JP4695404B2 - Mold assembly apparatus and optical element manufacturing method - Google Patents

Mold assembly apparatus and optical element manufacturing method Download PDF

Info

Publication number
JP4695404B2
JP4695404B2 JP2005027031A JP2005027031A JP4695404B2 JP 4695404 B2 JP4695404 B2 JP 4695404B2 JP 2005027031 A JP2005027031 A JP 2005027031A JP 2005027031 A JP2005027031 A JP 2005027031A JP 4695404 B2 JP4695404 B2 JP 4695404B2
Authority
JP
Japan
Prior art keywords
mold
molding
molding material
lower mold
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005027031A
Other languages
Japanese (ja)
Other versions
JP2006213557A (en
Inventor
英邦 浅井
忠幸 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2005027031A priority Critical patent/JP4695404B2/en
Priority to CN2006100045737A priority patent/CN1814559B/en
Priority to KR1020060009460A priority patent/KR101165475B1/en
Publication of JP2006213557A publication Critical patent/JP2006213557A/en
Application granted granted Critical
Publication of JP4695404B2 publication Critical patent/JP4695404B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B33/00Crocheting tools or apparatus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B27/00Details of, or auxiliary devices incorporated in, warp knitting machines, restricted to machines of this kind
    • D04B27/10Devices for supplying, feeding, or guiding threads to needles
    • D04B27/24Thread guide bar assemblies
    • D04B27/26Shogging devices therefor
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B35/00Details of, or auxiliary devices incorporated in, knitting machines, not otherwise provided for
    • D04B35/02Knitting tools or instruments not provided for in group D04B15/00 or D04B27/00
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B37/00Auxiliary apparatus or devices for use with knitting machines
    • D04B37/06Auxiliary apparatus or devices for use with knitting machines with warp knitting machines
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • C03B2215/47Bi-concave
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/61Positioning the glass to be pressed with respect to the press dies or press axis
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/72Barrel presses or equivalent, e.g. of the ring mould type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Description

本発明は、ガラスなどの成形素材を収容して組み立てられた成形型にプレス荷重を印加して、被成形面に対する研削、研磨などの後加工を必要とせずに、レンズなどの光学素子をプレス成形するにあたり、成形素材を供給しつつ成形型を組み立てるための組立装置、及びこの組立装置により組み立てられた成形型を用いて光学素子を製造する方法に関し、特に、両凹レンズなどの光学素子を成形するに際して、凸面を有する下型成形面上への成形素材の供給を良好に行うことができる成形型の組立装置及び光学素子の製造方法に関する。   The present invention presses an optical element such as a lens without applying post-processing such as grinding or polishing to a molding surface by applying a pressing load to a mold that contains and assembles a molding material such as glass. The present invention relates to an assembling apparatus for assembling a mold while supplying a molding material, and a method of manufacturing an optical element using the molding die assembled by the assembling apparatus, and in particular, molding an optical element such as a biconcave lens. The present invention relates to a molding die assembling apparatus and an optical element manufacturing method capable of satisfactorily supplying a molding material onto a lower molding surface having a convex surface.

ガラスなどの成形素材を、加熱により軟化し、所定形状に精密加工した上下一対の成形型でプレス成形することにより、レンズなどの光学素子を製造する方法が知られている(例えば、特許文献1、2参照)。   There is known a method of manufacturing an optical element such as a lens by press-molding a molding material such as glass by heating with a pair of upper and lower molding dies softened by heating and precisely processed into a predetermined shape (for example, Patent Document 1). 2).

特許文献1には、成形型内において、一対の位置決め部材を移動させ、光学素材(成形素材)を挟む形で当接させることによって、光学素材を成形型に対して位置決めする成形方法が記載されている。この方法では、加圧時又は加圧直前まで、成形面に対する位置決めをしつつ光学素子を保持することにより、光学素材の位置ずれを防止している。   Patent Document 1 describes a molding method for positioning an optical material with respect to a molding die by moving a pair of positioning members in the molding die and bringing them into contact with each other with the optical material (molding material) interposed therebetween. ing. In this method, the optical element is prevented from being displaced by holding the optical element while being positioned with respect to the molding surface at the time of pressurization or immediately before pressurization.

特許文献2には、ガラスプリフォーム(成形素材)の端面を保持する保持手段により、ガラスプリフォーム(成形素材)を金型から離れた位置に保持した後、このガラスプリフォームを加熱し、続いて、保持手段による保持を解除して、ガラスプリフォームを加圧する方法が記載されている。これによって、加熱時には、ガラスプリフォームと金型との化学反応が避けられ、加圧時には、ガラスプリフォームの径方向の流動を阻害することなく成形できるとしている。   In Patent Document 2, the glass preform (molding material) is held at a position away from the mold by the holding means for holding the end surface of the glass preform (molding material), and then the glass preform is heated. A method of releasing the holding by the holding means and pressurizing the glass preform is described. Thus, a chemical reaction between the glass preform and the mold can be avoided during heating, and molding can be performed without impeding the radial flow of the glass preform during pressurization.

特許第3501580号公報Japanese Patent No. 3501580 特開平9−286622号公報JP-A-9-286622

成形素材(ガラス素材など)を、精密モールドプレスによって成形し、レンズなどの光学素子を成形する場合、成形素材を、対向する成形面をもつ上下一対の成形型間で押圧、成形することが一般的である。このとき、予め下型成形面上に成形素材を供給、配置する必要があるが、得ようとする光学素子の形状によっては、下型成形面の中心位置に、成形素材を配置することが必ずしも容易でない。   When molding a molding material (such as a glass material) with a precision mold press and molding an optical element such as a lens, it is common to press and mold the molding material between a pair of upper and lower molds having opposing molding surfaces. Is. At this time, it is necessary to supply and arrange the molding material on the lower mold molding surface in advance, but depending on the shape of the optical element to be obtained, it is not always possible to arrange the molding material at the center position of the lower mold molding surface. Not easy.

例えば、両凹レンズを成形する場合など、凸面を有する下型成形面上に成形素材を供給、配置しなければならない場合には、例えば、図14に示すように、下型成形面上に配置した成形素材が、プレス成形に先立って滑落しやすくなっており、下型成形面上に成形素材を配置するには困難が伴われる。そして、成形素材が滑落したり、位置ずれが生じたりすると、成形される光学素子が偏肉し、形状不良となるだけでなく、偏肉に起因する荷重印加の不均一によって、光学機能面の面精度が劣化してしまう。   For example, in the case of molding a biconcave lens, when the molding material has to be supplied and arranged on the lower mold molding surface having a convex surface, for example, as shown in FIG. 14, it is arranged on the lower mold molding surface. The molding material tends to slide down prior to press molding, and it is difficult to place the molding material on the lower mold surface. If the molding material slides down or is displaced, the optical element to be molded becomes uneven in thickness and not only in a defective shape, but also due to uneven load application due to the uneven thickness, Surface accuracy will deteriorate.

特許文献1の記載によると、成形型内に光学素材の位置決め部材を配置し、これをラックとピニオンなどの駆動手段によって、基準位置を中心に互いに反対方向に移動させ、光学素材を挟む形で当接、停止させることで、光学素材を成形型に対して位置決めし、プレスの際に成形面が素材に当接するか、その直前に駆動手段によって位置決め部材を退避させている。   According to the description of Patent Document 1, an optical material positioning member is arranged in a mold, and this is moved in opposite directions around a reference position by driving means such as a rack and a pinion, and the optical material is sandwiched between them. By abutting and stopping, the optical material is positioned with respect to the mold, and the positioning member is retracted by the driving means immediately before the molding surface abuts on the material during pressing.

しかしながら、この方法によると、成形型内部に位置決め部材を配置するので、成形型が極めて複雑な構造となる。このため、成形型の熱容量が大きくなってしまい、昇温、降温の温度制御を効率的に行うことが困難になる。さらに、ラックとピニオンのような構造体を成形型の近傍に配置すると、装置が大型化するだけでなく、これら構造体の熱変形による影響などを考慮する必要が生じ、装置設計が著しく複雑化する。   However, according to this method, since the positioning member is disposed inside the mold, the mold has an extremely complicated structure. For this reason, the heat capacity of the mold becomes large, and it is difficult to efficiently perform temperature control for temperature increase and decrease. Furthermore, if structures such as racks and pinions are placed in the vicinity of the mold, not only will the equipment increase in size, but it will also be necessary to consider the effects of thermal deformation of these structures, making the equipment design significantly more complex To do.

さらに、プレス装置に上下型からなる成形型を固定し、昇温、プレス、冷却を同位置で行う場合には、上記のような装置の複雑化を伴う可動部材によって成形素材の位置決めを行うことは、ある程度は可能であるが、プレス装置から分離された成形型に成形素材を収容し、装置内の各処理室を移送させつつ、順次適切な処理を施す成形方法(詳細については後述する)においては、個々の成形型に上記のような大掛かりな可動部材を設けることは著しく不効率であり、実質的に不可能である。   Furthermore, when a mold consisting of upper and lower molds is fixed to the press device, and the temperature rise, press, and cooling are performed at the same position, the molding material should be positioned by a movable member that complicates the device as described above. Although it is possible to some extent, a molding method in which a molding material is housed in a molding die separated from a press apparatus, and each of the processing chambers in the apparatus is transferred to sequentially perform appropriate processing (details will be described later). However, it is extremely inefficient and practically impossible to provide such a large movable member as described above in each mold.

また、特許文献2には、平板状のプリフォームを、凸面を有する上下型によって加圧成形する図面が開示されている。そして、特許文献2では、保持リングの上端にプリフォームを載置した状態で加熱し、次いで、駆動手段によって保持リングを下降させることにより、成形型内部で保持されたプリフォームを、加圧直前に保持リングから離脱させ、プリフォームを下型上に載置してから、上下型によってプリフォームを加圧している。   Further, Patent Document 2 discloses a drawing in which a flat plate-shaped preform is pressure-formed by an upper and lower mold having convex surfaces. And in patent document 2, it heats in the state which mounted the preform on the upper end of a holding ring, and then lowers a holding ring with a drive means, The preform held inside a shaping | molding die is immediately before pressurization. Then, the preform is released from the holding ring, the preform is placed on the lower mold, and then the preform is pressurized by the upper and lower molds.

しかしながら、このような方法にあっても、成形素材が収容された成形型を各処理室に移送しつつ、順次適切な処理を施すような、成形型への成形素材の供給と加圧、成形体の取り出しが同一位置で行われない成形方法においては、保持手段の駆動手段(特許文献2の図2に示される押し棒や、図3に示されるガス供給手段)が設置できないという不都合がある。   However, even in such a method, supply of the molding material to the molding die, pressurization, molding, and the like, sequentially performing appropriate processing while transferring the molding die containing the molding material to each processing chamber In the molding method in which the body is not taken out at the same position, there is an inconvenience that the driving means of the holding means (the push rod shown in FIG. 2 of Patent Document 2 or the gas supply means shown in FIG. 3) cannot be installed. .

さらに、特許文献2に開示されている装置では、上下型の水平方向の相互位置を規制する手段が無いため、上下型の同軸性を得ることができない。このため、成形される光学素子の第1面と第2面の間に偏心(相互の水平方向のシフト、及び相互のティルト)が生じ、十分な光学性能が得られない。   Furthermore, in the apparatus disclosed in Patent Document 2, since there is no means for regulating the mutual position of the upper and lower molds in the horizontal direction, the upper and lower molds cannot be coaxial. For this reason, eccentricity (mutual horizontal shift and mutual tilt) occurs between the first surface and the second surface of the optical element to be molded, and sufficient optical performance cannot be obtained.

本発明は、上記の事情にかんがみなされたものであり、下型成形面が凸面を有する場合であっても、下型成形面上の適切な位置に配置された状態で成形素材を収容して成形型を組み立てることができるモールドプレス成形型の組立装置及び光学素子の製造方法の提供を目的とし、さらに、上下型を備えた成形型が、プレス装置に固定されずに、装置内を移送されながら適切な処理が順次施される成形方法にも適用可能であり、かつ、高精度の光学素子を効率よく量産できるモールドプレス成形型の組立装置及び光学素子の製造方法の提供を目的とする。   The present invention is considered in view of the above circumstances, and even when the lower mold molding surface has a convex surface, the molding material is accommodated in a state of being arranged at an appropriate position on the lower mold molding surface. The purpose of the present invention is to provide a mold press mold assembling apparatus and an optical element manufacturing method capable of assembling the mold, and the mold having the upper and lower molds is transferred to the apparatus without being fixed to the press apparatus. However, it is applicable to a molding method in which appropriate processes are sequentially performed, and an object is to provide an assembly apparatus for a mold press mold and an optical element manufacturing method capable of efficiently mass-producing high-precision optical elements.

