WO2013133190A1 - Press molding apparatus and method for manufacturing optical device - Google Patents

Press molding apparatus and method for manufacturing optical device Download PDF

Info

Publication number
WO2013133190A1
WO2013133190A1 PCT/JP2013/055780 JP2013055780W WO2013133190A1 WO 2013133190 A1 WO2013133190 A1 WO 2013133190A1 JP 2013055780 W JP2013055780 W JP 2013055780W WO 2013133190 A1 WO2013133190 A1 WO 2013133190A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
molding
rolling elements
holes
plate
Prior art date
Application number
PCT/JP2013/055780
Other languages
French (fr)
Japanese (ja)
Inventor
英邦 浅井
剛志 石嶺
清鐘 山崎
泰匡 和田
藤本 忠幸
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to CN201380012535.4A priority Critical patent/CN104144892A/en
Publication of WO2013133190A1 publication Critical patent/WO2013133190A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/02Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing in machines with rotary tables
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/50Structural details of the press-mould assembly
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/72Barrel presses or equivalent, e.g. of the ring mould type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a mold press molding apparatus that press-molds a molding material such as glass with a precision-processed mold and manufactures an optical element such as a glass lens, and an optical element manufacturing method.
  • an optical glass material is accommodated in a mold that has been precisely machined to a predetermined surface accuracy, and the molded surface is ground by pressing it under heat and transferring the molded surface.
  • a method of manufacturing an optical element such as a glass lens having a high-precision optical functional surface that does not require post-processing such as polishing.
  • Patent Document 1 discloses glass in which processing chambers such as a heating chamber, a press chamber, and a cooling chamber are arranged side by side in a circumferential direction, and molding molds containing molding materials are sequentially transferred in these processing chambers.
  • An apparatus for manufacturing a molded body is disclosed.
  • each processing chamber is formed by being surrounded by a case in a furnace body, and a sample table is installed on a rotary table provided so as to be intermittently rotatable around a central rotary shaft.
  • the glass mold is continuously formed by moving the processing molds placed on the sample stage to the processing chambers as the rotary table rotates.
  • Patent Document 2 discloses a die moving type press molding machine that sequentially transfers molding dies to a press machine in which a heating stage, a pressure stage, and a cooling stage are arranged to perform a predetermined operation in each stage. It is disclosed.
  • the molding die is transferred to the subsequent stage by the die feeding arm without being transferred or variously processed in a state where the molding die is placed on the support base, and is provided on the heater block.
  • Various types of processing are executed by directly placing the mold on the soaking plate.
  • Patent Document 3 discloses a glass lens molding apparatus that does not transfer a molding die in a molding machine, and supports the molding die with three protrusions provided on a fixed portion of the molding machine, and is close to the molding die.
  • An apparatus is disclosed in which a glass lens having a predetermined shape is formed by performing various treatments using a pressurizing unit, a heating unit, and a cooling unit.
  • Patent Document 4 a plurality of rolling members are disposed between the lower mold and the lower mold holding member, so that when the lower mold is inserted into the body mold prepared on the fixed shaft side, There has been disclosed a mold press mold that facilitates smooth movement of the mold in the horizontal direction and can smoothly insert the lower mold into the body mold to enhance the coaxiality of the upper mold and the lower mold.
  • the apparatus of Patent Document 1 can independently and precisely control the temperature management of each processing chamber, and can prevent temperature fluctuations associated with the transfer of the mold.
  • the molding material is displaced in the molding die due to vibration during transfer, the optical element to be molded becomes uneven, resulting in a defective shape as well as due to uneven thickness.
  • the surface accuracy of the optical functional surface is deteriorated due to nonuniformity of the press load application, according to the apparatus of Patent Document 1, the mold can be smoothly transferred by the rotary table without causing vibration to the mold. it can.
  • the apparatus of Patent Document 1 has a very excellent function in manufacturing an optical element having a high-precision optical function surface.
  • optical devices used for imaging devices such as digital cameras and interchangeable lenses have extremely high optical performance requirements.
  • the temperature control in each processing step of the molding process particularly the temperature management of the mold that accommodates the molding material is elaborated.
  • the apparatus of Patent Document 1 is applied as it is, there has been a concern that when more precise temperature control of the mold is required, this cannot be met.
  • the posture of the molding die can be uniquely determined by supporting the molding die with three projections provided on the fixing portion of the molding machine, and at the time of heating and cooling of the molding die.
  • the press load of several tens to several hundred kgf is always received at the same three points, the protrusions are deformed when the number of presses is increased, and the mold is tilted at the beginning of pressing, for example, the mold is tilted. There is a fear.
  • the lower mold is heated by receiving heat from the lower mold holding member that is induction-heated by the mold heating apparatus. For this reason, by disposing a plurality of rolling members between the lower mold and the lower mold holding member, the horizontal mold can move smoothly in the horizontal direction, but the heating efficiency of the lower mold is deteriorated. End up.
  • the present invention has been made in view of the above points, and by pressing a molding material softened by heating the molding die while supporting the molding die containing the molding material with a support base, In the production of optical elements, the thermal influence of the support that supports the mold is suppressed from affecting the mold, and high-precision optical elements are stably mass-produced by controlling the mold temperature more precisely.
  • An object of the present invention is to provide a mold press molding apparatus and an optical element manufacturing method.
  • the mold press molding apparatus of the present invention is a mold press molding apparatus that press-molds a molding material softened by heating the molding die while supporting the molding die containing the molding material on a support base, and has a plurality of holes And at least a plurality of rolling elements capable of rolling in the plurality of holes, each of the plurality of rolling elements from the plurality of holes being part of the plate-like member.
  • the optical element manufacturing method of the present invention is suitable for manufacturing an optical element by press-molding a molding material softened by heating the molding die while supporting the molding die containing the molding material on a support base.
  • a unit including at least a plate-like member in which a plurality of holes are formed and a plurality of rolling elements capable of rolling in the plurality of holes, each part of the plurality of rolling elements from the plurality of holes.
  • the lower surface of the molding die is supported by a plurality of rolling elements by supporting the molding die on a support base via a pedestal unit in which a plurality of rolling elements are accommodated in a plurality of holes so as to protrude from the surface of the plate-like member.
  • the present invention it is possible to suppress the thermal influence of the support base that supports the molding die on the molding die, and more precisely control the temperature of the molding die. It can be mass-produced stably.
  • FIG. 1 It is a schematic plan view which shows embodiment of the mold press molding apparatus which concerns on embodiment of this invention. It is explanatory drawing inside the apparatus equivalent to the AA cross section of FIG. It is explanatory drawing which shows one Embodiment of the base unit which concerns on embodiment of this invention. It is a principal part expanded sectional view which expands and shows a part of FIG. It is explanatory drawing which shows the other example of the base unit which concerns on embodiment of this invention. It is a distribution map which shows the result of having measured the shape error of the surrounding area with respect to the reference
  • FIG. 6 is a histogram of the embodiment, in which the shape error of the peripheral region with respect to the reference shape is plotted on the horizontal axis and the frequency is plotted on the vertical axis. It is a distribution map which shows the result of having measured the shape error of the peripheral area with respect to the reference
  • the horizontal axis represents the shape error of the peripheral region with respect to the reference shape
  • the vertical axis represents the frequency.
  • FIG. 1 is a schematic plan view showing an embodiment of a mold press molding apparatus (hereinafter simply referred to as “molding apparatus”) according to an embodiment of the present invention
  • FIG. 2 corresponds to a cross section taken along line AA of FIG. It is explanatory drawing inside an apparatus.
  • the molding apparatus presses the molding material P softened by heating the molding die M while supporting the molding die M containing the molding material P such as a glass preform with the support base 3. In order to obtain a molded body such as an optical element molded into a desired shape.
  • the specific configuration of the mold M used in the present embodiment is not particularly limited as long as the molding material P can be press-molded into a desired shape.
  • the mold M includes a pair of an upper mold 10 and a lower mold 20 on which molding surfaces facing each other are formed, and a body mold 30 that regulates the mutual position of the upper mold 10 and the lower mold 20 in the horizontal direction. It's okay.
  • a molding die M By using such a molding die M, a molding material is formed between the lower die 20 and the upper die 10 that is slidably guided by the barrel die 30 so as to be relatively close to and away from the lower die 20. P can be press-molded.
  • the molding apparatus of the present embodiment transfers a plurality of processing chambers for performing processing including heating, pressing, and cooling to the mold M, and a support base 3 that supports the mold M to each processing chamber.
  • the press molding is performed by sequentially performing each process such as a heating process, a pressing process, and a cooling process while transporting the molding die M in which the molding material P is accommodated. Can be.
  • the chamber 1 is formed using stainless steel or other heat-resistant metal. For example, a cylindrical upper and lower openings are sealed to form a non-oxidizing gas atmosphere (inert such as nitrogen). It has an airtight structure that can be maintained in a gas atmosphere.
  • a non-oxidizing gas atmosphere in the chamber 1, there are provided take-out / insertion chambers P1 and processing chambers P2 to P8, which are arranged at almost equal intervals along the circumferential direction.
  • P1 is an extraction / insertion chamber.
  • the molding environment for setting the processing chambers P2 to P8 is not impaired, and a molding die containing the molding material P to be newly molded and a molding material P to be newly molded are accommodated. M is inserted.
  • P2 is a first heating chamber
  • P3 is a second heating chamber
  • P4 is a third heating chamber (or soaking chamber). These are also collectively referred to as a heating unit
  • the heat treatment here is performed so that the mold M and the molding material P reach a temperature suitable for press molding, for example, a temperature corresponding to a glass viscosity of 10 6 to 10 11 dPa ⁇ s.
  • P5 is a press room. In the press chamber P5, a press process for applying a press load by a press mechanism is performed on the mold M that has a temperature suitable for press molding by the heat treatment in the heating unit.
  • P6 is a first annealing chamber
  • P7 is a second annealing chamber
  • P8 is a quenching chamber.
  • the quenching chamber P8 is preferably provided with a quenching mechanism using a cooling gas, and the molded body formed into a desired shape by press-molding the molding material P has a temperature that does not hinder the opening to the atmosphere, for example, glass viscosity.
  • the mold M is cooled until the temperature becomes equal to or lower than the temperature corresponding to 10 12 dPa ⁇ s.
  • process chambers P2 to P8 are independently controlled to temperatures suitable for the respective processes, and are partitioned by shutters S1 to S6 in order to keep the temperature in each process chamber at a predetermined temperature.
  • a support base 3 that supports and transfers the mold M is attached to a turntable 2 as a transfer mechanism that is connected to a rotation drive mechanism that rotates in the direction of the arrow in FIG. Accordingly, the molding die M inserted into the apparatus from the take-out / insertion chamber P1 and supported by the support base 3 is always in a non-oxidizing gas atmosphere (nitrogen) in a state in which the molding material (or molded body) P is accommodated. Etc.) are sequentially transferred to the processing chambers P2 to P8 which are set under an inert gas atmosphere).
  • the turntable 2 has a disk shape with a diameter smaller than the inner diameter of the chamber 1 and is rotatably attached to the chamber 1 so that the center of rotation coincides with the center of the chamber 1.
  • the rotary table 2 is provided with a control mechanism (not shown) having an index machine in the center, and the rotary table 2 repeats rotation and stop at regular intervals to rotate intermittently by a predetermined rotation angle.
  • the support base 3 that supports the mold M is moved between adjacent processing chambers.
  • the fixed time at this time that is, the time from when the support base 3 starts to move due to intermittent rotation of the turntable 2 until the next movement is started is the molding cycle time. It becomes.
  • the transfer mechanism for transferring the support base 3 is configured to be connected to a known drive mechanism mainly for linear operation.
  • the specific configuration is not particularly limited.
  • the arrangement of the take-out / insertion chamber P1 and the processing chambers P2 to P8 is not limited to the illustrated example, and can be variously changed according to the configuration of the transfer mechanism for transferring the support base 3.
  • the first heating chamber P2, the second heating chamber P3, the third heating chamber P4, the press chamber P5, the first annealing chamber P6, and the second annealing chamber P7 are treated by a case 7, respectively.
  • the case 7 is fixed to the chamber 1 by an appropriate means (not shown).
  • the bottom wall 7a of the case 7 is formed with a slit 7b extending in the circumferential direction that serves as a movement path of the support base 3 when the mold M is transferred, and passes through the slit 7b.
  • the support table 3 enters each processing chamber.
  • FIG. 2 shows the inside of the first heating chamber P2 as a representative, but the second heating chamber P3, the third heating chamber P4, the first annealing chamber P6, and the second annealing chamber P7 are: Only the set temperature is different and the first heating chamber P2 can have a common structure.
  • the press chamber P5 can also have a common structure with other processing chambers except that it includes a press mechanism.
  • a heating unit 8 is installed so as to face the transfer path of the mold M and to face each other.
  • the temperatures of the processing chambers P2 to P7 are maintained at the respective set temperatures by controlling the output of the heating unit 8.
  • a thermocouple is disposed at the tip of the support base 3, and the lead wires are connected to the turntable 2.
  • the temperature of the tip of the support base 3, that is, the bottom of the mold M is measured, and the output of the heating unit 8 installed in each processing chamber is controlled based on the measurement result. Can do.
  • the specific configuration of the heating unit 8 is not particularly limited, and for example, a resistance heater that emits radiant heat can be used.
  • a resistance heater that emits radiant heat
  • the strip-like resistance heating heating element is attached almost symmetrically to the opposite side surfaces while meandering several times in the vertical direction along the inner side surface of the case 7. Is preferred.
