WO2008053860A1 - Mold press forming die and molded article manufacturing method - Google Patents

Mold press forming die and molded article manufacturing method Download PDF

Info

Publication number
WO2008053860A1
WO2008053860A1 PCT/JP2007/071068 JP2007071068W WO2008053860A1 WO 2008053860 A1 WO2008053860 A1 WO 2008053860A1 JP 2007071068 W JP2007071068 W JP 2007071068W WO 2008053860 A1 WO2008053860 A1 WO 2008053860A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
molding
press
die
molds
Prior art date
Application number
PCT/JP2007/071068
Other languages
French (fr)
Japanese (ja)
Inventor
Kouichi Satou
Xuel Zou
Original Assignee
Hoya Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corporation filed Critical Hoya Corporation
Priority to KR1020097008792A priority Critical patent/KR101314440B1/en
Priority to JP2008542112A priority patent/JP5059019B2/en
Priority to CN2007800402205A priority patent/CN101528616B/en
Publication of WO2008053860A1 publication Critical patent/WO2008053860A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/16Gearing or controlling mechanisms specially adapted for glass presses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/005Pressing under special atmospheres, e.g. inert, reactive, vacuum, clean
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/60Aligning press die axes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/66Means for providing special atmospheres, e.g. reduced pressure, inert gas, reducing gas, clean room
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/67Pressing between dies rotating about the press axis
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/72Barrel presses or equivalent, e.g. of the ring mould type
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/80Simultaneous pressing of multiple products; Multiple parallel moulds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention includes a pair of molds having a molding surface of an arbitrary shape, and a barrel mold in which these molds are arranged so as to face each other so that the molding surfaces face each other and are inserted coaxially, etc.
  • mold press molds for press molding of molding materials especially in molds such as optical elements that prevent eccentricity (shift [shift] and tilt Ktilt) when the mold is closed!
  • the present invention relates to a mold press mold that can press-mold a molded body that requires shape accuracy, and a method for producing a molded body using such a mold press mold.
  • an optical element such as an aspherical lens using a glass material
  • it is heated and softened by a pair of molds having molding surfaces facing each other corresponding to the shape of the molded product to be obtained.
  • a mold press method is known in which a molding material is pressed and the molding surface of these molds is transferred.
  • the mold and the molding material were preheated separately and preheated separately to prevent high-temperature deterioration of the molding surface of the mold used to carry out the mold press method and to shorten the molding cycle time.
  • a method is known in which a molding material is introduced into a mold and press molding is performed immediately.
  • Patent Document 1 These methods are disclosed in Patent Document 1, for example.
  • the glass material and the mold are preheated, and after the glass material is supplied to the lower mold, the upper and lower molds are immediately closed to perform press molding. Then, the mold is cooled to below the glass transition point, the mold is opened, and the glass molded body is taken out. According to such a method, it is possible to form a glass molded body with excellent surface accuracy while shortening the cycle time and maintaining productivity.
  • the clearance between the body mold and the sliding surfaces of the upper and lower molds guided thereby is set narrow so that the upper and lower molds are coaxial with high accuracy. For this reason, when the mold is closed during press molding, rubbing and galling occurs in the sliding part between the body mold and the upper and lower molds, and proper press operation is achieved. May be disturbed.
  • Patent Document 2 in order to make one of a pair of molds slidable in a direction perpendicular to the mold closing and mold opening direction, and to reduce the sliding resistance, a lower mold and a lower mold support base are provided. There is disclosed a mold in which a sliding surface is lubricated. With this configuration, when the lower mold is inserted into the body mold when the mold is closed, the position is corrected so that the lower mold easily moves in the horizontal direction and is coaxial with the upper mold. For this reason, it is said that it is possible to prevent excessive force from acting on the upper and lower molds and the body mold, and to avoid rubbing and galling between them.
  • Patent Document 1 Japanese Patent Laid-Open No. 11 171564
  • Patent Document 2 JP 2006-83026 A
  • the eccentric accuracy of the upper and lower molds that is, good coaxiality and low relative inclination, must be kept extremely high throughout the continuous pressing process. Is required.
  • the horizontal displacement (shift) between the upper mold and the lower mold is within 10 m, preferably within 5 111, and the tilt angle is within 5 minutes, preferably within 2 minutes. It is required to be. Therefore, the clearance allowed between the barrel mold and the upper and lower molds is at most lO ⁇ m, and in this situation, the upper and lower molds must be continuously approached reliably.
  • the molding material is glass
  • it is preheated to a high temperature of 400 ° C to 900 ° C, so in this state, while maintaining high eccentric accuracy of the upper and lower molds, several hundred to several 10,000 continuous presses It is extremely difficult to do.
  • Patent Document 1 it is desirable to support a plurality of upper molds and lower molds and simultaneously perform a plurality of press moldings.
  • the upper and lower molds are slightly displaced due to thermal deformation of the support member or the like.
  • the amount of displacement varies depending on the distance of each mold from the press spindle, and also varies depending on the press temperature selected depending on the type of molding material.
  • the upper and lower support members support a single mold! / Because the dimensions are larger than / !, thermal deformation is also large. For this reason, it is extremely difficult to maintain a state in which the upper and lower molds arranged there are close and in close contact with each other with their axes accurately aligned through a continuous pressing process.
  • the molded body has a poor appearance. Further, when such rubbing or galling occurs, the clearance between the body mold and the lower mold exceeds a predetermined range, and as a result, the position regulation of the lower mold by the body mold becomes loose. This means that the coaxiality of the upper mold and the lower mold is lost, and a horizontal shift (shift) between the upper mold and the lower mold and a relative inclination (falling) between the upper mold and the lower mold occur. . In particular, when the molded body is an optical element, serious performance deterioration occurs.
  • the present invention has been made in view of the above circumstances, and in order to press-mold the molded body with high accuracy, the horizontal movement of the mold relative to the mold holding member is extremely facilitated, and thus
  • the purpose of the present invention is to provide a mold press mold capable of stably producing a high-precision molded body, and a method for producing a molded body using such a mold. .
  • the mold press mold of the present invention includes a first mold and a second mold having a molding surface of an arbitrary shape, and the first and second molds facing each other so that the molding surfaces face each other.
  • a barrel mold that is inserted coaxially, a first mold holding member that holds the first mold movably in the horizontal direction, and a gap between the first mold and the first mold holding member.
  • a plurality of rolling members that roll with the movement of the first mold in the horizontal direction.
  • a plurality of rolling members are disposed between the first mold and the first mold holding member, so that the first The moving force in the horizontal direction can be made smooth even if a small initial moment occurs. For this reason, when the press molding operation is started and the first die is inserted into the barrel die, the axis of the first die does not coincide with the axis of the second die and the barrel die. However, the first mold moves smoothly in the horizontal direction while being inserted into the body mold, so that the first mold that does not exert excessive force on the first mold or the trunk mold is Guided to a position that is coaxial with the second and barrel molds.
  • the first mold and / or the second mold can be surely and smoothly inserted into the trunk mold.
  • the coaxiality of the first and second molds can be highly secured.
  • a guide portion having a tapered diameter is formed on the inner peripheral surface of the opening of the cylinder die on the side where the first die is inserted.
  • the guide portion guides the first mold so that the first mold is coaxial with the second mold when the first mold is inserted into the body mold. It can be set as the structure to do. With such a configuration, the first mold is smoothly inserted into the trunk mold while being guided by the guide portion that does not prevent the insertion of the first mold into the trunk mold, and the first mold Force the horizontal movement of the mold with force S.
  • the rolling member may be a spherical member having a uniform diameter.
  • the spherical member having a uniform diameter disposed between the first mold and the first mold holding member is in a point contact with both, and the first mold is smoothly smoothed. Since the horizontal movement is promoted, the first mold can be smoothly inserted into the body mold.
  • the rolling member may be made of a ceramic having a bending strength at a press molding temperature of 300 MPa or more. Therefore, when press-molding a molding material such as optical glass, the rolling member has strength that does not cause deformation or wear even when subjected to a press load at a high temperature. High mold press molding can be maintained.
  • the rolling member is made of any force selected from silicon nitride, silicon carbide, zirconium carbide, and alumina.
  • all the rolling members made of the above materials are excellent in strength (bending strength) and hardness (Vickers hardness) at high temperatures, so that high-precision mold press molding can be maintained over a long period of time. can do.
  • the mold press mold according to the present invention includes the rolling member on at least one surface of the first mold and the first mold holding member facing each other through the rolling member. It can be set as the structure which formed the recessed part which accommodates this.
  • the rolling member can be prevented from falling off when assembling the mold by assembling the rolling member in the recessed portion.
  • the mold press mold according to the present invention includes an elastic member that biases the body mold toward the first mold, and press-molds the molding material with the first and second molds.
  • the opening end face of the body mold on the side where the first mold is inserted is configured to be pressed against a part of the first mold by the urging force of the elastic member. it can.
  • the first mold has a convex surface on the molding surface, and is positioned around the molding surface of the first mold.
  • a retraction mechanism that retreats the support member from the periphery of the molding surface of the lower mold in accordance with the proximity movement of the first and second molds, and a support member that supports the molding material supplied on the molding surface It can be set as the structure provided with these.
  • an interposed member having a curved surface that comes into contact with the first mold holding member is interposed between the first mold holding member and the rolling member. It can be set as the structure.
  • the interposed member corrects the inclination of the first mold while swinging along the curved surface. Therefore, since the first mold is inserted into the barrel mold with a high degree of coaxiality by correcting the inclination by the interposition member and horizontally moving, the eccentricity (tilt and shift accuracy) is good. A compact can be formed.
  • the first and second molds having a molding surface having an arbitrary shape and the first and second molds are so that the molding surfaces face each other.
  • a mold press molding die comprising: a first die holding member held on the first die; and a plurality of rolling members disposed between the first die and the first die holding member; The mold press molding heated to a predetermined temperature by the heating means using a molding apparatus comprising: a driving means for moving up and down at least one of the second mold; and a heating means for heating the mold press mold.
  • the molding material is press-molded with a mold, and the shape of the molding surface is KiNaru
  • the first mold is inserted into the barrel mold by raising and lowering at least one of the first and second molds by the driving means, At this time, as the first die contacts the guide portion formed on the barrel die and moves in the horizontal direction, the rolling member rolls, and the first die is moved to the second die. This is a method of guiding so as to be coaxial with the mold.
  • the method for producing a molded body according to the present invention more specifically preheats the molding material prior to press molding, preheats the mold press molding die, and uses the molding material.
  • the force S is used as a method of performing press molding by supplying the preheated mold press mold.
  • the first mold in the horizontal direction is arranged. It is possible to make the movement smooth. For this reason, when the press molding operation is started and the first mold is inserted into the body mold, the axial force S of the first mold coincides with the axis of the second mold and the moon mold. Even if it is not, the first mold moves smoothly in the horizontal direction while being inserted into the trunk mold, so that the first mold does not exert excessive force on the first mold or the trunk mold. However, it is guided to a position that is coaxial with the second mold and the trunk mold, so that the coaxiality of the first and second molds can be highly secured.
  • the rolling member rolls as the first die moves in the horizontal direction, the rolling member does not wear even if it is repeatedly press-molded. Continuous production is possible.
  • FIG. 1 is a cross-sectional view schematically showing a first embodiment of a mold press mold according to the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a first embodiment of a mold press mold according to the present invention.
  • FIG. 3 is a cross-sectional view schematically showing a first embodiment of a mold press mold according to the present invention.
  • FIG. 4 is a cross-sectional view showing an outline of a second embodiment of a mold press mold according to the present invention.
  • FIG. 5 is a cross-sectional view schematically showing a third embodiment of a mold press mold according to the present invention.
  • FIG. 6 is a cross-sectional view schematically showing a fourth embodiment of a mold press mold according to the present invention.
  • FIG. 7 is a sectional view schematically showing a fifth embodiment of a mold press mold according to the present invention.
  • FIG. 8 is a schematic plan view showing an example of a press molding apparatus suitable for press molding with the mold press mold according to the present invention.
  • FIG. 9 is a cross-sectional view showing the outline of another embodiment of the mold press mold according to the present invention.
  • FIG. 10 is a cross-sectional view showing the outline of still another embodiment of the mold press mold according to the present invention. is there.
  • mold a mold press mold according to the present invention
  • FIG. 1 shows a state in which a molding material G made of optical glass or the like is supplied to a mold that has been opened.
  • Fig. 2 shows the state during the press forming operation.
  • Fig. 3 shows the closed state.
  • the mold according to the present embodiment is an upper mold (first mold) in which molding surfaces 11 and 21 having arbitrary shapes are formed based on the shape of an optical element (molded body) such as a glass lens to be molded.
  • These molding surfaces 11 and 21 can be, for example, spherical surfaces or aspherical surfaces constituting the first and second surfaces of the glass lens.
  • the upper mold 10 and the lower mold 20 are arranged so that the upper and lower molds 10 and 20 arranged so as to face each other with the molding surfaces 11 and 21 facing each other come close to each other while being inserted into the body mold 30.
  • the molding material G supplied between the two is press-molded.
  • the upper mold 10 is held by the upper mold holding member (second mold holding member) 15 together with the trunk mold 30, and the lower mold 20 is formed by the lower mold holding member (first mold holding member). Die holding member) 25.
  • These holding members 15 and 25 are all made of a magnetic material such as a tungsten alloy, and heating means such as a high-frequency induction heating coil (for example, a mold heating device 134 as shown in FIG. 8 described later) The heat is transmitted to the upper and lower molds 10, 20 and the trunk mold 30.
  • the heating means includes an upper mold heating means for heating the upper mold 10 and the upper mold holding member 15 and a lower mold heating means for heating the lower mold 20 and the lower mold holding member 25, and heating both. It is preferable that the temperature can be adjusted individually.
  • a fixed shaft 40 is attached to the upper mold holding member 15 on the upper surface side thereof.
  • a drive shaft 50 connected to drive means having an elevating mechanism such as an air cylinder (not shown) is attached.
  • the drive shaft may be attached to the upper mold holding member 15 and the lower mold holding member 25 may be attached to the fixed shaft.
  • a drive shaft may be separately attached to the upper mold holding member 15 and the lower mold holding member 25 so that both the upper and lower molds 10 and 20 move up and down along the axial direction.
  • the upper mold holding member 15 that holds the upper mold 10 together with the trunk mold 30 includes an upper mold support 16 and an upper mother mold 17.
  • the upper mother die 17 is a cylindrical shape that concentrically surrounds the trunk die 30 and is fixed to the lower surface of the upper die support 16.
  • On the upper side of the body mold 30 is formed a projecting portion 31 that projects in the radial direction as shown in the figure, and when the upper mother die 17 is fixed to the lower surface of the upper mold support base 16, this projecting portion 31 is It is sandwiched between a step surface 17 a formed on the inner periphery of the upper mold 17 and the lower surface of the upper mold support 16.
  • the body mold 30 is held and fixed to the upper mold holding member 15 in a state where the projecting portion 31 is sandwiched, and movement in the horizontal direction and the axial direction is suppressed.
  • the upper mold 10 has a shape in which a small-diameter portion 12 on which a molding surface 11 is formed and a large-diameter portion 13 having a diameter larger than that of the molding surface 11 are arranged concentrically.
  • the upper die holding member 15 is held in a state of being inserted in a shape.
  • the lower surface of the large-diameter portion 13 of the upper mold 10 inserted into the body mold 30 is an annular step surface 30a formed on the upper inner peripheral side of the body mold 30.
  • a gap S is formed between the upper surface of the upper mold 10 and the lower surface of the upper mold support 16.
  • the upper mold 10 can be slid in the barrel mold 30 in the axial direction by the gap S, but the upper mold 10 is placed in the trunk mold 30 during the press molding operation. Since the inserted state is maintained, the horizontal clearance C2 at the sliding portion between the upper mold 10 and the trunk mold 30 is extremely small (for example, 5 am or less on one side, preferably 2 ⁇ m or less on one side). Can be kept.
  • the molding material G on the molding surface 21 of the lower mold 20 abuts on the molding surface 11 of the upper mold 10 and pushes up the upper mold 10.
  • the upper mold 10 slides within the body mold 30 by the amount of the gap S and contacts the lower surface of the upper mold support 16, and as shown in FIG. A gap is formed between the step surface 30 a of the trunk mold 30.
  • the thickness of the molded body is once defined here, but after this, when cooled, the upper mold 10 slightly lowers due to its own weight following the thermal contraction of the molded body, and the upper and lower molds 10, 20 and the molded body. Cooling can be performed while maintaining close contact with.
  • the lower mold 20 has a shape in which a small diameter portion 22 formed with a molding surface 21 and a large diameter portion 23 larger in diameter than the molding surface 21 are arranged coaxially. It is held by a lower mold holding member (first mold holding member) 25 having a mold support base 26 and a lower base mold 27 fixed to the upper surface of the lower mold support base 26.
  • first mold holding member first mold holding member
  • the lower mold 27 has a lower diameter inner peripheral surface 27a on the upper side of the inner peripheral surface, and the lower mold 20 is a lower mold holding member.
  • an annular insertion groove 28 that opens upward is formed between the lower die 20 and the small diameter portion 22.
  • the clearance C3 between the outer peripheral surface of the small-diameter portion 22 of the lower mold 20 and the inner peripheral surface of the lower side of the body mold 30 is 0.5-10 111 in consideration of the required eccentric accuracy of the optical element. It is preferably 1 to 5 ⁇ m.
  • the lower side of the inner peripheral surface of the lower master die 27 is a large-diameter inner peripheral surface 27b, and an annular shape formed at a step portion between the large-diameter inner peripheral surface 27b and the small-diameter inner peripheral surface 27a.
  • the large-diameter portion 23 of the lower mold 20 is held loosely between the lower mother mold 27 and the lower mold support base 26 so as to be sandwiched between the step surface 27c and the upper surface of the lower mold support base 26. It has become so.
  • a predetermined clearance C1 is provided between the outer peripheral surface of the large-diameter portion 23 of the lower mold 20 and the large-diameter inner peripheral surface 27b of the lower master mold 27 while restricting the axial movement range of the lower mold 20.
  • the lower mold 20 can move in the horizontal direction (direction perpendicular to the axial direction) by the clearance C1.
  • the rolling member 60 is preferably a spherical member having a uniform diameter.
  • a shaped member can be used.
  • the rolling member 60 made of these materials can be used alone or in combination.
  • the shape of the rolling member 60 may be a spherical shape, a cylindrical shape, a flat spherical shape, or the like. 1S Ease of processing of the rolling member 60, easy to obtain height (diameter) accuracy, easy to roll. From this point, a spherical shape is most preferable.
  • the molding material G such as optical glass
  • the molding material G corresponds to a temperature at which the viscosity becomes 10 6 to 10 12 dPa's. Press molding is repeated periodically while being heated to a temperature (approximately 400 to 900 ° C), and a load of several kg / cm 2 to several hundred kg / cm 2 is applied to the mold and molding material G. .
  • the load is also applied to the plurality of rolling members 60 disposed between the lower die 20 and the lower die support base 26 (lower die holding member 25) at a high temperature.
  • the rolling member 60 is required to have a predetermined strength at the press molding temperature (about 400 to 900 ° C.).
  • compressive strength correlates with bending strength, so if the rolling member 60 is formed using ceramics with a bending strength of 300 MPa or more at the press molding temperature, it will deform even under a press load at high temperatures. There will be no wear or deterioration.
  • ceramics or metals with a bending strength at the press molding temperature of less than 3 OOMPa are used as the rolling member 60, the rolling member 60 may be deformed and cannot be used for smooth rolling operation. .
  • Ceramics such as 3 4 2 2 3 have a bending strength of 400 MPa or more at room temperature and are temperature dependent, but have a bending strength of 300 MPa at the press molding temperature.
  • Vickers hardness is 1000 HV or more, deformation or wear does not deteriorate even when a load is applied when the molding material G such as optical glass is press-molded.
  • the number n of rolling members 60 spread between the lower die 20 and the lower die support 26 is determined by the area a of the cross section passing through the center of the rolling member 60 and the rolling members on the lower die support 26. Is determined according to the area (in the example shown, the area of the bottom surface of the recessed portion 26a, which will be described later) A, between which 0.3 ⁇ a X n / A ⁇ It is preferable that the relationship of 0.8, preferably 0.5 ⁇ a X n / A ⁇ 0.7 is satisfied.
  • the number n of rolling members 60 does not satisfy the above relationship! /, And the arrangement of the rolling members 60 is biased In some cases, the lower mold 20 cannot be held horizontally, and the heat transfer from the lower mold holding member 25 to the lower mold 20 becomes insufficient, and the lower mold 20 is efficiently heated. It tends to be impossible. On the other hand, if the number n of rolling members 60 exceeds the above relationship, each rolling member 60 will not be able to roll freely, and hinder smooth horizontal movement of the lower mold 20. There is.
  • a recessed portion 26a is formed on the upper surface of the lower mold support 26, and the rolling member 60 is accommodated in the recessed portion 26a. Is preferable. By doing so, it is possible to prevent the rolling member 60 from falling off when assembling the mold.
  • the recessed portion 26a includes a lower mold 20 and a lower mold holding member 25 (the lower mold support base 26) facing each other via the rolling member 60. ) And at least one surface. Therefore, instead of forming the recess 26a on the upper surface of the lower mold support 26, a similar recess may be formed on the lower surface of the lower mold 20, and the rolling member may be accommodated in the recess.
  • the lower mold 20 is held by the lower mold holding member 25 so as to be movable in the horizontal direction, and the lower mold 20 and the lower mold holding member 25 are A plurality of rolling members 60 are laid in between so that the lower mold 20 can move smoothly in the horizontal direction so that the coaxiality of the upper and lower molds 10 and 20 is highly secured. Yes.
  • the body mold 30 is held and fixed to the upper mold holding member 15 in a state in which the movement in the horizontal direction and the axial direction is suppressed, so that the press molding operation starts as shown in FIG.
  • the axial center force of the lower mold 20 does not match the axial centers of the upper mold 10 and the trunk mold 30.
  • the lower mold 20 moves smoothly in the horizontal direction indicated by the arrow in FIG. 2 while being inserted into the trunk mold 30, and this exerts an unreasonable force on the lower mold 20 and the trunk mold 30.
  • the lower die 20 is guided to a position that is coaxial with the upper die 10 and the barrel die 30, and the upper and lower die 10, 20 can be highly secured.
  • the guide part 32 whose diameter is tapered downward is formed on the inner peripheral surface of the lower part of the trunk mold 30. Forming It is preferable to leave.