上記目的を達成するため本発明の成形型の組立装置は、凸面を有する成形面が形成された下型と、前記下型成形面との対向面に成形面が形成された上型と、前記下型と前記上型とをそれぞれ両端側から挿入可能とした胴型とを備えた成形型を、成形素材が収容された状態で組み立てるための組立装置であって、前記胴型と前記下型とを相対的に近接、離間させるための第一駆動手段と、前記下型成形面上に成形素材を供給する供給手段と、前記供給手段により供給された前記成形素材を、前記下型成形面上で保持する保持手段と、前記保持手段による前記成形素材の保持、及び前記保持手段の退避を行うための第二駆動手段と、前記胴型と前記下型との相対的な近接によって前記成形素材の少なくとも最大外径部が前記胴型内に挿入され、前記下型成形面と前記胴型の内周面により前記成形素材が保持されたときに、前記保持手段を前記下型成形面上から退避させるように前記第二駆動手段を作動させる制御手段とを備えた構成としてある。 In order to achieve the above object, an apparatus for assembling a molding die according to the present invention includes a lower die having a convex molding surface, an upper die having a molding surface formed on a surface facing the lower molding surface, An assembly apparatus for assembling a molding die provided with a lower die and a barrel die capable of inserting the upper die from both end sides in a state where a molding material is accommodated, wherein the barrel die and the lower die A first driving means for relatively moving them closer to and away from each other, a supply means for supplying a molding material onto the lower mold molding surface, and the molding material supplied by the supply means to the lower mold molding surface. The holding means that holds the molding material, the second drive means for holding the molding material by the holding means, and the retracting the holding means, and the molding by the relative proximity of the body mold and the lower mold At least the largest outer diameter part of the material is inserted into the barrel mold and the front When the molding material by the lower molding surface the inner peripheral surface of the barrel die is held, and a control means for actuating the second driving means so as to retract said retaining means from the said lower mold molding surface It is a configuration with.

このような構成にすれば、成形型の内部に成形素材を保持、支承させるための付加的な部材を設けることなく、下型成形面上に供給された成形素材の滑落や、位置ずれを防止し、下型成形面上の適切な位置に配置された状態で成形素材を収容して成形型を組み立てることができる。   With such a configuration, it is possible to prevent the molding material supplied on the lower mold surface from slipping or being displaced without providing an additional member for holding and supporting the molding material inside the molding die. In addition, it is possible to assemble the mold by accommodating the molding material in a state of being arranged at an appropriate position on the lower mold molding surface.

また、本発明の光学素子の製造方法は、凸面を有する成形面が形成された下型と、前記下型成形面との対向面に成形面が形成された上型と、前記下型と前記上型とをそれぞれ両端側から挿入可能とした胴型とを備えた成形型を用いて成形素材をプレス成形することにより光学素子を製造する方法であって、前記下型成形面上に供給された成形素材を、前記下型成形面上に配置された保持手段により保持しつつ、前記胴型と前記下型とを相対的に近接させることにより、前記成形素材の少なくとも最大外径部が前記胴型内に挿入され、前記下型成形面と前記胴型の内周面により前記成形素材が保持された後に、前記下型成形面上から前記保持手段を退避させ、次いで、前記下型と前記上型の間で前記成形素材をプレス成形する方法としてある。 The method for producing an optical element of the present invention includes a lower mold on which a molding surface having a convex surface is formed, an upper mold on which a molding surface is formed on a surface facing the lower mold molding surface, the lower mold, and the A method of manufacturing an optical element by press-molding a molding material using a molding die having an upper die and a barrel die that can be inserted from both ends, and is supplied onto the lower die molding surface. While holding the molding material by the holding means disposed on the lower mold molding surface, the body mold and the lower mold are relatively brought close together so that at least the maximum outer diameter portion of the molding material is After the molding material is inserted into the barrel mold and the molding material is held by the lower mold molding surface and the inner peripheral surface of the barrel mold, the holding means is retracted from the lower mold molding surface, and then the lower mold and The molding material is press-molded between the upper molds.

このような方法にすれば、成形型の内部に成形素材を保持、支承させるための付加的な部材を設けることなく、下型成形面上に供給された成形素材の滑落や、位置ずれを防止し、下型成形面上の適切な位置に配置された状態で成形素材を収容して成形型を組み立てることができ、成形される光学素子に、偏肉や、形状不良が生じることなく、偏心精度を精密、かつ、容易に制御して光学素子を製造することができる。   This method prevents slipping or misalignment of the molding material supplied on the lower mold surface without providing additional members to hold and support the molding material inside the mold. It is possible to assemble the mold by accommodating the molding material in an appropriate position on the lower mold molding surface, and the optical element to be molded is eccentric without causing uneven thickness or shape defect. The optical element can be manufactured by controlling the accuracy precisely and easily.

また前記成形素材の少なくとも最大外径部が前記胴型内に挿入され、前記下型成形面と前記胴型の内周面により前記成形素材が保持された後に、前記下型成形面上から前記保持手段を退避させるようにすることで、保持手段が成形型の組み立ての妨げとならないように、保持手段を下型成形面上から退避させても、下型成形面と胴型の内周面とにより、成形素材をより安定に保持することができる。 In addition , after at least the maximum outer diameter portion of the molding material is inserted into the barrel mold and the molding material is held by the lower mold molding surface and the inner peripheral surface of the barrel mold , from above the lower mold molding surface by so as to retract said retaining means, so that the retention means does not interfere with the assembly of the mold, even retracts the holding means from the lower mold molding surface on the inner circumference of the lower mold molding surface and the body type The surface can hold the molding material more stably.

また、本発明の光学素子の製造方法は、前記成形素材が、円柱形状又は両凸曲面形状とすることができる。そして、前記成形素材が、両凸曲面形状である場合、前記保持手段が、前記成形素材の最大外径部より下側を保持し、最大外径部の周辺に開放空間を確保する方法とすることができる。   In the method for producing an optical element of the present invention, the molding material can be formed into a cylindrical shape or a biconvex curved shape. When the molding material has a biconvex curved shape, the holding means holds the lower side from the maximum outer diameter portion of the molding material and secures an open space around the maximum outer diameter portion. be able to.

このような方法にすれば、保持手段が成形素材の最大外径部に接触せず、最大外径部の周辺に開放空間を確保することができ、成形素材の最大外径部を確実に胴型内に挿入することができる。   According to such a method, the holding means does not contact the maximum outer diameter portion of the molding material, and an open space can be secured around the maximum outer diameter portion, so that the maximum outer diameter portion of the molding material can be reliably secured to the body. Can be inserted into the mold.

また、本発明の光学素子の製造方法は、前記成形素材が収容された状態で組み立てられた前記成形型を、加熱室、プレス室、冷却室を含む複数の処理室に移送し、それぞれの処理室で加熱、プレス、冷却を含む処理を施すことによって、前記成形素材をプレス成形する方法とすることができる。   Further, in the method for manufacturing an optical element of the present invention, the molding die assembled in a state where the molding material is accommodated is transferred to a plurality of processing chambers including a heating chamber, a press chamber, and a cooling chamber. By performing a process including heating, pressing, and cooling in the chamber, the molding material can be press-molded.

このような方法にすれば、多数の成形型を同時に使用しつつ、成形型の昇温や降温を効率良く行い、個々の成形に必要な実質時間(成形サイクルタイム)を短縮することができる。そして、本発明方法において成形型を組み立てるに際しては、成形型に大掛かりな可動部材を設けることなく、下型成形面上に供給された成形素材の滑落や、位置ずれを防止できるので、このような製造方法を好適に用いることができる。   According to such a method, it is possible to efficiently raise and lower the temperature of the molding die while simultaneously using a large number of molding dies, and shorten the actual time (molding cycle time) required for individual molding. And when assembling the mold in the method of the present invention, it is possible to prevent the molding material supplied on the lower mold molding surface from slipping and misalignment without providing a large movable member in the mold. A manufacturing method can be used suitably.

以上のように、本発明によれば、成形型の内部に成形素材を保持、支承させるための付加的な部材を設けることなく、下型成形面上に供給された成形素材の滑落や、位置ずれを防止し、下型成形面上の適切な位置に配置された状態で成形素材を収容して成形型を組み立てることができる。
このため、成形される光学素子に、偏肉や、形状不良が生じることなく、偏心精度を精密、かつ、容易に制御して光学素子を製造することができる。
As described above, according to the present invention, without providing an additional member for holding and supporting the molding material inside the molding die, the sliding of the molding material supplied on the lower molding surface and the position The mold can be assembled by accommodating the molding material in a state of being prevented from being displaced and arranged at an appropriate position on the lower mold molding surface.
For this reason, an optical element can be manufactured by accurately and easily controlling the eccentricity accuracy without causing a thickness deviation or shape defect in the molded optical element.

以下、本発明に係る成形型の組立装置及び光学素子の製造方法の好ましい実施形態について、図面を参照して説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a mold assembly apparatus and an optical element manufacturing method according to the present invention will be described below with reference to the drawings.

[モールドプレス成形型]
まず、本発明に好適に用いられるモールドプレス成形型(以下、単に成形型という)の一例について説明する。ここで、図1は、成形型の概略断面図であり、プレス荷重印加時の状態(図10(11)参照)を示している。また、図8〜図12は、後述する本発明に係る光学素子の製造方法の実施形態における各工程を示す説明図である。
[Mold press mold]
First, an example of a mold press mold (hereinafter simply referred to as a mold) that is preferably used in the present invention will be described. Here, FIG. 1 is a schematic cross-sectional view of the mold, showing a state when a press load is applied (see FIG. 10 (11)). 8-12 is explanatory drawing which shows each process in embodiment of the manufacturing method of the optical element which concerns on this invention mentioned later.

図1に示す成形型は、上型10、下型20、及び胴型30を備えて構成され、上型10と下型20との間で成形素材50をプレス成形する。
図示する例において、胴型30は、成形型を組み立てる際や、プレス成形の際に、上下型10,20を摺動ガイドすることにより、これらの水平方向の相対位置を規制して、上下型10,20の同軸性を確保する。
このため、胴型30と上下型10,20の摺動クリアランスは、要求される光学素子の偏心精度を考慮すると10μm以下、特に、5μm以下とすることが好ましい。上記摺動クリアランスを制御すれば、上下型10,20の成形面11,21間の偏心(シフト:上下型10,20の成形面11,21の水平方向のずれ、ティルト:上下型10,20の軸の傾き)を高精度に抑制できる。
The molding die shown in FIG. 1 includes an upper die 10, a lower die 20, and a body die 30, and press-molds a molding material 50 between the upper die 10 and the lower die 20.
In the example shown in the figure, the body mold 30 is configured so that the upper and lower molds 10 and 20 are slidably guided when assembling the molding mold or press molding, thereby restricting the horizontal relative positions thereof. The coaxiality of 10, 20 is ensured.
For this reason, the sliding clearance between the body mold 30 and the upper and lower molds 10 and 20 is preferably 10 μm or less, particularly 5 μm or less in consideration of the required eccentric accuracy of the optical element. If the sliding clearance is controlled, the eccentricity between the molding surfaces 11 and 21 of the upper and lower molds 10 and 20 (shift: horizontal displacement of the molding surfaces 11 and 21 of the upper and lower molds 10 and 20, tilt: upper and lower molds 10 and 20. Can be suppressed with high accuracy.

図示する成形型では、プレス成形の際に、胴型30内に嵌合された下型20に対して、上型10が胴型30内を摺動ガイドされ、上下型10,20が相対的に接近、離間するように構成されているが、これとは逆に構成することもできる。すなわち、胴型30内に嵌合された上型10に対して、下型20が第一胴型30内を摺動ガイドされるようにしてもよく、上下型10,20が、その同軸性を確保しつつ、相対的に近接、離間するようになっていれば、その具体的な構成は制限されない。   In the illustrated mold, during press molding, the upper mold 10 is slidably guided in the cylinder mold 30 with respect to the lower mold 20 fitted in the cylinder mold 30, and the upper and lower molds 10, 20 are relative to each other. Although it is comprised so that it may approach and space apart, it can also be comprised contrary to this. That is, the lower mold 20 may be slidably guided in the first trunk mold 30 with respect to the upper mold 10 fitted in the trunk mold 30, and the upper and lower molds 10 and 20 are coaxial. The specific configuration is not limited as long as it is relatively close to and away from each other while ensuring the above.

このような胴型30には、上下型10,20が接近、離間するときに、型内外の気圧差によって、上下型10,20の動きが妨げられないようにするための通気孔33,33を設けておくのが好ましい。特に、図示するように、胴型30の内径が変化して段部となっている部位や、胴型30の上端面と上型10の上端面とが、ほぼ同一面上になったときの上型10の成形面11の外縁部と同程度の高さとなる位置に通気孔33を設け、この段部の隙間や、成形素材50と上下型10,20との隙間における体積の増減に対して、成形型内部が常に外圧と等しくなるように、通気孔33を介して雰囲気ガスの導通が行われるようにするのが好ましい。これにより、プレス成形や成形型の組立・分解をスムーズに行えるようになる。   In such a body mold 30, when the upper and lower molds 10, 20 approach and separate from each other, vent holes 33, 33 are provided so that the movement of the upper and lower molds 10, 20 is not hindered by a pressure difference between the inside and outside of the mold. Is preferably provided. In particular, as shown in the drawing, when the inner diameter of the body mold 30 is changed to be a stepped part, or when the upper end surface of the body mold 30 and the upper end surface of the upper mold 10 are substantially on the same plane. A vent hole 33 is provided at a position that is approximately the same height as the outer edge of the molding surface 11 of the upper mold 10, and the volume in the gap between the stepped part and the gap between the molding material 50 and the upper and lower molds 10, 20 is increased or decreased. Thus, it is preferable that the atmospheric gas is conducted through the vent hole 33 so that the inside of the mold is always equal to the external pressure. This makes it possible to smoothly perform press molding and assembly / disassembly of the mold.