  • a reflector 9 that covers the inner surface of the case 7 is disposed in the case 7 so as to reflect the radiant heat emitted from the heating unit 8 and efficiently apply the radiant heat to the mold M. It is preferable to keep it.
  • the support 3 for supporting the forming mold M and transferring the forming mold M to each processing chamber where heat treatment, press processing, and cooling processing are performed is a hollow cylindrical shape that stands vertically.
  • the upright part 3b is provided.
  • the support 3 is attached to the turntable 2 by fitting a base 3 c provided on the lower end side of the upright portion 3 b into a hole 2 a formed on the outer peripheral side of the turntable 2.
  • a mold support portion 3a for supporting the molding die M is provided on the upper end side of the upright portion 3b, and the mold support portion 3a includes a plurality of pins for preventing the molding die M from falling over as shown in the figure. 6 is preferably provided.
  • the support base 3 is provided with a plurality of upright portions 3b with respect to one base portion 3c, and the mold support portion 3a provided on the upper end side of each upright portion 3b supports the molding die M to perform heat treatment.
  • the plurality of molding dies M can be moved together in each processing chamber where the pressing process and the cooling process are performed. By doing so, it is possible to simultaneously transfer a plurality of molding dies M to each processing chamber, arrange a plurality of molding dies M in one processing chamber, and perform the same process at the same time. Production efficiency can be improved.
  • such a support base 3 moves through each processing chamber where heat treatment, press treatment, and cooling treatment are performed in a state where the mold M is supported, is heated together with the mold M, and is pressed to the mold M.
  • the support base 3 is normally formed using metal materials, such as stainless steel which has the intensity
  • the mold M is typically represented by ceramics such as silicon carbide and silicon nitride, cemented carbide such as tungsten carbide, etc., because it is necessary to have characteristics such as predetermined hardness, low thermal expansion, and denseness.
  • ceramic materials have higher thermal conductivity than metal materials such as stainless steel.
  • the mold M has a relatively higher thermal conductivity than the support 3, and as it moves through the processing chambers where heat treatment, press treatment, and cooling treatment are performed, its thermal environment Due to the change, heat exchange occurs between the mold M and the support 3.
  • the temperature of the mold M is higher than that of the support base 3, but the temperature of the mold M increases as the temperature of the mold M becomes higher than the temperature of the support base 3. Heat transfer from M to the support base 3 having a low temperature occurs.
  • the mold M is easier to cool than the support table 3, but as the temperature of the mold M becomes lower than the temperature of the support table 3, Heat transfer to the mold M having a low temperature occurs.
  • the plurality of support tables 3 that support the mold M and transfer it to the processing chambers have their thermal characteristics due to slight differences in thickness and shape, partial thermal deterioration that occurs over time, and the like. It must also be taken into account that there are variations. If the support table 3 has such a variation in thermal characteristics, the heat exchange with the mold M is not constant, and the optical element such as a glass lens has high shape reproducibility and high accuracy. There is also concern that it will be an obstacle to mass production.
  • the mold M is adhered to the support table 3 after being subjected to press molding by applying a predetermined press load to the mold M, and the mold There is also a concern that it may be difficult to remove M from the support 3.
  • FIG. 3 is an explanatory view showing an embodiment of the pedestal unit 5
  • FIG. 3 (a) is a plan view of the pedestal unit 5
  • FIG. 3 (b) is B in FIG. 3 (a).
  • the pedestal unit 5 in this embodiment includes a disc-shaped receiving plate 51, a plate-like member 52 in which a plurality of holes 52a are formed, and each hole 52a formed in the plate-like member 52. And a rolling element 53 held so as to be capable of rolling therein.
  • the receiving plate 51 and the plate-like member 52 are coupled by, for example, press-fitting, welding, screwing or the like in a state where the rolling elements 53 are accommodated in the respective holes 52 a formed in the plate-like member 52.
  • the rolling element 53 it is preferable to use a true spherical member having a diameter of 0.5 to 10 mm.
  • the plate-like member 52 can also be referred to as a holding plate, and the hole 52a can also be referred to as a holding hole.
  • the hole 52a formed in the plate-like member 52 is formed so as to penetrate in the thickness direction of the plate-like member 52, but is slightly smaller than the diameter of the rolling element 53 so that the rolling element 53 can be held to roll.
  • the inner diameter is large.
  • the part opened to the surface side of the plate-shaped member 52 is from the diameter of the rolling element 53 so that a part of the accommodated rolling element 53 protrudes on the surface of the plate-shaped member 52 and does not detach
  • the diameter is also reduced so as to be smaller (see FIG. 3B).
  • the thickness of the plate-like member 52 is made slightly smaller than the diameter of the rolling element 53 and is less than the radius of the rolling element 53, preferably at a height of 0.1 to 2 mm.
  • the shape and dimensions of each part are appropriately set so that a part of the rolling element 53 protrudes from the surface.
  • the rolling element 53 protruding from the surface of the plate-like member 52 directly supports the lower surface of the mold M substantially in point contact. That is, it will be supported in a point contact manner, and the contact area can be reduced. Thereby, heat exchange between the mold M and the support table 3 is suppressed so that the thermal influence of the support table 3 does not reach the mold M, and the support table 3 and the mold M are attached to each other. It is possible to prevent sticking from occurring.
  • the height protruding from the surface of the plate-like member 52 cannot be sufficiently secured, and heat exchange between the mold M and the support base 3 cannot be effectively suppressed.
  • the diameter of the rolling elements 53 is too large, the number of the rolling elements 53 included in the pedestal unit 5 cannot be made sufficient, and when a press load is applied, the load on the individual rolling elements 53 is increased. There is a possibility that the rolling element 53 may be damaged due to being too large.
  • the rolling element 53 by holding the rolling element 53 so as to be able to roll, uneven wear of the rolling element 53 can be suppressed, the service life thereof can be extended, and the pedestal unit 5 can be used over a long period of time.
  • the rolling element 53 held by the plate-like member 52 is only allowed to roll in the hole 52a and cannot move freely. Even if the support surface is inclined with respect to the horizontal plane, the rolling elements 53 do not roll and are unevenly distributed at a certain place. Thereby, a molded object can always be supported equally, without the attitude
  • the holes 52a that hold the rolling elements 53 so as to be able to roll are formed in the plate-like member 52 in an approximately equal pitch arrangement without being partially unevenly distributed. Is preferred.
  • the arrangement of the holes 52a is not limited to the staggered arrangement shown in the figure, and may be, for example, a lattice, concentric, or radial arrangement.
  • the number of holes 52a that is, the number of rolling elements 53 is appropriately set from the viewpoint of suppressing heat exchange between the mold M and the support third, and temporarily, the number of holes 52a is extremely increased.
  • the number of holes 52a that is, the number of rolling elements 53
  • the number N of rolling elements 53 is preferably 60 or less from the above equation (1). If the number N of rolling elements 53 is increased so that the value of Pmax / N is less than 5 kgf, heat exchange between the mold M and the support base 3 is likely to occur, and precise temperature management of the mold M becomes difficult. On the other hand, when the value of Pmax / N exceeds 20 kgf, the load on each rolling element 53 becomes too large, and the rolling element 53 or the receiving plate 51 may be damaged or deformed, and a desired effect may not be obtained. is there.
  • the hole 52a for holding the rolling element 53 so as to be able to roll is provided as a plate-like member.
  • the total area of the holes 52a (the area of the portion excluding the reduced diameter opening portion)
  • the surface area of the plate-like member 52 is S
  • the total area Sa of the holes 52 a is 200 ⁇ mm 2 or less from the above equation (2). It is preferable to set the number of holes 52 a formed in the plate-like member 52 so that When the holes 52a are formed in such a number that the total area Sa of the holes 52a exceeds half of the area S of the surface of the plate-like member 52, the number of rolling elements 53 accommodated in the mold 52 and abutted against the mold M increases. In addition, heat exchange between the mold M and the support 3 is likely to occur, and precise temperature management of the mold M becomes difficult.
  • the rolling elements 53 can be arbitrarily thinned out (the rolling elements 53 are omitted at a predetermined interval) as needed without being accommodated in all the holes 52a formed in the plate-like member 52.
  • the number of rolling elements 53 may be thinned to reduce the number thereof. it can.
  • the mold M is also large, so that the temperature distribution in one mold M is likely to occur, but the rolling element 53 in a high temperature region.
  • the temperature distribution of the mold M can be adjusted and reduced.
  • the number of rolling elements 53 provided in the pedestal unit 5 takes into consideration the fact that heat exchange between the mold M and the support base 3 can be effectively suppressed and the press load applied during the pressing process. More specifically, the number of rolling elements 53 having a diameter of 0.5 mm to 5 mm is preferably 30 to 80.
  • the receiving plate 51 and the plate-like member 52 forming the pedestal unit 5 can be formed using an alloy having high hardness and high heat resistance such as tungsten alloy, tungsten carbide, titanium carbide, cermet, and the like.
  • the receiving plate 51 is preferably made of a material having high hardness so that it does not deform or break even if it receives a press load of several tens to several hundreds kgf through the rolling elements 53.
  • the rolling element 53 is made of a material having a high hardness such as silicon nitride, silicon carbide, zirconia, alumina so as not to be deformed or damaged even when a press load of several tens to several hundreds kgf is applied. It can be formed using a material having high hardness and high heat resistance such as ceramics such as tungsten alloy, tungsten carbide, titanium carbide, and cermet.
  • a pedestal unit 5 as shown in FIG. 3 is arranged on the mold support portion 3a of the support base 3, and molding is performed in the take-out / insertion chamber P1.
  • An operation for taking out the finished mold M and an insertion operation for carrying the mold M containing the molding material P newly used for molding into the molding apparatus were performed.
  • the mold M was supported by the mold support portion 3 a of the support base 3 via the pedestal unit 5.
  • press molding was repeatedly performed through various processes of heating, pressing, and cooling while sequentially transferring the molding die M to the processing chambers P2 to P8.
  • a concave meniscus lens having a press diameter of 33 mm, a center thickness of 1.3 mm, and a peripheral thickness of 8 mm was continuously molded.
  • the pedestal unit 5 has an outer diameter of 50 mm, a combined thickness of the receiving plate 51 and the plate-like member 52 of 4 mm, 40 holes 52a, and carbide rolling elements 53 disposed in the holes 52a. The one with a diameter of 2 mm was used.
  • FIG. 6 shows the result of measuring the shape error of the peripheral region with respect to the reference shape (hereinafter referred to as “periphery F ′”) for each of the five support bases for the molded glass lens.
  • FIG. 7 shows a histogram in which the peripheral F ′ is on the horizontal axis and the frequency is on the vertical axis.
  • FIG. 8 shows the result of measuring the peripheral F ′ for each of the five support bases 3 for the molded glass lens.
  • FIG. 9 shows a histogram in which the peripheral F ′ is on the horizontal axis and the frequency is on the vertical axis.
  • the error was improved and the variation could be reduced.
  • maintained so that rolling is possible in the hole 52a is shown as the base unit 5.
  • the receiving plate 51 may be omitted.
  • the mold support 3 a provided on the support 3 can have the function of the receiving plate 51.
  • 5 is an explanatory view showing another example of the pedestal unit 5, and is an enlarged cross-sectional view of a main part corresponding to FIG.
  • the same components as those in the example shown in FIG. 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a mold press provided with a plurality of processing chambers for performing each process including heating, pressing, and cooling, and a transfer mechanism for sequentially transferring the support base 3 supporting the mold M to these processing chambers.
  • the present invention relates to a mold press molding apparatus for press-molding a molding material P softened by heating the molding die M while supporting the molding die M containing the molding material P on the support base 3, and a method for manufacturing an optical element. It is applicable to.
  • the present invention is not limited to a concave meniscus lens, and presses optical elements of various shapes such as a biconvex lens, a convex meniscus lens, and a biconcave lens. Applicable when molding.
  • the temperature distribution in the molding surface can be suppressed and the temperature of the molding die M can be controlled more precisely by applying the present invention. Therefore, high-precision optical elements can be stably mass-produced.
  • the mold press molding apparatus is a mold press molding apparatus that press-molds a molding material P softened by heating the molding die M while supporting the molding die M containing the molding material P with the support 3.
  • the unit includes at least a plate-like member 52 in which a plurality of holes 52a are formed and a plurality of rolling elements 53 capable of rolling in the plurality of holes 52a.
  • the mold M is placed on the support base 3 via the pedestal unit 5 in which the plurality of rolling elements 53 are accommodated in the plurality of holes 52a so that each of the rolling elements 53 protrudes from the surface of the plate-like member 52.
  • the plurality of rolling elements 53 each support the lower surface of the molding die M in a point contact manner.
  • the pedestal unit 5 includes a receiving plate 51 coupled to the plate-like member 52, and the rolling member 53 is accommodated in the hole 52a. 51 is preferably bonded.
  • the mold press molding apparatus includes a plurality of processing chambers (P2 to P8) for performing processing including heating, pressing, and cooling on the mold M, and a support that supports the mold M. It is preferable that the apparatus includes a transfer mechanism (rotary table 2) that sequentially transfers the table 3 to each processing chamber.
  • the manufacturing method of the optical element press-molds the molding material P softened by heating the molding die M while supporting the molding die M containing the molding material P with the support base 3.
  • the unit includes at least a plate-like member 52 in which a plurality of holes 52a are formed and a plurality of rolling elements 53 that can roll in the plurality of holes 52a.
  • the mold M is formed via the pedestal unit 5 in which the plurality of rolling elements 53 are accommodated in the plurality of holes 52a so that a part of each of the plurality of rolling elements 53 protrudes from the surface of the plate-like member 52 from 52a.
  • the several rolling element 53 supports the lower surface of the shaping
  • the pedestal unit 5 includes a receiving plate 51 coupled to the plate-like member 52, and the rolling member 53 is accommodated in the plurality of holes 52a.
  • 51 is a method for manufacturing an optical element.
  • the method for manufacturing an optical element according to the present embodiment can also adjust and reduce the temperature distribution of the mold M by thinning out a part of the plurality of rolling elements 53 accommodated in the pedestal unit 5.

