WO2012157655A1 - Heat ray-shielding material, laminated structure, and laminated glass - Google Patents

Heat ray-shielding material, laminated structure, and laminated glass Download PDF

Info

Publication number
WO2012157655A1
WO2012157655A1 PCT/JP2012/062449 JP2012062449W WO2012157655A1 WO 2012157655 A1 WO2012157655 A1 WO 2012157655A1 JP 2012062449 W JP2012062449 W JP 2012062449W WO 2012157655 A1 WO2012157655 A1 WO 2012157655A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat ray
shielding material
ray shielding
layer
metal particles
Prior art date
Application number
PCT/JP2012/062449
Other languages
French (fr)
Japanese (ja)
Inventor
鎌田 晃
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012157655A1 publication Critical patent/WO2012157655A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10614Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising particles for purposes other than dyeing
    • B32B17/10633Infrared radiation absorbing or reflecting agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate

Definitions

  • the present invention relates to a heat ray shielding material, a laminated structure using such a heat ray shielding material, and laminated glass, which achieves high light transmittance in the visible light region while improving infrared reflectance over a wide band.
  • heat ray shielding materials for automobile and building windows have been developed as one of the energy-saving measures to reduce carbon dioxide.
  • About heat ray shielding imparting material from the viewpoint of heat ray shielding properties (acquisition rate of solar heat), re-radiation of absorbed light into the room (about 1/3 of the absorbed solar energy is emitted into the room)
  • a heat ray reflective type that does not re-emit in the first place is preferable to a certain heat ray absorbing type. Therefore, various proposals have been made for heat ray reflective heat ray shielding imparting materials.
  • a metal Ag thin film is generally used as a heat ray reflecting material because of its high reflectance, but it reflects not only visible light and heat rays but also radio waves, so that it has visible light permeability and radio wave permeability.
  • Low-E glass for example, manufactured by Asahi Glass Co., Ltd.
  • Ag and ZnO multilayer film is widely used in buildings in order to increase visible light transmittance, but Low-E glass is made of metal Ag on the glass surface. Since the thin film was formed, there existed a subject that radio wave permeability was low.
  • an infrared reflective layer in which 5 to 200 layers of at least two transparent thin layers having different refractive indexes are alternately laminated and a dispersion film of conductive fine particles such as tin-doped indium oxide (ITO), such as a polymer multilayer extruded film
  • a dispersion film of conductive fine particles such as tin-doped indium oxide (ITO)
  • ITO tin-doped indium oxide
  • infrared shielding after 1,100 nm is supplemented with an infrared absorbing layer containing ITO or the like.
  • ITO infrared absorbing layer
  • the infrared shielding filter is attached to a window glass, the temperature rises differently in places where it is not exposed to sunlight, so the glass breaks due to the difference in the expansion coefficient of the film, so-called thermal cracking phenomenon There was a problem that happened. Therefore, there is a demand for a heat ray shielding material having improved infrared reflectance over the entire band and having high light transmittance in the visible light region, and a laminated structure and laminated glass using the heat ray shielding material. It is.
  • the present invention aims to solve the above-mentioned problems and achieve the following objects. That is, the present invention provides a heat ray shielding material, a laminated structure using such a heat ray shielding material, and a laminated glass that achieves high light transmittance in the visible light region while improving infrared reflectance over a wide band.
  • the purpose is to provide.
  • Means for solving the above problems are as follows. That is, ⁇ 1> a metal particle-containing layer containing at least one metal particle; An infrared reflective layer in which 5 to 200 layers of at least two transparent thin layers having different refractive indexes are alternately laminated, and a heat ray shielding material,
  • the metal particles include hexagonal or circular and flat metal particles, A heat ray shielding material, wherein the ratio of flat metal particles to the total number of metal particles contained in the metal particle-containing layer is 60% by number or more.
  • the transparent thin layer is the heat ray shielding material according to ⁇ 1>, which is a layer containing a polymer.
  • ⁇ 3> The heat ray according to any one of ⁇ 1> to ⁇ 2>, wherein the infrared reflective layer is obtained by executing at least one of alternating thin layer extrusion, alternating coating, and alternating thin layer lamination, from the transparent thin layer. It is a shielding material.
  • ⁇ 4> The heat ray shielding material according to any one of ⁇ 1> to ⁇ 3>, wherein the difference between the maximum wavelength of the reflection spectrum of the infrared reflection layer and the maximum wavelength of the reflection spectrum of the metal particle-containing layer is 100 nm or more. is there.
  • the maximum wavelength of the reflection spectrum of the infrared reflection layer is 700 nm to 1,500 nm, the maximum wavelength of the reflection spectrum of the metal particle-containing layer is 900 nm to 2,000 nm, and the shielding coefficient is 0.7 or less.
  • the heat ray shielding material according to any one of ⁇ 1> to ⁇ 5>, wherein the ratio is 50% by number or more.
  • the main plane has a plane orientation in the range of 0 ° to ⁇ 30 ° with respect to one surface of the metal particle-containing layer.
  • the main plane has a plane orientation in the range of 0 ° to ⁇ 30 ° with respect to one surface of the metal particle-containing layer.
  • ⁇ 9> The heat ray shielding material according to any one of ⁇ 1> to ⁇ 8>, wherein a coefficient of variation in particle size distribution of the flat metal particles is 30% or less.
  • the average particle size of the flat metal particles is 70 nm to 500 nm
  • the flat metal particles include at least silver.
  • ⁇ 12> The heat ray shielding material according to any one of ⁇ 1> to ⁇ 11>, wherein the visible light transmittance of the heat ray shielding material is 70% or more.
  • ⁇ 13> The heat ray shielding material according to any one of ⁇ 1> to ⁇ 12>, further including an adhesive layer.
  • ⁇ 14> A laminated structure comprising the heat ray shielding material according to any one of ⁇ 1> to ⁇ 13> and any one of glass and plastic.
  • ⁇ 15> At least one heat ray shielding material according to any one of ⁇ 1> to ⁇ 12>, at least two intermediate layers that sandwich the heat ray shielding material, and at least two glasses that sandwich the intermediate layer It is the laminated glass characterized by including.
  • ⁇ 16> The laminated glass according to ⁇ 15>, wherein the intermediate layer contains at least one of polyvinyl butyral and an ethylene vinyl copolymer.
  • the present invention it is possible to solve the problems of the prior art, achieve the above-mentioned object, improve the infrared reflectance over a wide band, and simultaneously achieve high light transmittance in the visible light region,
  • a laminated structure and a laminated glass using the heat ray shielding material can be provided.
  • FIG. 1A is a schematic perspective view showing an example of the shape of flat metal particles contained in the heat ray shielding material of the present invention, and shows circular and flat metal particles.
  • FIG. 1B is a schematic perspective view showing an example of the shape of flat metal particles contained in the heat ray shielding material of the present invention, and shows hexagonal flat metal particles.
  • FIG. 2A is a schematic cross-sectional view showing the existence state of a metal particle-containing layer containing flat metal particles in the heat ray shielding material of the present invention, and shows the most ideal existence state.
  • FIG. 1A is a schematic perspective view showing an example of the shape of flat metal particles contained in the heat ray shielding material of the present invention, and shows circular and flat metal particles.
  • FIG. 1B is a schematic perspective view showing an example of the shape of flat metal particles contained in the heat ray shielding material of the present invention, and shows hexagonal flat metal particles.
  • FIG. 2A is a schematic cross-sectional view showing the existence state of a metal particle-containing layer
  • FIG. 2B is a schematic cross-sectional view showing the existence state of the metal particle-containing layer containing flat metal particles in the heat ray shielding material of the present invention, and one surface of the metal particle-containing layer and the flat metal particles The figure explaining the angle ((theta)) which makes with a plane is shown.
  • FIG. 2C is a schematic cross-sectional view showing the existence state of a metal particle-containing layer containing flat metal particles in the heat ray shielding material of the present invention, and the presence of the metal particle-containing layer in the depth direction of the heat ray shielding material. It is a figure which shows an area
  • FIG. 3 is a graph showing a transmission spectrum, a reflection spectrum, and an absorption spectrum in the heat ray shielding material of Comparative Example 4.
  • FIG. 4 is a graph showing a reflection spectrum in the heat ray shielding material of Comparative Example 1.
  • the heat ray shielding material of the present invention has a metal particle-containing layer containing at least one kind of metal particles, and an infrared reflecting layer in which 5 to 200 layers of at least two kinds of transparent thin layers having different refractive indexes are alternately laminated. Furthermore, it has other layers, such as a pressure-sensitive adhesive layer, appropriately selected as necessary.
  • a metal particle content layer is a layer containing at least 1 sort (s) of metal particle, there will be no restriction
  • the metal particles are not particularly limited as long as they contain flat metal particles, and can be appropriately selected according to the purpose.
  • flat metal particles granular, cubic, hexahedral
  • Examples include a face shape and a rod shape.
  • the presence state of the metal particles may be unevenly distributed in one plane facing a substantially horizontal direction with respect to one surface of the metal particle-containing layer (the surface of the infrared reflecting layer), or randomly.
  • the form unevenly distributed in one plane facing the substantially horizontal direction is not particularly limited and can be appropriately selected according to the purpose.
  • one surface of the metal particle-containing layer is a surface in contact with the infrared reflective layer, and is a flat plane similarly to the surface of the infrared reflective layer.
  • the material of the metal particles is not particularly limited and can be appropriately selected according to the purpose. However, silver, gold, aluminum, copper, rhodium, nickel, platinum are preferred because of the high heat ray (near infrared) reflectance. Etc. are preferable.
  • the flat metal particles are not particularly limited as long as they are particles composed of two main planes (see FIGS. 1A and 1B), and can be appropriately selected according to the purpose.
  • a hexagonal shape, a circular shape examples include a triangle shape.
  • a hexagonal shape and a circular shape are particularly preferable in terms of high visible light transmittance.
  • the circular shape is not particularly limited as long as it has no corners and round shape when the flat metal particles are observed from above the main plane with a transmission electron microscope (TEM), and is appropriately selected according to the purpose. be able to.
  • TEM transmission electron microscope
  • the hexagonal shape is not particularly limited as long as it is a hexagonal shape when the flat metal particles are observed from above the main plane with a transmission electron microscope (TEM), and can be appropriately selected according to the purpose.
  • the hexagonal corners may be sharp or dull, but the corners are preferably dull in that the absorption in the visible light region can be reduced.
  • corner According to the objective, it can select suitably.
  • a material of a flat metal particle The same thing as a metal particle can be suitably selected according to the objective.
  • the flat metal particles preferably contain at least silver.
  • the hexagonal or disc-shaped flat metal particles are 60% by number or more, preferably 65% by number or more, based on the total number of metal particles. A number% or more is more preferable. If the proportion of the flat metal particles is less than 60% by number, the visible light transmittance may be lowered.
  • the flat metal particles have a plane orientation in the range of 0 ° to ⁇ 30 ° with respect to one surface of the metal particle-containing layer (or the surface of the infrared reflecting layer). It is preferable that the plane orientation is in the range of 0 ° to ⁇ 20 °.
  • the ratio of the flat metal particles whose main plane is plane-oriented in the range of 0 ° to ⁇ 30 ° with respect to one surface of the metal particle-containing layer with respect to the total number of flat metal particles. Is preferably 50% by number or more, more preferably 80% by number or more, and still more preferably 90% by number or more.
  • the presence state of the flat metal particles is not particularly limited and may be appropriately selected depending on the purpose. However, it is preferable that the flat metal particles are arranged on the infrared reflecting layer as shown in FIG.
  • FIG. 2A to FIG. 2C are schematic cross-sectional views showing the presence state of the metal particle-containing layer containing flat metal particles in the heat ray shielding material of the present invention.
  • FIG. 2A shows the most ideal existence state of the plate-like metal particles 3 in the metal particle-containing layer 2.
  • FIG. 2B is a diagram for explaining an angle ( ⁇ ⁇ ) formed by the plane of the infrared reflecting layer 1 and the plane of the flat metal particle 3.
  • FIG. 2C shows the existence region in the depth direction of the heat ray shielding material of the metal particle-containing layer 2.
  • the angle ( ⁇ ⁇ ) formed between the surface of the infrared reflective layer 1 and the main plane or extension of the main plane of the flat metal particles 3 corresponds to a predetermined range in the plane orientation. That is, the plane orientation means a state in which the inclination angle ( ⁇ ⁇ ) shown in FIG. 2B is small when the cross section of the heat ray shielding material is observed.
  • FIG. 2A shows the surface of the infrared reflecting layer 1 and the flat metal particles. 3 is in contact with the main plane, that is, a state where ⁇ is 0 °.
  • a predetermined wavelength of the heat ray shielding material for example, a visible light region long wavelength
  • the reflectance in the near infrared light region from the side is reduced.
  • the evaluation of whether or not the main plane of the flat metal particles is plane-oriented with respect to one surface of the metal particle-containing layer (or the surface of the infrared reflective layer) is not particularly limited and is appropriately selected according to the purpose.
  • a method may be used in which an appropriate cross section is prepared and the metal particle-containing layer and the flat metal particles in the slice are observed and evaluated.
  • a microtome and a focused ion beam are used to prepare a cross-sectional sample or a cross-section sample of the heat ray shielding material, and this is used for various microscopes (for example, a field emission scanning electron microscope (FE-SEM) etc.), and a method of evaluating from an image obtained by observation.
  • FE-SEM field emission scanning electron microscope
  • the binder that covers the flat metal particles swells with water
  • the sample frozen in liquid nitrogen is cut with a diamond cutter mounted on a microtome to obtain a cross-section sample or a cross-section sample. May be produced.
  • covers a flat metal particle in a heat ray shielding material does not swell with water, you may produce a cross-section sample thru
  • the main plane of the plate-like metal particles is plane-oriented with respect to one surface of the metal particle-containing layer (or the surface of the infrared reflective layer).
  • it can be appropriately selected according to the purpose, and examples thereof include observation using an FE-SEM, TEM, optical microscope, and the like.
  • observation may be performed by FE-SEM
  • observation may be performed by TEM.
  • TEM When evaluating by FE-SEM, it is preferable to have a spatial resolution with which the shape and inclination angle ( ⁇ ⁇ in FIG. 2B) of the flat metal particles can be clearly determined.
  • the average particle diameter (average equivalent circle diameter) of the flat metal particles is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 70 nm to 500 nm, and more preferably 80 nm to 400 nm.
  • the average particle diameter (average equivalent circle diameter) is less than 70 nm, the contribution of the absorption of the flat metal particles is larger than the reflection, so that sufficient heat ray reflectivity may not be obtained.
  • Haze (scattering) increases, and the transparency of the heat ray shielding material may be impaired.
  • the average particle diameter is an average value of main plane diameters (maximum lengths) of 200 flat metal particles arbitrarily selected from images obtained by observing particles with a TEM. Means. Two or more kinds of metal particles having different average particle diameters (average equivalent circle diameters) can be included in the metal particle-containing layer. In this case, two or more peaks of the average particle diameter (average equivalent circle diameter) of the metal particles are present. That is, you may have two average particle diameters (average circle equivalent diameter).
  • the coefficient of variation in the particle size distribution of the flat metal particles is preferably 30% or less, and more preferably 20% or less. When the variation coefficient exceeds 30%, the reflection wavelength region of the heat ray in the heat ray shielding material may become broad.
  • the coefficient of variation in the particle size distribution of the flat metal particles is plotted, for example, by plotting the particle size distribution range of the 200 flat metal particles used for calculating the average value obtained as described above. The standard deviation is obtained, and is a value (%) divided by the average value (average particle diameter (average equivalent circle diameter)) of the main plane diameter (maximum length) obtained as described above.
  • the aspect ratio of the flat metal particles is not particularly limited and may be appropriately selected depending on the intended purpose. However, since the reflectance in the infrared light region having a wavelength of 900 nm to 2,000 nm is high, the aspect ratio is 10%. To 45 is preferable, and 20 to 35 is more preferable. When the aspect ratio is less than 10, the reflection wavelength becomes smaller than 900 nm, and when it exceeds 45, the reflection wavelength becomes longer than 2,000 nm and sufficient heat ray reflectivity may not be obtained.
  • the aspect ratio means a value obtained by dividing the average particle diameter (average equivalent circle diameter) of the flat metal particles by the average particle thickness of the flat metal particles.
  • the average particle thickness corresponds to the distance between the main planes of the flat metal particles, and is, for example, as shown in FIGS. 1A and 1B and can be measured by an atomic force microscope (AFM).
  • the method for measuring the average particle thickness by AFM is not particularly limited and can be appropriately selected depending on the purpose.For example, a particle dispersion containing flat metal particles is dropped onto a glass substrate and dried. For example, a method of measuring the thickness of one particle may be used.
  • the plasmon resonance wavelength of the metal constituting the flat metal particle 3 in the metal particle-containing layer 2 is ⁇
  • the refractive index of the medium in the metal particle-containing layer 2 is
  • the metal particle-containing layer 2 is preferably present in the range of 0 to ( ⁇ / n) / 4 in the depth direction from the horizontal plane of the heat ray shielding material.
  • the effect of increasing the amplitude of the reflected wave due to the phase of the reflected wave at the interface air interface between the upper and lower metal particle-containing layers of the heat ray shielding material is reduced, haze characteristics, The visible light transmittance and the maximum heat ray reflectance may decrease.
  • the plasmon resonance wavelength ⁇ of the metal constituting the flat metal particles in the metal particle-containing layer is not particularly limited and can be appropriately selected according to the purpose, but is 400 nm to 2 in terms of imparting heat ray reflection performance. , 500 nm is preferable, and from the viewpoint of imparting visible light transmittance, 700 nm to 2,500 nm is more preferable.
  • a medium in a metal particle content layer there is no restriction
  • the refractive index n of the medium is preferably 1.4 to 1.7.
  • the area of the plate-like metal particles relative to the area A of the heat ray shielding material when the heat ray shielding material is viewed from above (the total projected area A of the metal particle containing layer when viewed from the direction perpendicular to the metal particle containing layer)
  • the area ratio [(B / A) ⁇ 100] which is the ratio of the total value B, is preferably 15% or more, and more preferably 20% or more.
  • the area ratio can be measured, for example, by performing image processing on an image obtained by SEM observation of the heat ray shielding material from above or an image obtained by AFM (atomic force microscope) observation.
  • the average inter-particle distance between the flat metal particles adjacent in the horizontal direction in the metal particle-containing layer is 1/10 of the average particle diameter of the flat metal particles in terms of the visible light transmittance and the maximum reflectance of the heat ray.
  • the above is preferable.
  • the average interparticle distance in the horizontal direction of the flat metal particles is less than 1/10 of the average particle diameter of the flat metal particles, the maximum reflectivity of the heat rays is lowered.
  • the average interparticle distance in the horizontal direction is preferably non-uniform (random) in terms of visible light transmittance. If it is not random, that is, if it is uniform, absorption of visible light occurs, and the transmittance may decrease.
  • the average interparticle distance in the horizontal direction of the flat metal particles means the average value of the interparticle distance between two adjacent particles.
  • the average distance between the particles means that “other than the origin when taking a two-dimensional autocorrelation of luminance values when binarizing an SEM image including 100 or more tabular metal particles. Does not have a significant local maximum. "
  • the flat metal particles are arranged in the form of a metal particle-containing layer containing flat metal particles, as shown in FIGS. 2A to 2C.
  • the metal particle-containing layer may be composed of a single layer as shown in FIGS. 2A to 2C, or may be composed of a plurality of metal particle-containing layers.
  • the thickness of the metal particle-containing layer is not particularly limited and may be appropriately selected depending on the intended purpose. However, in consideration of actual coating and drying load, 0.01 to 1 ⁇ m is preferable, and 0.02 to 0. 5 ⁇ m is more preferable.
  • the thickness of each layer of the metal particle-containing layer can be measured, for example, from an image obtained by SEM observation of a cross-sectional sample of the heat ray shielding material.
  • the method for synthesizing the flat metal particles is not particularly limited as long as it can synthesize a hexagonal shape or a circular shape, and can be appropriately selected according to the purpose.
  • a chemical reduction method, a photochemical reduction method examples thereof include a liquid phase method such as an electrochemical reduction method.
  • a liquid phase method such as a chemical reduction method or a photochemical reduction method is particularly preferable in terms of shape and size controllability.
  • hexagonal or triangular plate-like metal particles After synthesizing hexagonal or triangular plate-like metal particles, for example, by performing etching treatment with a dissolved species that dissolves silver such as nitric acid or sodium sulfite, aging treatment by heating, etc., hexagonal or triangular plate
  • the corners of the metal particles may be blunted to obtain substantially hexagonal or substantially circular flat metal particles.
  • metal particles for example, Ag
  • a transparent substrate such as a film or glass
  • the flat metal particles may be subjected to further treatment in order to impart desired characteristics.
  • the further treatment is not particularly limited and may be appropriately selected depending on the purpose.
  • the formation of a high refractive index shell layer the addition of various additives such as a dispersant and an antioxidant may be included. Can be mentioned.
  • the plate-like metal particles may be coated with a high refractive index material having high visible light region transparency in order to further enhance the visible light region transparency.
  • a high refractive index material is not particularly limited and may be appropriately selected depending on the purpose, for example, TiO x, BaTiO 3, ZnO, etc. SnO 2, ZrO 2, NbO x and the like.
  • an appropriate SiO 2 or polymer shell layer is formed. Furthermore, a metal oxide layer may be formed on the shell layer.
  • TiO x is used as a material for the high refractive index metal oxide layer, since TiO x has photocatalytic activity, there is a concern that the matrix in which the flat metal particles are dispersed may be deteriorated. After forming the TiO x layer on the flat metal particles, an SiO 2 layer may be appropriately formed.
  • the flat metal particles adsorb an antioxidant such as mercaptotetrazole and ascorbic acid in order to prevent oxidation of metals such as silver constituting the flat metal particles. May be. Further, for the purpose of preventing oxidation, an antioxidant layer such as Ni may be formed on the surface of the flat metal particles. Further, it may be covered with a metal oxide film such as SiO 2 for the purpose of blocking oxygen.
  • the flat metal particles are, for example, quaternary ammonium salts, low molecular weight dispersants containing at least one of N elements such as amines, S elements, and P elements, and high molecular weight dispersants.
  • a dispersant may be added.
  • the infrared reflecting layer is not particularly limited as long as at least two kinds of transparent thin layers having different refractive indexes are alternately laminated, and can be appropriately selected according to the purpose.
  • the infrared reflective layer is preferably an infrared reflective layer (organic multilayer film) in which 20 to 200 layers of at least two polymers having different refractive indexes are alternately laminated, and are alternately laminated, alternately laminated extruded, alternately coated, and alternately thin. More preferably, it is at least one of layer laminates.
  • the transparent thin layer has a visible light transmittance of 70% or more and has a thickness of 50 nm to 300 nm, and may be a thin layer made of a polymer.
  • the thickness of the transparent thin layer is not particularly limited as long as it is 50 nm to 300 nm, and can be appropriately selected according to the purpose, but is preferably 70 nm to 200 nm.
  • thickness of the transparent thin layer which consists of a different material it may mutually differ between different materials, and may be the same.
  • thickness of the transparent thin layer which consists of 1 type of material it may mutually differ between several transparent thin layers, and may be the same.
  • the refractive indexes are different from each other means that at least two kinds of transparent thin layers have different refractive indexes of 0.01 or more, and when the transparent thin layer is a thin layer made of a polymer, 0.02 or more. It is preferable.
  • the polymer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the method for alternately laminating the polymers is not particularly limited, and a known method can be appropriately selected according to the purpose. For example, a lamination extrusion method, a roll coating method, a flow coating method, a dipping method, or the like can be applied. And a method of laminating a thin polymer layer.
  • the infrared reflective layer is made up of a unit laminate by alternately laminating 10 to 40 layers of polymer thin layers having different thicknesses t1 and t2 having different refractive indices, and changing the thicknesses t1 and t2. It is preferable to have 2 to 6 unit laminates from the viewpoint that the reflection wavelength range can be widened.
  • the thickness of the infrared reflective layer that is, the total thickness of the plurality of transparent thin layers is not particularly limited and can be appropriately selected according to the purpose.
  • the infrared reflective layer has at least two kinds of refractive indexes different from each other.
  • the polymer is an infrared reflective layer (organic multilayer film) in which 20 to 200 layers are alternately laminated
  • the thickness is preferably 30 to 200 ⁇ m, more preferably 50 to 100 ⁇ m.
  • the maximum wavelength of the reflection spectrum of the infrared reflection layer is preferably 700 nm to 1,500 nm, the maximum wavelength of the reflection spectrum of the metal particle-containing layer is preferably 900 nm to 2,000 nm, and the shielding coefficient is preferably 0.7 or less. Moreover, it is preferable that the difference between the maximum wavelength of the reflection spectrum of the infrared reflection layer and the maximum wavelength of the reflection spectrum of the metal particle-containing layer is 100 nm or more. Further, the shielding coefficient is more preferably 0.65 or less, and particularly preferably 0.6 or less.
  • the heat ray shielding material of the present invention preferably further has an adhesive layer.
  • the material that can be used for forming the adhesive layer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • An adhesive layer made of these materials can be formed by coating.
  • you may add an antistatic agent, a lubricant, an antiblocking agent, etc. to the adhesion layer.
  • the thickness of the adhesive layer is preferably 0.1 ⁇ m to 10 ⁇ m.
  • ⁇ Protective layer In the heat ray shielding material of the present invention, it is preferable to have a protective layer in order to improve adhesion to the infrared reflective layer or to protect it from mechanical strength.
  • a protective layer There is no restriction
  • the binder is not particularly limited and may be appropriately selected depending on the intended purpose.
  • cellulose polyvinyl chloride, and polyvinyl pyrrolidone.
  • a method for forming the protective layer an appropriate organic solvent is selected as a solution, applied to the surface of the metal particle-containing layer, and then dried to form a thin film, or depending on the resin, a water-soluble emulsion is prepared.
  • a method of forming a thin film by coating the surface of the metal particle-containing layer as an aqueous solution and then heat drying to fuse the emulsion particles.
  • the method for forming the metal particle-containing layer is not particularly limited and can be appropriately selected depending on the purpose.
  • a dispersion having flat metal particles on the surface of a lower layer such as an infrared reflective layer
  • examples thereof include a method of coating by a dip coater, a die coater, a slit coater, a bar coater, a gravure coater, and the like, and a method of surface orientation by a method such as an LB film method, a self-organization method, and spray coating.
  • the method for forming the metal particle-containing layer includes a method in which plane orientation is performed using electrostatic interaction in order to improve the adsorptivity to the infrared reflective layer surface and plane orientation of the flat metal particles.
  • plane orientation is performed using electrostatic interaction in order to improve the adsorptivity to the infrared reflective layer surface and plane orientation of the flat metal particles.
  • a method for example, when the surface of the flat metal particle is negatively charged (for example, dispersed in a negatively charged medium such as citric acid), the surface of the infrared reflective layer is positively
  • a method of aligning the surface by electrostatically enhancing the surface orientation by charging for example, modifying the surface of the infrared reflecting layer with an amino group or the like).
  • the surface of the flat metal particles is hydrophilic
  • a hydrophilic / hydrophobic sea-island structure is formed on the surface of the infrared reflecting layer by using a block copolymer, microcontact stamp method, etc., and the hydrophilic / hydrophobic interaction is utilized.
  • the plane orientation and the interparticle distance of the flat metal particles may be controlled.
  • a pressure roller such as a calender roller or a laminating roller.
  • the adhesive layer is preferably formed by coating.
  • it can be laminated on the surface of a lower layer such as an infrared reflecting layer, a metal particle-containing layer, or an ultraviolet absorbing layer.
  • a lower layer such as an infrared reflecting layer, a metal particle-containing layer, or an ultraviolet absorbing layer.
  • the coating method at this time A well-known method can be used.
  • the solar radiation reflectance of the heat ray shielding material of the present invention preferably has a maximum value in the range of 600 nm to 2,000 nm (preferably 800 nm to 1,800 nm) from the viewpoint that the efficiency of the heat ray reflectance can be increased.
  • the visible light transmittance of the heat ray shielding material of the present invention is preferably 60% or more, and more preferably 70% or more. When the visible light transmittance is less than 60%, for example, when used as glass for automobiles or glass for buildings, the outside may be difficult to see.
  • the haze of the heat ray shielding material of the present invention is preferably 20% or less. If the haze exceeds 20%, it may be unfavorable in terms of safety, for example, when it is used as automotive glass or building glass, it becomes difficult to see the outside.
  • a film is prepared by previously applying and drying an adhesive on a release film, and the adhesive surface of the film and the metal particles of the heat ray shielding material of the present invention are used. It is effective to laminate in a dry state by laminating the surface of the containing layer.
  • the bonding structure of the present invention is formed by bonding the heat ray shielding material of the present invention and either glass or plastic.
  • the heat ray shielding material of this invention which has the contact bonding layer manufactured as mentioned above is glass for vehicles, such as a motor vehicle. Or a method of bonding to glass or plastic for building materials or plastic.
  • the laminated glass of the present invention includes at least one heat ray shielding material of the present invention, at least two intermediate layers, and at least two glasses, and the intermediate layer sandwiching the heat ray shielding material is at least two glasses. Hold it.
  • the intermediate layer preferably contains at least one of polyvinyl butyral and ethylene vinyl copolymer.
  • the heat ray shielding material of this invention is laminated
  • autoclaving under conditions of 130 ° C., 13 atm, and 1 hour may be used.
  • the glass is not particularly limited and can be appropriately selected according to the purpose.For example, it has good smoothness, little distortion of the fluoroscopic image, little distortion due to wind and external force with a certain degree of rigidity, and in the visible light region. Examples thereof include soda lime glass called a transparent type or a clear type, which is excellent in permeation and has a reduced coloring component such as metal oxide by a float method obtained at a relatively low cost.
  • the heat ray shielding material, the laminated structure and the laminated glass of the present invention are not particularly limited as long as they are used for selectively reflecting or absorbing heat rays (near infrared rays), and are appropriately selected according to the purpose.
  • a film for vehicles, a laminated structure or laminated glass, a film for building materials, a laminated structure or laminated glass, an agricultural film, and the like can be given.
  • the film for vehicles, the laminated structure and the laminated glass, the film for building material, the laminated structure and the laminated glass are preferable from the viewpoint of energy saving effect.
  • heat rays mean near infrared rays (780 nm to 1,800 nm) contained in sunlight by about 50%.
  • Infrared reflective layer 1 (organic multilayer film) [Infrared reflective layer 1] was produced by alternately laminating two types of thin polymer layers having different refractive indexes by the following procedure.
  • Polymethylmethacrylate (PMMA) was used for the low refractive polymer thin layer
  • PET polyethylene terephthalate
  • a low refractive index layer formed using PMMA is called a PMMA layer
  • a high refractive index layer formed using PET is called a PET layer.
  • the PMMA layer was formed by applying a solution obtained by dissolving PMMA in 2-methoxyethyl acetate by a roll coating method.
  • the refractive index was 1.49.
  • the PET layer was formed by applying PET pellets while melting them with an extruder.
  • the refractive index of the PET layer was 1.65.
  • 20 layers of 0.144 ⁇ m PMMA layers and 0.159 ⁇ m PET layers are alternately laminated, and further, 10 layers of 0.165 ⁇ m PMMA layers and 0.183 ⁇ m PET layers are alternately laminated, and 15 layers of 0.187 ⁇ m PMMA layers and 0.207 ⁇ m PET layers are alternately stacked, and further 15 layers of 0.158 ⁇ m PMMA layers and 0.175 ⁇ m PET layers are alternately stacked. 15 layers of 0.172 ⁇ m PMMA layers and 0.191 ⁇ m PET layers were alternately laminated to produce [Infrared reflective layer 1]. There are 150 polymer thin layers in total.
  • [Infrared reflective layer 2] comprises the following three polymer components: component A comprises a styrene-methyl methacrylate copolymer (P-359, Richardson's copolymer) having a refractive index of 1.57 and a density of 1.08.
  • component B is a methyl methacrylate-styrene copolymer (RPC-440, manufactured by Richardson Polymer Corporation) having a refractive index of 1.53 and a density of 1.13; and
  • Component C Is polymethylmethacrylate (VS-100, manufactured by Rohm and Haas) having a refractive index of 1.49 and a density of 1.20.
  • a protective layer of polycarbonate was provided on both sides of [Infrared reflective layer 2], which was sufficient to eliminate surface instability and to provide mechanical properties.
  • This three-component film was coextruded to obtain a 165-layer film having ABCB repeating units.
  • the three component feed block has 42 feed slots for component A, 82 feed slots for component B, and 41 feed slots for component C.
  • Three separate extruders feedblock each polymer component at a rate of 8.5 kg / hr for component A, 9.0 kg / hr for component B, and 9.8 kg / hr for component C. Supplied to.
  • As a protective layer 6.8 kg / hr polycarbonate was coextruded on both surfaces of the film.
  • the drop rate of the film was adjusted to show a strong primary reflectivity at 1,400 nm with a film thickness of about 204 ⁇ m (0.9 mil).
  • an [infrared reflective layer 2] in which the layer thickness of component A was 148.6 nm, the layer thickness of component B was 76.3 nm, and the layer thickness of component C was 156.6 nm was obtained. Therefore, the optical thickness ratio fA of the first component A is 1/3, the optical thickness ratio fB of the second component B is 1/6, and the optical thickness ratio fC of the third component C is The refractive index of each component satisfies the relationship of the following formula.
  • the optical thickness ratio f i is defined by the following equation.
  • ni the refractive index of the polymer i
  • di the layer thickness of the polymer i.
  • [Infrared reflective layer 2] was found to exhibit strong primary reflection at a wavelength ( ⁇ I) of 1,400 nm in the near-infrared spectral region.
  • ⁇ I wavelength of 1,400 nm in the near-infrared spectral region.
  • secondary, tertiary and quaternary reflections were suppressed. Therefore, secondary reflection at a wavelength of 700 nm ( ⁇ I / 2) in the red region of visible light, tertiary reflection at a wavelength of 467 nm ( ⁇ I / 3) in the blue region of visible light, and 350 nm in the ultraviolet region. All fourth-order reflections at a wavelength of ( ⁇ I / 4) were suppressed.
  • Second growth step of tabular silver particles-- After stirring the said solution for 30 minutes, 71.1 mL of 0.35M potassium hydroquinonesulfonate aqueous solution was added, and 200 g of 7 mass% gelatin aqueous solution was added. To this solution was added a white precipitate mixture formed by mixing 107 mL of a 0.25 M aqueous sodium sulfite solution and 107 mL of a 0.47 M aqueous silver nitrate solution. This was stirred for 300 minutes, and flat silver particle dispersion liquid a1 was obtained.
  • silver hexagonal silver tabular grains having an average equivalent circle diameter of 310 nm (hereinafter referred to as Ag hexagonal tabular grains) are generated. confirmed. Further, when the thickness of the Ag hexagonal tabular grains was measured with an atomic force microscope (Nanocute II, manufactured by Seiko Instruments Inc.), the average hexagonal tabular grains having an aspect ratio of 23.8 and 13 nm were formed. I understood.
  • tabular silver particles were evaluated as follows. The results are shown in Tables 1 and 2.
  • ⁇ Evaluation of metal particles >> -Ratio of flat metal particles, average particle diameter (average equivalent circle diameter), coefficient of variation-
  • the shape uniformity of tabular silver particles is the shape of 200 particles arbitrarily extracted from the observed SEM image, A is a hexagonal shape or circular shape, and the shape is an irregular shape such as a teardrop shape.
  • B was subjected to image analysis, and the ratio (number%) of the number of particles corresponding to A was determined.
  • the particle diameter of 100 particles corresponding to A is measured with a digital caliper, the average value is defined as the average particle diameter (average equivalent circle diameter), and the standard deviation of the particle size distribution is the average particle diameter (average equivalent circle diameter). ) To obtain the coefficient of variation (%).
  • AFM atomic force microscope
  • a coating solution 1 having the composition shown below was prepared.
  • Composition of coating solution 1 Polyester latex aqueous dispersion: Finetex ES-650 (Manufactured by DIC, solid content concentration 30% by mass) 28.2 parts by mass
  • Surfactant A Rapisol A-90 (Nippon Yushi Co., Ltd., solid content concentration 1% by mass) 12.5 parts by mass
  • Surfactant B Aronactee CL-95 (Sanyo Chemical Industries, Ltd., solid content concentration 1% by mass) 15.5 parts by weight
  • Example 1 On one surface of [Infrared reflective layer 1], coating solution 1 was applied using a wire bar so that the average thickness after drying was 0.08 ⁇ m. Then, it heated at 150 degreeC for 10 minute (s), dried and solidified, the metal particle content layer was formed, and the heat ray shielding material of Example 1 was produced.
  • the average thickness can be determined by peeling a part of the coating film with an adhesive tape and measuring the stepped portion between the base and the coating film with a stylus roughness meter (DEKTAK).
  • Example 1-1 Production of heat ray shielding material having adhesive layer
  • the adhesive layer was bonded together.
  • the pressure-sensitive adhesive PD-S1 manufactured by Panac Co., Ltd. was used, and the surface of the pressure-sensitive adhesive, from which one release sheet was peeled, was bonded to the surface of the heat ray shielding material by overlapping with the metal particle-containing layer surface.
  • a heat ray shielding material having the adhesive layer of Example 1-1 was produced.
  • Example 1-2 Production of bonded structure of heat ray shielding material
  • the obtained heat ray shielding material release sheet having the adhesive layer was peeled off and bonded to transparent glass (thickness: 3 mm) to produce a heat ray shielding material bonded structure of Example 1-2.
  • the transparent glass used is one that has been wiped off with isopropyl alcohol and left to stand.
  • a rubber roller is used and the surface pressure is 0.5 kg / cm 2 at 25 ° C. and 65% humidity. Crimped.
  • Example 1-3 Production of laminated glass
  • the heat ray shielding material of Example 1 was sandwiched from both sides with a polyvinyl butyral film (thickness 0.38 mm, S-LECT B, manufactured by Sekisui Chemical Co., Ltd.), and further sandwiched between 2 mm thick glass plates from both sides of the laminate (each The size in the plane direction was 50 mm square). In that state, it was temporarily pressure-bonded through a roll laminator having a metal roll heated at 60 ° C. The temporarily pressure-bonded sample was put in an autoclave and subjected to main pressure bonding by autoclaving under conditions of 130 ° C., 13 atm and 1 hour to obtain a laminated glass of Example 1-3.
  • the reflection spectrum and transmission spectrum of each produced heat ray shielding material were measured using an ultraviolet-visible near-infrared spectrometer (manufactured by JASCO Corporation, V-670).
  • an absolute reflectance measurement unit ARV-474, manufactured by JASCO Corporation was used, and the incident light passed through a 45 ° polarizing plate and was regarded as incident light that can be regarded as non-polarized light.
  • the shielding coefficient was calculated
  • the shielding coefficient (0 to 1) is small.
  • Example 2 In Example 1, instead of [Infrared reflective layer 1], [Infrared reflective layer 2] was used, except that the coating liquid 1 was applied on one surface of [Infrared reflective layer 2].
  • the heat ray shielding material of Example 2 the heat ray shielding material having the adhesive layer of Example 2-1, the bonded structure of the heat ray shielding material of Example 2-2, and the combination of Example 2-3 Glass was produced.
  • Example 1 In Example 1, except that the coating liquid 1 was not applied, the heat ray shielding material of Comparative Example 1, the heat ray shielding material having the adhesive layer of Comparative Example 1-1, and Comparative Example 1 were the same as Example 1. -2 heat ray shielding material laminated structure and Comparative Example 1-3 laminated glass were produced.
  • Example 2 In Example 1, the heat ray shielding material of Comparative Example 2 was used in the same manner as in Example 1 except that instead of the coating liquid 1, an ITO hard coat coating liquid (EI-1 manufactured by Mitsubishi Materials Corporation) was applied. A heat ray shielding material having an adhesive layer of Comparative Example 2-1, a laminated structure of the heat ray shielding material of Comparative Example 2-2, and a laminated glass of Comparative Example 2-3 were produced.
  • the ITO particles have a transmittance of 1,400 nm to 2,200 nm of 10% or less and a visible transmittance of 90%.
  • Example 3 (Comparative Example 3)
  • the heat ray shielding material of Comparative Example 3 the heat ray shielding material having the adhesive layer of Comparative Example 3-1, and Comparative Example 3 were the same as Example 2 except that the coating liquid 1 was not applied.
  • Example 4 In Example 1, instead of [Infrared reflective layer 1], a transparent PET film having a thickness of 100 ⁇ m was used, and the coating liquid 1 was applied on one surface of the PET film, as in Example 1.
  • the heat ray shielding material of Comparative Example 4 the heat ray shielding material having the adhesive layer of Comparative Example 4-1, the laminated structure of the heat ray shielding material of Comparative Example 4-2, and the laminated glass of Comparative Example 4-3 Produced.
  • Example 2 The characteristics of the heat ray shielding materials of Example 2 and Comparative Examples 1 to 4 were evaluated in the same manner as in Example 1. The results are shown in Table 3. Moreover, the spectrum of the comparative example 4 (only a metal particle content layer) is shown in FIG. 3, and the reflection spectrum of the comparative example 1 (only [infrared reflective layer 1]) is shown in FIG.
  • the heat ray shielding material of the present invention can improve the reflectance of infrared rays over a wide band and can achieve both high light transmittance in the visible light region.
  • the heat ray shielding material of the present invention can improve the reflectance of infrared rays over a wide band and can achieve both high light transmittance in the visible light region, for example, films for vehicles such as automobiles and buses, bonded structures, As a laminated glass, a building material film, a laminated structure, a laminated glass, etc., it can be suitably used as various members that are required to prevent the transmission of heat rays.

