~60nmであることがより好ましく、20~60nmであることが特に好ましい。
 本発明の赤外線遮蔽フィルムでは、前記六角形状乃至円形状の平板状金属粒子の80個数%以上が、前記金属粒子含有層の表面からd/2の範囲に存在することが好ましく、d/3の範囲に存在することがより好ましく、前記六角形状乃至円形状の平板状金属粒子の60個数%以上が前記金属粒子含有層の一方の表面に露出していることが更に好ましい。金属平板粒子が金属粒子含有層の表面からd/2の範囲に存在するとは、金属平板粒子の少なくとも一部が金属粒子含有層の表面からd/2の範囲に含まれていることを意味する。すなわち、金属平板粒子の一部が、金属粒子含有層の表面よりも突出している図6Eに記載される金属平板粒子も、金属粒子含有層の表面からd/2の範囲に存在する金属平板粒子として扱う。なお、図6Eは、各金属平板粒子の厚み方向のごく一部が金属粒子含有層に埋没してことを意味し、各金属平板粒子が金属粒子含有層の表面上に積まれているわけではない。
 また、金属平板粒子が前記金属粒子含有層の一方の表面に露出しているとは、金属平板粒子の一方の表面の一部が、金属粒子含有層の表面よりも突出していることを意味する。
 ここで、前記金属粒子含有層中の金属平板粒子存在分布は、例えば、赤外線遮蔽フィルムの断面試料をSEM観察した画像より測定することができる。
[1-2-4. Range of tabular metal grains]
In the infrared shielding film of the present invention, the thickness of the region where the metal tabular grains are present is preferably 5 to 60 nm, more preferably 11 to 60 nm, and particularly preferably 20 to 60 nm.
In the infrared shielding film of the present invention, it is preferable that 80% by number or more of the hexagonal or circular tabular metal particles are present in a range of d / 2 from the surface of the metal particle-containing layer, More preferably, it exists in the range, and more preferably 60% by number or more of the hexagonal or circular plate-like metal particles are exposed on one surface of the metal particle-containing layer. The presence of the metal tabular grains in the range of d / 2 from the surface of the metal particle-containing layer means that at least a part of the metal tabular grains is included in the range of d / 2 from the surface of the metal particle-containing layer. . That is, the metal tabular grain described in FIG. 6E in which a part of the metal tabular grain protrudes from the surface of the metal particle-containing layer is also in the range of d / 2 from the surface of the metal particle-containing layer. Treat as. FIG. 6E means that only a part of each metal tabular grain in the thickness direction is buried in the metal particle-containing layer, and each metal tabular grain is not stacked on the surface of the metal particle-containing layer. Absent.
Moreover, that the metal tabular grain is exposed on one surface of the metal particle-containing layer means that a part of one surface of the metal tabular grain protrudes from the surface of the metal particle-containing layer. .
Here, the distribution of the tabular metal particles in the metal particle-containing layer can be measured, for example, from an image obtained by SEM observation of a cross-sectional sample of the infrared shielding film.
 本発明の赤外線遮蔽フィルムにおいて、図6Bに示すように、金属粒子含有層2における金属平板粒子3を構成する金属のプラズモン共鳴波長をλとし、金属粒子含有層2における媒質の屈折率をnとするとき、前記金属粒子含有層2が、赤外線遮蔽フィルムの水平面からの深さ方向において、(λ/n)/4の範囲で存在することが好ましい。この範囲内であると、赤外線遮蔽フィルムの上側と下側のそれぞれの金属粒子含有層の界面での反射波の位相により反射波の振幅が強めあう効果が十分大きく、可視光透過率及び熱線最大反射率が良好となる。
 前記金属粒子含有層における金属平板粒子を構成する金属のプラズモン共鳴波長λは、特に制限はなく、目的に応じて適宜選択することができるが、熱線反射性能を付与する点で、400nm~2,500nmであることが好ましく、可視光透過率を付与する点から、700nm~2,500nmであることがより好ましい。
In the infrared shielding film of the present invention, as shown in FIG. 6B, the plasmon resonance wavelength of the metal constituting the metal tabular grain 3 in the metal particle-containing layer 2 is λ, and the refractive index of the medium in the metal particle-containing layer 2 is n. When doing, it is preferable that the said metal-particle content layer 2 exists in the range of ((lambda) / n) / 4 in the depth direction from the horizontal surface of an infrared rays shielding film. Within this range, the effect of increasing the amplitude of the reflected wave by the phase of the reflected wave at the interface between the upper and lower metal particle-containing layers of the infrared shielding film is sufficiently large, and the visible light transmittance and maximum heat ray are increased. Reflectivity is good.
The plasmon resonance wavelength λ of the metal constituting the metal tabular grain in the metal particle-containing layer is not particularly limited and can be appropriately selected according to the purpose. However, in terms of imparting heat ray reflection performance, 400 nm to 2, The thickness is preferably 500 nm, and more preferably 700 nm to 2,500 nm from the viewpoint of imparting visible light transmittance.
[1-2-5.金属粒子含有層の媒質]
 前記金属粒子含有層における媒質としては、特に制限はなく、目的に応じて適宜選択することができる。本発明の赤外線遮蔽フィルムは、前記金属粒子含有層がポリマーを含むことが好ましく、透明ポリマーを含むことがより好ましい。前記ポリマーとしては、例えば、ポリビニルアセタール樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリアクリレート樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、(飽和)ポリエステル樹脂、ポリウレタン樹脂、ゼラチンやセルロース等の天然高分子等の高分子などが挙げられる。その中でも、本発明では、前記ポリマーの主ポリマーがポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリ塩化ビニル樹脂、(飽和)ポリエステル樹脂、ポリウレタン樹脂であることが好ましく、ポリエステル樹脂およびポリウレタン樹脂であることが前記六角形状乃至円形状の平板状金属粒子の金属平板粒子の80個数%以上を前記金属粒子含有層の表面からd/2の範囲に存在させやすい観点からより好ましく、ポリエステル樹脂およびポリウレタン樹脂であることが本発明の赤外線遮蔽フィルムのこすり耐性をより改善する観点から特に好ましい。
 前記ポリエステル樹脂の中でも、飽和ポリエステル樹脂であることが二重結合を含まないために優れた耐候性を付与できる観点からより特に好ましい。また、分子末端に水酸基またはカルボキシル基を持つことが、水溶性・水分散性の硬化剤等で硬化させることで高い硬度・耐久性・耐熱性を得られる観点から、より好ましい。
 前記ポリマーとしては、商業的に入手できるものを好ましく用いることもでき、例えば、互応化学工業株式会社製の水溶性ポリエステル樹脂である、プラスコートZ-867などを挙げることができる。
 また、本明細書中、前記金属含有層に含まれる前記ポリマーの主ポリマーとは、前記金属含有層に含まれるポリマーの50質量%以上を占めるポリマー成分のことを言う。
 前記金属粒子含有層に含まれる前記金属粒子に対する前記ポリエステル樹脂およびポリウレタン樹脂の含有量が1~10000質量%であることが好ましく、10~1000質量%であることがより好ましく、20~500質量%であることが特に好ましい。前記金属粒子含有層に含まれるバインダーを上記範囲以上とすることで、こすり耐性性等の物理特性を改善することができる。
 前記媒質の屈折率nは、1.4~1.7であることが好ましい。
 本発明の赤外線遮蔽フィルムは、前記六角形状乃至円形状の平板状金属粒子の厚みをaとしたとき、前記六角形状乃至円形状の平板状金属粒子の80個数%以上が、厚み方向のa/10以上を前記ポリマーに覆われていることが好ましく、厚み方向のa/10~10aを前記ポリマーに覆われていることがより好ましく、a/8~4aを前記ポリマーに覆われていることが特に好ましい。このように前記六角形状乃至円形状の平板状金属粒子が前記金属粒子含有層に一定割合以上埋没していることにより、よりこすり耐性を高めることができる。すなわち、本発明の赤外線遮蔽フィルムは、図6Eの態様よりも、図6Dの態様の方が好ましい。
[1-2-5. Medium of metal particle containing layer]
There is no restriction | limiting in particular as a medium in the said metal particle content layer, According to the objective, it can select suitably. In the infrared shielding film of the present invention, the metal particle-containing layer preferably contains a polymer, and more preferably contains a transparent polymer. Examples of the polymer include polyvinyl acetal resin, polyvinyl alcohol resin, polyvinyl butyral resin, polyacrylate resin, polymethyl methacrylate resin, polycarbonate resin, polyvinyl chloride resin, (saturated) polyester resin, polyurethane resin, gelatin, and cellulose. And polymers such as natural polymers. Among them, in the present invention, the main polymer of the polymer is preferably a polyvinyl alcohol resin, a polyvinyl butyral resin, a polyvinyl chloride resin, a (saturated) polyester resin, a polyurethane resin, and preferably the polyester resin and the polyurethane resin. More preferably, 80% by number or more of the metal tabular grains of hexagonal or circular tabular metal particles are present in the range of d / 2 from the surface of the metal particle-containing layer, and are polyester resin and polyurethane resin. Is particularly preferable from the viewpoint of further improving the rubbing resistance of the infrared shielding film of the present invention.
Among the polyester resins, a saturated polyester resin is more particularly preferable from the viewpoint of imparting excellent weather resistance since it does not contain a double bond. Moreover, it is more preferable to have a hydroxyl group or a carboxyl group at the molecular terminal from the viewpoint of obtaining high hardness, durability, and heat resistance by curing with a water-soluble / water-dispersible curing agent or the like.
Commercially available polymers can be preferably used as the polymer, and examples thereof include Plus Coat Z-867, which is a water-soluble polyester resin manufactured by Kyoyo Chemical Industry Co., Ltd.
Moreover, in this specification, the main polymer of the polymer contained in the metal-containing layer refers to a polymer component occupying 50% by mass or more of the polymer contained in the metal-containing layer.
The content of the polyester resin and the polyurethane resin with respect to the metal particles contained in the metal particle-containing layer is preferably 1 to 10000% by mass, more preferably 10 to 1000% by mass, and 20 to 500% by mass. It is particularly preferred that By setting the binder contained in the metal particle-containing layer to be in the above range or more, physical properties such as rubbing resistance can be improved.
The refractive index n of the medium is preferably 1.4 to 1.7.
In the infrared shielding film of the present invention, when the thickness of the hexagonal or circular plate-like metal particles is a, 80% by number or more of the hexagonal or circular plate-like metal particles are a / in the thickness direction. It is preferable that 10 or more is covered with the polymer, a / 10 to 10a in the thickness direction is more preferably covered with the polymer, and a / 8 to 4a is covered with the polymer. Particularly preferred. As described above, the hexagonal or circular plate-like metal particles are buried in the metal particle-containing layer at a certain ratio or more, whereby the rubbing resistance can be further increased. That is, the aspect of FIG. 6D is more preferable than the aspect of FIG. 6E for the infrared shielding film of the present invention.
[1-2-6.金属平板粒子の面積率]
 赤外線遮蔽フィルムを上から見た時の基材の面積A(金属粒子含有層に対して垂直方向から見たときの前記金属粒子含有層の全投影面積A)に対する金属平板粒子の面積の合計値Bの割合である面積率〔(B/A)×100〕としては、15%以上が好ましく、20%以上がより好ましい。前記面積率が、15%未満であると、熱線の最大反射率が低下してしまい、遮熱効果が十分に得られないことがある。
 ここで、前記面積率は、例えば赤外線遮蔽フィルム基材を上からSEM観察で得られた画像や、AFM(原子間力顕微鏡)観察で得られた画像を画像処理することにより測定することができる。
[1-2-6. Area ratio of metal tabular grains]
Total value of the area of the metal tabular grains relative to the area A of the base material when viewed from above (the total projected area A of the metal particle-containing layer when viewed from the direction perpendicular to the metal particle-containing layer) The area ratio [(B / A) × 100] which is the ratio of B is preferably 15% or more, and more preferably 20% or more. When the area ratio is less than 15%, the maximum reflectance of the heat ray is lowered, and the heat shielding effect may not be sufficiently obtained.
Here, the area ratio can be measured, for example, by image-processing an image obtained by SEM observation of the infrared shielding film substrate from above or an image obtained by AFM (atomic force microscope) observation. .
[1-2-7.金属平板粒子の平均粒子間距離]
 前記金属粒子含有層における水平方向に隣接する金属平板粒子の平均粒子間距離としては、可視光線透過率及び熱線の最大反射率の点から、金属平板粒子の平均粒子径の1/10以上が好ましい。
 前記金属平板粒子の水平方向の平均粒子間距離が、前記金属平板粒子の平均粒子径の1/10未満となると、熱線の最大反射率が低下してしまう。また、水平方向の平均粒子間距離は、可視光線透過率の点で、不均一(ランダム)であることが好ましい。ランダムでない場合、即ち、均一であると、可視光線の吸収が起こり、透過率が低下してしまうことがある。
[1-2-7. Average distance between tabular grains]
The average inter-particle distance between the metal tabular grains adjacent in the horizontal direction in the metal particle-containing layer is preferably 1/10 or more of the average particle diameter of the metal tabular grains in terms of visible light transmittance and maximum heat ray reflectance. .
When the horizontal average inter-grain distance of the metal tabular grains is less than 1/10 of the average grain diameter of the metal tabular grains, the maximum reflectance of the heat rays is lowered. Further, the average interparticle distance in the horizontal direction is preferably non-uniform (random) in terms of visible light transmittance. If it is not random, that is, if it is uniform, absorption of visible light occurs, and the transmittance may decrease.
 ここで、前記金属平板粒子の水平方向の平均粒子間距離とは、隣り合う2つの粒子の粒子間距離の平均値を意味する。また、前記平均粒子間距離がランダムであるとは、「100個以上の金属平板粒子が含まれるSEM画像を二値化した際の輝度値の2次元自己相関を取ったときに、原点以外に有意な極大点を持たない」ことを意味する。 Here, the average inter-particle distance in the horizontal direction of the metal tabular grains means an average value of inter-particle distances between two adjacent grains. In addition, the average inter-particle distance is random as follows: “When taking a two-dimensional autocorrelation of luminance values when binarizing an SEM image including 100 or more metal tabular grains, other than the origin. It has no significant local maximum.
[1-2-8.金属粒子含有層の層構成]
 本発明の赤外線遮蔽フィルムにおいて、金属平板粒子は、図6A~図6Eに示すように、金属平板粒子を含む金属粒子含有層の形態で配置される。
 前記金属粒子含有層としては、図6A~図6Eに示すように単層で構成されてもよく、複数の金属粒子含有層で構成されてもよい。複数の金属粒子含有層で構成される場合、遮熱性能を付与したい波長帯域に応じた遮蔽性能を付与することが可能となる。なお、前記金属粒子含有層が複数の金属粒子含有層で構成される場合、本発明の赤外線遮蔽フィルムは、少なくとも最表面の金属粒子含有層において、該最表面の金属粒子含有層の厚みをd’としたとき、前記六角形状乃至円形状の平板状金属粒子の80個数%以上が、該最表面の金属粒子含有層の表面からd’/2の範囲に存在することが好ましい。
[1-2-8. Layer structure of metal particle-containing layer]
In the infrared shielding film of the present invention, the metal tabular grains are arranged in the form of a metal particle-containing layer containing metal tabular grains, as shown in FIGS. 6A to 6E.
The metal particle-containing layer may be composed of a single layer as shown in FIGS. 6A to 6E, or may be composed of a plurality of metal particle-containing layers. When comprised with a several metal particle content layer, it becomes possible to provide the shielding performance according to the wavelength range | band which wants to provide heat insulation performance. When the metal particle-containing layer is composed of a plurality of metal particle-containing layers, the infrared shielding film of the present invention has a thickness d of the outermost metal particle-containing layer at least in the outermost metal particle-containing layer. It is preferable that 80% by number or more of the hexagonal or circular tabular metal particles are present in the range of d ′ / 2 from the surface of the outermost metal particle-containing layer.
[1-2-9.金属粒子含有層の厚み]
 本発明の赤外線遮蔽フィルムは、前記金属粒子含有層の厚みが5~80nmであることが好ましく、6~20nmであることがより好ましい。前記金属粒子含有層の厚みdは、前記六角形状乃至円形状の平板状金属粒子の厚みをaとしたとき、a~10aであることが好ましく、2a~8aであることがより好ましく、1a~5aであることが特に好ましい。
[1-2-9. Thickness of metal particle containing layer]
In the infrared shielding film of the present invention, the thickness of the metal particle-containing layer is preferably 5 to 80 nm, and more preferably 6 to 20 nm. The thickness d of the metal particle-containing layer is preferably a to 10a, more preferably 2a to 8a, and more preferably 1a to 1a, where a is the thickness of the hexagonal or circular plate-like metal particles. Particularly preferred is 5a.
 ここで、前記金属粒子含有層の各層の厚みは、例えば、赤外線遮蔽フィルムの断面試料をSEM観察した画像より測定することができる。
 また、赤外線遮蔽フィルムの前記金属粒子含有層の上に、例えば後述するオーバーコート層などの他の層を有する場合においても、他の層と前記金属粒子含有層の境界は同様の方法によって決定することができ、前記金属粒子含有層の厚みdを決定することができる。なお、前記金属粒子含有層に含まれるポリマーと同じ種類のポリマーを用いて、前記金属粒子含有層の上にコーティングをする場合は通常はSEM観察した画像によって前記金属粒子含有層との境界を判別できることができ、前記金属粒子含有層の厚みdを決定することができる。
Here, the thickness of each layer of the metal particle-containing layer can be measured from, for example, an image obtained by SEM observation of a cross-sectional sample of the infrared shielding film.
Moreover, even when it has other layers, such as an overcoat layer mentioned later, on the said metal particle content layer of an infrared shielding film, the boundary of another layer and the said metal particle content layer is determined by the same method. And the thickness d of the metal particle-containing layer can be determined. When coating the metal particle-containing layer using the same type of polymer as the polymer contained in the metal particle-containing layer, the boundary between the metal particle-containing layer and the metal particle-containing layer is usually determined by an SEM observation image. And the thickness d of the metal particle-containing layer can be determined.
[1-2-10.金属平板粒子の合成方法]
 前記金属平板粒子の合成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、化学還元法、光化学還元法、電気化学還元法等の液相法などが六角形状乃至円形状の平板状金属粒子を合成し得るものとして挙げられる。これらの中でも、形状とサイズ制御性の点で、化学還元法、光化学還元法などの液相法が特に好ましい。六角形~三角形状の金属平板粒子を合成後、例えば、硝酸、亜硫酸ナトリウム等の銀を溶解する溶解種によるエッチング処理、加熱によるエージング処理などを行うことにより、六角形~三角形状の金属平板粒子の角を鈍らせて、六角形状乃至円形状の平板状金属粒子を得てもよい。
[1-2-10. Method for synthesizing tabular metal grains]
The method for synthesizing the metal tabular grains is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a liquid phase method such as a chemical reduction method, a photochemical reduction method, an electrochemical reduction method, etc. It is mentioned as what can synthesize circular flat metal particles. Among these, a liquid phase method such as a chemical reduction method or a photochemical reduction method is particularly preferable in terms of shape and size controllability. After synthesizing hexagonal to triangular metal tabular grains, hexagonal to triangular tabular metal grains can be obtained by, for example, etching treatment with a dissolved species that dissolves silver such as nitric acid and sodium sulfite, and aging treatment by heating. The flat metal particles having a hexagonal shape or a circular shape may be obtained.
 前記金属平板粒子の合成方法としては、前記の他、予めフィルム、ガラスなどの透明基材の表面に種晶を固定後、平板状に金属粒子(例えばAg)を結晶成長させてもよい。 As a method for synthesizing the metal tabular grains, in addition to the above, a seed crystal may be previously fixed on the surface of a transparent substrate such as a film or glass, and then metal grains (for example, Ag) may be grown in a tabular form.
 本発明の赤外線遮蔽フィルムにおいて、金属平板粒子は、所望の特性を付与するために、更なる処理を施してもよい。前記更なる処理としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、高屈折率シェル層の形成、分散剤、酸化防止剤等の各種添加剤を添加することなどが挙げられる。 In the infrared shielding film of the present invention, the metal tabular grain may be subjected to further treatment in order to impart desired characteristics. The further treatment is not particularly limited and may be appropriately selected depending on the purpose. For example, the formation of a high refractive index shell layer, the addition of various additives such as a dispersant and an antioxidant may be included. Can be mentioned.
-1-2-10-1.高屈折率シェル層の形成-
 前記金属平板粒子は、可視光域透明性を更に高めるために、可視光域透明性が高い高屈折率材料で被覆されてもよい。
 前記高屈折率材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、TiO、BaTiO、ZnO、SnO、ZrO、NbOなどが挙げられる。
-1-2-10-1. Formation of high refractive index shell layer
In order to further improve the visible light region transparency, the metal tabular grain may be coated with a high refractive index material having high visible light region transparency.
As the high refractive index material is not particularly limited and may be appropriately selected depending on the purpose, for example, TiO x, BaTiO 3, ZnO, etc. SnO 2, ZrO 2, NbO x and the like.