Abstract

A pedestal unit (5) in which a plurality of rolling elements (53) are accommodated in a plurality of holes (52a) in such a manner that respective parts of the plurality of rolling elements (53) protrude onto a surface of a plate-shaped member (52) from the plurality of holes (52a) is used so that a forming die (M) is supported on a support (3) and a lower surface of the forming die (M) is supported respectively by the plurality of rolling elements (53) in a point contact form, the pedestal unit being a unit that includes at least the plate-shaped member (52) where the plurality of holes (52a) are formed, and the plurality of rolling elements (53) being capable of rolling in the plurality of holes (52a). In this manner, heat exchange between the forming die (M) and the support (3) is inhibited so that the support (3) does not thermally affect the forming die (M). Also, it is possible to prevent the support (3) and the forming die (M) from sticking to each other.

Description

モールドプレス成形装置、及び光学素子の製造方法Mold press molding apparatus and optical element manufacturing method
 本発明は、精密加工された成形型によってガラスなどの成形素材をプレス成形し、ガラスレンズなど光学素子を製造するモールドプレス成形装置、及び光学素子の製造方法に関する。 The present invention relates to a mold press molding apparatus that press-molds a molding material such as glass with a precision-processed mold and manufactures an optical element such as a glass lens, and an optical element manufacturing method.
 近年、成形面を所定の表面精度に精密加工した成形型内に光学用のガラス素材を収容して、加熱下でプレス成形して成形面を転写することにより、成形後の転写面について研削や研磨などの後加工を必要としない、高精度の光学機能面を有するガラスレンズなどの光学素子を製造する方法が知られている。 In recent years, an optical glass material is accommodated in a mold that has been precisely machined to a predetermined surface accuracy, and the molded surface is ground by pressing it under heat and transferring the molded surface. There is known a method of manufacturing an optical element such as a glass lens having a high-precision optical functional surface that does not require post-processing such as polishing.
 例えば、特許文献1には、加熱室、プレス室、冷却室などの処理室が円周方向に並べて配置され、これらの処理室の中を、成形素材を入れた成形型が順次移送されるガラス成形体の製造装置が開示されている。この製造装置では、各処理室が炉体の中でケースによって取り囲まれて形成されているとともに、中央の回転軸回りに間歇的に回転駆動可能に設けられた回転テーブルに試料台が据え付けられており、この試料台に載置された成形型を、回転テーブルの回転駆動に伴って各処理室を移送させることで、ガラス成形体を連続的に成形するようにしている。 For example, Patent Document 1 discloses glass in which processing chambers such as a heating chamber, a press chamber, and a cooling chamber are arranged side by side in a circumferential direction, and molding molds containing molding materials are sequentially transferred in these processing chambers. An apparatus for manufacturing a molded body is disclosed. In this manufacturing apparatus, each processing chamber is formed by being surrounded by a case in a furnace body, and a sample table is installed on a rotary table provided so as to be intermittently rotatable around a central rotary shaft. In addition, the glass mold is continuously formed by moving the processing molds placed on the sample stage to the processing chambers as the rotary table rotates.
 また、特許文献2には、加熱ステージ、加圧ステージ、冷却ステージが配置されたプレス機に成形用の金型を順次移送して各ステージにおける所定の作業を行う型移動方式のプレス成形機が開示されている。この成形機では、特許文献1のように成形型を支持台に載置した状態で移送や各種処理を行わず、成形型を型送りアームで後段のステージへ移送し、ヒータブロック上に設けられた均熱板に成形型を直接載置して各種処理を実行している。 Further, Patent Document 2 discloses a die moving type press molding machine that sequentially transfers molding dies to a press machine in which a heating stage, a pressure stage, and a cooling stage are arranged to perform a predetermined operation in each stage. It is disclosed. In this molding machine, as in Patent Document 1, the molding die is transferred to the subsequent stage by the die feeding arm without being transferred or variously processed in a state where the molding die is placed on the support base, and is provided on the heater block. Various types of processing are executed by directly placing the mold on the soaking plate.
 また、特許文献3には、成形機内で成形型を移送しない方式のガラスレンズ成形装置であって、成形機の固定部に設けた3つの突起で成形型を支持し、成形型に近接して配置した加圧手段、加熱手段、冷却手段により各種処理を施して所定形状のガラスレンズを成形する装置が開示されている。 Patent Document 3 discloses a glass lens molding apparatus that does not transfer a molding die in a molding machine, and supports the molding die with three protrusions provided on a fixed portion of the molding machine, and is close to the molding die. An apparatus is disclosed in which a glass lens having a predetermined shape is formed by performing various treatments using a pressurizing unit, a heating unit, and a cooling unit.
 また、特許文献4には、下型と下型保持部材との間に複数の転動部材を配設することにより、固定軸側に用意された胴型内に下型を挿入する際、下型の水平方向への円滑な移動を促し、下型をスムーズに胴型内に挿入して上型と下型の同軸性を高めることができるモールドプレス成形型が開示されている。 In Patent Document 4, a plurality of rolling members are disposed between the lower mold and the lower mold holding member, so that when the lower mold is inserted into the body mold prepared on the fixed shaft side, There has been disclosed a mold press mold that facilitates smooth movement of the mold in the horizontal direction and can smoothly insert the lower mold into the body mold to enhance the coaxiality of the upper mold and the lower mold.
特公平7-29779号公報Japanese Patent Publication No. 7-29779 特開2003-25100号公報JP 2003-25100 A 特開2004-149410号公報JP 2004-149410 A 再公表2008-053860号公報Republished 2008-053860
 ところで、特許文献1の装置は、各処理室の温度管理を独立に、かつ、精緻に制御することが可能であり、成形型の移送に伴う温度変動が生じないようにすることができ、また、これに加えて、移送時の振動により成形型内での成形素材の位置ずれが生じてしまうと、成形される光学素子が偏肉し、形状不良となるだけでなく、偏肉に起因するプレス荷重印加の不均一によって、光学機能面の面精度が劣化してしまうが、特許文献1の装置によれば、成形型に振動を及ぼすことなく回転テーブルによって成形型をスムーズに移送することができる。このように、特許文献1の装置は、高精度の光学機能面を有する光学素子を製造する上で、非常に優れた機能を備えている。 By the way, the apparatus of Patent Document 1 can independently and precisely control the temperature management of each processing chamber, and can prevent temperature fluctuations associated with the transfer of the mold. In addition to this, if the molding material is displaced in the molding die due to vibration during transfer, the optical element to be molded becomes uneven, resulting in a defective shape as well as due to uneven thickness. Although the surface accuracy of the optical functional surface is deteriorated due to nonuniformity of the press load application, according to the apparatus of Patent Document 1, the mold can be smoothly transferred by the rotary table without causing vibration to the mold. it can. As described above, the apparatus of Patent Document 1 has a very excellent function in manufacturing an optical element having a high-precision optical function surface.
 しかしながら、本発明者らが鋭意検討を重ねたところ、特許文献1の装置では、処理室内の加熱ヒータにより成形型とともに試料台も加熱されるが、このとき、成形型と試料台の熱的特性の相違により両者の間で熱交換が生じ、成形型の温度管理を乱してしまうおそれがあることが見出された。そして、光学素子に要求される精度がますます厳しくなってきているという近年の状況において、成形型を支持する試料台の熱的影響が、高精度の成形に悪影響を及ぼしてしまうという知見を得るに至った。 However, as a result of extensive studies by the present inventors, in the apparatus of Patent Document 1, the sample stage is heated together with the mold by the heater in the processing chamber. At this time, the thermal characteristics of the mold and the sample stage are also measured. It has been found that the difference between the two causes heat exchange between the two and may disturb the temperature control of the mold. And in the recent situation that the precision required for optical elements has become increasingly severe, the knowledge that the thermal effect of the sample stage supporting the mold will adversely affect high-precision molding is obtained. It came to.
 例えば、デジタルカメラ等の撮像機器や、交換レンズなどに用いられる光学素子は、その光学的要求性能が極めて高い。特に、比較的直径の大きいガラスレンズ(例えば、φ20mm以上)を精密モールドプレスによって成形するためには、成形プロセスの各処理工程における温度管理、特に、成形素材を収容する成形型の温度管理を精緻に行う必要があるが、特許文献1の装置をそのまま適用したのでは、より精緻な成形型の温度管理が求められたときに、これに応えられないことが懸念された。 For example, optical devices used for imaging devices such as digital cameras and interchangeable lenses have extremely high optical performance requirements. In particular, in order to mold a glass lens having a relatively large diameter (for example, φ20 mm or more) with a precision mold press, the temperature control in each processing step of the molding process, particularly the temperature management of the mold that accommodates the molding material is elaborated. However, if the apparatus of Patent Document 1 is applied as it is, there has been a concern that when more precise temperature control of the mold is required, this cannot be met.
 なお、特許文献2の成形機では、ステージ毎に区画がされていないため、隣接するステージからの熱的影響を避けられず、各成形型の精緻な温度管理を行うことができない。しかも、成形型は上下から挟持される均熱板から直接に熱が伝播されるため、成形型と均熱板との間に異物が介在するなどして両者の接触面積が変化すると、成形型が温度変動し、所望の品質の成形体を成型できなくなることがある。 In addition, in the molding machine of patent document 2, since the section is not divided for each stage, the thermal influence from an adjacent stage cannot be avoided, and precise temperature control of each mold cannot be performed. In addition, since heat is directly transmitted from the soaking plate sandwiched from above and below, if the contact area between the molding die and the soaking plate changes due to the presence of foreign matter, the forming die However, the temperature may fluctuate, and it may become impossible to mold a molded article having a desired quality.
 また、特許文献3の装置では、成形機の固定部に設けた3つの突起で成形型を支持することで、成形型の姿勢を一義的に決めることができるとともに、成形型の加熱、冷却時の成形機への熱移動を極力少なくすることができるとしているが、3つの突起を固定部に均等に形成するのは容易でない。しかも、数十~数百kgfのプレス荷重を常に同じ3点で受けるため、プレス回数が増えると突起が変形し、成形型に傾きが生じるなどして、プレス開始当初の成形型の姿勢が崩れるおそれがある。 Further, in the apparatus of Patent Document 3, the posture of the molding die can be uniquely determined by supporting the molding die with three projections provided on the fixing portion of the molding machine, and at the time of heating and cooling of the molding die. However, it is not easy to form the three protrusions evenly on the fixed portion. In addition, since the press load of several tens to several hundred kgf is always received at the same three points, the protrusions are deformed when the number of presses is increased, and the mold is tilted at the beginning of pressing, for example, the mold is tilted. There is a fear.
 また、特許文献4のプレス成形装置において、下型は、型加熱装置によって誘導加熱された下型保持部材の熱を受けて加熱される。このため、下型と下型保持部材との間に複数の転動部材を配設することで、下型の水平方向の移動をスムーズにすることができるものの下型への加熱効率が悪くなってしまう。 In the press molding apparatus of Patent Document 4, the lower mold is heated by receiving heat from the lower mold holding member that is induction-heated by the mold heating apparatus. For this reason, by disposing a plurality of rolling members between the lower mold and the lower mold holding member, the horizontal mold can move smoothly in the horizontal direction, but the heating efficiency of the lower mold is deteriorated. End up.
 本発明は、以上のような点に鑑みてなされたものであり、成形素材を収容した成形型を支持台で支持しつつ、成形型を加熱することにより軟化した成形素材をプレス成形することによって光学素子を製造するにあたり、成形型を支持する支持台の熱的影響が成形型に及ぶことを抑制し、より精緻に成形型の温度管理をすることで高精度の光学素子を安定して量産することができるモールドプレス成形装置、及び光学素子の製造方法の提供を目的とする。 The present invention has been made in view of the above points, and by pressing a molding material softened by heating the molding die while supporting the molding die containing the molding material with a support base, In the production of optical elements, the thermal influence of the support that supports the mold is suppressed from affecting the mold, and high-precision optical elements are stably mass-produced by controlling the mold temperature more precisely. An object of the present invention is to provide a mold press molding apparatus and an optical element manufacturing method.
 本発明のモールドプレス成形装置は、成形素材を収容した成形型を支持台で支持しつつ、成形型を加熱することにより軟化した成形素材をプレス成形するモールドプレス成形装置であって、複数の孔が形成された板状部材と、複数の孔内で転動可能な複数の転動体とを少なくとも備えたユニットであって、複数の孔から複数の転動体のそれぞれの一部が板状部材の表面に突出するように複数の孔内に複数の転動体が収容された台座ユニットを介して、成形型を支持台上に支持させることにより、成形型の下面を複数の転動体がそれぞれ点接触状に支持するようにした構成としてある。 The mold press molding apparatus of the present invention is a mold press molding apparatus that press-molds a molding material softened by heating the molding die while supporting the molding die containing the molding material on a support base, and has a plurality of holes And at least a plurality of rolling elements capable of rolling in the plurality of holes, each of the plurality of rolling elements from the plurality of holes being part of the plate-like member. By supporting the molding die on the support base via a pedestal unit in which a plurality of rolling elements are accommodated in a plurality of holes so as to protrude from the surface, the plurality of rolling elements are in point contact with the lower surface of the molding die, respectively. The configuration is such that it is supported in a shape.
