WO2013111753A1 - Method for producing epoxidized natural rubber, rubber composition for tires, and pneumatic tire - Google Patents

Method for producing epoxidized natural rubber, rubber composition for tires, and pneumatic tire Download PDF

Info

Publication number
WO2013111753A1
WO2013111753A1 PCT/JP2013/051208 JP2013051208W WO2013111753A1 WO 2013111753 A1 WO2013111753 A1 WO 2013111753A1 JP 2013051208 W JP2013051208 W JP 2013051208W WO 2013111753 A1 WO2013111753 A1 WO 2013111753A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
natural rubber
epoxidized
acid
latex
Prior art date
Application number
PCT/JP2013/051208
Other languages
French (fr)
Japanese (ja)
Inventor
榊 俊明
ルクサナポーン タラチウィン
カモルチャト チャルンチタリー
ハターイナット クムオーム
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012046879A external-priority patent/JP5715586B2/en
Priority claimed from JP2012212685A external-priority patent/JP5654539B2/en
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to EP13741529.5A priority Critical patent/EP2808347B1/en
Priority to US14/368,592 priority patent/US9193806B2/en
Priority to BR112014017944A priority patent/BR112014017944A8/en
Priority to CN201380005818.6A priority patent/CN104053677B/en
Publication of WO2013111753A1 publication Critical patent/WO2013111753A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/04Oxidation
    • C08C19/06Epoxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C1/00Treatment of rubber latex
    • C08C1/14Coagulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a method for producing an epoxidized natural rubber, a tire rubber composition using the epoxidized natural rubber obtained by the production method, and a pneumatic tire.
  • epoxidized natural rubber has been used in rubber products such as tires, and this epoxidized natural rubber is generally a process of concentrating field latex collected from rubber trees such as Hevea brasiliensis by centrifugation. , Adding a surfactant to the concentrated latex obtained, adding formic acid while stirring, slowly adding hydrogen peroxide over several hours, and allowing the epoxidation reaction to proceed for about 1 day, resulting latex The epoxidized natural rubber is coagulated, and the coagulated natural rubber latex is neutralized, washed with water and dried as necessary.
  • the rubber is epoxidized with the size (0.1 to several ⁇ m) existing in the latex, so there is a merit that the rubber is uniformly epoxidized, but the reaction takes a long time.
  • the production cost of the epoxidized natural rubber is very high due to the necessity, the use of expensive chemicals, and the large number of processes.
  • the rubber becomes unstable and hardens and requires a surfactant, which increases the cost, and if the surfactant remains in the final rubber product, the rubber properties deteriorate due to water absorption, making it difficult to control the temperature of the epoxidation reaction.
  • the worker needs to monitor constantly.
  • Patent Document 1 discloses a method for preparing epoxidized natural rubber latex by preparing peracetic acid from acetic acid and / or acetic anhydride and hydrogen peroxide, and then mixing the peracetic acid and natural rubber latex. According to this, the chemical reaction proceeds promptly and quantitatively, and a desired epoxidation rate can be reached quickly.
  • the reaction between acetic acid or acetic anhydride and hydrogen peroxide requires excessive acetic acid and hydrogen peroxide in order to obtain the peracetic acid required for the equilibrium reaction.
  • the present invention solves the above problems and uses a simple, inexpensive and relatively uniform method for producing epoxidized natural rubber, a tire rubber composition containing the epoxidized natural rubber, and the tire rubber composition. It aims at providing the produced pneumatic tire.
  • the present invention includes a step 1 for solidifying a natural rubber latex into a granular form to prepare a granular solid rubber, and a step 2 for treating the obtained granular solid rubber with an epoxidizing liquid and epoxidizing the granular solid rubber.
  • the present invention relates to a method for producing an epoxidized natural rubber.
  • the epoxidation liquid is preferably a peracetic acid-containing liquid and / or a formic acid-containing liquid.
  • the peracetic acid-containing liquid is preferably one obtained by mixing and reacting acetic acid and / or acetic anhydride and hydrogen peroxide
  • the formic acid-containing liquid includes formic acid and hydrogen peroxide. What is obtained by mixing and reacting is preferable.
  • the natural rubber latex it is preferable to use at least one selected from the group consisting of field latex, concentrated latex obtained by concentrating field latex, and modified natural rubber latex obtained by removing non-rubber components therefrom.
  • the step 1 is preferably a step of coagulating the natural rubber latex into particles using an acid to prepare a granular solid rubber, and coagulating the natural rubber latex into particles using an acid and a flocculant, More preferably, it is a step of preparing a solid rubber.
  • the particle size of the granular solid rubber is preferably 20 mm or less, and more preferably 12 mm or less.
  • the present invention relates to an epoxidized natural rubber obtained by the above-described production method.
  • the epoxidized natural rubber preferably has an epoxidation degree of 0.1 to 50%.
  • the present invention relates to a tire rubber composition containing the epoxidized natural rubber.
  • the present invention also relates to a pneumatic tire produced using the tire rubber composition.
  • natural rubber latex is solidified into a granular form to prepare a granular solid rubber, and the obtained granular solid rubber is treated with an epoxidizing liquid to epoxidize the granular solid rubber; Therefore, the epoxidized natural rubber can be produced easily, at a low cost, and relatively uniformly as compared with the conventional production method.
  • the method for producing an epoxidized natural rubber according to the present invention comprises a step 1 of coagulating a natural rubber latex into a granular form to prepare a granular solid rubber, and treating the obtained granular solid rubber with an epoxidizing liquid, And epoxidizing step 2.
  • the entire process up to the epoxidation process is performed under liquid conditions, then the rubber is solidified, the remaining acid is neutralized with alkali, and washed.
  • An epoxidized natural rubber is prepared by performing a drying process. That is, in such a manufacturing method, the chemical used for epoxidation remains in the rubber almost as it is, and the residual chemical is washed away in the cleaning process, so that the chemical is used once and never reused.
  • the washing waste water contains unreacted formic acid and hydrogen peroxide, and waste liquid treatment for neutralizing the acid and decomposing the hydrogen peroxide is also necessary.