上型10は、下型20と対向する下面に成形面11が形成されている。図1に示す例において、成形面11は、凸面となっているが、凹面又は平面であってもよい。また、上型10の上部には、成形面11より径の大きいフランジ部12が形成されており、このフランジ部12が、胴型30の上部に形成された大径内周部31に収容される。   The upper mold 10 has a molding surface 11 formed on the lower surface facing the lower mold 20. In the example shown in FIG. 1, the molding surface 11 is a convex surface, but may be a concave surface or a flat surface. Further, a flange portion 12 having a diameter larger than that of the molding surface 11 is formed at the upper portion of the upper mold 10, and this flange portion 12 is accommodated in a large-diameter inner peripheral portion 31 formed at the upper portion of the body mold 30. The

このとき、上型10の上面と、胴型30の上面とが同一面となったときに、上型10に形成されたフランジ部12の下面と、胴型30に形成された小径内周部32の上端との間には、所定寸法以上の隙間Gが確保されるようにするのが好ましい。このような隙間Gを確保することにより、プレス成形の際に、上型10を、その上面が胴型30の上面と一致するまで押し込んで、いったん成形体15の肉厚を決めた後であっても、成形体51に必要な荷重(上型10の自重のみでもよい)を付与し続けることができ、成形体51の熱収縮に追従した上型10の下降を許容することができる(図10(11),(12)参照)。   At this time, when the upper surface of the upper mold 10 and the upper surface of the trunk mold 30 are flush with each other, the lower surface of the flange portion 12 formed on the upper mold 10 and the small-diameter inner peripheral section formed on the trunk mold 30 It is preferable that a gap G having a predetermined dimension or more is secured between the upper end of 32. By securing such a gap G, the upper die 10 is pushed in until the upper surface of the upper die 10 coincides with the upper surface of the barrel die 30 during press molding, and the thickness of the molded body 15 is once determined. However, it is possible to continue to apply the necessary load (only the weight of the upper mold 10 may be applied) to the molded body 51 and to allow the upper mold 10 to descend following the thermal contraction of the molded body 51 (FIG. 10 (11), (12)).

また、下型20の上型10と対向する上面には、凸面を有する成形面21が形成されている。さらに、下型20の下部には、成形面21より径の大きいフランジ部22が形成されている。プレス成形の際に、このフランジ部22の上面に胴型30の下面が当接し、かつ、プレス圧によって互いに密着されることにより、下型20と胴型30の相互位置が高精度に画定され、これによってもティルトが抑制される。   A molding surface 21 having a convex surface is formed on the upper surface of the lower mold 20 facing the upper mold 10. Further, a flange portion 22 having a diameter larger than that of the molding surface 21 is formed at the lower portion of the lower mold 20. At the time of press molding, the lower surface of the barrel die 30 is brought into contact with the upper surface of the flange portion 22 and is brought into close contact with each other by the press pressure, whereby the mutual position of the lower die 20 and the barrel die 30 is defined with high accuracy. This also suppresses the tilt.

このような成形型において、上型10、下型20、及び胴型30の素材には特に制限はない。炭化ケイ素、ケイ素、窒化ケイ素、炭化タングステン、酸化アルミニウムや炭化チタンのサーメット又は、これらの表面にダイヤモンド、耐熱金属、貴金属合金、炭化物、窒化物、硼化物、酸化物などを被覆したものを挙げることができる。
また、上下型10,20の成形面11、21には、ガラスの融着を防止するために、非晶質及び/又は結晶質のグラファイト及び/又はダイヤモンドの単一成分層又は混合層からなる炭素膜、又は貴金属合金による離型膜などを用いることが好ましい。
In such a mold, there are no particular restrictions on the materials of the upper mold 10, the lower mold 20, and the body mold 30. List cermets of silicon carbide, silicon, silicon nitride, tungsten carbide, aluminum oxide or titanium carbide, or those coated with diamond, refractory metal, noble metal alloy, carbide, nitride, boride, oxide, etc. Can do.
Further, the molding surfaces 11 and 21 of the upper and lower molds 10 and 20 are composed of a single component layer or a mixed layer of amorphous and / or crystalline graphite and / or diamond in order to prevent glass fusion. It is preferable to use a carbon film or a release film made of a noble metal alloy.

[成形型の組立装置]
次に、本発明に係る成形型の組立装置(以下、単に組立装置という)の実施形態について、図1に示す成形型を組み立てる例を挙げて説明する。ここで、図2は、本実施形態に係る組立装置により、図1に示す成形型を組み立てる例の一工程を示しており、図2(a),(b)のそれぞれは、図9(5),(6)に対応する。
[Molding die assembly equipment]
Next, an embodiment of a mold assembly apparatus (hereinafter simply referred to as an assembly apparatus) according to the present invention will be described with reference to an example of assembling the mold shown in FIG. Here, FIG. 2 shows one process of an example of assembling the mold shown in FIG. 1 by the assembling apparatus according to the present embodiment. Each of FIGS. 2 (a) and 2 (b) is shown in FIG. ), (6).

本実施形態における組立装置は、成形素材50を下型20の成形面21上に供給しながら成形型を組み立てるためのものであり、成形型の組み立て時に胴型30と下型20とを相対的に近接させることによって、胴型30に下型20を組み込むことができ、また、プレス成形後に、成形型を分解してプレス成形された成形体51を取り出すときには、胴型30と下型20とを相対的に離間させることにより、胴型30から下型20を抜き出すことができるように構成される。   The assembling apparatus in the present embodiment is for assembling a molding die while supplying the molding material 50 onto the molding surface 21 of the lower die 20, and the body die 30 and the lower die 20 are relatively moved when the molding die is assembled. The lower mold 20 can be incorporated into the body mold 30 by bringing them close to each other. When the molded body 51 is taken out by disassembling the mold after press molding, the body mold 30 and the lower mold 20 The lower mold 20 can be extracted from the body mold 30 by relatively separating them.

図示する例では、成形型を組み立てるにあたり、上型10を予め胴型30に組み込んである。そして、上型10が込み込まれた状態で、胴型30の位置を保持手段80により固定し、昇降可能に構成された載置台70の上に載置された下型20が(図2(a)参照)、載置台70が昇降することによって、胴型30に対して載置台70ごと近接、離間するようにしてある(図2(b)参照)。
このとき、載置台70には、下型20を載置する面に開口部71を設けておき、この開口部71から雰囲気ガスを吸引することにより、載置台70上に下型20を密着、固定するように構成し、下型20が載置台70上で位置ずれを起こさないようにするのが好ましい。
In the example shown in the figure, the upper die 10 is incorporated in the body die 30 in advance when assembling the forming die. Then, in a state where the upper mold 10 is inserted, the position of the body mold 30 is fixed by the holding means 80, and the lower mold 20 mounted on the mounting table 70 configured to be movable up and down (FIG. 2 ( a)), the mounting table 70 is moved up and down, so that the mounting table 70 approaches and moves away from the body mold 30 (see FIG. 2B).
At this time, the mounting table 70 is provided with an opening 71 on the surface on which the lower mold 20 is mounted, and the lower mold 20 is brought into close contact with the mounting table 70 by sucking atmospheric gas from the opening 71. It is preferable to configure so that the lower mold 20 is not displaced on the mounting table 70.

本実施形態において、載置台70を昇降させるための駆動手段、すなわち、胴型30と下型20とを相対的に近接、離間させるための駆動手段(第一駆動手段)としては、胴型30と下型20との水平方向の位置関係を維持しつつ、載置台70を鉛直方向に沿って上下動させることができるものであれば特に制限されない。
例えば、油圧シリンダーやエアシリンダーなどにより載置台70を昇降させる昇降機構、又は、ねじ軸の回転により、その回転運動を直線運動に変換して載置台70を昇降させる昇降機構などを適宜採用することができる。
In the present embodiment, as the driving means for raising and lowering the mounting table 70, that is, as the driving means (first driving means) for moving the body mold 30 and the lower mold 20 relatively close to each other, the body mold 30 is used. There is no particular limitation as long as the mounting table 70 can be moved up and down along the vertical direction while maintaining the horizontal positional relationship between the lower mold 20 and the lower mold 20.
For example, a lifting mechanism that lifts and lowers the mounting table 70 using a hydraulic cylinder, an air cylinder, or the like, or a lifting mechanism that lifts and lowers the mounting table 70 by converting the rotational motion into a linear motion by rotating a screw shaft, etc. Can do.

本実施形態では、胴型30の位置を固定しておき、胴型30に対して下型20が近接、離間するように構成された例を挙げるが、これとは逆に、下型20の位置を固定し、保持手段80を昇降させるなどして、下型20に対して胴型30が近接、離間するように構成することもできる。
このように、本発明における第一駆動手段の具体的な構成は、胴型30と下型20とを相対的に近接、離間することができるものであれば、上記した例に限られない。
In the present embodiment, the position of the body mold 30 is fixed and the lower mold 20 is configured to approach and separate from the body mold 30, but conversely, The body mold 30 can be configured to approach and separate from the lower mold 20 by fixing the position and moving the holding means 80 up and down.
Thus, the specific configuration of the first drive means in the present invention is not limited to the above example as long as the body mold 30 and the lower mold 20 can be relatively close to each other and separated from each other.

また、本実施形態における組立装置は、成形型を組み立てるに際して、下型20の成形面21上に成形素材50を供給するための供給手段を備える。
供給手段は、例えば、先端に吸着パッド61を備えた搬送アーム60などとすることができるが(図8(3),(4)参照)、所定範囲内の位置精度で、下型20の成形面21上に成形素材50を供給することができるものであれば、その具体的な構成は特に制限されない。
Further, the assembling apparatus according to the present embodiment includes supply means for supplying the molding material 50 onto the molding surface 21 of the lower mold 20 when assembling the molding die.
The supply means can be, for example, a transfer arm 60 provided with a suction pad 61 at the tip (see FIGS. 8 (3) and (4)), but molding the lower mold 20 with a positional accuracy within a predetermined range. The specific configuration is not particularly limited as long as the molding material 50 can be supplied onto the surface 21.

さらに、本実施形態における組立装置は、供給された成形素材50を、下型20の成形面21上で保持する保持手段としての保持部材40を備える。
保持部材40は、下型20の成形面21上に供給された成形素材50を安定に保持し(図2(a)参照)、成形素材50の滑落や、位置ずれを防止するためのものである。そして、成形型を組み立てるに際し、胴型30と下型20とが近接して両者が所定の位置関係になるまで、下型20との相対的な位置関係を維持しつつ、下型20の成形面21上で成形素材50を保持し続ける機能を有する(図2(b)参照)。図2に示す例では、胴型30と下型20とが近接して、成形素材50の一部が胴型30内に挿入され、下型20の成形面21と胴型30の内周面により成形素材50が保持された状態となるまで、成形素材50が保持部材40に保持されるようにしてある。
Furthermore, the assembling apparatus in the present embodiment includes a holding member 40 as a holding unit that holds the supplied molding material 50 on the molding surface 21 of the lower mold 20.
The holding member 40 stably holds the molding material 50 supplied on the molding surface 21 of the lower mold 20 (see FIG. 2A), and prevents the molding material 50 from slipping or shifting. is there. Then, when assembling the mold, the lower mold 20 is molded while maintaining the relative positional relationship with the lower mold 20 until the body mold 30 and the lower mold 20 come close to each other and the two are in a predetermined positional relationship. It has a function of continuing to hold the molding material 50 on the surface 21 (see FIG. 2B). In the example shown in FIG. 2, the trunk mold 30 and the lower mold 20 are close to each other, and a part of the molding material 50 is inserted into the trunk mold 30, and the molding surface 21 of the lower mold 20 and the inner peripheral surface of the trunk mold 30. Thus, the molding material 50 is held by the holding member 40 until the molding material 50 is held.