 また、本発明の光学素子の製造方法は、成形素材を収容した成形型を支持台で支持しつつ、成形型を加熱することにより軟化した成形素材をプレス成形することによって光学素子を製造するにあたり、複数の孔が形成された板状部材と、複数の孔内で転動可能な複数の転動体とを少なくとも備えたユニットであって、複数の孔から複数の転動体のそれぞれの一部が板状部材の表面に突出するように複数の孔内に複数の転動体が収容された台座ユニットを介して、成形型を支持台上に支持させることにより、成形型の下面を複数の転動体がそれぞれ点接触状に支持する方法としてある。 In addition, the optical element manufacturing method of the present invention is suitable for manufacturing an optical element by press-molding a molding material softened by heating the molding die while supporting the molding die containing the molding material on a support base. A unit including at least a plate-like member in which a plurality of holes are formed and a plurality of rolling elements capable of rolling in the plurality of holes, each part of the plurality of rolling elements from the plurality of holes. The lower surface of the molding die is supported by a plurality of rolling elements by supporting the molding die on a support base via a pedestal unit in which a plurality of rolling elements are accommodated in a plurality of holes so as to protrude from the surface of the plate-like member. Are methods for supporting each in a point contact manner.
 本発明によれば、成形型を支持する支持台の熱的影響が成形型に及ぶことを抑制し、より精緻に成形型の温度管理をすることが可能となるため、高精度の光学素子を安定して量産することができる。 According to the present invention, it is possible to suppress the thermal influence of the support base that supports the molding die on the molding die, and more precisely control the temperature of the molding die. It can be mass-produced stably.
本発明の実施形態に係るモールドプレス成形装置の実施形態を示す概略平面図である。It is a schematic plan view which shows embodiment of the mold press molding apparatus which concerns on embodiment of this invention. 図1のA-A断面に相当する装置内部の説明図である。It is explanatory drawing inside the apparatus equivalent to the AA cross section of FIG. 本発明の実施形態に係る台座ユニットの一実施形態を示す説明図である。It is explanatory drawing which shows one Embodiment of the base unit which concerns on embodiment of this invention. 図2の一部を拡大して示す要部拡大断面図である。It is a principal part expanded sectional view which expands and shows a part of FIG. 本発明の実施形態に係る台座ユニットの他の例を示す説明図である。It is explanatory drawing which shows the other example of the base unit which concerns on embodiment of this invention. 実施例について、基準形状に対する周辺領域の形状誤差を五つの支持台ごとに測定した結果を示す分布図である。It is a distribution map which shows the result of having measured the shape error of the surrounding area with respect to the reference | standard shape for every five support bases about the Example. 実施例について、基準形状に対する周辺領域の形状誤差を横軸に、その頻度を縦軸にとったヒストグラムである。FIG. 6 is a histogram of the embodiment, in which the shape error of the peripheral region with respect to the reference shape is plotted on the horizontal axis and the frequency is plotted on the vertical axis. 比較例について、基準形状に対する周辺領域の形状誤差を五つの支持台ごとに測定した結果を示す分布図である。It is a distribution map which shows the result of having measured the shape error of the peripheral area with respect to the reference | standard shape for every five support bases about the comparative example. 比較例について、基準形状に対する周辺領域の形状誤差を横軸に、その頻度を縦軸にとったヒストグラムである。In the comparative example, the horizontal axis represents the shape error of the peripheral region with respect to the reference shape, and the vertical axis represents the frequency.
 以下、本発明の好ましい実施形態について、図面を参照して説明する。
 図1は、本発明の実施形態に係るモールドプレス成形装置(以下、単に「成形装置」という)の実施形態を示す概略平面図であり、図2は、図1のA-A断面に相当する装置内部の説明図である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic plan view showing an embodiment of a mold press molding apparatus (hereinafter simply referred to as “molding apparatus”) according to an embodiment of the present invention, and FIG. 2 corresponds to a cross section taken along line AA of FIG. It is explanatory drawing inside an apparatus.
 本実施形態の成形装置は、ガラスプリフォームなどの成形素材Pを収容した成形型Mを支持台3で支持しつつ、成形型Mを加熱することにより軟化した成形素材Pをプレス成形することにより、所望の形状に成形された光学素子などの成形体を得るためのものである。 The molding apparatus according to the present embodiment presses the molding material P softened by heating the molding die M while supporting the molding die M containing the molding material P such as a glass preform with the support base 3. In order to obtain a molded body such as an optical element molded into a desired shape.
 本実施形態で用いる成形型Mは、成形素材Pを所望の形状にプレス成形できるものであれば、その具体的な構成は特に限定されない。例えば、成形型Mは、互いに対向する成形面が形成された一対の上型10及び下型20と、上型10及び下型20の水平方向の相互位置を規制する胴型30とで構成されてよい。このような成形型Mを用いることで、下型20と、下型20に対して相対的に近接、離間するように胴型30により摺動ガイドされる上型10との間で、成形素材Pをプレス成形することができる。 The specific configuration of the mold M used in the present embodiment is not particularly limited as long as the molding material P can be press-molded into a desired shape. For example, the mold M includes a pair of an upper mold 10 and a lower mold 20 on which molding surfaces facing each other are formed, and a body mold 30 that regulates the mutual position of the upper mold 10 and the lower mold 20 in the horizontal direction. It's okay. By using such a molding die M, a molding material is formed between the lower die 20 and the upper die 10 that is slidably guided by the barrel die 30 so as to be relatively close to and away from the lower die 20. P can be press-molded.
 また、本実施形態の成形装置は、成形型Mに対して、加熱、プレス、冷却を含む各処理をそれぞれ行う複数の処理室と、成形型Mを支持した支持台3を各処理室に移送させる移送機構とを有するようにして、成形素材Pが収容された成形型Mを移送しながら、順次、加熱処理、プレス処理、冷却処理などの各処理を施すことによって、プレス成形が行われるようにすることができる。 In addition, the molding apparatus of the present embodiment transfers a plurality of processing chambers for performing processing including heating, pressing, and cooling to the mold M, and a support base 3 that supports the mold M to each processing chamber. The press molding is performed by sequentially performing each process such as a heating process, a pressing process, and a cooling process while transporting the molding die M in which the molding material P is accommodated. Can be.
 ここで、図1に示す成形装置はチャンバ1を備えている。チャンバ1は、ステンレス、又はその他の耐熱性を有する金属を用いて形成され、例えば、円筒形の上下開口部を密閉した形状とすることにより、内部を非酸化性ガス雰囲気(窒素などの不活性ガス雰囲気)に保持できる気密構造とされている。そして、このチャンバ1内には、周方向に沿ってほぼ等間隔に並べて配置された、取出・挿入室P1と、処理室P2~P8とが設けられている。 Here, the molding apparatus shown in FIG. The chamber 1 is formed using stainless steel or other heat-resistant metal. For example, a cylindrical upper and lower openings are sealed to form a non-oxidizing gas atmosphere (inert such as nitrogen). It has an airtight structure that can be maintained in a gas atmosphere. In the chamber 1, there are provided take-out / insertion chambers P1 and processing chambers P2 to P8, which are arranged at almost equal intervals along the circumferential direction.
 図示する例において、P1は取出・挿入室である。この取出・挿入室P1では、処理室P2~P8の設定環境を損なわないようにして、成形を終えた成形型Mの取り出し作業と、新たに成形に供される成形素材Pを収容した成形型Mの挿入作業とが行われる。 In the illustrated example, P1 is an extraction / insertion chamber. In this take-out / insertion chamber P1, the molding environment for setting the processing chambers P2 to P8 is not impaired, and a molding die containing the molding material P to be newly molded and a molding material P to be newly molded are accommodated. M is inserted.
 また、P2は第一加熱室、P3は第二加熱室、P4は第三加熱室(又は均熱室)である。これらは総称して加熱部ともいい、成形型Mに対して加熱処理が施される。ここでの加熱処理は、成形型M及び成形素材Pをプレス成形に適した温度、例えば、ガラス粘度が10~1011dPa・sに相当する温度に達するように行われる。P5はプレス室である。このプレス室P5では、加熱部での加熱処理によってプレス成形に適した温度とされた成形型Mに対し、プレス機構によりプレス荷重を印加するプレス処理が施される。 P2 is a first heating chamber, P3 is a second heating chamber, and P4 is a third heating chamber (or soaking chamber). These are also collectively referred to as a heating unit, and the mold M is subjected to heat treatment. The heat treatment here is performed so that the mold M and the molding material P reach a temperature suitable for press molding, for example, a temperature corresponding to a glass viscosity of 10 6 to 10 11 dPa · s. P5 is a press room. In the press chamber P5, a press process for applying a press load by a press mechanism is performed on the mold M that has a temperature suitable for press molding by the heat treatment in the heating unit.
 また、P6は第一徐冷室、P7は第二徐冷室、P8は急冷室である。これらは総称して冷却部ともいい、プレス荷重が印加された後の成形型Mに対して冷却処理が施される。急冷室P8には、冷却ガスによる急冷機構を設けておくのが好ましく、成形素材Pをプレス成形することによって所望の形状とされた成形体が、大気開放に支障のない温度、例えば、ガラス粘度が1012dPa・sに相当する温度以下となるまで成形型Mを冷却する。 P6 is a first annealing chamber, P7 is a second annealing chamber, and P8 is a quenching chamber. These are also collectively referred to as a cooling unit, and a cooling process is performed on the mold M after the press load is applied. The quenching chamber P8 is preferably provided with a quenching mechanism using a cooling gas, and the molded body formed into a desired shape by press-molding the molding material P has a temperature that does not hinder the opening to the atmosphere, for example, glass viscosity. The mold M is cooled until the temperature becomes equal to or lower than the temperature corresponding to 10 12 dPa · s.
 これらの処理室P2~P8は、それぞれの処理に適した温度にそれぞれ独立に温度制御されるとともに、各処理室内の温度を所定温度に保つために、シャッターS1~S6によって区画されている。 These process chambers P2 to P8 are independently controlled to temperatures suitable for the respective processes, and are partitioned by shutters S1 to S6 in order to keep the temperature in each process chamber at a predetermined temperature.
 また、図示する例では、成形型Mを支持して移送する支持台3が、図1中矢印方向に回転する回転駆動機構に連結された、移送機構としての回転テーブル2に取り付けられている。これにより、取出・挿入室P1から装置内に挿入され、支持台3に支持された成形型Mは、成形素材(又は成形体)Pを収容した状態で、常時非酸化性ガスの雰囲気(窒素などの不活性ガス雰囲気)下に環境設定された処理室P2~P8に順次移送される。
 なお、回転テーブル2は、チャンバ1の内径より小さい径の円板状とし、その回転中心がチャンバ1の中心と一致するように、チャンバ1に対して回転自在に取り付けられる。
Further, in the illustrated example, a support base 3 that supports and transfers the mold M is attached to a turntable 2 as a transfer mechanism that is connected to a rotation drive mechanism that rotates in the direction of the arrow in FIG. Accordingly, the molding die M inserted into the apparatus from the take-out / insertion chamber P1 and supported by the support base 3 is always in a non-oxidizing gas atmosphere (nitrogen) in a state in which the molding material (or molded body) P is accommodated. Etc.) are sequentially transferred to the processing chambers P2 to P8 which are set under an inert gas atmosphere).
The turntable 2 has a disk shape with a diameter smaller than the inner diameter of the chamber 1 and is rotatably attached to the chamber 1 so that the center of rotation coincides with the center of the chamber 1.
 回転テーブル2は、インデックスマシンを備えた制御機構(図示省略)を中央に備えており、回転テーブル2が一定時間ごとに回転と停止を繰り返して、所定の回転角度分だけ間歇的に回転することにより、成形型Mを支持する支持台3が、隣設する処理室間を移動するようになっている。そして、このときの一定時間、すなわち、回転テーブル2の間歇的な回転により、支持台3が移動を開始してから、一旦停止して次の移動が開始されるまでの時間が、成形サイクルタイムとなる。 The rotary table 2 is provided with a control mechanism (not shown) having an index machine in the center, and the rotary table 2 repeats rotation and stop at regular intervals to rotate intermittently by a predetermined rotation angle. Thus, the support base 3 that supports the mold M is moved between adjacent processing chambers. The fixed time at this time, that is, the time from when the support base 3 starts to move due to intermittent rotation of the turntable 2 until the next movement is started is the molding cycle time. It becomes.
 なお、本実施形態では、回転移送式の成形装置の例を図示して説明するが、支持台3を移送する移送機構は、直線動作を主とする公知の駆動機構に連結して構成することもでき、その具体的な構成は特に限定されない。また、取出・挿入室P1、処理室P2~P8の配置も図示する例には限定されず、支持台3を移送する移送機構の構成に応じて種々変更することができる。さらに、成形素材Pの組成や、得ようとする光学素子などの成形体の形状にあわせて、加熱、プレス、冷却の各処理を最適化するために、例えば、加熱室を四つにしたり、プレス室を二つにしたり、徐冷室を三つにしたりしてもよい。成形体の生産効率を向上させるために、同数の加熱室、プレス室、徐冷室を並設し、異なる温度条件、異なる加圧条件を要する複数種類のプレス成形を同時並行的に行うようにすることもできる。 In the present embodiment, an example of a rotary transfer type molding apparatus is illustrated and described. However, the transfer mechanism for transferring the support base 3 is configured to be connected to a known drive mechanism mainly for linear operation. The specific configuration is not particularly limited. Further, the arrangement of the take-out / insertion chamber P1 and the processing chambers P2 to P8 is not limited to the illustrated example, and can be variously changed according to the configuration of the transfer mechanism for transferring the support base 3. Furthermore, in order to optimize each treatment of heating, pressing, and cooling according to the composition of the molding material P and the shape of the molded body such as the optical element to be obtained, for example, four heating chambers, There may be two press chambers or three slow cooling chambers. In order to improve the production efficiency of molded products, the same number of heating chambers, press chambers, and slow cooling chambers are arranged in parallel, and multiple types of press molding that require different temperature conditions and different pressurization conditions are performed in parallel. You can also