  • the press molding operation if the peripheral portion of the small-diameter portion 22 of the lower die 20 comes into contact with the guide portion 32, insertion of the lower die 20 into the body die 30 is prevented.
  • the lower mold 20 is smoothly inserted into the body mold 30 while being guided by the guide portion 32, and the lower mold 20 is moved horizontally.
  • the inclination angle ⁇ of the guide portion 32 with respect to the axial direction is preferably 45 ° or less, more preferably 30 ° or less, and even more preferably 10 ° or less.
  • the lower mold 20 is movable in the horizontal direction within the range of the alignment C1 between the outer peripheral surface of the large-diameter portion 23 and the large-diameter inner peripheral surface 27b of the lower master mold 27.
  • Maximum value of clearance C1 Force Upper limit of horizontal movement of lower mold 20 For this reason, it is preferable that the guide portion formed on the body portion 30 has a larger diameter W force than the clearance C1.
  • the peripheral portion of the small-diameter portion 22 of the lower mold 20 can be brought into contact with the guide portion during the press molding operation.
  • the force S prevents the insertion of the lower mold 20 into the body mold 30 and the horizontal movement of the lower mold 20.
  • the horizontal movement amount of the lower mold 20 is the clearance between the outer peripheral surface of the large-diameter portion 23 of the lower mold 20 and the large-diameter inner peripheral surface 27b of the lower master mold 27 as described above.
  • Force defined by C1 If this clearance C1 is too small, the clearance may be lost due to the difference in thermal expansion between the lower mold 20 and the lower mother mold 27, and the movement of the lower mold 20 may be hindered.
  • the clearance C1 is too small, the allowable range of position accuracy of each die will be reduced, and there is a risk that force, curling, and inability to close the die will occur. .
  • the body mold 30 comes into contact with the molding surface 21 of the lower mold 20 to form the molding surface 21. May be damaged or it may become impossible to close the mold.
  • the clearance C1 is preferably 10 to 200 mm 111.
  • the materials used for the upper mold 10, the lower mold 20, the trunk mold 30, and the like Cermets such as titanium oxide, aluminum oxide, zirconium oxide, titanium carbide, etc.
  • a hard material whose surface is coated with diamond, refractory metal, noble metal alloy, carbide, nitride, boride, oxide or the like can be used.
  • the parts that come into contact with the molding material G such as the molding surfaces 11 and 21 of the upper and lower molds 10 and 20 and the inner peripheral surface of the barrel mold 30, may be coated to prevent fusion with the molding surface. it can.
  • Such a coating can be a noble metal film, a carbon film, a hydrogenated carbon film, or the like, and can be a film similar to a known release film.
  • a film containing carbon or a hydrocarbon as a main component can be formed with a predetermined film thickness using a known means such as a vapor deposition method, a sputtering method, an ion plating method, or plasma CVD. .
  • FIG. 4 is a cross-sectional view schematically showing the molding die according to the present embodiment, and FIG. 4 (a) shows a state where the molding material G is supplied to the molding die opened.
  • Figure 4 (b) shows the closed state.
  • the present embodiment is different from the first embodiment described above in that an elastic member 35 that urges the body mold 30 toward the lower mold 20 is provided.
  • an elastic member 35 a coil panel or the like can be used.
  • a step portion 36 as a receiving seat is formed on the inner peripheral surface of the trunk mold 30, and the step portion 36, By attaching an elastic member 35 between the cross-section 10a formed in the step portion between the small-diameter portion 12 and the large-diameter portion 13 of the upper die 10, the barrel die 30 force S is urged toward the lower die 20. It ’s a good idea to do it.
  • the press molding operation is started, and the lower mold 20 is lifted and inserted into the body mold 30 so that the molding material G is press-molded between the upper and lower molds 10 and 20.
  • This press molding In the process, the opening end surface of the lower mold 20 on the lower mold 20 side comes into contact with the upper surface of the large diameter section 23 of the lower mold 20.
  • the trunk mold 30 is urged toward the lower mold 20 by the elastic member 35 and is pressed against the lower mold 20 that is rising.
  • the position of the lower mold 20 and the trunk mold 30 is set in a horizontal plane by placing the end face of the lower mold 20 on the lower mold 20 side and the upper surface of the large-diameter portion 23 of the lower mold 20 in a horizontal plane. Is correctly defined, and it is possible to obtain a molded body with better eccentric accuracy.
  • This embodiment differs from the first embodiment in the above points, but has the same configuration except for the above. Because of that! /, Therefore, detailed description of other configurations! / Is omitted.
  • FIG. 5 is a cross-sectional view schematically showing the mold according to this embodiment, and FIG. 5 (a) shows a state where the molding material G is supplied to the mold that has been opened. Fig. 5 (b) shows a closed state.
  • annular groove 16a capable of accommodating the upper side edge of the trunk mold 30 is formed on the lower surface of the upper mold support base 16, When the upper and lower molds 10 and 20 are in the closed state, the upper edge of the body mold 30 protrudes upward from the upper surface of the upper mold 10 and fits in the groove 16a formed on the lower surface of the upper mold support base 16. It is like that.
  • the present embodiment is different from the second embodiment in the above points, but otherwise has the same configuration! /, So the detailed description of other configurations! / Is omitted. To do.
  • FIG. 6 is a cross-sectional view schematically showing the molding die according to the present embodiment, and FIG. 6 (a) shows a state where the molding material G is supplied to the molding die opened. Fig. 6 (b) shows the closed state.
  • the lower mold 20 has a convex surface on the molding surface 21, and a support member 70 that supports the molding material G is disposed around the molding surface 21.
  • the support member 70 supports the molding material G supplied onto the molding surface 21 with its upper end projecting upward from the molding surface 21 of the lower mold 20.
  • a step portion 21a is formed around the molding surface 21 of the lower mold 20, and an elastic member 70a is mounted between the step portion 21a and the support member 70, and the support member 70 is biased upward. It has become like this.
  • the support member 40 is pushed down by the retracting mechanism 71 according to the proximity movement of the upper and lower molds 10, 20. (See FIG. 6 (b)), it is configured to retract from the periphery of the molding surface 21 of the lower mold 20.
  • a molding material can be reliably and stably formed on the molding surface 21 of the lower mold 20 having a convex surface. G can be supplied.
  • the support member 70 is retracted from the periphery of the molding surface 21 of the lower mold 20 as the upper and lower molds 10, 20 move close together, so that the support member 70 does not substantially interfere with the shape of the molded body. Therefore, it is possible to manufacture a high-precision optical element having a better eccentric accuracy.
  • FIG. 7 is a cross-sectional view schematically showing the mold according to the present embodiment, and FIG. 7 (a) shows a state where the molding material G is supplied to the mold that has been opened. Fig. 7 (b) shows the closed state.
  • an interposed member having a curved surface of contact with the lower mold holding member 25 between the lower mold holding member 25 (lower mold support base 26) and the rolling member 60. 80 is interposed.
  • the interposition member 80 is made of the same material as the lower mold 20.
  • a recess 80a is formed on the upper surface of the interposed member 80, and the rolling member 60 is accommodated in the recess 80a so that the mold can be assembled.
  • the curved surface of the intervening member 80 is preferably a spherical surface.
  • the force S is preferable, and the radius of curvature varies depending on the radius of the optical element to be molded.
  • the interposed member 80 corrects the inclination of the lower mold 20 while swinging along the curved surface. To do. Therefore, the lower mold 20 is inserted into the body mold 30 while maintaining a high degree of coaxiality by correcting the inclination by the interposition member 80 and horizontally moving, and is a molded body with good eccentricity (tilt and shift). Can be press-molded.
  • FIG. 8 is a schematic plan sectional view of the press molding apparatus. As shown in this figure, the press molding apparatus 100 includes a heating chamber 120 and a molding chamber 130, and a passage 140 communicating between them.
  • the internal space of the heating chamber 120, the forming chamber 130, and the passage 140 is a sealed space that is blocked from the outside.
  • the outer wall of the sealed space is formed by stainless steel or other members, and the sealing material is used. Its airtightness is guaranteed.
  • the internal spaces of the heating chamber 120, the molding chamber 130, and the passage 140 are in a non-oxidizing gas atmosphere such as nitrogen gas when optical glass is molded.
  • the heating chamber 120 is an area for preheating the supplied forming material G prior to pressing.
  • the heating chamber 120 includes a glass heating device 122, a molding material supply handler (hereinafter referred to as a supply node and a drum 123), and a carry-in section 121 for supplying the molding material G into the heating chamber 120 from the outside. is set up.
  • the carry-in unit 121 is provided with a carry-in chamber (not shown) in order to carry the molding material G while maintaining hermeticity. After filling with, open the door on the heating chamber 120 side and sequentially carry the molding material G into the interior.
  • the supply gate 123 is configured to convey the molding material G carried in from the carry-in section 121 to a heating region by the glass heating device 122 and convey the heated molding material G to the molding chamber 130.
  • the supply node 123 has a levitating dish 125 at the tip of its arm 124, and holds the molding material G while floating by the gas.
  • the arm 124 including the levitating dish 125 is horizontally supported by the drive unit 123a fixed in the heating chamber 120, and the arm 124 is rotated in the horizontal direction with a rotation angle of about 90 °.
  • the arm 124 is configured to be capable of withdrawing and withdrawing in the radial direction with the drive unit 123a as the center, whereby the held molding material G can be conveyed to the molding chamber 130.
  • the glass heating device 122 is for heating the supplied molding material G to a temperature corresponding to a predetermined viscosity. To raise the temperature of molding material G to a certain level stably, it is preferable to use a heating device using resistance heating or high-frequency heating. As shown in the figure, the glass heating device 122 is installed under the movement path of the molding material G held on the arm 124, and can heat the molding material G while the molding material G is being conveyed by the arm 124. . The arm 124 may be stopped on the glass heating device 122 for a predetermined time to heat the molding material G. These matters are determined according to the time required for heating the target molding material G.
  • the molding chamber 130 is an area for pressing the molding material G preheated in the heating chamber 120 to form a molded body G1 having a desired shape.
  • a handler for carrying out the molded body G1 hereinafter referred to as a carry-out handler 132
  • a carry-out section 131 for carrying out the press-formed molded body G1 to the outside are installed.
  • the carry-out unit 131 includes a carry-out chamber (not shown) filled with a non-oxidizing gas in order to carry the molded body G1 to the outside while maintaining the airtightness of the molding chamber 130.
  • the compact G1 delivered from the carry-out handler 132 is once carried into the carry-out chamber and then carried out to the outside.
  • the pressing device 133 receives the molding material G conveyed from the heating chamber 120 by the supply nozzle 123, and presses the molding material G to form a molded body G1 having a desired shape.
  • the press device 133 includes the forming die M as described above, and presses the forming material G supplied between the upper and lower dies 10 and 20 by the forming surfaces 11 and 21.
  • a mold heating device 134 for heating the mold M is installed around the mold M.
  • a preferred embodiment of the mold heating device 134 is a heating method using high frequency induction.
  • the forming die M Prior to pressing the forming material G, the forming die M is heated by the die heating device 134 and maintained at a predetermined temperature. The temperature of the mold M at the time of pressing may be substantially the same as or lower than the temperature of the preheated molding material G.
  • the carry-out handler 132 delivers the molded body G1 pressed by the press device 133 to the carry-out unit 131.
  • the carry-out handler 132 includes a suction pad 132c at the tip of an arm 132b that is rotatably supported by the drive unit 132a.
  • the suction pad 132c vacuum-sucks the optical glass on the lower mold of the mold M and enables the carry-out handler 132 to carry it.
  • the compact G1 adsorbed by the rotation of the arm 132b is transported under the carry-out part 131 and placed on a lifting means (not shown) installed here. After retreating arm 132b, The lifting means is raised, and the molded body G1 is delivered to the carry-out unit 131.
  • the molding chamber 130 is provided with an opening / closing door 135 on the front side thereof, and the opening / closing door 135 is for an operator to access the inside of the molding chamber when the press molding apparatus 100 is maintained and inspected.
  • a seal member 35a is provided around the open / close door 135, and airtightness in the molding chamber 130 is ensured with the open / close door 135 closed during pressing.
  • the open / close door 135 includes a glass-made window 135b (for example, quartz glass), from which the press molding can be visually recognized from the outside.
  • the passage 140 that connects the heating chamber 120 and the molding chamber 130 enables the supply handler 123 to transfer the molding material G from the heating chamber 120 to the molding chamber 130, and allows gas between the two chambers to pass therethrough. Allows exchange. Thereby, at the time of press molding, the pressure, gas concentration, and temperature of the heating chamber 120 and the molding chamber 130 are made substantially constant.
  • An airtight valve 141 is disposed in the passage 140. When the airtight valve 141 is closed, the heating chamber 120 and the molding chamber 130 are shut off in an airtight state. The airtight valve 141 is fully opened at the time of press molding. The airtight valve 141 is closed at the time of maintenance or inspection in the molding chamber 130 by an operator, and the airtight state on the heating chamber 120 side is maintained.
  • the method for producing a molded body according to the present invention is to press-mold using the above-described molding die, and is preferably carried out by the press molding apparatus.
  • the molding material G is sequentially supplied from the carry-in part 121 into the apparatus, and the molded body G1 is continuously press-molded.
  • the molding material G is sequentially supplied from the carry-in part 121 into the apparatus, and the molded body G1 is continuously press-molded.
  • the gas inside the heating chamber 120 and the molding chamber 130 is gas-exchanged to a non-oxidizing gas.
  • a non-oxidizing gas is always supplied indoors and kept at a positive pressure.
  • the glass heating device 122 and the mold heating device 134 are energized and maintained at a predetermined temperature.
  • the airtight valve 141 of the passage 140 is opened.
  • the molding material G is supplied to the heating chamber 120. Specifically, the molding material G is first placed in the carry-in chamber of the carry-in section 121, and after this is exhausted and replaced with gas, it is supplied to the heating chamber 120.
  • the arm 124 of the supply nozzle 123 is positioned below the carry-in section 121, and the molding material G from the carry-in chamber is placed on the floating plate 125 of the supply nozzle 123.
  • the supply nozzle 123 Upon receiving the molding material G, for example, a spherical glass preform, the supply nozzle 123 immediately rotates its arm and moves its flotation plate 125 onto the glass heating device 122. Here, the non-oxidizing gas is jetted from below into the floating dish 125, and thus the molding material G is heated and softened while floating on the floating dish 125. The molding material G is heated to a temperature corresponding to a viscosity of 1S 10 6 to 10 9 dPa's.
  • the mold M when the heated molding material G is supplied to the mold M, the mold M has a temperature corresponding to the viscosity of 10 8 to 10 12 dPa's of the glass.
  • the mold M is preheated by induction heating by the heating device 1 34.
  • the temperature setting of the heated upper and lower molds 10 and 20 may be the same as that of the upper and lower molds 10 and 20 as described above, or a temperature difference may be provided.
  • the lower mold 20 can be made hotter than the upper mold 10 or the lower mold 20 can be made colder than the upper mold 10 depending on the shape of the molded body.
  • the temperature difference between the upper and lower molds 10, 20 should be in the range of 2 to 15 ° C.
  • the supply nozzle 123 is driven to supply the molding material G to the molding surface 21 of the lower mold 20 of the press device 133 in the molding chamber 130. That is, the arm 124 is further rotated from the heating position, stopped when the floating plate 125 reaches a position facing the passage 140, and then the arm 124 is extended so that the floating plate 125 is in the mold open state in the press device 133. Extend to M and drop the molding material G on the float 125 onto the lower mold 20. Thereafter, the supply drum 123 is moved to the initial position, that is, below the carry-in portion 121 by retracting the arm, and waits to receive the next molding material G.
  • the softened molding material G When the softened molding material G is transported and supplied to the lower mold 20, if the molding material G comes into contact with the members of the transport mechanism, the surface is likely to be defective. Defects on the surface will adversely affect the surface shape of the molded product G1. Therefore, it is advantageous to prevent such an adverse effect by using the supply blade 123 of this example that conveys the softened molding material G in a state of being floated by gas and drops it to the lower mold.
  • the mold closing (pressing operation) starts.
  • the lower mold 20 is raised, and the molding material G is pressed between the upper mold 10 and a desired molded body G1.
  • the stroke of the lower mold 20 for pressing is a preset value based on the thickness of the molded body G1 to be molded.
  • the force S can be set to a predetermined amount in anticipation of contraction.
  • the press molding speed is desirably 3 to 600 mm / min.
  • the pressing procedure can be arbitrarily set according to the shape and size of the optical glass to be molded.
  • a procedure for performing multiple pressurizations such as performing secondary pressurization after releasing the load after initial pressurization can be employed.
  • the lower mold 20 is held by the lower mold holding member 25 in a state of being movable in the horizontal direction, and the lower mold 20 and the lower mold holding member 25 are A plurality of rolling members 60 are laid in between. Therefore, when the mold is closed, even if there is a shaft misalignment between the upper mold 10 and the lower mold 20, the lower mold 20 moves smoothly in the horizontal direction when the lower mold 20 is inserted into the body mold 30. Then, the upper and lower molds 10 and 20 are aligned, and pressing is performed in this state.
  • the guide portion 32 of the body mold 30 is in a single-contact state with the outer periphery of the lower mold 20 when the mold is closed.
  • the lower mold 20 without excessive stress acting on the trunk mold 30 and the lower mold 20 moves in the horizontal direction, and is quickly inserted into the trunk mold 30, so that the upper and lower molds are in a coaxial state.
  • the mold heating device 134 is cut off, and further, a non-oxidizing gas flows into the molding die and is blown from the outside. As a result, the mold M is cooled. Then, when the temperature of the mold 150 becomes equal to or lower than the glass transition point, the lower mold 20 is lowered and released so that the molded body G1 can be carried out.
  • the cooling rate can be set to 50 to 200 ° C / min as an average value from the start of cooling to mold release.
  • the cooling rate at the start of cooling is preferably smaller than the average cooling rate, and it is desirable to increase the cooling rate as the mold release temperature is approached from the viewpoint of preventing cracking.
  • the mold release temperature should be less than or equal to the glass transition point Tg. Force that can be applied S Generally, it is desirable to set the value within the range from (Tg – 50 ° C) to Tg.
  • the compact G1 on the lower mold 20 is transported to the unloading part 131 by the unloading handler 132. That is, as shown by an imaginary line in FIG. 4, the carry-out handler 132 is driven, the arm 132b is rotated, and the suction pad 132c at the tip is moved onto the lower mold. The molded body G1 on the lower mold is sucked by the suction pad 132c, the arm 132b is rotated, and the arm 132b is conveyed to the lifting means below the unloading section 131. Pass the shape G1.
  • the elevating means is raised and the molded body G1 is carried out of the molding chamber 130 through the carry-out chamber of the carry-out section 131.
  • the mold heating device 134 is energized as soon as the molded body G1 is unloaded from the lower mold, and heats the mold to a predetermined temperature in preparation for the next press molding.
  • the shape of the optical glass to be press-molded can be molded into a biconvex lens, a convex meniscus lens, a concave meniscus lens, a biconcave lens, and the like, which are not particularly limited.
  • the size of the molded body is not particularly limited, but generally, a molded body having a diameter of about 2 mm to 35 mm can be molded. If it is 2mm or less, the glass material is easy to cool, so it breaks. This is because if it is 35 mm or more, molding takes time and it becomes extremely difficult to obtain a good surface.
  • the shape of the optical glass can be spherical, aspherical, or a combination thereof.
  • the mold press mold shown in Fig. 1 is mounted on the press molding apparatus shown in Fig. 8, and preformed with normoborosilicate glass (transition point 514 ° C, yield point 545 ° C) as molding material G was used to mold a biconvex lens having an outer diameter of 15 mm.
  • a glass material hot-formed into a biconvex curved shape is preheated to 490 ° C, and is held on the molding surface of the lower die held by the lower base mold preheated to about 470 ° C in the molding chamber.
  • the glass material was supplied.
  • the lower die and the lower die were raised by raising the drive shaft, and the lower die was assembled in the body die held by the upper mother die preheated to about 470 ° C.
  • the lower mold is guided by the trunk mold guide, and the shaft center of the lower mold is formed by a plurality of rolling members made of Si N disposed between the lower mold and the lower mold support.
  • the lower mold moved horizontally so as to coincide with the heart, and the lower mold was inserted into the trunk mold.
  • the clearance Cl between the outer peripheral surface of the lower mold large diameter portion and the inner peripheral surface of the lower mold holding member, that is, the horizontal movable distance of the lower mold is set to 0.1 mm at the maximum
  • the clearance between the upper end surface of the lower mold large diameter part and the lower mold holding member, that is, the vertical movable distance of the lower mold is 0.1 mm at the maximum
  • the upper and lower master dies were heated to 596 ° C corresponding to a glass viscosity of 10 8 dPa's by high-frequency induction heating, maintained for a predetermined time and soaked, and then the lower master dies as shown in Fig. 3 was raised and pressed at a pressure of 100 kg / cm ".
  • the upper and lower molds and the molded lens were cooled at a cooling rate of 50 ° C./min until the glass transition point was reached.
  • the upper mold followed the shrinkage of the glass, and it was cooled in a state where only the upper mold weight was applied. That is, the contact between the upper surface of the lens and the upper mold was maintained during cooling. See you!
  • the mold temperature reached 490 ° C
  • the mold was rapidly cooled with a cooling gas, and after the mold temperature reached 370 ° C or lower, the lower mold was lowered and released.
  • the lower mold was lowered to the bottom of the molding chamber, and the press-molded lens was taken out using the suction pad.
  • the removed lens may be annealed or centered as necessary.
  • a force showing an example of a mold having a pair of upper and lower molds 10, 20 may be provided with two pairs of upper and lower molds 10, 20, as shown in FIG. Further, although not particularly shown, three or more pairs of upper and lower molds 10 and 20 may be provided. In this way, a plurality of molded bodies can be simultaneously molded by a single press molding operation.
  • the example shown in FIG. 9 corresponds to a configuration in which two molding dies similar to those in the first embodiment described above are arranged side by side and these are attached to a common fixed shaft 40 and drive shaft 50.
  • the lower mold 20 is the first mold
  • the force showing an example in which the rolling member 60 is spread between the lower mold 20 and the lower mold holding member 25 is shown in FIG.
  • the upper mold 10 is the first mold
  • the rolling member 60 is spread between the upper mold 10 and the upper mold holding member 15.
  • the example shown in FIG. 10 substantially corresponds to a case in which the top and bottom of the mold according to the first embodiment described above are reversed. More specifically, the overhanging portion 31 formed on the lower side of the body mold 30 is sandwiched between the cross section 30a formed on the inner periphery of the lower mother mold 27 and the lower mold support base 26, so that the body The mold 30 is held and fixed to the lower mold holding member 25 together with the lower mold 20.
  • the upper mold 10 has a large-diameter portion 13 held loosely between the upper mold support 16 and the upper mother mold 17 as shown in the figure. ing.
  • a concave portion 17a is formed on the step surface of the upper master die 17 facing the lower surface of the large-diameter portion 13 of the upper die 10, and the rolling members 60 are spread on the concave portion 17a.
  • the peripheral part of the small-diameter portion 12 of the upper mold 10 abuts on the guide part 32 formed on the inner periphery of the upper side of the body mold 30, so that the upper mold 10
  • it is guided to a position coaxial with the lower mold 20 and the trunk mold 30, so that the upper and lower molds 10, 20 can be secured.
  • the present invention is applied to a mold press mold for press molding a molding material such as a glass preform and a method for producing a molded body using such a mold press mold.