 前記被覆する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、Langmuir、2000年、16巻、p.2731-2735に報告されているようにテトラブトキシチタンを加水分解することにより銀の金属平板粒子の表面にTiO層を形成する方法であってもよい。 There is no restriction | limiting in particular as said coating method, According to the objective, it can select suitably, For example, Langmuir, 2000, 16 volumes, p. As reported in 2731-2735, a method of forming a TiO x layer on the surface of silver metal tabular grains by hydrolyzing tetrabutoxy titanium may be used.
 また、前記金属平板粒子に直接高屈折率金属酸化物層シェルを形成することが困難な場合は、前記の通り金属平板粒子を合成した後、適宜SiOやポリマーのシェル層を形成し、更に、このシェル層上に前記金属酸化物層を形成してもよい。TiOを高屈折率金属酸化物層の材料として用いる場合には、TiOが光触媒活性を有することから、金属平板粒子を分散するマトリクスを劣化させてしまう懸念があるため、目的に応じて金属平板粒子にTiO層を形成した後、適宜SiO層を形成してもよい。 In addition, when it is difficult to form a high refractive index metal oxide layer shell directly on the metal tabular grain, after synthesizing the metal tabular grain as described above, an SiO 2 or polymer shell layer is appropriately formed, The metal oxide layer may be formed on the shell layer. When TiO x is used as a material for the high refractive index metal oxide layer, since TiO x has photocatalytic activity, there is a concern of deteriorating the matrix in which the metal tabular grains are dispersed. After forming the TiO x layer on the tabular grains, an SiO 2 layer may be appropriately formed.
-1-2-10-2.各種添加物の添加-
 本発明の赤外線遮蔽フィルムにおいて、前記金属粒子含有層がポリマーを含み、前記ポリマーの主ポリマーがポリエステル樹脂である場合には、架橋剤を添加することが膜強度の観点から好ましい。前記架橋剤としては特に制限はなく、エポキシ系、イソシアネート系、メラミン系、カルボジイミド系、オキサゾリン系等の架橋剤を挙げることができる。これらの中でカルボジイミド系及びオキサゾリン系架橋剤が好ましい。カルボジイミド系架橋剤の具体例としては、例えばカルボジライトV-02-L2(日清紡績(株)製)などがある。前記金属粒子含有層中の全バインダーに対して1~20質量%の架橋剤由来の成分を含有することが好ましく、より好ましくは2~20質量%である。
 また、本発明の赤外線遮蔽フィルムにおいて、前記金属粒子含有層がポリマーを含む場合、添加することがハジキの発生を抑えて良好な面状な層が得られる観点から好ましい。界面活性剤を前記界面活性剤としては、アニオン系やノニオン系等の公知の界面活性剤を用いることができる界面活性剤の具体例としては、例えばラピゾールA-90(日油株式会社製)、ナロアクティーHN-100(三洋化成工業株式会社製)などがある。前記金属粒子含有層中の全バインダーに対して0.05~10質量%の界面活性剤を含有することが好ましく、より好ましくは0.1~5質量%である。
-1-2-10-2. Addition of various additives-
In the infrared shielding film of the present invention, when the metal particle-containing layer contains a polymer and the main polymer of the polymer is a polyester resin, it is preferable to add a crosslinking agent from the viewpoint of film strength. The crosslinking agent is not particularly limited, and examples thereof include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents. Of these, carbodiimide and oxazoline crosslinking agents are preferred. Specific examples of the carbodiimide-based crosslinking agent include, for example, Carbodilite V-02-L2 (manufactured by Nisshinbo Industries, Inc.). It is preferable to contain 1 to 20% by mass of a crosslinking agent-derived component with respect to the total binder in the metal particle-containing layer, and more preferably 2 to 20% by mass.
Moreover, in the infrared shielding film of this invention, when the said metal particle content layer contains a polymer, it is preferable from a viewpoint from which generation | occurrence | production of a repelling is suppressed and a favorable planar layer is obtained. Examples of surfactants that can be used as the surfactant include known anionic and nonionic surfactants such as Lapisol A-90 (manufactured by NOF Corporation), Narrow Acty HN-100 (manufactured by Sanyo Chemical Industries) is available. The surfactant is preferably contained in an amount of 0.05 to 10% by weight, more preferably 0.1 to 5% by weight, based on the total binder in the metal particle-containing layer.
 前記金属平板粒子は、該金属平板粒子を構成する銀などの金属の酸化を防止するために、メルカプトテトラゾール、アスコルビン酸等の酸化防止剤を吸着していてもよい。また、酸化防止を目的として、Ni等の酸化犠牲層が金属平板粒子の表面に形成されていてもよい。また、酸素を遮断することを目的として、SiOなどの金属酸化物膜で被覆されていてもよい。
 前記金属平板粒子は、分散性付与を目的として、例えば、4級アンモニウム塩、アミン類等のN元素、S元素、及びP元素の少なくともいずれかを含む低分子量分散剤、高分子量分散剤などの分散剤を添加してもよい。
The metal tabular grains may adsorb an antioxidant such as mercaptotetrazole or ascorbic acid in order to prevent oxidation of metals such as silver constituting the metal tabular grains. Further, an oxidation sacrificial layer such as Ni may be formed on the surface of the metal tabular grain for the purpose of preventing oxidation. Further, it may be covered with a metal oxide film such as SiO 2 for the purpose of blocking oxygen.
For the purpose of imparting dispersibility, the metal tabular grain is, for example, a low molecular weight dispersant or a high molecular weight dispersant containing at least one of N elements such as quaternary ammonium salts and amines, S elements, and P elements. A dispersant may be added.
<支持体>
 本発明の赤外線遮蔽フィルムは、支持体を有することが好ましい。
 前記支持体としては特に制限は無く公知の支持体を用いることができる。
 前記支持体としては、光学的に透明な支持体であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、可視光線透過率が70%以上のもの、好ましくは80%以上のもの、近赤外線域の透過率が高いものなどが挙げられる。
 前記支持体としては、その形状、構造、大きさ、材料などについては、特に制限はなく、目的に応じて適宜選択することができる。前記形状としては、例えば、平板状などが挙げられ、前記構造としては、単層構造であってもよいし、積層構造であってもよく、前記大きさとしては、前記赤外線遮蔽フィルムの大きさなどに応じて適宜選択することができる。
 前記支持体の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエチレン、ポリプロピレン、ポリ4-メチルペンテン-1、ポリブテン-1等のポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリカーボネート系樹脂、ポリ塩化ビニル系樹脂、ポリフェニレンサルファイド系樹脂、ポリエーテルサルフォン系樹脂、ポリエチレンサルファイド系樹脂、ポリフェニレンエーテル系樹脂、スチレン系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、セルロースアセテート等のセルロース系樹脂などからなるフィルム又はこれらの積層フィルムが挙げられる。これらの中で、特にポリエチレンテレフタレートフィルムが好適である。
 前記支持体の厚みとしては、特に制限はなく、赤外線遮蔽フィルムの使用目的に応じて適宜選択することができ、通常は10μm~500μm程度であるが薄膜化の要請の観点からはより薄い方が好ましい。前記支持体の厚みは10μm~100μmであることが好ましく、20~75μmであることがより好ましく、35~75μmであることが特に好ましい。前記支持体の厚みが十分に厚いと、接着故障が起き難くなる傾向にある。また、前記支持体の厚みが十分に薄いと、赤外線遮蔽フィルムとして建材や自動車に貼り合わせる際、材料としての腰が強過ぎず、施工し易くなる傾向にある。更に、支持体が十分に薄いことにより、可視光透過率が増加し、原材料費を抑制できる傾向にある。
<Support>
The infrared shielding film of the present invention preferably has a support.
There is no restriction | limiting in particular as said support body, A well-known support body can be used.
The support is not particularly limited as long as it is an optically transparent support and can be appropriately selected according to the purpose. For example, the visible light transmittance is 70% or more, preferably 80% or more. And those with high transmittance in the near infrared region.
There is no restriction | limiting in particular about the shape, a structure, a magnitude | size, material, etc. as said support body, According to the objective, it can select suitably. Examples of the shape include a flat plate shape, and the structure may be a single layer structure or a laminated structure, and the size may be the size of the infrared shielding film. It can be appropriately selected according to the above.
The material for the support is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include polyolefin resins such as polyethylene, polypropylene, poly-4-methylpentene-1, polybutene-1, polyethylene terephthalate, Polyester resins such as polyethylene naphthalate; polycarbonate resins, polyvinyl chloride resins, polyphenylene sulfide resins, polyether sulfone resins, polyethylene sulfide resins, polyphenylene ether resins, styrene resins, acrylic resins, polyamides Examples thereof include a film made of a cellulose resin such as a cellulose resin, a polyimide resin, and cellulose acetate, or a laminated film thereof. Among these, a polyethylene terephthalate film is particularly preferable.
The thickness of the support is not particularly limited and can be appropriately selected depending on the purpose of use of the infrared shielding film. Usually, the thickness is about 10 μm to 500 μm, but it is thinner from the viewpoint of the demand for thinning. preferable. The thickness of the support is preferably 10 μm to 100 μm, more preferably 20 to 75 μm, and particularly preferably 35 to 75 μm. When the thickness of the support is sufficiently thick, adhesion failure tends to hardly occur. Moreover, when the thickness of the said support body is thin enough, when it bonds together to a building material or a motor vehicle as an infrared shielding film, there exists a tendency for the construction as it is not too strong and to be constructed easily. Furthermore, when the support is sufficiently thin, the visible light transmittance is increased, and the raw material cost tends to be suppressed.
<色素含有層>
 本発明の赤外線遮蔽フィルムは、赤外領域に吸収を有する化合物を含有することを特徴とする。以下、赤外領域に吸収を有する化合物を含有する層のことを、色素含有層ともいう。なお、色素含有層は、他の機能層の役割を果たしてもよい。
<Dye-containing layer>
The infrared shielding film of the present invention is characterized by containing a compound having absorption in the infrared region. Hereinafter, a layer containing a compound having absorption in the infrared region is also referred to as a dye-containing layer. In addition, a pigment | dye content layer may fulfill | perform the role of another functional layer.
 前記赤外領域に吸収を有する化合物の吸収ピーク波長は、前記金属粒子の反射ピーク波長よりも短波であることが、熱線を効率的に遮蔽する観点から好ましい。 The absorption peak wavelength of the compound having absorption in the infrared region is preferably shorter than the reflection peak wavelength of the metal particles from the viewpoint of efficiently shielding heat rays.
 本発明の赤外線遮蔽フィルムは、前記赤外領域に吸収を有する化合物を含む層において、前記赤外領域に吸収を有する化合物が20~190mg/m含まれることが好ましい。前記色素含有層中に含まれる色素を190mg/m以下の範囲とすることにより、赤外線遮蔽フィルムの面状を改善することができる。前記色素含有層中に含まれる色素をこの範囲に制御する方法としては、前記色素含有層を塗布により製膜するときに、色素塗布量を調整する方法などを用いることができる。
 前記色素含有層中に含まれる色素の含有量の上限値は、150mg/m以下であることが面状を改善する観点から好ましく、120mg/m以下であることが赤外線遮蔽フィルムの極大反射率を高め、かつ極大反射波長での透過率を抑制する観点からより好ましく、100mg/m以下であることが特に好ましい。
 一方、前記色素含有層中に含まれる色素の含有量の下限値は、10mg/m以上であることが赤外線遮蔽フィルムの極大反射率を高め、かつ極大反射波長での透過率を抑制する観点から好ましく、20mg/m以上であることが同様の観点からより好ましく、30mg/m以上であることが同様の観点から特に好ましい。
In the infrared shielding film of the present invention, the layer containing a compound having absorption in the infrared region preferably contains 20 to 190 mg / m 2 of the compound having absorption in the infrared region. The planar shape of an infrared shielding film can be improved by making the pigment | dye contained in the said pigment | dye content layer into the range of 190 mg / m < 2 > or less. As a method for controlling the pigment contained in the pigment-containing layer within this range, a method of adjusting the pigment coating amount when forming the pigment-containing layer by coating can be used.
The upper limit of the content of the dye contained in the dye-containing layer is preferably 150 mg / m 2 or less from the viewpoint of improving the surface shape, and 120 mg / m 2 or less is the maximum reflection of the infrared shielding film. From the viewpoint of increasing the rate and suppressing the transmittance at the maximum reflection wavelength, it is particularly preferably 100 mg / m 2 or less.
On the other hand, the lower limit of the content of the dye contained in the dye-containing layer is 10 mg / m 2 or more in view of increasing the maximum reflectance of the infrared shielding film and suppressing the transmittance at the maximum reflection wavelength. From the same viewpoint, it is more preferably 20 mg / m 2 or more, and particularly preferably 30 mg / m 2 or more from the same viewpoint.
 前記色素含有層における前記色素の密度が0.25g/cm以上であることが極大反射波長での透過率を低くし、暖まり率を低くする観点から好ましく、0.30~1.0g/cmであることがより好ましく、0.40~0.90g/cmであることが特に好ましく、0.50~0.70g/cmであることがより特に好ましい。 The density of the dye in the dye-containing layer is preferably 0.25 g / cm 3 or more from the viewpoint of lowering the transmittance at the maximum reflection wavelength and lowering the warming rate, and is 0.30 to 1.0 g / cm 3. 3 is more preferable, 0.40 to 0.90 g / cm 3 is particularly preferable, and 0.50 to 0.70 g / cm 3 is particularly preferable.
(色素含有層の構成)
 本発明の赤外線遮蔽フィルムは、前記色素含有層の膜厚が200nm以下であることが面状を改善する観点から好ましく、50~200nmであることがより好ましく、100~200nmであることが極大反射率を高め、かつ極大反射波長での透過率を低減する観点から特に好ましい。
(Configuration of dye-containing layer)
In the infrared shielding film of the present invention, the thickness of the dye-containing layer is preferably 200 nm or less from the viewpoint of improving the surface state, more preferably 50 to 200 nm, and most preferably 100 to 200 nm. This is particularly preferable from the viewpoint of increasing the transmittance and reducing the transmittance at the maximum reflection wavelength.
 前記色素含有層は、前記支持体に隣接して配置されていても、間に他の層を介して配置されていてもよい。前記色素含有層は、前記支持体に隣接して配置されている層であるか、前記金属粒子含有層に隣接して配置されている層であるか、前記金属粒子含有層であることが好ましい。 The dye-containing layer may be disposed adjacent to the support or may be disposed via another layer therebetween. The dye-containing layer is preferably a layer disposed adjacent to the support, a layer disposed adjacent to the metal particle-containing layer, or the metal particle-containing layer. .
(色素)
 前記色素としては特に制限は無く、公知の色素を用いることができる。前記色素としては、染料、顔料などを挙げることができる。
 前記顔料は、特に制限は無く、公知の顔料を用いることができる。例えば、特開2005-17322号公報の[0032]~[0039]等に記載の顔料を挙げることができる。
 前記染料は、特に制限は無く、公知の染料を用いることができる。ポリマーの水性分散物中に安定に溶解ないし分散し得る染料であることが好ましく、また、これら染料は、水溶性基を有することが好ましい。水溶性基としては、カルボキシル基及びその塩、スルホ基及びその塩等が挙げられる。さらに、後述のシアニン系染料やバルビツール酸オキソノール系染料に代表される水溶性の染料は、有機溶剤に溶かすことなく水溶液にして塗布できる点で、環境影響の観点と、塗布コスト低減の点から好ましい。また、これら染料は、会合体として利用することが好ましく、特にJ会合体として利用することが好ましい。J会合体とすることで非会合状態においては可視域に吸収極大を有する染料の吸収波長を所望の近赤外線領域に設定することが容易になる。また、染料の耐熱性や耐湿熱性、耐光性等の耐久性を向上させることができる。また、これらの染料の水溶性を調節し、難溶性ないし不溶性とすることによって、あるいは換言するとレーキ染料として利用することも好ましい形態である。これにより染料の耐熱性や耐湿熱性、耐光性等の耐久性を向上させることができ、好ましい。
(Dye)
There is no restriction | limiting in particular as said pigment | dye, A well-known pigment | dye can be used. Examples of the pigment include dyes and pigments.
The pigment is not particularly limited, and a known pigment can be used. For example, pigments described in JP-A-2005-17322, [0032] to [0039] and the like can be mentioned.
There is no restriction | limiting in particular in the said dye, A well-known dye can be used. Dyes that can be stably dissolved or dispersed in an aqueous dispersion of the polymer are preferred, and these dyes preferably have a water-soluble group. Examples of the water-soluble group include a carboxyl group and a salt thereof, a sulfo group and a salt thereof. In addition, water-soluble dyes such as cyanine dyes and barbituric acid oxonol dyes described below can be applied as aqueous solutions without dissolving them in organic solvents. preferable. These dyes are preferably used as aggregates, and particularly preferably used as J aggregates. By using a J-aggregate, it becomes easy to set the absorption wavelength of a dye having an absorption maximum in the visible region in a desired near-infrared region in a non-association state. Moreover, durability, such as heat resistance of a dye, heat-and-moisture resistance, and light resistance, can be improved. It is also a preferred form to adjust the water solubility of these dyes so that they are hardly soluble or insoluble, or in other words, to be used as lake dyes. Thereby, durability, such as heat resistance of a dye, heat-and-moisture resistance, and light resistance, can be improved, and it is preferable.
 本発明の赤外線遮蔽フィルムは、前記色素が赤外線吸収色素であることが、熱線(近赤外線)を選択的に反射する観点から好ましい。
 前記赤外線吸収色素としては、特開2008-181096号公報、特開2001-228324号公報、特開2009-244493号公報などに記載の近赤外線吸収染料や、特開2010-90313号公報に記載の近赤外線吸収化合物などを好ましく用いることができる。
 前記赤外線吸収色素としては、例えば、シアニン染料、オキソノール染料、ピロロピロール化合物が挙げられる。
In the infrared shielding film of the present invention, the dye is preferably an infrared absorbing dye from the viewpoint of selectively reflecting heat rays (near infrared rays).
Examples of the infrared absorbing dye include a near infrared absorbing dye described in JP-A-2008-181096, JP-A-2001-228324, JP-A-2009-244493, and the like, and JP-A 2010-90313. Near infrared absorbing compounds and the like can be preferably used.
Examples of the infrared absorbing pigment include cyanine dyes, oxonol dyes, and pyrrolopyrrole compounds.
 本発明の赤外線遮蔽フィルムは、前記赤外領域に吸収を有する化合物が、下記一般式(1)で表される化合物または下記一般式(2)で表される化合物であることが好ましく、前記一般式(2)で表されるピロロピロール化合物であることが、堅牢性を高めて保存性を改善する観点からより好ましい。
Figure JPOXMLDOC01-appb-C000005
(一般式(1)中、ZおよびZは、それぞれ独立に5員または6員の含窒素複素環を形成する非金属原子群である。RおよびRは、それぞれ独立に、脂肪族基または芳香族基である。Lは、3個のメチンからなるメチン鎖である。aおよびbは、それぞれ独立に0または1である。)
Figure JPOXMLDOC01-appb-C000006
(一般式(2)中、R1a及びR1bは同じであっても異なってもよく、各々独立にアルキル基、アリール基またはヘテロアリール基を表す。R及びRは各々独立に水素原子または置換基を表し、少なくとも一方は電子吸引性基であり、R及びRは結合して環を形成してもよい。Rは水素原子、アルキル基、アリール基、ヘテロアリール基、置換ホウ素または金属原子を表し、R1a、R1bおよびRの少なくとも1以上の基と共有結合もしくは配位結合してもよい。)
In the infrared shielding film of the present invention, the compound having absorption in the infrared region is preferably a compound represented by the following general formula (1) or a compound represented by the following general formula (2). A pyrrolopyrrole compound represented by the formula (2) is more preferable from the viewpoint of improving fastness and improving storage stability.
Figure JPOXMLDOC01-appb-C000005
(In the general formula (1), Z 1 and Z 2 are each independently a non-metallic atom group that forms a 5- or 6-membered nitrogen-containing heterocycle. R 1 and R 2 are each independently a fatty group. L 1 is a methine chain composed of 3 methines. A and b are each independently 0 or 1.)
Figure JPOXMLDOC01-appb-C000006
(In General Formula (2), R 1a and R 1b may be the same or different and each independently represents an alkyl group, an aryl group or a heteroaryl group. R 2 and R 3 each independently represent a hydrogen atom. Or at least one is an electron-withdrawing group, and R 2 and R 3 may combine to form a ring, and R 4 represents a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, a substituted group Represents a boron or metal atom, and may be a covalent bond or a coordinate bond with at least one group of R 1a , R 1b and R 3. )
 前記一般式(1)で表される化合物の好ましい範囲は、特開2001-228324号公報の一般式(I)の好ましい範囲と同様である。
 前記一般式(2)で表される化合物の好ましい範囲は、特開2009-263614号公報の一般式(1)の好ましい範囲と同様である。
The preferred range of the compound represented by the general formula (1) is the same as the preferred range of the general formula (I) in JP-A-2001-228324.
The preferred range of the compound represented by the general formula (2) is the same as the preferred range of the general formula (1) in JP-A-2009-263614.
(1)シアニン染料
 前記シアニン染料としては、ペンタメチンシアニン染料、ヘプタメチンシアニン染料、ノナメチンシアニン染料等のメチン染料が好ましく、特開2001-228324号公報等に記載のメチン染料が好ましい。シアニン染料の環基としてはチアゾール環、インドレニン環又はベンゾインドレニン環を有するものが好ましい。
(1) Cyanine dye The cyanine dye is preferably a methine dye such as a pentamethine cyanine dye, a heptamethine cyanine dye, or a nonamethine cyanine dye, and a methine dye described in JP-A-2001-228324 is preferred. As the cyclic group of the cyanine dye, those having a thiazole ring, an indolenine ring or a benzoindolenine ring are preferable.