 図示する例において、第一加熱室P2、第二加熱室P3、第三加熱室P4、プレス室P5、第一徐冷室P6、及び第二徐冷室P7の各処理室は、ケース7によって周囲が取り囲まれており、このケース7は、図示しない適当な手段によってチャンバ1に固定されている。図2に示すように、ケース7の底壁7aには、成形型Mを移送する際の支持台3の移動通路となる周方向に延びるスリット7bが形成されており、このスリット7bを通って、各処理室内に、支持台3が入り込むようになっている。 In the illustrated example, the first heating chamber P2, the second heating chamber P3, the third heating chamber P4, the press chamber P5, the first annealing chamber P6, and the second annealing chamber P7 are treated by a case 7, respectively. The case 7 is fixed to the chamber 1 by an appropriate means (not shown). As shown in FIG. 2, the bottom wall 7a of the case 7 is formed with a slit 7b extending in the circumferential direction that serves as a movement path of the support base 3 when the mold M is transferred, and passes through the slit 7b. The support table 3 enters each processing chamber.
 ここで、図2は、第一加熱室P2の内部を代表して示しているが、第二加熱室P3、第三加熱室P4、第一徐冷室P6、第二徐冷室P7は、設定温度が異なるだけで、第一加熱室P2と共通の構造とすることができる。また、プレス室P5も、プレス機構を備えている以外は、他の処理室と共通の構造とすることができる。 Here, FIG. 2 shows the inside of the first heating chamber P2 as a representative, but the second heating chamber P3, the third heating chamber P4, the first annealing chamber P6, and the second annealing chamber P7 are: Only the set temperature is different and the first heating chamber P2 can have a common structure. The press chamber P5 can also have a common structure with other processing chambers except that it includes a press mechanism.
 図2に示すように、処理室P2~P7の周囲を取り囲むケース7の内側側面には、成形型Mの移送路に面して、互いに対向するように加熱部8が設置されている。
 処理室P2~P7の温度は、加熱部8の出力を制御することで、各々の設定温度に維持されるが、例えば、支持台3の先端に熱電対を配し、その導線を回転テーブル2の回転軸に導いて、支持台3の先端部、すなわち、成形型Mの底部の温度を測定し、その測定結果に基づいて、各処理室に設置された加熱部8の出力を制御することができる。
As shown in FIG. 2, on the inner side surface of the case 7 surrounding the processing chambers P2 to P7, a heating unit 8 is installed so as to face the transfer path of the mold M and to face each other.
The temperatures of the processing chambers P2 to P7 are maintained at the respective set temperatures by controlling the output of the heating unit 8. For example, a thermocouple is disposed at the tip of the support base 3, and the lead wires are connected to the turntable 2. The temperature of the tip of the support base 3, that is, the bottom of the mold M is measured, and the output of the heating unit 8 installed in each processing chamber is controlled based on the measurement result. Can do.
 また、加熱部8の具体的な構成は特に限定されず、例えば、輻射熱を発する抵抗加熱ヒータなどを用いることができる。加熱部8として、抵抗加熱ヒータを用いる場合には、帯状の抵抗加熱発熱体を、ケース7の内側側面に沿って上下方向に数回蛇行した状態で、対向する側面に互いにほぼ対称に取り付けるのが好ましい。このとき、ケース7内には、加熱部8から発せられた輻射熱を反射して、その輻射熱を効率よく成形型Mに与えることができるように、ケース7の内面を覆うリフレクタ9を配設しておくのが好ましい。 The specific configuration of the heating unit 8 is not particularly limited, and for example, a resistance heater that emits radiant heat can be used. When a resistance heater is used as the heating unit 8, the strip-like resistance heating heating element is attached almost symmetrically to the opposite side surfaces while meandering several times in the vertical direction along the inner side surface of the case 7. Is preferred. At this time, a reflector 9 that covers the inner surface of the case 7 is disposed in the case 7 so as to reflect the radiant heat emitted from the heating unit 8 and efficiently apply the radiant heat to the mold M. It is preferable to keep it.
 また、図示する例において、成形型Mを支持して、加熱処理、プレス処理、冷却処理が施される各処理室に成形型Mを移送する支持台3は、鉛直方向に起立する中空筒形状の起立部3bを有している。そして、この起立部3bの下端側に設けられた基部3cを、回転テーブル2の外周側に形成された穴2aに嵌合させることによって、回転テーブル2に支持台3が取り付けられている。また、起立部3bの上端側には、成形型Mを支持する型支持部3aが設けられており、型支持部3aには、図示するように、成形型Mの倒れを防止する複数のピン6を稙設するのが好ましい。 Further, in the illustrated example, the support 3 for supporting the forming mold M and transferring the forming mold M to each processing chamber where heat treatment, press processing, and cooling processing are performed is a hollow cylindrical shape that stands vertically. The upright part 3b is provided. The support 3 is attached to the turntable 2 by fitting a base 3 c provided on the lower end side of the upright portion 3 b into a hole 2 a formed on the outer peripheral side of the turntable 2. Further, a mold support portion 3a for supporting the molding die M is provided on the upper end side of the upright portion 3b, and the mold support portion 3a includes a plurality of pins for preventing the molding die M from falling over as shown in the figure. 6 is preferably provided.
 なお、支持台3は、一つの基部3cに対して複数の起立部3bを設けて、それぞれの起立部3bの上端側に設けられた型支持部3aに成形型Mを支持させて、加熱処理、プレス処理、冷却処理が施される各処理室を、複数の成形型Mがひとまとまりで移動できるようにすることもできる。このようにすることで、各処理室に、成形型Mを同時に複数ずつ移送して、一つの処理室内に複数の成形型Mを配列させて同時に同じ処理を施すことが可能となり、成形体の生産効率を向上させることができる。 The support base 3 is provided with a plurality of upright portions 3b with respect to one base portion 3c, and the mold support portion 3a provided on the upper end side of each upright portion 3b supports the molding die M to perform heat treatment. The plurality of molding dies M can be moved together in each processing chamber where the pressing process and the cooling process are performed. By doing so, it is possible to simultaneously transfer a plurality of molding dies M to each processing chamber, arrange a plurality of molding dies M in one processing chamber, and perform the same process at the same time. Production efficiency can be improved.
 ところで、このような支持台3は、成形型Mを支持した状態で加熱処理、プレス処理、冷却処理が施される各処理室を移動して、成形型Mとともに加熱され、成形型Mにプレス荷重が印加される際には、プレス荷重に抗して成形型Mを支持することになる。このため、支持台3は、通常、プレス荷重に耐え得る強度や、耐熱性、靭性、加工性を有するステンレスなどの金属材料を用いて形成される。 By the way, such a support base 3 moves through each processing chamber where heat treatment, press treatment, and cooling treatment are performed in a state where the mold M is supported, is heated together with the mold M, and is pressed to the mold M. When a load is applied, the mold M is supported against the press load. For this reason, the support base 3 is normally formed using metal materials, such as stainless steel which has the intensity | strength which can be equal to a press load, heat resistance, toughness, and workability.
 一方、成形型Mは、所定の硬度、低熱膨張性、緻密性などの特性を備える必要があることから、通常、炭化ケイ素、窒化ケイ素等のセラミックスや、タングステンカーバイド等の超硬合金などに代表されるセラミックス材を用いて形成されるが、一般に、セラミックス材は、ステンレスなどの金属材料に比べて熱伝導率が高い。
 このため、成形型Mは、支持台3よりも相対的に熱伝導率が高くなり、加熱処理、プレス処理、冷却処理が施される各処理室を移動するに伴って、その熱的環境の変化により、成形型Mと支持台3との間で熱交換が生じてしまう。
On the other hand, the mold M is typically represented by ceramics such as silicon carbide and silicon nitride, cemented carbide such as tungsten carbide, etc., because it is necessary to have characteristics such as predetermined hardness, low thermal expansion, and denseness. In general, ceramic materials have higher thermal conductivity than metal materials such as stainless steel.
For this reason, the mold M has a relatively higher thermal conductivity than the support 3, and as it moves through the processing chambers where heat treatment, press treatment, and cooling treatment are performed, its thermal environment Due to the change, heat exchange occurs between the mold M and the support 3.
 例えば、加熱処理がなされる際には、成形型Mの方が支持台3よりも温度が上がり易いが、成形型Mの温度が支持台3の温度よりも高くなるにつれて、温度の高い成形型Mから温度の低い支持台3への熱移動が生じてしまう。また、冷却処理がなされる際には、成形型Mの方が支持台3よりも冷え易いが、成形型Mの温度が支持台3の温度よりも低くなるにつれて、温度の高い支持台3から温度の低い成形型Mへの熱移動が生じてしまう。 For example, when the heat treatment is performed, the temperature of the mold M is higher than that of the support base 3, but the temperature of the mold M increases as the temperature of the mold M becomes higher than the temperature of the support base 3. Heat transfer from M to the support base 3 having a low temperature occurs. In addition, when the cooling process is performed, the mold M is easier to cool than the support table 3, but as the temperature of the mold M becomes lower than the temperature of the support table 3, Heat transfer to the mold M having a low temperature occurs.
 このような熱交換が成形型Mと支持台3との間でなされると、支持台3に接する下型20側と、上型10側とで温度差が生じ、成形型M全体の温度が均一に変化するように加熱、冷却するのが困難になる。特に、大口径のガラスレンズを成形する場合、成形型Mや支持台3の型支持部3aも大径となり、両者の接触面積が増し、両者が接触する面における部分的な温度分布も起こり易くなるため、成形型M全体の温度が均一に変化すように加熱、冷却するのがより困難になる。
 そして、このような温度差が成形型Mに生じると、プレス成形されるガラスレンズの面精度(アス、クセ)が劣化することが懸念される。
When such heat exchange is performed between the mold M and the support base 3, a temperature difference occurs between the lower mold 20 side contacting the support base 3 and the upper mold 10 side, and the temperature of the entire mold M is reduced. It becomes difficult to heat and cool so as to change uniformly. In particular, when a large-diameter glass lens is molded, the mold M and the mold support portion 3a of the support base 3 also have a large diameter, the contact area between them increases, and a partial temperature distribution on the surface where both come into contact easily occurs. Therefore, it becomes more difficult to heat and cool the molding die M so that the temperature of the entire mold M changes uniformly.
And when such a temperature difference arises in the shaping | molding die M, we are anxious about the surface precision (asp, habit) of the glass lens by which press molding is carried out.
 また、成形型Mを支持して各処理室に移送する複数の支持台3は、それぞれの肉厚や形状のわずかな違いや、経時的に生じる部分的な熱劣化などにより、その熱的特性にバラツキがあることも考慮しなければならない。そして、支持台3にこのような熱的特性のバラツキがあると、成形型Mとの間でなされる熱交換も一定にはならず、ガラスレンズなどの光学素子を形状再現性よく、高精度に量産する上での妨げになってしまうことも懸念される。
 さらに、支持台3と成形型Mとが平滑な面同士で接触すると、成形型Mに所定のプレス荷重をかけてプレス成形した後、支持台3に成形型Mが貼り付いてしまい、成形型Mを支持台3から取り外すことが困難になってしまうことも懸念される。
In addition, the plurality of support tables 3 that support the mold M and transfer it to the processing chambers have their thermal characteristics due to slight differences in thickness and shape, partial thermal deterioration that occurs over time, and the like. It must also be taken into account that there are variations. If the support table 3 has such a variation in thermal characteristics, the heat exchange with the mold M is not constant, and the optical element such as a glass lens has high shape reproducibility and high accuracy. There is also concern that it will be an obstacle to mass production.
Further, when the support table 3 and the mold M are in contact with each other on a smooth surface, the mold M is adhered to the support table 3 after being subjected to press molding by applying a predetermined press load to the mold M, and the mold There is also a concern that it may be difficult to remove M from the support 3.
 このため、本実施形態にあっては、支持台3の型支持部3aに成形型Mを支持するにあたり、図2などに示すように、型支持部3a上に台座ユニット5を配置し、この台座ユニット5を介して成形型Mを支持するようにしている。これにより、成形型Mを加熱、冷却する際に、成形型Mと支持台3との間の熱交換を抑制して、支持台3の熱的影響が成形型Mに及ばないようにするとともに、支持台3と成形型Mとの貼り付きが生じないようにしている。
 ここで、図3は、台座ユニット5の一実施系形態を示す説明図であり、図3(a)は、台座ユニット5の平面図、図3(b)は、図3(a)のB-B断面図である。また、図4は、図2において一点鎖線で囲む部分を示す要部拡大断面図である。
Therefore, in the present embodiment, when the mold M is supported by the mold support portion 3a of the support base 3, as shown in FIG. 2 and the like, the pedestal unit 5 is disposed on the mold support portion 3a. The mold M is supported via the pedestal unit 5. Thereby, when the mold M is heated and cooled, heat exchange between the mold M and the support base 3 is suppressed so that the thermal influence of the support base 3 does not reach the mold M. The sticking between the support base 3 and the mold M is prevented from occurring.
Here, FIG. 3 is an explanatory view showing an embodiment of the pedestal unit 5, FIG. 3 (a) is a plan view of the pedestal unit 5, and FIG. 3 (b) is B in FIG. 3 (a). -B is a cross-sectional view. 4 is an enlarged cross-sectional view of a main part showing a part surrounded by a one-dot chain line in FIG.