  • the granular solid rubber obtained by coagulating natural rubber latex in a granular form is treated with an epoxidizing liquid capable of epoxidizing rubber, for example, acetic acid or acetic anhydride.
  • an epoxidizing liquid capable of epoxidizing rubber
  • immersion a granular solid rubber in an epoxidized liquid such as a peracetic acid-containing liquid produced by blending hydrogen peroxide or a mixed liquid (formic acid-containing liquid) in which formic acid and hydrogen peroxide are blended, the epoxidized liquid
  • an epoxidized liquid such as a peracetic acid-containing liquid produced by blending hydrogen peroxide or a mixed liquid (formic acid-containing liquid) in which formic acid and hydrogen peroxide are blended
  • the epoxidized natural rubber can be produced by a simple technique of adding an epoxidation step to the production process.
  • a granular solid rubber having an overwhelmingly large surface area is prepared and epoxidized, so that a relatively uniformly epoxidized rubber can be prepared.
  • the latex state has the largest surface area, the epoxidation agent cannot be reused as described above, and therefore the production method of the present invention in which the latex is solidified in a granular form is desirable.
  • an epoxidized natural rubber that has been epoxidized relatively uniformly can be produced in a short time and easily with a small number of steps, and the chemicals used in the epoxidized liquid can be reused during the production. This eliminates chemical loss, reduces waste liquid treatment costs and environmental burdens, and eliminates the need for strict monitoring of the worker during the reaction.
  • step 1 natural rubber latex is solidified into a granular form to prepare a granular solid rubber.
  • natural rubber latex coagulates with the addition of acid or salt. This is because latex particles have a peak particle size of 1 ⁇ m, the surfaces are negatively charged and repel each other, and exist stably in the serum, but this negative charge is present in acids and salts. If it is weakened by cations and the amount of latex is sufficiently large, the rubber will aggregate at once and become a large lump of 10 cm or more. In such a state, the surface area of the rubber becomes very small with respect to the weight, and even if it is epoxidized, it reacts very little, so that the modification is virtually impossible.
  • the present invention is a method for epoxidizing granular natural rubber produced by coagulating rubber in natural rubber latex into particles, so that an epoxidized natural rubber having a large surface area and uniformly epoxidized is obtained. can get.
  • raw latex collected by tapping natural rubber trees such as Hevea tree, concentrated latex (purified latex, ammonia by conventional methods) concentrated by centrifugation or creaming method.
  • High-ammonia latex, zinc oxide, TMTD, and ammonia-stabilized LATZ latex), non-rubber components such as proteins and phospholipids removed from these latexes, and saponified natural rubber latex Modified natural rubber latex such as can be used.
  • deproteinized natural rubber latex and saponified natural rubber latex can be prepared by a known method such as proteolytic enzyme or saponification treatment with alkali.
  • Examples of a method for preparing a granular solid rubber by coagulating a natural rubber latex include a method for controlling the pH of the natural rubber latex. Particularly, in order to produce rubber particles having a small particle diameter, natural rubber latex is used. A method in which the flocculant is added under the condition of controlling the pH of is preferable.
  • the pH control is preferably 3.0 to 5.0, more preferably 3.5 to 4.5. By adjusting the pH within the above range, particulate rubber (granular solid rubber) can be obtained.
  • the pH can be controlled with an acid such as formic acid, acetic acid or sulfuric acid, or an alkali such as sodium hydroxide or potassium hydroxide, and it is preferable to use an acid.
  • a polymer flocculant or the like can be used as the flocculant.
  • polymer flocculants include cationic polymer flocculants such as methyl chloride quaternary salt polymers of dimethylaminoethyl (meth) acrylate, anionic polymer flocculants such as acrylate polymers, and acrylamide polymers.
  • a nonionic polymer flocculant such as a methyl chloride quaternary salt-acrylate copolymer of dimethylaminoethyl (meth) acrylate.
  • a cationic polymer flocculant is preferable because it is possible to efficiently obtain a granular rubber, and a poly (meth) acrylic acid ester based polymer such as a polymer of dimethylaminoethyl (meth) acrylate methyl chloride quaternary salt. Is more preferable, and a polymer of dimethyl quaternary salt of dimethylaminoethyl (meth) acrylate is more preferable.
  • the cationic polymer flocculant any of strong cationic, medium cationic and weak cationic can be used, but strong cationic polymer flocculants are preferred.
  • the lower limit of the addition amount of the flocculant is preferably 0.05 parts by mass or more and more preferably 0.1 parts by mass or more with respect to 100 parts by mass of the solid content of the natural rubber latex. If it is less than 0.05 parts by mass, the amount added is insufficient, and there is a possibility that a granular solid rubber can be obtained only partially.
  • the upper limit is preferably 5.0 parts by mass or less, and more preferably 1.5 parts by mass or less. When the amount exceeds 5.0 parts by mass, the amount of the aggregating agent adsorbed on one particle becomes too large, and the particles may be dispersed by the repulsive action between the particles, and the aggregate may not be obtained. Furthermore, it is not economical from an economic point of view.
  • Step 1 may be performed in the presence of a surfactant because the granular solid rubber is well prepared.
  • a surfactant an anionic surfactant, a nonionic surfactant, and an amphoteric surfactant can be used.
  • the anionic surfactant include carboxylic acid-based, sulfonic acid-based, sulfate ester-based and phosphate ester-based anionic surfactants.
  • nonionic surfactants include nonionic surfactants such as polyoxyalkylene ethers, polyoxyalkylene esters, polyhydric alcohol fatty acid esters, sugar fatty acid esters, and alkyl polyglycosides.
  • amphoteric surfactant examples include amphoteric surfactants such as amino acid type, betaine type, and amine oxide type. Among these, an anionic surfactant is preferable, and a sulfonic acid anionic surfactant is more preferable.
  • the surfactant does not need to be added in particular, but when added, the addition amount is preferably 0.1 parts by mass or more, and 0.2 parts by mass with respect to 100 parts by mass of the solid content of the natural rubber latex.