 本発明に用いられる前記シアニン染料としては、前記一般式(1)、すなわち特開2001-228324号公報の一般式(I)で表されるシアニン染料を挙げることができ、その中でもペンタメチンシアニン染料、ヘプタメチンシアニン染料またはノナメチンシアニン染料(特にそれらの会合体)が好ましく、特開2001-228324号公報の一般式(II)で表されるペンタメチンシアニン染料、ヘプタメチンシアニン染料またはノナメチンシアニン染料(特にそれらの会合体)がより好ましく、特開2001-228324号公報の一般式(II)で表されるヘプタメチンシアニン染料が特に好ましい。 Examples of the cyanine dye used in the present invention include the cyanine dye represented by the general formula (1), that is, the general formula (I) of JP-A-2001-228324, and among them, a pentamethine cyanine dye. Heptamethine cyanine dyes or nonamethine cyanine dyes (especially their aggregates) are preferred, and pentamethine cyanine dye, heptamethine cyanine dye or nonamethine cyanine represented by the general formula (II) of JP-A No. 2001-228324 Dyes (particularly, aggregates thereof) are more preferable, and heptamethine cyanine dyes represented by the general formula (II) in JP-A-2001-228324 are particularly preferable.
 以下に、前記一般式(1)で表される化合物のうち、特開2001-228324号公報の一般式(II)で表されるヘプタメチンシアニン染料の具体例を示すが、本発明は下記具体例に限定されるものではない。 Specific examples of the heptamethine cyanine dye represented by the general formula (II) of JP-A-2001-228324 among the compounds represented by the general formula (1) are shown below. It is not limited to examples.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(2)オキソノール染料
 前記オキソノール染料としては、特開2009-244493号公報の一般式(II)で表されるオキソノール染料が好ましく、その中でもバルビツール酸環を有するバルビツール酸オキソノール染料がより好ましい。
 以下に、特開2009-244493号公報の一般式(II)で表されるオキソノール染料の例を示すが、本発明は下記具体例に限定されるものではない。
(2) Oxonol Dye The oxonol dye is preferably an oxonol dye represented by the general formula (II) of JP-A No. 2009-244493, and more preferably a barbituric acid oxonol dye having a barbituric acid ring.
Examples of oxonol dyes represented by the general formula (II) in JP-A-2009-244493 are shown below, but the present invention is not limited to the following specific examples.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(3)ピロロピロール化合物
 前記ピロロピロール化合物としては、前記一般式(2)、すなわち特開2009-263614号公報や特開2010-90313号公報の一般式(1)で表されるピロロピロール化合物が好ましく、特開2009-263614号公報や特開2010-90313号公報の一般式(2)、(3)又は(4)のいずれかで表されるピロロピロール化合物がより好ましい。
(3) The pyrrolopyrrole compound As the pyrrolopyrrole compound, the pyrrolopyrrole compound represented by the above general formula (2), that is, the general formula (1) of JP2009-263614A or JP2010-90313A is exemplified. A pyrrolopyrrole compound represented by any one of the general formulas (2), (3), and (4) described in JP-A-2009-263614 and 2010-90313 is more preferable.
 以下に、前記一般式(2)、すなわち特開2009-263614号公報や特開2010-90313号公報の一般式(1)~(4)のいずれかで表されるピロロピロール化合物(色素)の具体例を示すが、本発明は下記具体例に限定されるものではない。 Hereinafter, the pyrrolopyrrole compound (dye) represented by the general formula (2), that is, any one of the general formulas (1) to (4) in JP2009-263614A and JP2010-90313A is described below. Specific examples will be shown, but the present invention is not limited to the following specific examples.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
(ポリマー)
 本発明の赤外線遮蔽フィルムは、前記色素含有層中にポリマーを含むことが好ましい。前記ポリマーは、前記色素含有層中において、いわゆるバインダーとして用いることができる。
 本発明の赤外線遮蔽フィルムは、前記色素含有層中における前記色素に対する前記ポリマーの質量比(ポリマー/色素比)が5以下であることが極大反射波長での透過率を低くし、暖まり率を低くする観点から好ましい。前記色素含有層中における前記色素に対する前記ポリマーの質量比は、0.1~4であることがより好ましく、0.2~3.0であることが特に好ましく、0.5~3.0であることがより特に好ましい。
(polymer)
The infrared shielding film of the present invention preferably contains a polymer in the dye-containing layer. The polymer can be used as a so-called binder in the dye-containing layer.
In the infrared shielding film of the present invention, the mass ratio of the polymer to the dye (polymer / dye ratio) in the dye-containing layer is 5 or less to reduce the transmittance at the maximum reflection wavelength and to reduce the warming rate. From the viewpoint of The mass ratio of the polymer to the dye in the dye-containing layer is more preferably 0.1 to 4, particularly preferably 0.2 to 3.0, and preferably 0.5 to 3.0. More particularly preferred.
 前記色素含有層中に含まれるポリマーの含有量の好ましい範囲は、前記色素に対する前記ポリマーの質量比の好ましい範囲とも関連するが、例えば350mg/m以下であることが面状の観点から好ましく、30mg/m以上であることが支持体との密着の観点から好ましい。 The preferred range of the content of the polymer contained in the dye-containing layer is also related to the preferred range of the mass ratio of the polymer to the dye, but is preferably 350 mg / m 2 or less, for example, from a planar viewpoint, It is preferable from a viewpoint of contact | adherence with a support body that it is 30 mg / m < 2 > or more.
 前記ポリマーの種類としては特に制限は無く、公知のポリマーを用いることがで、透明ポリマーを用いることがより好ましい。前記ポリマーとしては、例えば、ポリビニルアセタール樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリアクリレート樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、(飽和)ポリエステル樹脂、ポリウレタン樹脂、ゼラチンやセルロース等の天然高分子等の高分子などが挙げられる。その中でも、本発明の赤外線遮蔽フィルムは、前記ポリマーがポリエステル、ポリウレタン、ポリアクリレート樹脂であることが好ましく、ポリエステルであることが支持体との密着の観点からより好ましい。 The type of the polymer is not particularly limited, and a known polymer can be used, and a transparent polymer is more preferable. Examples of the polymer include polyvinyl acetal resin, polyvinyl alcohol resin, polyvinyl butyral resin, polyacrylate resin, polymethyl methacrylate resin, polycarbonate resin, polyvinyl chloride resin, (saturated) polyester resin, polyurethane resin, gelatin, and cellulose. And polymers such as natural polymers. Among them, in the infrared shielding film of the present invention, the polymer is preferably polyester, polyurethane, or polyacrylate resin, and polyester is more preferable from the viewpoint of adhesion to the support.
 本発明の赤外線遮蔽フィルムは、前記ポリマーが水性分散物であることが、環境影響の観点と、塗布コスト低減の点から好ましい。 In the infrared shielding film of the present invention, it is preferable that the polymer is an aqueous dispersion from the viewpoint of environmental influence and the reduction of coating cost.
 本発明では、前記ポリマーとして、水溶性ポリエステル樹脂であるプラスコートZ-592(互応化学工業株式会社製)などを好ましく用いることができる。 In the present invention, as the polymer, Plus Coat Z-592 (manufactured by Kyoyo Chemical Co., Ltd.), which is a water-soluble polyester resin, can be preferably used.
<その他の層・成分>
<<粘着剤層>>
 本発明の赤外線遮蔽フィルムは、粘着剤層(以下、粘着層ともいう)を有することが好ましい。前記粘着層は、紫外線吸収剤を含むことができる。
 前記粘着層の形成に利用可能な材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリビニルブチラール(PVB)樹脂、アクリル樹脂、スチレン/アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、シリコーン樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの材料からなる粘着層は、塗布により形成することができる。
 さらに、前記粘着層には帯電防止剤、滑剤、ブロッキング防止剤などを添加してもよい。
 前記粘着層の厚みとしては、0.1μm~10μmが好ましい。
<Other layers and ingredients>
<< Adhesive layer >>
The infrared shielding film of the present invention preferably has a pressure-sensitive adhesive layer (hereinafter also referred to as a pressure-sensitive adhesive layer). The adhesive layer may include an ultraviolet absorber.
The material that can be used for forming the adhesive layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, polyvinyl butyral (PVB) resin, acrylic resin, styrene / acrylic resin, urethane resin, polyester Examples thereof include resins and silicone resins. These may be used individually by 1 type and may use 2 or more types together. An adhesive layer made of these materials can be formed by coating.
Furthermore, an antistatic agent, a lubricant, an antiblocking agent and the like may be added to the adhesive layer.
The thickness of the adhesive layer is preferably 0.1 μm to 10 μm.
<<ハードコート層>>
 耐擦傷性を付加するために、機能性フィルムがハードコート性を有するハードコート層を含むことも好適である。ハードコート層には金属酸化物粒子を含むことができる。
 前記ハードコート層としては、特に制限はなく、目的に応じて適宜その種類も形成方法も選択することができ、例えば、アクリル系樹脂、シリコーン系樹脂、メラミン系樹脂、ウレタン系樹脂、アルキド系樹脂、フッ素系樹脂等の熱硬化型又は光硬化型樹脂などが挙げられる。前記ハードコート層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、1μm~50μmが好ましい。前記ハードコート層上に更に反射防止層及び/又は防眩層を形成すると、耐擦傷性に加え、反射防止性及び/又は防眩性を有する機能性フィルムが得られ好適である。また、前記ハードコート層に前記金属酸化物粒子を含有してもよい。
<< Hard coat layer >>
In order to add scratch resistance, it is also preferable that the functional film includes a hard coat layer having hard coat properties. The hard coat layer can contain metal oxide particles.
There is no restriction | limiting in particular as said hard-coat layer, The kind and formation method can be selected suitably according to the objective, For example, acrylic resin, silicone resin, melamine resin, urethane resin, alkyd resin And thermosetting or photocurable resins such as fluorine-based resins. The thickness of the hard coat layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 μm to 50 μm. When an antireflection layer and / or an antiglare layer are further formed on the hard coat layer, a functional film having antireflection properties and / or antiglare properties in addition to scratch resistance is preferably obtained. The hard coat layer may contain the metal oxide particles.
<<オーバーコート層>>
 本発明の赤外線遮蔽フィルムにおいて、物質移動による金属平板粒子の酸化・硫化を防止し、耐擦傷性を付与するため、本発明の赤外線遮蔽フィルムは、前記六角形状乃至円形状の平板状金属粒子が露出している方の前記金属粒子含有層の表面に密接するオーバーコート層を有していてもよい。また、前記金属粒子含有層と後述の紫外線吸収層との間にオーバーコート層を有していてもよい。本発明の赤外線遮蔽フィルムは特に金属平板粒子が金属粒子含有層の表面に偏在するため場合は、金属平板粒子の剥落による製造工程のコンタミ防止、別層塗布時の金属平板粒子配列乱れの防止、などのため、オーバーコート層を有していてもよい。
 前記オーバーコート層には紫外線吸収剤を含んでもよい。前記オーバーコート層としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、バインダー、マット剤、及び界面活性剤を含有し、更に必要に応じてその他の成分を含有してなる。前記バインダーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アクリル系樹脂、シリコーン系樹脂、メラミン系樹脂、ウレタン系樹脂、アルキド系樹脂、フッ素系樹脂等の熱硬化型又は光硬化型樹脂などが挙げられる。前記オーバーコート層の厚みとしては、0.01μm~1,000μmが好ましく、0.02μm~500μmがより好ましく、0.1~10μmが特に好ましく、0.2~5μmがより特に好ましい。
<< Overcoat layer >>
In the infrared shielding film of the present invention, in order to prevent oxidation and sulfidation of the metal tabular grains due to mass transfer and to provide scratch resistance, the infrared shielding film of the present invention has the hexagonal or circular tabular metal particles. You may have the overcoat layer closely_contact | adhered to the surface of the said exposed metal particle content layer. Moreover, you may have an overcoat layer between the said metal particle content layer and the below-mentioned ultraviolet absorption layer. Infrared shielding film of the present invention, especially when the metal tabular grains are unevenly distributed on the surface of the metal particle-containing layer, prevention of contamination of the manufacturing process due to the peeling of the metal tabular grains, prevention of disordered arrangement of the metal tabular grains at the time of coating another layer, For example, an overcoat layer may be provided.
The overcoat layer may contain an ultraviolet absorber. The overcoat layer is not particularly limited and may be appropriately selected depending on the intended purpose.For example, the overcoat layer contains a binder, a matting agent, and a surfactant, and further contains other components as necessary. It becomes. The binder is not particularly limited and may be appropriately selected depending on the purpose. For example, thermosetting of acrylic resin, silicone resin, melamine resin, urethane resin, alkyd resin, fluorine resin, etc. Mold or photo-curable resin. The thickness of the overcoat layer is preferably 0.01 μm to 1,000 μm, more preferably 0.02 μm to 500 μm, particularly preferably 0.1 to 10 μm, and particularly preferably 0.2 to 5 μm.
<<アンダーコート層>>
 一方、本発明の赤外線遮蔽フィルムにおいて、前記支持体と前記金属粒子含有層との間に、アンダーコート層を有していてもよい。前記アンダーコート層としては、特に制限はなく、目的に応じて適宜選択することができるが、前記赤外領域に吸収を有する化合物を含む層としてもよく、前記赤外領域に吸収を有する化合物を含む層ではない場合の好ましい組成や厚みは、前記オーバーコート層の好ましい組成や厚みと同様である。なお、前記アンダーコート層を複数層設けてもよく、その場合は、前記赤外領域に吸収を有する化合物を含む層は1層のみ設けることが好ましく、1層のみ前記支持体に接する側に設けることがより好ましい。
<< Undercoat layer >>
On the other hand, in the infrared shielding film of the present invention, an undercoat layer may be provided between the support and the metal particle-containing layer. The undercoat layer is not particularly limited and may be appropriately selected depending on the purpose, but may be a layer containing a compound having absorption in the infrared region, and may be a compound having absorption in the infrared region. A preferable composition and thickness in the case where the layer is not an included layer are the same as the preferable composition and thickness of the overcoat layer. A plurality of the undercoat layers may be provided. In that case, it is preferable to provide only one layer containing a compound having absorption in the infrared region, and only one layer is provided on the side in contact with the support. It is more preferable.
<<バックコート層>>
 一方、本発明の赤外線遮蔽フィルムにおいて、前記支持体の前記金属粒子含有層とは反対側の面上に、バックコート層を有していてもよい。前記バックコート層としては、特に制限はなく、目的に応じて適宜選択することができるが、前記赤外領域に吸収を有する化合物を含む層としてもよく、後述の金属酸化物粒子含有層としてもよいが、前記赤外領域に吸収を有する化合物を含む層や後述の金属酸化物粒子含有層ではない場合の好ましい組成や厚みは、前記オーバーコート層の好ましい組成や厚みと同様である。
<< Backcoat layer >>
On the other hand, the infrared shielding film of the present invention may have a back coat layer on the surface of the support opposite to the metal particle-containing layer. The backcoat layer is not particularly limited and may be appropriately selected depending on the intended purpose. However, the backcoat layer may be a layer containing a compound having absorption in the infrared region, or may be a metal oxide particle-containing layer described later. However, the preferred composition and thickness in the case of a layer containing a compound having absorption in the infrared region or a metal oxide particle-containing layer described later are the same as the preferred composition and thickness of the overcoat layer.
<<紫外線吸収剤>>
 本発明の赤外線遮蔽フィルムは、紫外線吸収剤が含まれている層を有することが好ましい。
 前記紫外線吸収剤を含有する層は、目的に応じて適宜選択することができ、粘着層であってもよく、また、前記粘着層と前記金属粒子含有層との間の層(例えば、オーバーコート層など)であってもよい。いずれの場合も、前記紫外線吸収剤は、前記金属粒子含有層に対して、太陽光が照射される側に配置される層に添加されることが好ましい。
<< UV absorber >>
The infrared shielding film of the present invention preferably has a layer containing an ultraviolet absorber.
The layer containing the ultraviolet absorber can be appropriately selected depending on the purpose, and may be an adhesive layer, or a layer (for example, an overcoat) between the adhesive layer and the metal particle-containing layer. Layer). In any case, it is preferable that the ultraviolet absorber is added to a layer disposed on the side irradiated with sunlight with respect to the metal particle-containing layer.
 前記紫外線吸収剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤、サリチレート系紫外線吸収剤、シアノアクリレート系紫外線吸収剤などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 The ultraviolet absorber is not particularly limited and may be appropriately selected depending on the purpose. For example, a benzophenone ultraviolet absorber, a benzotriazole ultraviolet absorber, a triazine ultraviolet absorber, a salicylate ultraviolet absorber, Examples include cyanoacrylate ultraviolet absorbers. These may be used individually by 1 type and may use 2 or more types together.
 前記ベンゾフェノン系紫外線吸収剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、2,4ドロキシ-4-メトキシ-5-スルホベンゾフェノンなどが挙げられる。 The benzophenone-based ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 2,4droxy-4-methoxy-5-sulfobenzophenone.
 前記ベンゾトリアゾール系紫外線吸収剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、2-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-4-メチル-6-tert-ブチルフェノール(チヌビン326)、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-ターシャリーブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3-5-ジターシャリーブチルフェニル)-5-クロロベンゾトリアゾールなどが挙げられる。 The benzotriazole ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose. For example, 2- (5-chloro-2H-benzotriazol-2-yl) -4-methyl-6 -Tert-butylphenol (tinuvin 326), 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-tertiarybutylphenyl) benzotriazole, 2- (2-hydroxy-3- 5-ditertiary butylphenyl) -5-chlorobenzotriazole and the like.
 前記トリアジン系紫外線吸収剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、モノ(ヒドロキシフェニル)トリアジン化合物、ビス(ヒドロキシフェニル)トリアジン化合物、トリス(ヒドロキシフェニル)トリアジン化合物などが挙げられる。
 前記モノ(ヒドロキシフェニル)トリアジン化合物としては、例えば、2-[4-[(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-[(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-(2,4-ジヒドロキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-(2-ヒドロキシ-4-イソオクチルオキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-(2-ヒドロキシ-4-ドデシルオキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジンなどが挙げられる。前記ビス(ヒドロキシフェニル)トリアジン化合物としては、例えば、2,4-ビス(2-ヒドロキシ-4-プロピルオキシフェニル)-6-(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4-ビス(2-ヒドロキシ-3-メチル-4-プロピルオキシフェニル)-6-(4-メチルフェニル)-1,3,5-トリアジン、2,4-ビス(2-ヒドロキシ-3-メチル-4-ヘキシルオキシフェニル)-6-(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-フェニル-4,6-ビス[2-ヒドロキシ-4-[3-(メトキシヘプタエトキシ)-2-ヒドロキシプロピルオキシ]フェニル]-1,3,5-トリアジンなどが挙げられる。前記トリス(ヒドロキシフェニル)トリアジン化合物としては、例えば、2,4-ビス(2-ヒドロキシ-4-ブトキシフェニル)-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4,6-トリス[2-ヒドロキシ-4-(3-ブトキシ-2-ヒドロキシプロピルオキシ)フェニル]-1,3,5-トリアジン、2,4-ビス[2-ヒドロキシ-4-[1-(イソオクチルオキシカルボニル)エトキシ]フェニル]-6-(2,4-ジヒドロキシフェニル)-1,3,5-トリアジン、2,4,6-トリス[2-ヒドロキシ-4-[1-(イソオクチルオキシカルボニル)エトキシ]フェニル]-1,3,5-トリアジン、2,4-ビス[2-ヒドロキシ-4-[1-(イソオクチルオキシカルボニル)エトキシ]フェニル]-6-[2,4-ビス[1-(イソオクチルオキシカルボニル)エトキシ]フェニル]-1,3,5-トリアジンなどが挙げられる。
The triazine-based ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include mono (hydroxyphenyl) triazine compounds, bis (hydroxyphenyl) triazine compounds, and tris (hydroxyphenyl) triazine compounds. Etc.
Examples of the mono (hydroxyphenyl) triazine compound include 2- [4-[(2-hydroxy-3-dodecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethyl). Phenyl) -1,3,5-triazine, 2- [4-[(2-hydroxy-3-tridecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) ) -1,3,5-triazine, 2- (2,4-dihydroxyphenyl) -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2- (2-hydroxy- 4-isooctyloxyphenyl) -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2- (2-hydroxy-4-dodecyloxyphenyl) -4,6-bis ( 2,4-dimethylphenyl) -1,3,5-triazine, etc. Is mentioned. Examples of the bis (hydroxyphenyl) triazine compound include 2,4-bis (2-hydroxy-4-propyloxyphenyl) -6- (2,4-dimethylphenyl) -1,3,5-triazine, 2 , 4-Bis (2-hydroxy-3-methyl-4-propyloxyphenyl) -6- (4-methylphenyl) -1,3,5-triazine, 2,4-bis (2-hydroxy-3-methyl) -4-hexyloxyphenyl) -6- (2,4-dimethylphenyl) -1,3,5-triazine, 2-phenyl-4,6-bis [2-hydroxy-4- [3- (methoxyheptaethoxy ) -2-hydroxypropyloxy] phenyl] -1,3,5-triazine and the like. Examples of the tris (hydroxyphenyl) triazine compound include 2,4-bis (2-hydroxy-4-butoxyphenyl) -6- (2,4-dibutoxyphenyl) -1,3,5-triazine, 2 , 4,6-Tris (2-hydroxy-4-octyloxyphenyl) -1,3,5-triazine, 2,4,6-tris [2-hydroxy-4- (3-butoxy-2-hydroxypropyloxy) ) Phenyl] -1,3,5-triazine, 2,4-bis [2-hydroxy-4- [1- (isooctyloxycarbonyl) ethoxy] phenyl] -6- (2,4-dihydroxyphenyl) -1 , 3,5-triazine, 2,4,6-tris [2-hydroxy-4- [1- (isooctyloxycarbonyl) ethoxy] phenyl] -1,3,5-triazine, 2,4-bis [2 -Hydroxy-4- [1- (isooctyloxy) Carbonyl) ethoxy] phenyl] -6- [2,4-bis [1- (iso-octyloxy) ethoxy] phenyl] -1,3,5-triazine.
 前記サリチレート系紫外線吸収剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フェニルサリチレート、p-tert-ブチルフェニルサリチレート、p-オクチルフェニルサリチレート、2-エチルヘキシルサリチレートなどが挙げられる。 The salicylate-based ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include phenyl salicylate, p-tert-butylphenyl salicylate, p-octylphenyl salicylate, Examples include 2-ethylhexyl salicylate.