 これらの図に示すように、本実施形態における台座ユニット5は、円盤形状の受け板51と、複数の孔52aが形成された板状部材52と、板状部材52に形成された各孔52a内で転動可能に保持される転動体53とを備えている。受け板51と板状部材52は、板状部材52に形成された各孔52a内に転動体53を収容した状態で、例えば、圧入、熔着、螺合などにより結合されている。また、転動体53としては、直径0.5~10mmの真球状の部材を用いるのが好ましい。なお、板状部材52を保持板と称し、孔52aを保持孔と称することもできる。 As shown in these drawings, the pedestal unit 5 in this embodiment includes a disc-shaped receiving plate 51, a plate-like member 52 in which a plurality of holes 52a are formed, and each hole 52a formed in the plate-like member 52. And a rolling element 53 held so as to be capable of rolling therein. The receiving plate 51 and the plate-like member 52 are coupled by, for example, press-fitting, welding, screwing or the like in a state where the rolling elements 53 are accommodated in the respective holes 52 a formed in the plate-like member 52. Further, as the rolling element 53, it is preferable to use a true spherical member having a diameter of 0.5 to 10 mm. The plate-like member 52 can also be referred to as a holding plate, and the hole 52a can also be referred to as a holding hole.
 板状部材52に形成される孔52aは、板状部材52の厚み方向に貫通して形成されるが、転動体53を転動可能に保持できるように、転動体53の直径よりもわずかに大きい内径となるようにしてある。そして、板状部材52の表面側に開口する部分は、収容された転動体53の一部が板状部材52の表面に突出し、かつ、孔52aから離脱しないように、転動体53の直径よりも小さくなるように縮径されている(図3(b)参照)。
 このとき、板状部材52の厚みを転動体53の直径よりもわずかに小さくし、転動体53の半径未満であって、好ましくは、0.1~2mmの高さで、板状部材52の表面から転動体53の一部が突出するように、各部の形状や寸法を適宜設定するものとする。
The hole 52a formed in the plate-like member 52 is formed so as to penetrate in the thickness direction of the plate-like member 52, but is slightly smaller than the diameter of the rolling element 53 so that the rolling element 53 can be held to roll. The inner diameter is large. And the part opened to the surface side of the plate-shaped member 52 is from the diameter of the rolling element 53 so that a part of the accommodated rolling element 53 protrudes on the surface of the plate-shaped member 52 and does not detach | leave from the hole 52a. The diameter is also reduced so as to be smaller (see FIG. 3B).
At this time, the thickness of the plate-like member 52 is made slightly smaller than the diameter of the rolling element 53 and is less than the radius of the rolling element 53, preferably at a height of 0.1 to 2 mm. The shape and dimensions of each part are appropriately set so that a part of the rolling element 53 protrudes from the surface.
 このような台座ユニット5を介して成形型Mを支持することで、直接的には、板状部材52の表面から突出する転動体53が成形型Mの下面を実質的に点接触で支持、すなわち、点接触状に支持することになり、その接触面積を小さくすることができる。これにより、成形型Mと支持台3との間の熱交換を抑制して、支持台3の熱的影響が成形型Mに及ばないようにするとともに、支持台3と成形型Mとの貼りつきが生じないようにすることができる。
 なお、転動体53としては、直径0.5~10mmの真球状の部材を用いるのが好ましいのは前述した通りであるが、転動体53の直径が小さすぎると、転動体53の一部が板状部材52の表面に突出する高さを十分に確保することができず、成形型Mと支持台3との間の熱交換を有効に抑制できなくなってしまうおそれがある。一方、転動体53の直径が大きすぎると、台座ユニット5が備える転動体53の数を十分なものとすることができず、プレス荷重が印加される際に個々の転動体53への荷重が大きくなり過ぎて転動体53が破損するおそれがある。
By supporting the mold M via the pedestal unit 5, the rolling element 53 protruding from the surface of the plate-like member 52 directly supports the lower surface of the mold M substantially in point contact. That is, it will be supported in a point contact manner, and the contact area can be reduced. Thereby, heat exchange between the mold M and the support table 3 is suppressed so that the thermal influence of the support table 3 does not reach the mold M, and the support table 3 and the mold M are attached to each other. It is possible to prevent sticking from occurring.
As described above, it is preferable to use a spherical member having a diameter of 0.5 to 10 mm as the rolling element 53. However, if the diameter of the rolling element 53 is too small, a part of the rolling element 53 is used. There is a possibility that the height protruding from the surface of the plate-like member 52 cannot be sufficiently secured, and heat exchange between the mold M and the support base 3 cannot be effectively suppressed. On the other hand, if the diameter of the rolling elements 53 is too large, the number of the rolling elements 53 included in the pedestal unit 5 cannot be made sufficient, and when a press load is applied, the load on the individual rolling elements 53 is increased. There is a possibility that the rolling element 53 may be damaged due to being too large.
 また、転動体53を転動可能に保持することで、転動体53の偏った摩耗を抑止して、その耐用期間を長くし、台座ユニット5を長期にわたって使用できるようにすることができる。しかも、板状部材52に保持された転動体53は、孔52a内での転動が許容されているだけで、それ以外に自由に動くことができないため、支持台3の型支持部3aの支持面が水平面に対して傾いているなどしても、転動体53が転がって一定の場所に偏在してしまうことがない。これにより、支持台3上に支持した成形型Mの姿勢が傾いたりすることなく、成形体を常に均等に支持することができる。 Also, by holding the rolling element 53 so as to be able to roll, uneven wear of the rolling element 53 can be suppressed, the service life thereof can be extended, and the pedestal unit 5 can be used over a long period of time. Moreover, the rolling element 53 held by the plate-like member 52 is only allowed to roll in the hole 52a and cannot move freely. Even if the support surface is inclined with respect to the horizontal plane, the rolling elements 53 do not roll and are unevenly distributed at a certain place. Thereby, a molded object can always be supported equally, without the attitude | position of the shaping | molding die M supported on the support stand 3 inclining.
 転動体53を転動可能に保持する孔52aは、図3(a)に示すように、部分的に偏在することなく、ほぼ等ピッチの配列で板状部材52に形成されるようにするのが好ましい。孔52aの配列は、図示するような千鳥状の配列に限らず、例えば、格子状、同心状、放射状の配列としてもよい。 As shown in FIG. 3 (a), the holes 52a that hold the rolling elements 53 so as to be able to roll are formed in the plate-like member 52 in an approximately equal pitch arrangement without being partially unevenly distributed. Is preferred. The arrangement of the holes 52a is not limited to the staggered arrangement shown in the figure, and may be, for example, a lattice, concentric, or radial arrangement.
 孔52aの数、すなわち、転動体53の数は、成形型Mと支持第3との間の熱交換を抑制するという観点から適宜設定され、仮に、孔52aの数を極端に多くして、各孔52aに転動体53を保持させた場合、成形型Mに当接する転動体53の数が多くなり、成形型Mと支持台3との間の熱交換が生じ易くなってしまうことが懸念される。このため、孔52aの数、すなわち、転動体53の数は、プレス処理に際して印加されるプレス荷重を考慮して所定数に留めることが好ましい。
 例えば、プレス処理に際して成形型Mに印加する最大荷重をPmax、使用する転動体53の数をN、各転動体53に加わる平均荷重をPnとしたときに、次の関係式(1)を満たすように転動体53の数Nを設定することが好ましい。
   Pn=Pmax/N ≧ 5[kgf]・・・(1)
The number of holes 52a, that is, the number of rolling elements 53 is appropriately set from the viewpoint of suppressing heat exchange between the mold M and the support third, and temporarily, the number of holes 52a is extremely increased, When the rolling elements 53 are held in the respective holes 52a, the number of the rolling elements 53 in contact with the mold M increases, and there is a concern that heat exchange between the mold M and the support base 3 is likely to occur. Is done. For this reason, it is preferable to keep the number of holes 52a, that is, the number of rolling elements 53, to a predetermined number in consideration of the press load applied during the pressing process.
For example, the following relational expression (1) is satisfied, where Pmax is the maximum load applied to the mold M during the pressing process, N is the number of rolling elements 53 to be used, and Pn is the average load applied to each rolling element 53. Thus, it is preferable to set the number N of rolling elements 53.
Pn = Pmax / N ≧ 5 [kgf] (1)
 最大荷重Pmaxが300kgfの場合を一例として挙げると、この場合には、上記(1)式より、転動体53の数Nは60個以下とすることが好ましい。
 Pmax/Nの値が5kgf未満になるよう転動体53の数Nを多くすると、成形型Mと支持台3との熱交換が生じ易くなり、成形型Mの精緻な温度管理が困難になる。その一方で、Pmax/Nの値が20kgfを超えると、個々の転動体53への荷重が大きくなり過ぎて転動体53又は受け板51が破損若しくは変形し、所望の効果が得られないおそれがある。このため、転動体53の数Nの数は、Pmax/Nの値が20kgf以下となるようにして、上記関係式(1)とともに次の関係式(2)も満たすように設定することが望ましい。
   Pn=Pmax/N ≦ 2[kgf]・・・(2)
Taking the case where the maximum load Pmax is 300 kgf as an example, in this case, the number N of rolling elements 53 is preferably 60 or less from the above equation (1).
If the number N of rolling elements 53 is increased so that the value of Pmax / N is less than 5 kgf, heat exchange between the mold M and the support base 3 is likely to occur, and precise temperature management of the mold M becomes difficult. On the other hand, when the value of Pmax / N exceeds 20 kgf, the load on each rolling element 53 becomes too large, and the rolling element 53 or the receiving plate 51 may be damaged or deformed, and a desired effect may not be obtained. is there. For this reason, it is desirable that the number N of rolling elements 53 is set so that the value of Pmax / N is 20 kgf or less so that the following relational expression (2) is satisfied together with the relational expression (1). .
Pn = Pmax / N ≦ 2 [kgf] (2)
 また、前述したように、転動体53としては、直径0.5~5mmの真球状の部材を用いるのが好ましいが、このような転動体53を転動可能に保持する孔52aを板状部材52に形成するにあたっては、各孔52aの面積(縮径された開口部を除く部分の面積)の合計をSaとし、板状部材52の表面の面積をSとしたときに、次の関係式(3)を満たすようにすることが好ましい。
    S ≧ Sa × 2  ・・・(3)
Further, as described above, it is preferable to use a spherical member having a diameter of 0.5 to 5 mm as the rolling element 53, but the hole 52a for holding the rolling element 53 so as to be able to roll is provided as a plate-like member. 52, when the total area of the holes 52a (the area of the portion excluding the reduced diameter opening portion) is Sa and the surface area of the plate-like member 52 is S, the following relational expression It is preferable to satisfy (3).
S ≧ Sa × 2 (3)
 板状部材52の半径が20mmであり、その表面の面積Sが400πmmである場合を一例として挙げると、この場合には、上記(2)式より、孔52aの合計面積Saが200πmm以下となるように、板状部材52に形成する孔52aの数を設定することが好ましい。
 孔52aの合計面積Saが、板状部材52の表面の面積Sの半分を超えるような数で孔52aを形成すると、これに収容されて成形型Mに当接する転動体53の数が多くなり、成形型Mと支持台3との間の熱交換が生じ易くなり、成形型Mの精緻な温度管理が困難になる。
As an example, the case where the radius of the plate-like member 52 is 20 mm and the surface area S is 400 πmm 2 , in this case, the total area Sa of the holes 52 a is 200 πmm 2 or less from the above equation (2). It is preferable to set the number of holes 52 a formed in the plate-like member 52 so that
When the holes 52a are formed in such a number that the total area Sa of the holes 52a exceeds half of the area S of the surface of the plate-like member 52, the number of rolling elements 53 accommodated in the mold 52 and abutted against the mold M increases. In addition, heat exchange between the mold M and the support 3 is likely to occur, and precise temperature management of the mold M becomes difficult.
 また、転動体53は、板状部材52に形成した孔52aの全てに収容させずに、必要に応じて任意に間引く(所定の間隔をあけて転動体53を省略する)こともできる。例えば、支持台3ごとの熱的特性のバラツキを考慮して、相対的に熱的影響の大きい支持台3に配置する台座ユニット5では、転動体53を間引いて、その数を少なくすることもできる。特に、大口径のレンズ(例えば、φ30mm以上のレンズ)をプレス成形する場合、成形型Mも大きくなるため、一つの成形型Mにおける温度分布が生じ易くなるが、温度が高い領域の転動体53を間引くことにより、成形型Mの温度分布を調整し低減させることができる。なお、転動体53を間引く場合は、一部の領域に転動体53が偏在することがないように、略等間隔に転動体53を間引くことが好ましい。 Also, the rolling elements 53 can be arbitrarily thinned out (the rolling elements 53 are omitted at a predetermined interval) as needed without being accommodated in all the holes 52a formed in the plate-like member 52. For example, in consideration of variations in the thermal characteristics of each support base 3, in the pedestal unit 5 disposed on the support base 3 having a relatively large thermal influence, the number of rolling elements 53 may be thinned to reduce the number thereof. it can. In particular, when a large-diameter lens (for example, a lens having a diameter of 30 mm or more) is press-molded, the mold M is also large, so that the temperature distribution in one mold M is likely to occur, but the rolling element 53 in a high temperature region. By thinning out, the temperature distribution of the mold M can be adjusted and reduced. In addition, when thinning out the rolling elements 53, it is preferable to thin out the rolling elements 53 at substantially equal intervals so that the rolling elements 53 are not unevenly distributed in a partial region.
 なお、台座ユニット5が備える転動体53の数は、成形型Mと支持台3との間の熱交換を有効に抑制できるようにすることと、プレス処理に際して印加されるプレス荷重などを考慮して、より具体的には、直径0.5mm~5mmの転動体53を30~80個とするのが好ましい。 It should be noted that the number of rolling elements 53 provided in the pedestal unit 5 takes into consideration the fact that heat exchange between the mold M and the support base 3 can be effectively suppressed and the press load applied during the pressing process. More specifically, the number of rolling elements 53 having a diameter of 0.5 mm to 5 mm is preferably 30 to 80.
 このような台座ユニット5を形成する受け板51と板状部材52は、例えば、タングステン合金、炭化タングステン、炭化チタン、サーメットなどの高硬度、高耐熱性を有する合金を用いて形成することができる。特に、受け板51は、転動体53を介して数十~数百kgfのプレス荷重を受けても変形・破損しないように高硬度の材料を用いることが好ましい。
 また、転動体53は、受け板51と同様に、数十~数百kgfのプレス荷重を受けても変形・破損しないように、高硬度の材料、例えば、窒化ケイ素、炭化ケイ素、ジルコニア、アルミナなどのセラミックスや、タングステン合金、炭化タングステン、炭化チタン、サーメットなどの高硬度、高耐熱性を有する素材を用いて形成することができる。