Abstract

A molded article is highly accurately press-formed by extremely facilitating horizontal shift of a forming die on a die holding member and highly accurately maintaining an upper die and a lower die coaxial. The mold press forming die is provided with a pair of upper and lower dies (10, 20) having forming surfaces (11, 21) in discretionary shapes; a body die (30) wherein the upper and lower dies (10, 20) are coaxially inserted with their forming surfaces (11, 21) facing each other; a lower die holding member (25) for holding the lower die (20) by permitting the lower die to move in the horizontal direction; and a plurality of rolling members (60) which are arranged between the lower die (20) and the lower die holding member (25) and roll with shift of the lower die (20) in the horizontal direction.

Description

明 細 書  Specification
モールドプレス成形型、及び成形体の製造方法  Mold press mold and method for producing molded body
技術分野  Technical field
[0001] 本発明は、任意形状の成形面を有する一対の型と、これらの型が互いの成形面が 向き合うように対向配置されて同軸状に挿入される胴型とを備えた、ガラスなどの成 形素材をプレス成形するためのモールドプレス成形型に関し、特に、型閉め時にお ける型の偏心(シフト [shift]及びティル Ktilt])を防止して、光学素子などのような高!/ヽ 形状精度が要求される成形体をプレス成形することができるモールドプレス成形型、 及びそのようなモールドプレス成形型を用いた成形体の製造方法に関する。  [0001] The present invention includes a pair of molds having a molding surface of an arbitrary shape, and a barrel mold in which these molds are arranged so as to face each other so that the molding surfaces face each other and are inserted coaxially, etc. With regard to mold press molds for press molding of molding materials, especially in molds such as optical elements that prevent eccentricity (shift [shift] and tilt Ktilt) when the mold is closed! / The present invention relates to a mold press mold that can press-mold a molded body that requires shape accuracy, and a method for producing a molded body using such a mold press mold.
背景技術  Background art
[0002] ガラス素材を用いて非球面レンズなどの光学素子を製造する方法として、得ようと する成形体の形状に対応した、互いに対向する成形面を有する一対の型によって、 加熱して軟化状態とした成形素材をプレス成形し、これらの型の成形面を転写するモ 一ルドプレス法が知られている。  [0002] As a method of manufacturing an optical element such as an aspherical lens using a glass material, it is heated and softened by a pair of molds having molding surfaces facing each other corresponding to the shape of the molded product to be obtained. A mold press method is known in which a molding material is pressed and the molding surface of these molds is transferred.
また、モールドプレス法を実施するために用いる成形型の成形面の高温劣化を防 止し、成形サイクルタイムを短縮化するために、成形型と成形素材とをそれぞれ別々 に予熱し、予熱された成形素材を成形型に導入して直ちにプレス成形を行う方法が 知られている。  In addition, the mold and the molding material were preheated separately and preheated separately to prevent high-temperature deterioration of the molding surface of the mold used to carry out the mold press method and to shorten the molding cycle time. A method is known in which a molding material is introduced into a mold and press molding is performed immediately.
[0003] これらの方法は、例えば、特許文献 1に開示されている。特許文献 1に開示された 方法では、ガラス素材及び成形型を予熱しておくことにより、ガラス素材を下型に供 給後、直ちに上下型の型閉めを開始してプレス成形を行っている。そして、成形型を ガラス転移点以下まで冷却し、型開きを行ってガラス成形体を取り出すようにしている 。このような方法によれば、サイクルタイムを短縮して生産性を維持しつつ、面精度の 優れたガラス成形体の成形が可能である。  [0003] These methods are disclosed in Patent Document 1, for example. In the method disclosed in Patent Document 1, the glass material and the mold are preheated, and after the glass material is supplied to the lower mold, the upper and lower molds are immediately closed to perform press molding. Then, the mold is cooled to below the glass transition point, the mold is opened, and the glass molded body is taken out. According to such a method, it is possible to form a glass molded body with excellent surface accuracy while shortening the cycle time and maintaining productivity.
[0004] ここで、上下型が精度良く同軸状となるように、胴型と、これによつてガイドされる上 下型との摺動面とのクリアランスは狭く設定される。このため、プレス成型の際の型閉 め時に、胴型と、上下型との摺動部分に擦れやかじりが発生し、適正なプレス動作が 阻害されるおそれがある。 [0004] Here, the clearance between the body mold and the sliding surfaces of the upper and lower molds guided thereby is set narrow so that the upper and lower molds are coaxial with high accuracy. For this reason, when the mold is closed during press molding, rubbing and galling occurs in the sliding part between the body mold and the upper and lower molds, and proper press operation is achieved. May be disturbed.
[0005] 特許文献 2には、一対の型の一方を、型閉め'型開き方向に直交する方向に摺動 可能にし、その摺動抵抗を低減するために、下型と下型支持台との摺動面に潤滑処 理を施した成形型が開示されている。このような構成により、型閉め時に、下型が胴 型に挿入される際、下型が水平方向に容易に移動し、上型と同軸状態になるように 位置が補正される。このため、上下型や胴型に無理な力が作用することを防止でき、 これらの間に擦れやかじりが生ずることも回避できるとされている。  [0005] In Patent Document 2, in order to make one of a pair of molds slidable in a direction perpendicular to the mold closing and mold opening direction, and to reduce the sliding resistance, a lower mold and a lower mold support base are provided. There is disclosed a mold in which a sliding surface is lubricated. With this configuration, when the lower mold is inserted into the body mold when the mold is closed, the position is corrected so that the lower mold easily moves in the horizontal direction and is coaxial with the upper mold. For this reason, it is said that it is possible to prevent excessive force from acting on the upper and lower molds and the body mold, and to avoid rubbing and galling between them.
[0006] 特許文献 1:特開平 11 171564号公報  [0006] Patent Document 1: Japanese Patent Laid-Open No. 11 171564
特許文献 2 :特開 2006— 83026号公報  Patent Document 2: JP 2006-83026 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 現在、小型撮像機器や、光ピックアップなどに用いられる光学素子は、光学的な要 求性能が非常に高い。モールドプレスにより、かかる要求を満す成形体を製造するた めには、上下型の偏心精度、すなわち、同軸性が良く相対的な傾きが少ないことを、 連続プレス工程の間を通じて極めて高く維持することが求められる。例えば、上型と 下型との相互の水平方向のズレ(シフト)は、 10 m以内、好ましくは、 5 111以内、 相互の倒れ角(ティルト)は、 5分以内、好ましくは、 2分以内であることが要求される。 したがって、胴型と上下型と間に許容されるクリアランスは、最大でも lO ^ m以下と なり、この状況下で確実に上下型の接近が連続的に行われなくてはならない。  [0007] Currently, optical elements used for small imaging devices and optical pickups have very high optical performance requirements. In order to produce a molded product that meets these requirements by mold press, the eccentric accuracy of the upper and lower molds, that is, good coaxiality and low relative inclination, must be kept extremely high throughout the continuous pressing process. Is required. For example, the horizontal displacement (shift) between the upper mold and the lower mold is within 10 m, preferably within 5 111, and the tilt angle is within 5 minutes, preferably within 2 minutes. It is required to be. Therefore, the clearance allowed between the barrel mold and the upper and lower molds is at most lO ^ m, and in this situation, the upper and lower molds must be continuously approached reliably.
[0008] しかしながら、このような狭!/、クリアランスでの摺動を維持して、数百〜数万回もの連 続プレスを行うことは一般に困難である。特に、特許文献 1に開示されている方法で は、型開き状態の成形型を予熱し、予熱状態で型閉めを行うので、上下型の同軸性 を保持することが一層困難である。すなわち、上型及び下型は、それぞれ支持部材 によって支持され、いずれか一方が、上下動可能となるよう、型閉め機構の主軸に固 定されている。この状態で上型と下型をそれぞれ、プレス成形に適した温度となるま で予熱すると、上下型の支持部材がそれぞれ熱膨張して熱変形する。例えば、成形 素材がガラスの場合には、 400°C〜900°Cの高温となるように予熱されるので、この ような状態で、上下型の偏心精度を高く維持しつつ、数百〜数万回の連続プレスを 行うことは極めて困難である。 [0008] However, it is generally difficult to perform continuous press several hundreds to tens of thousands of times while maintaining such narrow sliding / clearance sliding. In particular, in the method disclosed in Patent Document 1, since the mold in the mold open state is preheated and the mold is closed in the preheated state, it is more difficult to maintain the coaxiality of the upper and lower molds. That is, the upper mold and the lower mold are each supported by a support member, and either one is fixed to the main shaft of the mold closing mechanism so as to be movable up and down. In this state, if the upper die and the lower die are preheated to a temperature suitable for press molding, the upper and lower die support members are thermally expanded and thermally deformed. For example, when the molding material is glass, it is preheated to a high temperature of 400 ° C to 900 ° C, so in this state, while maintaining high eccentric accuracy of the upper and lower molds, several hundred to several 10,000 continuous presses It is extremely difficult to do.
[0009] さらに、生産効率を向上するためには、特許文献 1に開示されているように、上型と 下型を複数支持し、同時に複数のプレス成形を行うことが望ましい。  [0009] Further, in order to improve the production efficiency, as disclosed in Patent Document 1, it is desirable to support a plurality of upper molds and lower molds and simultaneously perform a plurality of press moldings.
しかしながら、このような装置を用いると、上下型は、支持部材などの熱変形により、 それぞれ僅かに位置変位する。この変位量は、各型の、プレス主軸との距離によって も異なり、また、成形素材の種類によって選択されるプレス温度によっても異なる。さ らに、それぞれ単一の上型支持部材、下型支持部材に複数の上型、下型を支持さ せれば、上下の支持部材は単一の型を支持して!/、る支持部材よりも寸法が大き!/、の で、熱変形も大きい。このため、そこに配置された複数の上型、下型のそれぞれが、 正確に軸を一致させた状態で接近、密着する状態を、連続プレス工程を通じて維持 することは困難を極める。  However, when such an apparatus is used, the upper and lower molds are slightly displaced due to thermal deformation of the support member or the like. The amount of displacement varies depending on the distance of each mold from the press spindle, and also varies depending on the press temperature selected depending on the type of molding material. Furthermore, if a plurality of upper and lower molds are supported by a single upper mold support member and a lower mold support member, the upper and lower support members support a single mold! / Because the dimensions are larger than / !, thermal deformation is also large. For this reason, it is extremely difficult to maintain a state in which the upper and lower molds arranged there are close and in close contact with each other with their axes accurately aligned through a continuous pressing process.
[0010] モールドプレス成形において、成形型の同軸性が精度良く維持されていないと、下 型と胴型の間に擦れやかじりが生ずる。プレス時には大きな荷重が作用するので、擦 れゃかじりが発生すると、成形体に力、かるべき荷重が胴型、下型間に吸収され、プレ ス圧力が成形体に不均一に作用し、偏心精度、面精度、肉厚精度の劣化や、胴型、 下型の破損などが生じる。  [0010] In mold press molding, if the coaxiality of the mold is not accurately maintained, rubbing or galling occurs between the lower mold and the barrel mold. A large load is applied during pressing, so if scuffing occurs, force is applied to the molded body, the load to be applied is absorbed between the body mold and lower mold, and the press pressure acts unevenly on the molded body, causing eccentricity. Deterioration of accuracy, surface accuracy, wall thickness accuracy, and damage to the body and lower molds.
また、擦れやかじりによって生じた磨耗粉が成形体に付着すると、成形体は外観不 良となる。さらに、こうした擦れやかじりが発生すると、胴型と下型間のクリアランスが 所定範囲を超え、結果として胴型による下型の位置規制が緩くなる。これは、上型と 下型の同軸性が失われることを意味し、上型と下型間の水平方向のズレ (シフト)や、 上型と下型の相対的な傾き (倒れ)が生じる。特に、成形体が光学素子である場合に は、深刻な性能劣化となる。  In addition, when the abrasion powder generated by rubbing or galling adheres to the molded body, the molded body has a poor appearance. Further, when such rubbing or galling occurs, the clearance between the body mold and the lower mold exceeds a predetermined range, and as a result, the position regulation of the lower mold by the body mold becomes loose. This means that the coaxiality of the upper mold and the lower mold is lost, and a horizontal shift (shift) between the upper mold and the lower mold and a relative inclination (falling) between the upper mold and the lower mold occur. . In particular, when the molded body is an optical element, serious performance deterioration occurs.
[0011] ここで、特許文献 2では、下型と下型支持部材との摺動面に潤滑処理を施して下型 の水平移動を容易にし、胴型と下型の擦れやかじりを防止して!/、る。  Here, in Patent Document 2, the sliding surface between the lower mold and the lower mold support member is lubricated to facilitate the horizontal movement of the lower mold and prevent rubbing and galling between the body mold and the lower mold. /!
しかしながら、プレス成形毎に下型と下型支持部材との摺動面で摺動が繰り返され るため、プレス成形の回数が増加するにつれて、この摺動面が劣化、摩耗し、定期的 に潤滑処理を行わなければならない。また、胴型に下型が挿入される際、確かに摺 動面への潤滑処理により下型の水平移動は容易になる力 下型と下型支持部材とが 面接触しているため、水平移動のために必要な初期のモーメントが比較的大きくなり 、必ずしも下型の水平移動を円滑に行えないこともある。 However, sliding is repeated on the sliding surface between the lower mold and the lower mold support member every press molding, and as the number of press molding increases, the sliding surface deteriorates and wears, and is regularly lubricated. Processing must be done. In addition, when the lower die is inserted into the barrel die, the lower die and the lower die support member are surely easy to make the horizontal movement of the lower die easier due to the lubrication treatment on the sliding surface. Because of the surface contact, the initial moment required for horizontal movement becomes relatively large, and the horizontal movement of the lower mold may not always be performed smoothly.
[0012] 本発明は、上記の事情に鑑みなされたものであり、成形体を高精度でプレス成形 するために、型保持部材に対する成形型の水平移動を極めて容易にすることで、上 下型の偏心精度を良好に維持し、以つて高精度の成形体を安定して生産することが できるモールドプレス成形型及びそのような成形型を用いた成形体の製造方法の提 供を目的とする。 [0012] The present invention has been made in view of the above circumstances, and in order to press-mold the molded body with high accuracy, the horizontal movement of the mold relative to the mold holding member is extremely facilitated, and thus The purpose of the present invention is to provide a mold press mold capable of stably producing a high-precision molded body, and a method for producing a molded body using such a mold. .
課題を解決するための手段  Means for solving the problem
[0013] 本発明のモールドプレス成形型は、任意形状の成形面を有する第一及び第二の 型と、前記第一及び第二の型が、互いの成形面が向き合うように対向配置されて同 軸状に挿入される胴型と、前記第一の型を水平方向に移動可能に保持する第一の 型保持部材と、前記第一の型と前記第一の型保持部材との間に配設され、前記第 一の型の水平方向への移動に伴って転動する複数の転動部材と、を備えた構成とし てある。 [0013] The mold press mold of the present invention includes a first mold and a second mold having a molding surface of an arbitrary shape, and the first and second molds facing each other so that the molding surfaces face each other. A barrel mold that is inserted coaxially, a first mold holding member that holds the first mold movably in the horizontal direction, and a gap between the first mold and the first mold holding member. And a plurality of rolling members that roll with the movement of the first mold in the horizontal direction.
[0014] このような構成とした本発明に係るモールドプレス成形型によれば、第一の型と第 一の型保持部材との間に複数の転動部材を配設することにより、第一の型の水平方 向への移動力 微小な初期モーメントが生じても円滑になされるようにすることができ る。このため、プレス成形動作が開始され、第一の型が胴型内に挿入される際に、第 一の型の軸心が、第二の型及び胴型の軸心と一致していなくても、第一の型は、胴 型内に挿入されながら水平方向に円滑に移動し、これによつて、第一の型や胴型に 無理な力が及ぼされることなぐ第一の型が、第二の型及び胴型と同軸となる位置に 誘導される。したがって、第一の型及び第二の型と胴型とのクリアランスを数ミクロン 程度に設定しても、確実に第一の型及び/又は第二の型が胴型内にスムーズに揷 入され、第一及び第二の型の同軸性を高度に確保することができる。  [0014] According to the mold press mold according to the present invention configured as described above, a plurality of rolling members are disposed between the first mold and the first mold holding member, so that the first The moving force in the horizontal direction can be made smooth even if a small initial moment occurs. For this reason, when the press molding operation is started and the first die is inserted into the barrel die, the axis of the first die does not coincide with the axis of the second die and the barrel die. However, the first mold moves smoothly in the horizontal direction while being inserted into the body mold, so that the first mold that does not exert excessive force on the first mold or the trunk mold is Guided to a position that is coaxial with the second and barrel molds. Therefore, even if the clearance between the first mold and the second mold and the trunk mold is set to about several microns, the first mold and / or the second mold can be surely and smoothly inserted into the trunk mold. The coaxiality of the first and second molds can be highly secured.
[0015] また、本発明に係るモールドプレス成形型は、前記第一の型が挿入される側の前 記胴型の開口部内周面に、テーパー状に拡径するガイド部が形成され、前記ガイド 部は、前記第一の型が前記胴型に挿入されるときに、前記第一の型に当接して、前 記第一の型が前記第二の型と同軸状になるように案内する構成とすることができる。 このような構成とすれば、胴型内への第一の型の挿入が妨げられることなぐガイド 部にガイドされながら第一の型が胴型内にスムーズに揷入されるとともに、第一の型 の水平移動力促されるようにすること力 Sでさる。 [0015] In the mold press mold according to the present invention, a guide portion having a tapered diameter is formed on the inner peripheral surface of the opening of the cylinder die on the side where the first die is inserted. The guide portion guides the first mold so that the first mold is coaxial with the second mold when the first mold is inserted into the body mold. It can be set as the structure to do. With such a configuration, the first mold is smoothly inserted into the trunk mold while being guided by the guide portion that does not prevent the insertion of the first mold into the trunk mold, and the first mold Force the horizontal movement of the mold with force S.
[0016] また、本発明に係るモールドプレス成形型にお!/、て、前記転動部材は、直径が均 一な球状部材とした構成とすることができる。  [0016] Further, in the mold press mold according to the present invention, the rolling member may be a spherical member having a uniform diameter.
このような構成とすれば、第一の型と第一の型保持部材との間に配設された直径が 均一な球状部材が、両者に点接触した状態で、第一の型の円滑な水平移動を促進 するので、第一の型を胴型内にスムーズに揷入することができる。  With such a configuration, the spherical member having a uniform diameter disposed between the first mold and the first mold holding member is in a point contact with both, and the first mold is smoothly smoothed. Since the horizontal movement is promoted, the first mold can be smoothly inserted into the body mold.
[0017] また、本発明に係るモールドプレス成形型にお!/、て、前記転動部材は、プレス成形 温度における曲げ強さが 300MPa以上のセラミックスからなる構成とすることができる このような構成とすれば、光学ガラスなどの成形素材をプレス成形するにあたり、転 動部材は、高温下でプレス荷重を受けても変形や摩耗'劣化が生じない強度を有す るため、長時間にわたり精度の高いモールドプレス成形を維持することができる。  [0017] Further, in the mold press mold according to the present invention, the rolling member may be made of a ceramic having a bending strength at a press molding temperature of 300 MPa or more. Therefore, when press-molding a molding material such as optical glass, the rolling member has strength that does not cause deformation or wear even when subjected to a press load at a high temperature. High mold press molding can be maintained.
[0018] また、本発明に係るモールドプレス成形型にお!/、て、前記転動部材は、窒化珪素、 炭化珪素、ジルコユア、又はアルミナのうち何れ力、からなる構成としてある。  [0018] Also, in the mold press mold according to the present invention, the rolling member is made of any force selected from silicon nitride, silicon carbide, zirconium carbide, and alumina.
このような構成とすれば、上記素材からなる転動部材は、いずれも高温時における 強度(曲げ強度)、硬さ(ビッカース硬さ)に優れるため、長時間にわたり精度の高い モールドプレス成形を維持することができる。  With such a configuration, all the rolling members made of the above materials are excellent in strength (bending strength) and hardness (Vickers hardness) at high temperatures, so that high-precision mold press molding can be maintained over a long period of time. can do.
[0019] また、本発明に係るモールドプレス成形型は、前記転動部材を介して対向する前 記第一の型と前記第一の型保持部材との少なくとも一方の面に、前記転動部材を収 容する凹陥部を形成した構成とすることができる。  [0019] Further, the mold press mold according to the present invention includes the rolling member on at least one surface of the first mold and the first mold holding member facing each other through the rolling member. It can be set as the structure which formed the recessed part which accommodates this.
このような構成とすれば、凹陥部に転動部材が収容されるようにすることで、成形型 を組み立てる際などに、転動部材が脱落してしまうのを防止することができる。  By adopting such a configuration, the rolling member can be prevented from falling off when assembling the mold by assembling the rolling member in the recessed portion.
[0020] また、本発明に係るモールドプレス成形型は、前記胴型を前記第一の型に向けて 付勢する弾性部材を備え、前記第一及び第二の型で成形素材をプレス成形する際 に、前記第一の型が挿入される側の前記胴型の開口部端面が、前記弾性部材の付 勢力によって前記第一の型の一部に押圧されるようにした構成とすることができる。 このような構成とすれば、プレス成形時に、弾性部材の付勢力によって胴型の開口 部端面が第一の型に押し付けられて、第一の型と胴型との位置関係、特に、同軸度 が正しく規定され、偏心精度の優れた成形体を得ることができる。 [0020] Further, the mold press mold according to the present invention includes an elastic member that biases the body mold toward the first mold, and press-molds the molding material with the first and second molds. In this case, the opening end face of the body mold on the side where the first mold is inserted is configured to be pressed against a part of the first mold by the urging force of the elastic member. it can. With such a configuration, at the time of press molding, the end surface of the opening of the barrel mold is pressed against the first mold by the urging force of the elastic member, and the positional relationship between the first mold and the barrel mold, particularly the coaxiality Is correctly defined, and a molded article having excellent eccentricity accuracy can be obtained.