Landscapes

  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)
  • Optical Filters (AREA)

Abstract

The present invention provides a heat ray-shielding material that improves reflectivity of infrared rays across a broad region while achieving high transparency in the visible light region, and provides a laminated structure and laminated glass that use this heat ray-shielding material. This heat ray-shielding material has a metallic-particle-containing layer containing at least one type of metal particle and an infrared-ray-reflecting layer obtained by stacking in alternating fashion 5 to 200 layers of at least two types of transparent thin layers having mutually different refractive indexes, wherein the metal particles are hexagonal or round in shape, and flat metal particles account for 60% or more of the particles.

Description

熱線遮蔽材、貼合せ構造体及び合わせガラスHeat ray shielding material, laminated structure and laminated glass
 本発明は、広帯域にわたって赤外線の反射率を向上しつつも、可視光領域における高い光透過性を実現する、熱線遮蔽材、かかる熱線遮蔽材を用いた貼合せ構造体、及び合わせガラスに関する。 The present invention relates to a heat ray shielding material, a laminated structure using such a heat ray shielding material, and laminated glass, which achieves high light transmittance in the visible light region while improving infrared reflectance over a wide band.
 近年、二酸化炭素削減のための省エネルギー施策の一つとして、自動車や建物の窓に対する熱線遮蔽性付与材料が開発されている。熱線遮蔽性付与材料について、熱線遮蔽性(日射熱取得率)の観点からは、吸収した光の室内への再放射(吸収した日射エネルギーの約1/3量が室内に放射される)ことがある熱線吸収型よりも、そもそも再放射をしない熱線反射型が望ましい。そのことから、熱線反射型の熱線遮蔽性付与材料について様々な提案がなされている。 In recent years, heat ray shielding materials for automobile and building windows have been developed as one of the energy-saving measures to reduce carbon dioxide. About heat ray shielding imparting material, from the viewpoint of heat ray shielding properties (acquisition rate of solar heat), re-radiation of absorbed light into the room (about 1/3 of the absorbed solar energy is emitted into the room) A heat ray reflective type that does not re-emit in the first place is preferable to a certain heat ray absorbing type. Therefore, various proposals have been made for heat ray reflective heat ray shielding imparting materials.
 例えば、金属Ag薄膜は、その反射率の高さから、熱線反射材として一般に使用されているが、可視光や熱線だけでなく電波も反射してしまうため、可視光透過性及び電波透過性が低いことが問題となっていた。可視光透過性を上げるために、Ag及びZnO多層膜を利用したLow-Eガラス(例えば旭硝子株式会社製)は、広く建物に採用されているが、Low-Eガラスは、ガラス表面に金属Ag薄膜が形成されているため、電波透過性が低いという課題があった。 For example, a metal Ag thin film is generally used as a heat ray reflecting material because of its high reflectance, but it reflects not only visible light and heat rays but also radio waves, so that it has visible light permeability and radio wave permeability. Low was a problem. Low-E glass (for example, manufactured by Asahi Glass Co., Ltd.) using Ag and ZnO multilayer film is widely used in buildings in order to increase visible light transmittance, but Low-E glass is made of metal Ag on the glass surface. Since the thin film was formed, there existed a subject that radio wave permeability was low.
 上記課題を解決するため、例えば、電波透過性を付与した島状Ag粒子付きガラスが提案されている。また、蒸着により製膜したAg薄膜をアニールすることにより、粒状Agを形成したガラスが提案されている(特許文献1参照)。 In order to solve the above problems, for example, a glass with island-shaped Ag particles imparted with radio wave permeability has been proposed. Moreover, the glass which formed granular Ag by annealing the Ag thin film formed by vapor deposition is proposed (refer patent document 1).
 或いは、ポリマー多層押出しフィルムなどの互いに屈折率が異なる少なくとも2種の透明薄層が5層~200層交互積層された赤外線反射層と、錫ドープ酸化インジウム(ITO)などの導電性微粒子の分散膜からなる赤外線吸収層とを有する機能性フィルムであるポリマー多層押出しフィルムが提案されている(特許文献2参照)。 Alternatively, an infrared reflective layer in which 5 to 200 layers of at least two transparent thin layers having different refractive indexes are alternately laminated and a dispersion film of conductive fine particles such as tin-doped indium oxide (ITO), such as a polymer multilayer extruded film A polymer multilayer extruded film, which is a functional film having an infrared absorbing layer made of, has been proposed (see Patent Document 2).
特許第3454422号公報Japanese Patent No. 3454422 特開2010-222233号公報JP 2010-222233 A
 しかし、特許文献1に記載のガラスでは、アニールにより粒状Agを形成しているため、粒子サイズ、形状、面積率などを制御することが難しく、熱線の反射波長、帯域等の制御、可視光透過率の向上などが難しく、その結果、赤外光の中で太陽光エネルギーが高い短波長側の赤外線を十分に遮蔽できないという問題があった。
 また、特許文献2に記載の機能性フィルムでは、ポリマー多層押出しフィルムは赤外線領域の反射に有効であるが、可視光領域を透明に保つためには、可視光領域における第二高調波の発生を押さえる必要があり、そのため、赤外線反射領域を800~1,100nm近辺に絞る必要がある。そのため、この提案では、1,100nm以降の赤外線遮蔽を、ITOなどを含む赤外線吸収層で補填している。その場合、熱に変わりやすい成分が多いため発熱の抑制が不十分となり、遮蔽係数が十分低くならないという問題がある。また、上記赤外線遮蔽フィルタを窓ガラスに貼り付けた場合、太陽光線が当たる場所と当たらない場所で温度上昇が異なるため、フィルムの膨張率に違いが生じる影響でガラスが割れる、いわゆる熱割れという現象が起こるという問題があった。
 したがって、全帯域にわたり赤外線反射率が向上し、かつ可視光領域における高い光透過性を兼ね備える熱線遮蔽材、並びに該熱線遮蔽材を用いた貼合せ構造体及び合わせガラスが望まれているのが現状である。
However, in the glass described in Patent Document 1, since granular Ag is formed by annealing, it is difficult to control the particle size, shape, area ratio, etc., control of the reflection wavelength, band, etc. of heat rays, visible light transmission As a result, it is difficult to improve the rate, and as a result, there is a problem that infrared rays on the short wavelength side where solar energy is high in infrared light cannot be sufficiently shielded.
Further, in the functional film described in Patent Document 2, the polymer multilayer extruded film is effective for reflection in the infrared region, but in order to keep the visible light region transparent, the generation of the second harmonic in the visible light region is prevented. Therefore, it is necessary to limit the infrared reflection region to around 800 to 1,100 nm. Therefore, in this proposal, infrared shielding after 1,100 nm is supplemented with an infrared absorbing layer containing ITO or the like. In that case, since there are many components that easily change to heat, there is a problem that the suppression of heat generation is insufficient and the shielding coefficient is not sufficiently low. In addition, when the infrared shielding filter is attached to a window glass, the temperature rises differently in places where it is not exposed to sunlight, so the glass breaks due to the difference in the expansion coefficient of the film, so-called thermal cracking phenomenon There was a problem that happened.
Therefore, there is a demand for a heat ray shielding material having improved infrared reflectance over the entire band and having high light transmittance in the visible light region, and a laminated structure and laminated glass using the heat ray shielding material. It is.
 本発明は、従来における上記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、広帯域にわたって赤外線の反射率を向上しつつも、可視光領域における高い光透過性を実現する、熱線遮蔽材、かかる熱線遮蔽材を用いた貼合せ構造体、及び合わせガラスを提供することを目的とする。 The present invention aims to solve the above-mentioned problems and achieve the following objects. That is, the present invention provides a heat ray shielding material, a laminated structure using such a heat ray shielding material, and a laminated glass that achieves high light transmittance in the visible light region while improving infrared reflectance over a wide band. The purpose is to provide.
 上記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 少なくとも1種の金属粒子を含む金属粒子含有層と、
 互いに屈折率が異なる少なくとも2種の透明薄層が5層~200層交互積層された赤外線反射層と、を有する熱線遮蔽材であって、
 金属粒子は、六角形状乃至円形状であって平板状の金属粒子を含み、
 金属粒子含有層に含まれる金属粒子の全粒子数に対する、平板状の金属粒子の比率が60個数%以上である、ことを特徴とする熱線遮蔽材。
 <2> 透明薄層は、ポリマーを含む層である、<1>に記載の熱線遮蔽材である。
 <3> 赤外線反射層は、透明薄層を、交互積層押出し、交互塗布、及び交互薄層ラミネートの少なくともいずれかを実行することにより得られる<1>から<2>のいずれかに記載の熱線遮蔽材である。
 <4> 赤外線反射層の反射スペクトルの最大波長と、金属粒子含有層の反射スペクトルの最大波長との差が、100nm以上である<1>から<3>のいずれかに記載の熱線遮蔽材である。
 <5> 赤外線反射層の反射スペクトルの最大波長が700nm~1,500nmであり、金属粒子含有層の反射スペクトルの最大波長が900nm~2,000nmであり、かつ遮蔽係数が0.7以下である<1>から<4>のいずれかに記載の熱線遮蔽材である。
 <6> 平板状の金属粒子の全粒子数に対し、主平面が、金属粒子含有層の一方の表面に対して0°~±30°の範囲で面配向している平板状の金属粒子の比率が50個数%以上である<1>から<5>のいずれかに記載の熱線遮蔽材である。
 <7> 平板状の金属粒子の全粒子数に対し、主平面が、金属粒子含有層の一方の表面に対して0°~±30°の範囲で面配向している平板状の金属粒子の比率が80個数%以上である<1>から<6>のいずれかに記載の熱線遮蔽材である。
 <8> 平板状の金属粒子の全粒子数に対し、主平面が、金属粒子含有層の一方の表面に対して0°~±30°の範囲で面配向している平板状の金属粒子の比率が90個数%以上である<1>から<7>のいずれかに記載の熱線遮蔽材である。
 <9> 平板状の金属粒子の粒度分布の変動係数が、30%以下である<1>から<8>のいずれかに記載の熱線遮蔽材である。
 <10> 平板状の金属粒子の平均粒子径が70nm~500nmであり、
 平板状の金属粒子のアスペクト比(平均粒子径/平均粒子厚み)が10~45である<1>から<9>のいずれかに記載の熱線遮蔽材である。
 <11> 平板状の金属粒子が、少なくとも銀を含む<1>から<10>のいずれかに記載の熱線遮蔽材である。
 <12> 熱線遮蔽材の可視光線透過率が、70%以上である<1>から<11>のいずれかに記載の熱線遮蔽材である。
 <13> 粘着層を更に有する<1>から<12>のいずれかに記載の熱線遮蔽材である。
 <14> <1>から<13>のいずれかに記載の熱線遮蔽材と、ガラス又はプラスチックのいずれかと、を貼り合わせてなることを特徴とする貼合せ構造体である。
 <15> 少なくとも1つの<1>から<12>のいずれかに記載の熱線遮蔽材と、前記熱線遮蔽材を挟持する少なくとも2層の中間層と、前記中間層を挟持する少なくとも2枚のガラスとを含む、ことを特徴とする合わせガラスである。
 <16> 中間層が、ポリビニルブチラール及びエチレンビニル共重合体の少なくともいずれかを含む<15>に記載の合わせガラスである。
Means for solving the above problems are as follows. That is,
<1> a metal particle-containing layer containing at least one metal particle;
An infrared reflective layer in which 5 to 200 layers of at least two transparent thin layers having different refractive indexes are alternately laminated, and a heat ray shielding material,
The metal particles include hexagonal or circular and flat metal particles,
A heat ray shielding material, wherein the ratio of flat metal particles to the total number of metal particles contained in the metal particle-containing layer is 60% by number or more.
<2> The transparent thin layer is the heat ray shielding material according to <1>, which is a layer containing a polymer.
<3> The heat ray according to any one of <1> to <2>, wherein the infrared reflective layer is obtained by executing at least one of alternating thin layer extrusion, alternating coating, and alternating thin layer lamination, from the transparent thin layer. It is a shielding material.
<4> The heat ray shielding material according to any one of <1> to <3>, wherein the difference between the maximum wavelength of the reflection spectrum of the infrared reflection layer and the maximum wavelength of the reflection spectrum of the metal particle-containing layer is 100 nm or more. is there.
<5> The maximum wavelength of the reflection spectrum of the infrared reflection layer is 700 nm to 1,500 nm, the maximum wavelength of the reflection spectrum of the metal particle-containing layer is 900 nm to 2,000 nm, and the shielding coefficient is 0.7 or less. It is a heat ray shielding material in any one of <1> to <4>.
<6> With respect to the total number of tabular metal particles, the main plane has a plane orientation in the range of 0 ° to ± 30 ° with respect to one surface of the metal particle-containing layer. The heat ray shielding material according to any one of <1> to <5>, wherein the ratio is 50% by number or more.
<7> With respect to the total number of tabular metal particles, the main plane has a plane orientation in the range of 0 ° to ± 30 ° with respect to one surface of the metal particle-containing layer. The heat ray shielding material according to any one of <1> to <6>, wherein the ratio is 80% by number or more.
<8> With respect to the total number of tabular metal particles, the main plane has a plane orientation in the range of 0 ° to ± 30 ° with respect to one surface of the metal particle-containing layer. The heat ray shielding material according to any one of <1> to <7>, wherein the ratio is 90% by number or more.
<9> The heat ray shielding material according to any one of <1> to <8>, wherein a coefficient of variation in particle size distribution of the flat metal particles is 30% or less.
<10> The average particle size of the flat metal particles is 70 nm to 500 nm,
The heat ray shielding material according to any one of <1> to <9>, wherein the flat metal particles have an aspect ratio (average particle diameter / average particle thickness) of 10 to 45.
<11> The heat ray shielding material according to any one of <1> to <10>, wherein the flat metal particles include at least silver.
<12> The heat ray shielding material according to any one of <1> to <11>, wherein the visible light transmittance of the heat ray shielding material is 70% or more.
<13> The heat ray shielding material according to any one of <1> to <12>, further including an adhesive layer.
<14> A laminated structure comprising the heat ray shielding material according to any one of <1> to <13> and any one of glass and plastic.
<15> At least one heat ray shielding material according to any one of <1> to <12>, at least two intermediate layers that sandwich the heat ray shielding material, and at least two glasses that sandwich the intermediate layer It is the laminated glass characterized by including.
<16> The laminated glass according to <15>, wherein the intermediate layer contains at least one of polyvinyl butyral and an ethylene vinyl copolymer.
 本発明によると、従来技術の諸問題を解決し、上記目的を達成することができ、広帯域にわたって赤外線の反射率を向上できると共に、可視光領域における高い光透過性を両立可能な熱線遮蔽材、並びに該熱線遮蔽材を用いた貼合せ構造体及び合わせガラスを提供することができる。 According to the present invention, it is possible to solve the problems of the prior art, achieve the above-mentioned object, improve the infrared reflectance over a wide band, and simultaneously achieve high light transmittance in the visible light region, In addition, a laminated structure and a laminated glass using the heat ray shielding material can be provided.
図1Aは、本発明の熱線遮蔽材に含まれる平板状の金属粒子の形状の一例を示した概略斜視図であって、円形状であって平板状の金属粒子を示す。図1Bは、本発明の熱線遮蔽材に含まれる平板状の金属粒子の形状の一例を示した概略斜視図であって、六角形状であって平板状の金属粒子を示す。FIG. 1A is a schematic perspective view showing an example of the shape of flat metal particles contained in the heat ray shielding material of the present invention, and shows circular and flat metal particles. FIG. 1B is a schematic perspective view showing an example of the shape of flat metal particles contained in the heat ray shielding material of the present invention, and shows hexagonal flat metal particles. 図2Aは、本発明の熱線遮蔽材において、平板状の金属粒子を含む金属粒子含有層の存在状態を示した概略断面図であって、最も理想的な存在状態を示す。図2Bは、本発明の熱線遮蔽材において、平板状の金属粒子を含む金属粒子含有層の存在状態を示した概略断面図であって、金属粒子含有層の一方の表面と平板状の金属粒子の平面とのなす角度(θ)を説明する図を示す。図2Cは、本発明の熱線遮蔽材において、平板状の金属粒子を含む金属粒子含有層の存在状態を示した概略断面図であって、金属粒子含有層の熱線遮蔽材の深さ方向における存在領域を示す図である。FIG. 2A is a schematic cross-sectional view showing the existence state of a metal particle-containing layer containing flat metal particles in the heat ray shielding material of the present invention, and shows the most ideal existence state. FIG. 2B is a schematic cross-sectional view showing the existence state of the metal particle-containing layer containing flat metal particles in the heat ray shielding material of the present invention, and one surface of the metal particle-containing layer and the flat metal particles The figure explaining the angle ((theta)) which makes with a plane is shown. FIG. 2C is a schematic cross-sectional view showing the existence state of a metal particle-containing layer containing flat metal particles in the heat ray shielding material of the present invention, and the presence of the metal particle-containing layer in the depth direction of the heat ray shielding material. It is a figure which shows an area | region. 図3は、比較例4の熱線遮蔽材における透過スペクトル、反射スペクトル及び吸収スペクトルを示すグラフである。FIG. 3 is a graph showing a transmission spectrum, a reflection spectrum, and an absorption spectrum in the heat ray shielding material of Comparative Example 4. 図4は、比較例1の熱線遮蔽材における反射スペクトルを示すグラフである。FIG. 4 is a graph showing a reflection spectrum in the heat ray shielding material of Comparative Example 1.
(熱線遮蔽材)
 本発明の熱線遮蔽材は、少なくとも1種の金属粒子を含む金属粒子含有層と、互いに屈折率が異なる少なくとも2種の透明薄層が5層~200層交互積層された赤外線反射層とを有してなり、更に必要に応じて適宜選択した、粘着層などのその他の層を有する。
(Heat ray shielding material)
The heat ray shielding material of the present invention has a metal particle-containing layer containing at least one kind of metal particles, and an infrared reflecting layer in which 5 to 200 layers of at least two kinds of transparent thin layers having different refractive indexes are alternately laminated. Furthermore, it has other layers, such as a pressure-sensitive adhesive layer, appropriately selected as necessary.
<金属粒子含有層>
 金属粒子含有層は、少なくとも1種の金属粒子を含む層であれば、特に制限はなく、目的に応じて適宜選択することができる。
<Metal particle content layer>
If a metal particle content layer is a layer containing at least 1 sort (s) of metal particle, there will be no restriction | limiting in particular, According to the objective, it can select suitably.
-金属粒子-
 金属粒子としては、平板状の金属粒子を含むものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば平板状の金属粒子の他、粒状、立方体状、六面体状、八面体状、ロッド状などが挙げられる。
 金属粒子含有層において、金属粒子の存在形態としては、金属粒子含有層の一方の表面(赤外線反射層の表面)に対して略水平方向を向いて一平面内に偏在していてもよく、ランダムに配向していてもよいが、略水平方向を向いて一平面内に偏在することが好ましい。略水平方向を向いて一平面内に偏在する形態としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、赤外線反射層と金属粒子とが略接触する形態、赤外線反射層と金属粒子とが熱線遮蔽材の深さ方向に一定の距離で配置されている形態などが挙げられる。
 なお、金属粒子含有層の一方の表面とは、赤外線反射層と接する面であり、赤外線反射層の表面と同様に、フラットな平面である。
 金属粒子の大きさとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、500nm以下の平均粒子径を有するものであってもよい。
 金属粒子の材料としては、特に制限はなく、目的に応じて適宜選択することができるが、熱線(近赤外線)の反射率が高い点から、銀、金、アルミニウム、銅、ロジウム、ニッケル、白金などが好ましい。
-Metal particles-
The metal particles are not particularly limited as long as they contain flat metal particles, and can be appropriately selected according to the purpose. For example, in addition to flat metal particles, granular, cubic, hexahedral, Examples include a face shape and a rod shape.
In the metal particle-containing layer, the presence state of the metal particles may be unevenly distributed in one plane facing a substantially horizontal direction with respect to one surface of the metal particle-containing layer (the surface of the infrared reflecting layer), or randomly. However, it is preferable to be unevenly distributed in one plane in the substantially horizontal direction. The form unevenly distributed in one plane facing the substantially horizontal direction is not particularly limited and can be appropriately selected according to the purpose. For example, the form in which the infrared reflective layer and the metal particles are substantially in contact, the infrared reflective layer And the metal particles are arranged at a certain distance in the depth direction of the heat ray shielding material.