The receiving plate 51 and the plate-like member 52 forming the pedestal unit 5 can be formed using an alloy having high hardness and high heat resistance such as tungsten alloy, tungsten carbide, titanium carbide, cermet, and the like. . In particular, the receiving plate 51 is preferably made of a material having high hardness so that it does not deform or break even if it receives a press load of several tens to several hundreds kgf through the rolling elements 53.
Further, like the receiving plate 51, the rolling element 53 is made of a material having a high hardness such as silicon nitride, silicon carbide, zirconia, alumina so as not to be deformed or damaged even when a press load of several tens to several hundreds kgf is applied. It can be formed using a material having high hardness and high heat resistance such as ceramics such as tungsten alloy, tungsten carbide, titanium carbide, and cermet.
 なお、図2や図3に示す台座ユニット5は、支持台3の型支持部3a上に支持台3とは別の部材として配置されているので、台座ユニット5に不具合等が生じた場合は、新たな台座ユニット5と交換するだけで、容易に不具合等を解消することができる。 2 and 3 is arranged as a member different from the support base 3 on the mold support portion 3a of the support base 3, so that when the base unit 5 has a problem or the like, the base unit 5 shown in FIG. By simply replacing the base unit 5 with a new one, problems and the like can be easily solved.
 次に、具体的な実施例を挙げて、本発明の実施形態をより詳細に説明する。 Next, the embodiment of the present invention will be described in more detail with specific examples.
[実施例]
 図1に示す例と同様とされた既存のモールドプレス成形装置において、図3に示すような台座ユニット5を支持台3の型支持部3a上に配置し、取出・挿入室P1において、成形を終えた成形型Mの取り出し作業と、新たに成形に供される成形素材Pを収容した成形型Mを成形装置内に搬入する挿入作業を行った。成形型Mは、台座ユニット5を介して支持台3の型支持部3aに支持させた。そして、回転テーブル2の回転に伴って、成形型Mを各処理室P2~P8へ順次移送しながら、加熱、プレス、冷却の各種処理を経ることによりプレス成形を繰り返し行った。かかるプレス成形により、プレス径33mm、中心肉厚1.3mm、周辺肉厚8mmの凹メニスカスレンズを連続成形した。
[Example]
In an existing mold press molding apparatus similar to the example shown in FIG. 1, a pedestal unit 5 as shown in FIG. 3 is arranged on the mold support portion 3a of the support base 3, and molding is performed in the take-out / insertion chamber P1. An operation for taking out the finished mold M and an insertion operation for carrying the mold M containing the molding material P newly used for molding into the molding apparatus were performed. The mold M was supported by the mold support portion 3 a of the support base 3 via the pedestal unit 5. Then, as the turntable 2 was rotated, press molding was repeatedly performed through various processes of heating, pressing, and cooling while sequentially transferring the molding die M to the processing chambers P2 to P8. By such press molding, a concave meniscus lens having a press diameter of 33 mm, a center thickness of 1.3 mm, and a peripheral thickness of 8 mm was continuously molded.
 なお、成形素材Pとしては、ホウ酸ランタン系光学ガラスであるM-TAF101(HOYA株式会社製)を使用した。
 また、台座ユニット5としては、外径が50mm、受け板51と板状部材52を結合した厚みが4mm、孔52aの数が40個、各孔52aに配置した超硬製の転動体53の直径が2mmのものを用いた。
As the molding material P, lanthanum borate optical glass M-TAF101 (manufactured by HOYA Corporation) was used.
The pedestal unit 5 has an outer diameter of 50 mm, a combined thickness of the receiving plate 51 and the plate-like member 52 of 4 mm, 40 holes 52a, and carbide rolling elements 53 disposed in the holes 52a. The one with a diameter of 2 mm was used.
 成形されたガラスレンズについて、基準形状に対する周辺領域の形状誤差(以下、「周辺F′」という)を五つの支持台3ごとに測定した結果を図6に示す。また、周辺F′を横軸に、その頻度を縦軸にとったヒストグラムを図7に示す。 FIG. 6 shows the result of measuring the shape error of the peripheral region with respect to the reference shape (hereinafter referred to as “periphery F ′”) for each of the five support bases for the molded glass lens. FIG. 7 shows a histogram in which the peripheral F ′ is on the horizontal axis and the frequency is on the vertical axis.
[比較例]
 台座ユニット5を介さず、成形型Mを支持台3の型支持部3aに直接支持させた以外は、実施例と同様にして、同様のガラスレンズを連続成形した。
[Comparative example]
A similar glass lens was continuously molded in the same manner as in Example except that the molding die M was directly supported by the mold support portion 3a of the support base 3 without using the pedestal unit 5.
 成形されたガラスレンズについて、周辺F′を五つの支持台3ごとに測定した結果を図8に示す。また、周辺F′を横軸に、その頻度を縦軸にとったヒストグラムを図9に示す。 FIG. 8 shows the result of measuring the peripheral F ′ for each of the five support bases 3 for the molded glass lens. FIG. 9 shows a histogram in which the peripheral F ′ is on the horizontal axis and the frequency is on the vertical axis.
 上記実施例と上記比較例との対比からわかるように、台座ユニット5を介して支持台3の型支持部3aに成形型Mを支持させることで、複数の支持台3間に生じていた形状誤差が改善され、そのバラツキも低減させることができた。また、比較例では、規格範囲に納まらないものもあったが、実施例では、成形された全てのガラスレンズが規格範囲内のものであった。 As can be seen from the comparison between the embodiment and the comparative example, the shape generated between the plurality of support bases 3 by supporting the molding die M on the mold support portion 3a of the support base 3 via the pedestal unit 5. The error was improved and the variation could be reduced. Further, in the comparative example, there were some that did not fall within the standard range, but in the example, all the molded glass lenses were within the standard range.
 以上、本発明について、好ましい実施形態を示して説明したが、本発明は、前述した実施形態にのみ限定されるものではなく、本発明の範囲で種々の変更実施が可能であることは言うまでもない。 Although the present invention has been described with reference to the preferred embodiment, it is needless to say that the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the present invention. .
 例えば、前述した実施形態では、台座ユニット5として、受け板51と、複数の孔52aを有する板状部材52と、孔52a内で転動可能に保持される転動体53とを備える例を示したが、図5に示すように、受け板51を省略してもよい。この場合、支持台3に設けた型支持部3aが受け板51の機能を備えるようにすることができる。
 なお、図5は、台座ユニット5の他の例を示す説明図であり、図4に対応する要部拡大断面図である。図4に示す例と同様の構成部分については同一の符号を付して、その詳細な説明を省略する。
For example, in embodiment mentioned above, the example provided with the receiving plate 51, the plate-shaped member 52 which has the some hole 52a, and the rolling element 53 hold | maintained so that rolling is possible in the hole 52a is shown as the base unit 5. However, as shown in FIG. 5, the receiving plate 51 may be omitted. In this case, the mold support 3 a provided on the support 3 can have the function of the receiving plate 51.
5 is an explanatory view showing another example of the pedestal unit 5, and is an enlarged cross-sectional view of a main part corresponding to FIG. The same components as those in the example shown in FIG. 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
 また、前述した実施形態では、加熱、プレス、冷却を含む各処理を行う複数の処理室と、成形型Mを支持した支持台3をこれらの処理室へ順次移送する移送機構を備えたモールドプレス成形装置の例を示したが、これに限定されない。本発明は、成形素材Pを収容した成形型Mを支持台3で支持しつつ、成形型Mを加熱することにより軟化した成形素材Pをプレス成形するモールドプレス成形装置、及び光学素子の製造方法に適用可能である。 Further, in the above-described embodiment, a mold press provided with a plurality of processing chambers for performing each process including heating, pressing, and cooling, and a transfer mechanism for sequentially transferring the support base 3 supporting the mold M to these processing chambers. Although the example of the shaping | molding apparatus was shown, it is not limited to this. The present invention relates to a mold press molding apparatus for press-molding a molding material P softened by heating the molding die M while supporting the molding die M containing the molding material P on the support base 3, and a method for manufacturing an optical element. It is applicable to.
 また、前述した実施例では、凹メニスカスレンズを連続成形する例を挙げたが、本発明は、凹メニスカスレンズに限らず、両凸レンズ、凸メニスカスレンズ、両凹レンズなどの各種形状の光学素子をプレス成形する際に適用できる。特に、レンズの直径(プレス径)が30mm以上の光学素子を製造する場合、本発明を適用することにより成形面内の温度分布を抑制し、より精緻に成形型Mの温度管理をすることが可能となるため、高精度の光学素子を安定して量産することができる。 In the above-described embodiment, an example in which a concave meniscus lens is continuously formed has been described. However, the present invention is not limited to a concave meniscus lens, and presses optical elements of various shapes such as a biconvex lens, a convex meniscus lens, and a biconcave lens. Applicable when molding. In particular, when manufacturing an optical element having a lens diameter (press diameter) of 30 mm or more, the temperature distribution in the molding surface can be suppressed and the temperature of the molding die M can be controlled more precisely by applying the present invention. Therefore, high-precision optical elements can be stably mass-produced.
 最後に、本実施形態を図等を用いて総括する。 Finally, this embodiment will be summarized using figures and the like.
 本実施形態であるモールドプレス成形装置は、成形素材Pを収容した成形型Mを支持台3で支持しつつ、成形型Mを加熱することにより軟化した成形素材Pをプレス成形するモールドプレス成形装置であって、複数の孔52aが形成された板状部材52と、複数の孔52a内で転動可能な複数の転動体53とを少なくとも備えたユニットであって、複数の孔52aから複数の転動体53のそれぞれの一部が板状部材52の表面に突出するように複数の孔52a内に複数の転動体53が収容された台座ユニット5を介して、成形型Mを支持台3上に支持させることにより、成形型Mの下面を複数の転動体53がそれぞれ点接触状に支持するようにしたことを特徴とする。 The mold press molding apparatus according to the present embodiment is a mold press molding apparatus that press-molds a molding material P softened by heating the molding die M while supporting the molding die M containing the molding material P with the support 3. The unit includes at least a plate-like member 52 in which a plurality of holes 52a are formed and a plurality of rolling elements 53 capable of rolling in the plurality of holes 52a. The mold M is placed on the support base 3 via the pedestal unit 5 in which the plurality of rolling elements 53 are accommodated in the plurality of holes 52a so that each of the rolling elements 53 protrudes from the surface of the plate-like member 52. The plurality of rolling elements 53 each support the lower surface of the molding die M in a point contact manner.
 本実施形態であるモールドプレス成形装置は、台座ユニット5が、板状部材52と結合される受け板51を備え、孔52a内に転動体53を収容した状態で、板状部材52と受け板51とが結合されていることが好ましい。 In the mold press molding apparatus according to the present embodiment, the pedestal unit 5 includes a receiving plate 51 coupled to the plate-like member 52, and the rolling member 53 is accommodated in the hole 52a. 51 is preferably bonded.
 また、本実施形態であるモールドプレス成形装置は、成形型Mに対して、加熱、プレス、冷却を含む各処理をそれぞれ行う複数の処理室(P2~P8)と、成形型Mを支持した支持台3を各処理室へ順次移送させる移送機構(回転テーブル2)とを備える装置であることが好ましい。 Further, the mold press molding apparatus according to the present embodiment includes a plurality of processing chambers (P2 to P8) for performing processing including heating, pressing, and cooling on the mold M, and a support that supports the mold M. It is preferable that the apparatus includes a transfer mechanism (rotary table 2) that sequentially transfers the table 3 to each processing chamber.
 また、本実施形態である光学素子の製造方法は、成形素材Pを収容した成形型Mを支持台3で支持しつつ、成形型Mを加熱することにより軟化した成形素材Pをプレス成形することによって光学素子を製造するにあたり、複数の孔52aが形成された板状部材52と、複数の孔52a内で転動可能な複数の転動体53とを少なくとも備えたユニットであって、複数の孔52aから複数の転動体53のそれぞれの一部が板状部材52の表面に突出するように複数の孔52a内に複数の転動体53が収容された台座ユニット5を介して、成形型Mを支持台3上に支持させることにより、成形型Mの下面を複数の転動体53がそれぞれ点接触状に支持する。 Moreover, the manufacturing method of the optical element which is this embodiment press-molds the molding material P softened by heating the molding die M while supporting the molding die M containing the molding material P with the support base 3. In manufacturing an optical element, the unit includes at least a plate-like member 52 in which a plurality of holes 52a are formed and a plurality of rolling elements 53 that can roll in the plurality of holes 52a. The mold M is formed via the pedestal unit 5 in which the plurality of rolling elements 53 are accommodated in the plurality of holes 52a so that a part of each of the plurality of rolling elements 53 protrudes from the surface of the plate-like member 52 from 52a. By making it support on the support stand 3, the several rolling element 53 supports the lower surface of the shaping | molding die M in a point contact form, respectively.
 好ましい光学素子の製造方法としては、台座ユニット5が、板状部材52と結合される受け板51を備え、複数の孔52a内に転動体53を収容した状態で、板状部材52と受け板51とが結合されている、光学素子の製造方法である。 As a preferable method for manufacturing an optical element, the pedestal unit 5 includes a receiving plate 51 coupled to the plate-like member 52, and the rolling member 53 is accommodated in the plurality of holes 52a. 51 is a method for manufacturing an optical element.
 さらに、本実施形態である光学素子の製造方法は、台座ユニット5に収容する複数の転動体53の一部を間引くことにより、成形型Mの温度分布を調整し低減させることもできる。 Furthermore, the method for manufacturing an optical element according to the present embodiment can also adjust and reduce the temperature distribution of the mold M by thinning out a part of the plurality of rolling elements 53 accommodated in the pedestal unit 5.
3     支持台
5     台座ユニット
51    受け板
52    板状部材(保持板)
52a   孔(保持孔)
53    転動体
M     成形型
P     成形素材
P1    取出・挿入室
P2    第一加熱室
P3    第二加熱室
P4    第三加熱室
P5    プレス室
P6    第一徐冷室
P7    第二徐冷室
P8    急冷室
 