保持部材40は、例えば、図3に示すように、先端部分に保持部41を備えた一対のアーム45,45からなるものとすることができるが、上記機能を有するものであれば、保持部材40の具体的な構成は特に制限されない。
図示する例において、保持部材40は、下型20の成形面21とほぼ等しい水平面上で、アーム45,45が互いに近接、離間することにより、保持部41を開閉できるように構成されている。そして、保持部材40は、アーム45,45を互いに近接させて保持部41を閉じることにより、下型20の成形面21上で、成形素材50を挟むように保持することができるようになっている。また、保持部材40は、アーム45,45を離間させて保持部41を開くことにより、成形素材50の保持を解除するとともに、胴型30と下型20との間から退避できるようになっている。
なお、保持部材40は、載置台70に取り付けることにより、下型20との相対的な位置関係を維持させることができる。また、図3では、閉じた状態の保持部41を破線で示している。
For example, as shown in FIG. 3, the holding member 40 can be composed of a pair of arms 45 and 45 each having a holding portion 41 at the distal end portion. The specific configuration of 40 is not particularly limited.
In the illustrated example, the holding member 40 is configured to be able to open and close the holding portion 41 by moving the arms 45 and 45 close to and away from each other on a horizontal plane substantially equal to the molding surface 21 of the lower mold 20. And the holding member 40 comes to be able to hold | maintain the shaping | molding raw material 50 on the shaping | molding surface 21 of the lower mold | type 20 by closing the holding | maintenance part 41 by making the arms 45 and 45 adjoin each other. Yes. Further, the holding member 40 releases the holding of the molding material 50 by separating the arms 45, 45 and opening the holding portion 41, and can be retracted from between the body mold 30 and the lower mold 20. Yes.
The holding member 40 can be maintained in a relative positional relationship with the lower mold 20 by being attached to the mounting table 70. Moreover, in FIG. 3, the holding | maintenance part 41 of the closed state is shown with the broken line.

保持部材40に成形素材50を保持させるにあたっては、保持部41を閉じた状態で、下型20の成形面21上に保持部材40を待機させ、搬送アーム60により成形素材50を保持部41に載置することにより、成形素材50を保持部材40に保持させるようにすることができる。また、搬送アーム60により下型20の成形面21上に供給された成形素材50に対し、搬送アーム60に保持された状態を維持したまま、成形素材50を対向方向から挟むようにして保持部41を閉じて、保持部材40により成形素材50を保持した後に、又は、保持部材40により成形素材50を保持するのと同時に、搬送アーム60による保持を解除するようにしてもよい。   When holding the molding material 50 on the holding member 40, the holding member 40 is put on standby on the molding surface 21 of the lower mold 20 with the holding unit 41 closed, and the molding material 50 is held on the holding unit 41 by the transfer arm 60. By mounting, the molding material 50 can be held by the holding member 40. Further, the holding portion 41 is held so as to sandwich the molding material 50 from the opposite direction while maintaining the state held by the conveyance arm 60 with respect to the molding material 50 supplied onto the molding surface 21 of the lower mold 20 by the conveyance arm 60. The holding by the transfer arm 60 may be released after closing and holding the molding material 50 by the holding member 40 or simultaneously with holding the molding material 50 by the holding member 40.

本実施形態において、保持部41を開閉するための駆動手段、すなわち、保持部材40による成形素材50の保持、及び保持部材40の退避を行うための駆動手段(第二駆動手段)には、例えば、リニアモーター、ステッピングモーターなどを利用することができるが、胴型30と下型20とを相対的に近接、離間させるための第一駆動手段と同期して、胴型30と下型20とが所定の位置関係となったときに、保持部材40が胴型30と下型20との間から退避するように、任意の制御手段により制御できるものであれば、特に制限されない。   In the present embodiment, the driving means for opening and closing the holding portion 41, that is, the driving means (second driving means) for holding the molding material 50 by the holding member 40 and for retracting the holding member 40 are, for example, A linear motor, a stepping motor, or the like can be used, but in synchronization with the first driving means for moving the body mold 30 and the lower mold 20 relatively close to each other, the body mold 30 and the lower mold 20 are Is not particularly limited as long as the holding member 40 can be controlled by an arbitrary control means so that the holding member 40 is retracted from between the body mold 30 and the lower mold 20.

ここで、第一駆動手段と第二駆動手段とを同期させて制御する例について説明する。図13は、制御手段の一例を示すブロック図であり、制御手段100は、第一駆動手段110と第二駆動手段120の駆動を制御する制御部101と、検知部102とを備える。   Here, an example in which the first driving means and the second driving means are controlled in synchronization will be described. FIG. 13 is a block diagram illustrating an example of the control unit. The control unit 100 includes a control unit 101 that controls driving of the first drive unit 110 and the second drive unit 120, and a detection unit 102.

図示する制御手段において、成形素材50が保持部材40に保持されると(図9(5)参照)、成形型の組み立てを開始させるためのスタート信号が制御部101に入力される。スタート信号が入力されると、制御部101が、第一駆動手段110を駆動することにより、載置台70が上昇を開始する。載置台70の位置は、検知部102により検知され、胴型30と下型20とが、予め設定された位置関係となるまで、載置台70が上昇する。そして、胴型30と下型20とが所定の位置関係となるまで載置台70が上昇したときに、検知部102は制御部101に対して検知信号を出力する。検知信号が入力された制御部101は、第一駆動手段110の駆動を停止し、載置台70の上昇を中断する(図9(6)参照)。一方、制御部101は、第二駆動手段120を駆動して、保持部材40による成形素材50の保持を解除するとともに、保持部材40を退避させる(図9(7)参照)。   In the illustrated control means, when the molding material 50 is held by the holding member 40 (see FIG. 9 (5)), a start signal for starting assembly of the molding die is input to the control unit 101. When the start signal is input, the control unit 101 drives the first driving unit 110, so that the mounting table 70 starts to rise. The position of the mounting table 70 is detected by the detection unit 102, and the mounting table 70 is raised until the body mold 30 and the lower mold 20 have a preset positional relationship. Then, when the mounting table 70 is raised until the body mold 30 and the lower mold 20 are in a predetermined positional relationship, the detection unit 102 outputs a detection signal to the control unit 101. The control unit 101 to which the detection signal is input stops driving the first drive unit 110 and interrupts the ascent of the mounting table 70 (see FIG. 9 (6)). On the other hand, the control unit 101 drives the second driving unit 120 to release the holding of the molding material 50 by the holding member 40 and retract the holding member 40 (see FIG. 9 (7)).

検知部102が、保持部材40の退避が完了したのを検知すると、検知信号が制御部101に対して出力され、検知信号が入力された制御部101は、第二駆動手段120の駆動を停止する。一方、制御部101は、第一駆動手段110を再び駆動し、載置台70をさらに上昇させる。下型20が胴型30に組み込まれると、検知部102が制御部101に対して検知信号を出力し、検知信号が入力された制御部101は、第一駆動手段110の駆動を停止して、載置台70の上昇を止める(図9(8)参照)。
これによって、成形型の組み立てが完了する。
When the detection unit 102 detects that the retraction of the holding member 40 is completed, a detection signal is output to the control unit 101, and the control unit 101 to which the detection signal is input stops driving the second drive unit 120. To do. On the other hand, the control unit 101 drives the first driving unit 110 again to further raise the mounting table 70. When the lower mold 20 is incorporated into the body mold 30, the detection unit 102 outputs a detection signal to the control unit 101, and the control unit 101 to which the detection signal is input stops driving the first drive unit 110. Then, the rising of the mounting table 70 is stopped (see FIG. 9 (8)).
Thereby, the assembly of the mold is completed.

本発明に用いる成形素材50の材料には特に制限はなく、例えば、ガラスプリフォームなどのガラス素材とすることができる。そして、成形素材50の形状は、例えば、ブロック状の光学ガラスを、切断、研磨して、円柱形状、球形状などに加工(冷間加工)したもの、又は、溶融状態から受け型上に滴下、又は流下することによって、球状、両凸曲面形状などに予備成形(熱間成形)したものとすることができる。本発明においては、冷間加工した円柱形状のガラス素材、熱間成形した両凸曲面形状のガラス素材、又は、熱間成形の後に、さらに熱間で平面又は凹面を加工するなどの予備成形をしたガラス素材が好ましい。   There is no restriction | limiting in particular in the material of the shaping | molding raw material 50 used for this invention, For example, it can be set as glass raw materials, such as a glass preform. The shape of the molding material 50 is, for example, a block-shaped optical glass cut and polished and processed into a cylindrical shape, a spherical shape, etc. (cold processing), or dropped from a molten state onto a receiving mold. Alternatively, it can be preliminarily molded (hot molded) into a spherical shape, a biconvex curved surface shape, or the like by flowing down. In the present invention, a cold-worked columnar glass material, a hot-formed biconvex curved glass material, or a pre-molding such as processing a flat or concave surface further hot after hot forming. Preferred glass material.

また、成形素材50の径は、得ようとする成形体51の径(胴型30の内径)より小さいことが必要であり、わずかに小さいことが好ましい。このようにすると、成形型内に収容された成形素材50が、下型20上で大きく偏在することがないため、プレス成形時に偏肉が生じにくくなる。具体的には、例えば、得ようとする成形体51の径に対し、90〜99%のものが好ましい。
なお、成形型から取り出された成形体51は、芯取り加工(成形体の外周を切除するとともに、外径中心を光学的な中心と一致させる)を行うこともできるが、生産効率上、芯取り加工を行わずにそのまま最終光学素子の形状とするのが好ましい。
Further, the diameter of the molding material 50 needs to be smaller than the diameter of the molded body 51 to be obtained (the inner diameter of the body mold 30), and is preferably slightly smaller. If it does in this way, since the molding material 50 accommodated in the shaping | molding die will not be unevenly distributed on the lower mold | type 20, it will become difficult to produce uneven thickness at the time of press molding. Specifically, for example, 90 to 99% of the diameter of the molded body 51 to be obtained is preferable.
The molded body 51 taken out from the mold can be centered (the outer periphery of the molded body is cut off and the center of the outer diameter coincides with the optical center). It is preferable that the shape of the final optical element is made as it is without performing the machining.

保持部材40は、このような成形素材50の形状や寸法などを考慮して設計されるが、例えば、図2に示すように、成形素材50が円柱形状の場合には、成形素材50の保持される部位の垂直断面形状にあわせて、保持部41に段部42を設け、この段部42により成形素材50の下面側の外周縁部に沿った底面と側面とを支承することによって、成形素材50を保持部材40に保持させるのが好ましい。また、図4に示すように、成形素材50が両凸曲面形状の場合には、保持部41の先端に、成形素材50の保持される面に倣った形状のテーパ43を設け、成形素材50を水平に保持しやすくすることもできる。   The holding member 40 is designed in consideration of the shape and size of the molding material 50. For example, as shown in FIG. 2, when the molding material 50 is cylindrical, the holding member 40 is held. In accordance with the vertical cross-sectional shape of the portion to be formed, the holding portion 41 is provided with a step portion 42, and the step portion 42 supports the bottom surface and the side surface along the outer peripheral edge portion on the lower surface side of the molding material 50. The material 50 is preferably held by the holding member 40. As shown in FIG. 4, when the molding material 50 has a biconvex curved shape, a taper 43 having a shape following the surface on which the molding material 50 is held is provided at the tip of the holding portion 41. Can be easily held horizontally.

このように、保持部41は、成形素材50の保持される部位の形状に応じて、段部42やテーパ43などを設けることにより、成形素材50を保持しやすい形状とし、面接触によって成形素材50をより安定に保持できるようにするのが好ましいが、このような段部42やテーパ43を設けずに、角部によって、実質的に線接触により成形素材50を保持するような形状であってもよい。また、図示する例では、成形素材50を、その全周にわたって保持するようにしているが、成形素材50を安定に保持できる限り、保持部41の形状は、例えば、成形素材50と接触する部位が、周方向に沿って等間隔に離間して設けられたものであってもよい。   As described above, the holding portion 41 is formed in a shape that can easily hold the molding material 50 by providing the stepped portion 42, the taper 43, and the like according to the shape of the portion where the molding material 50 is held. It is preferable to hold the molding material 50 more stably. However, the stepped portion 42 and the taper 43 are not provided, and the shape is such that the molding material 50 is held substantially by line contact with the corner portion. May be. Further, in the illustrated example, the molding material 50 is held over the entire circumference. However, as long as the molding material 50 can be stably held, the shape of the holding portion 41 is, for example, a part that contacts the molding material 50. However, it may be provided at regular intervals along the circumferential direction.

また、保持部材40の厚みは、保持部材40の強度や剛性などを考慮して、供給された成形素材50を保持、支承するのに十分なものであればよいが、保持部材40の厚みが大きすぎると、次のような不具合が生じるおそれがある。
例えば、成形素材50が円柱形状の場合、保持部41に設ける段部の形状にもよるが、成形素材50の側面を支承する部分の面積が大きくなり、これに対して、成形素材50の側面における胴型30の内周面と接触できる部分の面積が相対的に小さくなると、下型20の成形面21と胴型30の内周面による成形素材50の保持が安定しなくなる傾向があるという不具合や、保持部材40が、下型20の成形面21と干渉するという不具合が生じるおそれがある。
このため、保持部材40の最大厚みは、成形素材50の厚みの半分以下とするのが好ましい。
Further, the thickness of the holding member 40 may be sufficient to hold and support the supplied molding material 50 in consideration of the strength and rigidity of the holding member 40, but the thickness of the holding member 40 is not limited. If it is too large, the following problems may occur.
For example, when the molding material 50 has a cylindrical shape, the area of the portion that supports the side surface of the molding material 50 becomes larger, depending on the shape of the step provided in the holding portion 41, whereas the side surface of the molding material 50 is increased. If the area of the portion that can come into contact with the inner peripheral surface of the body mold 30 is relatively small, the holding of the molding material 50 by the molding surface 21 of the lower mold 20 and the inner peripheral surface of the body mold 30 tends to become unstable. There is a possibility that a defect or a problem that the holding member 40 interferes with the molding surface 21 of the lower mold 20 may occur.
For this reason, it is preferable that the maximum thickness of the holding member 40 is not more than half the thickness of the molding material 50.