[0021] また、本発明に係るモールドプレス成形型は、前記第一の型が成形面に凸面を有 し、前記第一の型の成形面の周囲に位置して、前記第一の型の成形面上に供給さ れた成形素材を支承する支承部材と、前記第一及び第二の型の近接動作にしたが つて、前記支承部材を前記下型の成形面の周囲から退避させる退避機構と、を備え た構成とすることができる。  [0021] Further, in the mold press mold according to the present invention, the first mold has a convex surface on the molding surface, and is positioned around the molding surface of the first mold. A retraction mechanism that retreats the support member from the periphery of the molding surface of the lower mold in accordance with the proximity movement of the first and second molds, and a support member that supports the molding material supplied on the molding surface It can be set as the structure provided with these.
このような構成とすれば、凹面を有するメニスカスレンズや、両凹レンズを成形する 場合であっても、成形素材が中心から大幅にずれるような偏肉を生ずることなぐ高 精度にプレス成形することができる。  With such a configuration, even when a meniscus lens having a concave surface or a biconcave lens is to be molded, it is possible to perform press molding with high accuracy without causing an uneven thickness that causes the molding material to deviate significantly from the center. it can.
[0022] また、本発明に係るモールドプレス成形型は、前記第一の型保持部材に当接する 曲面を有する介在部材を、前記第一の型保持部材と前記転動部材との間に介在さ せた構成とすることができる。  [0022] In the mold press mold according to the present invention, an interposed member having a curved surface that comes into contact with the first mold holding member is interposed between the first mold holding member and the rolling member. It can be set as the structure.
このような構成とすれば、胴型に対して第一の型が傾いて配置されていたとして、介 在部材が、その曲面に沿って揺動しながら第一の型の傾きを修正する。したがって、 第一の型は、介在部材による傾きの修正と、水平移動とにより、同軸性が高度に確保 されて胴型内に挿入されるため、偏心精度(ティルト及びシフトの精度)の良好な成形 体を成形することができる。  With such a configuration, it is assumed that the first mold is inclined with respect to the trunk mold, and the interposed member corrects the inclination of the first mold while swinging along the curved surface. Therefore, since the first mold is inserted into the barrel mold with a high degree of coaxiality by correcting the inclination by the interposition member and horizontally moving, the eccentricity (tilt and shift accuracy) is good. A compact can be formed.
[0023] また、本発明に係る成形体の製造方法は、任意形状の成形面を有する第一及び 第二の型と、前記第一及び第二の型が、互いの成形面が向き合うように対向配置さ れて同軸状に挿入されるとともに、前記第一の型が挿入される側の開口部内周面に ガイド部が形成された胴型と、前記第一の型を水平方向に移動可能に保持する第一 の型保持部材と、前記第一の型と前記第一の型保持部材との間に配設された複数 の転動部材とを備えたモールドプレス成形型と、前記第一及び第二の型の少なくとも 一方を昇降させる駆動手段と、前記モールドプレス成形型を加熱する加熱手段と、を 備えた成形装置を用いて、前記加熱手段によって所定温度に加熱された前記モー ルドプレス成形型によって成形素材をプレス成形して、前記成形面の形状を前記成 形素材に転写することにより成形体を製造するにあたり、前記駆動手段によって前記 第一及び第二の型の少なくとも一方を昇降させることにより前記第一の型が前記胴 型に挿入されるようにし、このときに、前記第一の型が前記胴型に形成されたガイド 部に当接して水平方向へ移動するのに伴って前記転動部材が転動し、前記第一の 型を前記第二の型と同軸状となるように案内する方法としてある。 [0023] Further, in the method for producing a molded body according to the present invention, the first and second molds having a molding surface having an arbitrary shape and the first and second molds are so that the molding surfaces face each other. A cylindrical mold with a guide portion formed on the inner peripheral surface of the opening on the side where the first mold is inserted, and the first mold can be moved in the horizontal direction. A mold press molding die comprising: a first die holding member held on the first die; and a plurality of rolling members disposed between the first die and the first die holding member; The mold press molding heated to a predetermined temperature by the heating means using a molding apparatus comprising: a driving means for moving up and down at least one of the second mold; and a heating means for heating the mold press mold. The molding material is press-molded with a mold, and the shape of the molding surface is KiNaru In manufacturing a molded body by transferring to a shape material, the first mold is inserted into the barrel mold by raising and lowering at least one of the first and second molds by the driving means, At this time, as the first die contacts the guide portion formed on the barrel die and moves in the horizontal direction, the rolling member rolls, and the first die is moved to the second die. This is a method of guiding so as to be coaxial with the mold.
このような方法とすることにより、第一の型が胴型のガイド部によって水平方向へ移 動するのに伴い、転動部材が転動することにより第一の型の円滑な水平移動が促進 される。したがって、対向している一対の第一及び第二の型を高い精度で同軸状態 に維持できるので、成形体を精度良く製造することができる。  By adopting such a method, smooth horizontal movement of the first mold is promoted by rolling the rolling member as the first mold moves in the horizontal direction by the guide part of the trunk mold. Is done. Accordingly, since the pair of first and second molds facing each other can be maintained in the coaxial state with high accuracy, the molded body can be manufactured with high accuracy.
[0024] また、本発明に係る成形体の製造方法は、より具体的には、プレス成形に先立って 、前記成形素材を予熱するとともに、前記モールドプレス成形型を予熱し、この前記 成形素材を予熱した前記モールドプレス成形型に供給してプレス成形を行う方法と すること力 Sでさる。 [0024] Further, the method for producing a molded body according to the present invention more specifically preheats the molding material prior to press molding, preheats the mold press molding die, and uses the molding material. The force S is used as a method of performing press molding by supplying the preheated mold press mold.
このような方法とすることにより、サイクルタイムが短縮され生産効率が高ぐ高精度 の成形体を製造することができる。  By adopting such a method, it is possible to produce a high-precision molded body that shortens the cycle time and increases the production efficiency.
発明の効果  The invention's effect
[0025] 以上のように、本発明によれば、第一の型と第一の型保持部材との間に複数の転 動部材を配設することにより、第一の型の水平方向への移動が円滑になされるように すること力 Sできる。このため、プレス成形動作が開始され、第一の型が胴型内に揷入 される際に、第一の型の軸心力 S、第二の型及び月同型の軸心と一致していなくても、第 一の型は、胴型内に挿入されながら水平方向に円滑に移動し、これによつて、第一 の型や胴型に無理な力が及ぼされることなぐ第一の型が、第二の型及び胴型と同 軸となる位置に誘導されて、第一及び第二の型の同軸性を高度に確保することがで きる。  [0025] As described above, according to the present invention, by disposing a plurality of rolling members between the first mold and the first mold holding member, the first mold in the horizontal direction is arranged. It is possible to make the movement smooth. For this reason, when the press molding operation is started and the first mold is inserted into the body mold, the axial force S of the first mold coincides with the axis of the second mold and the moon mold. Even if it is not, the first mold moves smoothly in the horizontal direction while being inserted into the trunk mold, so that the first mold does not exert excessive force on the first mold or the trunk mold. However, it is guided to a position that is coaxial with the second mold and the trunk mold, so that the coaxiality of the first and second molds can be highly secured.
しかも、転動部材は、第一の型の水平方向の移動に伴って転動するため、繰り返し プレス成形を行っても摩耗することがなく耐久性が高ぐ偏心精度の極めて良好な成 形体の連続生産が可能となる。  In addition, since the rolling member rolls as the first die moves in the horizontal direction, the rolling member does not wear even if it is repeatedly press-molded. Continuous production is possible.
図面の簡単な説明 [0026] [図 1]本発明に係るモールドプレス成形型の第一実施形態の概略を示す断面図であ Brief Description of Drawings FIG. 1 is a cross-sectional view schematically showing a first embodiment of a mold press mold according to the present invention.
[図 2]本発明に係るモールドプレス成形型の第一実施形態の概略を示す断面図であ FIG. 2 is a cross-sectional view schematically showing a first embodiment of a mold press mold according to the present invention.
[図 3]本発明に係るモールドプレス成形型の第一実施形態の概略を示す断面図であ FIG. 3 is a cross-sectional view schematically showing a first embodiment of a mold press mold according to the present invention.
[図 4]本発明に係るモールドプレス成形型の第二実施形態の概略を示す断面図であ FIG. 4 is a cross-sectional view showing an outline of a second embodiment of a mold press mold according to the present invention.
[図 5]本発明に係るモールドプレス成形型の第三実施形態の概略を示す断面図であ FIG. 5 is a cross-sectional view schematically showing a third embodiment of a mold press mold according to the present invention.
[図 6]本発明に係るモールドプレス成形型の第四実施形態の概略を示す断面図であ FIG. 6 is a cross-sectional view schematically showing a fourth embodiment of a mold press mold according to the present invention.
[図 7]本発明に係るモールドプレス成形型の第五実施形態の概略を示す断面図であ FIG. 7 is a sectional view schematically showing a fifth embodiment of a mold press mold according to the present invention.
[図 8]本発明に係るモールドプレス成形型によってプレス成形をするのに好適なプレ ス成形装置の一例を示す概略平面図である。 FIG. 8 is a schematic plan view showing an example of a press molding apparatus suitable for press molding with the mold press mold according to the present invention.
[図 9]本発明に係るモールドプレス成形型の別の実施形態の概略を示す断面図であ [図 10]本発明に係るモールドプレス成形型のさらに別の実施形態の概略を示す断面 図である。  FIG. 9 is a cross-sectional view showing the outline of another embodiment of the mold press mold according to the present invention. FIG. 10 is a cross-sectional view showing the outline of still another embodiment of the mold press mold according to the present invention. is there.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 以下、本発明の好ましい実施形態について、図面を参照しつつ説明する。  Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0028] [モールドプレス成形型/第一実施形態] [Mold Press Mold / First Embodiment]
まず、本発明に係るモールドプレス成形型(以下、「成形型」という)の第一実施形 態について説明する。  First, a first embodiment of a mold press mold (hereinafter referred to as “mold”) according to the present invention will be described.
なお、図 1、図 2、及び図 3は、本実施形態に係る成形型の概略を示す断面図であ る。これらの図において、図 1は、型開きした成形型に光学ガラスなどからなる成形素 材 Gを供給した状態を示している。また、図 2は、プレス成形動作の途中の状態を示 しており、図 3は、型閉めされた状態を示している。 1, 2 and 3 are cross-sectional views schematically showing the mold according to the present embodiment. In these drawings, FIG. 1 shows a state in which a molding material G made of optical glass or the like is supplied to a mold that has been opened. Fig. 2 shows the state during the press forming operation. Fig. 3 shows the closed state.
[0029] 本実施形態に係る成形型は、成形しょうとするガラスレンズなどの光学素子(成形 体)の形状をもとに、任意形状の成形面 11 , 21が形成された、上型 (第二の型) 10と 、下型(第一の型) 20とを有している。これらの成形面 11 , 21は、例えば、ガラスレン ズの第 1及び第 2面を構成する球面又は非球面とすることができる。そして、互いの 成形面 11 , 21が向き合うようにして対向配置された上下型 10, 20が、胴型 30内に 揷入された状態で相互に近接することにより、上型 10と下型 20との間に供給された 成形素材 Gをプレス成形するようにしてある。  [0029] The mold according to the present embodiment is an upper mold (first mold) in which molding surfaces 11 and 21 having arbitrary shapes are formed based on the shape of an optical element (molded body) such as a glass lens to be molded. A second mold) 10 and a lower mold (first mold) 20. These molding surfaces 11 and 21 can be, for example, spherical surfaces or aspherical surfaces constituting the first and second surfaces of the glass lens. The upper mold 10 and the lower mold 20 are arranged so that the upper and lower molds 10 and 20 arranged so as to face each other with the molding surfaces 11 and 21 facing each other come close to each other while being inserted into the body mold 30. The molding material G supplied between the two is press-molded.
[0030] 図示する例において、上型 10は、胴型 30とともに、上型保持部材(第二の型保持 部材) 15に保持されており、下型 20は、下型保持部材(第一の型保持部材) 25に保 持されている。これらの保持部材 15, 25は、いずれもタングステン合金などの磁性体 からなり、周囲に配置された高周波誘導加熱コイルなどの加熱手段(例えば、後述す る図 8に示すような型加熱装置 134)などにより加熱されて、その熱が上下型 10, 20 や胴型 30に伝わるようになつている。  [0030] In the illustrated example, the upper mold 10 is held by the upper mold holding member (second mold holding member) 15 together with the trunk mold 30, and the lower mold 20 is formed by the lower mold holding member (first mold holding member). Die holding member) 25. These holding members 15 and 25 are all made of a magnetic material such as a tungsten alloy, and heating means such as a high-frequency induction heating coil (for example, a mold heating device 134 as shown in FIG. 8 described later) The heat is transmitted to the upper and lower molds 10, 20 and the trunk mold 30.
なお、加熱手段は、上型 10や上型保持部材 15を加熱する上型用加熱手段と、下 型 20や下型保持部材 25を加熱する下型用加熱手段とを併設し、両者の加熱温度を 個別に調節できるように構成することが好ましい。  The heating means includes an upper mold heating means for heating the upper mold 10 and the upper mold holding member 15 and a lower mold heating means for heating the lower mold 20 and the lower mold holding member 25, and heating both. It is preferable that the temperature can be adjusted individually.
[0031] また、上型保持部材 15には、その上面側に固定軸 40が取り付けられている。これと ともに、下型保持部材 25の下面側には、図示しないエアーシリンダなどからなる昇降 機構を有する駆動手段に接続された駆動軸 50が取り付けられている。これにより、上 型 10に対し、下型 20が軸方向に沿って上下動するようにして、上下型 10, 20が相 互に近接、離間するようにしている力 図示する例とは逆に、上型保持部材 15に駆 動軸を取り付けるとともに、下型保持部材 25を固定軸に取り付けるようにしてもよい。 上型保持部材 15と下型保持部材 25とに別々に駆動軸を取り付けて、上下型 10, 20 の両方が軸方向に沿って上下動するようにしてもよい。  In addition, a fixed shaft 40 is attached to the upper mold holding member 15 on the upper surface side thereof. At the same time, on the lower surface side of the lower mold holding member 25, a drive shaft 50 connected to drive means having an elevating mechanism such as an air cylinder (not shown) is attached. As a result, the lower mold 20 moves up and down along the axial direction with respect to the upper mold 10 so that the upper and lower molds 10 and 20 are close to and away from each other. The drive shaft may be attached to the upper mold holding member 15 and the lower mold holding member 25 may be attached to the fixed shaft. A drive shaft may be separately attached to the upper mold holding member 15 and the lower mold holding member 25 so that both the upper and lower molds 10 and 20 move up and down along the axial direction.
[0032] 胴型 30とともに上型 10を保持する上型保持部材 15は、上型支持台 16と上母型 1 7とを備えている。上母型 17は、胴型 30を同心状に取り囲む円筒形とされ、上型支 持台 16の下面に固定されている。 胴型 30の上部側には、図示するような径方向に張り出す張り出し部 31が形成され ており、上母型 17を上型支持台 16の下面に固定するに際して、この張り出し部 31が 、上母型 17の内周に形成された段面 17aと上型支持台 16の下面との間に狭持され る。そして、胴型 30は、張り出し部 31が狭持された状態で、上型保持部材 15に保持 、固定されており、その水平方向及び軸方向の移動が抑止されている。 The upper mold holding member 15 that holds the upper mold 10 together with the trunk mold 30 includes an upper mold support 16 and an upper mother mold 17. The upper mother die 17 is a cylindrical shape that concentrically surrounds the trunk die 30 and is fixed to the lower surface of the upper die support 16. On the upper side of the body mold 30 is formed a projecting portion 31 that projects in the radial direction as shown in the figure, and when the upper mother die 17 is fixed to the lower surface of the upper mold support base 16, this projecting portion 31 is It is sandwiched between a step surface 17 a formed on the inner periphery of the upper mold 17 and the lower surface of the upper mold support 16. The body mold 30 is held and fixed to the upper mold holding member 15 in a state where the projecting portion 31 is sandwiched, and movement in the horizontal direction and the axial direction is suppressed.
[0033] 上型 10は、成形面 11が形成された小径部 12と、成形面 1 1より径の大きい大径部 13とが同心状に配された形状とされ、胴型 30内に同心状に挿入された状態で上型 保持部材 15に保持されている。そして、図 1に示す型開き状態において、胴型 30内 に揷入された上型 10の大径部 13の下面が、胴型 30の上部内周側に形成された円 環状の段面 30aに当接し、上型 10の上面と、上型支持台 16の下面との間に、隙間 S が形成されるようになっている。  The upper mold 10 has a shape in which a small-diameter portion 12 on which a molding surface 11 is formed and a large-diameter portion 13 having a diameter larger than that of the molding surface 11 are arranged concentrically. The upper die holding member 15 is held in a state of being inserted in a shape. In the open state shown in FIG. 1, the lower surface of the large-diameter portion 13 of the upper mold 10 inserted into the body mold 30 is an annular step surface 30a formed on the upper inner peripheral side of the body mold 30. A gap S is formed between the upper surface of the upper mold 10 and the lower surface of the upper mold support 16.
[0034] したがって、上型 10は、この隙間 Sの分だけ胴型 30内を軸方向に摺動可能とされ るが、プレス成形動作がなされる間中、胴型 30内に上型 10が揷入された状態が維 持されるため、上型 10と胴型 30との摺動部における水平方向のクリアランス C2は、 極めて小さく(例えば、片側 5 a m以下、好ましくは片側 2 μ m以下)しておくことがで きる。  Therefore, the upper mold 10 can be slid in the barrel mold 30 in the axial direction by the gap S, but the upper mold 10 is placed in the trunk mold 30 during the press molding operation. Since the inserted state is maintained, the horizontal clearance C2 at the sliding portion between the upper mold 10 and the trunk mold 30 is extremely small (for example, 5 am or less on one side, preferably 2 μm or less on one side). Can be kept.
なお、下型 20が上昇して型閉めがなされる際には、下型 20の成形面 21上の成形 素材 Gが、上型 10の成形面 11に当接して上型 10を押し上げる。これにより、上型 10 は、上記隙間 Sの分だけ胴型 30内を摺動して上型支持台 16の下面に当接し、図 3 に示すように、上型 10の大径部 13と、胴型 30の段面 30aとの間に隙間が形成される 。成形体の肉厚は、一旦ここで規定されるが、この後、冷却すると、成形体の熱収縮 に追従して上型 10がその自重によって僅かに下降し、上下型 10, 20と成形体との 密着を維持したまま冷却を行うことができる。  When the lower mold 20 is raised and the mold is closed, the molding material G on the molding surface 21 of the lower mold 20 abuts on the molding surface 11 of the upper mold 10 and pushes up the upper mold 10. As a result, the upper mold 10 slides within the body mold 30 by the amount of the gap S and contacts the lower surface of the upper mold support 16, and as shown in FIG. A gap is formed between the step surface 30 a of the trunk mold 30. The thickness of the molded body is once defined here, but after this, when cooled, the upper mold 10 slightly lowers due to its own weight following the thermal contraction of the molded body, and the upper and lower molds 10, 20 and the molded body. Cooling can be performed while maintaining close contact with.
[0035] 下型 20も上型 10と同様に、成形面 21が形成された小径部 22と、成形面 21より径 の大きい大径部 23とを同軸に配した形状となっており、下型支持台 26と、この下型 支持台 26の上面に固定された下母型 27とを備えた下型保持部材(第一の型保持部 材) 25に保持されている。 Similarly to the upper mold 10, the lower mold 20 has a shape in which a small diameter portion 22 formed with a molding surface 21 and a large diameter portion 23 larger in diameter than the molding surface 21 are arranged coaxially. It is held by a lower mold holding member (first mold holding member) 25 having a mold support base 26 and a lower base mold 27 fixed to the upper surface of the lower mold support base 26.
下母型 27は、内周面の上部側が小径内周面 27aとされ、下型 20を下型保持部材 25に保持したときに、下型 20の小径部 22との間に、図示するような上方に開口する 円環状の揷入溝 28が形成されるようになっている。プレス成形動作がなされる際に、 この揷入溝 28には、胴型 30の下部側が挿入され、これとともに、下型 20の小径部 2 2が胴型 30内に挿入される(図 3参照)。 The lower mold 27 has a lower diameter inner peripheral surface 27a on the upper side of the inner peripheral surface, and the lower mold 20 is a lower mold holding member. When held at 25, an annular insertion groove 28 that opens upward is formed between the lower die 20 and the small diameter portion 22. When the press forming operation is performed, the lower side of the barrel die 30 is inserted into the insertion groove 28, and the small diameter portion 22 of the lower die 20 is also inserted into the barrel die 30 (see FIG. 3). ).
[0036] 下型 20の小径部 22が胴型 30内に挿入されると、上下型 10, 20のそれぞれに胴 型 30の内周面が接触することとなり、これによつて、上下型 10, 20の同軸性を確保 すること力 Sできる。このとき、下型 20の小径部 22の外周面と、胴型 30の下部側の内 周面とのクリアランス C3が大きすぎると、上型 10と下型 20の軸心がずれ、ティルトゃ シフトなどの偏心不良を招いてしまい、上下型 10, 20の同軸性を確保するのが困難 になる。このため、下型 20の小径部 22の外周面と、胴型 30の下方側の内周面とのク リアランス C3は、要求される光学素子の偏心精度を考慮すると、 0. 5〜10 111とす るのが好ましく、より好ましくは l〜5〃mである。  [0036] When the small-diameter portion 22 of the lower mold 20 is inserted into the barrel mold 30, the inner peripheral surface of the barrel mold 30 comes into contact with the upper and lower molds 10, 20, respectively. Therefore, it is possible to secure 20 coaxiality. At this time, if the clearance C3 between the outer peripheral surface of the small-diameter portion 22 of the lower mold 20 and the inner peripheral surface of the lower side of the body mold 30 is too large, the axis centers of the upper mold 10 and the lower mold 20 will shift and tilt tilt shift will occur. As a result, it becomes difficult to ensure the coaxiality of the upper and lower molds 10 and 20. For this reason, the clearance C3 between the outer peripheral surface of the small-diameter portion 22 of the lower mold 20 and the inner peripheral surface of the lower side of the body mold 30 is 0.5-10 111 in consideration of the required eccentric accuracy of the optical element. It is preferably 1 to 5 μm.