 前記シアノアクリレート系紫外線吸収剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、2-エチルヘキシル-2-シアノ-3,3-ジフェニルアクリレート、エチル-2-シアノ-3,3-ジフェニルアクリレートなどが挙げられる。 The cyanoacrylate-based ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose. For example, 2-ethylhexyl-2-cyano-3,3-diphenylacrylate, ethyl-2-cyano-3 , 3-diphenyl acrylate and the like.
 前記バインダーとしては、特に制限はなく、目的に応じて適宜選択することができるが、可視光透明性や日射透明性が高い方が好ましく、例えば、アクリル樹脂、ポリビニルブチラール、ポリビニルアルコールなどが挙げられる。なお、バインダーが熱線を吸収すると、金属平板粒子による反射効果が弱まってしまうことから、熱線源と金属平板粒子との間に形成される紫外線吸収層としては、450nm~1,500nmの領域に吸収を持たない材料を選択したり、該紫外線吸収層の厚みを薄くしたりすることが好ましい。
 前記紫外線吸収層の厚みとしては、0.01μm~1,000μmが好ましく、0.02μm~500μmがより好ましい。前記厚みが、0.01μm未満であると、紫外線の吸収が足りなくなることがあり、1,000μmを超えると、可視光の透過率が下がることがある。
 前記紫外線吸収層の含有量としては、用いる紫外線吸収層によって異なり、一概に規定することができないが、本発明の赤外線遮蔽フィルムにおいて所望の紫外線透過率を与える含有量を適宜選択することが好ましい。
 前記紫外線透過率としては、5%以下が好ましく、2%以下がより好ましい。前記紫外線透過率が、5%を超えると、太陽光の紫外線により前記金属平板粒子層の色味が変化することがある。
The binder is not particularly limited and may be appropriately selected depending on the intended purpose, but preferably has higher visible light transparency and higher solar transparency, and examples thereof include acrylic resin, polyvinyl butyral, and polyvinyl alcohol. . When the binder absorbs heat rays, the reflection effect of the metal tabular grains is weakened. Therefore, the ultraviolet absorbing layer formed between the heat ray source and the metal tabular grains is absorbed in the region of 450 nm to 1,500 nm. It is preferable to select a material that does not have a thickness, or to reduce the thickness of the ultraviolet absorbing layer.
The thickness of the ultraviolet absorbing layer is preferably 0.01 μm to 1,000 μm, more preferably 0.02 μm to 500 μm. When the thickness is less than 0.01 μm, ultraviolet absorption may be insufficient, and when it exceeds 1,000 μm, the visible light transmittance may be reduced.
The content of the ultraviolet absorbing layer varies depending on the ultraviolet absorbing layer to be used and cannot be generally defined, but it is preferable to appropriately select a content that gives a desired ultraviolet transmittance in the infrared shielding film of the present invention.
The ultraviolet transmittance is preferably 5% or less, and more preferably 2% or less. When the ultraviolet transmittance exceeds 5%, the color of the metal tabular grain layer may change due to ultraviolet rays of sunlight.
<<金属酸化物粒子>>
 本発明の赤外線遮蔽フィルムは、長波赤外線を吸収するために、少なくとも1種の金属酸化物粒子を含有していても熱線遮蔽と製造コストのバランスの観点からは好ましい。この場合、例えばオーバーコート層5に金属酸化物粒子を含むことが好ましい。オーバーコート層5は、基材1を介して、前記金属酸化物粒子含有層2と積層されていてもよい。金属平板粒子含有層2が太陽光などの熱線の入射方向側となるように本発明の赤外線遮蔽フィルムを配置したときに、金属平板粒子含有層2で熱線の一部(または全部でもよい)を反射した後、オーバーコート層5で熱線の一部を吸収することとなり、金属酸化物含有層2で吸収されずに赤外線遮蔽フィルムを透過した熱線に起因して赤外線遮蔽フィルムの内側で直接受ける熱量と、赤外線遮蔽フィルムの金属酸化物含有層2で吸収されて間接的に赤外線遮蔽フィルムの内側に伝わる熱量の合計としての熱量を低減することができる。
 前記金属酸化物粒子の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、錫ドープ酸化インジウム(以下、「ITO」と略記する。)、錫ドープ酸化アンチモン(以下、「ATO」と略記する。)、酸化亜鉛、酸化チタン、酸化インジウム、酸化錫、酸化アンチモン、ガラスセラミックスなどが挙げられる。これらの中でも、熱線吸収能力に優れ、金属平板粒子と組み合わせることにより幅広い熱線吸収能を有する赤外線遮蔽フィルムが製造できる点で、ITO、ATO、酸化亜鉛がより好ましく、1,200nm以上の赤外線を90%以上遮蔽し、可視光透過率が90%以上である点で、ITOが特に好ましい。
 前記金属酸化物粒子の一次粒子の体積平均粒径としては、可視光透過率を低下させないため、0.1μm以下が好ましい。
 前記金属酸化物粒子の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、球状、針状、板状などが挙げられる。
<< Metal oxide particles >>
In order to absorb long wave infrared rays, the infrared ray shielding film of the present invention is preferable from the viewpoint of balance between heat ray shielding and production cost even if it contains at least one kind of metal oxide particles. In this case, for example, the overcoat layer 5 preferably contains metal oxide particles. The overcoat layer 5 may be laminated with the metal oxide particle-containing layer 2 via the substrate 1. When the infrared shielding film of this invention is arrange | positioned so that the metal tabular grain content layer 2 may become the incident direction side of heat rays, such as sunlight, a part (or all) of heat ray may be in the metal tabular grain content layer 2. After the reflection, a part of the heat ray is absorbed by the overcoat layer 5, and the amount of heat directly received inside the infrared ray shielding film due to the heat ray that is not absorbed by the metal oxide containing layer 2 and is transmitted through the infrared ray shielding film. And the calorie | heat amount as the sum total of the calorie | heat amount absorbed by the metal oxide content layer 2 of an infrared shielding film and transmitted indirectly inside an infrared shielding film can be reduced.
There is no restriction | limiting in particular as a material of the said metal oxide particle, According to the objective, it can select suitably, For example, a tin dope indium oxide (henceforth "ITO"), a tin dope antimony oxide (henceforth). , Abbreviated as “ATO”), zinc oxide, titanium oxide, indium oxide, tin oxide, antimony oxide, glass ceramics, and the like. Among these, ITO, ATO, and zinc oxide are more preferable, and infrared rays having a wavelength of 1,200 nm or more are applied in that they are excellent in heat ray absorption ability and can produce an infrared shielding film having a wide range of heat ray absorption ability when combined with metal tabular grains. In particular, ITO is preferable in that it has a visible light transmittance of 90% or more.
The volume average particle size of the primary particles of the metal oxide particles is preferably 0.1 μm or less in order not to reduce the visible light transmittance.
There is no restriction | limiting in particular as a shape of the said metal oxide particle, According to the objective, it can select suitably, For example, spherical shape, needle shape, plate shape, etc. are mentioned.
 前記金属酸化物粒子の前記金属酸化物粒子含有層における含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.1g/m~20g/mが好ましく、0.5g/m~10g/mがより好ましく、1.0g/m~4.0g/mがより好ましい。
 前記含有量が、0.1g/m未満であると、肌に感じる日射量が上昇することがあり、20g/mを超えると、可視光透過率が悪化することがある。一方、前記含有量が、1.0g/m~4.0g/mであると、上記2点を回避できる点で有利である。
 なお、前記金属酸化物粒子の前記金属酸化物粒子含有層における含有量は、例えば、前記熱線遮蔽層の超箔切片TEM像及び表面SEM像の観察から、一定面積における金属酸化物粒子の個数及び平均粒子径を測定し、該個数及び平均粒子径と、金属酸化物粒子の比重とに基づいて算出した質量(g)を、前記一定面積(m)で除することにより算出することができる。また、前記金属酸化物粒子含有層の一定面積における金属酸化物微粒子をメタノールに溶出させ、蛍光X線測定により測定した金属酸化物微粒子の質量(g)を、前記一定面積(m)で除することにより算出することもできる。
The content of the metal oxide particles in the metal oxide particle-containing layer is not particularly limited and may be appropriately selected depending on the purpose, but is preferably 0.1 g / m 2 to 20 g / m 2 , 0.5 g / m 2 to 10 g / m 2 is more preferable, and 1.0 g / m 2 to 4.0 g / m 2 is more preferable.
If the content is less than 0.1 g / m 2 , the amount of solar radiation felt on the skin may increase, and if it exceeds 20 g / m 2 , the visible light transmittance may deteriorate. On the other hand, when the content is 1.0 g / m 2 to 4.0 g / m 2, it is advantageous in that the above two points can be avoided.
The content of the metal oxide particles in the metal oxide particle-containing layer is, for example, from the observation of the super foil section TEM image and surface SEM image of the heat ray shielding layer, and the number of metal oxide particles in a certain area and It can be calculated by measuring the average particle diameter and dividing the mass (g) calculated based on the number and average particle diameter and the specific gravity of the metal oxide particles by the constant area (m 2 ). . Further, metal oxide fine particles in a certain area of the metal oxide particle-containing layer are eluted in methanol, and the mass (g) of the metal oxide fine particles measured by fluorescent X-ray measurement is divided by the constant area (m 2 ). This can also be calculated.
<赤外線遮蔽フィルムの製造方法>
 本発明の赤外線遮蔽フィルムを製造する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記支持体などの下層の表面上に、前記色素を有する分散液を、ディップコーター、ダイコーター、スリットコーター、バーコーター、グラビアコーター等により塗布する方法、LB膜法、自己組織化法、スプレー塗布などの方法で面配向させる方法が挙げられる。前記色素含有層は塗布により形成されてなることが好ましい。すなわち、前記色素含有層は、色素塗布層であることが好ましい。さらにその中でもバーコーターにより塗布する方法が好ましい。
<Method for producing infrared shielding film>
The method for producing the infrared shielding film of the present invention is not particularly limited and can be appropriately selected according to the purpose.For example, a dispersion having the dye on the surface of the lower layer such as the support, Examples thereof include a method of coating by a dip coater, a die coater, a slit coater, a bar coater, a gravure coater, and the like, and a method of surface orientation by a method such as an LB film method, a self-organization method, and spray coating. The dye-containing layer is preferably formed by coating. That is, the dye-containing layer is preferably a dye coating layer. Among them, the method of applying with a bar coater is preferable.
 前記色素含有層を塗布により形成する場合、塗布液には前記色素や、前記ポリマーの他、溶媒や界面活性剤などのその他の添加剤を添加してもよい。 When the dye-containing layer is formed by coating, other additives such as a solvent and a surfactant may be added to the coating solution in addition to the dye and the polymer.
 前記溶媒としては、特に制限はなく水や公知の有機溶媒を用いることができ、例えば、水、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、アセトン、メチルアルコール、N-プロピルアルコール、1-プロピルアルコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノン、シクロヘキサノール、乳酸エチル、乳酸メチル、カプロラクタム、等の種々のものを用いることができる。本発明では、環境影響の観点と、塗布コスト低減の点から水性の溶媒を用いることが好ましい。
 前記溶媒は、1種単独で用いる以外に2種以上を組合せて用いてもよい。本発明では、具体的には水とメタノールを組み合わせた水性の溶媒として用いることがより好ましい。
The solvent is not particularly limited and water or a known organic solvent can be used. For example, water, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, acetone, methyl alcohol, N-propyl alcohol, 1-propyl alcohol, Various things such as propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, cyclohexanone, cyclohexanol, ethyl lactate, methyl lactate, and caprolactam can be used. In the present invention, it is preferable to use an aqueous solvent from the viewpoint of environmental influence and the point of reducing coating cost.
The solvent may be used in combination of two or more, in addition to being used alone. In the present invention, specifically, it is more preferable to use as an aqueous solvent in which water and methanol are combined.
 その他の添加剤としては、特開2005-17322号公報の段落番号[0027]~[0031]に記載の界面活性剤や添加剤が挙げられる。
 前記界面活性剤は特に限定されないが、脂肪族、芳香族、フッ素系のいずれの界面活性剤でもよく、また、ノニオン系、アニオン系、カチオン系のいずれの界面活性剤でもよい。前記界面活性剤としては、特開2011-218807号公報に記載のものなどを挙げることができる。
 前記界面活性剤としては、具体的には、日油株式会社製のラピゾールA-90、三洋化成工業株式会社製のアロナクティーCL95等が好ましく用いられる。
 前記界面活性剤は、1種単独で用いる以外に2種以上を組合せて用いてもよい。
Examples of other additives include surfactants and additives described in paragraph numbers [0027] to [0031] of JP-A-2005-17322.
The surfactant is not particularly limited, but may be any of aliphatic, aromatic, and fluorine surfactants, and may be any nonionic, anionic, or cationic surfactant. Examples of the surfactant include those described in JP 2011-218807 A.
As the surfactant, specifically, Rapisol A-90 manufactured by NOF Corporation, Aronacty CL95 manufactured by Sanyo Chemical Industries, Ltd., and the like are preferably used.
The surfactants may be used in combination of two or more in addition to being used alone.
 前記色素含有層を塗布により形成する場合、色素塗布量およびポリマー塗布量の好ましい範囲は、それぞれ前記色素含有層中に含まれる前記色素の含有量および前記ポリマーの含有量の好ましい範囲とそれぞれ同様である。 When the dye-containing layer is formed by coating, preferred ranges of the dye coating amount and the polymer coating amount are the same as the preferred ranges of the dye content and the polymer content contained in the dye-containing layer, respectively. is there.
 前記色素含有層を塗布により形成する場合、前記塗布液を塗布後、公知の方法で乾燥して、固化し、前記色素含有層を形成することが好ましい。乾燥方法としては、加熱による乾燥が好ましい。 In the case of forming the dye-containing layer by coating, it is preferable to form the dye-containing layer by applying the coating solution and then drying and solidifying by a known method. As a drying method, drying by heating is preferable.
-1.金属粒子含有層の形成方法-
 本発明の金属粒子含有層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記基材などの下層の表面上に、前記金属平板粒子を有する分散液を、ディップコーター、ダイコーター、スリットコーター、バーコーター、グラビアコーター等により塗布する方法、LB膜法、自己組織化法、スプレー塗布などの方法で面配向させる方法が挙げられる。本発明の赤外線遮蔽フィルムを製造するとき、後述の実施例で用いた金属粒子含有層の組成とし、ラテックスを添加する等によって、前記六角形状乃至円形状の平板状金属粒子の金属平板粒子の80個数%以上が、前記金属粒子含有層の表面からd/2の範囲に存在するようにする。前記六角形状乃至円形状の平板状金属粒子の金属平板粒子の80個数%以上が、前記金属粒子含有層の表面からd/3の範囲に存在するようにすることが好ましい。前記ラテックスの添加量に特に制限は無いが、例えば金属平板粒子に対して、1~10000質量%添加することが好ましい。
-1. Method for forming metal particle-containing layer
The method for forming the metal particle-containing layer of the present invention is not particularly limited and may be appropriately selected depending on the purpose. For example, a dispersion having the metal tabular particles on the surface of the lower layer such as the substrate. May be applied by a dip coater, a die coater, a slit coater, a bar coater, a gravure coater, or the like, or may be subjected to surface orientation by a method such as an LB film method, a self-organization method, or spray coating. When the infrared shielding film of the present invention is produced, the composition of the metal particle-containing layer used in the examples described later is used, and by adding latex or the like, the hexagonal or circular tabular metal particles 80 The number% or more is made to exist in the range of d / 2 from the surface of the metal particle-containing layer. It is preferable that 80% by number or more of the metal tabular grains of the hexagonal or circular tabular metal particles exist in a range of d / 3 from the surface of the metal particle-containing layer. The amount of the latex added is not particularly limited, but for example, it is preferable to add 1 to 10000 mass% with respect to the metal tabular grains.
 なお、面配向を促進するために、金属平板粒子を塗布後、カレンダーローラーやラミローラーなどの圧着ローラーを通すことにより促進させてもよい。 In addition, in order to promote plane orientation, after applying metal tabular grains, it may be promoted by passing through a pressure roller such as a calender roller or a lami roller.
-2.オーバーコート層の形成方法-
 オーバーコート層は、塗布により形成することが好ましい。このときの塗布方法としては、特に限定はなく、公知の方法を用いることができ、例えば、前記紫外線吸収剤を含有する分散液を、ディップコーター、ダイコーター、スリットコーター、バーコーター、グラビアコーター等により塗布する方法などが挙げられる。
-2. Formation method of overcoat layer
The overcoat layer is preferably formed by coating. The coating method at this time is not particularly limited, and a known method can be used. For example, a dispersion containing the ultraviolet absorber can be used as a dip coater, a die coater, a slit coater, a bar coater, a gravure coater, or the like. The method of apply | coating by etc. is mentioned.
-3.ハードコート層の形成方法-
 ハードコート層は、塗布により形成することが好ましい。このときの塗布方法としては、特に限定はなく、公知の方法を用いることができ、例えば、前記紫外線吸収剤を含有する分散液を、ディップコーター、ダイコーター、スリットコーター、バーコーター、グラビアコーター等により塗布する方法などが挙げられる。
-3. Formation method of hard coat layer
The hard coat layer is preferably formed by coating. The coating method at this time is not particularly limited, and a known method can be used. For example, a dispersion containing the ultraviolet absorber can be used as a dip coater, a die coater, a slit coater, a bar coater, a gravure coater, or the like. The method of apply | coating by etc. is mentioned.
-4.粘着層の形成方法-
 前記粘着層は、塗布により形成することが好ましい。例えば、前記基材、前記金属粒子含有層、前記紫外線吸収層などの下層の表面上に積層することができる。このときの塗布方法としては、特に限定はなく、公知の方法を用いることができる。
-4. Formation method of adhesive layer
The adhesive layer is preferably formed by coating. For example, it can be laminated on the surface of the lower layer such as the substrate, the metal particle-containing layer, or the ultraviolet absorbing layer. There is no limitation in particular as the coating method at this time, A well-known method can be used.
<用途>
-ドライラミネーションによる粘着剤層積層-
 本発明の赤外線遮蔽フィルムフィルムを使って、既設窓ガラスの類に機能性付与する場合は、粘着剤を積層してガラスの室内側に貼り付ける。その際、反射層をなるべく太陽光側に向けた方が発熱を防ぐことになるので、銀ナノディスク粒子層の上に粘着剤層を積層し、その面から窓ガラスへ貼合するのが適切である。
 銀ナノディスク層表面への粘着剤層積層に当っては、当該表面に直接粘着剤入りの塗布液を塗工することもできるが、粘着剤に含まれる各種添加剤、可塑剤や、使用溶剤などが、場合によっては銀ナノディスク層の配列を乱したり、銀ナノディスク自身を変質させたりすることがある。そうした弊害を最小限に留めるためには、粘着剤を予め離型フィルム上に塗工及び乾燥させたフィルムを作製しておいて、当該フィルムの粘着剤面と本発明フィルムの銀ナノディスク層表面とをラミネートすることにより、ドライな状態のままの積層をすることが有効である。
 本発明の赤外線遮蔽フィルムは、単独で熱線遮蔽材として用いてもよく、他の機能層と積層してもよい。また、本発明の赤外線遮蔽フィルムはガラスなどと貼り合わせた貼合せ構造体としてもよい。
 本発明の赤外線遮蔽フィルムは、熱線(近赤外線)を選択的に反射(必要に応じて吸収)するために使用される態様であれば、特に制限はなく、目的に応じて適宜選択すればよく、例えば、乗り物用フィルムや貼合せ構造体、建材用フィルムや貼合せ構造体、農業用フィルムなどが挙げられる。これらの中でも、省エネルギー効果の点で、乗り物用フィルムや貼合せ構造体、建材用フィルムや貼合せ構造体であることが好ましい。
 なお、本発明において、熱線(近赤外線)とは、太陽光に約50%含まれる近赤外線(780nm~1,800nm)を意味する。
<Application>
-Adhesive layer lamination by dry lamination-
When using the infrared shielding film film of the present invention to provide functionality to existing window glass, an adhesive is laminated and adhered to the indoor side of the glass. In that case, it is better to laminate the adhesive layer on the silver nanodisk particle layer and paste it from the surface to the window glass, because the reflective layer facing the sunlight side will prevent heat generation as much as possible. It is.
When laminating the pressure-sensitive adhesive layer on the surface of the silver nanodisk layer, a coating solution containing a pressure-sensitive adhesive can be applied directly to the surface, but various additives, plasticizers and solvents used in the pressure-sensitive adhesive However, in some cases, the arrangement of the silver nanodisk layer may be disturbed, or the silver nanodisk itself may be altered. In order to minimize such harmful effects, a film is prepared by previously applying and drying an adhesive on a release film, and the adhesive surface of the film and the silver nanodisk layer surface of the film of the present invention are prepared. It is effective to laminate in a dry state.
The infrared shielding film of this invention may be used independently as a heat ray shielding material, and may be laminated | stacked with another functional layer. Further, the infrared shielding film of the present invention may be a bonded structure bonded to glass or the like.
If the infrared shielding film of this invention is an aspect used in order to selectively reflect (absorb as needed) a heat ray (near infrared rays), there will be no restriction | limiting in particular, What is necessary is just to select suitably according to the objective. Examples of the film include a vehicle film and a laminated structure, a building material film and a laminated structure, and an agricultural film. Among these, in terms of energy saving effect, a vehicle film and a laminated structure, a building material film and a laminated structure are preferable.
In the present invention, heat rays (near infrared rays) mean near infrared rays (780 nm to 1,800 nm) contained in sunlight by about 50%.
 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。