また、成形素材50が、両凸曲面形状の場合には、成形素材50の最大外径部よりも下型20側の位置で、保持部41に保持させるのが好ましい(図4参照)。成形素材50を保持する位置をこのようにすることで、保持部41が成形素材50の最大外径部に接触せず、最大外径部の周辺に開放空間を確保することができる。
これにより、胴型30と下型20とが近接することによって、胴型30内に成形素材50が挿入される際に、成形素材50の最大外径部が、確実に胴型30内に挿入され、保持部40による成形素材50の保持が解除されても、下型20の成形面21と胴型30の内周面とにより、成形素材50を安定に保持することができる。
Further, when the molding material 50 has a biconvex curved shape, it is preferably held by the holding portion 41 at a position closer to the lower mold 20 than the maximum outer diameter portion of the molding material 50 (see FIG. 4). By setting the position for holding the molding material 50 in this way, the holding portion 41 does not contact the maximum outer diameter portion of the molding material 50, and an open space can be secured around the maximum outer diameter portion.
Thereby, when the molding material 50 is inserted into the trunk mold 30 due to the proximity of the trunk mold 30 and the lower mold 20, the maximum outer diameter portion of the molding material 50 is reliably inserted into the trunk mold 30. Even if the holding of the molding material 50 by the holding unit 40 is released, the molding material 50 can be stably held by the molding surface 21 of the lower mold 20 and the inner peripheral surface of the barrel mold 30.

本実施形態において、保持部材40を胴型30と下型20との間から退避させるタイミングは、図2(b)や図4(b)に示すように、成形素材50の一部(成形素材50の形状が両凸曲面形状の場合には、成形素材50の最大外径部)が胴型30内に挿入され、下型20の成形面21と胴型30の内周面により成形素材50が保持された状態となったときに、アーム45,45を互いに離間する方向に駆動させ、成形素材50の保持を解除するのと同時に、保持部材40の退避が開始されるようにしてもよいが、次のようなタイミングで保持部材40を退避させることもできる。   In the present embodiment, the timing for retracting the holding member 40 from between the body mold 30 and the lower mold 20 is a part of the molding material 50 (molding material as shown in FIG. 2B and FIG. 4B). When the shape of 50 is a biconvex curved surface shape, the maximum outer diameter portion of the molding material 50) is inserted into the body mold 30, and the molding material 50 is formed by the molding surface 21 of the lower mold 20 and the inner peripheral surface of the cylinder mold 30. When the state is held, the arms 45 and 45 are driven in a direction away from each other to release the holding of the molding material 50 and at the same time, the retraction of the holding member 40 may be started. However, the holding member 40 can be retracted at the following timing.

すなわち、例えば、図5に示すように、図4(b)に示す状態から、下型20と保護部材40との相対的な位置関係を維持しつつ、さらに胴型30と下型20とを近接させることにより、胴部30の下面に当接した保持部材40が、下型20に対して相対的に押し下げられ、これによって、保持部材40による成形素材50の保持が解除された後に、保持部材40を退避させるようにしてもよい。   That is, for example, as shown in FIG. 5, while maintaining the relative positional relationship between the lower mold 20 and the protection member 40 from the state shown in FIG. By holding them close, the holding member 40 that is in contact with the lower surface of the body portion 30 is pushed down relative to the lower mold 20, and thus the holding of the molding material 50 by the holding member 40 is released and then held. The member 40 may be retracted.

保持部材40が退避するタイミングをこのようにすれば、成形素材50のより多くの部分が胴型30内に挿入された状態で、保持部材40による成形素材50の保持が解除されることとなり、下型20の成形面21と胴型30の内周面による成形素材50の保持を、より安定なものとすることができる。   If the timing at which the holding member 40 is retracted in this way, the holding of the molding material 50 by the holding member 40 is released in a state where a larger portion of the molding material 50 is inserted into the body mold 30. The holding of the molding material 50 by the molding surface 21 of the lower mold 20 and the inner peripheral surface of the body mold 30 can be made more stable.

例えば、成形素材50が両凸曲面形状の場合、保持部材40を退避させる際に、より確実に、成形素材50の最大外径部が胴型30内に挿入された状態とすることができる。また、図5に示す例では、成形素材50を両凸曲面形状としているが、成形素材50が円柱形状の場合にもこのような態様は有効である。この場合には、特に図示しないが、保持部材40を退避させる際に、成形素材50の全体が胴型30内に挿入された状態とすることができる。   For example, when the molding material 50 has a biconvex curved shape, the maximum outer diameter portion of the molding material 50 can be more reliably inserted into the body die 30 when the holding member 40 is retracted. In the example shown in FIG. 5, the molding material 50 has a biconvex curved shape, but such a mode is also effective when the molding material 50 has a cylindrical shape. In this case, although not particularly illustrated, when the holding member 40 is retracted, the entire molding material 50 can be inserted into the body mold 30.

ここで、図6、下型20と上型10とで狭持することによって成形素材50を保持する例を示す参考図である。 Here , FIG. 6 is a reference diagram showing an example in which the molding material 50 is held by being held between the lower mold 20 and the upper mold 10 .

以上のような保持部材40の素材には、例えば、樹脂、又はSUS、アルミニウムなどの金属を用いることができる。また、成形素材50は、予熱してから成形型に供給することもできるが、このとき、保持部材40に樹脂を用いる場合には、成形素材50の予熱温度を考慮して、200℃程度の耐熱性のものを選択するのが好ましい。また、保持部材40には、成形素材50との接触部分(例えば、保持部41)に、適宜、融着防止のためのコーティングを施してもよい。   For the material of the holding member 40 as described above, for example, a resin or a metal such as SUS or aluminum can be used. In addition, the molding material 50 can be preheated and then supplied to the molding die. At this time, in the case where a resin is used for the holding member 40, in consideration of the preheating temperature of the molding material 50, the molding material 50 is about 200 ° C. It is preferable to select a heat-resistant one. In addition, the holding member 40 may be appropriately coated on the contact portion with the molding material 50 (for example, the holding portion 41) to prevent fusion.

[モールドプレス成形装置]
次に、本発明に係る光学素子の製造方法を実施するのに好適なモールドプレス成形装置(以下、単に成形装置という)について説明する。ここで、図7は、このような成形装置の一例として示す回転移送式の成形装置の概略平面図である。
[Mold press molding equipment]
Next, a mold press molding apparatus (hereinafter simply referred to as a molding apparatus) suitable for carrying out the optical element manufacturing method according to the present invention will be described. Here, FIG. 7 is a schematic plan view of a rotary transfer molding apparatus shown as an example of such a molding apparatus.

図7に示す成形装置は、取出・挿入室P1と、周方向に並べて配置された多数の処理室P2〜P8を備えている。
取出・挿入室P1では、成形を終えた成形型の取り出し作業と、新たに成形に供される成形素材を収容した成形型の挿入作業が行われる。取出・挿入室P1から挿入された成形型は、図中矢印方向に回転する回転テーブルに取り付けられた保持台に保持されるなどして、成形素材(又は成形体)を収容した様態で、常時非酸化性ガスの雰囲気(不活性ガス雰囲気)下にある処理室P2〜P8の中を順次通過するようになっている。回転テーブルは、一定時間ごとに間歇的に回転し、この間歇的な回転により、隣設された処理室間を成形型が移動する。そして、この一定時間が、成形サイクルタイムとなる。
The molding apparatus shown in FIG. 7 includes an extraction / insertion chamber P1 and a large number of processing chambers P2 to P8 arranged side by side in the circumferential direction.
In the take-out / insertion chamber P1, an operation of taking out the molding die that has been molded and an operation of inserting a molding die that contains a molding material to be newly used for molding are performed. The molding die inserted from the take-out / insertion chamber P1 is always held in a state in which a molding material (or molded body) is accommodated, for example, by being held on a holding table attached to a rotary table that rotates in the direction of the arrow in the figure. It sequentially passes through the processing chambers P2 to P8 under a non-oxidizing gas atmosphere (inert gas atmosphere). The rotary table rotates intermittently at regular intervals, and the mold moves between adjacent processing chambers by this intermittent rotation. And this fixed time becomes a molding cycle time.

ここで、P2は第一加熱室、P3は第二加熱室、P4は第三加熱室(又は均熱室)であり、これらは総称して加熱部ともいう。P5はプレス室であり、加熱部でプレス成形に適した温度とされた成形型へのプレス荷重の印加が行われる。P6は第一徐冷室、P7は第二徐冷室、P8は急冷室であり、これらは総称して冷却部ともいい、プレス荷重が印加された後の成形型の冷却処理が行われる。これらの処理室P2〜P8は、略等間隔に配置されており、それぞれの処理に適した温度に温度制御されるとともに、各処理室内の温度を所定温度に保つために、シャッターS1〜S6によって区画されている。   Here, P2 is a first heating chamber, P3 is a second heating chamber, and P4 is a third heating chamber (or soaking chamber), which are also collectively referred to as a heating unit. P5 is a press chamber, and a press load is applied to a mold set at a temperature suitable for press molding in the heating section. P6 is a first slow cooling chamber, P7 is a second slow cooling chamber, and P8 is a rapid cooling chamber. These are also collectively referred to as a cooling section, and the mold is cooled after a press load is applied. These processing chambers P2 to P8 are arranged at substantially equal intervals, and are controlled to a temperature suitable for each processing, and in order to keep the temperature in each processing chamber at a predetermined temperature, shutters S1 to S6 are used. It is partitioned.

図7に示すような成形装置を用いれば、成形素材(又は成形体)が収容された成形型を、各処理室を順次移送しながら適切な処理を施すことによって、所望の光学素子を効率よく製造することができる。
すなわち、プレス成形に適した温度への成形型の昇温、プレス荷重の印加、その後の冷却処理が、二次元的に配置された各処理室を成形型が通過することによって行われるため、多数の成形型を同時に使用でき、個々の成形に必要な実質時間(成形サイクルタイム)が短縮される。
なお、前述したように、回転テーブルが間歇的に回転し、隣設された処理室間を成形型が移動するのに要する時間が、成形サイクルタイムとなる。
If a molding apparatus as shown in FIG. 7 is used, a desired optical element can be efficiently obtained by subjecting a molding die containing a molding material (or molded body) to appropriate processing while sequentially transporting each processing chamber. Can be manufactured.
That is, since the temperature of the mold is increased to a temperature suitable for press molding, press load is applied, and the subsequent cooling process is performed by the mold passing through each processing chamber arranged two-dimensionally. These molding dies can be used at the same time, and the actual time (molding cycle time) required for each molding is shortened.
As described above, the time required for the rotary table to rotate intermittently and the mold to move between adjacent processing chambers is the molding cycle time.

本発明に係る光学素子の製造方法は、加熱室、プレス室、冷却室などの各処理室に、成形素材(又は成形体)が収容された成形型を移送して、加熱、プレス、冷却を含む適切な処理を順次施す成形装置において好適に実施されるが、このような成形装置の具体的な構成は、上記した例には制限されない。例えば、上記した例では、回転テーブルにより成形型を移送するようにしているが、二次元的(場合によっては三次元的)に配置された各処理室内を所定の時間間隔で通過できるように構成されているものであれば、成形型を移送する手段は特に制限されない。   In the method of manufacturing an optical element according to the present invention, a molding die containing a molding material (or molded body) is transferred to each processing chamber such as a heating chamber, a press chamber, and a cooling chamber, and heating, pressing, and cooling are performed. Although it implements suitably in the shaping | molding apparatus which performs the suitable process including sequentially, the specific structure of such a shaping | molding apparatus is not restrict | limited to the above-mentioned example. For example, in the above-described example, the mold is transferred by the rotary table, but it is configured so that it can pass through each processing chamber arranged two-dimensionally (in some cases three-dimensionally) at a predetermined time interval. If it is what is carried out, the means in particular to transfer a shaping | molding die will not be restrict | limited.

また、各処理室の配置構成は、成形素材の組成や、得ようとする成形体の形状にあわせて、加熱工程や冷却工程を最適化するために適宜変更することができる。例えば、加熱室を四つにしたり、徐冷室を三つにしたりするなどの変更を行うことができる。また、生産効率をさらに向上させるために、加熱室、プレス室、冷却室などをそれぞれ同数連設し、異なる温度条件、異なる加圧条件を要する複数種類のプレス成形を同時並行的に行うようにしてもよい。   Moreover, the arrangement configuration of each processing chamber can be appropriately changed in order to optimize the heating process and the cooling process in accordance with the composition of the molding material and the shape of the molded body to be obtained. For example, changes such as four heating chambers or three annealing chambers can be performed. In order to further improve production efficiency, the same number of heating chambers, press chambers, and cooling chambers are provided in series, and multiple types of press molding that require different temperature conditions and different pressurization conditions are performed simultaneously. May be.