[0037] 一方、下母型 27の内周面の下部側は大径内周面 27bとされ、この大径内周面 27b と小径内周面 27aとの段差部分に形成される円環状の段面 27cと、下型支持台 26の 上面とに挟まれるようにして、下型 20の大径部 23が、下母型 27と下型支持台 26との 間に遊嵌状に保持されるようになっている。これにより、下型 20の軸方向の移動範囲 を規制しつつ、下型 20の大径部 23の外周面と、下母型 27の大径内周面 27bとの間 に、所定のクリアランス C1を確保することで、このクリアランス C1の分だけ、下型 20が 水平方向(軸方向に直交する方向)に移動できるようにしてある。  [0037] On the other hand, the lower side of the inner peripheral surface of the lower master die 27 is a large-diameter inner peripheral surface 27b, and an annular shape formed at a step portion between the large-diameter inner peripheral surface 27b and the small-diameter inner peripheral surface 27a. The large-diameter portion 23 of the lower mold 20 is held loosely between the lower mother mold 27 and the lower mold support base 26 so as to be sandwiched between the step surface 27c and the upper surface of the lower mold support base 26. It has become so. Thus, a predetermined clearance C1 is provided between the outer peripheral surface of the large-diameter portion 23 of the lower mold 20 and the large-diameter inner peripheral surface 27b of the lower master mold 27 while restricting the axial movement range of the lower mold 20. By ensuring this, the lower mold 20 can move in the horizontal direction (direction perpendicular to the axial direction) by the clearance C1.
[0038] そして、図示する例にあっては、下母型 27と下型支持台 26との間に、下型 20の大 径部 23を遊嵌状に保持するにあたり、下型 20と下型支持台 26 (下型保持部材 25) との間には、複数の転動部材 60が、下型 20の水平移動に伴って転動可能となるよう に敷き詰められている。これによつて、下型 20の水平方向への移動が円滑になされ るよつにしてある。  [0038] In the example shown in the drawing, when the large-diameter portion 23 of the lower mold 20 is held loosely between the lower mother mold 27 and the lower mold support base 26, A plurality of rolling members 60 are spread between the die support base 26 (lower die holding member 25) so as to be able to roll as the lower die 20 moves horizontally. As a result, the lower mold 20 can move smoothly in the horizontal direction.
[0039] ここで、転動部材 60は、直径が均一な球状部材とすることが好ましレ、。転動部材 60 としては、窒化珪素(Si N ) ,炭化珪素(SiC) ,ジルコユア(ZrO ) ,アルミナ (Al O  [0039] Here, the rolling member 60 is preferably a spherical member having a uniform diameter. As the rolling member 60, silicon nitride (Si N), silicon carbide (SiC), zircoure (ZrO), alumina (Al 2 O 3)
3 4 2 2 3 3 4 2 2 3
)等のセラミックス,又は炭化タングステン (WC)等を含むサーメット,その他の金属な どの高硬度及び高耐_熱†生の素材によって开乡成された、直径 0. lmm〜5mmの真球 状の部材を用いることができる。また、これらの素材からなる転動部材 60は、一種だ けで又は複数種を混合して用いてもょレ、。 ), Cermets containing tungsten carbide (WC), etc., and other metals with high hardness and high heat resistance. A shaped member can be used. The rolling member 60 made of these materials can be used alone or in combination.
なお、転動部材 60の形状は、真球状のほかに、円柱状、扁平球状などとしてもよい 1S 転動部材 60の加工の容易性、高さ(直径)精度の出し易さ、転がり易さの点から 、真球状のものが最も好ましい。  The shape of the rolling member 60 may be a spherical shape, a cylindrical shape, a flat spherical shape, or the like. 1S Ease of processing of the rolling member 60, easy to obtain height (diameter) accuracy, easy to roll. From this point, a spherical shape is most preferable.
[0040] 本実施形態に係る成形型を用いて、光学ガラスなどの成形素材 Gをプレス成形す る際には、成形素材 Gが 106〜; 1012dPa ' sの粘度となる温度に相当する温度(400〜 900°C程度)まで加熱された状態で周期的にプレス成形が繰り返され、かつ、数 kg /cm2〜数百 kg/cm2の荷重が成形型及び成形素材 Gに加わる。 [0040] When the molding material G such as optical glass is press-molded using the molding die according to this embodiment, the molding material G corresponds to a temperature at which the viscosity becomes 10 6 to 10 12 dPa's. Press molding is repeated periodically while being heated to a temperature (approximately 400 to 900 ° C), and a load of several kg / cm 2 to several hundred kg / cm 2 is applied to the mold and molding material G. .
このとき、下型 20と下型支持台 26 (下型保持部材 25)との間に配設された複数の 転動部材 60にも、高温下で上記荷重が加わる。このため、転動部材 60には、プレス 成形温度(400〜900°C程度)において、所定の強度が要求される。一般的に圧縮 強さは曲げ強さと相関があるため、プレス成形温度における曲げ強さが 300MPa以 上あるセラミックスを用いて転動部材 60を形成すれば、高温下でプレス荷重を受けて も変形や摩耗 ·劣化が生じることはない。逆に、プレス成形温度における曲げ強さが 3 OOMPa未満のセラミックスや金属を転動部材 60として用いた場合、転動部材 60が 変形し、円滑な転動作用を奏することができなくなる虞がある。  At this time, the load is also applied to the plurality of rolling members 60 disposed between the lower die 20 and the lower die support base 26 (lower die holding member 25) at a high temperature. For this reason, the rolling member 60 is required to have a predetermined strength at the press molding temperature (about 400 to 900 ° C.). In general, compressive strength correlates with bending strength, so if the rolling member 60 is formed using ceramics with a bending strength of 300 MPa or more at the press molding temperature, it will deform even under a press load at high temperatures. There will be no wear or deterioration. Conversely, when ceramics or metals with a bending strength at the press molding temperature of less than 3 OOMPa are used as the rolling member 60, the rolling member 60 may be deformed and cannot be used for smooth rolling operation. .
上述の窒化珪素(Si N ) ,炭化珪素(SiC) ,ジルコユア(ZrO ) , アルミナ (Al O )  Silicon nitride (Si N), silicon carbide (SiC), zircoure (ZrO), alumina (Al 2 O 3)
3 4 2 2 3 などのセラミックスは、常温での曲げ強度が 400MPa以上あり、温度依存性はあるも のの、プレス成形温度において 300MPaの曲げ強度を有する。また、ビッカース硬さ も 1000HV以上あるため、光学ガラス等の成形素材 Gをプレス成形する際の荷重を 受けても変形や摩耗 '劣化が生じることはない。  Ceramics such as 3 4 2 2 3 have a bending strength of 400 MPa or more at room temperature and are temperature dependent, but have a bending strength of 300 MPa at the press molding temperature. In addition, since the Vickers hardness is 1000 HV or more, deformation or wear does not deteriorate even when a load is applied when the molding material G such as optical glass is press-molded.
[0041] 下型 20と下型支持台 26との間に敷き詰める転動部材 60の数 nは、転動部材 60の 中心を通る断面の面積 aと、下型支持台 26上で転動部材が転動可能とされた範囲の 面積(図示する例では、後述する凹陥部 26aの底面の面積) Aに応じて定められ、こ れらの間に、 0. 3≤a X n/A≤0. 8、好ましくは、 0. 5≤a X n/A≤0. 7の関係カ 成り立つようにするのが好ましい。  [0041] The number n of rolling members 60 spread between the lower die 20 and the lower die support 26 is determined by the area a of the cross section passing through the center of the rolling member 60 and the rolling members on the lower die support 26. Is determined according to the area (in the example shown, the area of the bottom surface of the recessed portion 26a, which will be described later) A, between which 0.3 ≤ a X n / A ≤ It is preferable that the relationship of 0.8, preferably 0.5≤a X n / A≤0.7 is satisfied.
[0042] 転動部材 60の数 nが上記関係に満たな!/、と、転動部材 60の配置が偏ってしまった 場合などに、下型 20を下型保持部材 25水平に保持できなくなってしまうとともに、下 型保持部材 25から下型 20への熱伝導が不十分になってしまい、効率よく下型 20を 加熱できなくなる傾向にある。一方、転動部材 60の数 nが上記関係を越えて多すぎ てしまうと、各転動部材 60が自由に転動できなくなってしまい、下型 20の円滑な水平 移動を阻害してしまうことがある。 [0042] The number n of rolling members 60 does not satisfy the above relationship! /, And the arrangement of the rolling members 60 is biased In some cases, the lower mold 20 cannot be held horizontally, and the heat transfer from the lower mold holding member 25 to the lower mold 20 becomes insufficient, and the lower mold 20 is efficiently heated. It tends to be impossible. On the other hand, if the number n of rolling members 60 exceeds the above relationship, each rolling member 60 will not be able to roll freely, and hinder smooth horizontal movement of the lower mold 20. There is.
[0043] また、成形型の組み立て性を考慮すると、図示するように、下型支持台 26の上面に 凹陥部 26aを形成しておき、この凹陥部 26aに転動部材 60が収容されるようにする のが好ましい。このようにすることで、成形型を組み立てる際などに、転動部材 60が 脱落してしまうのを防止することができる。  [0043] Considering the assemblability of the mold, as shown in the figure, a recessed portion 26a is formed on the upper surface of the lower mold support 26, and the rolling member 60 is accommodated in the recessed portion 26a. Is preferable. By doing so, it is possible to prevent the rolling member 60 from falling off when assembling the mold.
なお、転動部材 60を収容して、その脱落を防止するためには、凹陥部 26aは、転 動部材 60を介して対向する下型 20と、下型保持部材 25 (下型支持台 26)との少なく とも一方の面に形成されていればよい。したがって、下型支持台 26の上面に凹陥部 26aを形成する代わりに、下型 20の下面に同様の凹陥部を形成し、この凹陥部に転 動部材が収容されるようにしてもよい。  In order to accommodate the rolling member 60 and prevent its falling off, the recessed portion 26a includes a lower mold 20 and a lower mold holding member 25 (the lower mold support base 26) facing each other via the rolling member 60. ) And at least one surface. Therefore, instead of forming the recess 26a on the upper surface of the lower mold support 26, a similar recess may be formed on the lower surface of the lower mold 20, and the rolling member may be accommodated in the recess.
[0044] 以上のように、本実施形態にあっては、下型 20が水平方向に移動可能となるように 下型保持部材 25に保持するとともに、下型 20と下型保持部材 25との間に複数の転 動部材 60を敷き詰めて、下型 20の水平方向への移動が円滑になされるようにするこ とによって、上下型 10, 20の同軸性が高度に確保されるようにしている。  As described above, in the present embodiment, the lower mold 20 is held by the lower mold holding member 25 so as to be movable in the horizontal direction, and the lower mold 20 and the lower mold holding member 25 are A plurality of rolling members 60 are laid in between so that the lower mold 20 can move smoothly in the horizontal direction so that the coaxiality of the upper and lower molds 10 and 20 is highly secured. Yes.
[0045] すなわち、胴型 30は、その水平方向及び軸方向の移動が抑止された状態で上型 保持部材 15に保持、固定されているため、図 2に示すように、プレス成形動作が開始 され、下型 20が上昇して胴型 30の下方開口部から胴型 30内に挿入される際に、下 型 20の軸心力 上型 10及び胴型 30の軸心と一致していなくても、下型 20は、胴型 3 0内に挿入されながら図 2中矢印で示す水平方向に円滑に移動し、これによつて、下 型 20や胴型 30に無理な力が及ぼされることなぐ下型 20が、上型 10及び胴型 30と 同軸となる位置に誘導されて、上下型 10, 20の同軸性を高度に確保することができ  That is, the body mold 30 is held and fixed to the upper mold holding member 15 in a state in which the movement in the horizontal direction and the axial direction is suppressed, so that the press molding operation starts as shown in FIG. When the lower mold 20 is raised and inserted into the trunk mold 30 from the lower opening of the trunk mold 30, the axial center force of the lower mold 20 does not match the axial centers of the upper mold 10 and the trunk mold 30. However, the lower mold 20 moves smoothly in the horizontal direction indicated by the arrow in FIG. 2 while being inserted into the trunk mold 30, and this exerts an unreasonable force on the lower mold 20 and the trunk mold 30. The lower die 20 is guided to a position that is coaxial with the upper die 10 and the barrel die 30, and the upper and lower die 10, 20 can be highly secured.
[0046] このようにして、上下型 10, 20の同軸性を高度に確保するにあたり、胴型 30の下 部側の内周面には、下方に向かってテーパー状に拡径するガイド部 32を形成して おくのが好ましい。プレス成形動作がなされる際に、このガイド部 32に、下型 20の小 径部 22の周縁部が当接するようにすれば、胴型 30内への下型 20の揷入が妨げら れることなぐガイド部 32にガイドされながら下型 20が胴型 30内にスムーズに揷入さ れるとともに、下型 20の水平移動が促される。軸方向に対するガイド部 32の傾斜角 度 Θは、 45° 以下であるのが好ましぐより好ましくは 30° 以下、さらに好ましくは 10 ° 以下である。 [0046] In this way, when the coaxiality of the upper and lower molds 10 and 20 is secured to a high degree, the guide part 32 whose diameter is tapered downward is formed on the inner peripheral surface of the lower part of the trunk mold 30. Forming It is preferable to leave. When the press molding operation is performed, if the peripheral portion of the small-diameter portion 22 of the lower die 20 comes into contact with the guide portion 32, insertion of the lower die 20 into the body die 30 is prevented. The lower mold 20 is smoothly inserted into the body mold 30 while being guided by the guide portion 32, and the lower mold 20 is moved horizontally. The inclination angle Θ of the guide portion 32 with respect to the axial direction is preferably 45 ° or less, more preferably 30 ° or less, and even more preferably 10 ° or less.
[0047] また、下型 20は、その大径部 23の外周面と、下母型 27の大径内周面 27bとのタリ ァランス C1の範囲で水平方向に移動可能となっており、このクリアランス C1の最大値 力 下型 20の水平方向における移動量の上限となる。このため、胴部 30に形成する ガイド部は、その拡径幅 W力 上記クリアランス C1よりも大きくなつているのが好まし い。  [0047] Further, the lower mold 20 is movable in the horizontal direction within the range of the alignment C1 between the outer peripheral surface of the large-diameter portion 23 and the large-diameter inner peripheral surface 27b of the lower master mold 27. Maximum value of clearance C1 Force Upper limit of horizontal movement of lower mold 20 For this reason, it is preferable that the guide portion formed on the body portion 30 has a larger diameter W force than the clearance C1.
これにより、下型 20の水平方向における軸ずれが最大になっていても、プレス成形 動作がなされる際に、下型 20の小径部 22の周縁部をガイド部に当接させることがで き、胴型 30内への下型 20の揷入や、下型 20の水平移動が妨げられないようにする こと力 Sでさる。  As a result, even when the horizontal axis of the lower mold 20 is maximized, the peripheral portion of the small-diameter portion 22 of the lower mold 20 can be brought into contact with the guide portion during the press molding operation. The force S prevents the insertion of the lower mold 20 into the body mold 30 and the horizontal movement of the lower mold 20.
[0048] ここで、下型 20の水平方向の移動量は、上記したように、下型 20の大径部 23の外 周面と、下母型 27の大径内周面 27bとのクリアランス C1によって規定される力 この クリアランス C1が小さすぎると、下型 20と下母型 27の熱膨張差によってクリアランス が無くなってしまい、下型 20の移動が阻害されてしまう場合がある。さらに、複数個取 りのプレス成形をする場合に、クリアランス C1が小さすぎると、各型の位置精度の許 容範囲が小さくなる上、力、じりの発生や型閉め不能になるおそれもある。  Here, the horizontal movement amount of the lower mold 20 is the clearance between the outer peripheral surface of the large-diameter portion 23 of the lower mold 20 and the large-diameter inner peripheral surface 27b of the lower master mold 27 as described above. Force defined by C1 If this clearance C1 is too small, the clearance may be lost due to the difference in thermal expansion between the lower mold 20 and the lower mother mold 27, and the movement of the lower mold 20 may be hindered. In addition, when multiple press forming is performed, if the clearance C1 is too small, the allowable range of position accuracy of each die will be reduced, and there is a risk that force, curling, and inability to close the die will occur. .
逆に、クリアランス C1が大きすぎると、下型 20の許容される移動範囲が過大になる ことから、型閉めの際に胴型 30が下型 20の成形面 21に接触して、成形面 21を傷つ けてしまったり、型閉め不能になってしまったりするおそれがある。  On the other hand, if the clearance C1 is too large, the allowable movement range of the lower mold 20 becomes excessive, so that when the mold is closed, the body mold 30 comes into contact with the molding surface 21 of the lower mold 20 to form the molding surface 21. May be damaged or it may become impossible to close the mold.
これらのことを考慮すると、クリアランス C1は、 10〜200〃111であるのが好ましい。  Considering these facts, the clearance C1 is preferably 10 to 200 mm 111.
[0049] 以上のような本実施形態に係る成形型において、上型 10、下型 20、胴型 30などに 用いる素材に制限はなぐ例えば、炭化ケィ素、ケィ素、窒化ケィ素、炭化タンダステ ン、酸化アルミニウム、酸化ジルコニウム、炭化チタンなどのサーメット、又はこれらの 表面にダイヤモンド、耐熱金属、貴金属合金、炭化物、窒化物、硼化物、酸化物など を被覆した硬質素材を用いることができる。また、上下型 10, 20の成形面 11 , 21や 、胴型 30の内周面など、成形素材 Gと接触する部位には、成形面との融着防止のた めのコーティングを施すことができる。このようなコーティングとしては、貴金属膜、炭 素膜、水素化炭素膜などとすることができ、公知の離型膜と同様の膜とすることが可 能である。例えば、炭素や、炭化水素を主成分として含有する膜を、蒸着法、スパッ タ法、イオンプレーティング法、プラズマ CVDなどの公知の手段を用いて、所定の膜 厚で成膜すること力できる。 [0049] In the mold according to the present embodiment as described above, there are no restrictions on the materials used for the upper mold 10, the lower mold 20, the trunk mold 30, and the like. Cermets such as titanium oxide, aluminum oxide, zirconium oxide, titanium carbide, etc. A hard material whose surface is coated with diamond, refractory metal, noble metal alloy, carbide, nitride, boride, oxide or the like can be used. In addition, the parts that come into contact with the molding material G, such as the molding surfaces 11 and 21 of the upper and lower molds 10 and 20 and the inner peripheral surface of the barrel mold 30, may be coated to prevent fusion with the molding surface. it can. Such a coating can be a noble metal film, a carbon film, a hydrogenated carbon film, or the like, and can be a film similar to a known release film. For example, a film containing carbon or a hydrocarbon as a main component can be formed with a predetermined film thickness using a known means such as a vapor deposition method, a sputtering method, an ion plating method, or plasma CVD. .
[0050] [モールドプレス成形型/第二実施形態]  [0050] [Mold press mold / second embodiment]
次に、本発明に係る成形型の第二実施形態につ!、て説明する。  Next, a second embodiment of the mold according to the present invention will be described.
なお、図 4は、本実施形態に係る成形型の概略を示す断面図であり、図 4 (a)は、型 開きした成形型に成形素材 Gを供給した状態を示している。また、図 4 (b)は、型閉め された状態を示している。  FIG. 4 is a cross-sectional view schematically showing the molding die according to the present embodiment, and FIG. 4 (a) shows a state where the molding material G is supplied to the molding die opened. Figure 4 (b) shows the closed state.
[0051] 本実施形態が前述した第一実施形態と異なるのは、胴型 30を下型 20に向けて付 勢する弾性部材 35を備えた点にある。このような弾性部材 35としては、コイルパネな どを用いることができ、例えば、図示するように、胴型 30の内周面に受け座としの段 部 36を形成し、この段部 36と、上型 10の小径部 12と大径部 13との段差部分に形成 される断面 10aとの間に、弾性部材 35を装着することによって、下型 20に向かって胴 型 30力 S付勢されるようにすることカでさる。  [0051] The present embodiment is different from the first embodiment described above in that an elastic member 35 that urges the body mold 30 toward the lower mold 20 is provided. As such an elastic member 35, a coil panel or the like can be used. For example, as shown in the figure, a step portion 36 as a receiving seat is formed on the inner peripheral surface of the trunk mold 30, and the step portion 36, By attaching an elastic member 35 between the cross-section 10a formed in the step portion between the small-diameter portion 12 and the large-diameter portion 13 of the upper die 10, the barrel die 30 force S is urged toward the lower die 20. It ’s a good idea to do it.
[0052] プレス成形動作が開始され、下型 20が上昇して胴型 30内に挿入されていくことに より、上下型 10, 20の間で成形素材 Gがプレス成形される力 このプレス成形の過程 で、胴型 30の下型 20側の開口部端面が、下型 20の大径部 23の上面に当接する。 このとき、胴型 30は、弾性部材 35により下型 20に向かって付勢されており、上昇途 中の下型 20に押圧される。  [0052] The press molding operation is started, and the lower mold 20 is lifted and inserted into the body mold 30 so that the molding material G is press-molded between the upper and lower molds 10 and 20. This press molding In the process, the opening end surface of the lower mold 20 on the lower mold 20 side comes into contact with the upper surface of the large diameter section 23 of the lower mold 20. At this time, the trunk mold 30 is urged toward the lower mold 20 by the elastic member 35 and is pressed against the lower mold 20 that is rising.
したがって、胴型 30の下型 20側の開口部端面と、下型 20の大径部 23の上面とを 水平面としておくことにより、下型 20と胴型 30との位置関係、特に、同軸度が正しく 規定され、より偏心精度の優れた成形体を得ることができる。  Therefore, the position of the lower mold 20 and the trunk mold 30 is set in a horizontal plane by placing the end face of the lower mold 20 on the lower mold 20 side and the upper surface of the large-diameter portion 23 of the lower mold 20 in a horizontal plane. Is correctly defined, and it is possible to obtain a molded body with better eccentric accuracy.
[0053] 本実施形態は、以上の点で第一実施形態と異なるが、それ以外は同様の構成を備 えて!/、るので、他の構成につ!/、ての詳細な説明は省略する。 This embodiment differs from the first embodiment in the above points, but has the same configuration except for the above. Because of that! /, Therefore, detailed description of other configurations! / Is omitted.
[0054] [モールドプレス成形型/第三実施形態] [Mold Press Mold / Third Embodiment]
次に、本発明に係る成形型の第三実施形態につ!、て説明する。  Next, a third embodiment of the mold according to the present invention will be described.
なお、図 5は、本実施形態に係る成形型の概略を示す断面図であり、図 5 (a)は、型 開きした成形型に成形素材 Gを供給した状態を示している。また、図 5 (b)は、型閉め された状態を示している。  FIG. 5 is a cross-sectional view schematically showing the mold according to this embodiment, and FIG. 5 (a) shows a state where the molding material G is supplied to the mold that has been opened. Fig. 5 (b) shows a closed state.