In addition, one surface of the metal particle-containing layer is a surface in contact with the infrared reflective layer, and is a flat plane similarly to the surface of the infrared reflective layer.
There is no restriction | limiting in particular as a magnitude | size of a metal particle, According to the objective, it can select suitably, For example, you may have an average particle diameter of 500 nm or less.
The material of the metal particles is not particularly limited and can be appropriately selected according to the purpose. However, silver, gold, aluminum, copper, rhodium, nickel, platinum are preferred because of the high heat ray (near infrared) reflectance. Etc. are preferable.
-平板状の金属粒子-
 平板状の金属粒子としては、2つの主平面からなる粒子(図1A及び図1B参照)であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、六角形状、円形状、三角形状などが挙げられる。これらの中でも、可視光透過率が高い点で、六角形状、円形状であることが特に好ましい。
 円形状としては、透過型電子顕微鏡(TEM)で平板状の金属粒子を主平面の上方から観察した際に、角が無く、丸い形状であれば特に制限はなく、目的に応じて適宜選択することができる。
 六角形状としては、透過型電子顕微鏡(TEM)で平板状の金属粒子を主平面の上方から観察した際に、六角形状であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、六角形状の角が鋭角のものでも、鈍っているものでもよいが、可視光域の吸収を軽減し得る点で、角が鈍っているものであることが好ましい。角の鈍りの程度としては、特に制限はなく、目的に応じて適宜選択することができる。
 平板状の金属粒子の材料としては、特に制限はなく、金属粒子と同じものを目的に応じて適宜選択することができる。平板状の金属粒子は、少なくとも銀を含むことが好ましい。
-Flat metal particles-
The flat metal particles are not particularly limited as long as they are particles composed of two main planes (see FIGS. 1A and 1B), and can be appropriately selected according to the purpose. For example, a hexagonal shape, a circular shape, Examples include a triangle shape. Among these, a hexagonal shape and a circular shape are particularly preferable in terms of high visible light transmittance.
The circular shape is not particularly limited as long as it has no corners and round shape when the flat metal particles are observed from above the main plane with a transmission electron microscope (TEM), and is appropriately selected according to the purpose. be able to.
The hexagonal shape is not particularly limited as long as it is a hexagonal shape when the flat metal particles are observed from above the main plane with a transmission electron microscope (TEM), and can be appropriately selected according to the purpose. For example, the hexagonal corners may be sharp or dull, but the corners are preferably dull in that the absorption in the visible light region can be reduced. There is no restriction | limiting in particular as a grade of the dullness of an angle | corner, According to the objective, it can select suitably.
There is no restriction | limiting in particular as a material of a flat metal particle, The same thing as a metal particle can be suitably selected according to the objective. The flat metal particles preferably contain at least silver.
 金属粒子含有層に存在する金属粒子のうち、六角形状乃至円盤円形状の平板状の金属粒子は、金属粒子の全個数に対して、60個数%以上であり、65個数%以上が好ましく、70個数%以上が更に好ましい。平板状の金属粒子の割合が、60個数%未満であると、可視光透過率が低くなってしまうことがある。 Among the metal particles present in the metal particle-containing layer, the hexagonal or disc-shaped flat metal particles are 60% by number or more, preferably 65% by number or more, based on the total number of metal particles. A number% or more is more preferable. If the proportion of the flat metal particles is less than 60% by number, the visible light transmittance may be lowered.
[面配向]
 本発明の熱線遮蔽材において、平板状の金属粒子は、その主平面が金属粒子含有層の一方の表面(乃至赤外線反射層の表面)に対して、0°~±30°の範囲で面配向しており、0°~±20°の範囲で面配向していることが好ましい。また、平板状の金属粒子の全粒子数に対し、主平面が、金属粒子含有層の一方の表面に対して0°~±30°の範囲で面配向している平板状の金属粒子の比率が50個数%以上であることが好ましく、より好ましくは、80個数%以上であり、さらに好ましくは、90個数%以上である。なお、平板状の金属粒子の全粒子数に対し、主平面が、金属粒子含有層の一方の表面に対して0°~±30°の範囲で面配向している平板状の金属粒子の個数比率が大きければ大きいほど、赤外線反射性能が向上し、ヘイズが小さくなることから、熱線遮蔽材の透明性が向上することとなる。
 平板状の金属粒子の存在状態は、特に制限はなく、目的に応じて適宜選択することができるが、後述する図2Aのように赤外線反射層上に並んでいることが好ましい。
[Plane orientation]
In the heat ray shielding material of the present invention, the flat metal particles have a plane orientation in the range of 0 ° to ± 30 ° with respect to one surface of the metal particle-containing layer (or the surface of the infrared reflecting layer). It is preferable that the plane orientation is in the range of 0 ° to ± 20 °. The ratio of the flat metal particles whose main plane is plane-oriented in the range of 0 ° to ± 30 ° with respect to one surface of the metal particle-containing layer with respect to the total number of flat metal particles. Is preferably 50% by number or more, more preferably 80% by number or more, and still more preferably 90% by number or more. The number of tabular metal particles in which the main plane is orientated in the range of 0 ° to ± 30 ° with respect to one surface of the metal particle-containing layer with respect to the total number of tabular metal particles. As the ratio is larger, the infrared reflection performance is improved and the haze is reduced, so that the transparency of the heat ray shielding material is improved.
The presence state of the flat metal particles is not particularly limited and may be appropriately selected depending on the purpose. However, it is preferable that the flat metal particles are arranged on the infrared reflecting layer as shown in FIG.
 ここで、図2A~図2Cは、本発明の熱線遮蔽材において、平板状の金属粒子を含む金属粒子含有層の存在状態を示した概略断面図である。図2Aは、金属粒子含有層2中における平板状の金属粒子3の最も理想的な存在状態を示す。図2Bは、赤外線反射層1の平面と平板状の金属粒子3の平面とのなす角度(±θ)を説明する図である。図2Cは、金属粒子含有層2の熱線遮蔽材の深さ方向における存在領域を示すものである。
 図2Bにおいて、赤外線反射層1の表面と、平板状の金属粒子3の主平面乃至主平面の延長線とのなす角度(±θ)は、の面配向における所定の範囲に対応する。即ち、面配向とは、熱線遮蔽材の断面を観察した際、図2Bに示す傾角(±θ)が小さい状態をいい、特に、図2Aは、赤外線反射層1の表面と平板状の金属粒子3の主平面とが接している状態、即ち、θが0°である状態を示す。赤外線反射層1の表面に対する平板状の金属粒子3の主平面の面配向の角度、即ち図2Bにおけるθが±30°を超えると、熱線遮蔽材の所定の波長(例えば、可視光域長波長側から近赤外光領域)の反射率が低下してしまう。
Here, FIG. 2A to FIG. 2C are schematic cross-sectional views showing the presence state of the metal particle-containing layer containing flat metal particles in the heat ray shielding material of the present invention. FIG. 2A shows the most ideal existence state of the plate-like metal particles 3 in the metal particle-containing layer 2. FIG. 2B is a diagram for explaining an angle (± θ) formed by the plane of the infrared reflecting layer 1 and the plane of the flat metal particle 3. FIG. 2C shows the existence region in the depth direction of the heat ray shielding material of the metal particle-containing layer 2.
In FIG. 2B, the angle (± θ) formed between the surface of the infrared reflective layer 1 and the main plane or extension of the main plane of the flat metal particles 3 corresponds to a predetermined range in the plane orientation. That is, the plane orientation means a state in which the inclination angle (± θ) shown in FIG. 2B is small when the cross section of the heat ray shielding material is observed. In particular, FIG. 2A shows the surface of the infrared reflecting layer 1 and the flat metal particles. 3 is in contact with the main plane, that is, a state where θ is 0 °. When the angle of the plane orientation of the main plane of the flat metal particles 3 with respect to the surface of the infrared reflecting layer 1, that is, θ in FIG. 2B exceeds ± 30 °, a predetermined wavelength of the heat ray shielding material (for example, a visible light region long wavelength) The reflectance in the near infrared light region from the side is reduced.
[面配向の評価]
 金属粒子含有層の一方の表面(乃至赤外線反射層の表面)に対して平板状の金属粒子の主平面が面配向しているかどうかの評価としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、適当な断面切片を作製し、この切片における金属粒子含有層及び平板状の金属粒子を観察して評価する方法であってもよい。具体的には、熱線遮蔽材を、ミクロトーム、集束イオンビーム(FIB)を用いて熱線遮蔽材の断面サンプル乃至断面切片サンプルを作製し、これを、各種顕微鏡(例えば、電界放射型走査電子顕微鏡(FE-SEM)等)を用いて観察して得た画像から評価する方法などが挙げられる。
[Evaluation of plane orientation]
The evaluation of whether or not the main plane of the flat metal particles is plane-oriented with respect to one surface of the metal particle-containing layer (or the surface of the infrared reflective layer) is not particularly limited and is appropriately selected according to the purpose. For example, a method may be used in which an appropriate cross section is prepared and the metal particle-containing layer and the flat metal particles in the slice are observed and evaluated. Specifically, as a heat ray shielding material, a microtome and a focused ion beam (FIB) are used to prepare a cross-sectional sample or a cross-section sample of the heat ray shielding material, and this is used for various microscopes (for example, a field emission scanning electron microscope ( FE-SEM) etc.), and a method of evaluating from an image obtained by observation.
 熱線遮蔽材において、平板状の金属粒子を被覆するバインダーが水で膨潤する場合は、液体窒素で凍結した状態の試料を、ミクロトームに装着されたダイヤモンドカッター切断することで、断面サンプル乃至断面切片サンプルを作製してもよい。また、熱線遮蔽材において平板状の金属粒子を被覆するバインダーが水で膨潤しない場合は、断面サンプル乃至断面切片サンプルを作製してもよい。 In the heat ray shielding material, when the binder that covers the flat metal particles swells with water, the sample frozen in liquid nitrogen is cut with a diamond cutter mounted on a microtome to obtain a cross-section sample or a cross-section sample. May be produced. Moreover, when the binder which coat | covers a flat metal particle in a heat ray shielding material does not swell with water, you may produce a cross-section sample thru | or a cross-section piece sample.
 上記の通り作製した断面サンプル乃至断面切片サンプルの観察としては、サンプルにおいて金属粒子含有層の一方の表面(乃至赤外線反射層の表面)に対して平板状の金属粒子の主平面が面配向しているかどうかを確認し得るものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、FE-SEM、TEM、光学顕微鏡などを用いた観察が挙げられる。断面サンプルの場合は、FE-SEMにより、断面切片サンプルの場合は、TEMにより観察を行ってもよい。FE-SEMで評価する場合は、平板状の金属粒子の形状と傾角(図2Bの±θ)が明瞭に判断できる空間分解能を有することが好ましい。 As the observation of the cross-section sample or cross-section sample prepared as described above, in the sample, the main plane of the plate-like metal particles is plane-oriented with respect to one surface of the metal particle-containing layer (or the surface of the infrared reflective layer). As long as it can be confirmed, it can be appropriately selected according to the purpose, and examples thereof include observation using an FE-SEM, TEM, optical microscope, and the like. In the case of a cross-section sample, observation may be performed by FE-SEM, and in the case of a cross-section sample, observation may be performed by TEM. When evaluating by FE-SEM, it is preferable to have a spatial resolution with which the shape and inclination angle (± θ in FIG. 2B) of the flat metal particles can be clearly determined.
[平均粒子径(平均円相当径)及び平均粒子径(平均円相当径)の粒度分布]
 平板状の金属粒子の平均粒子径(平均円相当径)としては、特に制限はなく、目的に応じて適宜選択することができるが、70nm~500nmが好ましく、80nm~400nmがより好ましい。平均粒子径(平均円相当径)が、70nm未満であると、平板状の金属粒子の吸収の寄与が反射より大きくなるため十分な熱線反射能が得られなくなることがあり、500nmを超えると、ヘイズ(散乱)が大きくなり、熱線遮蔽材の透明性が損なわれてしまうことがある。
 ここで、平均粒子径(平均円相当径)とは、TEMで粒子を観察して得た像から任意に選んだ200個の平板状の金属粒子の主平面直径(最大長さ)の平均値を意味する。
 金属粒子含有層中に平均粒子径(平均円相当径)が異なる2種以上の金属粒子を含むことができ、この場合、金属粒子の平均粒子径(平均円相当径)のピークが2つ以上、即ち2つの平均粒子径(平均円相当径)を有していてもよい。
[Average particle diameter (average equivalent circle diameter) and average particle diameter (average equivalent circle diameter) particle size distribution]
The average particle diameter (average equivalent circle diameter) of the flat metal particles is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 70 nm to 500 nm, and more preferably 80 nm to 400 nm. When the average particle diameter (average equivalent circle diameter) is less than 70 nm, the contribution of the absorption of the flat metal particles is larger than the reflection, so that sufficient heat ray reflectivity may not be obtained. Haze (scattering) increases, and the transparency of the heat ray shielding material may be impaired.
Here, the average particle diameter (average equivalent circle diameter) is an average value of main plane diameters (maximum lengths) of 200 flat metal particles arbitrarily selected from images obtained by observing particles with a TEM. Means.
Two or more kinds of metal particles having different average particle diameters (average equivalent circle diameters) can be included in the metal particle-containing layer. In this case, two or more peaks of the average particle diameter (average equivalent circle diameter) of the metal particles are present. That is, you may have two average particle diameters (average circle equivalent diameter).
 本発明の熱線遮蔽材において、平板状の金属粒子の粒度分布における変動係数としては、30%以下が好ましく、20%以下がより好ましい。変動係数が、30%を超えると、熱線遮蔽材における熱線の反射波長域がブロードになってしまうことがある。
 ここで、平板状の金属粒子の粒度分布における変動係数は、例えば上記の通り得た平均値の算出に用いた200個の平板状の金属粒子の粒子径の分布範囲をプロットし、粒度分布の標準偏差を求め、上記の通り得た主平面直径(最大長さ)の平均値(平均粒子径(平均円相当径))で割った値(%)である。
In the heat ray shielding material of the present invention, the coefficient of variation in the particle size distribution of the flat metal particles is preferably 30% or less, and more preferably 20% or less. When the variation coefficient exceeds 30%, the reflection wavelength region of the heat ray in the heat ray shielding material may become broad.
Here, the coefficient of variation in the particle size distribution of the flat metal particles is plotted, for example, by plotting the particle size distribution range of the 200 flat metal particles used for calculating the average value obtained as described above. The standard deviation is obtained, and is a value (%) divided by the average value (average particle diameter (average equivalent circle diameter)) of the main plane diameter (maximum length) obtained as described above.
[アスペクト比]
 平板状の金属粒子のアスペクト比としては、特に制限はなく、目的に応じて適宜選択することができるが、波長900nm~2,000nmの赤外光領域での反射率が高くなる点から、10~45が好ましく、20~35がより好ましい。アスペクト比が、10未満であると、反射波長が900nmより小さくなり、45を超えると、反射波長が2,000nmより長くなり、十分な熱線反射能が得られないことがある。
 アスペクト比は、平板状の金属粒子の平均粒子径(平均円相当径)を平板状の金属粒子の平均粒子厚みで除算した値を意味する。平均粒子厚みは、平板状の金属粒子の主平面間距離に相当し、例えば、図1A及び図1Bに示す通りであり、原子間力顕微鏡(AFM)により測定することができる。
 AFMによる平均粒子厚みの測定方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガラス基板に平板状の金属粒子を含む粒子分散液を滴下し、乾燥させて、粒子1個の厚みを測定する方法などが挙げられる。
[aspect ratio]
The aspect ratio of the flat metal particles is not particularly limited and may be appropriately selected depending on the intended purpose. However, since the reflectance in the infrared light region having a wavelength of 900 nm to 2,000 nm is high, the aspect ratio is 10%. To 45 is preferable, and 20 to 35 is more preferable. When the aspect ratio is less than 10, the reflection wavelength becomes smaller than 900 nm, and when it exceeds 45, the reflection wavelength becomes longer than 2,000 nm and sufficient heat ray reflectivity may not be obtained.
The aspect ratio means a value obtained by dividing the average particle diameter (average equivalent circle diameter) of the flat metal particles by the average particle thickness of the flat metal particles. The average particle thickness corresponds to the distance between the main planes of the flat metal particles, and is, for example, as shown in FIGS. 1A and 1B and can be measured by an atomic force microscope (AFM).
The method for measuring the average particle thickness by AFM is not particularly limited and can be appropriately selected depending on the purpose.For example, a particle dispersion containing flat metal particles is dropped onto a glass substrate and dried. For example, a method of measuring the thickness of one particle may be used.
[平板状の金属粒子の存在範囲]
 本発明の熱線遮蔽材において、図2Cに示すように、金属粒子含有層2における平板状の金属粒子3を構成する金属のプラズモン共鳴波長をλとし、金属粒子含有層2における媒質の屈折率をnとするとき、金属粒子含有層2が、熱線遮蔽材の水平面からの深さ方向において、0~(λ/n)/4の範囲で存在することが好ましい。この範囲外であると、熱線遮蔽材の上側と下側のそれぞれの金属粒子含有層の界面空気界面での反射波の位相により反射波の振幅が強めあう効果が小さくなってしまい、ヘイズ特性、可視光透過率及び熱線最大反射率が低下してしまうことがある。
[Existence range of flat metal particles]
In the heat ray shielding material of the present invention, as shown in FIG. 2C, the plasmon resonance wavelength of the metal constituting the flat metal particle 3 in the metal particle-containing layer 2 is λ, and the refractive index of the medium in the metal particle-containing layer 2 is When n is set, the metal particle-containing layer 2 is preferably present in the range of 0 to (λ / n) / 4 in the depth direction from the horizontal plane of the heat ray shielding material. Outside this range, the effect of increasing the amplitude of the reflected wave due to the phase of the reflected wave at the interface air interface between the upper and lower metal particle-containing layers of the heat ray shielding material is reduced, haze characteristics, The visible light transmittance and the maximum heat ray reflectance may decrease.
 金属粒子含有層における平板状の金属粒子を構成する金属のプラズモン共鳴波長λは、特に制限はなく、目的に応じて適宜選択することができるが、熱線反射性能を付与する点で、400nm~2,500nmであることが好ましく、可視光透過率を付与する点から、700nm~2,500nmであることがより好ましい。
 金属粒子含有層における媒質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリビニルアセタール樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリアクリレート樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、飽和ポリエステル樹脂、ポリウレタン樹脂、ゼラチンやセルロース等の天然高分子等のポリマー、二酸化珪素、酸化アルミニウム等の無機物などが挙げられる。
 媒質の屈折率nは、1.4~1.7であることが好ましい。
The plasmon resonance wavelength λ of the metal constituting the flat metal particles in the metal particle-containing layer is not particularly limited and can be appropriately selected according to the purpose, but is 400 nm to 2 in terms of imparting heat ray reflection performance. , 500 nm is preferable, and from the viewpoint of imparting visible light transmittance, 700 nm to 2,500 nm is more preferable.
There is no restriction | limiting in particular as a medium in a metal particle content layer, According to the objective, it can select suitably, For example, polyvinyl acetal resin, polyvinyl alcohol resin, polyvinyl butyral resin, polyacrylate resin, polymethylmethacrylate resin, polycarbonate resin , Polyvinyl chloride resin, saturated polyester resin, polyurethane resin, polymers such as natural polymers such as gelatin and cellulose, and inorganic substances such as silicon dioxide and aluminum oxide.
The refractive index n of the medium is preferably 1.4 to 1.7.
[平板状の金属粒子の面積率]
 熱線遮蔽材を上から見た時の熱線遮蔽材の面積A(金属粒子含有層に対して垂直方向から見たときの金属粒子含有層の全投影面積A)に対する平板状の金属粒子の面積の合計値Bの割合である面積率〔(B/A)×100〕としては、15%以上が好ましく、20%以上がより好ましい。面積率が、15%未満であると、熱線の最大反射率が低下してしまい、遮熱効果が十分に得られないことがある。