  • the upper limit is preferably 5.0 parts by mass or less, and more preferably 2.0 parts by mass or less.
  • Granular solid rubber is obtained by Step 1, but the particle diameter is preferably 20 mm or less, more preferably 12 mm or less, still more preferably 10 mm or less, and particularly preferably 5 mm or less.
  • the rubber is solidified into granules, and rubber particles having the above particle diameter can be obtained.
  • the lower limit of the particle diameter of the granular solid rubber is not particularly limited, and the smaller the particle diameter, the more suitable, but usually 0.1 mm or more.
  • the particle diameter can be measured by visual observation, a micrograph or the like.
  • the granular natural rubber obtained in this way still contains a large amount of non-rubber components in the serum, so it may be washed with water if necessary. It may be removed under an atmosphere and then washed with water. By washing with water, the rubber particle size tends to be larger than that immediately after coagulation, but by stirring under appropriate stirring conditions, growth of the particle size is suppressed and most particles are kept to a size of several mm or less. Is possible.
  • the technology that does not grow rubber particles greatly in the present invention is a technology that is not recognized by general latex engineers.
  • the washing step includes, for example, a method in which water is added to a rubber component (coagulated product), the rubber component is suspended in water while stirring for a certain period of time, solid-liquid separation is performed, and the rubber component is taken out.
  • Solid-liquid separation may be performed using, for example, the specific gravity difference between rubber and water. Specifically, for example, after the rubber component is suspended in water, the rubber component is allowed to stand for a certain period of time, and water having a higher specific gravity than the rubber component is extracted from the lower part of the container. Centrifugation may also be performed.
  • the granular solid rubber obtained in step 1 is treated with an epoxidation liquid to epoxidize the granular solid rubber.
  • the epoxidation liquid used in the present invention is not particularly limited as long as it is a liquid capable of epoxidizing a granular solid rubber produced by solidifying natural rubber latex into particles, and a peracetic acid-containing liquid, performic acid. A containing liquid etc. can be used conveniently.
  • the peracetic acid-containing liquid is not particularly limited as long as it contains peracetic acid or generates peracetic acid.
  • epoxidation can be promoted by peracetic acid generated by the reaction, and the concentration of the solution after the treatment is adjusted by adding acetic acid, acetic anhydride or hydrogen peroxide to generate peracetic acid again.
  • the processing solution can be reused.
  • Acetic acid and acetic anhydride are not particularly limited, and for example, glacial acetic acid or commercially available acetic acid diluted to an arbitrary concentration can be used. Considering production efficiency, acetic acid having a concentration of 80 to 100% by mass is preferable, and acetic acid having a concentration of 90 to 100% by mass is more preferable.
  • the hydrogen peroxide is not particularly limited, and a commercially available aqueous hydrogen peroxide solution can be used.
  • the concentration of the aqueous hydrogen peroxide solution is preferably 10 to 60% by mass, and particularly preferably 30 to 60% by mass from the viewpoint of reaction efficiency. If the amount is less than 10% by mass, the liquid may be diluted immediately after repeated use. If the amount exceeds 60% by mass, explosion may occur. In particular, in terms of the possibility of explosion, it is preferably 50% by mass or less and close to the concentration.
  • a method of mixing and reacting acetic acid and / or acetic anhydride and hydrogen peroxide is not particularly limited, and a conventionally known method can be used. For example, when 30% by mass hydrogen peroxide aqueous solution and 90% by mass acetic acid are gently mixed and reacted for 1 to 2 days, peracetic acid is produced, but it does not react 100%. In this state, acetic acid coexists. When granular solid rubber is added to the peracetic acid-containing liquid in this state, peracetic acid reacts quickly with the rubber, the rubber is epoxidized, and peracetic acid returns to acetic acid. In other words, acetic acid is a catalyst, hydrogen peroxide is divided into water and oxygen, and this oxygen reacts with rubber.
  • Hydrogen peroxide is preferably added in an amount of 0.05 to 5 mol per mol of acetic acid and / or acetic anhydride, and more preferably 0.1 to 2 mol in view of safety and efficiency. If the amount is less than 0.05 mol, the conversion of acetic acid may be significantly reduced, which is not economical. On the other hand, when the amount exceeds 5 mol, the conversion rate of hydrogen peroxide may be remarkably lowered, which is not economical. In order to advance the reaction quickly, it is preferable to add a small amount of an acid such as sulfuric acid.
  • peracetic acid-containing liquid after the reaction practically no peracetic acid remains. Therefore, hydrogen peroxide and, if necessary, acetic acid or glacial acetic acid are added here, and after a period of time again, peracetic acid is generated again, which can be reacted with rubber. Can be reused. Since peracetic acid reacts quantitatively with rubber, it becomes possible to control the level of epoxidation of rubber from the amount of liquid contained and the concentration of peracetic acid.
  • the formic acid-containing liquid is not particularly limited as long as it contains formic acid or produces formic acid.
  • a mixed liquid of formic acid and hydrogen peroxide, formic acid and hydrogen peroxide are mixed and reacted.
  • the liquid obtained by this can be used suitably.
  • the epoxidation can proceed with the formic acid generated by the reaction, and the formic acid and hydrogen peroxide are added to the liquid after the treatment to adjust the concentration, and then the formic acid is generated again. Can be reused.
  • Formic acid is not particularly limited, and for example, commercially available formic acid diluted to an arbitrary concentration can be used. Considering production efficiency, safety, and target degree of epoxidation, formic acid with a concentration of 10 to 100% by mass is preferable, and formic acid with 30 to 94% by mass is more preferable.
  • the hydrogen peroxide is not particularly limited, and those similar to the above can be used.
  • the formic acid-containing liquid a liquid obtained by mixing formic acid and hydrogen peroxide in advance to form formic acid may be used.
  • formic acid is unstable, formic acid and hydrogen peroxide are mixed.
  • the solid solid rubber is put into the liquid containing formic acid mixed with formic acid and hydrogen peroxide, the formic acid reacts quickly with the rubber, the rubber is epoxidized, and the formic acid returns to formic acid.