[0055] 本実施形態では、前述した第二実施形態に対し、上型支持台 16の下面に、胴型 3 0の上部側端縁を収容可能な円環状の溝 16aが形成されており、上下型 10, 20が 型閉め状態にあるときに、胴型 30の上部側端縁が上型 10の上面より上方に突出し て、上型支持台 16の下面に形成された溝 16a内に収まるようにしてある。 In the present embodiment, in contrast to the second embodiment described above, an annular groove 16a capable of accommodating the upper side edge of the trunk mold 30 is formed on the lower surface of the upper mold support base 16, When the upper and lower molds 10 and 20 are in the closed state, the upper edge of the body mold 30 protrudes upward from the upper surface of the upper mold 10 and fits in the groove 16a formed on the lower surface of the upper mold support base 16. It is like that.
このように構成することで、上型 10や下型 20と、胴型 30との摺動距離を長く確保す ることができ、胴型 30に対する上型 10や下型 20の傾きを最小限に抑止できるため、 より偏心精度の高い光学素子をプレス成形することができる。  With this configuration, a long sliding distance between the upper mold 10 and the lower mold 20 and the trunk mold 30 can be secured, and the inclination of the upper mold 10 and the lower mold 20 with respect to the trunk mold 30 is minimized. Therefore, it is possible to press-mold an optical element with higher eccentricity accuracy.
[0056] 本実施形態は、以上の点で第二実施形態と異なるが、それ以外は同様の構成を備 えて!/、るので、他の構成につ!/、ての詳細な説明は省略する。 [0056] The present embodiment is different from the second embodiment in the above points, but otherwise has the same configuration! /, So the detailed description of other configurations! / Is omitted. To do.
[0057] [モールドプレス成形型/第四実施形態] [0057] [Mold Press Mold / Fourth Embodiment]
次に、本発明に係る成形型の第四実施形態について説明する。  Next, a fourth embodiment of the mold according to the present invention will be described.
なお、図 6は、本実施形態に係る成形型の概略を示す断面図であり、図 6 (a)は、型 開きした成形型に成形素材 Gを供給した状態を示している。また、図 6 (b)は、型閉め された状態を示している。  FIG. 6 is a cross-sectional view schematically showing the molding die according to the present embodiment, and FIG. 6 (a) shows a state where the molding material G is supplied to the molding die opened. Fig. 6 (b) shows the closed state.
[0058] 本実施形態において、下型 20は、成形面 21に凸面を有し、この成形面 21の周囲 には、成形素材 Gを支承する支承部材 70が配置されている。支承部材 70は、その 上端部が下型 20の成形面 21よりも上方に突出した状態で、成形面 21上に供給され た成形素材 Gを支承するようになって!/、る。 In the present embodiment, the lower mold 20 has a convex surface on the molding surface 21, and a support member 70 that supports the molding material G is disposed around the molding surface 21. The support member 70 supports the molding material G supplied onto the molding surface 21 with its upper end projecting upward from the molding surface 21 of the lower mold 20.
このとき、下型 20の成形面 21の周囲に段部 21aが形成され、この段部 21 aと支承 部材 70との間に弾性部材 70aが装着され、支承部材 70が上方に付勢されるようにな つている。そして、プレス成形時における支承部材 40の干渉を避けるために、退避機 構 71により、上下型 10, 20の近接動作にしたがって、支承部材 40が押し下げられ て(図 6 (b)参照)、下型 20の成形面 21の周囲から退避するようにしてある。 At this time, a step portion 21a is formed around the molding surface 21 of the lower mold 20, and an elastic member 70a is mounted between the step portion 21a and the support member 70, and the support member 70 is biased upward. It has become like this. In order to avoid the interference of the support member 40 during press molding, the support member 40 is pushed down by the retracting mechanism 71 according to the proximity movement of the upper and lower molds 10, 20. (See FIG. 6 (b)), it is configured to retract from the periphery of the molding surface 21 of the lower mold 20.
[0059] このようにすることで、凹面を有するメニスカスレンズや、両凹レンズを成形する場合 であっても、凸面を有する下型 20の成形面 21上に確実に、かつ、安定して成形素材 Gの供給を行うことができる。しかも、上下型 10, 20の近接動作に伴って支承部材 7 0を下型 20の成形面 21の周囲から退避させることにより、支承部材 70が成形体の形 状に実質的に干渉しないようにすることができ、より偏心精度に優れた高精度の光学 素子を製造できる。 [0059] By doing so, even when a meniscus lens having a concave surface or a biconcave lens is molded, a molding material can be reliably and stably formed on the molding surface 21 of the lower mold 20 having a convex surface. G can be supplied. In addition, the support member 70 is retracted from the periphery of the molding surface 21 of the lower mold 20 as the upper and lower molds 10, 20 move close together, so that the support member 70 does not substantially interfere with the shape of the molded body. Therefore, it is possible to manufacture a high-precision optical element having a better eccentric accuracy.
[0060] 本実施形態は、以上の点で他の実施形態と異なるが、それ以外は同様の構成を備 えて!/、るので、他の構成につ!/、ての詳細な説明は省略する。  [0060] Although the present embodiment is different from the other embodiments in the above points, the other configurations have the same configuration! /, So the detailed description of other configurations! / Is omitted. To do.
[0061] [モールドプレス成形型/第五実施形態]  [0061] [Mold Press Mold / Fifth Embodiment]
次に、本発明に係る成形型の第五実施形態につ!、て説明する。  Next, a fifth embodiment of the mold according to the present invention will be described.
なお、図 7は、本実施形態に係る成形型の概略を示す断面図であり、図 7 (a)は、型 開きした成形型に成形素材 Gを供給した状態を示している。また、図 7 (b)は、型閉め された状態を示している。  FIG. 7 is a cross-sectional view schematically showing the mold according to the present embodiment, and FIG. 7 (a) shows a state where the molding material G is supplied to the mold that has been opened. Fig. 7 (b) shows the closed state.
[0062] 本実施形態において、下型保持部材 25 (下型支持台 26)と、転動部材 60との間に は、下型保持部材 25との当接面力 曲面となっている介在部材 80を介在させている 。この介在部材 80は、下型 20と同様の素材からなる。また、図示する例では、介在 部材 80の上面に凹陥部 80aが形成されており、この凹陥部 80aに転動部材 60が収 容されて成形型が組み立てられるようになつている。介在部材 80の曲面は、球面で あること力 S好ましく、その曲率半径は成形する光学素子の半径によって異なる力 例 えば、 100mm〜500mmとすること力 Sでさる。  [0062] In the present embodiment, an interposed member having a curved surface of contact with the lower mold holding member 25 between the lower mold holding member 25 (lower mold support base 26) and the rolling member 60. 80 is interposed. The interposition member 80 is made of the same material as the lower mold 20. In the illustrated example, a recess 80a is formed on the upper surface of the interposed member 80, and the rolling member 60 is accommodated in the recess 80a so that the mold can be assembled. The curved surface of the intervening member 80 is preferably a spherical surface. The force S is preferable, and the radius of curvature varies depending on the radius of the optical element to be molded.
[0063] このようにすることで、胴型 30に対して下型 20が傾いて配置されていたとしても、介 在部材 80が、その曲面に沿って揺動しながら下型 20傾きを修正する。したがって、 下型 20は、介在部材 80による傾きの修正と、水平移動とにより、同軸性がより高度に 確保されながら胴型 30内に挿入され、偏心精度(ティルト及びシフト)の良好な成形 体をプレス成形することができる。  [0063] By doing this, even if the lower mold 20 is inclined with respect to the trunk mold 30, the interposed member 80 corrects the inclination of the lower mold 20 while swinging along the curved surface. To do. Therefore, the lower mold 20 is inserted into the body mold 30 while maintaining a high degree of coaxiality by correcting the inclination by the interposition member 80 and horizontally moving, and is a molded body with good eccentricity (tilt and shift). Can be press-molded.
[0064] 本実施形態は、以上の点で他の実施形態と異なるが、それ以外は同様の構成を備 えて!/、るので、他の構成につ!/、ての詳細な説明は省略する。 [0065] [プレス成形装置] [0064] Although this embodiment is different from the other embodiments in the above points, the other configurations have the same configuration! /, So the detailed description of other configurations! / Is omitted. To do. [0065] [Press molding equipment]
次に、以上のような成形型によってプレス成形をするのに好適なプレス成形装置の 一例について説明する。  Next, an example of a press molding apparatus suitable for press molding with the above mold will be described.
[0066] 図 8は、プレス成形装置の概略平断面図である。この図に示すように、プレス成形 装置 100は、加熱室 120および成形室 130と、これらの間を連通している通路 140と を備えている。 FIG. 8 is a schematic plan sectional view of the press molding apparatus. As shown in this figure, the press molding apparatus 100 includes a heating chamber 120 and a molding chamber 130, and a passage 140 communicating between them.
[0067] 加熱室 120、成形室 130及び通路 140の内部空間は、外部から遮断された密閉空 間であり、ステンレススチールその他の部材により、この密閉空間の外壁を形成し、シ 一リング材によって、その気密性が保証されている。加熱室 120、成形室 130及び通 路 140の内部空間は、光学ガラスの成形時には、窒素ガスなどの非酸化性ガス雰囲 気とされる。  [0067] The internal space of the heating chamber 120, the forming chamber 130, and the passage 140 is a sealed space that is blocked from the outside. The outer wall of the sealed space is formed by stainless steel or other members, and the sealing material is used. Its airtightness is guaranteed. The internal spaces of the heating chamber 120, the molding chamber 130, and the passage 140 are in a non-oxidizing gas atmosphere such as nitrogen gas when optical glass is molded.
[0068] 加熱室 120は、供給される成形素材 Gをプレスに先立って予備加熱するための領 域である。加熱室 120には、ガラス加熱装置 122と、成形素材供給用のハンドラ(以 下、供給ノ、ンドラ 123という)と、外部から成形素材 Gを加熱室 120内へ供給するため の搬入部 121が設置されている。搬入部 121は、気密性を維持しつつ成形素材 Gを 搬入するために、図示しない搬入室を備えており、外部から供給された成形素材 Gを ここに搬入し、この内部を非酸化性ガスで充填した後に、加熱室 120側の扉を開けて 順次成形素材 Gを内部へ搬入する。  [0068] The heating chamber 120 is an area for preheating the supplied forming material G prior to pressing. The heating chamber 120 includes a glass heating device 122, a molding material supply handler (hereinafter referred to as a supply node and a drum 123), and a carry-in section 121 for supplying the molding material G into the heating chamber 120 from the outside. is set up. The carry-in unit 121 is provided with a carry-in chamber (not shown) in order to carry the molding material G while maintaining hermeticity. After filling with, open the door on the heating chamber 120 side and sequentially carry the molding material G into the interior.
[0069] 供給ノ、ンドラ 123は、搬入部 121から搬入される成形素材 Gを、ガラス加熱装置 12 2による加熱領域に搬送し、加熱後の成形素材 Gを成形室 130へ搬送する。供給ノ、 ンドラ 123は、そのアーム 124の先端に浮上皿 125を備え、その上で成形素材 Gを気 体によって浮上させながら保持する。本例では、加熱室 120内に固定される駆動部 1 23aによって、浮上皿 125を備えるアーム 124が水平に支承され、アーム 124は、ほ ぼ 90° の回転角をもって水平方向に回動される。また、アーム 124は、駆動部 123a を中心とした半径方向に出退可能に構成されており、これによつて、保持した成形素 材 Gを成形室 130に搬送することができる。  [0069] The supply gate 123 is configured to convey the molding material G carried in from the carry-in section 121 to a heating region by the glass heating device 122 and convey the heated molding material G to the molding chamber 130. The supply node 123 has a levitating dish 125 at the tip of its arm 124, and holds the molding material G while floating by the gas. In this example, the arm 124 including the levitating dish 125 is horizontally supported by the drive unit 123a fixed in the heating chamber 120, and the arm 124 is rotated in the horizontal direction with a rotation angle of about 90 °. . Further, the arm 124 is configured to be capable of withdrawing and withdrawing in the radial direction with the drive unit 123a as the center, whereby the held molding material G can be conveyed to the molding chamber 130.
[0070] ガラス加熱装置 122は、供給された成形素材 Gを所定の粘度に相応する温度にま で加熱するためのものである。成形素材 Gを安定して一定の温度まで昇温するため に、抵抗加熱や高周波加熱による加熱装置を用いることが好ましい。ガラス加熱装置 122は、図示するように、アーム 124上に保持した成形素材 Gの移動軌跡下に設置 され、アーム 124による成形素材 Gの搬送中に、この成形素材 Gを加熱することがで きる。アーム 124をガラス加熱装置 122上で所定時間停止し、成形素材 Gを加熱する ようにしても良い。これらの事項は、対象となる成形素材 Gの加熱に必要な時間に応 じて決定される。 [0070] The glass heating device 122 is for heating the supplied molding material G to a temperature corresponding to a predetermined viscosity. To raise the temperature of molding material G to a certain level stably In addition, it is preferable to use a heating device using resistance heating or high-frequency heating. As shown in the figure, the glass heating device 122 is installed under the movement path of the molding material G held on the arm 124, and can heat the molding material G while the molding material G is being conveyed by the arm 124. . The arm 124 may be stopped on the glass heating device 122 for a predetermined time to heat the molding material G. These matters are determined according to the time required for heating the target molding material G.
[0071] 一方、成形室 130は、加熱室 120において予備加熱された成形素材 Gをプレスし て、所望の形状の成形体 G1を成形するための領域であり、ここには、プレス装置 13 3と、成形体 G1の搬出用のハンドラ(以下、搬出ハンドラ 132という)と、プレス成形さ れた成形体 G1を外部へ搬出するための搬出部 131が設置されている。搬出部 131 は、成形室 130の気密性を維持しつつ成形体 G1を外部へ搬出するために、非酸化 性ガスが充填された図示しない搬出室を備えている。搬出ハンドラ 132から渡された 成形体 G1は、この搬出室に一旦搬入されてから外部に搬出される。  [0071] On the other hand, the molding chamber 130 is an area for pressing the molding material G preheated in the heating chamber 120 to form a molded body G1 having a desired shape. In addition, a handler for carrying out the molded body G1 (hereinafter referred to as a carry-out handler 132) and a carry-out section 131 for carrying out the press-formed molded body G1 to the outside are installed. The carry-out unit 131 includes a carry-out chamber (not shown) filled with a non-oxidizing gas in order to carry the molded body G1 to the outside while maintaining the airtightness of the molding chamber 130. The compact G1 delivered from the carry-out handler 132 is once carried into the carry-out chamber and then carried out to the outside.
[0072] プレス装置 133は、供給ノヽンドラ 123によって加熱室 120から搬送される成形素材 Gを受け入れ、これをプレスして所望の形状の成形体 G1を成形する。プレス装置 13 3は、前述したような成形型 Mを備えており、その上下型 10, 20の間に供給された成 形素材 Gをそれらの成形面 11 , 21によってプレスする。成形型 Mの周囲には、これ を加熱するための型加熱装置 134が設置されている。型加熱装置 134の好ましい実 施態様は、高周波誘導を用いた加熱方式のものである。成形素材 Gのプレスに先立 つて、成形型 Mをこの型加熱装置 134によって加熱し、所定の温度に維持する。プレ ス時における成形型 Mの温度は、予熱された成形素材 Gの温度とほぼ同じであって も、又はそれよりも低いものであっても良い。  [0072] The pressing device 133 receives the molding material G conveyed from the heating chamber 120 by the supply nozzle 123, and presses the molding material G to form a molded body G1 having a desired shape. The press device 133 includes the forming die M as described above, and presses the forming material G supplied between the upper and lower dies 10 and 20 by the forming surfaces 11 and 21. A mold heating device 134 for heating the mold M is installed around the mold M. A preferred embodiment of the mold heating device 134 is a heating method using high frequency induction. Prior to pressing the forming material G, the forming die M is heated by the die heating device 134 and maintained at a predetermined temperature. The temperature of the mold M at the time of pressing may be substantially the same as or lower than the temperature of the preheated molding material G.
[0073] 搬出ハンドラ 132は、プレス装置 133によってプレスされた成形体 G1を、搬出部 13 1へ受け渡すものである。搬出ハンドラ 132は、駆動部 132aに対し回動自在に支承 されたアーム 132bの先端に吸着パッド 132cを備えている。吸着パッド 132cは、成 形型 Mの下型上にある光学ガラスを真空吸着し、搬出ハンドラ 132による搬送を可能 にする。アーム 132bの回動により吸着された成形体 G1は、搬出部 131下に搬送さ れ、ここに設置された図示しない昇降手段上に置かれる。アーム 132bの待避後に、 この昇降手段が上昇され、成形体 G1は搬出部 131へ受け渡される。 The carry-out handler 132 delivers the molded body G1 pressed by the press device 133 to the carry-out unit 131. The carry-out handler 132 includes a suction pad 132c at the tip of an arm 132b that is rotatably supported by the drive unit 132a. The suction pad 132c vacuum-sucks the optical glass on the lower mold of the mold M and enables the carry-out handler 132 to carry it. The compact G1 adsorbed by the rotation of the arm 132b is transported under the carry-out part 131 and placed on a lifting means (not shown) installed here. After retreating arm 132b, The lifting means is raised, and the molded body G1 is delivered to the carry-out unit 131.
[0074] 成形室 130は、その前面側に開閉扉 135を備えており、開閉扉 135は、プレス成形 装置 100の保守、点検時に、作業者が成形室内部にアクセスするためのものである。 開閉扉 135の周囲には、シール部材 35aが備えられており、プレス時に開閉扉 135 を閉じた状態で、成形室 130内の気密性が保証される。また、開閉扉 135は、ガラス 製 (例えば石英ガラス)の窓 135bを備えており、ここよりプレス成形の様子が外部から 視認、できるようになつている。  The molding chamber 130 is provided with an opening / closing door 135 on the front side thereof, and the opening / closing door 135 is for an operator to access the inside of the molding chamber when the press molding apparatus 100 is maintained and inspected. A seal member 35a is provided around the open / close door 135, and airtightness in the molding chamber 130 is ensured with the open / close door 135 closed during pressing. The open / close door 135 includes a glass-made window 135b (for example, quartz glass), from which the press molding can be visually recognized from the outside.
[0075] 加熱室 120と成形室 130を連通している通路 140は、供給ハンドラ 123による成形 素材 Gの加熱室 120から成形室 130への受け渡しを可能とするとともに、両室相互間 における気体の交換を可能にする。これによつて、プレス成型時においては、加熱室 120と成形室 130の気圧、ガス濃度及び温度は、ほぼ一定にされる。通路 140には、 気密バルブ 141が配置されており、この気密バルブ 141を閉じると、加熱室 120と成 形室 130の間が気密状態で遮断される。気密バルブ 141は、プレス成形時において は全開状態とされる力 作業者による成形室 130内の保守又は点検時には閉鎖され 、加熱室 120側の気密状態が保持される。  [0075] The passage 140 that connects the heating chamber 120 and the molding chamber 130 enables the supply handler 123 to transfer the molding material G from the heating chamber 120 to the molding chamber 130, and allows gas between the two chambers to pass therethrough. Allows exchange. Thereby, at the time of press molding, the pressure, gas concentration, and temperature of the heating chamber 120 and the molding chamber 130 are made substantially constant. An airtight valve 141 is disposed in the passage 140. When the airtight valve 141 is closed, the heating chamber 120 and the molding chamber 130 are shut off in an airtight state. The airtight valve 141 is fully opened at the time of press molding. The airtight valve 141 is closed at the time of maintenance or inspection in the molding chamber 130 by an operator, and the airtight state on the heating chamber 120 side is maintained.
[0076] [成形体の製造方法]  [0076] [Method for producing molded article]
次に、本発明に係る成形体の製造方法を適用した実施形態について説明する。本 発明に係る成形体の製造方法は前述したような成形型を用いてプレス成形するもの であり、上記プレス成形装置により好適に実施される。  Next, an embodiment to which the method for producing a molded body according to the present invention is applied will be described. The method for producing a molded body according to the present invention is to press-mold using the above-described molding die, and is preferably carried out by the press molding apparatus.
上記プレス成形装置においては、その搬入部 121より成形素材 Gが装置内に順次 供給され、成形体 G1が連続的にプレス成形されるが、ここでは、一つの成形 G1の成 形に着目して、その手順を説明する。  In the above press molding apparatus, the molding material G is sequentially supplied from the carry-in part 121 into the apparatus, and the molded body G1 is continuously press-molded. Here, focusing on the molding of one molding G1. The procedure will be described.
[0077] (a)搬入工程  [0077] (a) Loading process
成形に先立って、加熱室 120及び成形室 130の内部の気体は、非酸化性ガスにガ ス交換される。例えば、非酸化性ガスが常時室内に供給されて、正圧状態に保たれ る。この非酸化性ガス雰囲気中で、ガラス加熱装置 122および型加熱装置 134が通 電され、所定の温度に維持される。この状態で、通路 140の気密バルブ 141が開か れている。 最初の工程で、加熱室 120に成形素材 Gが供給される。具体的には、成形素材 G は、最初に搬入部 121の搬入室内へ置かれ、ここを排気後ガス置換してから、加熱 室 120に供給される。成形素材 Gの供給時に、供給ノヽンドラ 123のアーム 124は、搬 入部 121の下方に位置しており、搬入室からの成形素材 Gは、供給ノヽンドラ 123の浮 上皿 125上に置かれる。 Prior to molding, the gas inside the heating chamber 120 and the molding chamber 130 is gas-exchanged to a non-oxidizing gas. For example, a non-oxidizing gas is always supplied indoors and kept at a positive pressure. In this non-oxidizing gas atmosphere, the glass heating device 122 and the mold heating device 134 are energized and maintained at a predetermined temperature. In this state, the airtight valve 141 of the passage 140 is opened. In the first step, the molding material G is supplied to the heating chamber 120. Specifically, the molding material G is first placed in the carry-in chamber of the carry-in section 121, and after this is exhausted and replaced with gas, it is supplied to the heating chamber 120. When the molding material G is supplied, the arm 124 of the supply nozzle 123 is positioned below the carry-in section 121, and the molding material G from the carry-in chamber is placed on the floating plate 125 of the supply nozzle 123.
[0078] (b)成形素材の加熱工程 [0078] (b) Molding material heating step