 ここで、面積率は、例えば熱線遮蔽材を上からSEM観察で得られた画像や、AFM(原子間力顕微鏡)観察で得られた画像を画像処理することにより測定することができる。
[Area ratio of flat metal particles]
The area of the plate-like metal particles relative to the area A of the heat ray shielding material when the heat ray shielding material is viewed from above (the total projected area A of the metal particle containing layer when viewed from the direction perpendicular to the metal particle containing layer) The area ratio [(B / A) × 100], which is the ratio of the total value B, is preferably 15% or more, and more preferably 20% or more. When the area ratio is less than 15%, the maximum reflectance of the heat ray is lowered, and the heat shielding effect may not be sufficiently obtained.
Here, the area ratio can be measured, for example, by performing image processing on an image obtained by SEM observation of the heat ray shielding material from above or an image obtained by AFM (atomic force microscope) observation.
[平板状の金属粒子の平均粒子間距離]
 金属粒子含有層における水平方向に隣接する平板状の金属粒子の平均粒子間距離としては、可視光線透過率及び熱線の最大反射率の点から、平板状の金属粒子の平均粒子径の1/10以上が好ましい。
 平板状の金属粒子の水平方向の平均粒子間距離が、平板状の金属粒子の平均粒子径の1/10未満となると、熱線の最大反射率が低下してしまう。また、水平方向の平均粒子間距離は、可視光線透過率の点で、不均一(ランダム)であることが好ましい。ランダムでない場合、即ち、均一であると、可視光線の吸収が起こり、透過率が低下してしまうことがある。
[Average distance between flat metal particles]
The average inter-particle distance between the flat metal particles adjacent in the horizontal direction in the metal particle-containing layer is 1/10 of the average particle diameter of the flat metal particles in terms of the visible light transmittance and the maximum reflectance of the heat ray. The above is preferable.
When the average interparticle distance in the horizontal direction of the flat metal particles is less than 1/10 of the average particle diameter of the flat metal particles, the maximum reflectivity of the heat rays is lowered. Further, the average interparticle distance in the horizontal direction is preferably non-uniform (random) in terms of visible light transmittance. If it is not random, that is, if it is uniform, absorption of visible light occurs, and the transmittance may decrease.
 ここで、平板状の金属粒子の水平方向の平均粒子間距離とは、隣り合う2つの粒子の粒子間距離の平均値を意味する。また、平均粒子間距離がランダムであるとは、「100個以上の平板状の金属粒子が含まれるSEM画像を二値化した際の輝度値の2次元自己相関を取ったときに、原点以外に有意な極大点を持たない」ことを意味する。 Here, the average interparticle distance in the horizontal direction of the flat metal particles means the average value of the interparticle distance between two adjacent particles. In addition, the average distance between the particles means that “other than the origin when taking a two-dimensional autocorrelation of luminance values when binarizing an SEM image including 100 or more tabular metal particles. Does not have a significant local maximum. "
[金属粒子含有層の層構成]
 本発明の熱線遮蔽材において、平板状の金属粒子は、図2A~図2Cに示すように、平板状の金属粒子を含む金属粒子含有層の形態で配置される。
 金属粒子含有層としては、図2A~図2Cに示すように単層で構成されてもよく、複数の金属粒子含有層で構成されてもよい。複数の金属粒子含有層で構成される場合、遮熱性能を付与したい波長帯域に応じた遮蔽性能を付与することが可能となる。
 金属粒子含有層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、現実の塗布及び乾燥負荷を考えると、0.01μm~1μmが好ましく、0.02μm~0.5μmがより好ましい。
 ここで、金属粒子含有層の各層の厚みは、例えば、熱線遮蔽材の断面試料をSEM観察した画像より測定することができる。
[Layer structure of metal particle-containing layer]
In the heat ray shielding material of the present invention, the flat metal particles are arranged in the form of a metal particle-containing layer containing flat metal particles, as shown in FIGS. 2A to 2C.
The metal particle-containing layer may be composed of a single layer as shown in FIGS. 2A to 2C, or may be composed of a plurality of metal particle-containing layers. When comprised with a several metal particle content layer, it becomes possible to provide the shielding performance according to the wavelength range | band which wants to provide heat insulation performance.
The thickness of the metal particle-containing layer is not particularly limited and may be appropriately selected depending on the intended purpose. However, in consideration of actual coating and drying load, 0.01 to 1 μm is preferable, and 0.02 to 0. 5 μm is more preferable.
Here, the thickness of each layer of the metal particle-containing layer can be measured, for example, from an image obtained by SEM observation of a cross-sectional sample of the heat ray shielding material.
[平板状の金属粒子の合成方法]
 平板状の金属粒子の合成方法としては、六角形状乃至円形状を合成し得るものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、化学還元法、光化学還元法、電気化学還元法等の液相法などが挙げられる。これらの中でも、形状とサイズ制御性の点で、化学還元法、光化学還元法などの液相法が特に好ましい。六角形乃至三角形状の平板状の金属粒子を合成後、例えば、硝酸、亜硫酸ナトリウム等の銀を溶解する溶解種によるエッチング処理、加熱によるエージング処理などを行うことにより、六角形乃至三角形状の平板状の金属粒子の角を鈍らせて、略六角形状乃至略円形状の平板状の金属粒子を得てもよい。
[Method for synthesizing flat metal particles]
The method for synthesizing the flat metal particles is not particularly limited as long as it can synthesize a hexagonal shape or a circular shape, and can be appropriately selected according to the purpose. For example, a chemical reduction method, a photochemical reduction method, Examples thereof include a liquid phase method such as an electrochemical reduction method. Among these, a liquid phase method such as a chemical reduction method or a photochemical reduction method is particularly preferable in terms of shape and size controllability. After synthesizing hexagonal or triangular plate-like metal particles, for example, by performing etching treatment with a dissolved species that dissolves silver such as nitric acid or sodium sulfite, aging treatment by heating, etc., hexagonal or triangular plate The corners of the metal particles may be blunted to obtain substantially hexagonal or substantially circular flat metal particles.
 平板状の金属粒子の合成方法としては、上記の他、予めフィルム、ガラスなどの透明基材の表面に種晶を固定後、平板状に金属粒子(例えばAg)を結晶成長させてもよい。 As a method for synthesizing flat metal particles, in addition to the above, after seed crystals are fixed in advance on the surface of a transparent substrate such as a film or glass, metal particles (for example, Ag) may be grown in a flat plate.
 本発明の熱線遮蔽材において、平板状の金属粒子は、所望の特性を付与するために、更なる処理を施してもよい。上記更なる処理としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、高屈折率シェル層の形成、分散剤、酸化防止剤等の各種添加剤を添加することなどが挙げられる。 In the heat ray shielding material of the present invention, the flat metal particles may be subjected to further treatment in order to impart desired characteristics. The further treatment is not particularly limited and may be appropriately selected depending on the purpose. For example, the formation of a high refractive index shell layer, the addition of various additives such as a dispersant and an antioxidant may be included. Can be mentioned.
-高屈折率シェル層の形成-
 平板状の金属粒子は、可視光域透明性を更に高めるために、可視光域透明性が高い高屈折率材料で被覆されてもよい。
 高屈折率材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、TiO、BaTiO、ZnO、SnO、ZrO、NbOなどが挙げられる。
-Formation of high refractive index shell layer-
The plate-like metal particles may be coated with a high refractive index material having high visible light region transparency in order to further enhance the visible light region transparency.
As the high refractive index material is not particularly limited and may be appropriately selected depending on the purpose, for example, TiO x, BaTiO 3, ZnO, etc. SnO 2, ZrO 2, NbO x and the like.
 被覆する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、Langmuir、2000年、16巻、p.2731-2735に報告されているようにテトラブトキシチタンを加水分解することにより銀の平板状の金属粒子の表面にTiO層を形成する方法であってもよい。 There is no restriction | limiting in particular as a method to coat | cover, According to the objective, it can select suitably, For example, Langmuir, 2000, 16 volumes, p. As reported in 2731-2735, a method of forming a TiO x layer on the surface of silver tabular metal particles by hydrolyzing tetrabutoxy titanium may be used.
 また、平板状の金属粒子に直接高屈折率金属酸化物層シェルを形成することが困難な場合は、上記の通り平板状の金属粒子を合成した後、適宜SiOやポリマーのシェル層を形成し、更に、このシェル層上に金属酸化物層を形成してもよい。TiOを高屈折率金属酸化物層の材料として用いる場合には、TiOが光触媒活性を有することから、平板状の金属粒子を分散するマトリクスを劣化させてしまう懸念があるため、目的に応じて平板状の金属粒子にTiO層を形成した後、適宜SiO層を形成してもよい。 In addition, when it is difficult to form a high refractive index metal oxide layer shell directly on the flat metal particles, after synthesizing the flat metal particles as described above, an appropriate SiO 2 or polymer shell layer is formed. Furthermore, a metal oxide layer may be formed on the shell layer. When TiO x is used as a material for the high refractive index metal oxide layer, since TiO x has photocatalytic activity, there is a concern that the matrix in which the flat metal particles are dispersed may be deteriorated. After forming the TiO x layer on the flat metal particles, an SiO 2 layer may be appropriately formed.
-各種添加物の添加-
 本発明の熱線遮蔽材において、平板状の金属粒子は、該平板状の金属粒子を構成する銀などの金属の酸化を防止するために、メルカプトテトラゾール、アスコルビン酸等の酸化防止剤を吸着していてもよい。また、酸化防止を目的として、Ni等の酸化防止層が平板状の金属粒子の表面に形成されていてもよい。また、酸素を遮断することを目的として、SiOなどの金属酸化物膜で被覆されていてもよい。
-Addition of various additives-
In the heat ray shielding material of the present invention, the flat metal particles adsorb an antioxidant such as mercaptotetrazole and ascorbic acid in order to prevent oxidation of metals such as silver constituting the flat metal particles. May be. Further, for the purpose of preventing oxidation, an antioxidant layer such as Ni may be formed on the surface of the flat metal particles. Further, it may be covered with a metal oxide film such as SiO 2 for the purpose of blocking oxygen.
 平板状の金属粒子は、分散性付与を目的として、例えば、4級アンモニウム塩、アミン類等のN元素、S元素、及びP元素の少なくともいずれかを含む低分子量分散剤、高分子量分散剤などの分散剤を添加してもよい。 For the purpose of imparting dispersibility, the flat metal particles are, for example, quaternary ammonium salts, low molecular weight dispersants containing at least one of N elements such as amines, S elements, and P elements, and high molecular weight dispersants. A dispersant may be added.
<赤外線反射層>
 赤外線反射層は、互いに屈折率が異なる少なくとも2種の透明薄層が5層~200層交互積層されたものであれば、特に制限はなく、目的に応じて適宜選択することができる。
 赤外線反射層は、互いに屈折率が異なる少なくとも2種のポリマーが20層~200層交互積層された赤外線反射層(有機多層フィルム)が好ましく、交互積層か、交互積層押出し、交互塗布、及び交互薄層ラミネートの少なくともいずれかであることがより好ましい。
<Infrared reflective layer>
The infrared reflecting layer is not particularly limited as long as at least two kinds of transparent thin layers having different refractive indexes are alternately laminated, and can be appropriately selected according to the purpose.
The infrared reflective layer is preferably an infrared reflective layer (organic multilayer film) in which 20 to 200 layers of at least two polymers having different refractive indexes are alternately laminated, and are alternately laminated, alternately laminated extruded, alternately coated, and alternately thin. More preferably, it is at least one of layer laminates.
<<透明薄層>>
 透明薄層とは、可視光透過率70%以上の透過性を有し、厚み50nm~300nmのものを指し、ポリマーからなる薄層であってもよい。
 透明薄層の厚みとしては、50nm~300nmであれば、特に制限はなく、目的に応じて適宜選択することができるが、70nm~200nmが好ましい。また、異なる材料からなる透明薄層の厚みとしては、異なる材料間で、互いに異なっていてもよく、同一であってもよい。また、1種の材料からなる透明薄層の厚みとしては、複数の透明薄層間で、互いに異なっていてもよく、同一であってもよい。
 「互いに屈折率が異なる」とは、少なくとも2種の透明薄層の屈折率が、0.01以上異なることを意味し、透明薄層がポリマーからなる薄層である場合、0.02以上異なることが好ましい。
<< Transparent thin layer >>
The transparent thin layer has a visible light transmittance of 70% or more and has a thickness of 50 nm to 300 nm, and may be a thin layer made of a polymer.
The thickness of the transparent thin layer is not particularly limited as long as it is 50 nm to 300 nm, and can be appropriately selected according to the purpose, but is preferably 70 nm to 200 nm. Moreover, as thickness of the transparent thin layer which consists of a different material, it may mutually differ between different materials, and may be the same. Moreover, as thickness of the transparent thin layer which consists of 1 type of material, it may mutually differ between several transparent thin layers, and may be the same.
“The refractive indexes are different from each other” means that at least two kinds of transparent thin layers have different refractive indexes of 0.01 or more, and when the transparent thin layer is a thin layer made of a polymer, 0.02 or more. It is preferable.
-ポリマー-
 ポリマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリメチルメタクリレート、ポリエチレンテレフタラート、ポリエチレン、ポリスチレン、ポリエチレンナフタレート、ポリカーボネート、ポリフッ化ビニリデンとポリメチルメタクリレートとのコポリマー、エチレンと不飽和モノカルボン酸とのコポリマー、スチレンとメチルメタクリレートとのコポリマーなどが挙げられる。
 ポリマーを交互に積層する方法としては、特に制限はなく、目的に応じて適宜公知の方法を選択することができ、例えば、積層押出し法や、ロールコート法、フローコート法、ディッピング法等の塗布方法、ポリマー薄層をラミネートする方法などが挙げられる。
-polymer-
The polymer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, polymethyl methacrylate, polyethylene terephthalate, polyethylene, polystyrene, polyethylene naphthalate, polycarbonate, a copolymer of polyvinylidene fluoride and polymethyl methacrylate , A copolymer of ethylene and an unsaturated monocarboxylic acid, a copolymer of styrene and methyl methacrylate, and the like.
The method for alternately laminating the polymers is not particularly limited, and a known method can be appropriately selected according to the purpose. For example, a lamination extrusion method, a roll coating method, a flow coating method, a dipping method, or the like can be applied. And a method of laminating a thin polymer layer.
 さらに、赤外線反射層は、屈折率の異なる厚さt1のポリマー薄層と厚さt2のポリマー薄層とを交互に10層~40層積層して単位積層体とし、厚さt1、t2を変えた単位積層体を、2個~6個有することが、反射波長の範囲を広くすることができる点で、好ましい。 In addition, the infrared reflective layer is made up of a unit laminate by alternately laminating 10 to 40 layers of polymer thin layers having different thicknesses t1 and t2 having different refractive indices, and changing the thicknesses t1 and t2. It is preferable to have 2 to 6 unit laminates from the viewpoint that the reflection wavelength range can be widened.
 赤外線反射層の厚み、即ち、複数の透明薄層の合計厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、赤外線反射層が、互いに屈折率が異なる少なくとも2種のポリマーが20層~200層交互積層された赤外線反射層(有機多層フィルム)である場合、30μm~200μmが好ましく、50μm~100μmがより好ましい。 The thickness of the infrared reflective layer, that is, the total thickness of the plurality of transparent thin layers is not particularly limited and can be appropriately selected according to the purpose. However, the infrared reflective layer has at least two kinds of refractive indexes different from each other. When the polymer is an infrared reflective layer (organic multilayer film) in which 20 to 200 layers are alternately laminated, the thickness is preferably 30 to 200 μm, more preferably 50 to 100 μm.
 赤外線反射層の反射スペクトルの最大波長が700nm~1,500nmであり、金属粒子含有層の反射スペクトルの最大波長が900nm~2,000nmであり、かつ遮蔽係数が0.7以下であることが好ましく、また、赤外線反射層の反射スペクトルの最大波長と、金属粒子含有層の反射スペクトルの最大波長との差が、100nm以上であることが好ましい。また、遮蔽係数としては、0.65以下がより好ましく、0.6以下が特に好ましい。 The maximum wavelength of the reflection spectrum of the infrared reflection layer is preferably 700 nm to 1,500 nm, the maximum wavelength of the reflection spectrum of the metal particle-containing layer is preferably 900 nm to 2,000 nm, and the shielding coefficient is preferably 0.7 or less. Moreover, it is preferable that the difference between the maximum wavelength of the reflection spectrum of the infrared reflection layer and the maximum wavelength of the reflection spectrum of the metal particle-containing layer is 100 nm or more. Further, the shielding coefficient is more preferably 0.65 or less, and particularly preferably 0.6 or less.
<その他の層>
<<粘着層>>
 本発明の熱線遮蔽材は、粘着層を更に有することが好ましい。
 粘着層の形成に利用可能な材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリビニルブチラール(PVB)樹脂、アクリル樹脂、スチレン/アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、シリコーン樹脂、ポリビニルピロリドン樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの材料からなる粘着層は、塗布により形成することができる。
 さらに、粘着層には帯電防止剤、滑剤、ブロッキング防止剤などを添加してもよい。
 粘着層の厚みとしては、0.1μm~10μmが好ましい。
<Other layers>
<< Adhesive layer >>
The heat ray shielding material of the present invention preferably further has an adhesive layer.
The material that can be used for forming the adhesive layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, polyvinyl butyral (PVB) resin, acrylic resin, styrene / acrylic resin, urethane resin, polyester resin , Silicone resin, polyvinylpyrrolidone resin and the like. These may be used individually by 1 type and may use 2 or more types together. An adhesive layer made of these materials can be formed by coating.
Furthermore, you may add an antistatic agent, a lubricant, an antiblocking agent, etc. to the adhesion layer.
The thickness of the adhesive layer is preferably 0.1 μm to 10 μm.
<<保護層>>
 本発明の熱線遮蔽材において、赤外線反射層との密着性を向上させたり、機械強度的に保護するため、保護層を有することが好ましい。
 保護層は、特に制限はなく、目的に応じて適宜選択することができるが、例えば、バインダー、及び界面活性剤を含有し、更に必要に応じてその他の成分を含有してなる。
 バインダーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アクリル樹脂、ポリビニルブチラール、ポリビニルアルコール、ポリエチレンビニル共重合体、ポリエステル、ポリウレタン、ナイロン、ポリイミド、ポリアミド、ポリオレフィン、ジアセチルセルロース、ポリ塩化ビニル、ポリビニルピロリドンなどが挙げられる。保護層を形成する方法としては、適切な有機溶剤を選んで溶解液とし、金属粒子含有層表面に塗布した後、乾燥させて薄膜を形成する方法、或いは、樹脂によっては水溶性エマルションに調整して水溶液として金属粒子含有層表面に塗布した後、加熱乾燥してエマルション粒子を融着し薄膜形成する方法などが挙げられる。
<< Protective layer >>
In the heat ray shielding material of the present invention, it is preferable to have a protective layer in order to improve adhesion to the infrared reflective layer or to protect it from mechanical strength.
There is no restriction | limiting in particular in a protective layer, Although it can select suitably according to the objective, For example, it contains a binder and surfactant, and also contains another component as needed.
The binder is not particularly limited and may be appropriately selected depending on the intended purpose. For example, acrylic resin, polyvinyl butyral, polyvinyl alcohol, polyethylene vinyl copolymer, polyester, polyurethane, nylon, polyimide, polyamide, polyolefin, diacetyl Examples thereof include cellulose, polyvinyl chloride, and polyvinyl pyrrolidone. As a method for forming the protective layer, an appropriate organic solvent is selected as a solution, applied to the surface of the metal particle-containing layer, and then dried to form a thin film, or depending on the resin, a water-soluble emulsion is prepared. For example, a method of forming a thin film by coating the surface of the metal particle-containing layer as an aqueous solution and then heat drying to fuse the emulsion particles.