また、生産効率を向上させるためには、例えば、同一の工程に供される複数の保持台が各処理室を同時に通過するようにするなどして、各処理室の中で成形型を複数個ずつ同時に処理することもできる。具体的には、各処理室において、加熱、プレス荷重の印加、冷却処理等の処理が行われるときに、成形型を進行方向に2個以上配列し、それらに対して同時に同じ処理を施すことができる。この場合、プレス室には、進行方向に配列した二以上のプレス手段を設けることが好ましい。   Further, in order to improve production efficiency, for example, a plurality of molds are provided in each processing chamber by, for example, allowing a plurality of holders used in the same process to pass through each processing chamber at the same time. They can be processed simultaneously. Specifically, when processing such as heating, application of a press load, and cooling processing is performed in each processing chamber, two or more molds are arranged in the traveling direction, and the same processing is simultaneously performed on them. Can do. In this case, the press chamber is preferably provided with two or more pressing means arranged in the traveling direction.

[光学素子の製造方法]
次に、本発明に係る光学素子の製造方法の実施形態について、図1に示す成形型を、図7に示す成型装置に適用して実施する例について説明する。ここで、図8は、本実施形態に係る光学素子の製造方法における工程(1)〜(4)を示す説明図、図9は、同工程(5)〜(8)を示す説明図、図10は、同工程(9)〜(12)を示す説明図、図11は、同工程(13)〜(16)を示す説明図、図12は、同工程(17)を示す説明図である。
[Method for Manufacturing Optical Element]
Next, an embodiment in which the molding die shown in FIG. 1 is applied to the molding apparatus shown in FIG. 7 will be described as an embodiment of the optical element manufacturing method according to the invention. Here, FIG. 8 is explanatory drawing which shows process (1)-(4) in the manufacturing method of the optical element which concerns on this embodiment, FIG. 9 is explanatory drawing which shows the said process (5)-(8), figure. 10 is an explanatory view showing the steps (9) to (12), FIG. 11 is an explanatory view showing the steps (13) to (16), and FIG. 12 is an explanatory view showing the steps (17). .

工程(1)〜(5):成形素材供給工程
本実施形態では、胴型30に組み込まれた上型10と、下型20とが離間した状態で(図8(1)参照)、成形素材50を下型20の成形面21上に供給するが、このとき、保持部材40は、下型20の成形面21上で保持部41を閉じて待機する(図8(2)参照)。その一方で、吸着パッド61付の搬送アーム60によって、成形素材(例えば、ガラスプリフォーム)50を吸着保持し、成形面21の上方に搬送する(図8(3)参照)。
そして、吸着パッド61が、所定範囲内の精度で下型20の成形面21上に到達し、保持部材40(保持部41)に成形素材50を載置した後に(図8(4)参照)、その吸着を解除することによって、成形素材50は、保持部材40により保持される(図9(5)参照)。
Process (1)-(5): Molding material supply process In this embodiment, in the state which the upper mold | type 10 incorporated in the trunk | drum 30 and the lower mold | type 20 spaced apart (refer FIG. 8 (1)), a molding material 50 is supplied onto the molding surface 21 of the lower mold 20. At this time, the holding member 40 waits with the holding portion 41 closed on the molding surface 21 of the lower mold 20 (see FIG. 8B). On the other hand, the forming material (for example, glass preform) 50 is sucked and held by the transport arm 60 with the suction pad 61 and transported above the molding surface 21 (see FIG. 8 (3)).
Then, after the suction pad 61 reaches the molding surface 21 of the lower mold 20 with accuracy within a predetermined range, and the molding material 50 is placed on the holding member 40 (holding portion 41) (see FIG. 8 (4)). By releasing the adsorption, the molding material 50 is held by the holding member 40 (see FIG. 9 (5)).

このとき、図示する例では、保持部41に段部42を設け、円柱形状の成形素材50の下面側の外周縁部に沿った底面と側面とを段部42で支承することによって、成形素材50を保持部材40に保持させている。これにより、成形素材50は、滑落したり、位置ずれを生じたりすることなく、下型20の成形面21上に安定に保持される。
また、図示する例において、成形素材50は、円柱形状としてあるが、両凸曲面形状などの凸曲面を有する形状であってもよい。成形素材50が両凸曲面形状の場合、前述したように、成形素材50の最大外径部よりも下型20側の位置で、保持部材40に保持させるのが好ましい(図4参照)。
At this time, in the illustrated example, the holding portion 41 is provided with a stepped portion 42, and the stepped portion 42 supports the bottom surface and the side surface along the outer peripheral edge on the lower surface side of the cylindrical shaped material 50, thereby forming the forming material. 50 is held by the holding member 40. Thereby, the molding material 50 is stably held on the molding surface 21 of the lower mold 20 without sliding down or causing a positional shift.
In the illustrated example, the molding material 50 has a cylindrical shape, but may have a convex curved surface such as a biconvex curved surface shape. When the molding material 50 has a biconvex curved shape, it is preferably held by the holding member 40 at a position closer to the lower mold 20 than the maximum outer diameter portion of the molding material 50 (see FIG. 4).

なお、成形素材50を供給するに際しては、予め吸着パッド61の中心と成形素材50の中心の位置合わせが行われた状態で、かつ、吸着パッド61の中心と下型20の成形面21の中心が実質的に一致した状態で、成形素材50が保持部材40に載置されるように、搬送アーム60の動作を制御するのが好ましく、搬送アーム60は、成形素材50を供給した後に直ちに退避する。また、上型10が組み込まれた胴型30は、保持手段80により、その位置が固定されている。   When the molding material 50 is supplied, the center of the suction pad 61 and the center of the molding material 50 are aligned in advance, and the center of the suction pad 61 and the center of the molding surface 21 of the lower mold 20 are provided. It is preferable to control the operation of the transfer arm 60 so that the molding material 50 is placed on the holding member 40 in a state in which they substantially match, and the transfer arm 60 is retracted immediately after the molding material 50 is supplied. To do. Further, the position of the body mold 30 in which the upper mold 10 is incorporated is fixed by the holding means 80.

工程(6)〜(8):成形型の組立工程
成形素材50が保持部材40に保持されると、胴型30の位置が保持手段80により固定されたまま載置台70が上昇し、保持部材40と下型20との相対的な位置関係を維持しつつ、下型20が胴型30に近接する。
Steps (6) to (8): Mold Assembling Step When the molding material 50 is held by the holding member 40, the mounting table 70 is raised while the position of the body die 30 is fixed by the holding means 80, and the holding member While maintaining the relative positional relationship between the lower mold 20 and the lower mold 20, the lower mold 20 approaches the trunk mold 30.

載置台70が所定量上昇すると、成形素材50の一部が胴型30内に挿入され、成形素材50は、下型20の成形面21と胴型30の内周面とによっても保持される(図9(6)参照)。次いで、保持部材40は、成形素材50の保持を解除し、成形面21上から退避するが、成形素材50は、下型20の成形面21と胴型30の内周面により保持されているため、成形面21から滑落したり、位置ずれが生じたりすることがない(図9(7)参照)。   When the mounting table 70 is raised by a predetermined amount, a part of the molding material 50 is inserted into the trunk mold 30, and the molding material 50 is also held by the molding surface 21 of the lower mold 20 and the inner peripheral surface of the trunk mold 30. (See FIG. 9 (6)). Next, the holding member 40 releases the holding of the molding material 50 and retracts from the molding surface 21, but the molding material 50 is held by the molding surface 21 of the lower mold 20 and the inner peripheral surface of the trunk mold 30. Therefore, it does not slide off from the molding surface 21 or is not displaced (see FIG. 9 (7)).

このとき、成形素材50が円柱形状の場合には、下型20の成形面21と胴型30の内周面による保持を安定なものとするために、成形素材50の厚みをhとするとき、胴型30内に挿入される部分の長さが0.2h以上であるのが好ましい。   At this time, when the molding material 50 has a cylindrical shape, the thickness of the molding material 50 is set to h in order to stabilize the holding by the molding surface 21 of the lower mold 20 and the inner peripheral surface of the body mold 30. The length of the portion inserted into the body mold 30 is preferably 0.2 h or more.

下型20の成形面21上から保持部材40が退避した後、載置台70を、さらに上昇させることにより、胴型30内に下型20が組み込まれる(図9(8)参照)。このとき、胴型30と下型20のクリアランスは、5μm以下とされていることが好ましい。また、予め組み立てられた上型10と胴型30も同様のクリアランスとするのが好ましい。これにより、上下型10,20の成形面11,21間の偏心を高精度に抑制できる。
胴型30内に下型20が組み込まれ、胴型30の下面に下型20のフランジ部22の上面が当接すると、図9(8)に示すように、成形素材50の厚みによって、上型10の上面が、胴型30の上面より高い位置に押し上げられる。
After the holding member 40 is retracted from the molding surface 21 of the lower mold 20, the mounting table 70 is further raised to incorporate the lower mold 20 into the body mold 30 (see FIG. 9 (8)). At this time, the clearance between the body mold 30 and the lower mold 20 is preferably 5 μm or less. Further, it is preferable that the upper mold 10 and the trunk mold 30 assembled in advance have the same clearance. Thereby, the eccentricity between the molding surfaces 11 and 21 of the upper and lower molds 10 and 20 can be suppressed with high accuracy.
When the lower mold 20 is assembled in the body mold 30 and the upper surface of the flange portion 22 of the lower mold 20 abuts on the lower surface of the body mold 30, as shown in FIG. The upper surface of the mold 10 is pushed up to a position higher than the upper surface of the body mold 30.

なお、成形型を組み立てるにあたり、胴型30と下型20とを近接させる第一駆動手段と、保持部材40による成形素材50の保持、及び保持部材40の下型20の成形面21上からの退避を行う第二駆動手段とは、前述したような制御手段により同期させて制御することができる。また、成形型を組み立てるに際しては、載置台70を上昇させるかわりに、保持手段80により上型10及び胴型30を下降させるようにしてもよい。   In assembling the mold, the first driving means for bringing the body mold 30 and the lower mold 20 close to each other, the holding of the molding material 50 by the holding member 40, and the molding surface 21 of the lower mold 20 of the holding member 40 from above. The second drive means for performing retraction can be controlled in synchronization with the control means as described above. Further, when assembling the molding die, the upper die 10 and the barrel die 30 may be lowered by the holding means 80 instead of raising the mounting table 70.

上記の工程(1)〜(8)においては、下型20が載置台70上で位置ずれを起こさないように、載置台70に設けられた開口部71から雰囲気ガスを吸引することにより載置台70上に下型20を密着、固定することができる。また、後述するように、成形型を分解する際に、雰囲気ガスの吸引により載置台70上に下型20を密着、固定し、胴型30から下型20を抜き出した時の位置を維持することで、下型20と胴型30の水平方向の相対位置がずれてしまうのを避けることができる。
なお、上記の工程(1)〜(8)にしたがって、成形素材50を収容して組み立てられた成形型は、図7に示す成形装置において、取出・挿入室P1から成型装置内に挿入されるが、上記の工程(1)〜(8)は、取出・挿入室P1内で行うようにしてもよい。
In the above steps (1) to (8), the mounting table is obtained by sucking the atmospheric gas from the opening 71 provided in the mounting table 70 so that the lower mold 20 does not shift on the mounting table 70. The lower mold 20 can be adhered and fixed on the 70. Further, as will be described later, when the mold is disassembled, the lower mold 20 is brought into close contact with the mounting table 70 by suction of the atmospheric gas, and the position when the lower mold 20 is extracted from the body mold 30 is maintained. Thus, it is possible to avoid the horizontal relative position of the lower mold 20 and the trunk mold 30 from shifting.
In addition, according to said process (1)-(8), the shaping | molding die accommodated and assembled with the shaping | molding raw material 50 is inserted in a shaping | molding apparatus from the taking-out / insertion chamber P1 in the shaping | molding apparatus shown in FIG. However, the above steps (1) to (8) may be performed in the take-out / insertion chamber P1.