 以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
The features of the present invention will be described more specifically with reference to the following examples.
The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
[比較例1]
-金属平板粒子の合成-
 反応釜中において、純水308mLに、1%のクエン酸ナトリウム水溶液24.5mLおよび8g/Lのポリスチレンスルホン酸ナトリウム水溶液16.7mLを添加し、35℃まで加熱した。この溶液に2.3mMの水素化ほう素ナトリウム水溶液を1mL添加し、0.5mMの硝酸銀水溶液(Ag-1)363mLを攪拌しながら添加した。この溶液を30分間攪拌した後、この溶液に1%のクエン酸ナトリウム水溶液24.5mL、10mMのアスコルビン酸水溶液33mLおよび純水211mLを添加した。この溶液にさらに0.5mMの硝酸銀水溶液(Ag-2)199mLを攪拌しながら添加した。30分間攪拌した後、7.7%のヒドロキノンスルホン酸カリウム水溶液197mL、平均分子量10万の不活性ゼラチン33gおよび平均分子量2万の不活性ゼラチン22gを純水480mLに溶解したゼラチン水溶液を、反応釜中の溶液に添加した。次に、この溶液に1Nの硝酸4.4mLを添加した。その後、予め、13.5%の亜硫酸ナトリウム水溶液67mL、10%硝酸銀水溶液228mLおよび純水369mLを混合してできた亜硫酸銀の白色沈殿物混合液を、この溶液に添加した。この溶液を300分間攪拌した後、1NのNaOH145mLを加えて、銀平板粒子分散液A1を得た。
[Comparative Example 1]
-Synthesis of tabular metal grains-
In a reaction kettle, 24.5 mL of 1% aqueous sodium citrate solution and 16.7 mL of 8 g / L aqueous sodium polystyrene sulfonate solution were added to 308 mL of pure water and heated to 35 ° C. To this solution, 1 mL of 2.3 mM aqueous sodium borohydride solution was added, and 363 mL of 0.5 mM aqueous silver nitrate solution (Ag-1) was added with stirring. After stirring this solution for 30 minutes, 24.5 mL of 1% sodium citrate aqueous solution and 33 mL of 10 mM aqueous ascorbic acid solution and 211 mL of pure water were added to this solution. To this solution, 199 mL of 0.5 mM aqueous silver nitrate solution (Ag-2) was further added with stirring. After stirring for 30 minutes, 197 mL of a 7.7% aqueous potassium hydroquinone sulfonate solution, 33 g of inert gelatin having an average molecular weight of 100,000 and 22 g of inert gelatin having an average molecular weight of 20,000 were dissolved in 480 mL of pure water. To the medium solution. Next, 4.4 mL of 1N nitric acid was added to the solution. Thereafter, a white precipitate mixed solution of silver sulfite obtained by mixing 67 mL of 13.5% aqueous sodium sulfite solution, 228 mL of 10% aqueous silver nitrate solution and 369 mL of pure water was added to this solution in advance. After stirring this solution for 300 minutes, 145 mL of 1N NaOH was added, and silver tabular grain dispersion liquid A1 was obtained.
-金属粒子の評価-
(平板粒子の割合、平均粒子径(平均円相当径)、変動係数)
 この銀平板粒子分散液A1中の粒子400個についてSEM画像を観察し、六角形状を主とする平板状粒子をA、それ以外の不定形粒子をBとして画像解析を行ったところ、Aに該当する平板状粒子個数の割合(個数%)は96%であった。Aに該当する平板状粒子の平均粒子径は(平均円相当径)135nmであった。粒径分布の標準偏差を平均円相当径で割った平板状粒子Aの平均円相当直径(変動係数)は17%であった。
-Evaluation of metal particles-
(Ratio of tabular grains, average grain diameter (average equivalent circle diameter), coefficient of variation)
SEM images of 400 grains in this silver tabular grain dispersion A1 were observed, and image analysis was performed with A as the tabular grains mainly composed of hexagonal shapes and B as the other irregular shaped grains. The ratio of the number of tabular grains (number%) was 96%. The average particle size of the tabular grains corresponding to A was (average equivalent circle diameter) 135 nm. The average equivalent circle diameter (coefficient of variation) of the tabular grains A obtained by dividing the standard deviation of the particle size distribution by the average equivalent circle diameter was 17%.
(平均粒子厚み)
 得られた銀平板粒子分散液A1を、ガラス基板上に滴下して乾燥し、Aに該当する金属平板状粒子個々の厚みを、原子間力顕微鏡(AFM)(NanocuteII、セイコーインスツル社製)を用いて測定した。なお、AFMを用いた測定条件としては、自己検知型センサー、DFMモード、測定範囲は5μm、走査速度は180秒/1フレーム、データ点数は256×256とした。銀平板粒子分散液A1中のAに該当する平板状粒子の平均粒子厚みは10nmであった。
(Average particle thickness)
The obtained silver tabular grain dispersion A1 is dropped on a glass substrate and dried, and the thickness of each metal tabular grain corresponding to A is measured by an atomic force microscope (AFM) (Nanocute II, manufactured by Seiko Instruments Inc.). It measured using. The measurement conditions using the AFM were a self-detecting sensor, DFM mode, a measurement range of 5 μm, a scanning speed of 180 seconds / frame, and a data point of 256 × 256. The average grain thickness of the tabular grains corresponding to A in the silver tabular grain dispersion A1 was 10 nm.
 500mLの前記銀平板粒子分散液A1を、遠心分離器(コクサン社製H-200N、アンブルローターBN)で7,000rpm30分間遠心分離を行い、銀平板粒子を沈殿させた。遠心分離後の上澄み液450mLを捨て、0.2mMのNaOH水溶液を200mL添加し、沈殿した六角銀平板粒子を再分散させ、銀平板粒子分散液B1を調製した。
 さらに銀平板粒子分散液B1に以下の化合物を添加して、金属粒子含有層用の塗布液M1を調製した。
500 mL of the silver tabular grain dispersion liquid A1 was centrifuged at 7,000 rpm for 30 minutes in a centrifuge (Hoku200, manufactured by Kokusan Co., Ltd., Amble Rotor BN) to precipitate silver tabular grains. The supernatant liquid 450 mL after centrifugation was discarded, 200 mL of 0.2 mM NaOH aqueous solution was added, the precipitated hexagonal silver tabular grain was redispersed, and silver tabular grain dispersion liquid B1 was prepared.
Further, the following compound was added to the silver tabular grain dispersion liquid B1 to prepare a coating liquid M1 for a metal particle-containing layer.
-金属粒子含有層の作製-
(金属粒子含有層用の塗布液M1の調製)
 下記に示す組成の金属粒子含有層用の塗布液M1を調製した。
金属粒子含有層用の塗布液M1の組成:
 ポリウレタン水溶液:ハイドランHW-350
 (DIC(株)製、固形分濃度30質量%)      0.27質量部
 界面活性剤A:Fリパール8780P
 (ライオン(株)製、固形分1質量%)        0.96質量部
 界面活性剤B:アロナクティーCL-95
 (三洋化成工業(株)製、固形分1質量%)      1.19質量部
 銀平板粒子分散液B1                26.6質量部
 1-(5-メチルウレイドフェニル)-5-メルカプトテトラゾール
 (和光純薬(株)製、固形分2質量%)        0.61質量部
 水                        44.87質量部
 メタノール                       30質量部
-Preparation of metal particle containing layer-
(Preparation of coating solution M1 for the metal particle-containing layer)
A coating solution M1 for a metal particle-containing layer having the composition shown below was prepared.
Composition of coating liquid M1 for the metal particle-containing layer:
Polyurethane aqueous solution: Hydran HW-350
(DIC Co., Ltd., solid content concentration: 30% by mass) 0.27 parts by mass Surfactant A: F Ripar 8780P
(Made by Lion Co., Ltd., solid content 1% by mass) 0.96 parts by mass Surfactant B: Aronactee CL-95
(Manufactured by Sanyo Chemical Industries, Ltd., solid content: 1% by mass) 1.19 parts by mass Silver tabular particle dispersion B1 26.6 parts by mass 1- (5-methylureidophenyl) -5-mercaptotetrazole (Wako Pure Chemical ( Co., Ltd., solid content 2% by mass) 0.61 parts by mass water 44.87 parts by mass methanol 30 parts by mass
(塗布層U1用の塗布液U1の調製)
 下記に示す組成の塗布層U1用の塗布液U1を調製した。
 ポリウレタン水溶液:ハイドランHW-350
 (DIC(株)製、固形分濃度30質量%)      1.83質量部
 バインダーポリマー:プラスコートZ-592 
(互応化学工業(株)製 固形分25%)         3.3質量部
 界面活性剤B:アロナクティーCL-95
 (三洋化成工業(株)製、固形分1質量%)      1.18質量部
 水                        64.63質量部
 IPA                      25.94質量部
(Preparation of coating solution U1 for coating layer U1)
A coating solution U1 for the coating layer U1 having the composition shown below was prepared.
Polyurethane aqueous solution: Hydran HW-350
(DIC Co., Ltd., solid content concentration 30% by mass) 1.83 parts by mass Binder polymer: Pluscoat Z-592
(Solid Chemical Industries, Ltd., solid content 25%) 3.3 parts by mass Surfactant B: Aronactee CL-95
(Manufactured by Sanyo Chemical Industries, Ltd., solid content 1% by mass) 1.18 parts by mass water 64.63 parts by mass IPA 25.94 parts by mass
(塗布膜1の作製)
 PETフィルム(東洋紡(株)製 A4300、厚み:75μm)の表面上に、U1層として、塗布層U1用の塗布液U1を、ワイヤーバーを用いて、乾燥後の平均厚みが100nmになるように塗布した。その後、130℃で1分間加熱し、乾燥、固化してU1層を形成した。
 さらにU1層の上に、金属粒子含有層用の塗布液M1を、ワイヤーバーを用いて、乾燥後の平均厚みが20nmになるように塗布した。その後、130℃で1分間加熱し、乾燥、固化して比較例1の赤外線遮蔽フィルム用の塗布膜1を作製した。
(Preparation of coating film 1)
On the surface of a PET film (A4300, manufactured by Toyobo Co., Ltd., thickness: 75 μm), the coating liquid U1 for the coating layer U1 is used as a U1 layer so that the average thickness after drying becomes 100 nm using a wire bar. Applied. Then, it heated at 130 degreeC for 1 minute, dried and solidified, and formed U1 layer.
Furthermore, the coating liquid M1 for metal particle content layers was apply | coated so that the average thickness after drying might be set to 20 nm on the U1 layer using the wire bar. Then, it heated at 130 degreeC for 1 minute, dried and solidified, and produced the coating film 1 for infrared shielding films of the comparative example 1.
[実施例2]
-色素水性分散液BD-10の調製-
 下記に示す構造のピロロピロール色素(D-10)3質量部と、DisperBYK2091(ビックケミー社製)2質量部とに、水を加え100質量部とした。これにさらに0.1mmφのジルコニアビーズを50質量部添加し、遊星型ボールミルにて300rpmで5時間処理を行い、ピロロピロール色素(D-10)微細粒子からなる色素水性分散液BD-10を作成した。その後、前記水分産物からビーズをろ過で分離除去した。得られた微細粒子を電子顕微鏡観察したところ、平均粒子径40nmの不定形微粒子であった。
[Example 2]
-Preparation of aqueous dye dispersion BD-10-
Water was added to 3 parts by mass of pyrrolopyrrole dye (D-10) having the structure shown below and 2 parts by mass of DisperBYK2091 (manufactured by Big Chemie) to make 100 parts by mass. Further, 50 parts by mass of 0.1 mmφ zirconia beads were added, and the mixture was treated with a planetary ball mill at 300 rpm for 5 hours to prepare an aqueous dye dispersion BD-10 composed of pyrrolopyrrole dye (D-10) fine particles. did. Thereafter, beads were separated and removed from the water product by filtration. When the obtained fine particles were observed with an electron microscope, they were irregular fine particles having an average particle diameter of 40 nm.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
-色素分散液含有層D10層用の塗布液D10の調製-
 ポリウレタン水溶液:ハイドランHW-350
 (DIC(株)製、固形分濃度30質量%)      1.83質量部
 バインダーポリマー:プラスコートZ-592
(互応化学工業(株)製 固形分25%)         3.3質量部
 界面活性剤B:アロナクティーCL-95
 (三洋化成工業(株)製、固形分1質量%)      1.18質量部
 色素水性分散液BD-10              25.0質量部
 水                        39.63質量部
 IPA                      25.94質量部
-Preparation of coating liquid D10 for dye dispersion-containing layer D10-
Polyurethane aqueous solution: Hydran HW-350
(DIC Co., Ltd., solid content concentration 30% by mass) 1.83 parts by mass Binder polymer: Pluscoat Z-592
(Solid Chemical Industries, Ltd., solid content 25%) 3.3 parts by mass Surfactant B: Aronactee CL-95
(Sanyo Chemical Industries, Ltd., solid content 1% by mass) 1.18 parts by mass Dye aqueous dispersion BD-10 25.0 parts by mass Water 39.63 parts by mass IPA 25.94 parts by mass
-金属粒子を含まない層の塗布液M0の調製-
 下記に示す組成の金属粒子を含まない層用の塗布液M0を調製した。
 ポリウレタン水溶液:ハイドランHW-350
 (DIC(株)製、固形分濃度30質量%)      0.27質量部
 界面活性剤A:Fリパール8780P
 (ライオン(株)製、固形分1質量%)        0.96質量部
 界面活性剤B:アロナクティーCL-95
 (三洋化成工業(株)製、固形分1質量%)      1.19質量部
 1%不活性ゼラチン水溶液             32.74質量部
 1-(5-メチルウレイドフェニル)-5-メルカプトテトラゾール
 (和光純薬(株)製、固形分2質量%)        0.61質量部
 水                        34.23質量部
 メタノール                       30質量部
-Preparation of coating solution M0 for a layer not containing metal particles-
A coating solution M0 for a layer not containing metal particles having the composition shown below was prepared.
Polyurethane aqueous solution: Hydran HW-350
(DIC Co., Ltd., solid content concentration: 30% by mass) 0.27 parts by mass Surfactant A: F Ripar 8780P
(Made by Lion Co., Ltd., solid content 1% by mass) 0.96 parts by mass Surfactant B: Aronactee CL-95
(Manufactured by Sanyo Chemical Industries, Ltd., solid content 1% by mass) 1.19 parts by mass 1% inert gelatin aqueous solution 32.74 parts by mass 1- (5-methylureidophenyl) -5-mercaptotetrazole (Wako Pure Chemical ( Co., Ltd., solid content 2% by mass) 0.61 parts by mass water 34.23 parts by mass methanol 30 parts by mass
-塗布膜2の作製-
 PETフィルム(東洋紡(株)製 A4300、厚み:75μm)の表面上に、色素分散液含有層用の塗布液D10を、ワイヤーバーを用いて、色素D-10塗布量が60mg/mになるように塗布した。その後、130℃で1分間加熱し、乾燥、固化してD10層を形成した。
 さらにD10層の上に、金属粒子を含まない層用の塗布液M0を、ワイヤーバーを用いて、乾燥後の平均厚みが20nmになるように塗布した。
 その後、130℃で1分間加熱し、乾燥、固化して比較例2の赤外線遮蔽フィルム用の塗布膜2を作製した。
-Production of coating film 2-
On the surface of a PET film (A4300 manufactured by Toyobo Co., Ltd., thickness: 75 μm), the coating liquid D10 for the pigment dispersion-containing layer is applied to the pigment D-10 coating amount to 60 mg / m 2 using a wire bar. It was applied as follows. Then, it heated at 130 degreeC for 1 minute, dried and solidified, and formed D10 layer.
Further, on the D10 layer, a coating liquid M0 for a layer not containing metal particles was applied using a wire bar so that the average thickness after drying was 20 nm.
Then, it heated at 130 degreeC for 1 minute, dried and solidified, and produced the coating film 2 for infrared shielding films of the comparative example 2.
[実施例1]
-塗布膜3の作製-
 PETフィルム(東洋紡(株)製 A4300、厚み:75μm)の表面上に、塗布液D10を、ワイヤーバーを用いて、色素D-10塗布量が60mg/mになるように塗布した。その後、130℃で1分間加熱、乾燥、固化してD10層を形成した。
 得られたD10層の上に、塗布液M1を、ワイヤーバーを用いて、乾燥後の平均厚みが20nmになるように塗布した。
 その後、130℃で1分間加熱し、乾燥、固化して実施例1の赤外線遮蔽フィルム用の塗布膜3を作製した。
[Example 1]
-Production of coating film 3-
On the surface of a PET film (Toyobo Co., Ltd. A4300, thickness: 75 μm), the coating solution D10 was applied using a wire bar so that the coating amount of the dye D-10 was 60 mg / m 2 . Then, it heated at 130 degreeC for 1 minute, dried and solidified, and formed D10 layer.
On the obtained D10 layer, the coating liquid M1 was applied using a wire bar so that the average thickness after drying was 20 nm.
Then, it heated at 130 degreeC for 1 minute, dried and solidified, and produced the coating film 3 for infrared shielding films of Example 1.
[比較例3]
-塗布膜4の作製-
 PETフィルム(東洋紡(株)製 A4300、厚み:75μm)の表面上に、塗布液U1を、ワイヤーバーを用いて、乾燥後の平均厚みが100nmになるように塗布した。その後、130℃で1分間加熱し、乾燥、固化してU1層を形成した。
 得られたU1層の上に、金属粒子を含まない層用の塗布液M0を、ワイヤーバーを用いて、乾燥後の平均厚みが20nmになるように塗布し、130℃で1分間加熱、乾燥、固化した。
 この塗布膜のM0が塗布されている面とは、支持体をはさんで反対側に、塗布液D10を、ワイヤーバーを用いて、色素D-10塗布量が60mg/mになるように塗布し、130℃で1分間加熱、乾燥、固化してD10層を形成した。
 このようにして比較例3の赤外線遮蔽フィルム用の塗布膜4を作製した。
[Comparative Example 3]
-Production of coating film 4-
On the surface of a PET film (Toyobo Co., Ltd. A4300, thickness: 75 μm), the coating liquid U1 was applied using a wire bar so that the average thickness after drying was 100 nm. Then, it heated at 130 degreeC for 1 minute, dried and solidified, and formed U1 layer.
On the obtained U1 layer, a coating solution M0 for a layer not containing metal particles is applied using a wire bar so that the average thickness after drying is 20 nm, heated at 130 ° C. for 1 minute, and dried. Solidified.
Using the wire bar, the coating solution D10 is applied to the opposite side of the surface of the coating film on which M0 is applied so that the coating amount of the dye D-10 is 60 mg / m 2. It was applied, heated at 130 ° C. for 1 minute, dried and solidified to form a D10 layer.
Thus, the coating film 4 for the infrared shielding film of Comparative Example 3 was produced.
[実施例2]
-塗布膜5の作製-
 塗布液M0を塗布液M1に変更した以外は比較例3と同様にして、実施例2の赤外線遮蔽フィルム用の塗布膜5を作製した。
[Example 2]
-Production of coating film 5-
A coating film 5 for an infrared shielding film of Example 2 was produced in the same manner as in Comparative Example 3 except that the coating liquid M0 was changed to the coating liquid M1.
[比較例4]
-色素水性分散液BD-28の調製-
 ピロロピロール色素(D-10)を下記に示す構造のピロロピロール色素(D-28)に変更した以外は、色素水性分散液BD-10と同様にして、色素水性分散液BD-28を調製した。得られた微細粒子を電子顕微鏡観察したところ、平均粒子径60nmの不定形微粒子であった。
[Comparative Example 4]
-Preparation of aqueous dye dispersion BD-28-
A dye aqueous dispersion BD-28 was prepared in the same manner as the dye aqueous dispersion BD-10, except that the pyrrolopyrrole dye (D-10) was changed to a pyrrolopyrrole dye (D-28) having the structure shown below. . The obtained fine particles were observed with an electron microscope and found to be irregular fine particles having an average particle diameter of 60 nm.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
-色素分散液含有層D28層用塗布液D28の調製-
 ポリウレタン水溶液:ハイドランHW-350
 (DIC(株)製、固形分濃度30質量%)      1.83質量部
 バインダーポリマー:プラスコートZ-592 
(互応化学工業(株)製 固形分25%)         3.3質量部
 界面活性剤B:アロナクティーCL-95
 (三洋化成工業(株)製、固形分1質量%)      1.18質量部
 色素水性分散液BD-28              25.0質量部
 水                        39.63質量部
 IPA                      25.94質量部
-Preparation of coating liquid D28 for pigment dispersion-containing layer D28-
Polyurethane aqueous solution: Hydran HW-350
(DIC Co., Ltd., solid content concentration 30% by mass) 1.83 parts by mass Binder polymer: Pluscoat Z-592
(Solid Chemical Industries, Ltd., solid content 25%) 3.3 parts by mass Surfactant B: Aronactee CL-95
(Manufactured by Sanyo Chemical Industries, Ltd., solid content 1% by mass) 1.18 parts by mass Dye aqueous dispersion BD-28 25.0 parts by mass Water 39.63 parts by mass IPA 25.94 parts by mass
-塗布膜6の作成-
 塗布液D10を塗布液D28に変更した以外は比較例2と同様にして、比較例4の赤外線遮蔽フィルム用の塗布膜6を作製した。
-Creation of coating film 6-
A coating film 6 for an infrared shielding film of Comparative Example 4 was produced in the same manner as Comparative Example 2 except that the coating liquid D10 was changed to the coating liquid D28.
[実施例3]
-塗布膜7の作成-
塗布液D10を塗布液D28に変更した以外は実施例1と同様にして、実施例3の赤外線遮蔽フィルム用の塗布膜7を作製した。
[Example 3]
-Creation of coating film 7-
A coating film 7 for an infrared shielding film of Example 3 was produced in the same manner as in Example 1 except that the coating liquid D10 was changed to the coating liquid D28.
[比較例5]
-塗布膜8の作成-
 塗布液D10を塗布液D28に変更した以外は比較例3と同様にして、比較例5の赤外線遮蔽フィルム用の塗布膜8を作製した。
[Comparative Example 5]
-Creation of coating film 8-
A coating film 8 for an infrared shielding film of Comparative Example 5 was produced in the same manner as Comparative Example 3 except that the coating liquid D10 was changed to the coating liquid D28.
[実施例4]
-塗布膜9の作成-
 塗布液D10を塗布液D28に変更した以外は実施例2と同様にして、実施例4の赤外線遮蔽フィルム用の塗布膜9を作製した。
[Example 4]
-Creation of coating film 9-
A coating film 9 for an infrared shielding film of Example 4 was produced in the same manner as in Example 2 except that the coating liquid D10 was changed to the coating liquid D28.
[比較例6]
 下記に示す構造のヘプタメチン染料(I-2)を用いて、以下の組成の塗布液DI-2を調製した。
-色素分散液含有層DI-2層用塗布液DI-2の調製-
 ポリウレタン水溶液:ハイドランHW-350
 (DIC(株)製、固形分濃度30質量%)      1.83質量部
 バインダーポリマー:プラスコートZ-592
(互応化学工業(株)製 固形分25%)         3.3質量部
 界面活性剤B:アロナクティーCL-95
 (三洋化成工業(株)製、固形分1質量%)      1.18質量部
 ヘプタメチン染料(I-2)             0.42質量部
 水                        66.64質量部
 IPA                      25.94質量部
[Comparative Example 6]
A coating solution DI-2 having the following composition was prepared using a heptamethine dye (I-2) having the structure shown below.
-Preparation of coating liquid DI-2 for dye dispersion containing layer DI-2-
Polyurethane aqueous solution: Hydran HW-350
(DIC Co., Ltd., solid content concentration 30% by mass) 1.83 parts by mass Binder polymer: Pluscoat Z-592
(Solid Chemical Industries, Ltd., solid content 25%) 3.3 parts by mass Surfactant B: Aronactee CL-95
(Manufactured by Sanyo Chemical Industries, Ltd., solid content 1% by mass) 1.18 parts by mass Heptamethine dye (I-2) 0.42 parts by mass Water 66.64 parts by mass IPA 25.94 parts by mass
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
-塗布膜10の作成-
 PETフィルム(東洋紡(株)製 A4300、厚み:75μm)の表面上に、色素分散液含有層用の塗布液DI-2を、ワイヤーバーを用いて、色素I-2の塗布量が30mg/mになるように塗布した。その後、130℃で1分間加熱し、乾燥、固化してDI-2層を形成した。