[熱線遮蔽材の製造方法]
 本発明の熱線遮蔽材の製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、塗布方法により、赤外線反射層の表面に金属粒子含有層、更に必要に応じて粘着層などのその他の層を形成する方法などが挙げられる。
[Method of manufacturing heat ray shielding material]
There is no restriction | limiting in particular as a manufacturing method of the heat ray shielding material of this invention, According to the objective, it can select suitably, For example, a metal particle content layer is further added to the surface of an infrared reflective layer by the apply | coating method, Furthermore, as needed. The method of forming other layers, such as an adhesion layer, is mentioned.
-金属粒子含有層の形成方法-
 金属粒子含有層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、赤外線反射層などの下層の表面上に、平板状の金属粒子を有する分散液を、ディップコーター、ダイコーター、スリットコーター、バーコーター、グラビアコーター等により塗布する方法、LB膜法、自己組織化法、スプレー塗布などの方法で面配向させる方法が挙げられる。
-Method for forming metal particle-containing layer-
The method for forming the metal particle-containing layer is not particularly limited and can be appropriately selected depending on the purpose.For example, a dispersion having flat metal particles on the surface of a lower layer such as an infrared reflective layer, Examples thereof include a method of coating by a dip coater, a die coater, a slit coater, a bar coater, a gravure coater, and the like, and a method of surface orientation by a method such as an LB film method, a self-organization method, and spray coating.
 また、金属粒子含有層の形成方法は、平板状の金属粒子の赤外線反射層表面への吸着性や面配向性を高めるために、静電的な相互作用を利用して面配向させる方法を含んでいてもよい。そのような方法としては、例えば、平板状の金属粒子の表面が負に帯電している場合(例えば、クエン酸等の負帯電性の媒質に分散した状態)は、赤外線反射層の表面を正に帯電(例えば、アミノ基等で赤外線反射層表面を修飾)させておき、静電的に面配向性を高めることにより、面配向させる方法などが挙げられる。また、平板状の金属粒子の表面が親水性である場合は、赤外線反射層の表面をブロックコポリマー、マイクロコンタクトスタンプ法などにより、親疎水の海島構造を形成しておき、親疎水性相互作用を利用して面配向性と平板状の金属粒子の粒子間距離とを制御してもよい。 In addition, the method for forming the metal particle-containing layer includes a method in which plane orientation is performed using electrostatic interaction in order to improve the adsorptivity to the infrared reflective layer surface and plane orientation of the flat metal particles. You may go out. As such a method, for example, when the surface of the flat metal particle is negatively charged (for example, dispersed in a negatively charged medium such as citric acid), the surface of the infrared reflective layer is positively And a method of aligning the surface by electrostatically enhancing the surface orientation by charging (for example, modifying the surface of the infrared reflecting layer with an amino group or the like). If the surface of the flat metal particles is hydrophilic, a hydrophilic / hydrophobic sea-island structure is formed on the surface of the infrared reflecting layer by using a block copolymer, microcontact stamp method, etc., and the hydrophilic / hydrophobic interaction is utilized. Thus, the plane orientation and the interparticle distance of the flat metal particles may be controlled.
 なお、面配向を促進するために、平板状の金属粒子を塗布後、カレンダーローラーやラミローラーなどの圧着ローラーを通すことにより促進させてもよい。 In addition, in order to promote plane orientation, after applying flat metal particles, it may be promoted by passing through a pressure roller such as a calender roller or a laminating roller.
--粘着層の形成方法--
 粘着層は、塗布により形成することが好ましい。例えば、赤外線反射層、金属粒子含有層、紫外線吸収層などの下層の表面上に積層することができる。このときの塗布方法としては、特に限定はなく、公知の方法を用いることができる。
--- Method for forming adhesive layer ---
The adhesive layer is preferably formed by coating. For example, it can be laminated on the surface of a lower layer such as an infrared reflecting layer, a metal particle-containing layer, or an ultraviolet absorbing layer. There is no limitation in particular as the coating method at this time, A well-known method can be used.
 本発明の熱線遮蔽材の日射反射率としては、600nm~2,000nmの範囲(好ましくは800nm~1,800nm)で最大値を有することが、熱線反射率の効率を上げることができる点で好ましい。
 本発明の熱線遮蔽材の可視光線透過率としては、60%以上が好ましく、70%以上がより好ましい。可視光線透過率が、60%未満であると、例えば、自動車用ガラスや建物用ガラスとして用いた時に、外部が見にくくなることがある。
 本発明の熱線遮蔽材のヘイズは、20%以下であることが好ましい。ヘイズが20%を超えると、例えば、自動車用ガラスや建物用ガラスとして用いた時に外部が見にくくなるなど、安全上好ましくないことがある。
The solar radiation reflectance of the heat ray shielding material of the present invention preferably has a maximum value in the range of 600 nm to 2,000 nm (preferably 800 nm to 1,800 nm) from the viewpoint that the efficiency of the heat ray reflectance can be increased. .
The visible light transmittance of the heat ray shielding material of the present invention is preferably 60% or more, and more preferably 70% or more. When the visible light transmittance is less than 60%, for example, when used as glass for automobiles or glass for buildings, the outside may be difficult to see.
The haze of the heat ray shielding material of the present invention is preferably 20% or less. If the haze exceeds 20%, it may be unfavorable in terms of safety, for example, when it is used as automotive glass or building glass, it becomes difficult to see the outside.
[ドライラミネーションによる粘着剤層の積層]
 本発明の熱線遮蔽材を使って、既設窓ガラスの類に機能性付与する場合は、粘着剤を積層してガラスの室内側に貼り付ける。その際、反射層をなるべく太陽光側に向けた方が発熱を防ぐことになるので、金属粒子含有層の上に粘着剤層を積層し、その面から窓ガラスへ貼り合わせるのが適切である。
 金属粒子含有層表面への粘着剤層積層に当っては、当該表面に直接粘着剤入りの塗布液を塗工することもできるが、粘着剤に含まれる各種添加剤、可塑剤や、使用溶剤などが、場合によっては金属粒子含有層の配列を乱したり、金属粒子自身を変質させたりすることがある。そうした弊害を最小限に留めるためには、粘着剤を予め離型フィルム上に塗工及び乾燥させたフィルムを作製しておいて、当該フィルムの粘着剤面と本発明の熱線遮蔽材の金属粒子含有層表面とをラミネートすることにより、ドライな状態のままの積層をすることが有効である。
[Lamination of pressure-sensitive adhesive layer by dry lamination]
When using the heat ray shielding material of the present invention to provide functionality to existing window glass, an adhesive is laminated and attached to the indoor side of the glass. At that time, since the heat generation will be prevented if the reflective layer is directed to the sunlight side as much as possible, it is appropriate to laminate an adhesive layer on the metal particle-containing layer and paste it from the surface to the window glass. .
When laminating the pressure-sensitive adhesive layer on the surface of the metal particle-containing layer, a coating solution containing a pressure-sensitive adhesive can be applied directly to the surface, but various additives, plasticizers and solvents used in the pressure-sensitive adhesive However, in some cases, the arrangement of the metal particle-containing layer may be disturbed, or the metal particles themselves may be altered. In order to minimize such harmful effects, a film is prepared by previously applying and drying an adhesive on a release film, and the adhesive surface of the film and the metal particles of the heat ray shielding material of the present invention are used. It is effective to laminate in a dry state by laminating the surface of the containing layer.
(貼合せ構造体)
 本発明の貼合せ構造体は、本発明の熱線遮蔽材と、ガラス及びプラスチックのいずれかとを貼り合わせてなる。
 貼合せ構造体の製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、上述のように製造した接着層を有する本発明の熱線遮蔽材を、自動車等の乗り物用ガラス乃至プラスチックや建材用ガラス乃至プラスチックに貼り合わせる方法などが挙げられる。
(Laminated structure)
The bonding structure of the present invention is formed by bonding the heat ray shielding material of the present invention and either glass or plastic.
There is no restriction | limiting in particular as a manufacturing method of a bonding structure, According to the objective, it can select suitably, The heat ray shielding material of this invention which has the contact bonding layer manufactured as mentioned above is glass for vehicles, such as a motor vehicle. Or a method of bonding to glass or plastic for building materials or plastic.
(合わせガラス)
 本発明の合わせガラスは、少なくとも1つの本発明の熱線遮蔽材と、少なくとも2層の中間層と、少なくとも2枚のガラスとを含み、熱線遮蔽材を挟持する中間層を少なくとも2枚のガラスで挟持してなる。
 中間層は、ポリビニルブチラール及びエチレンビニル共重合体の少なくともいずれかを含むことが好ましい。
 合わせガラスの製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、本発明の熱線遮蔽材を、ポリビニルブチラール及びエチレンビニル共重合体等の中間層2層の間に重ね、更に、該中間層を2枚のガラスで挟んだ後、例えば、130℃、13気圧、1時間の条件でオートクレーブすることにより、圧着する方法などが挙げられる。
(Laminated glass)
The laminated glass of the present invention includes at least one heat ray shielding material of the present invention, at least two intermediate layers, and at least two glasses, and the intermediate layer sandwiching the heat ray shielding material is at least two glasses. Hold it.
The intermediate layer preferably contains at least one of polyvinyl butyral and ethylene vinyl copolymer.
There is no restriction | limiting in particular as a manufacturing method of a laminated glass, According to the objective, it can select suitably, The heat ray shielding material of this invention is laminated | stacked between two intermediate | middle layers, such as polyvinyl butyral and an ethylene vinyl copolymer. Furthermore, after the intermediate layer is sandwiched between two pieces of glass, for example, autoclaving under conditions of 130 ° C., 13 atm, and 1 hour may be used.
 ガラスとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平滑性が良く、透視像の歪が少なく、ある程度の剛性をもって風や外力による歪が少なく、可視光領域の透過に優れ、かつ、比較的低コストで得られるフロート法による、酸化金属などの着色成分を少なくした、透明タイプ或いはクリアタイプと呼ばれるソーダライムガラスなどが挙げられる。 The glass is not particularly limited and can be appropriately selected according to the purpose.For example, it has good smoothness, little distortion of the fluoroscopic image, little distortion due to wind and external force with a certain degree of rigidity, and in the visible light region. Examples thereof include soda lime glass called a transparent type or a clear type, which is excellent in permeation and has a reduced coloring component such as metal oxide by a float method obtained at a relatively low cost.
[熱線遮蔽材、貼合せ構造体及び合わせガラスの使用態様]
 本発明の熱線遮蔽材、貼合せ構造体及び合わせガラスは、熱線(近赤外線)を選択的に反射乃至吸収するために使用される態様であれば、特に制限はなく、目的に応じて適宜選択すればよく、例えば、乗り物用フィルム、貼合わせ構造体や合わせガラス、建材用フィルム、貼合わせ構造体や合わせガラス、農業用フィルムなどが挙げられる。これらの中でも、省エネルギー効果の点で、乗り物用フィルム、貼合せ構造体や合わせガラス、建材用フィルム、貼合せ構造体や合わせガラスであることが好ましい。
 なお、本発明において、熱線(近赤外線)とは、太陽光に約50%含まれる近赤外線(780nm~1,800nm)を意味する。
[Usage of heat ray shielding material, laminated structure and laminated glass]
The heat ray shielding material, the laminated structure and the laminated glass of the present invention are not particularly limited as long as they are used for selectively reflecting or absorbing heat rays (near infrared rays), and are appropriately selected according to the purpose. For example, a film for vehicles, a laminated structure or laminated glass, a film for building materials, a laminated structure or laminated glass, an agricultural film, and the like can be given. Among these, the film for vehicles, the laminated structure and the laminated glass, the film for building material, the laminated structure and the laminated glass are preferable from the viewpoint of energy saving effect.
In the present invention, heat rays (near infrared rays) mean near infrared rays (780 nm to 1,800 nm) contained in sunlight by about 50%.
 以下、本発明の実施例及び比較例を挙げて説明するが、本発明は、これらの実施例に何ら限定されるものではない。なお、比較例は、公知技術とは限らない。
 以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
Hereinafter, although an example and a comparative example of the present invention are given and explained, the present invention is not limited to these examples at all. In addition, a comparative example is not necessarily a well-known technique.
The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
(製造例1:赤外線反射層1(有機多層フィルム)の作製)
 下記手順により、屈折率の異なる2種のポリマー薄層を交互積層してなる[赤外線反射層1]を作製した。
 低屈折率のポリマー薄層にポリメチルメタクリレート(PMMA)を用い、高屈折率のポリマー薄層にポリエチレンテレフタレート(PET)を用いた。PMMAを用いて形成した低屈折率の層をPMMA層と呼び、PETを用いて形成した高屈折率の層をPET層と呼ぶ。
(Production Example 1: Production of infrared reflective layer 1 (organic multilayer film))
[Infrared reflective layer 1] was produced by alternately laminating two types of thin polymer layers having different refractive indexes by the following procedure.
Polymethylmethacrylate (PMMA) was used for the low refractive polymer thin layer, and polyethylene terephthalate (PET) was used for the high refractive polymer thin layer. A low refractive index layer formed using PMMA is called a PMMA layer, and a high refractive index layer formed using PET is called a PET layer.
 PMMA層は、PMMAを酢酸2-メトキシエチルに溶解させた液をロールコート法で塗布して形成した。屈折率は1.49であった。
 PET層は、PETのペレットを押し出し機で溶融させながら塗布して形成した。PET層の屈折率は1.65であった。
The PMMA layer was formed by applying a solution obtained by dissolving PMMA in 2-methoxyethyl acetate by a roll coating method. The refractive index was 1.49.
The PET layer was formed by applying PET pellets while melting them with an extruder. The refractive index of the PET layer was 1.65.
 0.144μmのPMMA層と0.159μmのPET層とを交互に20層ずつ積層し、さらに、0.165μmのPMMA層と0.183μmのPET層とを交互に10層ずつ積層し、さらに、0.187μmのPMMA層と0.207μmのPET層とを交互に15層ずつ積層し、さらに、0.158μmのPMMA層と0.175μmのPET層とを交互に15層ずつ積層し、さらに、0.172μmのPMMA層と0.191μmのPET層とを交互に15層ずつ積層して、[赤外線反射層1]を作製した。ポリマー薄層は、全部で150層である。 20 layers of 0.144 μm PMMA layers and 0.159 μm PET layers are alternately laminated, and further, 10 layers of 0.165 μm PMMA layers and 0.183 μm PET layers are alternately laminated, and 15 layers of 0.187 μm PMMA layers and 0.207 μm PET layers are alternately stacked, and further 15 layers of 0.158 μm PMMA layers and 0.175 μm PET layers are alternately stacked. 15 layers of 0.172 μm PMMA layers and 0.191 μm PET layers were alternately laminated to produce [Infrared reflective layer 1]. There are 150 polymer thin layers in total.
(製造例2:赤外線反射層2(有機多層押出しフィルム)の作製)
 下記手順により、屈折率の異なる2種のポリマー薄層を交互積層してなる[赤外線反射層2]を作製した。
 米国特許第3,773,882号及び第3,759,647号に記載の多層押出し製膜装置を使用して、赤外光領域の光を反射する一方、可視光領域においては第2、第3、及び第4次の反射を抑える3成分系多層光学干渉フィルムを作製し、これによって太陽光の赤外線を反射する、みかけ上透明な多層押出しフィルムを得た。
 [赤外線反射層2]は、以下の3つのポリマー成分を含む:即ち、成分Aは、1.57の屈折率と1.08の密度を有するスチレン-メチルメタクリレートコポリマー(P-359、リチャードソン・ポリマー・コーポレーション製)であり;成分Bは、1.53の屈折率と1.13の密度を有するメチルメタクリレート-スチレンコポリマー(RPC-440、リチャードソン・ポリマー・コーポレーション製)であり;そして成分Cは、1.49の屈折率と1.20の密度を有するポリメチルメタクリレート(VS-100、ローム・アンド・ハース社製)である。
(Production Example 2: Production of infrared reflective layer 2 (organic multilayer extruded film))
[Infrared reflective layer 2] was produced by alternately laminating two types of polymer thin layers having different refractive indexes by the following procedure.
The multilayer extrusion film forming apparatus described in US Pat. Nos. 3,773,882 and 3,759,647 is used to reflect light in the infrared region, while in the visible region, second and second. A three-component multilayer optical interference film that suppresses the 3rd and 4th order reflections was produced, thereby obtaining an apparently transparent multilayer extruded film reflecting the infrared rays of sunlight.
[Infrared reflective layer 2] comprises the following three polymer components: component A comprises a styrene-methyl methacrylate copolymer (P-359, Richardson's copolymer) having a refractive index of 1.57 and a density of 1.08. Component B is a methyl methacrylate-styrene copolymer (RPC-440, manufactured by Richardson Polymer Corporation) having a refractive index of 1.53 and a density of 1.13; and Component C Is polymethylmethacrylate (VS-100, manufactured by Rohm and Haas) having a refractive index of 1.49 and a density of 1.20.
 [赤外線反射層2]の両面に、表面の不安定性をなくし、且つ機械的特性を付与するに足るポリカーボネートの保護層を、更に設けた。この3成分フィルムを同時押出して、ABCBの繰り返し単位を有する165層フィルムとした。3成分フィードブロックは、成分Aに対しては42個のフィードスロットを、成分Bに対しては82個のフィードスロットを、そして成分Cに対しては41個のフィードスロットを有する。3つの個別の押出機が、それぞれのポリマー成分を、成分Aに関しては8.5kg/hr、成分Bに関しては9.0kg/hr、そして成分Cに関しては9.8kg/hrの割合にてフィードブロックに供給した。保護層として、6.8kg/hrのポリカーボネートをフィルムの両表面上に同時押出した。約204μm(0.9ミル)のフィルム厚みで1,400nmにて強い一次反射率を示すよう、フィルムの引落率を調整した。この結果、成分Aの層厚みが148.6nm、成分Bの層厚みが76.3nm、及び成分Cの層厚みが156.6nmであるような[赤外線反射層2]が得られた。したがって、第1成分Aの光学的厚み比fAは、1/3であり、第2成分Bの光学的厚み比fBは、1/6であり、第3成分Cの光学的厚み比fCは、1/3であり、そして各成分の屈折率は、下記式の関係を満たす。 Further, a protective layer of polycarbonate was provided on both sides of [Infrared reflective layer 2], which was sufficient to eliminate surface instability and to provide mechanical properties. This three-component film was coextruded to obtain a 165-layer film having ABCB repeating units. The three component feed block has 42 feed slots for component A, 82 feed slots for component B, and 41 feed slots for component C. Three separate extruders feedblock each polymer component at a rate of 8.5 kg / hr for component A, 9.0 kg / hr for component B, and 9.8 kg / hr for component C. Supplied to. As a protective layer, 6.8 kg / hr polycarbonate was coextruded on both surfaces of the film. The drop rate of the film was adjusted to show a strong primary reflectivity at 1,400 nm with a film thickness of about 204 μm (0.9 mil). As a result, an [infrared reflective layer 2] in which the layer thickness of component A was 148.6 nm, the layer thickness of component B was 76.3 nm, and the layer thickness of component C was 156.6 nm was obtained. Therefore, the optical thickness ratio fA of the first component A is 1/3, the optical thickness ratio fB of the second component B is 1/6, and the optical thickness ratio fC of the third component C is The refractive index of each component satisfies the relationship of the following formula.
Figure JPOXMLDOC01-appb-M000001
 このとき光学的厚さ比fは、下記式で定義される。
Figure JPOXMLDOC01-appb-M000001
At this time, the optical thickness ratio f i is defined by the following equation.
Figure JPOXMLDOC01-appb-M000002
(ただし、式中、niはポリマーiの屈折率を表し、diはポリマーiの層厚みを表す。)
Figure JPOXMLDOC01-appb-M000002
(In the formula, ni represents the refractive index of the polymer i, and di represents the layer thickness of the polymer i.)
 [赤外線反射層2]は、近赤外スペクトル領域における1,400nmという波長(λI)にて強い第1次反射を示すことがわかった。[赤外線反射層2]では、第2次、第3次、及び第4次の反射は抑えられた。したがって、可視光の赤領域における700nmの波長(λI/2)での第2次反射、可視光の青領域における467nmの波長(λI/3)での第3次反射、及び紫外光領域における350nmの波長(λI/4)での第4次反射は全て抑えられた。 [Infrared reflective layer 2] was found to exhibit strong primary reflection at a wavelength (λI) of 1,400 nm in the near-infrared spectral region. In [Infrared reflective layer 2], secondary, tertiary and quaternary reflections were suppressed. Therefore, secondary reflection at a wavelength of 700 nm (λI / 2) in the red region of visible light, tertiary reflection at a wavelength of 467 nm (λI / 3) in the blue region of visible light, and 350 nm in the ultraviolet region. All fourth-order reflections at a wavelength of (λI / 4) were suppressed.