3 Supporting stand 5 Pedestal unit 51 Receiving plate 52 Plate-like member (holding plate)
52a hole (holding hole)
53 Rolling body M Mold P Molding material P1 Extraction / insertion chamber P2 First heating chamber P3 Second heating chamber P4 Third heating chamber P5 Press chamber P6 First annealing chamber P7 Second annealing chamber P8 Rapid cooling chamber

Claims (6)

  1.  成形素材を収容した成形型を支持台で支持しつつ、前記成形型を加熱することにより軟化した前記成形素材をプレス成形するモールドプレス成形装置であって、
     複数の孔が形成された板状部材と、前記複数の孔内で転動可能な複数の転動体とを少なくとも備えたユニットであって、前記複数の孔から前記複数の転動体のそれぞれの一部が前記板状部材の表面に突出するように前記複数の孔内に前記複数の転動体が収容された台座ユニットを介して、前記成形型を前記支持台上に支持させることにより、前記成形型の下面を前記複数の転動体がそれぞれ点接触状に支持するようにしたことを特徴とするモールドプレス成形装置。
    A mold press molding apparatus that press-molds the molding material softened by heating the molding die while supporting the molding die containing the molding material on a support base,
    A unit comprising at least a plate-like member having a plurality of holes and a plurality of rolling elements that can roll in the plurality of holes, each of the plurality of rolling elements from the plurality of holes. The molding die is supported on the support base via a pedestal unit in which the plurality of rolling elements are accommodated in the plurality of holes so that a portion protrudes from the surface of the plate-like member. A mold press molding apparatus characterized in that the plurality of rolling elements support the lower surface of the mold in a point contact manner.
  2.  前記台座ユニットが、前記板状部材と結合される受け板を備え、前記孔内に前記転動体を収容した状態で、前記板状部材と前記受け板とが結合されている請求項1に記載のモールドプレス成形装置。 The said base unit is provided with the receiving plate couple | bonded with the said plate-shaped member, The said plate-shaped member and the said receiving plate are couple | bonded in the state which accommodated the said rolling element in the said hole. Mold press molding equipment.
  3.  前記成形型に対して、加熱、プレス、冷却を含む各処理をそれぞれ行う複数の処理室と、
     前記成形型を支持した前記支持台を前記各処理室へ順次移送させる移送機構とを備える請求項1又は2に記載のモールドプレス成形装置。
    A plurality of processing chambers for performing each processing including heating, pressing, and cooling on the mold, and
    The mold press molding apparatus of Claim 1 or 2 provided with the transfer mechanism which transfers the said support stand which supported the said shaping | molding die to each said process chamber sequentially.
  4.  成形素材を収容した成形型を支持台で支持しつつ、前記成形型を加熱することにより軟化した前記成形素材をプレス成形することによって光学素子を製造するにあたり、
     複数の孔が形成された板状部材と、前記複数の孔内で転動可能な複数の転動体とを少なくとも備えたユニットであって、前記複数の孔から前記複数の転動体のそれぞれの一部が前記板状部材の表面に突出するように前記複数の孔内に前記複数の転動体が収容された台座ユニットを介して、前記成形型を前記支持台上に支持させることにより、前記成形型の下面を前記複数の転動体がそれぞれ点接触状に支持することを特徴とする光学素子の製造方法。
    In manufacturing an optical element by press molding the molding material softened by heating the molding die while supporting the molding die containing the molding material on a support base,
    A unit comprising at least a plate-like member having a plurality of holes and a plurality of rolling elements that can roll in the plurality of holes, each of the plurality of rolling elements from the plurality of holes. The molding die is supported on the support base via a pedestal unit in which the plurality of rolling elements are accommodated in the plurality of holes so that a portion protrudes from the surface of the plate-like member. A method of manufacturing an optical element, wherein the plurality of rolling elements support a lower surface of a mold in a point contact manner.
  5.  前記台座ユニットが、前記板状部材と結合される受け板を備え、前記複数の孔内に前記転動体を収容した状態で、前記板状部材と前記受け板とが結合されている請求項4に記載の光学素子の製造方法。 The said base unit is equipped with the receiving plate couple | bonded with the said plate-shaped member, The said plate-shaped member and the said receiving plate are couple | bonded in the state which accommodated the said rolling element in these holes. The manufacturing method of the optical element of description.
  6.  前記台座ユニットに収容する前記複数の転動体の一部を間引くことにより、前記成形型の温度分布を調整し低減させる請求項4又は5に記載の光学素子の製造方法。
     
     
    6. The method of manufacturing an optical element according to claim 4, wherein the temperature distribution of the mold is adjusted and reduced by thinning out a part of the plurality of rolling elements housed in the pedestal unit.

PCT/JP2013/055780 2012-03-05 2013-03-04 Press molding apparatus and method for manufacturing optical device WO2013133190A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380012535.4A CN104144892A (en) 2012-03-05 2013-03-04 Press molding apparatus and method for manufacturing optical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-048417 2012-03-05
JP2012048417A JP5883317B2 (en) 2012-03-05 2012-03-05 Mold press molding apparatus and optical element manufacturing method

Publications (1)

Publication Number Publication Date
WO2013133190A1 true WO2013133190A1 (en) 2013-09-12

Family

ID=49116668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055780 WO2013133190A1 (en) 2012-03-05 2013-03-04 Press molding apparatus and method for manufacturing optical device

Country Status (4)

Country Link
JP (1) JP5883317B2 (en)
CN (1) CN104144892A (en)
TW (1) TWI619595B (en)
WO (1) WO2013133190A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192727A1 (en) * 2013-05-29 2014-12-04 Hoya株式会社 Apparatus for producing glass molded body and method for producing glass molded body
WO2015146399A1 (en) * 2014-03-28 2015-10-01 Hoya株式会社 Device for producing glass moulded bodies, and method for producing glass moulded bodies

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109534660B (en) * 2019-01-10 2023-09-08 亚琛科技(深圳)有限公司 Heating and pressing shaft structure for glass molding press

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05286728A (en) * 1992-04-03 1993-11-02 Olympus Optical Co Ltd Production of glass lens
WO2008053860A1 (en) * 2006-10-31 2008-05-08 Hoya Corporation Mold press forming die and molded article manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686929B2 (en) * 2001-08-03 2011-05-25 コニカミノルタホールディングス株式会社 Press forming equipment
KR100839731B1 (en) * 2005-01-19 2008-06-19 호야 가부시키가이샤 Mold press molding mold and method for producing optical element
JP4477518B2 (en) * 2005-02-08 2010-06-09 オリンパス株式会社 Method and apparatus for manufacturing optical element
JP2007106058A (en) * 2005-10-17 2007-04-26 Fujifilm Corp Molding die
TWI287501B (en) * 2005-10-25 2007-10-01 Prodisc Technology Inc Buffering assembly
CN2868733Y (en) * 2005-11-11 2007-02-14 宁波富达电器有限公司 Rolling-type universal caster
JP2007302484A (en) * 2006-05-08 2007-11-22 Ricoh Opt Ind Co Ltd Molding method and molding die

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05286728A (en) * 1992-04-03 1993-11-02 Olympus Optical Co Ltd Production of glass lens
WO2008053860A1 (en) * 2006-10-31 2008-05-08 Hoya Corporation Mold press forming die and molded article manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192727A1 (en) * 2013-05-29 2014-12-04 Hoya株式会社 Apparatus for producing glass molded body and method for producing glass molded body
JP2014231451A (en) * 2013-05-29 2014-12-11 Hoya株式会社 Glass molding manufacturing apparatus, and glass molding manufacturing method
WO2015146399A1 (en) * 2014-03-28 2015-10-01 Hoya株式会社 Device for producing glass moulded bodies, and method for producing glass moulded bodies

Also Published As

Publication number Publication date
JP5883317B2 (en) 2016-03-15
TWI619595B (en) 2018-04-01
JP2013184829A (en) 2013-09-19
CN104144892A (en) 2014-11-12
TW201347947A (en) 2013-12-01

Similar Documents

Publication Publication Date Title
JPWO2008053860A1 (en) Mold press mold and method for producing molded body
WO2013133190A1 (en) Press molding apparatus and method for manufacturing optical device
JP2006248869A (en) Mold press-forming apparatus, its press head, and method for production of optical device
JP5021205B2 (en) Mold press mold and optical element manufacturing method
JP5021196B2 (en) Mold press mold, optical element manufacturing method, and concave meniscus lens
JP4804280B2 (en) Mold press molding apparatus and method for manufacturing molded body
JP6081630B2 (en) Mold press molding apparatus and optical element manufacturing method
JP2012116705A (en) Molding apparatus and molding method for optical device
JP2012116697A (en) Molding die for optical element and method of molding optical element
JP2003104741A (en) Press forming apparatus for optical element and method for manufacturing optical element
JP4878321B2 (en) Mold press mold and method for producing molded body
JP4939677B2 (en) Optical element manufacturing method and mold press molding apparatus
JP2011132096A (en) Forming apparatus and forming method for optical element
JP4538099B2 (en) Mold press molding apparatus and method for manufacturing molded body
JP4695404B2 (en) Mold assembly apparatus and optical element manufacturing method
JP2006083026A (en) Mold press molding tool and manufacturing method of molding
WO2015146399A1 (en) Device for producing glass moulded bodies, and method for producing glass moulded bodies
US20140311185A1 (en) Manufacturing method for glass molded body and manufacturing apparatus for glass molded body
JP2003063834A (en) Press molding apparatus and method for manufacturing optical element
JP2003073135A (en) Method and mold for forming optical element
JP2011136883A (en) Apparatus and method for molding optical element
JP6726464B2 (en) Optical element manufacturing method and optical element manufacturing apparatus
JP4792141B2 (en) Mold press mold and optical element manufacturing method
JP4141983B2 (en) Mold press molding method and optical element manufacturing method
JP4711697B2 (en) Optical element manufacturing method, mold press molding apparatus, and positioning apparatus used therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13757171

Country of ref document: EP

Kind code of ref document: A1