  • formic acid is a catalyst
  • hydrogen peroxide is divided into water and oxygen
  • the oxygen reacts with rubber.
  • an epoxidation liquid containing both of these components by coexisting formic acid with acetic acid and / or acetic anhydride and reacting these with hydrogen peroxide to form both formic acid and peracetic acid.
  • Hydrogen peroxide is preferably added in an amount of 0.05 to 5 mol per mol of formic acid, and more preferably 0.1 to 2 mol in view of safety and efficiency. If it is less than 0.05 mol, the conversion of formic acid may be significantly reduced, which is not economical. On the other hand, when the amount exceeds 5 mol, the conversion rate of hydrogen peroxide may be remarkably lowered, which is not economical. In order to advance the reaction quickly, it is preferable to add a small amount of an acid such as sulfuric acid.
  • the granular solid rubber is epoxidized by treatment with an epoxidizing liquid.
  • the treatment method is not particularly limited as long as it is a method capable of bringing the granular solid rubber into contact with the epoxidized liquid, and includes immersion; spraying by spraying, showering, and the like.
  • a dipping method a method of putting granular solid rubber in a hole-shaped cage-like case, immersing it in an epoxidation solution as it is, and then pulling it up is convenient.
  • a spraying method there are a method of passing such a basket during the shower of the epoxidized liquid, a method of spraying a spray of the epoxidized liquid on such a basket, and the like.
  • surplus and treated epoxidation liquid can be easily recovered and reused.
  • this makes it very easy to wash away the acid remaining on the surface, which will be described later.
  • the epoxidation treatment can also be performed by directly putting the granular solid rubber into a normal tank charged with the epoxidized liquid and reacting it and taking it out. Specifically, when a large amount of rubber having a small particle size is contained, put agglomerated natural rubber into a tank, pour the epoxidized liquid into this tank, react it, and then extract only the epoxidized liquid from the bottom. It is possible. This is because natural rubber has a light specific gravity of 0.91 to 0.93 and the rubber floats, and the extracted epoxidized liquid can be reused as described above.
  • This process can be carried out in batch units, or it is possible to continuously take out the rubber by continuously reacting while supplying the epoxidized liquid and the granular solid rubber.
  • the container for the reaction may be a normal tank. Since it is in an acidic atmosphere, the surface may be coated, stainless steel, or an inert resin may be used. In order to make the whole system uniform during the reaction, stirring is desirable, but stirring is not essential.
  • the time for treating the granular solid rubber with the epoxidized liquid is not particularly limited as long as the desired epoxidation can proceed, and for example, it may be carried out for 1 second to 48 hours. Below the lower limit, the reaction does not tend to proceed sufficiently, and there is no problem even if the upper limit is exceeded, but the reaction is almost complete and the production efficiency is not good, and the deterioration of rubber due to residual hydrogen peroxide is prevented. To within 1 hour.
  • the lower limit is 1 second or more, preferably 10 seconds or more, more preferably 30 seconds or more
  • the upper limit is not particularly limited, but preferably within 1 hour. Is within 30 minutes, more preferably within 10 minutes.
  • a minimum is preferably 10 seconds or more, more preferably 30 seconds or more
  • the upper limit is not particularly limited, but is within 48 hours, preferably 24 hours. Is within.
  • the treatment temperature is not particularly limited as long as the desired epoxidation can proceed, and for example, it may be carried out at 10 to 75 ° C.
  • the reaction temperature is high, so the treatment temperature does not need to be so high, and is 10 ° C. or higher, preferably 15 ° C. or higher, more preferably 20 ° C. or higher.
  • the upper limit is not particularly limited, but the reaction proceeds sufficiently even at 30 to 40 ° C., and the reaction proceeds in a room temperature atmosphere, which is preferable from the viewpoint of energy.
  • reaction temperature is 30 degreeC or more, Preferably it is 50 degreeC or more, and the upper limit is 75 degreeC or less from a point with concern about explosive property of a formic acid. It is preferable to adjust to.
  • Epoxidation is a reaction in which part of the double bond of natural rubber (cis-1,4-isoprene) changes as follows.
  • the degree of epoxidation is how many of the full double bonds are epoxidized.
  • Commercially available products have an epoxidation degree of 12.5%, 25%, 37.5%, 50%, 60%, but the epoxidation degree is not limited to these values. For example, it can be less than 1%, and the upper limit can exceed 60%. Depending on the part of the tire, about 0.1 to 50% can be used, and considering the balance of performance, the upper limit is about 30%.
  • the degree of epoxidation is determined by the relationship between the amount of peracetic acid or performic acid present in the liquid and the amount of double bonds in the rubber, and can be adjusted accordingly.
  • the epoxidized rubber thus produced is preferably washed away by immersing it in water or an aqueous alkaline solution or spraying it with a spray shower or the like. If the acid remains, the scorch may be shortened or the vulcanization may be delayed. However, since peracetic acid has already reacted with the rubber, the reaction is inhibited by washing away the acid, and the degree of epoxidation is reduced. There is no decline. In addition, when using alkaline aqueous solution, it is desirable to finally wash away with substantially neutral water.
  • sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, ammonia water, sodium hydroxide, potassium hydroxide and the like can be used.
  • 0.5 to 5 can be used.
  • % Of sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate and the like can be suitably used.
  • the treatment time for neutralization / washing with an alkaline aqueous solution or water is from 1 second to 1 day, preferably from 10 seconds to 4 hours, more preferably from the viewpoint of sufficiently neutralizing and washing the acid remaining on the surface. 20 seconds to 2 hours.
  • the rubber obtained above is appropriately subjected to a drying step as necessary, whereby the epoxidized natural rubber according to the present invention is obtained.
  • the drying method is not particularly limited, and a normal TSR dryer can be used, and rubber can be placed on a belt conveyor and dried with hot air. Although not generally used, heating by microwave and vacuum drying are also possible. It is also possible to make rubber into a sheet shape with a creper or the like and dry it as it is.