工程(9):加熱工程
成形素材50が収容され、成形装置内に挿入された成形型を、回転テーブルに取り付けられた保持台75に保持させるなどして、加熱室P2〜P4に順次移送しつつ、加熱する(図10(9)参照)。これによって、成形型ごと成形素材50をプレス成形に適した温度に昇温する。
このとき、例えば、第一加熱室P2は、成形素材50のプレス温度以上の高温に保ち、成形型及び成形素材50を急速に加熱する。そして、成形素材50が収容された成形型は、第一加熱室P2で所定時間静止した後、回転テーブルの回転に応じて第二加熱室P3に移送される。この第二加熱室P3での加熱により、成形型と成形素材50は、さらに加熱されながら、均熱化されてプレス温度に近づく。次いで、第三加熱室P4で成形型と成形素材50を均熱化して、成形素材50の粘度をプレス成形に適切な10〜10ポアズにするが、好ましくは、成形素材50の温度が、10〜10ポアズの粘度となる温度となるように設定する。
なお、加熱室P2〜P4が備える加熱手段には特に制限はない。例えば、抵抗加熱によるヒータ、高周波誘導コイル等を用いることができる。
Step (9): Heating step The molding material 50 is accommodated and the molding die inserted into the molding apparatus is sequentially transferred to the heating chambers P2 to P4 by holding it on a holding stand 75 attached to a rotary table. While heating (see FIG. 10 (9)). Thus, the temperature of the molding material 50 together with the molding die is raised to a temperature suitable for press molding.
At this time, for example, the first heating chamber P <b> 2 maintains a high temperature equal to or higher than the pressing temperature of the molding material 50 and rapidly heats the molding die and the molding material 50. And the shaping | molding die in which the shaping | molding raw material 50 was accommodated is stopped for a predetermined time in the 1st heating chamber P2, and is transferred to the 2nd heating chamber P3 according to rotation of a turntable. Due to the heating in the second heating chamber P3, the mold and the molding material 50 are further heated and soaked to approach the press temperature. Next, the molding die and the molding material 50 are soaked in the third heating chamber P4 so that the viscosity of the molding material 50 is 10 6 to 10 9 poises suitable for press molding. Preferably, the temperature of the molding material 50 is The temperature is set to a viscosity of 10 6 to 10 8 poise.
In addition, there is no restriction | limiting in particular in the heating means with which the heating chambers P2-P4 are equipped. For example, a heater by resistance heating, a high frequency induction coil, or the like can be used.

工程(10)〜(11):プレス工程
適温になった成形型は、プレス室P5に移送される(図10(10)参照)。プレス室P5では、成形型の上方からプレスヘッド90により、所定圧力(例えば、30〜200Kg/cm)、所定時間(例えば、数十秒)で、成形型にプレス荷重が印加される(図10(11)参照)。
プレスヘッド90の下面が胴型30の上面に当接した時点で成形体51の肉厚が規定され、その後、プレスヘッド90を上昇させてプレス荷重の印加を解除することにより、プレス工程を終了する。
Steps (10) to (11): Pressing Step The mold that has reached an appropriate temperature is transferred to the press chamber P5 (see FIG. 10 (10)). In the press chamber P5, a press load is applied to the mold by a press head 90 from above the mold at a predetermined pressure (for example, 30 to 200 Kg / cm 2 ) and for a predetermined time (for example, several tens of seconds) (see FIG. 10 (11)).
When the lower surface of the press head 90 comes into contact with the upper surface of the body mold 30, the thickness of the molded body 51 is defined, and then the press head 90 is lifted to cancel the application of the press load, thereby completing the pressing process. To do.

工程(12):冷却工程
プレス工程終了後、成形型は徐冷室P6、P7及び急冷室P8に順次移送され、冷却処理が施される(図10(12)参照)。
急冷室P8では、冷却用ガスによる急冷を行うことができ、成形体51がガラス転移点以下の温度となるまで冷却される。このとき、成形型には、上型10のフランジ部12の下面と、胴型30の小径内周部32の上端との間に、前述したような隙間Gを所定の寸法で確保しておくことにより、ガラスの収縮に対して上型10がその自重によって追随することが可能となり、良好な形状精度が得られる。
なお、ガラスの収縮に追随して上型10が降下したとき、上型10のフランジ部12と、胴型30の小径内周部32の上端面との間の隙間Gの間隔は狭くなる。
Step (12): Cooling Step After completion of the pressing step, the molding die is sequentially transferred to the slow cooling chambers P6 and P7 and the quenching chamber P8 and subjected to a cooling process (see FIG. 10 (12)).
In the quenching chamber P8, quenching with a cooling gas can be performed, and the molded body 51 is cooled until the temperature becomes a glass transition point or lower. At this time, in the molding die, the gap G as described above is secured with a predetermined dimension between the lower surface of the flange portion 12 of the upper die 10 and the upper end of the small-diameter inner peripheral portion 32 of the body die 30. Thus, it becomes possible for the upper mold 10 to follow the shrinkage of the glass by its own weight, and good shape accuracy can be obtained.
In addition, when the upper mold | type 10 descend | falls following the shrinkage | contraction of glass, the space | interval of the clearance gap G between the flange part 12 of the upper mold | type 10 and the upper end surface of the small diameter inner peripheral part 32 of the trunk | drum 30 will become narrow.

工程(13)〜(14):成形型の分解工程
成形型が取出・挿入室P1に戻ってくると、成形型は、成型装置外に取り出され、成形型の分解、成形体51の取出し、さらには、新たな成形素材50の供給が行われる。
成形型の分解工程では、成形体51を収容した成形型は、ロボットにより載置台70に移送され(図11(13)参照)、周囲をチャックすることによって位置決めされる。そして、載置台70の開口部71から雰囲気ガスを吸引して、載置台70上に下型20を一体的に保持した上で、載置台70を垂直に下降し、胴型30から下型20を抜き出して、上型10と下型20を離間させる(図11(14)参照)。胴型30から下型20を抜き出すときに、載置台70上に下型20を一体的に保持し、胴型30から下型20を抜き出したときの位置を維持することで、下型20と胴型30の水平方向の相対位置がずれてしまうのを避けることができる。
このとき、前述した成形素材供給工程や、成形型の組立工程と同様に、上型10が組み込まれた胴型30は、保持手段80により、その位置が固定されている。
なお、不活性ガス雰囲気となっていない取出・挿入室P1にあっては、成形型の酸化防止を考慮して、成形型の温度が250℃以下となるように温度制御するのが好ましい。
Steps (13) to (14): Disassembling step of the forming die When the forming die returns to the take-out / insertion chamber P1, the forming die is taken out of the forming apparatus, disassembled the forming die, and taken out of the formed body 51. Further, a new molding material 50 is supplied.
In the step of disassembling the mold, the mold containing the molded body 51 is transferred to the mounting table 70 by the robot (see FIG. 11 (13)) and positioned by chucking the periphery. Then, atmospheric gas is sucked from the opening 71 of the mounting table 70, the lower mold 20 is integrally held on the mounting table 70, the mounting table 70 is lowered vertically, and the lower mold 20 is moved from the trunk mold 30. And the upper mold 10 and the lower mold 20 are separated (see FIG. 11 (14)). When the lower mold 20 is extracted from the body mold 30, the lower mold 20 is integrally held on the mounting table 70, and the position when the lower mold 20 is extracted from the body mold 30 is maintained. It is possible to avoid the horizontal relative position of the trunk mold 30 from shifting.
At this time, the position of the barrel die 30 in which the upper die 10 is incorporated is fixed by the holding means 80, as in the molding material supply step and the molding die assembly step described above.
In the take-out / insertion chamber P1 that is not in an inert gas atmosphere, it is preferable to control the temperature of the mold so that the temperature of the mold becomes 250 ° C. or less in consideration of prevention of oxidation of the mold.

工程(15)〜(17):光学素子の取出し工程
胴型30から下型20を抜き出した後に、搬送アーム60を上下型10,20間に挿入する(図11(15)参照)。そして、先端の吸着パッド61によって成形体51を吸引・吸着し(図11(16)参照)、下型20の成形面21上から成形体51を取り出す(図12(17)参照)。
Steps (15) to (17): Optical Element Removal Step After the lower die 20 is extracted from the body die 30, the transfer arm 60 is inserted between the upper and lower dies 10 and 20 (see FIG. 11 (15)). Then, the molded body 51 is sucked and sucked by the suction pad 61 at the tip (see FIG. 11 (16)), and the molded body 51 is taken out from the molding surface 21 of the lower mold 20 (see FIG. 12 (17)).

これらの工程(1)〜(17)が終了した後は、工程(1)に戻り、上記のサイクルを繰り返すことによって、プレス成形を連続的に行うことができる。   After these steps (1) to (17) are completed, the process can be continuously performed by returning to step (1) and repeating the above cycle.

以上のような本実施形態に係る光学素子の製造方法は、下型20の成形面21上に供給された成形素材50を、下型20の成形面21上に配置された保持部材40により保持しつつ、胴型30と下型20とを近接させることにより、成形素材50の少なくとも一部が胴型30内に挿入された後に、胴型30と下型20との間から保持部材40を退避させ、次いで、下型20と上型10の間で成形素材50をプレス成形するものであるため、成形型の内部に成形素材50を保持、支承させるための付加的な部材を設けることなく、下型20の成形面21上に供給された成形素材50の滑落や、位置ずれを防止し、下型20の成形面21上の適切な位置に配置された状態で成形素材50を収容して成形型を組み立てることができる。   In the optical element manufacturing method according to the present embodiment as described above, the molding material 50 supplied onto the molding surface 21 of the lower mold 20 is held by the holding member 40 disposed on the molding surface 21 of the lower mold 20. However, by bringing the body mold 30 and the lower mold 20 close to each other, the holding member 40 is inserted between the body mold 30 and the lower mold 20 after at least a part of the molding material 50 is inserted into the body mold 30. Since the molding material 50 is press-molded between the lower mold 20 and the upper mold 10 and then, an additional member for holding and supporting the molding material 50 is not provided inside the molding die. The molding material 50 supplied on the molding surface 21 of the lower mold 20 is prevented from slipping and being displaced, and the molding material 50 is accommodated in a state of being arranged at an appropriate position on the molding surface 21 of the lower mold 20. The mold can be assembled.

そして、成形型の内部には付加的な部材を設ける必要がないため、本実施形態において組み立てられる成形型は、上下型10,20と胴型30とが直接接触する構造とすることができる。このため、上下型10,20と胴型30との接触する部分のクリアランスによって、上下型10.20相互の水平方向のずれ(シフト)や、倒れ(ティルト)が制限でき、製造される光学素子の偏心精度を精密、かつ、容易に制御することができる。   And since it is not necessary to provide an additional member in the inside of a shaping | molding die, the shaping | molding die assembled in this embodiment can be made into the structure where the upper-and-lower molds 10 and 20 and the trunk | drum 30 contact directly. For this reason, the horizontal shift (shift) and tilting (tilt) between the upper and lower molds 10.20 can be limited by the clearance of the portion where the upper and lower molds 10, 20 and the body mold 30 are in contact with each other, and the manufactured optical element It is possible to precisely and easily control the eccentricity accuracy.

また、成形型が、加熱室、プレス室、冷却室を含む複数の処理室に移送され、それぞれの処理室で加熱、プレス、冷却を含む処理が施されることによって、成形型の内部に収容した成形素材50がプレス成形されるので、多数の成形型を同時に使用しつつ、成形型の昇温や降温を効率良く行い、個々の成形に必要な実質時間(サイクルタイム)を短縮することができる。そして、本実施形態において成形型を組み立てるに際しては、成形型に大掛かりな可動部材を設けることなく、下型成形面上に供給された成形素材の滑落や、位置ずれを防止できるので、このような製造方法を好適に用いることができる。   In addition, the mold is transferred to a plurality of processing chambers including a heating chamber, a press chamber, and a cooling chamber, and the processing including heating, pressing, and cooling is performed in each processing chamber, so that the mold is accommodated inside the molding die. Since the molded material 50 is press-molded, it is possible to efficiently raise and lower the temperature of the mold while simultaneously using a large number of molds, and shorten the actual time (cycle time) required for individual molding. it can. And when assembling the molding die in this embodiment, it is possible to prevent the molding material supplied on the lower molding surface from slipping or misalignment without providing a large movable member in the molding die. A manufacturing method can be used suitably.

以上、本発明について、好ましい実施形態を示して説明したが、本発明は、上記した実施形態にのみ限定されるものではなく、本発明の範囲で種々の変更実施が可能であることは言うまでもない。   While the present invention has been described with reference to the preferred embodiment, it is needless to say that the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the present invention. .

本発明は、ガラスなどの成形素材を収容して組み立てられた成形型にプレス荷重を印加して、被成形面に対する研削、研磨などの後加工を必要とせずに、レンズなどの光学素子をプレス成形するにあたり、成形素材を供給しつつ成形型を組み立てるための組立装置、及びこの組立装置により組み立てられた成形型を用いて光学素子を製造する方法に適用することができる。   The present invention presses an optical element such as a lens without applying post-processing such as grinding or polishing to a molding surface by applying a pressing load to a mold that contains and assembles a molding material such as glass. In molding, the present invention can be applied to an assembling apparatus for assembling a mold while supplying a molding material, and a method for manufacturing an optical element using a molding die assembled by the assembling apparatus.