(製造例3:平板状の銀粒子分散液B1の作製)
-平板状の銀粒子の合成-
--平板核粒子の合成工程--
 2.5mMのクエン酸ナトリウム水溶液50mLに0.5g/Lのポリスチレンスルホン酸水溶液を2.5mL添加し、35℃まで加熱した。この溶液に10mMの水素化ほう素ナトリウム水溶液を3mL添加し、0.5mMの硝酸銀水溶液50mLを20mL/minで攪拌しながら添加した。この溶液を30分間攪拌し、種溶液を作製した。
--平板状の銀粒子の第1成長工程--
 次に、2.5mMのクエン酸ナトリウム水溶液132.7mLにイオン交換水87.1mLを添加し、35℃まで加熱した。この溶液に10mMのアスコルビン酸水溶液を2mL添加し、種溶液を42.4mL添加し、0.5mMの硝酸銀水溶液79.6mLを10mL/minで攪拌しながら添加した。
--平板状の銀粒子の第2成長工程--
 次に、上記溶液を30分間攪拌した後、0.35Mのヒドロキノンスルホン酸カリウム水溶液を71.1mL添加し、7質量%ゼラチン水溶液を200g添加した。この溶液に、0.25Mの亜硫酸ナトリウム水溶液107mLと0.47Mの硝酸銀水溶液107mLを混合してできた白色沈殿物混合液を添加した。これを300分間攪拌し、平板状の銀粒子分散液a1を得た。
(Production Example 3: Production of flat silver particle dispersion B1)
-Synthesis of tabular silver particles-
--- Synthesis of tabular core grains--
2.5 mL of 0.5 g / L polystyrene sulfonic acid aqueous solution was added to 50 mL of 2.5 mM sodium citrate aqueous solution and heated to 35 ° C. To this solution, 3 mL of 10 mM sodium borohydride aqueous solution was added, and 50 mL of 0.5 mM silver nitrate aqueous solution was added with stirring at 20 mL / min. This solution was stirred for 30 minutes to prepare a seed solution.
--- First growth step of tabular silver particles--
Next, 87.1 mL of ion-exchanged water was added to 132.7 mL of a 2.5 mM sodium citrate aqueous solution and heated to 35 ° C. To this solution, 2 mL of 10 mM ascorbic acid aqueous solution was added, 42.4 mL of seed solution was added, and 79.6 mL of 0.5 mM aqueous silver nitrate solution was added at 10 mL / min with stirring.
--- Second growth step of tabular silver particles--
Next, after stirring the said solution for 30 minutes, 71.1 mL of 0.35M potassium hydroquinonesulfonate aqueous solution was added, and 200 g of 7 mass% gelatin aqueous solution was added. To this solution was added a white precipitate mixture formed by mixing 107 mL of a 0.25 M aqueous sodium sulfite solution and 107 mL of a 0.47 M aqueous silver nitrate solution. This was stirred for 300 minutes, and flat silver particle dispersion liquid a1 was obtained.
 得られた平板状の銀粒子分散液a1中には、平均円相当径310nmの銀の六角形状であって平板状の銀粒子(以下、Ag六角平板粒子と称する)が生成していることを確認した。また、原子間力顕微鏡(NanocuteII、セイコーインスツル社製)で、Ag六角平板粒子の厚みを測定したところ、平均13nmであり、アスペクト比が23.8のAg六角平板粒子が生成していることが分かった。 In the obtained tabular silver particle dispersion a1, silver hexagonal silver tabular grains having an average equivalent circle diameter of 310 nm (hereinafter referred to as Ag hexagonal tabular grains) are generated. confirmed. Further, when the thickness of the Ag hexagonal tabular grains was measured with an atomic force microscope (Nanocute II, manufactured by Seiko Instruments Inc.), the average hexagonal tabular grains having an aspect ratio of 23.8 and 13 nm were formed. I understood.
 平板状の銀粒子分散液a1 16mLに1NのNaOHを0.75mL添加し、イオン交換水24mL添加し、遠心分離器(コクサン社製H-200N、アンブルローターBN)で5,000rpm、5分間遠心分離を行い、Ag六角平板粒子を沈殿させた。遠心分離後の上澄み液を捨て、水を5mL添加し、沈殿したAg六角平板粒子を再分散させ、製造例3の平板状の銀粒子分散液B1を得た。 Add 0.75 mL of 1N NaOH to 16 mL of flat silver particle dispersion a1, add 24 mL of ion-exchanged water, and centrifuge at 5000 rpm for 5 minutes in a centrifuge (Hokusan H-200N, Amble Rotor BN). Separation was performed to precipitate Ag hexagonal tabular grains. The supernatant liquid after centrifugation was discarded, 5 mL of water was added, and the precipitated Ag hexagonal tabular grains were redispersed to obtain tabular silver particle dispersion B1 of Production Example 3.
 次に、得られた平板状の銀粒子について、以下のようにして諸特性を評価した。結果を表1及び2に示す。
<<金属粒子の評価>>
-平板状の金属粒子の割合、平均粒子径(平均円相当径)、変動係数-
 平板状の銀粒子の形状均一性は、観察したSEM画像から任意に抽出した200個の粒子の形状を、六角形状及び円形状のいずれかの粒子をA、涙型などの不定形形状の粒子をBとして画像解析を行い、Aに該当する粒子個数の割合(個数%)を求めた。
 また同様にAに該当する粒子100個の粒子径をデジタルノギスで測定し、その平均値を平均粒子径(平均円相当径)とし、粒径分布の標準偏差を平均粒子径(平均円相当径)で割った変動係数(%)を求めた。
Next, various characteristics of the obtained tabular silver particles were evaluated as follows. The results are shown in Tables 1 and 2.
<< Evaluation of metal particles >>
-Ratio of flat metal particles, average particle diameter (average equivalent circle diameter), coefficient of variation-
The shape uniformity of tabular silver particles is the shape of 200 particles arbitrarily extracted from the observed SEM image, A is a hexagonal shape or circular shape, and the shape is an irregular shape such as a teardrop shape. And B was subjected to image analysis, and the ratio (number%) of the number of particles corresponding to A was determined.
Similarly, the particle diameter of 100 particles corresponding to A is measured with a digital caliper, the average value is defined as the average particle diameter (average equivalent circle diameter), and the standard deviation of the particle size distribution is the average particle diameter (average equivalent circle diameter). ) To obtain the coefficient of variation (%).
-平均粒子厚み-
 得られた平板状の金属粒子を含む分散液を、ガラス基板上に滴下して乾燥し、平板状の金属粒子1個の厚みを、原子間力顕微鏡(AFM)(NanocuteII、セイコーインスツル社製)を用いて測定した。なお、AFMを用いた測定条件としては、自己検知型センサー、DFMモード、測定範囲:5μm、走査速度:180秒間/1フレーム、データ点数:256×256とした。
-Average particle thickness-
The obtained dispersion containing flat metal particles is dropped on a glass substrate and dried, and the thickness of one flat metal particle is measured by an atomic force microscope (AFM) (Nanocute II, manufactured by Seiko Instruments Inc.). ). The measurement conditions using AFM were a self-detecting sensor, DFM mode, measurement range: 5 μm, scanning speed: 180 seconds / frame, and data points: 256 × 256.
-アスペクト比-
 得られた平板状の金属粒子の平均粒子径(平均円相当径)及び平均粒子厚みから、平均粒子径(平均円相当径)を平均粒子厚みで除算して、アスペクト比を算出した。
-aspect ratio-
From the average particle diameter (average circle equivalent diameter) and average particle thickness of the obtained flat metal particles, the average particle diameter (average circle equivalent diameter) was divided by the average particle thickness to calculate the aspect ratio.
-銀平板分散液の透過スペクトル-
 得られた銀平板分散液の透過スペクトルは、水で希釈し、紫外可視近赤外分光機(日本分光株式会社製、V-670)を用いて評価した。
-Transmission spectrum of silver plate dispersion-
The transmission spectrum of the obtained silver flat plate dispersion was diluted with water and evaluated using an ultraviolet-visible-near infrared spectrometer (manufactured by JASCO Corporation, V-670).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[塗布液1の調製]
 下記に示す組成の塗布液1を調製した。
塗布液1の組成:
 ポリエステルラテックス水分散液:ファインテックスES-650
 (DIC社製、固形分濃度30質量%)        28.2質量部
  界面活性剤A:ラピゾールA-90
 (日本油脂(株)製、固形分濃度1質量%)      12.5質量部
  界面活性剤B:アロナクティーCL-95
 (三洋化成工業(株)製、固形分濃度1質量%)    15.5質量部
 平板状の銀粒子分散液B1               200質量部
  水                         800質量部
[Preparation of coating solution 1]
A coating solution 1 having the composition shown below was prepared.
Composition of coating solution 1:
Polyester latex aqueous dispersion: Finetex ES-650
(Manufactured by DIC, solid content concentration 30% by mass) 28.2 parts by mass Surfactant A: Rapisol A-90
(Nippon Yushi Co., Ltd., solid content concentration 1% by mass) 12.5 parts by mass Surfactant B: Aronactee CL-95
(Sanyo Chemical Industries, Ltd., solid content concentration 1% by mass) 15.5 parts by weight Flat silver particle dispersion B1 200 parts by weight Water 800 parts by weight
(実施例1)
 [赤外線反射層1]の一方の面上に、塗布液1を、ワイヤーバーを用いて、乾燥後の平均厚みが0.08μmになるように塗布した。その後、150℃で10分間加熱し、乾燥、固化し、金属粒子含有層を形成し、実施例1の熱線遮蔽材を作製した。
 なお、平均厚みは、塗布膜の一部を粘着テープで剥がし、ベースと塗布膜との段差部分を触針粗さ計(DEKTAK)にて測定することにより知ることができる。
Example 1
On one surface of [Infrared reflective layer 1], coating solution 1 was applied using a wire bar so that the average thickness after drying was 0.08 μm. Then, it heated at 150 degreeC for 10 minute (s), dried and solidified, the metal particle content layer was formed, and the heat ray shielding material of Example 1 was produced.
The average thickness can be determined by peeling a part of the coating film with an adhesive tape and measuring the stepped portion between the base and the coating film with a stylus roughness meter (DEKTAK).
(実施例1-1:接着層を有する熱線遮蔽材の作製)
 得られた熱線遮蔽材の表面を洗浄した後、粘着層を貼り合わせた。粘着剤として、パナック(株)社製PD-S1を用い、粘着剤の一方の剥離シートを剥がした面を、熱線遮蔽材の金属粒子含有層表面と重ねて圧着することにより、貼り合わせた。
 以上により、実施例1-1の接着層を有する熱線遮蔽材を作製した。
(Example 1-1: Production of heat ray shielding material having adhesive layer)
After cleaning the surface of the obtained heat ray shielding material, the adhesive layer was bonded together. As the pressure-sensitive adhesive, PD-S1 manufactured by Panac Co., Ltd. was used, and the surface of the pressure-sensitive adhesive, from which one release sheet was peeled, was bonded to the surface of the heat ray shielding material by overlapping with the metal particle-containing layer surface.
Thus, a heat ray shielding material having the adhesive layer of Example 1-1 was produced.
(実施例1-2:熱線遮蔽材の貼合せ構造体の作製)
 得られた接着層を有する熱線遮蔽材の剥離シートを剥がし、透明ガラス(厚み:3mm)と貼り合わせ、実施例1-2の熱線遮蔽材の貼合せ構造体を作製した。
 なお、透明ガラスは、イソプロピルアルコールで汚れを拭き取って放置したものを使用し、貼り合わせ時、ゴムローラーを用いて25℃、湿度65%の条件下で、0.5kg/cmの面圧で圧着した。
(Example 1-2: Production of bonded structure of heat ray shielding material)
The obtained heat ray shielding material release sheet having the adhesive layer was peeled off and bonded to transparent glass (thickness: 3 mm) to produce a heat ray shielding material bonded structure of Example 1-2.
Note that the transparent glass used is one that has been wiped off with isopropyl alcohol and left to stand. At the time of bonding, a rubber roller is used and the surface pressure is 0.5 kg / cm 2 at 25 ° C. and 65% humidity. Crimped.
(実施例1-3:合わせガラスの作製)
 実施例1の熱線遮蔽材を、ポリビニルブチラールフィルム(厚み0.38mm、S-LECT B、積水化学社製)にて両面から挟み、更にその積層物の両面から2mm厚のガラス板で挟み込む(各々面方向サイズは50mm角とした)。その状態において60℃加熱された金属ロールを有するロールラミネーターに通して仮圧着した。仮圧着したサンプルをオートクレーブに入れ、130℃、13気圧、1時間の条件にてオートクレーブすることにより本圧着して、実施例1-3の合わせガラスを得た。
(Example 1-3: Production of laminated glass)
The heat ray shielding material of Example 1 was sandwiched from both sides with a polyvinyl butyral film (thickness 0.38 mm, S-LECT B, manufactured by Sekisui Chemical Co., Ltd.), and further sandwiched between 2 mm thick glass plates from both sides of the laminate (each The size in the plane direction was 50 mm square). In that state, it was temporarily pressure-bonded through a roll laminator having a metal roll heated at 60 ° C. The temporarily pressure-bonded sample was put in an autoclave and subjected to main pressure bonding by autoclaving under conditions of 130 ° C., 13 atm and 1 hour to obtain a laminated glass of Example 1-3.
 次に、得られた熱線遮蔽材について、以下のようにして諸特性を評価した。結果を表3に示す。 Next, various characteristics of the obtained heat ray shielding material were evaluated as follows. The results are shown in Table 3.
<<熱線遮蔽材の評価>>
-粒子傾き角-
 エポキシ樹脂で熱線遮蔽材を包埋処理した後、液体窒素で凍結した状態で剃刀で割断し、熱線遮蔽材の垂直方向断面試料を作製した。この垂直方向断面試料を走査型電子顕微鏡(SEM)で観察して、金属粒子含有層に含まれる100個の平板状の金属粒子について、基板の水平面に対する傾角(図2Bにおいて±θに相当)を平均値として算出した。
<< Evaluation of heat ray shielding material >>
-Particle tilt angle-
After embedding the heat ray shielding material with an epoxy resin, the heat ray shielding material was cleaved with a razor in a frozen state with liquid nitrogen, and a vertical section sample of the heat ray shielding material was produced. The vertical cross-section sample is observed with a scanning electron microscope (SEM), and the inclination angle (corresponding to ± θ in FIG. 2B) of the 100 flat metal particles contained in the metal particle-containing layer with respect to the horizontal plane of the substrate. Calculated as an average value.
-反射スペクトル及び透過スペクトル測定-
 作製した各熱線遮蔽材の反射スペクトル及び透過スペクトルを、紫外可視近赤外分光機(日本分光株式会社製、V-670)を用いて測定した。反射スペクトル測定には、絶対反射率測定ユニット(ARV-474、日本分光株式会社製)を用い、入射光は45°偏光板を通し、無偏光とみなせる入射光とした。
-Reflection spectrum and transmission spectrum measurement-
The reflection spectrum and transmission spectrum of each produced heat ray shielding material were measured using an ultraviolet-visible near-infrared spectrometer (manufactured by JASCO Corporation, V-670). For the reflection spectrum measurement, an absolute reflectance measurement unit (ARV-474, manufactured by JASCO Corporation) was used, and the incident light passed through a 45 ° polarizing plate and was regarded as incident light that can be regarded as non-polarized light.
-可視光線透過率-
 作製した各熱線遮蔽材について、380nm~780nmまで測定した各波長の透過率を、各波長の分光視感度により補正した値を可視光線透過率とした。
-Visible light transmittance-
With respect to each of the produced heat ray shielding materials, a value obtained by correcting the transmittance at each wavelength measured from 380 nm to 780 nm with the spectral sensitivity of each wavelength was defined as the visible light transmittance.
-遮熱性能評価-
 作製した各熱線遮蔽材について、350nm~2,100nmまで測定した各波長の透過率から、JIS5759記載の方法に基づき、遮蔽係数を求め、判定を行った。遮熱性能の評価としては、遮蔽係数(0~1)が小さいことが好ましい。
-Thermal insulation performance evaluation-
About each produced heat ray shielding material, the shielding coefficient was calculated | required and determined based on the method of JIS5759 from the transmittance | permeability of each wavelength measured from 350 nm to 2,100 nm. For the evaluation of the heat shielding performance, it is preferable that the shielding coefficient (0 to 1) is small.
(実施例2)
 実施例1において、[赤外線反射層1]に代えて、[赤外線反射層2]を用い、[赤外線反射層2]の一方の面上に、塗布液1を塗布したこと以外は、実施例1と同様にして、実施例2の熱線遮蔽材、実施例2-1の接着層を有する熱線遮蔽材、実施例2-2の熱線遮蔽材の貼合わせ構造体、及び実施例2-3の合わせガラスを作製した。
(Example 2)
In Example 1, instead of [Infrared reflective layer 1], [Infrared reflective layer 2] was used, except that the coating liquid 1 was applied on one surface of [Infrared reflective layer 2]. In the same manner as in Example 2, the heat ray shielding material of Example 2, the heat ray shielding material having the adhesive layer of Example 2-1, the bonded structure of the heat ray shielding material of Example 2-2, and the combination of Example 2-3 Glass was produced.
(比較例1)
 実施例1において、塗布液1を塗布しなかったこと以外は、実施例1と同様にして、比較例1の熱線遮蔽材、比較例1-1の接着層を有する熱線遮蔽材、比較例1-2の熱線遮蔽材の貼合せ構造体、及び比較例1-3の合わせガラスを作製した。
(Comparative Example 1)
In Example 1, except that the coating liquid 1 was not applied, the heat ray shielding material of Comparative Example 1, the heat ray shielding material having the adhesive layer of Comparative Example 1-1, and Comparative Example 1 were the same as Example 1. -2 heat ray shielding material laminated structure and Comparative Example 1-3 laminated glass were produced.
(比較例2)
 実施例1において、塗布液1に代えて、ITOハードコート塗布液(三菱マテリアル株式会社製EI-1)を塗布したこと以外は、実施例1と同様にして、比較例2の熱線遮蔽材、比較例2-1の接着層を有する熱線遮蔽材、比較例2-2の熱線遮蔽材の貼合せ構造体、及び比較例2-3の合わせガラスを作製した。
 なお、ITO粒子は、1,400nm~2,200nmの透過率10%以下、かつ可視透過率90%を確保している。
(Comparative Example 2)
In Example 1, the heat ray shielding material of Comparative Example 2 was used in the same manner as in Example 1 except that instead of the coating liquid 1, an ITO hard coat coating liquid (EI-1 manufactured by Mitsubishi Materials Corporation) was applied. A heat ray shielding material having an adhesive layer of Comparative Example 2-1, a laminated structure of the heat ray shielding material of Comparative Example 2-2, and a laminated glass of Comparative Example 2-3 were produced.
The ITO particles have a transmittance of 1,400 nm to 2,200 nm of 10% or less and a visible transmittance of 90%.
(比較例3)
 実施例2において、塗布液1を塗布しなかったこと以外は、実施例2と同様にして、比較例3の熱線遮蔽材、比較例3-1の接着層を有する熱線遮蔽材、比較例3-2の熱線遮蔽材の貼合せ構造体、及び比較例3-3の合わせガラスを作製した。
(Comparative Example 3)
In Example 2, the heat ray shielding material of Comparative Example 3, the heat ray shielding material having the adhesive layer of Comparative Example 3-1, and Comparative Example 3 were the same as Example 2 except that the coating liquid 1 was not applied. -2 heat ray shielding material laminated structure and Comparative Example 3-3 laminated glass were produced.
(比較例4)
 実施例1において、[赤外線反射層1]に代えて、厚み100μmの透明なPETフィルムを用い、該PETフィルムの一方の面上に、塗布液1を塗布したこと以外は、実施例1と同様にして、比較例4の熱線遮蔽材、比較例4-1の接着層を有する熱線遮蔽材、比較例4-2の熱線遮蔽材の貼合せ構造体、及び比較例4-3の合わせガラスを作製した。
(Comparative Example 4)
In Example 1, instead of [Infrared reflective layer 1], a transparent PET film having a thickness of 100 μm was used, and the coating liquid 1 was applied on one surface of the PET film, as in Example 1. The heat ray shielding material of Comparative Example 4, the heat ray shielding material having the adhesive layer of Comparative Example 4-1, the laminated structure of the heat ray shielding material of Comparative Example 4-2, and the laminated glass of Comparative Example 4-3 Produced.
 実施例2及び比較例1~4の熱線遮蔽材について、実施例1と同様にして、諸特性を評価した。結果を表3に示す。また、比較例4(金属粒子含有層のみ)のスペクトルを図3に示し、比較例1([赤外線反射層1]のみ)の反射スペクトルを図4に示す。 The characteristics of the heat ray shielding materials of Example 2 and Comparative Examples 1 to 4 were evaluated in the same manner as in Example 1. The results are shown in Table 3. Moreover, the spectrum of the comparative example 4 (only a metal particle content layer) is shown in FIG. 3, and the reflection spectrum of the comparative example 1 (only [infrared reflective layer 1]) is shown in FIG.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3の結果から、本発明の熱線遮蔽材は、広帯域にわたって赤外線の反射率を向上できると共に、可視光領域における高い光透過性を両立可能であることが分かった。 From the results of Table 3, it was found that the heat ray shielding material of the present invention can improve the reflectance of infrared rays over a wide band and can achieve both high light transmittance in the visible light region.
 本発明の熱線遮蔽材は、広帯域にわたって赤外線の反射率を向上できると共に、可視光領域における高い光透過性を両立可能であるので、例えば、自動車、バス等の乗り物用フィルム、貼合わせ構造体、合せガラス等、建材用フィルム、貼合せ構造体、合わせガラス等として、熱線の透過を防止することの求められる種々の部材として好適に利用可能である。 Since the heat ray shielding material of the present invention can improve the reflectance of infrared rays over a wide band and can achieve both high light transmittance in the visible light region, for example, films for vehicles such as automobiles and buses, bonded structures, As a laminated glass, a building material film, a laminated structure, a laminated glass, etc., it can be suitably used as various members that are required to prevent the transmission of heat rays.
   1   赤外線反射層
   2   金属粒子含有層
   3   平板状の金属粒子
DESCRIPTION OF SYMBOLS 1 Infrared reflective layer 2 Metal particle content layer 3 Flat metal particle