供給ノヽンドラ 123は、成形素材 G、例えば、球形状のガラスプリフォームを受け取る と、直ちにそのアームを回転し、その浮上皿 125をガラス加熱装置 122上へ移動する 。ここで、浮上皿 125には、非酸化性ガスがその下方から噴出され、したがって、成形 素材 Gは、浮上皿 125上で浮上しながら加熱軟化される。成形素材 Gは、その温度 1S 106〜; 109dPa ' sの粘度に対応する温度になるまで加熱される。 Upon receiving the molding material G, for example, a spherical glass preform, the supply nozzle 123 immediately rotates its arm and moves its flotation plate 125 onto the glass heating device 122. Here, the non-oxidizing gas is jetted from below into the floating dish 125, and thus the molding material G is heated and softened while floating on the floating dish 125. The molding material G is heated to a temperature corresponding to a viscosity of 1S 10 6 to 10 9 dPa's.
[0079] (c)成形型加熱工程 [0079] (c) Mold heating process
また、加熱された成形素材 Gが成形型 Mに供給される時点で、成形型 Mの温度が 、ガラスの 108〜1012dPa' sの粘度に対応する温度となっているように、型加熱装置 1 34による誘導加熱によって、成形型 Mが予熱される。 In addition, when the heated molding material G is supplied to the mold M, the mold M has a temperature corresponding to the viscosity of 10 8 to 10 12 dPa's of the glass. The mold M is preheated by induction heating by the heating device 1 34.
ここで、加熱される上下型 10, 20の温度設定 は、上記のように上下型 10, 20とも 同一でもよいし、温度差を設けても良い。例えば、成形体の形状ゃ径によって、上型 10よりも下型 20を高温にしたり、上型 10よりも下型 20を低温にすることができる。温 度差をつける場合には、上下型 10, 20の温度差は 2〜; 15°Cの範囲内とすることが望 ましい。  Here, the temperature setting of the heated upper and lower molds 10 and 20 may be the same as that of the upper and lower molds 10 and 20 as described above, or a temperature difference may be provided. For example, the lower mold 20 can be made hotter than the upper mold 10 or the lower mold 20 can be made colder than the upper mold 10 depending on the shape of the molded body. When adding a temperature difference, the temperature difference between the upper and lower molds 10, 20 should be in the range of 2 to 15 ° C.
[0080] (d)成形素材の供給工程  [0080] (d) Molding material supply process
この後は、供給ノヽンドラ 123を駆動して当該成形素材 Gを成形室 130におけるプレ ス装置 133の下型 20の成形面 21に供給する。すなわち、加熱位置からアーム 124 を更に回転させ、浮上皿 125が通路 140を臨む位置へ来たところで停止し、次いで アーム 124を伸長して浮上皿 125をプレス装置 133における型開き状態にある成形 型 Mまで伸ばし、浮上皿 125上の成形素材 Gを下型 20上へ落下させる。その後、供 給ノ、ンドラ 123は、アームを後退させて初期位置、すなわち搬入部 121の下へ移動 し、次の成形素材 Gを受け取るために待機される。 軟化した成形素材 Gを搬送して下型 20に供給するときに、成形素材 Gが搬送機構 の部材に接触すると、表面に欠陥ができやすい。表面に欠陥ができると、成形される 成形体 G1の面形状に悪影響がでる。よって、軟化した成形素材 Gを気体によって浮 上させた状態で搬送して下型に落下させる本例の供給ノ、ンドラ 123を用いることは、 かかる弊害を防止する上で有利である。 After that, the supply nozzle 123 is driven to supply the molding material G to the molding surface 21 of the lower mold 20 of the press device 133 in the molding chamber 130. That is, the arm 124 is further rotated from the heating position, stopped when the floating plate 125 reaches a position facing the passage 140, and then the arm 124 is extended so that the floating plate 125 is in the mold open state in the press device 133. Extend to M and drop the molding material G on the float 125 onto the lower mold 20. Thereafter, the supply drum 123 is moved to the initial position, that is, below the carry-in portion 121 by retracting the arm, and waits to receive the next molding material G. When the softened molding material G is transported and supplied to the lower mold 20, if the molding material G comes into contact with the members of the transport mechanism, the surface is likely to be defective. Defects on the surface will adversely affect the surface shape of the molded product G1. Therefore, it is advantageous to prevent such an adverse effect by using the supply blade 123 of this example that conveys the softened molding material G in a state of being floated by gas and drops it to the lower mold.
[0081] (e)プレス工程  [0081] (e) Pressing process
下型 20に成形素材 Gが供給され、アームが成形型 Mから後退すると、直ちに、型 閉め(プレス動作)が開始する。図 2及び図 3に示すように、下型 20が上昇し、上型 1 0との間で成形素材 Gをプレスし、所望の成形体 G1を成形する。プレスのための下型 20のストロークは、成形する成形体 G1の肉厚に基づき、予め設定された値であり、 次工程の冷却工程にお!/、て、成形後の成形体 G1が熱収縮する分を見込んで定め た量とすること力 Sできる。また、プレス成形の速度は、一般に、 3〜600mm/分である ことが望ましい。直径が 15mm以上のガラスレンズを成形する場合には、 3〜80mm/ 分とすることが望ましい。また、プレスの手順は、成形する光学ガラスの形状や大きさ に応じて、任意に設定することができる。例えば、初期加圧の後に、荷重を開放した 後に、二次加圧を行うなどの複数回の加圧を行う手順を採用することもできる。  As soon as the molding material G is supplied to the lower mold 20 and the arm is retracted from the molding mold M, the mold closing (pressing operation) starts. As shown in FIGS. 2 and 3, the lower mold 20 is raised, and the molding material G is pressed between the upper mold 10 and a desired molded body G1. The stroke of the lower mold 20 for pressing is a preset value based on the thickness of the molded body G1 to be molded. In the cooling process of the next process, the molded body G1 after molding is heated. The force S can be set to a predetermined amount in anticipation of contraction. In general, the press molding speed is desirably 3 to 600 mm / min. When molding a glass lens with a diameter of 15 mm or more, it is desirable to set it at 3-80 mm / min. The pressing procedure can be arbitrarily set according to the shape and size of the optical glass to be molded. For example, a procedure for performing multiple pressurizations such as performing secondary pressurization after releasing the load after initial pressurization can be employed.
[0082] ここで、本例の成形型 Mにおいては、下型 20が、水平方向に移動可能な状態で下 型保持部材 25に保持されており、下型 20と下型保持部材 25との間には、複数の転 動部材 60が敷き詰められている。したがって、型閉め時において、上型 10と下型 20 の間に軸ずれが発生していても、胴型 30に下型 20が揷入する際に、下型 20が水平 方向に円滑に移動して、上下型 10, 20の軸合わせが行われ、この状態でプレスが 行われる。  [0082] Here, in the mold M of this example, the lower mold 20 is held by the lower mold holding member 25 in a state of being movable in the horizontal direction, and the lower mold 20 and the lower mold holding member 25 are A plurality of rolling members 60 are laid in between. Therefore, when the mold is closed, even if there is a shaft misalignment between the upper mold 10 and the lower mold 20, the lower mold 20 moves smoothly in the horizontal direction when the lower mold 20 is inserted into the body mold 30. Then, the upper and lower molds 10 and 20 are aligned, and pressing is performed in this state.
また、下型 20は転動部材 60の転動によって円滑に水平方向に移動可能であるの で、型閉め時に、胴型 30のガイド部 32が下型 20の外周縁に片当り状態になっても、 胴型 30と下型 20に無理な応力が作用することなぐ下型 20が水平方向に移動し、 速やかに胴型 30に揷入され、上下型が同軸状態となる。  In addition, since the lower mold 20 can be smoothly moved in the horizontal direction by the rolling of the rolling member 60, the guide portion 32 of the body mold 30 is in a single-contact state with the outer periphery of the lower mold 20 when the mold is closed. However, the lower mold 20 without excessive stress acting on the trunk mold 30 and the lower mold 20 moves in the horizontal direction, and is quickly inserted into the trunk mold 30, so that the upper and lower molds are in a coaxial state.
よって、胴型 30および下型 20に擦れやかじりが生ずることなぐ下型 20が上型 10 と同軸状態となるように位置補正が行われ、プレス成形を高精度で行うことができる。 [0083] (f)冷却 ·離型工程 Therefore, position correction is performed so that the lower mold 20 without causing rubbing or galling in the body mold 30 and the lower mold 20 is coaxial with the upper mold 10, and press molding can be performed with high accuracy. [0083] (f) Cooling and mold release process
成形素材への押圧開始と同時、または押圧開始後に、型加熱装置 134は断電され 、さらに、非酸化性ガスが成形型の母型内に流入されるとともに、外からも吹き付けら れ、これによつて成形型 Mが冷却される。そして、成形型 150の温度がガラスの転移 点以下になったところで、下型 20を下降して離型し、成形体 G1を搬出可能とする。 また、成形体の割れや放射傷の発生を防止するために、冷却速度は、冷却開始か ら離型までの平均値として、 50〜200°C/分とすることができる。冷却開始の冷却速 度は、平均の冷却速度より小さい方が、割れ防止の観点から好ましぐ離型温度に近 づくに従って冷却速度を上げることが望ましい。離型温度は、ガラス転移点 Tg付近 以下とすること力 Sできる力 一般には、(Tg— 50°C)〜Tgまでの範囲内の値とするこ とが望ましい。  Simultaneously with the start of pressing on the molding material or after pressing starts, the mold heating device 134 is cut off, and further, a non-oxidizing gas flows into the molding die and is blown from the outside. As a result, the mold M is cooled. Then, when the temperature of the mold 150 becomes equal to or lower than the glass transition point, the lower mold 20 is lowered and released so that the molded body G1 can be carried out. In order to prevent cracking of the molded body and occurrence of radiation flaws, the cooling rate can be set to 50 to 200 ° C / min as an average value from the start of cooling to mold release. The cooling rate at the start of cooling is preferably smaller than the average cooling rate, and it is desirable to increase the cooling rate as the mold release temperature is approached from the viewpoint of preventing cracking. The mold release temperature should be less than or equal to the glass transition point Tg. Force that can be applied S Generally, it is desirable to set the value within the range from (Tg – 50 ° C) to Tg.
[0084] (g)取り出し工程 [0084] (g) Extraction process
次いで、搬出ハンドラ 132によって、下型 20上の成形体 G1を搬出部 131へ搬送す る。すなわち、図 4において想像線で示すように、搬出ハンドラ 132を駆動して、その アーム 132bを回転し、先端の吸着パッド 132cを下型上へ移動する。吸着パッド 132 cによって下型上の成形体 G1を吸着し、アーム 132bを回転させて、これを搬出部 13 1下方の昇降手段へ搬送し、吸着パッド 132cの吸着を解除して、昇降手段上へ成 形体 G1を渡す。  Next, the compact G1 on the lower mold 20 is transported to the unloading part 131 by the unloading handler 132. That is, as shown by an imaginary line in FIG. 4, the carry-out handler 132 is driven, the arm 132b is rotated, and the suction pad 132c at the tip is moved onto the lower mold. The molded body G1 on the lower mold is sucked by the suction pad 132c, the arm 132b is rotated, and the arm 132b is conveyed to the lifting means below the unloading section 131. Pass the shape G1.
[0085] (h)搬出工程 [0085] (h) Unloading process
次に、昇降手段を上昇して搬出部 131の搬出室内を介し、成形室 130外へ成形体 G1を搬出する。型加熱装置 134は、成形体 G1が下型から搬出されると直ちに通電 され、次のプレス成形に備えて成形型を所定温度にまで加熱する。  Next, the elevating means is raised and the molded body G1 is carried out of the molding chamber 130 through the carry-out chamber of the carry-out section 131. The mold heating device 134 is energized as soon as the molded body G1 is unloaded from the lower mold, and heats the mold to a predetermined temperature in preparation for the next press molding.
以上の手順 (a)〜(h)を繰り返し行うことにより、効率的に成形体 G1を製造することが できる。  By repeatedly performing the above steps (a) to (h), the compact G1 can be produced efficiently.
なお、プレス成形対象の光学ガラスの形状については、特に制限はなぐ両凸レン ズ、凸メニスカスレンズ、凹メニスカスレンズ、両凹レンズなどの成形を行うことができ る。成形体の大きさについても特に制限はないが、一般には直径 2mm程度から 35m m程度のものを成形できる。 2mm以下の場合にはガラス素材が冷え易いので、割れ 易くなり、 35mm以上では成形に時間を要すると共に、良好な面を得ることが著しく困 難となるからである。さらに、光学ガラスの形状は球面、非球面、あるいはこれらの組 み合わせとすることができる。 Note that the shape of the optical glass to be press-molded can be molded into a biconvex lens, a convex meniscus lens, a concave meniscus lens, a biconcave lens, and the like, which are not particularly limited. The size of the molded body is not particularly limited, but generally, a molded body having a diameter of about 2 mm to 35 mm can be molded. If it is 2mm or less, the glass material is easy to cool, so it breaks. This is because if it is 35 mm or more, molding takes time and it becomes extremely difficult to obtain a good surface. Furthermore, the shape of the optical glass can be spherical, aspherical, or a combination thereof.
実施例  Example
[0086] 次に、具体的な実施例を挙げて、本発明をより詳細に説明する。  Next, the present invention will be described in more detail with reference to specific examples.
[0087] 図 1に示したモールドプレス成形型を、図 8に示したプレス成形装置に装着し、成形 素材 Gとしてノ リウムホウケィ酸ガラス(転移点 514°C、屈伏点 545°C)のプリフォーム を用いて、外径 15mmの両凸レンズを成形した。 [0087] The mold press mold shown in Fig. 1 is mounted on the press molding apparatus shown in Fig. 8, and preformed with normoborosilicate glass (transition point 514 ° C, yield point 545 ° C) as molding material G Was used to mold a biconvex lens having an outer diameter of 15 mm.
[0088] まず、両凸曲面形状に熱間成形されたガラス素材を 490°Cに予熱し、成形室内に て約 470°Cに予熱された下母型に保持される下型の成形面上に、当該ガラス素材を 供給した。直ちに、駆動軸を上昇させることにより下母型および下型を上昇させ、約 4 70°Cに予熱した上母型に保持される胴型内に下型を組み込んだ。 [0088] First, a glass material hot-formed into a biconvex curved shape is preheated to 490 ° C, and is held on the molding surface of the lower die held by the lower base mold preheated to about 470 ° C in the molding chamber. The glass material was supplied. Immediately, the lower die and the lower die were raised by raising the drive shaft, and the lower die was assembled in the body die held by the upper mother die preheated to about 470 ° C.
この時、下型が胴型のガイドによってガイドされるとともに、下型と下型支持台との間 に配設した Si Nからな複数の転動部材によって、下型の軸心が胴型及び上型の軸  At this time, the lower mold is guided by the trunk mold guide, and the shaft center of the lower mold is formed by a plurality of rolling members made of Si N disposed between the lower mold and the lower mold support. Upper shaft
3 4  3 4
心と一致するように下型が水平方向に移動し、胴型内に下型が挿入された。  The lower mold moved horizontally so as to coincide with the heart, and the lower mold was inserted into the trunk mold.
[0089] なお、本実施例では、下型大径部の外周面と下型保持部材の内周面とのクリアラン ス Cl、すなわち、下型の水平方向移動可能距離を最大 0. 1mmとし、下型大径部の 上端面と下型保持部材とのクリアランス、すなわち、下型の鉛直方向移動可能距離を 最大 0. 1mmとし、胴型の内周面と下型小径部の外周面とのクリアランス C2を 5 in に B ^疋しに。 [0089] In this example, the clearance Cl between the outer peripheral surface of the lower mold large diameter portion and the inner peripheral surface of the lower mold holding member, that is, the horizontal movable distance of the lower mold is set to 0.1 mm at the maximum, The clearance between the upper end surface of the lower mold large diameter part and the lower mold holding member, that is, the vertical movable distance of the lower mold is 0.1 mm at the maximum, and the inner peripheral surface of the body mold and the outer peripheral surface of the lower mold small diameter part Clearance C2 to 5 in and B ^.
また、投入したガラス素材の表面には数匪の炭素含有膜を成膜させ、上下型の成 形面にはスパッタ法により硬質炭素膜を形成しておいた。  In addition, several carbon-containing films were formed on the surface of the glass material introduced, and hard carbon films were formed on the upper and lower mold surfaces by sputtering.
[0090] 高周波誘導加熱により上下母型をガラス粘度 108dPa' sに相当する 596°Cに昇温 させ、所定時間維持して均熱化した後、図 3に示すように、下母型を上昇させて 100 kg/cm"の圧力でプレスした。 [0090] The upper and lower master dies were heated to 596 ° C corresponding to a glass viscosity of 10 8 dPa's by high-frequency induction heating, maintained for a predetermined time and soaked, and then the lower master dies as shown in Fig. 3 Was raised and pressed at a pressure of 100 kg / cm ".
次に、上下型及び成形されたレンズをガラスの転移点以下になるまで 50°C/分の 冷却速度で冷却した。このとき、ガラスの収縮に対して上型が追随し、上型自重のみ かかった状態で冷却された。すなわち、冷却中はレンズの上面と上型の接触が保た れて!/ヽた。 Next, the upper and lower molds and the molded lens were cooled at a cooling rate of 50 ° C./min until the glass transition point was reached. At this time, the upper mold followed the shrinkage of the glass, and it was cooled in a state where only the upper mold weight was applied. That is, the contact between the upper surface of the lens and the upper mold was maintained during cooling. See you!
[0091] 型温度が 490°Cになった時点で、冷却ガスによって型を急冷し、型温度が 370°C 以下になつてから下型を下降させて離型した。下型を成形室の下まで下降させ、吸 着パッドを用いてプレス成形されたレンズを取り出した。取り出したレンズは必要に応 じ、その後ァニール処理や芯取り処理する場合もある。  [0091] When the mold temperature reached 490 ° C, the mold was rapidly cooled with a cooling gas, and after the mold temperature reached 370 ° C or lower, the lower mold was lowered and released. The lower mold was lowered to the bottom of the molding chamber, and the press-molded lens was taken out using the suction pad. The removed lens may be annealed or centered as necessary.
[0092] 以上のようなプレス工程を 2000回繰り返し、得られたレンズを検査したところ、何れ のレンズもシフト及びティルトの偏心精度も高精度で基準値を満たし、表面品質も良 好であった。  [0092] The above pressing process was repeated 2000 times, and the obtained lenses were inspected. As a result, each lens was highly accurate in terms of shift and tilt decentering accuracy and met the reference value, and the surface quality was also good. .
また、胴型と下型との摺動部分を観察したが、問題となる擦れやカジリ等の痕跡は 見られなかった。  In addition, the sliding part between the body mold and the lower mold was observed, but no traces of rubbing or galling that caused problems were found.
[0093] 以上、本発明について、好ましい実施形態を示して説明したが、本発明は、上記し た実施形態にのみ限定されるものではなぐ本発明の範囲で種々の変更実施が可能 であることは言うまでもな!/、。  [0093] While the present invention has been described with reference to the preferred embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention. Needless to say!
[0094] 例えば、前述の実施形態では、一対の上下型 10, 20を備えた成形型の例を示し た力 図 9に示すように、二対の上下型 10, 20を備えるようにしてもよく、さらには、特 に図示しないが、三対以上の上下型 10, 20を備えるようにしてもよい。このようにする ことで、一回のプレス成形動作で、複数の成形体を同時に成形することができる。 なお、図 9に示す例は、前述した第一実施形態と同様の成形型を二つ並設し、これ らを共通の固定軸 40、駆動軸 50に取り付けたものに相当する。  [0094] For example, in the above-described embodiment, a force showing an example of a mold having a pair of upper and lower molds 10, 20 may be provided with two pairs of upper and lower molds 10, 20, as shown in FIG. Further, although not particularly shown, three or more pairs of upper and lower molds 10 and 20 may be provided. In this way, a plurality of molded bodies can be simultaneously molded by a single press molding operation. The example shown in FIG. 9 corresponds to a configuration in which two molding dies similar to those in the first embodiment described above are arranged side by side and these are attached to a common fixed shaft 40 and drive shaft 50.
[0095] また、前述の実施形態では、下型 20を第一の型として、下型 20と下型保持部材 25 との間に、転動部材 60を敷き詰めた例を示した力 図 10に示すように、上型 10を第 一の型として、上型 10と上型保持部材 15との間に、転動部材 60を敷き詰めるように することあでさる。  In the above-described embodiment, the lower mold 20 is the first mold, and the force showing an example in which the rolling member 60 is spread between the lower mold 20 and the lower mold holding member 25 is shown in FIG. As shown, the upper mold 10 is the first mold, and the rolling member 60 is spread between the upper mold 10 and the upper mold holding member 15.
[0096] ここで、図 10に示す例は、概ね前述の第一実施形態の成形型の天地を逆にしたも のに相当する。より具体的には、胴型 30の下部側に形成された張り出し部 31を、下 母型 27の内周に形成された断面 30aと下型支持台 26との間に狭持して、胴型 30を 下型 20とともに下型保持部材 25に保持、固定させている。一方、上型 10は、その大 径部 13が、図示するように、上型支持台 16と上母型 17との間に遊嵌状に保持され ている。そして、上型 10の大径部 13の下面に対向する上母型 17の段面に凹陥部 1 7aが形成されておりし、この凹陥部 17aに転動部材 60が敷き詰められている。 Here, the example shown in FIG. 10 substantially corresponds to a case in which the top and bottom of the mold according to the first embodiment described above are reversed. More specifically, the overhanging portion 31 formed on the lower side of the body mold 30 is sandwiched between the cross section 30a formed on the inner periphery of the lower mother mold 27 and the lower mold support base 26, so that the body The mold 30 is held and fixed to the lower mold holding member 25 together with the lower mold 20. On the other hand, the upper mold 10 has a large-diameter portion 13 held loosely between the upper mold support 16 and the upper mother mold 17 as shown in the figure. ing. A concave portion 17a is formed on the step surface of the upper master die 17 facing the lower surface of the large-diameter portion 13 of the upper die 10, and the rolling members 60 are spread on the concave portion 17a.
[0097] これにより、上下型 10, 20及び胴型 30の軸心が一致していなくても、上型 10の小 径部 12と上母型 17との間に形成された揷入溝 18に、胴型 30の上部側が挿入される 際に、胴型 30の上部側内周に形成されたガイド部 32に、上型 10の小径部 12の周 縁部が当接して、上型 10が、下型 20及び胴型 30と同軸となる位置に誘導されて、 上下型 10, 20の同軸性を確保できるようになつている。 Accordingly, the insertion groove 18 formed between the small-diameter portion 12 of the upper mold 10 and the upper mother mold 17 even if the axes of the upper and lower molds 10, 20 and the trunk mold 30 do not coincide with each other. In addition, when the upper side of the body mold 30 is inserted, the peripheral part of the small-diameter portion 12 of the upper mold 10 abuts on the guide part 32 formed on the inner periphery of the upper side of the body mold 30, so that the upper mold 10 However, it is guided to a position coaxial with the lower mold 20 and the trunk mold 30, so that the upper and lower molds 10, 20 can be secured.
産業上の利用可能性  Industrial applicability
[0098] 本発明は、ガラスプリフォームなどの成形素材をプレス成形するためのモールドプ レス成形型、及びそのようなモールドプレス成形型を用いた成形体の製造方法に適 用される。 The present invention is applied to a mold press mold for press molding a molding material such as a glass preform and a method for producing a molded body using such a mold press mold.