本発明に好適に用いられるモールドプレス成形型の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the mold press shaping | molding die suitably used for this invention. 本発明係る成形型の組立装置の一実施形態により、図1に示す成形型を組み立てる例における一工程を示す説明図である。It is explanatory drawing which shows 1 process in the example which assembles the shaping | molding die shown in FIG. 1 with one Embodiment of the assembly apparatus of the shaping | molding die concerning this invention. 保持手段(保持部材)の概略平面図である。It is a schematic plan view of a holding means (holding member). 本発明係る成形型の組立装置の他の実施形態により、図1に示す成形型を組み立てる例における一工程を示す説明図である。It is explanatory drawing which shows 1 process in the example which assembles the shaping | molding die shown in FIG. 1 by other embodiment of the assembly apparatus of the shaping | molding die which concerns on this invention. 本発明係る成形型の組立装置の他の実施形態により、図1に示す成形型を組み立てる他の例における一工程を示す説明図である。It is explanatory drawing which shows 1 process in the other example which assembles the shaping | molding die shown in FIG. 1 by other embodiment of the assembly apparatus of the shaping | molding die which concerns on this invention. 成形素材を上下型で狭持する例を示す参考図である。It is a reference figure which shows the example which clamps a shaping | molding raw material with an upper-lower mold. 本発明に係る光学素子の製造方法を実施するのに好適なモールドプレス成形装置の一例を示す概略平面図である。It is a schematic plan view which shows an example of the mold press molding apparatus suitable for enforcing the manufacturing method of the optical element which concerns on this invention. 本発明に係る光学素子の製造方法の一実施形態における工程(1)〜(4)を示す説明図である。It is explanatory drawing which shows process (1)-(4) in one Embodiment of the manufacturing method of the optical element which concerns on this invention. 本発明に係る光学素子の製造方法の一実施形態における工程(5)〜(8)を示す説明図である。It is explanatory drawing which shows process (5)-(8) in one Embodiment of the manufacturing method of the optical element which concerns on this invention. 本発明に係る光学素子の製造方法の一実施形態における工程(9)〜(12)を示す説明図である。It is explanatory drawing which shows process (9)-(12) in one Embodiment of the manufacturing method of the optical element which concerns on this invention. 本発明に係る光学素子の製造方法の一実施形態における工程(13)〜(16)を示す説明図である。It is explanatory drawing which shows process (13)-(16) in one Embodiment of the manufacturing method of the optical element which concerns on this invention. 本発明に係る光学素子の製造方法の一実施形態における工程(17)を示す説明図である。It is explanatory drawing which shows the process (17) in one Embodiment of the manufacturing method of the optical element which concerns on this invention. 第一駆動手段と第二駆動手段を制御する制御手段の一例を示すブロック図である。It is a block diagram which shows an example of the control means which controls a 1st drive means and a 2nd drive means. 凸面を有する下型成形面上に成形素材を配置した状態を示す説明図である。It is explanatory drawing which shows the state which has arrange | positioned the shaping | molding raw material on the lower mold | type molding surface which has a convex surface.

符号の説明Explanation of symbols

10 上型
11 成形面
20 下型
21 成形面
30 胴型
40 保持部材(保持手段)
50 成形素材
51 成形体
60 搬送アーム
70 載置台
100 制御手段
101 制御部
102 検知部
110 第一駆動手段
120 第二駆動手段
P2 第一加熱室
P3 第二加熱室
P4 第三加熱室
P5 プレス室
P6 第一徐冷室
P7 第二徐冷室
P8 急冷室
10 Upper mold 11 Molding surface 20 Lower mold 21 Molding surface 30 Body mold 40 Holding member (holding means)
50 Molding material 51 Molded body 60 Transfer arm 70 Mounting table 100 Control unit 101 Control unit 102 Detection unit 110 First drive unit 120 Second drive unit P2 First heating chamber P3 Second heating chamber P4 Third heating chamber P5 Press chamber P6 1st annealing chamber P7 2nd annealing chamber P8 Quenching chamber

Claims (8)

凸面を有する成形面が形成された下型と、前記下型成形面との対向面に成形面が形成された上型と、前記下型と前記上型とをそれぞれ両端側から挿入可能とした胴型とを備えた成形型を、成形素材が収容された状態で組み立てるための組立装置であって、
前記胴型と前記下型とを相対的に近接、離間させるための第一駆動手段と、
前記下型成形面上に成形素材を供給する供給手段と、
前記供給手段により供給された前記成形素材を、前記下型成形面上で保持する保持手段と、
前記保持手段による前記成形素材の保持、及び前記保持手段の退避を行うための第二駆動手段と、
前記胴型と前記下型との相対的な近接によって前記成形素材の少なくとも最大外径部が前記胴型内に挿入され、前記下型成形面と前記胴型の内周面により前記成形素材が保持されたときに、前記保持手段を前記下型成形面上から退避させるように前記第二駆動手段を作動させる制御手段と
を備えたことを特徴とするモールドプレス成形型の組立装置。
The lower mold in which the molding surface having the convex surface is formed, the upper mold in which the molding surface is formed on the surface facing the lower mold molding surface, and the lower mold and the upper mold can be inserted from both ends. An assembly apparatus for assembling a mold having a body mold in a state in which a molding material is accommodated,
First driving means for relatively approaching and separating the body mold and the lower mold;
Supply means for supplying a molding material onto the lower mold molding surface;
Holding means for holding the molding material supplied by the supply means on the lower mold forming surface;
A second driving means for holding the molding material by the holding means and retracting the holding means;
Due to the relative proximity of the barrel mold and the lower mold , at least the largest outer diameter portion of the molding material is inserted into the barrel mold, and the molding material is formed by the lower mold molding surface and the inner peripheral surface of the barrel mold. An apparatus for assembling a mold press mold, comprising: a control unit that operates the second drive unit to retract the holding unit from the lower mold forming surface when held.
前記保持手段の最大厚みが、前記成形素材の厚みの半分以下であることを特徴とする請求項1に記載のモールドプレス成形型の組立装置。The apparatus for assembling a mold press mold according to claim 1, wherein a maximum thickness of the holding means is half or less of a thickness of the molding material. 凸面を有する成形面が形成された下型と、前記下型成形面との対向面に成形面が形成された上型と、前記下型と前記上型とをそれぞれ両端側から挿入可能とした胴型とを備えた成形型を用いて成形素材をプレス成形することにより光学素子を製造する方法であって、
前記下型成形面上に供給された成形素材を、前記下型成形面上に配置された保持手段により保持しつつ、
前記胴型と前記下型とを相対的に近接させることにより、前記成形素材の少なくとも最大外径部が前記胴型内に挿入され、前記下型成形面と前記胴型の内周面により前記成形素材が保持された後に、前記下型成形面上から前記保持手段を退避させ、
次いで、前記下型と前記上型の間で前記成形素材をプレス成形する
ことを特徴とする光学素子の製造方法。
The lower mold in which the molding surface having the convex surface is formed, the upper mold in which the molding surface is formed on the surface facing the lower mold molding surface, and the lower mold and the upper mold can be inserted from both ends. A method of manufacturing an optical element by press molding a molding material using a molding die provided with a body mold,
While holding the molding material supplied on the lower mold molding surface by holding means arranged on the lower mold molding surface,
By bringing the body mold and the lower mold relatively close to each other, at least the maximum outer diameter portion of the molding material is inserted into the body mold, and the lower mold forming surface and the inner peripheral surface of the body mold After the molding material is held, the holding means is retracted from the lower mold forming surface,
Next, the method of manufacturing an optical element, wherein the molding material is press-molded between the lower mold and the upper mold.
前記成形素材が、円柱形状であることを特徴とする請求項に記載の光学素子の製造方法。 The method of manufacturing an optical element according to claim 3 , wherein the molding material has a cylindrical shape. 前記成形素材が、両凸曲面形状であることを特徴とする請求項に記載の光学素子の製造方法。 The method of manufacturing an optical element according to claim 3 , wherein the molding material has a biconvex curved shape. 前記保持手段が、前記成形素材の最大外径部より下側を保持し、最大外径部の周辺に開放空間を確保することを特徴とする請求項に記載の光学素子の製造方法。 6. The method of manufacturing an optical element according to claim 5 , wherein the holding unit holds a lower side of the maximum outer diameter portion of the molding material and secures an open space around the maximum outer diameter portion. 前記保持手段の最大厚みが、前記成形素材の厚みの半分以下であることを特徴とする請求項3〜6のいずれか一項に記載の光学素子の製造方法。The method for manufacturing an optical element according to claim 3, wherein a maximum thickness of the holding unit is not more than half of a thickness of the molding material. 前記成形素材が収容された状態で組み立てられた前記成形型を、加熱室、プレス室、冷却室を含む複数の処理室に移送し、それぞれの処理室で加熱、プレス、冷却を含む処理を施すことによって、前記成形素材をプレス成形することを特徴とする請求項〜7のいずれか1項に記載の光学素子の製造方法。 The molding die assembled in a state in which the molding material is accommodated is transferred to a plurality of processing chambers including a heating chamber, a press chamber, and a cooling chamber, and processing including heating, pressing, and cooling is performed in each processing chamber. The method of manufacturing an optical element according to claim 3 , wherein the molding material is press-molded.
JP2005027031A 2005-02-02 2005-02-02 Mold assembly apparatus and optical element manufacturing method Expired - Fee Related JP4695404B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005027031A JP4695404B2 (en) 2005-02-02 2005-02-02 Mold assembly apparatus and optical element manufacturing method
CN2006100045737A CN1814559B (en) 2005-02-02 2006-01-28 Install device for forming die and method for making optical element
KR1020060009460A KR101165475B1 (en) 2005-02-02 2006-02-01 Cast molding assembling apparatus and manufacturing method for optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005027031A JP4695404B2 (en) 2005-02-02 2005-02-02 Mold assembly apparatus and optical element manufacturing method

Publications (2)

Publication Number Publication Date
JP2006213557A JP2006213557A (en) 2006-08-17
JP4695404B2 true JP4695404B2 (en) 2011-06-08

Family

ID=36906943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005027031A Expired - Fee Related JP4695404B2 (en) 2005-02-02 2005-02-02 Mold assembly apparatus and optical element manufacturing method

Country Status (3)

Country Link
JP (1) JP4695404B2 (en)
KR (1) KR101165475B1 (en)
CN (1) CN1814559B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193502A (en) * 2014-03-31 2015-11-05 Hoya株式会社 Optical glass element manufacturing apparatus and manufacturing method using hydraulic press apparatus
WO2023026446A1 (en) * 2021-08-26 2023-03-02 オリンパス株式会社 Method for forming optical element and molds for forming optical element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308633A (en) * 2001-04-05 2002-10-23 Olympus Optical Co Ltd Positioning device for glass blank and method for forming optical element
JP2005314219A (en) * 2004-04-01 2005-11-10 Olympus Corp Method and apparatus for molding optical element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2665018B2 (en) * 1990-03-30 1997-10-22 ホーヤ株式会社 Mold disassembly / assembly equipment
JPH05139765A (en) * 1991-11-20 1993-06-08 Copal Co Ltd Mold for optical element
JP2783747B2 (en) * 1992-05-21 1998-08-06 キヤノン株式会社 Optical element molding method
JP3850109B2 (en) * 1997-07-30 2006-11-29 オリンパス株式会社 Optical element molding method
JP4119780B2 (en) * 2003-03-28 2008-07-16 Hoya株式会社 Method for manufacturing molded body, manufacturing apparatus, and objective lens for optical pickup

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308633A (en) * 2001-04-05 2002-10-23 Olympus Optical Co Ltd Positioning device for glass blank and method for forming optical element
JP2005314219A (en) * 2004-04-01 2005-11-10 Olympus Corp Method and apparatus for molding optical element

Also Published As

Publication number Publication date
KR20060088830A (en) 2006-08-07
KR101165475B1 (en) 2012-07-13
CN1814559A (en) 2006-08-09
CN1814559B (en) 2011-01-19
JP2006213557A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
JP5059019B2 (en) Mold press mold and method for producing molded body
KR101272074B1 (en) Mold press molding mold and method for producing optical element
KR100839731B1 (en) Mold press molding mold and method for producing optical element
JP5021205B2 (en) Mold press mold and optical element manufacturing method
JP5317962B2 (en) Method for producing glass molded body and mold press molding apparatus
JP5904493B2 (en) Glass forming apparatus and glass forming method
JP4667931B2 (en) Mold press apparatus and mold press molded product manufacturing method
JP4695404B2 (en) Mold assembly apparatus and optical element manufacturing method
JP2010280565A (en) Mold press forming apparatus and method for manufacturing optical element
JP4939677B2 (en) Optical element manufacturing method and mold press molding apparatus
JP4792141B2 (en) Mold press mold and optical element manufacturing method
JP4878321B2 (en) Mold press mold and method for producing molded body
JP6081225B2 (en) Glass molded body manufacturing apparatus and glass molded body manufacturing method
JP6726464B2 (en) Optical element manufacturing method and optical element manufacturing apparatus
JP4157080B2 (en) Mold press molding apparatus and optical element manufacturing method
JP4044373B2 (en) Manufacturing method of glass optical element
JP4711697B2 (en) Optical element manufacturing method, mold press molding apparatus, and positioning apparatus used therefor
JP4141983B2 (en) Mold press molding method and optical element manufacturing method
JP2618523B2 (en) Optical element manufacturing method
JP2006083026A (en) Mold press molding tool and manufacturing method of molding
JP5020492B2 (en) Mold press molding apparatus and method of manufacturing molded product
JP2005281053A (en) Forming apparatus for mold press, method of manufacturing optical device, and optical device
JP4680738B2 (en) Mold press molding apparatus and optical element manufacturing method
WO2015146399A1 (en) Device for producing glass moulded bodies, and method for producing glass moulded bodies
JP2771648B2 (en) Optical element manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees