JP2008265092A - Infrared light and ultraviolet light barrier film - Google Patents

Infrared light and ultraviolet light barrier film Download PDF

Info

Publication number
JP2008265092A
JP2008265092A JP2007109399A JP2007109399A JP2008265092A JP 2008265092 A JP2008265092 A JP 2008265092A JP 2007109399 A JP2007109399 A JP 2007109399A JP 2007109399 A JP2007109399 A JP 2007109399A JP 2008265092 A JP2008265092 A JP 2008265092A
Authority
JP
Japan
Prior art keywords
film
infrared
ultraviolet
layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007109399A
Other languages
Japanese (ja)
Other versions
JP5541833B2 (en
Inventor
Jenkuen Uei
ヂェンクゥエン ウェイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZUUHOOOSUUIEE KOFUN YUGENKOSHI
Original Assignee
ZUUHOOOSUUIEE KOFUN YUGENKOSHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZUUHOOOSUUIEE KOFUN YUGENKOSHI filed Critical ZUUHOOOSUUIEE KOFUN YUGENKOSHI
Priority to JP2007109399A priority Critical patent/JP5541833B2/en
Publication of JP2008265092A publication Critical patent/JP2008265092A/en
Application granted granted Critical
Publication of JP5541833B2 publication Critical patent/JP5541833B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an infrared light and ultraviolet light barrier film which can intercept much more infrared light and ultraviolet light than visual light in the sun light by sticking it to a glass face. <P>SOLUTION: In a light barrier film for sticking on a transparent glass prepared by applying an anti-infrared light film and an ultraviolet light film on a film substrate, as a film substrate, a multi-layered film comprises at least twenty-layered ultrathin film layers having a substantially uniform thickness and made of a transparent thermoplastic resin. The thickness of each ultrathin film layer is within the wave length of visible light, and mutually adjoining ultrathin films are composed of two different thermoplastic resins. The anti-infrared light film is coated with a tin-doped antimony oxide, and the anti-ultraviolet light film is coated with benzotriazole, and either the anti-infrared light film or the anti-ultraviolet light film is provided with a thin film comprising lanthanum hexaboride. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はガラス面に貼付することにより、太陽光線中の赤外線と紫外線を可視光線より多く遮断する赤外線、紫外線遮断フィルムに関する。   The present invention relates to an infrared ray and ultraviolet ray blocking film that blocks more infrared rays and ultraviolet rays in sunlight than visible rays by sticking to a glass surface.

従来、太陽光の熱線を遮断するためには、ポリエステル基材層にニッケル、銀、アルミニウム、クロム等の金属薄層を蒸着したフィルムをガラス等に貼着して使用されていた。これらは可視光線と赤外線、紫外線の遮断率がほぼ同等であり、蒸着膜を厚くすると、通信機器の電波障害等を引き起こすおそれがあった。
通信機器の電波障害を避けるために、ガラス自体に赤外線遮断効果を有する有機素材を練込み、或いは赤外線遮断効果を有する有機素材を練込んだフィルムをガラス面に貼着する方法が行われていた。有機素材は太陽光線により次第に劣化し、その機能が低下し、耐久性に問題があった。
Conventionally, in order to cut off the heat rays of sunlight, a film obtained by depositing a thin metal layer such as nickel, silver, aluminum, or chromium on a polyester base layer is attached to glass or the like. These have substantially the same blocking rate for visible light, infrared light, and ultraviolet light, and if the deposited film is thick, there is a risk of causing radio interference of communication equipment.
In order to avoid radio interference of communication equipment, there has been a method of kneading an organic material having an infrared blocking effect on the glass itself or sticking a film containing an organic material having an infrared blocking effect on the glass surface. . Organic materials gradually deteriorated by sunlight, their functions were lowered, and there was a problem with durability.

特許文献1には、赤外線を遮断する物質として合わせガラスの中間膜に、アモルファス状酸化インジウムにより表面が被覆されたアンチモンドープ酸化錫微粒子、及びアモルファス状酸化錫により表面が被覆されたアンチモンドープ酸化錫微粒子が赤外線遮断に適している旨開示されている。更に、ベンゾトリアゾール系、ベンゾフェノン系、トリアジン系、ベンゾエート系等の紫外線吸収剤が開示されている。しかしながら、これはあくまでも合わせガラスの中間膜である。しかも、使用する赤外線遮断剤及び紫外線遮断剤の量が多い。   Patent Document 1 discloses an antimony-doped tin oxide fine particle whose surface is coated with amorphous indium oxide on an interlayer film of laminated glass as a substance that blocks infrared rays, and antimony-doped tin oxide whose surface is coated with amorphous tin oxide. It is disclosed that fine particles are suitable for infrared shielding. Furthermore, ultraviolet absorbers such as benzotriazole, benzophenone, triazine, and benzoate are disclosed. However, this is only an interlayer film of laminated glass. In addition, the amount of infrared blocking agent and ultraviolet blocking agent used is large.

更に、多層フィルムに関しては、特許文献2及び特許文献3に開示されている。屈折率が少なくとも0.03相違する2種類の層が交互に積層され、各層の厚さが可視光線の波長範囲、約380〜780nmである。このような多層フィルムは、層の数や膜厚によっては玉虫色の光沢を有するフィルムである。
特開2006−21951号公報 特許第2951890号公報 特公平8−2618号公報
Furthermore, the multilayer film is disclosed in Patent Document 2 and Patent Document 3. Two types of layers having a refractive index different by at least 0.03 are alternately stacked, and the thickness of each layer is in the visible light wavelength range of about 380 to 780 nm. Such a multilayer film is a film having iridescent gloss depending on the number of layers and the film thickness.
JP 2006-21951 A Japanese Patent No. 2951890 Japanese Patent Publication No. 8-2618

本発明は、フィルム基材に抗赤外線膜及び抗紫外線膜が設けられ、一方の面が耐磨耗性の保護膜で保護され、他方の面を既製のガラスに貼付できるフィルムを提供する。そのためには、赤外線遮断性と紫外線遮断性を併有しながら、可視光線の遮断程度がより少ないフィルムを提供することが必要である。   The present invention provides a film in which an anti-infrared film and an anti-ultraviolet film are provided on a film base, one surface is protected by an abrasion-resistant protective film, and the other surface can be attached to a ready-made glass. For this purpose, it is necessary to provide a film that has both an infrared ray shielding property and an ultraviolet ray shielding property and has a less visible light shielding degree.