Claims

請求の範囲 The scope of the claims
[1] 任意形状の成形面を有する第一及び第二の型と、  [1] first and second molds having an arbitrarily shaped molding surface;
前記第一及び第二の型力 互いの成形面が向き合うように対向配置されて同軸状 に揷入される胴型と、  The first and second mold forces, which are opposed to each other so that their molding surfaces face each other, and are coaxially inserted; and
前記第一の型を水平方向に移動可能に保持する第一の型保持部材と、 前記第一の型と前記第一の型保持部材との間に配設され、前記第一の型の水平 方向への移動に伴って転動する複数の転動部材と、  A first mold holding member for holding the first mold so as to be movable in a horizontal direction; and a first mold holding member disposed between the first mold and the first mold holding member. A plurality of rolling members that roll with movement in the direction;
を備えたことを特徴とするモールドプレス成形型。  A mold press mold characterized by comprising:
[2] 前記第一の型が挿入される側の前記胴型の開口部内周面に、テーパー状に拡径 するガイド部が形成され、前記ガイド部は、前記第一の型が前記胴型に挿入されると きに、前記第一の型に当接して、前記第一の型が前記第二の型と同軸状になるよう に案内することを特徴とする請求項 1に記載のモールドプレス成形型。  [2] A guide portion having a tapered diameter is formed on the inner peripheral surface of the opening portion of the barrel mold on the side where the first mold is inserted, and the guide mold is configured such that the first mold is the barrel mold. 2. The mold according to claim 1, wherein when the first mold is inserted, the first mold is brought into contact with the first mold and guided so as to be coaxial with the second mold. Press mold.
[3] 前記転動部材は、直径が均一な球状部材であることを特徴とする請求項 1又は 2の いずれか 1項に記載のモールドプレス成形型。  [3] The mold press mold according to any one of claims 1 and 2, wherein the rolling member is a spherical member having a uniform diameter.
[4] 前記転動部材は、プレス成形温度における曲げ強さが 300MPa以上のセラミックス 力、らなることを特徴とする請求項 1〜3のいずれか 1項に記載のモールドプレス成形 型。  [4] The mold press mold according to any one of [1] to [3], wherein the rolling member comprises a ceramic force having a bending strength at a press molding temperature of 300 MPa or more.
[5] 前記転動部材は、窒化珪素、炭化珪素、ジルコユア、又はアルミナのうち何れか一 種又は二種以上の素材からなることを特徴とする請求項 1〜4のいずれ力、 1項に記載 のモールドプレス成形型。  [5] The force according to any one of claims 1 to 4, wherein the rolling member is made of one or more materials selected from silicon nitride, silicon carbide, zirconium oxide, and alumina. The mold press mold of description.
[6] 前記転動部材を介して対向する前記第一の型と前記第一の型保持部材との少なく とも一方の面に、前記転動部材を収容する凹陥部を形成したことを特徴とする請求 項 1〜5のいずれ力、 1項に記載のモールドプレス成形型。 [6] A concave portion for accommodating the rolling member is formed on at least one surface of the first die and the first die holding member facing each other with the rolling member interposed therebetween. The mold press mold according to any one of claims 1 to 5, wherein:
[7] 前記胴型を前記第一の型に向けて付勢する弾性部材を備え、 [7] An elastic member that urges the body mold toward the first mold,
前記第一及び第二の型で成形素材をプレス成形する際に、  When press-molding a molding material with the first and second molds,
前記第一の型が挿入される側の前記胴型の開口部端面が、前記弾性部材の付勢 力によって前記第一の型の一部に押圧されるようにしたことを特徴とする請求項 1〜6 のいずれ力、 1項に記載のモールドプレス成形型。 The opening end surface of the barrel mold on the side where the first mold is inserted is pressed against a part of the first mold by the urging force of the elastic member. The force of any one of 1 to 6, the mold press mold according to 1.
[8] 前記第一の型が成形面に凸面を有し、 [8] The first mold has a convex surface on the molding surface;
前記第一の型の成形面の周囲に位置して、前記第一の型の成形面上に供給され た成形素材を支承する支承部材と、  A support member for supporting a molding material supplied on the molding surface of the first mold, located around the molding surface of the first mold;
前記第一及び第二の型の近接動作にしたがって、前記支承部材を前記下型の成 形面の周囲から退避させる退避機構と、  A retracting mechanism for retracting the support member from the periphery of the molding surface of the lower mold according to the proximity movement of the first and second molds;
を備えたことを特徴とする請求項 1〜7のいずれ力、 1項に記載のモールドプレス成形 型。  The mold press mold according to any one of claims 1 to 7, characterized by comprising:
[9] 前記第一の型保持部材に当接する曲面を有する介在部材を、前記第一の型保持 部材と前記転動部材との間に介在させたことを特徴とする請求項;!〜 8のいずれか 1 項に記載のモールドプレス成形型。  [9] The present invention is characterized in that an interposed member having a curved surface that comes into contact with the first mold holding member is interposed between the first mold holding member and the rolling member. The mold press mold according to any one of the above.
[10] 任意形状の成形面を有する第一及び第二の型と、前記第一及び第二の型が、互 いの成形面が向き合うように対向配置されて同軸状に挿入されるとともに、前記第一 の型が挿入される側の開口部内周面にガイド部が形成された胴型と、前記第一の型 を水平方向に移動可能に保持する第一の型保持部材と、前記第一の型と前記第一 の型保持部材との間に配設された複数の転動部材とを備えたモールドプレス成形型 と、  [10] The first and second molds having a molding surface having an arbitrary shape and the first and second molds are arranged so as to face each other so that the molding surfaces face each other, and are inserted coaxially. A body mold in which a guide portion is formed on the inner peripheral surface of the opening on the side where the first mold is inserted; a first mold holding member that holds the first mold so as to be movable in the horizontal direction; A mold press mold comprising a plurality of rolling members disposed between one mold and the first mold holding member;
前記第一及び第二の型の少なくとも一方を昇降させる駆動手段と、  Drive means for raising and lowering at least one of the first and second molds;
前記モールドプレス成形型を加熱する加熱手段と、  Heating means for heating the mold press mold;
を備えた成形装置を用いて、  Using a molding apparatus equipped with
前記加熱手段によって所定温度に加熱された前記モールドプレス成形型により成 形素材をプレス成形して、前記成形面の形状を前記成形素材に転写することにより 成形体を製造するにあたり、  In manufacturing a molded body by pressing a molding material with the mold press mold heated to a predetermined temperature by the heating means, and transferring the shape of the molding surface to the molding material,
前記駆動手段によって前記第一及び第二の型の少なくとも一方を昇降させることに より前記第一の型が前記胴型に挿入されるようにし、このときに、前記第一の型が前 記胴型に形成されたガイド部に当接して水平方向へ移動するのに伴って前記転動 部材が転動し、前記第一の型を前記第二の型と同軸状となるように案内することを特 徴とする成形体の製造方法。  By moving up and down at least one of the first and second molds by the driving means, the first mold is inserted into the barrel mold, and at this time, the first mold is The rolling member rolls in contact with the guide portion formed on the mold and moves in the horizontal direction, and guides the first mold so as to be coaxial with the second mold. A method for producing a molded product characterized by the above.
[11] プレス成形に先立って、前記成形素材を予熱するとともに、前記モールドプレス成 形型を予熱し、予熱後の前記成形素材を予熱後の前記モールドプレス成形型に供 給してプレス成形を行うことを特徴とする請求項 10に記載の成形体の製造方法。 [11] Prior to press molding, the molding material is preheated and the mold press forming is performed. 11. The method for producing a molded body according to claim 10, wherein the mold is preheated, and the preheated molding material is supplied to the preheated mold press mold to perform press molding.
PCT/JP2007/071068 2006-10-31 2007-10-30 Mold press forming die and molded article manufacturing method WO2008053860A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020097008792A KR101314440B1 (en) 2006-10-31 2007-10-30 Mold press forming die and molded article manufacturing method
JP2008542112A JP5059019B2 (en) 2006-10-31 2007-10-30 Mold press mold and method for producing molded body
CN2007800402205A CN101528616B (en) 2006-10-31 2007-10-30 Mold press forming die and molded article manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006296496 2006-10-31
JP2006-296496 2006-10-31

Publications (1)

Publication Number Publication Date
WO2008053860A1 true WO2008053860A1 (en) 2008-05-08

Family

ID=39344201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071068 WO2008053860A1 (en) 2006-10-31 2007-10-30 Mold press forming die and molded article manufacturing method

Country Status (4)

Country Link
JP (1) JP5059019B2 (en)
KR (1) KR101314440B1 (en)
CN (1) CN101528616B (en)
WO (1) WO2008053860A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133190A1 (en) * 2012-03-05 2013-09-12 Hoya株式会社 Press molding apparatus and method for manufacturing optical device
US20140283555A1 (en) * 2012-01-05 2014-09-25 Asahi Glass Company, Limited Molding apparatus and molding method of glass casings
JP2016128380A (en) * 2016-02-10 2016-07-14 Hoya株式会社 Mold pressing apparatus, and manufacturing method of optical element
US20210002161A1 (en) * 2018-03-30 2021-01-07 Olympus Corporation Method of molding optical element and optical element molding mold
CN113213796A (en) * 2021-05-12 2021-08-06 四川纵横交安科技有限公司 Diffuse reflection tunnel energy-saving paving ceramic particle and preparation process thereof
CN117606961A (en) * 2024-01-22 2024-02-27 天津市丰和博科技发展有限公司 Mould intensity detection equipment

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704172B2 (en) * 2010-07-30 2015-04-22 コニカミノルタ株式会社 Molding equipment
EP3073299B1 (en) * 2010-09-02 2021-12-29 EV Group GmbH Device and method for making a lens wafer
JP5435018B2 (en) * 2011-12-15 2014-03-05 コニカミノルタ株式会社 Sheet glass blanks, manufacturing method thereof, and manufacturing method of cover glass plate
JP6047802B2 (en) * 2013-05-10 2016-12-21 Hoya株式会社 Glass molded body manufacturing apparatus and glass molded body manufacturing method
CN105927745B (en) * 2016-07-04 2018-10-23 湖南西爱斯流体控制设备有限公司 Dual automatic capturing sealed stop valve
CN107162394A (en) * 2017-05-02 2017-09-15 贵州贵安新区韩耀科技有限公司 A kind of hot bending die of 3D bend glasses and the preparation method of 3D bend glasses
JP7103977B2 (en) * 2019-03-04 2022-07-20 Hoya株式会社 Press molding equipment
CN110862223A (en) * 2019-11-26 2020-03-06 永豪光电(中国)有限公司 Die pressing mechanism for aspheric lens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048728A (en) * 2001-08-03 2003-02-21 Konica Corp Press forming device and method of press forming
JP2006137614A (en) * 2004-11-10 2006-06-01 Hoya Corp Mold press forming apparatus, and method for production of the apparatus
JP2006219316A (en) * 2005-02-08 2006-08-24 Olympus Corp Method and apparatus for manufacturing optical element
JP2007302484A (en) * 2006-05-08 2007-11-22 Ricoh Opt Ind Co Ltd Molding method and molding die

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3188676B2 (en) * 1997-10-03 2001-07-16 ホーヤ株式会社 Method for manufacturing glass molded body
CN1194833C (en) * 2002-07-11 2005-03-30 株洲硬质合金集团有限公司 Technology and die for machining part with internal screw hole
JP2006083026A (en) * 2004-09-17 2006-03-30 Hoya Corp Mold press molding tool and manufacturing method of molding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048728A (en) * 2001-08-03 2003-02-21 Konica Corp Press forming device and method of press forming
JP2006137614A (en) * 2004-11-10 2006-06-01 Hoya Corp Mold press forming apparatus, and method for production of the apparatus
JP2006219316A (en) * 2005-02-08 2006-08-24 Olympus Corp Method and apparatus for manufacturing optical element
JP2007302484A (en) * 2006-05-08 2007-11-22 Ricoh Opt Ind Co Ltd Molding method and molding die

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140283555A1 (en) * 2012-01-05 2014-09-25 Asahi Glass Company, Limited Molding apparatus and molding method of glass casings
JPWO2013103102A1 (en) * 2012-01-05 2015-05-11 旭硝子株式会社 Glass casing molding apparatus and molding method
DE112012005570B4 (en) 2012-01-05 2018-11-22 AGC Inc. Forming device and molding method for glass housing
WO2013133190A1 (en) * 2012-03-05 2013-09-12 Hoya株式会社 Press molding apparatus and method for manufacturing optical device
JP2013184829A (en) * 2012-03-05 2013-09-19 Hoya Corp Press molding apparatus and method for manufacturing optical device
JP2016128380A (en) * 2016-02-10 2016-07-14 Hoya株式会社 Mold pressing apparatus, and manufacturing method of optical element
US20210002161A1 (en) * 2018-03-30 2021-01-07 Olympus Corporation Method of molding optical element and optical element molding mold
CN113213796A (en) * 2021-05-12 2021-08-06 四川纵横交安科技有限公司 Diffuse reflection tunnel energy-saving paving ceramic particle and preparation process thereof
CN113213796B (en) * 2021-05-12 2023-02-21 四川纵横交安科技有限公司 Diffuse reflection tunnel energy-saving paving ceramic particle and preparation process thereof
CN117606961A (en) * 2024-01-22 2024-02-27 天津市丰和博科技发展有限公司 Mould intensity detection equipment
CN117606961B (en) * 2024-01-22 2024-04-05 天津市丰和博科技发展有限公司 Mould intensity detection equipment

Also Published As

Publication number Publication date
JP5059019B2 (en) 2012-10-24
JPWO2008053860A1 (en) 2010-02-25
CN101528616A (en) 2009-09-09
CN101528616B (en) 2012-02-08
KR101314440B1 (en) 2013-10-07
KR20090082375A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
JP5059019B2 (en) Mold press mold and method for producing molded body
TWI551554B (en) The forming device and forming method of glass frame body
JP4780982B2 (en) Mold press molding apparatus and optical element manufacturing method
JP2003048728A (en) Press forming device and method of press forming
JP5317962B2 (en) Method for producing glass molded body and mold press molding apparatus
JP5021205B2 (en) Mold press mold and optical element manufacturing method
JP5021196B2 (en) Mold press mold, optical element manufacturing method, and concave meniscus lens
JP4878321B2 (en) Mold press mold and method for producing molded body
JPWO2008050846A1 (en) Optical element press molding equipment
JP2010280565A (en) Mold press forming apparatus and method for manufacturing optical element
US20040212109A1 (en) Press-molding apparatus, press-molding method and method of producing an optical element
US7121119B2 (en) Press molding apparatus for an optical element and method of manufacturing the optical element
JP2006083026A (en) Mold press molding tool and manufacturing method of molding
JP4695404B2 (en) Mold assembly apparatus and optical element manufacturing method
JP2011132096A (en) Forming apparatus and forming method for optical element
JP2005281053A (en) Forming apparatus for mold press, method of manufacturing optical device, and optical device
JP3890167B2 (en) Glass press molding apparatus, method of operating the same, and optical lens molding method
JP3897746B2 (en) Press molded body suction device, suction method, and optical element manufacturing method using the same
JP4792141B2 (en) Mold press mold and optical element manufacturing method
JP4118668B2 (en) Molding apparatus for press molding and method for producing molded body using the same
JP4044373B2 (en) Manufacturing method of glass optical element
JP4680738B2 (en) Mold press molding apparatus and optical element manufacturing method
JP4711697B2 (en) Optical element manufacturing method, mold press molding apparatus, and positioning apparatus used therefor
JP3860450B2 (en) Optical element molding method
JP4141983B2 (en) Mold press molding method and optical element manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780040220.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830802

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008542112

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020097008792

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830802

Country of ref document: EP

Kind code of ref document: A1