 さらにDI-2層の上に、金属粒子を含まない層用の塗布液M0を、ワイヤーバーを用いて、乾燥後の平均厚みが20nmになるように塗布した。
 その後、130℃で1分間加熱し、乾燥、固化して比較例6の赤外線遮蔽フィルム用の塗布膜10を作製した。
-Creation of coating film 10-
On the surface of a PET film (A4300, manufactured by Toyobo Co., Ltd., thickness: 75 μm), the coating liquid DI-2 for the pigment dispersion-containing layer was applied using a wire bar, and the coating amount of the pigment I-2 was 30 mg / m. 2 was applied. Thereafter, the mixture was heated at 130 ° C. for 1 minute, dried and solidified to form a DI-2 layer.
Further, on the DI-2 layer, a coating solution M0 for a layer not containing metal particles was applied using a wire bar so that the average thickness after drying was 20 nm.
Then, it heated at 130 degreeC for 1 minute, dried and solidified, and produced the coating film 10 for infrared shielding films of the comparative example 6.
[実施例5]
-塗布膜11の作成-
 塗布液M0を塗布液M1に変更した以外は比較例6と同様にして、実施例5の赤外線遮蔽フィルム用の塗布膜11を作成した。
[Example 5]
-Creation of coating film 11-
A coating film 11 for an infrared shielding film of Example 5 was prepared in the same manner as in Comparative Example 6 except that the coating liquid M0 was changed to the coating liquid M1.
[比較例7]
-塗布膜12の作成-
 比較例3において、塗布液D10を塗布液DI-2に変更し、色素I-2塗布量が30mg/mとした以外は同様にして、比較例7の赤外線遮蔽フィルム用の塗布膜12を作製した。
[Comparative Example 7]
-Creation of coating film 12-
In the same manner as in Comparative Example 3, except that the coating liquid D10 was changed to the coating liquid DI-2 and the coating amount of the dye I-2 was changed to 30 mg / m 2 , the coating film 12 for the infrared shielding film of Comparative Example 7 was formed. Produced.
[実施例6]
-塗布膜13の作成-
 塗布液M0を塗布液M1に変更した以外は比較例7と同様にして、実施例6の赤外線遮蔽フィルム用の塗布膜13を作製した。
[Example 6]
-Creation of coating film 13-
A coating film 13 for an infrared shielding film of Example 6 was produced in the same manner as in Comparative Example 7 except that the coating liquid M0 was changed to the coating liquid M1.
[比較例8]
 以下の組成の塗布液DM0を調製した。
-赤外色素を含有するDM0層用塗布液DM0の調製-
 ポリウレタン水溶液:ハイドランHW-350
 (DIC(株)製、固形分濃度30質量%)      0.27質量部
 界面活性剤A:Fリパール8780P
 (ライオン(株)製、固形分1質量%)        0.96質量部
 界面活性剤B:アロナクティーCL-95
 (三洋化成工業(株)製、固形分1質量%)      1.19質量部
 1%不活性ゼラチン水溶液             32.74質量部
 1-(5-メチルウレイドフェニル)-5-メルカプトテトラゾール
 (和光純薬(株)製、固形分2質量%)        0.61質量部
 ヘプタメチン染料(I-2)             0.66質量部
 水                        33.57質量部
 メタノール                    30.00質量部
[Comparative Example 8]
A coating solution DM0 having the following composition was prepared.
-Preparation of DM0 layer coating solution DM0 containing infrared dye-
Polyurethane aqueous solution: Hydran HW-350
(DIC Co., Ltd., solid content concentration: 30% by mass) 0.27 parts by mass Surfactant A: F Ripar 8780P
(Made by Lion Co., Ltd., solid content 1% by mass) 0.96 parts by mass Surfactant B: Aronactee CL-95
(Manufactured by Sanyo Chemical Industries, Ltd., solid content: 1% by mass) 1.19 parts by mass 1% inert aqueous gelatin solution 32.74 parts by mass 1- (5-methylureidophenyl) -5-mercaptotetrazole (Wako Pure Chemical ( Co., Ltd., solid content 2% by mass) 0.61 parts by mass Heptamethine dye (I-2) 0.66 parts by mass Water 33.57 parts by mass Methanol 30.00 parts by mass
-塗布膜14の作成-
 PETフィルム(東洋紡(株)製 A4300、厚み:75μm)の表面上に、U1層として、塗布層U1用の塗布液U1を、ワイヤーバーを用いて、乾燥後の平均厚みが100nmになるように塗布した。その後、130℃で1分間加熱し、乾燥、固化してU1層を形成した。
 さらにU1層の上に、金属粒子含有層用の塗布液M1を、ワイヤーバーを用いて、乾燥後の平均厚みが50nmになるように塗布した。その後、130℃で1分間加熱し、乾燥、固化して比較例8の赤外線遮蔽フィルム用の塗布膜14を作製した(塗布膜14の作製)。
-Creation of coating film 14-
On the surface of a PET film (A4300, manufactured by Toyobo Co., Ltd., thickness: 75 μm), the coating liquid U1 for the coating layer U1 is used as a U1 layer so that the average thickness after drying becomes 100 nm using a wire bar. Applied. Then, it heated at 130 degreeC for 1 minute, dried and solidified, and formed U1 layer.
Furthermore, the coating liquid M1 for metal particle content layers was apply | coated on the U1 layer so that the average thickness after drying might be set to 50 nm using the wire bar. Then, it heated at 130 degreeC for 1 minute, dried and solidified, and produced the coating film 14 for the infrared shielding film of the comparative example 8 (preparation of the coating film 14).
[実施例15]
-赤外色素を含有するDM1層用塗布液DM1の調製-
 1%ゼラチン不活性水溶液を銀平板粒子分散液B1に変更した以外は塗布液DM0と同様にして塗布液DM1を調製した。
[Example 15]
-Preparation of DM1 layer coating solution DM1 containing infrared dye-
A coating solution DM1 was prepared in the same manner as the coating solution DM0 except that the 1% gelatin inert aqueous solution was changed to the silver tabular grain dispersion B1.
-塗布膜15の作成-
 塗布液DM0を塗布液DM1に変更した以外は比較例8と同様にして、実施例7の赤外線遮蔽フィルム用の塗布膜15を作成した。
-Creation of coating film 15-
A coating film 15 for an infrared shielding film of Example 7 was prepared in the same manner as in Comparative Example 8 except that the coating liquid DM0 was changed to the coating liquid DM1.
-塗布膜16の作成-
 塗布液M1を塗布液M0に変更した以外は比較例1と同様にして、Blunkフィルム用の塗布膜16を作成した。
-Creation of coating film 16-
A coating film 16 for a Blank film was prepared in the same manner as in Comparative Example 1 except that the coating liquid M1 was changed to the coating liquid M0.
[評価]
-光学性能評価-
(粘着剤層の形成)
 作製した各塗布膜の金属粒子含有層の表面に対して、粘着剤層を積層した。粘着剤層(粘着剤)として、サンリッツ(株)社製PET-Wを用い、PET-Wの一方の剥離シートを剥がした面を、前記赤外線遮蔽フィルムの金属粒子含有層の表面と貼り合わせた。得られた積層体を実施例1~7の赤外線遮蔽フィルム、比較例1~8の赤外線遮蔽フィルムおよびBlunkフィルムとした。
[Evaluation]
-Optical performance evaluation-
(Formation of adhesive layer)
The adhesive layer was laminated | stacked with respect to the surface of the metal particle content layer of each produced coating film. As the pressure-sensitive adhesive layer (pressure-sensitive adhesive), PET-W manufactured by Sanritz Co., Ltd. was used, and the surface of the PET-W from which one release sheet was peeled was bonded to the surface of the metal particle-containing layer of the infrared shielding film. . The obtained laminates were used as the infrared shielding films of Examples 1-7, the infrared shielding films of Comparative Examples 1-8, and the Blank film.
(色素および銀平板粒子による熱線反射率および熱線透過率の評価用反射および透過スペクトルの測定)
 各実施例および比較例の赤外線遮蔽フィルムの粘着剤層を、厚さ3mmの青板ガラスに貼り付けた。得られた貼り合わせ構造体の反射スペクトル及び透過スペクトルを、紫外可視近赤外分光機(日本分光株式会社製、V-670)を用いて測定した。反射スペクトル及び透過スペクトル測定には、積分球ユニット(INS-723、日本分光株式会社製)を用いた。
 塗布膜1、10、11および16を用いた、比較例1と6、実施例5およびBlunkフィルムの反射スペクトルと透過スペクトル、をそれぞれ図8に示した。
 また、各サンプルに対して得られた反射スペクトルの、Blunkフィルムに対する差分を、700nmから1700nmにおいて求め、その平均値(%)を、各サンプルの平均熱線反射率として下記表1に記載した。
(Measurement of reflection and transmission spectra for evaluation of heat ray reflectance and heat ray transmittance by pigment and silver tabular grains)
The adhesive layer of the infrared shielding film of each Example and the comparative example was affixed on the blue plate glass of thickness 3mm. The reflection spectrum and transmission spectrum of the bonded structure thus obtained were measured using an ultraviolet-visible near-infrared spectrometer (manufactured by JASCO Corporation, V-670). An integrating sphere unit (INS-723, manufactured by JASCO Corporation) was used for reflection spectrum and transmission spectrum measurement.
FIG. 8 shows the reflection spectrum and the transmission spectrum of Comparative Examples 1 and 6, Example 5 and the Blunk film using the coating films 1, 10, 11, and 16, respectively.
Moreover, the difference with respect to the Blunk film of the reflection spectrum obtained with respect to each sample was calculated | required in 700 nm to 1700 nm, and the average value (%) was described in following Table 1 as an average heat ray reflectance of each sample.
(保存性の評価)
 また、各実施例および比較例の赤外線遮蔽フィルムの粘着剤層をガラスに張った貼り合わせ構造体に、Xenonランプ強度120W/m(300~400nm)、相対湿度40%、55℃の条件で連続光照射を10日間行い、その後、前述の光学性能評価と同じ方法で、試料のスペクトル測定を行った。色素のピーク波長における、光照射前の透過率に対する光照射後の透過率の増加率(%)を下記式にしたがって求め、保存性として評価した。
 100% × {(光照射後の透過率)-(光照射前の透過率)/(光照射前の透過率)}
 その結果を下記表1に記載した。
(Evaluation of storage stability)
Further, a laminated structure in which the adhesive layer of the infrared shielding film of each example and comparative example was stretched on glass was subjected to the conditions of Xenon lamp strength 120 W / m 2 (300 to 400 nm), relative humidity 40%, and 55 ° C. Continuous light irradiation was performed for 10 days, and then the spectrum of the sample was measured by the same method as the optical performance evaluation described above. The increase rate (%) of the transmittance after light irradiation with respect to the transmittance before light irradiation at the peak wavelength of the dye was determined according to the following formula and evaluated as storability.
100% × {(transmittance after light irradiation) − (transmittance before light irradiation) / (transmittance before light irradiation)}
The results are shown in Table 1 below.
 表1には、支持体を除く塗布物の総膜厚を示した。 Table 1 shows the total film thickness of the coated material excluding the support.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 上記表1に示すように、各実施例では銀平板粒子と色素を併用することで、銀平板粒子を有する銀平板粒子含有層単独の比較例1の場合や、色素単独の比較例2~8の場合に比較して、熱線の反射率を増加することができた。しかも銀平板粒子あるいは色素単独の反射率の和よりも、大きな反射率を実現できることがわかった(例えば、比較例1と比較例2の赤外線遮蔽フィルムの700~1700nmの平均熱線反射率の和よりも、実施例1の赤外線遮蔽フィルムの700~1700nmの平均熱線反射率の方が高い)。図8に示すように色素単独では反射が生じない波長領域でも、反射が増大しており、この予期しなかった効果を反射の超加生成と呼ぶ。 As shown in Table 1 above, in each example, by using silver tabular grains and a dye in combination, in the case of Comparative Example 1 in which the silver tabular grain-containing layer alone has silver tabular grains, or in Comparative Examples 2 to 8 of the dye alone. Compared with the case, the reflectance of the heat ray could be increased. In addition, it was found that a reflectance greater than the sum of the reflectances of the silver tabular grains or the pigment alone can be realized (for example, from the sum of the average heat ray reflectances of 700 to 1700 nm of the infrared shielding films of Comparative Example 1 and Comparative Example 2). In addition, the average heat ray reflectance of 700 to 1700 nm of the infrared shielding film of Example 1 is higher). As shown in FIG. 8, the reflection increases even in a wavelength region where the reflection alone does not occur. This unexpected effect is called reflection superaddition.
 また、上記表1中、実施例1、3および5の間の比較から、I-2色素を用いた場合には、D-10やD-28の色素を用いた場合よりも熱線の反射率が高く好ましいことがわかった。
 特に、実施例5~7の間の比較から、色素を銀平板粒子含有層に導入した場合に反射率が大きいことがわかった。
 また、保存性は色素に大きく依存するが、いずれの色素においても、入射光に対して銀平板粒子含有層の下層側(支持体の反対側)のバックコート層に色素を導入した実施例2、4および6の場合には超加生成は認められないものの、銀含有層あるいは銀平板粒子含有層の下層側のアンダーコート層に色素を導入した実施例1、3および5の場合に対して良好であることがわかった。
Further, in Table 1 above, the comparison between Examples 1, 3 and 5 shows that when the I-2 dye is used, the heat ray reflectance is higher than when the D-10 or D-28 dye is used. Was found to be preferable.
In particular, it was found from the comparison between Examples 5 to 7 that the reflectance was high when the dye was introduced into the silver tabular grain-containing layer.
In addition, the storage stability largely depends on the dye, but in any dye, Example 2 in which the dye was introduced into the backcoat layer on the lower layer side (opposite side of the support) of the silver tabular grain-containing layer with respect to incident light. In the case of 4 and 6, superaddition is not observed, but in the case of Examples 1, 3 and 5 in which a dye is introduced into the undercoat layer on the lower layer side of the silver-containing layer or the silver tabular grain-containing layer It was found to be good.
いずれの実施例においても、すべての塗布層の厚みの合計(総膜厚という)は、0.4μm以下であり、特許文献1に記載の実施例に比較して、著しく薄層であり、局面追随性が高く、多くの用途が期待できる。 In any of the examples, the total thickness of all the coating layers (referred to as the total film thickness) is 0.4 μm or less, which is significantly thinner than the example described in Patent Document 1, High trackability and many uses.
[実施例11および12]
 実施例1および2で作成した塗布膜3および5において、PETフィルムの銀平板粒子分散液の塗布面とは裏側の面に、ITOハードコート塗布液(三菱マテリアル株式会社製EI-1)を乾燥後の層厚み1.5μmとなるようワイヤー塗布バーNo.10(R.D.S Webster N.Y.社製)を用いて塗布して金属酸化物粒子含有層をバックコート層として設けた。得られた塗布膜を用いた以外はそれぞれ実施例1および2と同様にして金属粒子含有層の上に粘着剤層を設け、実施例11および12の赤外線遮蔽フィルムを製造した。
 なお、以下のようにして測定した前記ITO粒子の前記金属酸化物粒子含有層における含有量は、3.0g/mであることが分かった。
[Examples 11 and 12]
In the coating films 3 and 5 prepared in Examples 1 and 2, the ITO hard coat coating solution (EI-1 manufactured by Mitsubishi Materials Corporation) was dried on the surface opposite to the coated surface of the silver tabular grain dispersion of the PET film. The wire coating bar no. 10 (RDS Webster NY Co., Ltd.) was applied to provide a metal oxide particle-containing layer as a backcoat layer. An adhesive layer was provided on the metal particle-containing layer in the same manner as in Examples 1 and 2 except that the obtained coating film was used, and infrared shielding films of Examples 11 and 12 were produced.
In addition, it turned out that content in the said metal oxide particle content layer of the said ITO particle | grains measured as follows is 3.0 g / m < 2 >.
-ITO粒子の含有量の測定-
 前記ITO粒子の赤外線遮蔽フィルム全体の質量に対する含有量は、熱線遮蔽赤外線遮蔽フィルム全体の一定面積におけるITO粒子をメタノールに溶出させ、蛍光X線測定によりITO粒子の質量を測定し、その質量を前記一定面積で除することにより算出した。
-Measurement of ITO particle content-
The content of the ITO particles with respect to the mass of the entire infrared shielding film is obtained by eluting the ITO particles in a fixed area of the entire heat ray shielding infrared shielding film into methanol, measuring the mass of the ITO particles by fluorescent X-ray measurement, Calculated by dividing by a constant area.
[実施例22]
-紫外線吸収層用の塗布液UV1の調製-
 下記に示す組成の紫外線吸収層用の塗布液UV1を調製した。
紫外線吸収層用の塗布液UV1の組成:
 紫外線吸収剤:チヌビン326              10質量部
 (チバ・ジャパン社製)
 バインダー:10質量%ポリビニルアルコール溶液     10質量部
 水                           30質量部
 これらを混合し、ボールミルを用いて体積平均粒径を0.6μmに調製した。
[Example 22]
-Preparation of coating solution UV1 for UV absorbing layer-
A coating solution UV1 for an ultraviolet absorbing layer having the composition shown below was prepared.
Composition of coating solution UV1 for ultraviolet absorbing layer:
Ultraviolet absorber: Tinuvin 326 10 parts by mass (Ciba Japan)
Binder: 10 mass% polyvinyl alcohol solution 10 mass parts Water 30 mass parts These were mixed and the volume average particle diameter was adjusted to 0.6 micrometer using the ball mill.
-紫外線吸収層の形成-
 実施例2で作成した塗布膜5において、赤外線遮蔽フィルムの金属粒子含有層の上に、紫外線吸収層用の塗布液UV1を、ワイヤーバーを用いて、乾燥後の平均厚みが0.5μmになるように塗布した。その後、100℃で2分間加熱し、乾燥、固化し、オーバーコート層を兼ねる紫外線吸収層を形成した。
 その後、実施例12と同様にして、PETフィルムの銀平板粒子分散液の塗布面とは裏側の面に、金属酸化物粒子含有層をバックコート層として設け、金属酸化物粒子含有層/PETフィルム/アンダーコート層U1/平板粒子を含む金属粒子含有層/オーバーコート層を兼ねる紫外線吸収層の順に積層された積層体を、赤外線遮蔽フィルムとした。
-Formation of UV absorbing layer-
In the coating film 5 created in Example 2, on the metal particle-containing layer of the infrared shielding film, the coating solution UV1 for the ultraviolet absorbing layer is dried to an average thickness of 0.5 μm using a wire bar. It was applied as follows. Then, it heated at 100 degreeC for 2 minute (s), dried and solidified, and formed the ultraviolet absorption layer which serves as an overcoat layer.
Thereafter, in the same manner as in Example 12, a metal oxide particle-containing layer was provided as a backcoat layer on the back side of the PET film on which the silver tabular particle dispersion was applied, and the metal oxide particle-containing layer / PET film. The laminated body laminated in the order of / undercoat layer U1 / metal particle containing layer containing tabular grains / ultraviolet absorbing layer serving as an overcoat layer was used as an infrared shielding film.
-粘着層の形成-
 得られた赤外線遮蔽フィルムの表面を洗浄した後、粘着層を貼り合わせた。粘着層(粘着剤)として、サンリッツ(株)社製PET-Wを用い、PET-Wの一方の剥離シートを剥がした面を、前記赤外線遮蔽フィルムの紫外線吸収層表面と貼り合わせた。以上により、金属酸化物粒子含有層/PETフィルム/アンダーコート層U1/平板粒子を含む金属粒子含有層/オーバーコート層を兼ねる紫外線吸収層/粘着層の順に積層された、実施例22の赤外線遮蔽フィルムを作製した。
-Formation of adhesive layer-
After washing the surface of the obtained infrared shielding film, the adhesive layer was bonded together. As a pressure-sensitive adhesive layer (pressure-sensitive adhesive), PET-W manufactured by Sanritz Co., Ltd. was used, and the surface of one of the PET-W peeled sheets was bonded to the surface of the ultraviolet ray absorbing layer of the infrared shielding film. By the above, the infrared shielding of Example 22 laminated | stacked in order of the metal oxide particle content layer / PET film / undercoat layer U1 / the metal particle content layer containing a tabular grain / the ultraviolet absorption layer serving also as the overcoat layer / the adhesive layer. A film was prepared.
 実施例11、12および22の赤外線遮蔽フィルムについて、実施例1および2と同様にして光学性能を評価した。その結果、色素と銀平板粒子併用により、熱線反射率の増大効果が確認された。 The optical performance of the infrared shielding films of Examples 11, 12, and 22 was evaluated in the same manner as in Examples 1 and 2. As a result, the effect of increasing the heat ray reflectance was confirmed by the combined use of the pigment and the silver tabular grains.
 本発明の赤外線遮蔽フィルムは、熱線反射率が高く、遮熱性能に優れるので、例えば自動車、バス等の乗り物用フィルムや貼合せ構造体、建材用フィルムや貼合せ構造体などとして、熱線の透過を防止することの求められる種々の部材として好適に利用可能である。 Since the infrared shielding film of the present invention has a high heat ray reflectivity and excellent heat shielding performance, for example, as a film for automobiles, buses, etc., a laminated structure, a film for building materials, a laminated structure, etc. It can be suitably used as various members that are required to prevent this.
   1   基材であるポリマーフィルム
   2   金属粒子含有層
   3   金属平板粒子
   4   オーバーコート層(紫外線吸収剤を含むことが好ましい)
   5   アンダーコート層
  10   赤外線遮蔽フィルム
  11   粘着剤層
  12   バックコート層
  13   金属酸化物粒子
  14   金属酸化物粒子層
  D    直径
  L    厚み
  F(λ) 粒子存在域厚み
  E5-T 実施例5の赤外線遮蔽フィルムの透過スペクトル
  E5-R 実施例5の赤外線遮蔽フィルムの反射スペクトル
  C1-T 比較例1の赤外線遮蔽フィルムの透過スペクトル
  C1-R 比較例1の赤外線遮蔽フィルムの反射スペクトル
  C6-T 比較例6の赤外線遮蔽フィルムの透過スペクトル
  C6-R 比較例6の赤外線遮蔽フィルムの反射スペクトル
  B-T Blunkフィルムの透過スペクトル
  B-R Blunkフィルムの反射スペクトル
DESCRIPTION OF SYMBOLS 1 Polymer film which is a base material 2 Metal particle content layer 3 Metal flat particle 4 Overcoat layer (it is preferable that an ultraviolet absorber is included)
5 Undercoat layer 10 Infrared shielding film 11 Adhesive layer 12 Backcoat layer 13 Metal oxide particles 14 Metal oxide particle layer D Diameter L Thickness F (λ) Particle existing region thickness E5-T Infrared shielding film of Example 5 Transmission spectrum E5-R Reflection spectrum of the infrared shielding film of Example 5 C1-T Transmission spectrum of the infrared shielding film of Comparative Example 1 C1-R Reflection spectrum of the infrared shielding film of Comparative Example 1 C6-T Infrared shielding of Comparative Example 6 Transmission spectrum of film C6-R Reflection spectrum of infrared shielding film of Comparative Example 6 Transmission spectrum of BT Blunk film Reflection spectrum of BR Blunk film