Claims (16)

  1.  少なくとも1種の金属粒子を含む金属粒子含有層と、
     互いに屈折率が異なる少なくとも2種の透明薄層が5層~200層交互積層された赤外線反射層と、を有する熱線遮蔽材であって、
     前記金属粒子は、六角形状乃至円形状であって平板状の金属粒子を含み、
     前記金属粒子含有層に含まれる金属粒子の全粒子数に対する、平板状の金属粒子の比率が60個数%以上である、ことを特徴とする熱線遮蔽材。
    A metal particle-containing layer containing at least one metal particle;
    An infrared reflective layer in which 5 to 200 layers of at least two transparent thin layers having different refractive indexes are alternately laminated, and a heat ray shielding material,
    The metal particles include hexagonal or circular and flat metal particles,
    The heat ray shielding material, wherein the ratio of the plate-like metal particles to the total number of metal particles contained in the metal particle-containing layer is 60% by number or more.
  2.  前記透明薄層は、ポリマーを含む層である、請求項1に記載の熱線遮蔽材。 The heat ray shielding material according to claim 1, wherein the transparent thin layer is a layer containing a polymer.
  3.  前記赤外線反射層は、前記透明薄層を、交互積層押出し、交互塗布、及び交互薄層ラミネートの少なくともいずれかを実行することにより得られる、請求項1または2に記載の熱線遮蔽材。 The heat ray shielding material according to claim 1 or 2, wherein the infrared reflective layer is obtained by executing at least one of alternate transparent extrusion, alternate application, and alternate thin layer lamination of the transparent thin layer.
  4.  前記赤外線反射層の反射スペクトルの最大波長と、前記金属粒子含有層の反射スペクトルの最大波長との差が、100nm以上である、請求項1から3のいずれか一項に記載の熱線遮蔽材。 The heat ray shielding material according to any one of claims 1 to 3, wherein a difference between a maximum wavelength of a reflection spectrum of the infrared reflection layer and a maximum wavelength of a reflection spectrum of the metal particle-containing layer is 100 nm or more.
  5.  前記赤外線反射層の反射スペクトルの最大波長が700nm~1,500nmであり、前記金属粒子含有層の反射スペクトルの最大波長が900nm~2,000nmであり、かつ遮蔽係数が0.7以下である、請求項1から4のいずれか一項に記載の熱線遮蔽材。 The maximum wavelength of the reflection spectrum of the infrared reflection layer is 700 nm to 1,500 nm, the maximum wavelength of the reflection spectrum of the metal particle-containing layer is 900 nm to 2,000 nm, and the shielding coefficient is 0.7 or less. The heat ray shielding material according to any one of claims 1 to 4.
  6.  前記平板状の金属粒子の全粒子数に対し、主平面が、前記金属粒子含有層の一方の表面に対して0°~±30°の範囲で面配向している平板状の金属粒子の比率が50個数%以上である、請求項1から5のいずれか一項に記載の熱線遮蔽材。 Ratio of tabular metal particles whose main plane is plane-oriented in a range of 0 ° to ± 30 ° with respect to one surface of the metal particle-containing layer with respect to the total number of particles of the tabular metal particles. The heat ray shielding material according to any one of claims 1 to 5, wherein is 50% by number or more.
  7.  前記平板状の金属粒子の全粒子数に対し、主平面が、前記金属粒子含有層の一方の表面に対して0°~±30°の範囲で面配向している平板状の金属粒子の比率が80個数%以上である、請求項1から6のいずれか一項に記載の熱線遮蔽材。 Ratio of tabular metal particles whose main plane is plane-oriented in a range of 0 ° to ± 30 ° with respect to one surface of the metal particle-containing layer with respect to the total number of particles of the tabular metal particles. The heat ray shielding material according to any one of claims 1 to 6, wherein is 80% by number or more.
  8.  前記平板状の金属粒子の全粒子数に対し、主平面が、前記金属粒子含有層の一方の表面に対して0°~±30°の範囲で面配向している平板状の金属粒子の比率が90個数%以上である、請求項1から7のいずれか一項に記載の熱線遮蔽材。 Ratio of tabular metal particles whose main plane is plane-oriented in a range of 0 ° to ± 30 ° with respect to one surface of the metal particle-containing layer with respect to the total number of particles of the tabular metal particles. The heat ray shielding material according to any one of claims 1 to 7, wherein is 90% by number or more.
  9.  前記平板状の金属粒子の粒度分布の変動係数が、30%以下である、請求項1から8のいずれか一項に記載の熱線遮蔽材。 The heat ray shielding material according to any one of claims 1 to 8, wherein a variation coefficient of a particle size distribution of the flat metal particles is 30% or less.
  10.  前記平板状の金属粒子の平均粒子径が70nm~500nmであり、
     前記平板状の金属粒子のアスペクト比(平均粒子径/平均粒子厚み)が10~45である、請求項1から9のいずれか一項に記載の熱線遮蔽材。
    The flat metal particles have an average particle size of 70 nm to 500 nm,
    The heat ray shielding material according to any one of Claims 1 to 9, wherein the flat metal particles have an aspect ratio (average particle diameter / average particle thickness) of 10 to 45.
  11.  前記平板状の金属粒子が、銀を含む請求項1から10のいずれか一項に記載の熱線遮蔽材。 The heat ray shielding material according to any one of claims 1 to 10, wherein the flat metal particles include silver.
  12.  前記熱線遮蔽材の可視光線透過率が、70%以上である、請求項1から11のいずれか一項に記載の熱線遮蔽材。 The heat ray shielding material according to any one of claims 1 to 11, wherein a visible light transmittance of the heat ray shielding material is 70% or more.
  13.  粘着層を更に有する請求項1から12のいずれか一項に記載の熱線遮蔽材。 The heat ray shielding material according to any one of claims 1 to 12, further comprising an adhesive layer.
  14.  請求項1から13のいずれか一項に記載の熱線遮蔽材と、ガラス又はプラスチックのいずれかと、を貼り合わせてなる、ことを特徴とする貼合せ構造体。 A bonding structure comprising the heat ray shielding material according to any one of claims 1 to 13 and either glass or plastic.
  15.  少なくとも請求項1から12のいずれか一項に記載の熱線遮蔽材と、前記熱線遮蔽材を挟持する少なくとも2層の中間層と、前記中間層を挟持する少なくとも2枚のガラスとを含む、ことを特徴とする合わせガラス。 The heat ray shielding material according to any one of claims 1 to 12, at least two intermediate layers that sandwich the heat ray shielding material, and at least two glasses that sandwich the intermediate layer. Laminated glass characterized by
  16.  前記中間層が、ポリビニルブチラール及びエチレンビニル共重合体の少なくともいずれかを含む、請求項15に記載の合わせガラス。 The laminated glass according to claim 15, wherein the intermediate layer contains at least one of polyvinyl butyral and an ethylene vinyl copolymer.
PCT/JP2012/062449 2011-05-17 2012-05-16 Heat ray-shielding material, laminated structure, and laminated glass WO2012157655A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011110246 2011-05-17
JP2011-110246 2011-05-17

Publications (1)

Publication Number Publication Date
WO2012157655A1 true WO2012157655A1 (en) 2012-11-22

Family

ID=47176972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062449 WO2012157655A1 (en) 2011-05-17 2012-05-16 Heat ray-shielding material, laminated structure, and laminated glass

Country Status (2)

Country Link
JP (1) JP2012256041A (en)
WO (1) WO2012157655A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105102560A (en) * 2012-12-28 2015-11-25 富士胶片株式会社 Curable resin composition for forming infrared-reflecting film, infrared-reflecting film and manufacturing method therefor, infrared cut-off filter, and solid-state imaging element using same
JPWO2017026211A1 (en) * 2015-08-11 2018-06-07 コニカミノルタ株式会社 Functional sheet
WO2019198589A1 (en) * 2018-04-12 2019-10-17 富士フイルム株式会社 Far infrared-reflecting film, heat-blocking film, and heat-blocking glass
US10792894B2 (en) 2015-10-15 2020-10-06 Saint-Gobain Performance Plastics Corporation Seasonal solar control composite

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017129861A (en) * 2016-01-18 2017-07-27 東レ株式会社 Head-up display
WO2019058833A1 (en) 2017-09-25 2019-03-28 富士フイルム株式会社 Infrared absorptive material, infrared sensor, wavelength selective light source and radiation cooling system
JP7041424B2 (en) * 2017-09-27 2022-03-24 國雄 吉田 Thin film formation method and optical elements

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004026547A (en) * 2002-06-24 2004-01-29 Nippon Sheet Glass Co Ltd Heat-insulating laminated glass
JP2007178915A (en) * 2005-12-28 2007-07-12 Fujifilm Corp Fine metal particle-dispersed material and infrared ray shielding filter
JP2008200924A (en) * 2007-02-19 2008-09-04 Toray Ind Inc Laminated film
JP2008265092A (en) * 2007-04-18 2008-11-06 Zuuhooosuuiee Kofun Yugenkoshi Infrared light and ultraviolet light barrier film
JP2010222233A (en) * 2009-02-27 2010-10-07 Central Glass Co Ltd Heat insulating laminated glass
US20110111210A1 (en) * 2009-11-06 2011-05-12 Yuki Matsunami Heat ray-shielding material
WO2011152169A1 (en) * 2010-06-03 2011-12-08 富士フイルム株式会社 Heat-ray shielding material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004026547A (en) * 2002-06-24 2004-01-29 Nippon Sheet Glass Co Ltd Heat-insulating laminated glass
JP2007178915A (en) * 2005-12-28 2007-07-12 Fujifilm Corp Fine metal particle-dispersed material and infrared ray shielding filter
JP2008200924A (en) * 2007-02-19 2008-09-04 Toray Ind Inc Laminated film
JP2008265092A (en) * 2007-04-18 2008-11-06 Zuuhooosuuiee Kofun Yugenkoshi Infrared light and ultraviolet light barrier film
JP2010222233A (en) * 2009-02-27 2010-10-07 Central Glass Co Ltd Heat insulating laminated glass
US20110111210A1 (en) * 2009-11-06 2011-05-12 Yuki Matsunami Heat ray-shielding material
WO2011152169A1 (en) * 2010-06-03 2011-12-08 富士フイルム株式会社 Heat-ray shielding material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105102560A (en) * 2012-12-28 2015-11-25 富士胶片株式会社 Curable resin composition for forming infrared-reflecting film, infrared-reflecting film and manufacturing method therefor, infrared cut-off filter, and solid-state imaging element using same
JPWO2017026211A1 (en) * 2015-08-11 2018-06-07 コニカミノルタ株式会社 Functional sheet
US10792894B2 (en) 2015-10-15 2020-10-06 Saint-Gobain Performance Plastics Corporation Seasonal solar control composite
WO2019198589A1 (en) * 2018-04-12 2019-10-17 富士フイルム株式会社 Far infrared-reflecting film, heat-blocking film, and heat-blocking glass
JPWO2019198589A1 (en) * 2018-04-12 2021-01-14 富士フイルム株式会社 Far-infrared reflective film, heat-shielding film and heat-shielding glass
US11007752B2 (en) 2018-04-12 2021-05-18 Fujifilm Corporation Far infrared reflective film, heat shield film, and heat shield glass

Also Published As

Publication number Publication date
JP2012256041A (en) 2012-12-27

Similar Documents

Publication Publication Date Title
WO2012070477A1 (en) Heat ray shielding material
JP5570305B2 (en) Heat ray shielding material
JP5570306B2 (en) Heat ray shielding material
JP5518580B2 (en) Heat ray shielding material
JP5703156B2 (en) Heat ray shielding material
WO2012157655A1 (en) Heat ray-shielding material, laminated structure, and laminated glass
JP5956291B2 (en) Multi-layer structure and laminated structure
JP6013252B2 (en) Heat ray shielding material, interlayer film for laminated glass and laminated glass
JP5878139B2 (en) Heat ray shielding material and bonded structure
WO2013137373A1 (en) Infrared-ray-shielding film
JP5709707B2 (en) Heat ray shielding material
JP5599639B2 (en) Film for transfer, laminated glass and method for producing the same
JP5833518B2 (en) Heat ray shielding material
WO2013035802A1 (en) Heat ray shielding material
WO2013047771A1 (en) Heat-ray shielding material
JP5922919B2 (en) Heat ray shielding material and bonded structure
WO2013039215A1 (en) Heat-ray shielding material
JP6012527B2 (en) Heat ray shielding material, interlayer film for laminated glass and laminated glass
JP5878050B2 (en) Heat ray shielding material
JP2013210573A (en) Heat ray shield
JP2014048515A (en) Heat ray shielding material, laminated glass and automobile glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12785680

Country of ref document: EP

Kind code of ref document: A1