  • the drying temperature is not particularly limited, and drying is usually possible at room temperature or higher, but considering productivity, it is 60 ° C. or higher, preferably 70 ° C. or higher, more preferably 80 ° C. or higher. Further, the upper limit is 140 ° C. or lower, preferably 135 ° C. or lower, more preferably 130 ° C. or lower, because the rubber is likely to deteriorate when the temperature is high.
  • the drying time may be set as appropriate according to the drying temperature. In addition, since heat resistance tends to be lower than that of normal natural rubber due to epoxidation, a lower value is preferable as long as productivity is not hindered.
  • the method of treating the granular solid rubber of the present invention with an epoxidizing liquid and epoxidizing it produces a fairly homogeneous finish, but the tendency of the rubber surface to be epoxidized remains as compared with the method of epoxidizing latex.
  • the resulting rubber is used alone or blended with another rubber, such as natural rubber or SBR, the affinity between epoxidized natural rubber and silica is improved, especially in the case of silica compounding, and the dispersibility of silica is also improved.
  • tan ⁇ is reduced and rubber strength is improved.
  • the effect is comparable to expensive epoxidized natural rubber made from latex, but can be greatly reduced in cost.
  • the epoxidation of the rubber is advanced by treating the solid rubber obtained by coagulating the natural rubber latex with an epoxidizing liquid capable of epoxidizing the rubber. Therefore, unlike the conventional epoxidation process under liquid conditions, it is possible to recover the epoxidation liquid used for dipping or spraying.
  • Peracetic acid and performic acid are instantly epoxidized when natural rubber (both solid and latex) is present in the vicinity. At the same time, the rubber returns to acetic acid and formic acid. By adding acetic acid, formic acid or hydrogen peroxide to the mixture, peracetic acid or formic acid can be generated again.
  • epoxidized natural rubber can be produced by a simple method of adding an epoxidation step to the normal TSR production step. Therefore, according to the other production method, the epoxidized natural rubber can be produced easily in a short time with few steps, and the chemical used in the epoxidized liquid can be reused during the production. Loss can be eliminated, waste liquid treatment cost and environmental load can be reduced, and strict monitoring of the worker during the reaction is also unnecessary.
  • Solid rubber In the other production method, the same natural rubber latex as described above can be used.
  • the solid rubber obtained by solidifying the natural rubber latex include a cup lamp, an unmade sheet (unsmoked sheet: USS), and a cup lamp solidified with field latex (slab).
  • natural rubber latex is collected in a cup that collects natural rubber, and natural rubber that is naturally coagulated by fatty acids generated by the decomposition of non-rubber components by microorganisms, or chemicals that have a function of coagulating natural rubber latex in advance.
  • the chemical is not particularly limited as long as it has such a function, for example, an acid such as sulfuric acid, formic acid, hydrochloric acid or acetic acid, a cation such as calcium ion or a salt thereof, an organic such as methanol or ethanol. A solvent etc. are mentioned.
  • This cup lamp literally has the shape of a cup and contains dust. For this reason, even if epoxidized as it is, only the outermost surface is epoxidized, and the ratio of epoxidation in the whole rubber becomes low. Therefore, in the present invention, it is preferable to use a chopped solid rubber.
  • Cup lamps are usually processed into technically graded rubber called TSR, and in the process, they are repeatedly shredded and washed with machines such as prebreakers and hammer mills, and the thickness of the rubber is reduced by multiple crepers. Thus, impurities contained in the rubber are washed away, and further water-soluble substances are removed. This is finally cut into a size of 2 to 3 mm or less by a machine called a shredder and then dried. In this state, since the rubber has a very large surface area, many parts in the solid rubber are epoxidized by treatment by immersion in the epoxidized liquid or spraying of the epoxidized liquid.
  • the epoxidation liquid used in the other production method is not particularly limited as long as it is a liquid capable of epoxidizing a solid rubber produced by coagulating natural rubber latex, and the peracetic acid-containing liquid described above, A performic acid-containing liquid or the like can be suitably used.
  • the solid rubber is treated with an epoxidation liquid to be epoxidized.
  • the treatment method is not particularly limited as long as it is a method capable of bringing the solid rubber and the epoxidized liquid into contact with each other, and the same method as described above can be used, and the treatment time and the treatment temperature can be carried out under the same conditions.
  • a method of epoxidizing the solid rubber while kneading the solid rubber and the epoxidized liquid can also be used. That is, for example, the solid rubber and the epoxidized liquid can be put into a mixer such as a kneader or an extruder, and the solid rubber can be epoxidized while kneading these materials.
  • the internal ratio to the rubber surface is high even in the chopped state, but the effect of kneading the rubber to give a new surface, such as an extruder, kneader, or creper
  • a kneaded machine is used and kneaded while supplying the chopped rubber and the epoxidized liquid, the interior can be epoxidized.
  • the obtained epoxidized solid rubber is kneaded with an epoxidation liquid such as a peracetic acid-containing liquid or a formic acid-containing liquid added separately as necessary.
  • an epoxidation liquid such as a peracetic acid-containing liquid or a formic acid-containing liquid added separately as necessary.
  • the inside can be sufficiently epoxidized by using a chopped solid rubber.
  • the level of epoxidation can be adjusted according to the desired physical properties as described above.
  • the epoxidized rubber thus produced may be neutralized and washed by the same method as described above.
  • the rubber size may be large. In such a state, it is difficult to clean and dry the rubber. Therefore, before the neutralization / cleaning step, it is desirable to pass the shredder again to chop the rubber.
  • the immersion time is secured for at least 1 hour, preferably 2 to 4 hours, in order to completely neutralize the internal acid. Is preferred. Further, when neutralized with an alkaline aqueous solution, it is desirable to wash away the liquid by showering with tap water or the like thereafter.
  • the production method of epoxidized natural rubber includes the conventional production method. In comparison, epoxidized natural rubber can be produced easily and inexpensively.
  • epoxidizing a solid rubber of natural rubber by epoxidizing a solid rubber of natural rubber, expensive chemicals used for epoxidation can be reused without waste, and loss of reagents necessary for epoxidation can be eliminated.
  • the conventional process of coagulating and neutralizing latex can be omitted, the manufacturing time can be greatly shortened.