Claims (18)

  1.  金属粒子を含有する金属粒子含有層を有し、赤外領域に吸収を有する化合物を含有することを特徴とする赤外線遮蔽フィルム。 An infrared shielding film having a metal particle-containing layer containing metal particles and containing a compound having absorption in the infrared region.
  2.  前記金属粒子が、平板状の金属粒子を60個数%以上有することを特徴とする請求項1に記載の赤外線遮蔽フィルム。 The infrared shielding film according to claim 1, wherein the metal particles have 60% by number or more of flat metal particles.
  3.  少なくともひとつの層が800~2000nmの領域に透過スペクトルのピークを有することを特徴とする請求項1または2に記載の赤外線遮蔽フィルム。 3. The infrared shielding film according to claim 1, wherein at least one layer has a transmission spectrum peak in a region of 800 to 2000 nm.
  4.  前記赤外領域に吸収を有する化合物が、下記一般式(1)で表される化合物または下記一般式(2)で表される化合物であることを特徴とする請求項1~3のいずれか一項に記載の赤外線遮蔽フィルム。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、ZおよびZは、それぞれ独立に5員または6員の含窒素複素環を形成する非金属原子群である。RおよびRは、それぞれ独立に、脂肪族基または芳香族基である。Lは、3個のメチンからなるメチン鎖である。aおよびbは、それぞれ独立に0または1である。)
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)中、R1a及びR1bは同じであっても異なってもよく、各々独立にアルキル基、アリール基またはヘテロアリール基を表す。R及びRは各々独立に水素原子または置換基を表し、少なくとも一方は電子吸引性基であり、R及びRは結合して環を形成してもよい。Rは水素原子、アルキル基、アリール基、ヘテロアリール基、置換ホウ素または金属原子を表し、R1a、R1bおよびRの少なくとも1以上の基と共有結合もしくは配位結合してもよい。)
    The compound having absorption in the infrared region is a compound represented by the following general formula (1) or a compound represented by the following general formula (2). The infrared shielding film as described in the item.
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), Z 1 and Z 2 are each independently a non-metallic atom group that forms a 5- or 6-membered nitrogen-containing heterocycle. R 1 and R 2 are each independently a fatty group. L 1 is a methine chain composed of 3 methines. A and b are each independently 0 or 1.)
    Figure JPOXMLDOC01-appb-C000002
    (In General Formula (2), R 1a and R 1b may be the same or different and each independently represents an alkyl group, an aryl group or a heteroaryl group. R 2 and R 3 each independently represent a hydrogen atom. Or at least one is an electron-withdrawing group, and R 2 and R 3 may combine to form a ring, and R 4 represents a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, a substituted group Represents a boron or metal atom, and may be a covalent bond or a coordinate bond with at least one group of R 1a , R 1b and R 3. )
  5.  前記赤外領域に吸収を有する化合物が前記一般式(2)で表される化合物であることを特徴とする請求項4に記載の赤外線遮蔽フィルム。 The infrared shielding film according to claim 4, wherein the compound having absorption in the infrared region is a compound represented by the general formula (2).
  6.  前記赤外領域に吸収を有する化合物を含む層において、前記赤外領域に吸収を有する化合物が20~190mg/m含まれることを特徴とする請求項1~5のいずれか一項に記載の赤外線遮蔽フィルム。 6. The layer containing a compound having absorption in the infrared region contains 20 to 190 mg / m 2 of a compound having absorption in the infrared region. Infrared shielding film.
  7.  前記金属粒子が、少なくとも銀を含むことを特徴とする請求項1~6のいずれか一項に記載の赤外線遮蔽フィルム。 The infrared shielding film according to any one of claims 1 to 6, wherein the metal particles contain at least silver.
  8.  前記金属粒子が、六角形状乃至円形状の銀平板粒子を60個数%以上有することを特徴とする請求項1~7のいずれか一項に記載の赤外線遮蔽フィルム。 The infrared shielding film according to any one of claims 1 to 7, wherein the metal particles have 60% by number or more of hexagonal or circular silver tabular grains.
  9.  前記金属粒子が、平均粒子厚みが20nm以下の銀平板粒子であることを特徴とする請求項1~8のいずれか一項に記載の赤外線遮蔽フィルム。 The infrared shielding film according to any one of claims 1 to 8, wherein the metal particles are silver tabular grains having an average grain thickness of 20 nm or less.
  10.  前記金属粒子が、アスペクト比(平均粒子径/平均粒子厚み)が3~100の銀平板粒子であることを特徴とする請求項1~9のいずれか一項に記載の赤外線遮蔽フィルム。 The infrared shielding film according to any one of claims 1 to 9, wherein the metal particles are silver tabular grains having an aspect ratio (average particle diameter / average particle thickness) of 3 to 100.
  11.  透過スペクトルにおいて800nm~前記金属粒子の反射ピークの間に透過ピークを有することを特徴とする請求項1~10のいずれか一項に記載の赤外線遮蔽フィルム。 The infrared shielding film according to any one of claims 1 to 10, which has a transmission peak between 800 nm and a reflection peak of the metal particle in a transmission spectrum.
  12.  紫外線吸収剤を含むことを特徴とする請求項1~11のいずれか一項に記載の赤外線遮蔽フィルム。 The infrared shielding film according to any one of claims 1 to 11, further comprising an ultraviolet absorber.
  13.  粘着剤層を有し、前記粘着剤層または前記粘着剤層と前記金属粒子含有層の間の層に前記紫外線吸収剤が含まれることを特徴とする請求項12に記載の赤外線遮蔽フィルム。 The infrared ray shielding film according to claim 12, further comprising an adhesive layer, wherein the ultraviolet absorber is contained in the adhesive layer or a layer between the adhesive layer and the metal particle-containing layer.
  14.  支持体を含むことを特徴とする請求項1~13のいずれか一項に記載の赤外線遮蔽フィルム。 The infrared shielding film according to any one of claims 1 to 13, further comprising a support.
  15.  前記支持体の、前記金属粒子含有層と同じ側に、前記赤外領域に吸収を有する化合物を含有する色素含有層を含むことを特徴とする請求項14に記載の赤外線遮蔽フィルム。 The infrared shielding film according to claim 14, comprising a dye-containing layer containing a compound having absorption in the infrared region on the same side of the support as the metal particle-containing layer.
  16.  前記支持体と、前記金属粒子含有層の間に、アンダーコート層を有することを特徴とする請求項14または15に記載の赤外線遮蔽フィルム。 The infrared shielding film according to claim 14 or 15, further comprising an undercoat layer between the support and the metal particle-containing layer.
  17.  前記支持体の、前記金属粒子含有層とは反対側の面上にバックコート層を有することを特徴とする請求項14~16のいずれか一項に記載の赤外線遮蔽フィルム。 The infrared shielding film according to any one of claims 14 to 16, further comprising a backcoat layer on a surface of the support opposite to the metal particle-containing layer.
  18.  前記赤外領域に吸収を有する化合物を、前記金属粒子含有層、前記アンダーコート層および前記バックコート層のうち少なくとも1層に含むことを特徴とする請求項17に記載の赤外線遮蔽フィルム。 The infrared shielding film according to claim 17, wherein the compound having absorption in the infrared region is contained in at least one of the metal particle-containing layer, the undercoat layer, and the backcoat layer.
PCT/JP2013/073096 2012-09-05 2013-08-29 Infrared blocking film WO2014038457A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012195172 2012-09-05
JP2012-195172 2012-09-05
JP2012243939A JP6076699B2 (en) 2012-09-05 2012-11-05 Infrared shielding film
JP2012-243939 2012-11-05