本発明の構成は、フィルム基材に抗赤外線膜と抗紫外線膜とを施してなる、透明ガラス貼着用遮光フィルムにおいて、フィルム基材として、実質的に均一な厚みを有する少なくとも20層の超薄膜層からなる、透明な熱可塑性樹脂製の多層フィルムであって、各超薄膜層の厚みは可視光線の波長範囲であり、相互に隣接する超薄膜は2種の異なった熱可塑性樹脂から構成されており、抗赤外線膜には錫ドープアンチモン酸化物が塗布され、抗紫外線膜にはベンゾトリアゾールが塗布され、抗赤外線膜と抗紫外線膜のいずれか一方に、六硼化ランタンを含有する薄層を設けたことを特徴とする。 The constitution of the present invention is a light-shielding film for application to transparent glass, which is obtained by applying an anti-infrared film and an anti-ultraviolet film to a film base material. It is a multilayer film made of transparent thermoplastic resin consisting of layers, the thickness of each ultra-thin film layer is in the visible light wavelength range, and the ultra-thin films adjacent to each other are composed of two different thermoplastic resins The anti-infrared film is coated with tin-doped antimony oxide, the anti-ultraviolet film is coated with benzotriazole, and either the anti-infrared film or the anti-ultraviolet film is a thin layer containing lanthanum hexaboride. Is provided.

可視光線の波長の範囲と同等の厚みを有する、2種以上の合成樹脂素材を、交互に20〜300層も積層してなる多層フィルムは、フィルム自体も赤外線、紫外線遮断作用を有する。しかも、その表面に赤外線遮断性の塗膜を施した場合には、少量の赤外線、紫外線遮断物質を用いて、効果的に可視光線の遮断が少なく、赤外線や紫外線を効率よく遮断する事実を見出して本発明を完成した。   A multilayer film obtained by alternately stacking 20 to 300 layers of two or more synthetic resin materials having a thickness equivalent to the visible light wavelength range also has an infrared ray and ultraviolet ray blocking action. In addition, when an infrared shielding film is applied on the surface, a small amount of infrared and ultraviolet blocking substances are used to effectively block visible light and efficiently block infrared and ultraviolet rays. The present invention has been completed.

本発明により、赤外線と紫外線を可視光線に優先して遮断でき、傷や磨耗に抵抗性を有する、すなわち、耐衝撃性の断熱フィルムを提供することができる。このフィルムは簡易にガラス面に貼着することができ、窓ガラス等からの熱線の侵入、放出を制御することが可能になった。更に、紫外線には室内及び室内の器物を劣化させる作用があり、本発明により室内の温度を保持し、器物の劣化を防止することができる。   According to the present invention, it is possible to provide an insulating film that can block infrared rays and ultraviolet rays in preference to visible rays and has resistance to scratches and abrasion, that is, an impact-resistant heat insulating film. This film can be easily attached to the glass surface, and it has become possible to control the intrusion and release of heat rays from window glass or the like. Furthermore, ultraviolet rays have the effect of deteriorating indoors and indoor equipment, and the present invention can maintain the indoor temperature and prevent deterioration of the equipment.

本発明の赤外線、紫外線遮断フィルムは建物や車輛のガラス面、鏡面等に直接貼着して遮光性を得ることができる。このフィルムは基材層として、後述する多層フィルムを使用し、その両面に赤外線遮断層と紫外線遮断層を設ける。その上で何れか一方の面に傷や磨耗を低減する保護層を設ける。傷や摩擦に抵抗する保護層を設けなかった層には粘着剤を塗布し、この面を離型紙で保護する。或いはそのまま貼着してもよい。   The infrared ray and ultraviolet ray blocking film of the present invention can be directly attached to the glass surface, mirror surface, etc. of buildings and vehicles to obtain light shielding properties. This film uses a multilayer film, which will be described later, as a base material layer, and an infrared blocking layer and an ultraviolet blocking layer are provided on both sides thereof. Then, a protective layer for reducing scratches and wear is provided on one of the surfaces. A pressure-sensitive adhesive is applied to a layer that is not provided with a protective layer that resists scratches and friction, and this surface is protected with a release paper. Or you may stick as it is.

多層フィルムとは特許文献2及び特許文献3に開示されている異種樹脂からなるフィルムを20層から300層も交互に重ね合わせた多層フィルムである。各層の厚みは当然に薄く、可視光線の波長の範囲である。   The multilayer film is a multilayer film obtained by alternately stacking 20 to 300 layers of films made of different resins disclosed in Patent Document 2 and Patent Document 3. The thickness of each layer is naturally thin and is in the range of the wavelength of visible light.

本発明の方法は、第1層にはアクリル系樹脂を用い、第2層にはポリブチレンテレフタレート、ポリブチレンテレフタレート弾性体及び線状低密度ポリエチレンのポリマーブレンドを用いる。或いは、特許文献3に記載されるように、一方がエラストマーからなり、他方がエラストマー以外の材料か、一方のエラストマーセグメントと同じポリマー系統に属するセグメントを含有するエラストマーのいずれかからなる。   In the method of the present invention, an acrylic resin is used for the first layer, and a polymer blend of polybutylene terephthalate, a polybutylene terephthalate elastic body and linear low density polyethylene is used for the second layer. Alternatively, as described in Patent Document 3, one is made of an elastomer, and the other is made of a material other than an elastomer or an elastomer containing a segment belonging to the same polymer system as one elastomer segment.

この2種のポリマーを2機の押出し機のそれぞれから樹脂溶融物の供給を受け、これらを希望する層パターンに配列するための、フィードブロックと通常のシングルマニホールドフラットフィルムダイとを組合わせた、冷却ロールキャスティング法によって製造される。   The two polymers were fed with resin melts from each of the two extruders and combined with a feed block and a normal single manifold flat film die to arrange them in the desired layer pattern, Manufactured by chill roll casting method.