  • a normal epoxidized natural rubber factory requires a tank for storing latex, a reaction tank, a coagulator (for example, using water vapor), a long water tank, a dryer, etc. Since it is only necessary to add an epoxidation process to the process, it is possible to make a part of epoxidized natural rubber while making TSR, which can greatly reduce the cost.
  • the ratio of waste liquid to the amount of rubber production is very small compared to the case of epoxidizing from latex, and it is not necessary to use various chemicals, so it is possible to reduce the environmental burden.
  • the epoxidized natural rubber obtained by the production method of the present invention or the other production methods is particularly useful as a tire material. Due to the epoxidation of natural rubber, the glass transition point of natural rubber increases. Specifically, when the degree of epoxidation increases by 1%, the glass transition point also increases by about 1 degree. When the degree of epoxidation is high, the glass transition point is greatly increased, so that the coefficient of friction when wet is increased and the braking distance when raining is shortened. On the other hand, the rolling resistance tends to be high, the fuel consumption tends to be poor, and it becomes hard at low temperatures and tends not to be suitable for, for example, winter tires.
  • the degree of epoxidation when the degree of epoxidation is low, the elastic modulus at a low temperature is small and can be suitably used for winter tires and the like. Moreover, the polarity of rubber
  • Rubber composition for tire examples include a rubber component containing the epoxidized natural rubber and carbon black and / or a white filler.
  • the content of the epoxidized natural rubber in 100% by mass of the rubber component is preferably 5% by mass or more, more preferably 50% by mass or more, and further preferably 80% by mass or more. It may be mass%. If it is less than 5% by mass, sufficient silica dispersibility may not be obtained in silica blending.
  • the rubber composition may contain a rubber component other than the epoxidized natural rubber.
  • a rubber component other than the epoxidized natural rubber.
  • natural rubber NR
  • isoprene rubber IR
  • butadiene rubber BR
  • styrene butadiene rubber SBR
  • styrene isoprene butadiene examples thereof include rubber (SIBR), ethylene propylene diene rubber (EPDM), chloroprene rubber (CR), acrylonitrile butadiene rubber (NBR), and the like.
  • the rubber composition preferably contains silica as a white filler.
  • the nitrogen adsorption specific surface area (N 2 SA) of silica is 80 m 2 / g or more, preferably 100 m 2 / g or more, more preferably 120 m 2 / g or more. Further, N 2 SA of silica is preferably 250 m 2 / g or less, more preferably 200 m 2 / g or less.
  • N 2 SA of silica is a value measured by the BET method according to ASTM D3037-93.
  • the content of silica is preferably 10 parts by mass or more, more preferably 30 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the content is preferably 150 parts by mass or less, more preferably 100 parts by mass or less.
  • the rubber composition of the present invention is appropriately blended with various materials generally used in the tire industry such as zinc oxide, stearic acid, various anti-aging agents, sulfur, and vulcanization accelerators. May be.
  • the above components are kneaded using a rubber kneader such as an open roll or a Banbury mixer, and then vulcanized. Can be manufactured.
  • the rubber composition can be used for each member of a tire, and in particular, can be suitably used for a tread or the like.
  • the pneumatic tire of the present invention is produced by a usual method using the rubber composition. That is, if necessary, a rubber composition containing various materials is extruded into a shape such as a tread at an unvulcanized stage and molded by a normal method on a tire molding machine. After forming a vulcanized tire, it can be manufactured by heating and pressing in a vulcanizer.
  • the vulcanized rubber sheet was produced by the following method. (Production of vulcanized rubber sheet) In accordance with the formulation shown in Tables 1 to 3, a chemical other than sulfur and a vulcanization accelerator was kneaded using 1.7 L Banbury. Next, using a roll, sulfur and a vulcanization accelerator were added to the obtained kneaded product and kneaded to obtain an unvulcanized rubber composition. The obtained unvulcanized rubber composition was press vulcanized at 170 ° C. for 6 minutes to obtain a vulcanized rubber sheet.
  • Epoxidation degree (%) B / (A + B) ⁇ 100 (In the formula, A is the integrated value of the peak derived from the cis proton (5.0-5.2 ppm), and B in the formula is the integrated value of the peak derived from the proton of the epoxy group (2.6-2.8 ppm)). Represents the value.) Moreover, simply, the glass transition point of the polymer was obtained using a differential scanning calorimeter Pyris Jade DSC manufactured by PerkinElmer, and the degree of epoxidation was estimated from a calibration curve. A calibration curve was prepared from the degree of epoxidation measured by commercially available epoxidized natural rubber NMR and the glass transition point.
  • Field latex Field latex collected in southern Thailand within 3 days after collection (ammonia water is added to prevent spoilage and coagulation, and the amount of ammonia is adjusted to 0.2% by mass.
  • Natural rubber latex Raw ammonia latex added with anti-corrosion and stability by adding ammonia, trace amount of zinc oxide and tetrathiuram disulfide (60% dry rubber content, 0.2% ammonia content)
  • Surfactant A-1 Polyoxyethylene fatty acid alcohol (alcohol carbon number C 12 to C 18 , cloud point 70 to 80 ° C.)
  • Surfactant B-1 Polyoxyethylene lauryl ether sodium sulfate acetic acid: active ingredient 98%, 94% reagent primary formic acid: active ingredient 88% reagent primary hydrogen peroxide solution: 50% active ingredient, diluted appropriately Used.
  • Silica Degussa Ultrasil VN3 Silane coupling agent: Si266 (bis (3-triethoxysilylpropyl) disulfide)
  • Zinc oxide Type 2 zinc oxide stearate of Mitsui Mining & Smelting Co., Ltd .: Beads stearic acid manufactured by NOF Corporation Tsubaki Calcium stearate: Calcium stearate GF-200 manufactured by NOF Corporation Oil: Palm oil Olein sulfur: Sulfur vulcanization accelerator containing 5% oil TBBS: Noxeller NS manufactured by Ouchi Shinsei Chemical Co., Ltd. Vulcanization accelerator DPG: NOCELLER D manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
  • Example 1-1 60 g of aqueous surfactant solution B-1 was added to 3 kg of FL (dry rubber content 30% by mass), and then 2% by mass sulfuric acid was added to adjust the pH to 4.0. To this, 3 kg of 0.1% by mass flocculant was added to solidify the rubber in granular form. The particle size (particle diameter) was 1 mm or less for fine particles and about 5 mm for coarse particles, and was almost in the range of 1 to 3 mm. Stirring was stopped, the lower aqueous phase was almost removed, water was then added and stirred, the floated rubber was scooped and washed with water three times for washing. The size of the rubber was almost the same after washing and was almost 1 to 3 mm.