Publications (1)

Publication Number Publication Date
WO2014038457A1 true WO2014038457A1 (en) 2014-03-13

Family

ID=50237069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073096 WO2014038457A1 (en) 2012-09-05 2013-08-29 Infrared blocking film

Country Status (2)

Country Link
JP (1) JP6076699B2 (en)
WO (1) WO2014038457A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182745A1 (en) * 2014-05-30 2015-12-03 富士フイルム株式会社 Heat-insulating film for window, heat-insulating material for window, and window
CN106457747A (en) * 2014-05-30 2017-02-22 富士胶片株式会社 Heat-insulating film for window, heat-insulating material for window, and window

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006586A1 (en) * 2014-07-11 2016-01-14 富士フイルム株式会社 Infrared-reflecting patterned body
CN111560094A (en) * 2015-05-29 2020-08-21 富士胶片株式会社 Near-infrared absorbing pigment polymer, composition, film, optical filter, pattern forming method and device
JP6336948B2 (en) * 2015-08-24 2018-06-06 富士フイルム株式会社 Infrared reflective pattern forming ink composition, infrared reflective pattern forming method, and infrared reflector
KR20210133755A (en) 2020-04-29 2021-11-08 삼성전자주식회사 Optical filter and image sensor and camera moduel and electronic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10180922A (en) * 1996-12-25 1998-07-07 Nippon Kayaku Co Ltd Infrared absorbing body
JP2000190430A (en) * 1998-10-21 2000-07-11 Tomoegawa Paper Co Ltd Ifrared cut-off film
JP2001228324A (en) * 2000-01-13 2001-08-24 Fuji Photo Film Co Ltd Optical filter and plasma display panel
JP2009263614A (en) * 2008-03-30 2009-11-12 Fujifilm Corp Infrared absorptive compound and fine particles comprising the compound
JP2010090313A (en) * 2008-10-09 2010-04-22 Fujifilm Corp Near-infrared-absorbing composition and article having near-infrared-absorbing coating thereon
WO2012070477A1 (en) * 2010-11-22 2012-05-31 富士フイルム株式会社 Heat ray shielding material
JP2012108207A (en) * 2010-11-15 2012-06-07 Fujifilm Corp Heat ray shielding material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10180922A (en) * 1996-12-25 1998-07-07 Nippon Kayaku Co Ltd Infrared absorbing body
JP2000190430A (en) * 1998-10-21 2000-07-11 Tomoegawa Paper Co Ltd Ifrared cut-off film
JP2001228324A (en) * 2000-01-13 2001-08-24 Fuji Photo Film Co Ltd Optical filter and plasma display panel
JP2009263614A (en) * 2008-03-30 2009-11-12 Fujifilm Corp Infrared absorptive compound and fine particles comprising the compound
JP2010090313A (en) * 2008-10-09 2010-04-22 Fujifilm Corp Near-infrared-absorbing composition and article having near-infrared-absorbing coating thereon
JP2012108207A (en) * 2010-11-15 2012-06-07 Fujifilm Corp Heat ray shielding material
WO2012070477A1 (en) * 2010-11-22 2012-05-31 富士フイルム株式会社 Heat ray shielding material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182745A1 (en) * 2014-05-30 2015-12-03 富士フイルム株式会社 Heat-insulating film for window, heat-insulating material for window, and window
CN106457747A (en) * 2014-05-30 2017-02-22 富士胶片株式会社 Heat-insulating film for window, heat-insulating material for window, and window

Also Published As

Publication number Publication date
JP6076699B2 (en) 2017-02-08
JP2014066987A (en) 2014-04-17

Similar Documents

Publication Publication Date Title
WO2013137373A1 (en) Infrared-ray-shielding film
WO2014156528A1 (en) Heat ray shielding material, windowpane using heat ray shielding material, intermediate film for laminated glass, and laminated glass
JP5878059B2 (en) Infrared shielding film
JP5833518B2 (en) Heat ray shielding material
JP5956291B2 (en) Multi-layer structure and laminated structure
JP5771584B2 (en) Heat ray shielding material
JP6076699B2 (en) Infrared shielding film
WO2013035802A1 (en) Heat ray shielding material
JP5709707B2 (en) Heat ray shielding material
JP5878139B2 (en) Heat ray shielding material and bonded structure
WO2013146447A1 (en) Silver-particle containing film and manufacturing method therefor, and heat ray shielding material
JP5833516B2 (en) Far-infrared shielding material
JP5922919B2 (en) Heat ray shielding material and bonded structure
WO2013039215A1 (en) Heat-ray shielding material
JP6166528B2 (en) Heat ray shielding material, heat shielding glass, interlayer film for laminated glass and laminated glass
JP6012527B2 (en) Heat ray shielding material, interlayer film for laminated glass and laminated glass
WO2014050581A1 (en) Flat metal particle dispersion liquid, method for manufacturing flat metal particle dispersion liquid, and heat-ray-shieldng material
JP5878050B2 (en) Heat ray shielding material
JP5996992B2 (en) Metal particle dispersion and heat ray shielding material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13835418

Country of ref document: EP

Kind code of ref document: A1