このフィードブロックは2成分交互層を形成するのに使用される。非常に薄い複数層の樹脂の流れがシングルマニホールドフラットフィルムダイを通して流れ、そこで各層が同時にダイの幅まで拡張され、最終ダイの出口の厚さまで肉薄化される。層厚の分布は異なったフィードボードモジュールを挿入することによって変更できる。通常最外層は厚く、これをスキン層と呼ぶ。
各層の厚さは可視光線の波長範囲であり、20〜300層、好ましくは100〜300層、より好ましくは150〜300層である。一般に、150層を超えると虹色の光沢が減少する。
This feed block is used to form a two-component alternating layer. A very thin multi-layer flow of resin flows through a single manifold flat film die where each layer is simultaneously expanded to the die width and thinned to the final die exit thickness. The distribution of layer thickness can be changed by inserting different feedboard modules. The outermost layer is usually thick and is called the skin layer.
The thickness of each layer is the wavelength range of visible light, and is 20 to 300 layers, preferably 100 to 300 layers, more preferably 150 to 300 layers. Generally, when the number of layers exceeds 150, iridescent gloss decreases.

仮に、薄膜構成樹脂の第1をアクリル系樹脂とし、第2をポリブチレンテレフタレート(成分Aとする)、ポリブチレンテレフタレート弾性体(B成分とする)及び線状低密度ポリエチレン(C成分とする)とすると仮定して説明する。
アクリル系樹脂は、多層フィルムの総成分の30〜50重量%を占める。この膜は、具体的には、メチルアクリレート、エチルアクリレート、ブチルアクリレート、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート等のアクリル系モノマー重合体、或いはこれらモノマーを主体とし、他の共重合可能なモノマーとの共重合体が挙げられる。
Assuming that the first thin-film-constituting resin is an acrylic resin, the second is polybutylene terephthalate (referred to as component A), a polybutylene terephthalate elastic body (referred to as B component), and linear low density polyethylene (referred to as C component). It is assumed that
The acrylic resin accounts for 30 to 50% by weight of the total components of the multilayer film. Specifically, this film is composed of an acrylic monomer polymer such as methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate or the like, or a monomer mainly composed of these monomers and other copolymerizable monomers. A copolymer is mentioned.

薄膜構成樹脂の第2は多層フィルムの総成分の50〜70重量%を占め、A成分、B成分及びC成分の共重合体、好ましくはブロック共重合体である。A成分:B成分:C成分の比率は80〜95:3〜15:0.5〜5(重量%)、好ましくは85〜93:5〜10:1〜4(重量%)である。   The second thin film-constituting resin accounts for 50 to 70% by weight of the total components of the multilayer film, and is a copolymer of component A, component B and component C, preferably a block copolymer. The ratio of component A: component B: component C is 80 to 95: 3 to 15: 0.5 to 5 (% by weight), preferably 85 to 93: 5 to 10: 1 to 4 (% by weight).

A成分としては、1,4ブタンジオールとテレフタール酸又はジメチルテレフタレートと触媒的重縮合反応によって得られた重縮合物が好ましい。B成分のポリエチレンテレフタレート弾性体は、ポリエチレンテレフタレートとポリエチレングリコールの共重合体、好ましくはブロック共重合体が用いられる。C成分の線状低密度ポリエチレンは市販品を使用することができる。一般に比重0.85〜0.93、メルトインデックス(MI)1〜50である。   The component A is preferably a polycondensate obtained by catalytic polycondensation reaction with 1,4 butanediol and terephthalic acid or dimethyl terephthalate. As the B component polyethylene terephthalate elastic body, a copolymer of polyethylene terephthalate and polyethylene glycol, preferably a block copolymer is used. Commercially available products can be used as the C component linear low density polyethylene. In general, the specific gravity is 0.85 to 0.93, and the melt index (MI) is 1 to 50.

また、熱可塑性エラストマーとして、ポリブチルテレフタレート、ポリエチレンテレフタレート、ポリカーボネートのような熱可塑性硬質セグメントと、ポリエーテルグリコール、ポリエーテルイミドのような軟質エラストマーセグメントとのコポリマーである。
軟質エラストマーセグメントの含有量を変更すると屈折率の異なったエラストマーが得られる。特許文献3の方法では屈折率が0.03以上異なった2種の熱可塑性樹脂を20層以上積層することができる。
Further, the thermoplastic elastomer is a copolymer of a thermoplastic hard segment such as polybutyl terephthalate, polyethylene terephthalate, or polycarbonate and a soft elastomer segment such as polyether glycol or polyetherimide.
When the content of the soft elastomer segment is changed, elastomers having different refractive indexes can be obtained. In the method of Patent Document 3, 20 or more layers of two types of thermoplastic resins having different refractive indexes of 0.03 or more can be laminated.

また、熱可塑性エラストマーは、ジカルボン酸から誘導された長鎖エステル単位とジカルボン酸及び低分子量ジオールから誘導された短鎖エステル単位との繰返しを含有しているセグメント化熱可塑性コポリエステルであることが好ましい。
特許文献3の多層フィルムを用いても、本発明の赤外線、紫外線遮断フィルムを製造することは可能である。
The thermoplastic elastomer may also be a segmented thermoplastic copolyester containing repeats of long chain ester units derived from dicarboxylic acids and short chain ester units derived from dicarboxylic acids and low molecular weight diols. preferable.
Even if the multilayer film of Patent Document 3 is used, the infrared and ultraviolet blocking film of the present invention can be produced.

抗赤外線膜は種々あるが、本発明においては、粒径100〜150nmの超微粒子状の錫ドープ酸化インジウム、インジウムドープ酸化錫、錫ドープアンチモン酸化物、アンチモンドープ錫酸化物等が好ましい。これを、例えば、ポリカーボネート系粘着剤に、赤外線遮断剤を0.4〜1.0重量%加えて充分に分散させて塗料とする。0.4重量%未満では抗赤外線膜の効能が充分に発現されず、1.0重量%を超えると可視光の透過率が低下する。   There are various anti-infrared films, but in the present invention, ultrafine particles of tin-doped indium oxide, indium-doped tin oxide, tin-doped antimony oxide, antimony-doped tin oxide and the like having a particle size of 100 to 150 nm are preferable. For example, 0.4 to 1.0% by weight of an infrared shielding agent is added to a polycarbonate-based pressure-sensitive adhesive and sufficiently dispersed to obtain a paint. If it is less than 0.4% by weight, the effect of the anti-infrared film is not sufficiently exhibited, and if it exceeds 1.0% by weight, the transmittance of visible light is lowered.

この塗料を多層フィルムの一方の面に塗布する。塗布厚は乾燥後、1〜10μmが好ましい。塗料粉の直径は、製品フィルムの太陽からの赤外線遮断効果を左右し、色などの外観にも影響するため、超微粒子の直径は現実の使用態様に合わせて決めることができる。塗布後、55ないし75℃でベーキングを行い塗膜を形成させる。   This paint is applied to one side of the multilayer film. The coating thickness is preferably 1 to 10 μm after drying. The diameter of the paint powder affects the infrared shielding effect of the product film from the sun and affects the appearance such as color, so the diameter of the ultrafine particles can be determined according to the actual usage. After coating, baking is performed at 55 to 75 ° C. to form a coating film.

多層フィルムの抗赤外線処理をしなかった他方の面に、抗紫外線膜を施す。紫外線吸収剤にはベンゾトリアゾール系、ベンゾフェノン系、トリアジン系、ベンゾエート系等を使用できる。ベンゾトリアゾール系紫外線吸収剤としては、2−(2’−ヒドロキシ−5’メチルフェニル)ベンゾトリアゾール(チバガイギー社製)、2−(2’−ヒドロキシ−3’、5’−ジ−t−ブチルフェニル)ベンゾトリアゾール(チバガイギー社製)等を挙げることができる。   An anti-ultraviolet film is applied to the other surface of the multilayer film that has not been subjected to the anti-infrared treatment. A benzotriazole type, a benzophenone type, a triazine type, a benzoate type, etc. can be used for an ultraviolet absorber. Examples of the benzotriazole ultraviolet absorber include 2- (2′-hydroxy-5′methylphenyl) benzotriazole (manufactured by Ciba Geigy), 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl). ) Benzotriazole (manufactured by Ciba Geigy) and the like.

上記紫外線吸収剤をアクリル系粘着剤等に溶解して粘着すれば、特に粘着剤層を設けなくとも被貼着ガラスに貼着することができる。また、ポリアクリル酸等の通常の溶剤に溶解して用いることもできる。いずれにしても紫外線吸収剤の濃度は0.3〜0.7重量%であり、塗布する厚さは乾燥後、1〜5μmが好ましい。0.3重量%未満では抗紫外線剤の効果が発現されず、0.7重量%を超えると抗紫外線効果が充分に向上しないばかりでなく、添加剤が析出するおそれがある。塗布後、50〜70℃でベーキングして乾燥させる。   If the ultraviolet absorber is dissolved and adhered in an acrylic adhesive or the like, it can be adhered to the glass to be adhered without particularly providing an adhesive layer. It can also be used by dissolving in a normal solvent such as polyacrylic acid. In any case, the concentration of the ultraviolet absorber is 0.3 to 0.7% by weight, and the applied thickness is preferably 1 to 5 μm after drying. If the amount is less than 0.3% by weight, the effect of the anti-ultraviolet agent is not expressed. If the amount exceeds 0.7% by weight, the anti-ultraviolet effect is not sufficiently improved, and the additive may be precipitated. After coating, it is baked at 50 to 70 ° C. and dried.

抗赤外線層又は抗紫外線層のいずれかに抗傷、摩擦機能を有する硬質の耐衝撃層を設ける。保護層はポリエステルを溶剤とし、0.1〜0.3重量%の六硼化ランタンを溶解分散させる。塗布後は加熱固化させ、固化後の保護層の厚さは1〜2μmであることが好ましい。   A hard impact resistant layer having an anti-scratch and friction function is provided on either the anti-infrared layer or the anti-ultraviolet layer. The protective layer uses polyester as a solvent and dissolves and disperses 0.1 to 0.3% by weight of lanthanum hexaboride. It is preferable to solidify by heating after coating, and the thickness of the protective layer after solidification is 1 to 2 μm.

多層フィルムの製造
ポリメチルメタクリレート(以下、PMMAとする)と、ポリブチレンテレフタレート(以下、PBTとする)、ポリブチレンテレフタレートとポリエチレングリコール共重合体弾性体(粘度1Pa/s)及び線状低密度ポリエチレン(密度0.92、MI=2)を原料として使用した。本実施例ではPMMAを第1の層とし、第2の層として、PBT、PBT弾性体及びポリエチレンを配合した。配合割合は、PBT90重量%、PBT弾性体7重量%、ポリエチレン3重量%であった。
Production of multilayer film Polymethylmethacrylate (hereinafter referred to as PMMA), polybutylene terephthalate (hereinafter referred to as PBT), polybutylene terephthalate and polyethylene glycol copolymer elastomer (viscosity 1 Pa / s), and linear low density polyethylene (Density 0.92, MI = 2) was used as a raw material. In this example, PMMA was used as the first layer, and PBT, PBT elastic body and polyethylene were blended as the second layer. The blending ratio was 90% by weight of PBT, 7% by weight of PBT elastic body, and 3% by weight of polyethylene.

これらの原料を、温度がそれぞれ130℃及び75℃と異なる2台の乾燥機中に保存した。原料の露点が−40℃tdに達した後、この原料を2台の、押出し量と温度の異なる押出し機に装入した。第1の層のPMMAの押出し機の作業温度は235℃、押出し量は47kg/時間であった。第2の層の樹脂混合物の押出し機の作業温度は240℃、押出し量は60kg/時間であった。   These raw materials were stored in two dryers having temperatures different from 130 ° C. and 75 ° C., respectively. After the dew point of the raw material reached −40 ° C. td, the raw material was charged into two extruders having different extrusion amounts and temperatures. The working temperature of the first layer PMMA extruder was 235 ° C., and the extrusion rate was 47 kg / hour. The operating temperature of the extruder for the second layer resin mixture was 240 ° C., and the extrusion rate was 60 kg / hour.