  • Example 1-2 To 3 kg of FL, 60 g of surfactant aqueous solution B-1 was added at room temperature, and then 360 g of sodium hydroxide aqueous solution in which 90 g of sodium hydroxide was dissolved was added and left for 24 hours with stirring. To this was added a dispersion containing 9 g of a phenolic anti-aging agent (Nocrack NS-6 manufactured by Ouchi Shinsei Chemical Co., Ltd.), and the mixture was further stirred for 2 hours. To this FL, 2% by mass formic acid was slowly added to adjust the pH to 4, and 3 kg of 0.1% by mass flocculant was added to aggregate the rubber into particles. Most of the particle diameters were about 1 to 3 mm.
  • a phenolic anti-aging agent Nocrack NS-6 manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • Example 1-3 To 3 kg of FL, 60 g of surfactant aqueous solution B-1 was added at room temperature, and then 360 g of sodium hydroxide aqueous solution in which 90 g of sodium hydroxide was dissolved was added and left for 24 hours with stirring. To this was added a dispersion containing 9 g of a phenolic anti-aging agent (Nocrack NS-6 manufactured by Ouchi Shinsei Chemical Co., Ltd.), and the mixture was further stirred for 2 hours. To this FL, 2% by mass formic acid was slowly added to adjust the pH to 4, and 3 kg of 0.1% by mass flocculant was added to aggregate the rubber into particles. Most of the particle diameters were about 1 to 3 mm.
  • a phenolic anti-aging agent Nocrack NS-6 manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • the operation of scooping up the agglomerates and washing with water was repeated a total of 4 times.
  • the rubber containing water was soaked in a 2% by weight aqueous sodium carbonate solution for 1 hour, and then washed with tap water for 20 seconds.
  • the rubber was drained, water was drained, and about 1 kg of the rubber was immersed in a peracetic acid-containing liquid a-1 prepared separately from Examples 1-1 and 1-2 at an initial temperature of 30 ° C. for 10 minutes (during immersion). In order to soak the rubber evenly, the rubber was rotated and soaked while pressing down).
  • Example 1-4 60 g of surfactant aqueous solution B-1 was added to 3 kg of FL, and then 2 mass% sulfuric acid was added to adjust the pH to 4.0. To this, 3 kg of 0.1% by mass flocculant was added to solidify the rubber in granular form. The particle size was 1 mm or less for fine particles and about 5 mm for coarse particles, and was almost in the range of 1 to 3 mm. Stirring was stopped, the lower aqueous phase was almost removed, water was then added and stirred, the floated rubber was scooped and washed with water three times for washing. The size of the rubber was almost the same after washing and was almost 1 to 3 mm.
  • Example 1-5 60 g of surfactant aqueous solution B-1 was added to 3 kg of FL, and then 2 mass% sulfuric acid was added to adjust the pH to 4.0. To this, 3 kg of 0.1% by mass flocculant was added to solidify the rubber in granular form. The particle size was 1 mm or less for fine particles and about 5 mm for coarse particles, and was almost in the range of 1 to 3 mm. Stirring was stopped, the lower aqueous phase was almost removed, water was then added and stirred, the floated rubber was scooped and washed with water three times for washing. The size of the rubber was almost the same after washing and was almost 1 to 3 mm.
  • the above-mentioned rubber containing water was transferred to a formic acid aqueous solution in which 2 kg of scooping ion exchange water and 920 g of formic acid were mixed. To this, 500 g of 50 mass% hydrogen peroxide was slowly added. After 5 hours, the rubber was taken out and subjected to a tap water shower for 20 seconds, then immersed in a 2% by weight aqueous sodium carbonate solution for 10 minutes, and then a tap water shower was again applied for 20 seconds. Then, it dried in 90 degreeC oven for 4 hours, and obtained the epoxidized natural rubber.
  • the liquid is fed to the coagulation apparatus by a tube pump (inner diameter of the tube 5 mm) adjusted so that the liquid feeding amount is 17.6 g / min (850 mm / min). did.
  • the temperature of the mixed solution at the time of mixing was 25 ° C.
  • the temperature of the mixed solution at the time of feeding was 55 ° C. Since the liquid was hardly stored in the mixing apparatus, there was almost no time for the liquid to stay in the mixing apparatus. On the other hand, the residence time in the tube was 15 minutes. In the coagulation apparatus, a certain amount of water vapor is blown from the bottom, and from the top, the mixed liquid descends along the wall.
  • the rubber coming out of the coagulator is sampled every 10 minutes, cooled with water, immersed in an aqueous solution of 1 to 3% by weight of sodium bicarbonate for a whole day and then washed again with water, dried to a constant weight,
  • the degree of epoxidation of the produced rubber was examined by NMR. As a result, the degree of epoxidation was 25.1%, 25.3%, 25.1%, 25.4%, 25.4%, 25.7%, 25.3%, 25.5%, It was confirmed to be stable.
  • the reaction is proceeding very quickly, the overall cost is very high because the loss of material is very large, water vapor that consumes a lot of energy is used, and it takes a lot of time for neutralization and washing. .
  • Example 1-3 A vulcanized rubber sheet was prepared in the same manner as in Example 1-1 except that TSR20 was used, and the physical properties were examined.