押出し機から押出された溶融樹脂はフィードブロックシステムに送られ、100層に分けられ、その後シングルマニホールドフラットフィルムダイ、次いで30〜40℃のロールキャスティングを経て常温定型ロールキャスティングへ送られる。ここで、膜の厚さ及び幅が精密にコントロールされている。その後、均一な厚さの膜は作業温度120℃の2軸延伸機に送られ縦方向2.5〜4.5倍に、横方向2.5〜4.0倍に延伸した。かくして得られた100層の多層フィルムの合計厚さは25μm、幅2mであった。
このフィルムはPBT65重量%、PMMA35重量%であった。
The molten resin extruded from the extruder is sent to a feed block system, divided into 100 layers, and then passed through a single manifold flat film die, followed by roll casting at 30 to 40 ° C. to room temperature regular roll casting. Here, the thickness and width of the film are precisely controlled. Thereafter, the film having a uniform thickness was sent to a biaxial stretching machine at a working temperature of 120 ° C. and stretched 2.5 to 4.5 times in the longitudinal direction and 2.5 to 4.0 times in the transverse direction. The total thickness of the 100-layer multilayer film thus obtained was 25 μm and the width was 2 m.
This film was 65 wt% PBT and 35 wt% PMMA.

抗赤外線層の形成
多層フィルムの第1の面に抗赤外線層を形成した。平均粒子直径が110μmの錫ドープインジウム酸化物をポリカーボネートに混合し、0.5重量%の錫ドープインジウム酸化物を含む塗布液を含有するポリカーボネートを製造した。この塗布液を、塗布機を用いて50m/分の速度で多層フィルムの一方の面に塗布した。65℃でベーキングし、固化させると多層フィルムの一方の面に、厚さ5μmの抗赤外線層の膜が形成された。
Formation of anti-infrared layer An anti-infrared layer was formed on the first surface of the multilayer film. Tin-doped indium oxide having an average particle diameter of 110 μm was mixed with polycarbonate to produce a polycarbonate containing a coating solution containing 0.5% by weight of tin-doped indium oxide. This coating solution was applied to one surface of the multilayer film at a speed of 50 m / min using a coating machine. When baked at 65 ° C. and solidified, an anti-infrared layer having a thickness of 5 μm was formed on one surface of the multilayer film.

保護層の形成
本実施例においては抗赤外線層の上に保護層を設けた。六硼化ランタンをポリエステルと混合した。この混合物は0.4重量%の六硼化ランタンを含有する。抗赤外線層を形成した時と同様の塗布機により、混合物を50m/分の速度で抗赤外線層の上に塗布した。塗布後、60℃でベーキングすることにより固化させ、抗赤外線層の表面に厚さ1.5μmの保護層を形成した。
Formation of protective layer In this example, a protective layer was provided on the anti-infrared layer. Lanthanum hexaboride was mixed with polyester. This mixture contains 0.4% by weight of lanthanum hexaboride. The mixture was applied onto the anti-infrared layer at a speed of 50 m / min by the same application machine as that used to form the anti-infrared layer. After the coating, it was solidified by baking at 60 ° C. to form a protective layer having a thickness of 1.5 μm on the surface of the anti-infrared layer.

抗紫外線層の形成
多層フィルムの第2の面に抗紫外線層を形成した。ポリアクリル酸にベンゾトリアゾールとして、2−(2’−ヒドロキシ−5’メチルフェニル)ベンゾトリアゾール(チバガイギー社製)を配合し、0.5重量%のベンゾトリアゾール配合ポリアクリル酸の塗布液を得た。この塗布液をロール式塗布機を用いて、多層フィルムの第2層上に、50m/分の塗布速度で塗布した。次いで60℃でベーキングして固化させ、厚さ3μmの抗紫外線層を形成した。
Formation of anti-ultraviolet layer An anti-ultraviolet layer was formed on the second surface of the multilayer film. As polybenzoic acid, 2- (2′-hydroxy-5′methylphenyl) benzotriazole (manufactured by Ciba Geigy) was blended as benzotriazole to obtain a coating solution of 0.5% by weight of benzotriazole blended polyacrylic acid. . This coating solution was applied onto the second layer of the multilayer film at a coating speed of 50 m / min using a roll type coater. Subsequently, it was solidified by baking at 60 ° C. to form an anti-ultraviolet layer having a thickness of 3 μm.

得られた赤外線、紫外線遮断フィルムを実験No.1とし、下記の試験に供した。
現実の使用に際しては、抗紫外線層の上に粘着剤層を設け、粘着剤面を離型紙で保護して市場に供することができる。
The obtained infrared and ultraviolet blocking films were tested with Experiment No. It was set to 1 and it used for the following test.
In actual use, a pressure-sensitive adhesive layer can be provided on the anti-ultraviolet layer, and the pressure-sensitive adhesive surface can be protected with a release paper and provided on the market.

得られた実験No.1の赤外線、紫外線遮断フィルムは2ビームUV/VIS/NIR分光計(JascoV−570)により赤外線遮断率及び紫外線遮断率を測定した。ANSI Z97.1測定基準に準拠して耐衝撃性を測定した。更に可視光透過率を測定し、これらの結果を表1に示した。   The obtained experiment No. The infrared and ultraviolet blocking films of No. 1 were measured for their infrared blocking rate and ultraviolet blocking rate using a 2-beam UV / VIS / NIR spectrometer (Jasco V-570). Impact resistance was measured according to ANSI Z97.1 measurement standard. Further, the visible light transmittance was measured, and these results are shown in Table 1.

実験No.2として、多層フィルムの層数を200に増加させた以外は、実験No.1と同様にして赤外線、紫外線遮断フィルムを製造した。層数の増加により多層フィルムの厚さは35μmであった。
実験No.3として、多層フィルムの層数を300にし、多層フィルムの厚さが42μmであった以外は、実験No.1と同様にして赤外線、紫外線遮断フィルムを製造した。 実験No.4として、多層フィルムの層数を20にし、多層フィルムの厚さが18μmであった以外は、実験No.1と同様にして赤外線、紫外線遮断フィルムを製造した。実験No.2ないし実験No.4に関し、実験No.1と同様にして赤外線遮断率、紫外線遮断率、耐衝撃性及び可視光透過率を測定し、表1に併記した。
Experiment No. 2 except that the number of layers of the multilayer film was increased to 200. In the same manner as in Example 1, an infrared ray and ultraviolet ray blocking film was produced. Due to the increase in the number of layers, the thickness of the multilayer film was 35 μm.
Experiment No. 3 except that the number of layers of the multilayer film was 300 and the thickness of the multilayer film was 42 μm. In the same manner as in Example 1, an infrared ray and ultraviolet ray blocking film was produced. Experiment No. No. 4 except that the number of layers of the multilayer film was 20 and the thickness of the multilayer film was 18 μm. In the same manner as in Example 1, an infrared ray and ultraviolet ray blocking film was produced. Experiment No. 2 to Experiment No. 4 with respect to Experiment No. In the same manner as in Example 1, the infrared ray blocking rate, the ultraviolet ray blocking rate, the impact resistance, and the visible light transmittance were measured and listed in Table 1.

実験No.5として、抗赤外線層形成用の塗布液の赤外線遮断物質の濃度を0.7重量%にした以外は実験No.1と同様にして赤外線、紫外線遮断フィルムを製造した。
実験No.6として、抗赤外線層形成用の塗布液の赤外線吸収物質の濃度を1.0重量%にした以外は実験No.1と同様にして赤外線、紫外線遮断フィルムを製造した。
実験No.5及び6に関し、実験No.1と同様にして赤外線遮断率、紫外線遮断率、耐衝撃性及び可視光透過率を測定し、表1に併記した。
Experiment No. No. 5 except that the concentration of the infrared blocking substance in the coating solution for forming the anti-infrared layer was 0.7% by weight. In the same manner as in Example 1, an infrared ray and ultraviolet ray blocking film was produced.
Experiment No. No. 6 except that the concentration of the infrared absorbing substance in the coating solution for forming the anti-infrared layer was 1.0% by weight. In the same manner as in Example 1, an infrared ray and ultraviolet ray blocking film was produced.
Experiment No. For Experiments 5 and 6, Experiment No. In the same manner as in Example 1, the infrared ray blocking rate, the ultraviolet ray blocking rate, the impact resistance, and the visible light transmittance were measured and listed in Table 1.

実験No.7として、多層フィルムの層数を10にし、多層フィルムの厚さが15μmであった以外は、実験No.1と同様にして赤外線、紫外線遮断フィルムを製造した。
実験No.8として、多層フィルムの層数を400にし、多層フィルムの厚さが50μmであった以外は、実験No.1と同様にして赤外線、紫外線遮断フィルムを製造した。 実験No.9として、抗赤外線層形成用の塗布液の赤外線吸収物質の濃度を0.3にした以外は実験No.1と同様にして赤外線、紫外線遮断フィルムを製造した。
Experiment No. 7 except that the number of layers of the multilayer film was 10 and the thickness of the multilayer film was 15 μm. In the same manner as in Example 1, an infrared ray and ultraviolet ray blocking film was produced.
Experiment No. 8 except that the number of layers of the multilayer film was 400 and the thickness of the multilayer film was 50 μm. In the same manner as in Example 1, an infrared ray and ultraviolet ray blocking film was produced. Experiment No. No. 9 except that the concentration of the infrared absorbing material in the coating solution for forming the anti-infrared layer was 0.3. In the same manner as in Example 1, an infrared ray and ultraviolet ray blocking film was produced.

実験No.10として、抗赤外線層の錫ドープアンチモン酸化物の使用量を1.1重量%にした以外は実験No.1と同様にして赤外線、紫外線遮断フィルムを製造した。
実験No.7ないし実験No.10に関し、実験No.1と同様にして赤外線遮断率、紫外線遮断率、耐衝撃性及び可視光透過率を測定し、表1に併記した。
Experiment No. No. 10 except that the amount of tin-doped antimony oxide used in the anti-infrared layer was 1.1% by weight. In the same manner as in Example 1, an infrared ray and ultraviolet ray blocking film was produced.
Experiment No. 7 to Experiment No. No. 10, experiment no. In the same manner as in Example 1, the infrared ray blocking rate, the ultraviolet ray blocking rate, the impact resistance, and the visible light transmittance were measured and listed in Table 1.

実験No.11として、厚さ20μmのポリエステルフィルム、(商品名、o−PET、CH289、南亜塑膠社製)断熱フィルムとして使用した。
実験No.12として、実験No.1の方法で製造した層数100で厚さ20μmの多層フィルムを使用した。実験No.11、12共、抗赤外線層も抗紫外線層も耐衝撃層も設けず、そのまま実験No.1と同様の試験を行った。その結果を表1に記載した。
Experiment No. 11 was used as a 20 μm thick polyester film (trade name, o-PET, CH289, manufactured by Nanya Plastics Co., Ltd.) as a heat insulating film.
Experiment No. No. 12, experiment no. A multilayer film having 100 layers and a thickness of 20 μm produced by the method 1 was used. Experiment No. 11 and 12, neither the anti-infrared layer, the anti-ultraviolet layer, nor the impact-resistant layer was provided. The same test as 1 was conducted. The results are shown in Table 1.

実験No.13として、実験No.11で使用したポリエステルフィルムと同一のフィルムであって、厚さのみが25μmと異なるフィルムを使用した以外は実験No.1と同様にして赤外線、紫外線遮断フィルムを製造した。
上記フィルムを実験No.1と同様にして、赤外線、紫外線遮断フィルムを製造した。得られたそれぞれのフィルムに関し、 赤外線遮断率、紫外線遮断率、耐衝撃性及び可視光透過率を測定し、表2に併記した。
Experiment No. No. 13, Experiment No. No. 11 except that a film identical to the polyester film used in No. 11 and having a thickness different from 25 μm was used. In the same manner as in Example 1, an infrared ray and ultraviolet ray blocking film was produced.
The above film was subjected to Experiment No. In the same manner as in Example 1, an infrared ray and ultraviolet ray blocking film was produced. For each of the obtained films, the infrared blocking rate, the ultraviolet blocking rate, the impact resistance and the visible light transmittance were measured and listed in Table 2.

実験No.14〜17として、ポリアクリル酸に配合するベンゾトリアゾールの配合量を0.1から0.9に変動させた以外は実施例1と同様にして赤外線、紫外線遮断フィルムを製造した。得られたそれぞれのフィルムに関し、実施例1の実験No.1と同様にして赤外線、紫外線及び可視光の遮断率を測定し、表2に示した。実験No.17においては抗紫外線特性が向上しないのみでなく、添加物が析出した。   Experiment No. Infrared and ultraviolet blocking films were produced in the same manner as in Example 1 except that the blending amount of benzotriazole blended with polyacrylic acid was changed from 0.1 to 0.9. For each of the obtained films, the experiment No. The blocking rate of infrared rays, ultraviolet rays and visible light was measured in the same manner as in Table 1 and shown in Table 2. Experiment No. In No. 17, not only the anti-ultraviolet characteristics were not improved, but also an additive was deposited.

表1及び表2により、赤外線遮断膜に配合する薬剤の濃度は0.4〜1.0重量%が好ましく、紫外線遮断膜に配合する薬剤の濃度は0.2〜0.7重量%が好ましい。   According to Tables 1 and 2, the concentration of the drug blended in the infrared blocking film is preferably 0.4 to 1.0% by weight, and the concentration of the drug blended in the UV blocking film is preferably 0.2 to 0.7% by weight. .

Claims (7)

フィルム基材に抗赤外線膜と抗紫外線膜とを施してなる、透明ガラス貼着用遮光フィルムにおいて、フィルム基材として、実質的に均一な厚みを有する少なくとも20層の超薄膜層からなる、透明な熱可塑性樹脂製の多層フィルムであって、各超薄膜層の厚みは可視光線の波長範囲であり、相互に隣接する超薄膜は2種の異なった熱可塑性樹脂から構成されていることを特徴とする赤外線、紫外線遮断フィルム。 In a light shielding film for attaching a transparent glass, wherein a film substrate is provided with an anti-infrared film and an anti-ultraviolet film, the film substrate is a transparent film comprising at least 20 ultra-thin layers having a substantially uniform thickness. A multilayer film made of a thermoplastic resin, wherein the thickness of each ultra-thin film layer is in the visible light wavelength range, and the ultra-thin films adjacent to each other are composed of two different thermoplastic resins. Infrared, UV blocking film. 超薄膜層を構成する一方の樹脂はアクリル系樹脂であり、他方の樹脂はポリブチレンテレフタレート、ポリブチレンテレフタレートとポリエチレングリコールとの共重合体及び線状低密度ポリエチレンのポリマーブレンドである多層フィルムを使用することを特徴とする請求項1記載の赤外線、紫外線遮断フィルム。 One resin constituting the ultrathin film layer is an acrylic resin, and the other resin is a polybutylene terephthalate, a copolymer of polybutylene terephthalate and polyethylene glycol, and a multilayer film that is a polymer blend of linear low density polyethylene. The infrared ray and ultraviolet ray blocking film according to claim 1. 多層フィルムの層数が100〜300層であることを特徴とする請求項2に記載する赤外線、紫外線遮断フィルム。 The infrared and ultraviolet blocking film according to claim 2, wherein the multilayer film has 100 to 300 layers. 抗赤外線膜として、錫ドープアンチモン酸化物又はインジウムドープ錫酸化物を、粘着剤に0.4〜1.0重量%分散させて1〜10μm厚に塗布することを特徴とする請求項1ないし請求項3に記載する赤外線、紫外線遮断フィルム。 A tin-doped antimony oxide or an indium-doped tin oxide is dispersed as an anti-infrared film in an amount of 0.4 to 1.0% by weight in an adhesive and applied to a thickness of 1 to 10 µm. Item 4. The infrared and ultraviolet blocking film described in item 3. 抗紫外線膜としてペンゾトリアゾール0.3〜0.7%の熱可塑性溶液を1〜5μm厚に塗布することを特徴とする請求項1ないし4のいずれかに記載する赤外線、紫外線遮断フィルム。 The infrared and ultraviolet blocking film according to claim 1, wherein a thermoplastic solution of 0.3 to 0.7% of benzotriazole is applied as an anti-ultraviolet film to a thickness of 1 to 5 μm. フィルム基材に直接又は間接的に、0.1〜0.3重量%の六硼化ランタンを含有するポリエステルからなる保護層を設けたことを特徴とする請求項1ないし5に記載する赤外線、紫外線遮断フィルム。 The infrared ray according to any one of claims 1 to 5, wherein a protective layer made of polyester containing 0.1 to 0.3% by weight of lanthanum hexaboride is provided directly or indirectly on the film substrate. UV blocking film. 多層フィルムの両面に、赤外線遮断層と紫外線遮断層をそれぞれ設け、一方の面に保護層を設け、他方の面にガラス面と接着するための接着剤層を設けたことを特徴とする請求項1ないし6に記載する赤外線、紫外線遮断フィルム。 An infrared ray shielding layer and an ultraviolet ray shielding layer are provided on both surfaces of the multilayer film, respectively, a protective layer is provided on one surface, and an adhesive layer for bonding to the glass surface is provided on the other surface. Infrared and ultraviolet blocking films described in 1 to 6.
JP2007109399A 2007-04-18 2007-04-18 Infrared, UV blocking film Active JP5541833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007109399A JP5541833B2 (en) 2007-04-18 2007-04-18 Infrared, UV blocking film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007109399A JP5541833B2 (en) 2007-04-18 2007-04-18 Infrared, UV blocking film

Publications (2)

Publication Number Publication Date
JP2008265092A true JP2008265092A (en) 2008-11-06
JP5541833B2 JP5541833B2 (en) 2014-07-09

Family

ID=40045301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007109399A Active JP5541833B2 (en) 2007-04-18 2007-04-18 Infrared, UV blocking film

Country Status (1)

Country Link
JP (1) JP5541833B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113003A (en) * 2009-11-30 2011-06-09 Jenkuen Uei Laminated reflection film and multilayer optical film
WO2012157655A1 (en) * 2011-05-17 2012-11-22 富士フイルム株式会社 Heat ray-shielding material, laminated structure, and laminated glass
WO2014088057A1 (en) 2012-12-06 2014-06-12 株式会社Adeka Light-blocking film
CN104149451A (en) * 2014-08-01 2014-11-19 苏州袭麟光电科技产业有限公司 Anti-ultraviolet heat insulation car film
JP2015174236A (en) * 2014-03-13 2015-10-05 日立マクセル株式会社 Transparent heat-shielding and heat-insulating member

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208634A (en) * 1989-10-31 1991-09-11 Mearl Corp:The Pearled laminate film
JPH09300540A (en) * 1996-05-09 1997-11-25 Eeru Kasei Shoji:Kk Iridescent reflecting film
JP2000169765A (en) * 1998-12-10 2000-06-20 Sumitomo Metal Mining Co Ltd Coating solution for sunlight-shielding film and sunlight- shielding film obtained therefrom
JP2002509041A (en) * 1998-01-13 2002-03-26 ミネソタ マイニング アンド マニュファクチャリング カンパニー Colorless and transparent-colored security film
JP2004516218A (en) * 2000-12-23 2004-06-03 ピルキントン パブリック リミテッド カンパニー Automotive flat glass
JP2004323661A (en) * 2003-04-24 2004-11-18 Toyo Riken Kk Light-shielding coating agent and coating film
JP2005288784A (en) * 2004-03-31 2005-10-20 Toray Ind Inc Laminated film
JP2006503137A (en) * 2002-10-09 2006-01-26 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Method for producing ultraviolet absorbing layer on substrate surface
WO2006014938A2 (en) * 2004-07-27 2006-02-09 Engelhard Corporation Optical effect films with customized center layer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208634A (en) * 1989-10-31 1991-09-11 Mearl Corp:The Pearled laminate film
JPH09300540A (en) * 1996-05-09 1997-11-25 Eeru Kasei Shoji:Kk Iridescent reflecting film
JP2002509041A (en) * 1998-01-13 2002-03-26 ミネソタ マイニング アンド マニュファクチャリング カンパニー Colorless and transparent-colored security film
JP2000169765A (en) * 1998-12-10 2000-06-20 Sumitomo Metal Mining Co Ltd Coating solution for sunlight-shielding film and sunlight- shielding film obtained therefrom
JP2004516218A (en) * 2000-12-23 2004-06-03 ピルキントン パブリック リミテッド カンパニー Automotive flat glass
JP2006503137A (en) * 2002-10-09 2006-01-26 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Method for producing ultraviolet absorbing layer on substrate surface
JP2004323661A (en) * 2003-04-24 2004-11-18 Toyo Riken Kk Light-shielding coating agent and coating film
JP2005288784A (en) * 2004-03-31 2005-10-20 Toray Ind Inc Laminated film
WO2006014938A2 (en) * 2004-07-27 2006-02-09 Engelhard Corporation Optical effect films with customized center layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113003A (en) * 2009-11-30 2011-06-09 Jenkuen Uei Laminated reflection film and multilayer optical film
WO2012157655A1 (en) * 2011-05-17 2012-11-22 富士フイルム株式会社 Heat ray-shielding material, laminated structure, and laminated glass
WO2014088057A1 (en) 2012-12-06 2014-06-12 株式会社Adeka Light-blocking film
JP2015174236A (en) * 2014-03-13 2015-10-05 日立マクセル株式会社 Transparent heat-shielding and heat-insulating member
CN104149451A (en) * 2014-08-01 2014-11-19 苏州袭麟光电科技产业有限公司 Anti-ultraviolet heat insulation car film

Also Published As

Publication number Publication date
JP5541833B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
CN107209292B (en) Sheet of transparent formed body, the transparent screen for having the sheet of transparent formed body and the image projection device including the sheet of transparent formed body or transparent screen
JP4981706B2 (en) Antistatic multilayer sheet and antistatic thermoformed product
EP1964669B1 (en) Reflective film
CN104169086B (en) Synthetic resin laminated body
CN106462048A (en) Film for transparent screen, method for manufacture thereof, and transparent screen comprising same
JP6068456B2 (en) Synthetic resin laminate
JP5541833B2 (en) Infrared, UV blocking film
TW200846186A (en) Multi-layer screen composites
CN109605849A (en) It is configured to the coextrusion polymer film of continuous irreversible layering
JP7117298B2 (en) Laminated films and automobiles or parts for automobiles
KR102216490B1 (en) Blue light-blocking resin composition
JPS618349A (en) Vinylidene fluoride resin group composite film and manufacture thereof
KR20070063431A (en) Resin sheet for transmitted screen
TW201615416A (en) Synthetic resin laminate
JP5518447B2 (en) Laminated reflective film and multilayer optical film
JP4311838B2 (en) Biaxially oriented polyester film for window pasting
JP2009196255A (en) Antistatic multilayer sheet and antistatic thermoformed article
JP4774720B2 (en) Laminated biaxially stretched polyester film for lens sheets
TW200827160A (en) Multilayer heat insulating adhesive membrane
JP7160838B2 (en) Method for manufacturing liquid crystal display protection plate
JP6821969B2 (en) Polyester film
WO2004050364A1 (en) Biaxially oriented laminated polyester film
KR102320305B1 (en) Polyester film
JP2019014836A (en) Film
JP7342651B2 (en) film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120405

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140502

R150 Certificate of patent or registration of utility model

Ref document number: 5541833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250