  • Natural rubber latex Raw ammonia latex added with anti-corrosion and stability by adding ammonia, trace amount of zinc oxide and tetrathiuram disulfide (60% dry rubber content, 0.2% ammonia content)
  • Cup lamps Common ones collected in the Tohoku region of Thailand and sold to TSR processing plants that have been processed in the normal TSR manufacturing process (slab cutters, prebreakers, rotary cutters, etc.) Afterwards, solid rubber shredded to about 1 to 3 mm with a creper and a shredder)
  • Surfactant Polyoxyethylene fatty acid alcohol (alcohol carbon number C 12 to C 18 , cloud point 70 to 80 ° C.)
  • Acetic acid active ingredient 98%, 94% reagent primary formic acid: active ingredient 88% reagent primary hydrogen peroxide solution: active ingredient 50% and 30% (50% when no concentration is indicated)
  • Sulfuric acid 98% active ingredient Sodium carbonate: an
  • Silica Degussa Ultrasil VN3 Silane coupling agent: Si266 (bis (3-triethoxysilylpropyl) disulfide)
  • Zinc oxide Type 2 zinc oxide stearate of Mitsui Mining & Smelting Co., Ltd .: Beads stearic acid manufactured by NOF Corporation Tsubaki Calcium stearate: Calcium stearate GF-200 manufactured by NOF Corporation Oil: Palm oil Olein sulfur: Sulfur vulcanization accelerator containing 5% oil TBBS: Noxeller NS manufactured by Ouchi Shinsei Chemical Co., Ltd. Vulcanization accelerator DPG: NOCELLER D manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
  • a peracetic acid-containing liquid b-2 was prepared by adding 54 g of hydrogen peroxide water to the residual liquid of the peracetic acid-containing liquid a-2 used in Example 2-1 to be described later and allowing to stand at 40 ° C. for 1 day. .
  • peracetic acid was quantified by titration, it was calculated that 59 g of peracetic acid was generated in the whole liquid.
  • a peracetic acid-containing liquid c-2 was prepared by adding 61 g of hydrogen peroxide water to the residual liquid of the peracetic acid-containing liquid b-2 used in Example 2-4, which will be described later, and allowing it to stand at 40 ° C. for 1 day. .
  • peracetic acid was quantified by titration, it was calculated that 58 g of peracetic acid was generated in the whole liquid.
  • a peracetic acid-containing liquid d-2 was prepared by mixing 500 g of 94% acetic acid, 887 g of 30% aqueous hydrogen peroxide, and 4 g of sulfuric acid and allowing to stand at 40 ° C. for 1 day. When peracetic acid was quantified by titration, it was found that 95.2 g of peracetic acid was produced as a whole. In Example 2-11, all of the reagent amounts were prepared 10 times and used.
  • Example 2-1 3 kg of a cup lamp (water content 29%) was immersed in 517 g of peracetic acid-containing liquid a-2 for 5 minutes at a temperature of 30 ° C. (When soaking, rotate the rubber so that the rubber is immersed evenly, soak it while pressing it down) ) After pulling this up, a tap water shower was applied for 20 seconds, then immersed in a 2% aqueous sodium carbonate solution for 5 minutes, and a tap water shower was again applied for 20 seconds. Then, it dried in 90 degreeC oven for 4 hours, and obtained the epoxidized natural rubber.
  • Example 2-2 Epoxidized natural rubber was obtained in the same manner as in Example 2-1, except that the amount of peracetic acid-containing liquid a-2 was changed to 1034 g.
  • Example 2-3 An epoxidized natural rubber was obtained in the same manner as in Example 2-1, except that the amount of the peracetic acid-containing liquid a-2 was changed to 2067 g.
  • Example 2-4 An epoxidized natural rubber was obtained in the same manner as in Example 2-1, except that the peracetic acid-containing liquid a-2 was changed to the peracetic acid-containing liquid b-2.
  • Example 2-5 An epoxidized natural rubber was obtained in the same manner as in Example 2-1, except that the peracetic acid-containing liquid a-2 was changed to a peracetic acid-containing liquid c-2.
  • Example 2-6 30 kg of a cup lamp (water content 29%) was immersed in 5.17 kg of peracetic acid-containing liquid a-2 for 5 minutes at a temperature of 30 ° C. (Rotating and pressing the rubber so that the rubber was evenly immersed when immersed) I was immersed in it). After pulling this up, the rubber pulled into the extruder and 10.34 kg of peracetic acid-containing liquid a-2 (peracetic acid concentration prepared separately from the above-mentioned soaked one is 10% by mass or more) are added in small amounts. Then, udon-like rubber was obtained from the extruded plate having holes.
  • the liquid is fed to the coagulation apparatus by a tube pump (inner diameter of the tube 5 mm) adjusted so that the liquid feeding amount is 17.6 g / min (850 mm / min). did.
  • the temperature of the mixed solution at the time of mixing was 25 ° C.
  • the temperature of the mixed solution at the time of feeding was 55 ° C. Since the liquid was hardly stored in the mixing apparatus, there was almost no time for the liquid to stay in the mixing apparatus. On the other hand, the residence time in the tube was 15 minutes. In the coagulation apparatus, a certain amount of water vapor is blown from the bottom, and from the top, the mixed liquid descends along the wall.
  • the degree of epoxidation of the resulting rubber was examined by NMR. As a result, the degree of epoxidation was 25.1%, 25.3%, 25.1%, 25.4%, 25.4%, 25.7%, 25.3%, 25.5%, It was confirmed to be stable.
  • the reaction is proceeding very quickly, the overall cost is very high because the loss of material is very large, water vapor that consumes a lot of energy is used, and it takes a lot of time for neutralization and washing. .
  • the reaction was carried out while adjusting the ambient temperature to be 60 to 65 ° C.
  • the degree of epoxidation was examined. As a result, the degree of epoxidation was 1.5% at 4 hours, 3.2% at 8 hours, 4.6% at 20 hours, 4.9% at 24 hours, and 5.1% at 27 hours.
  • the process gradually progressed gradually, it took a very long time.
  • all the used reagents were uncollectable, and the process was very long and costly as in Comparative Example 2.
  • Example 2-4 A vulcanized rubber sheet was prepared in the same manner as in Example 2-1, except that TSR20 was used, and the physical properties were examined.
  • Example 2--7 Add 3 kg of ion-exchanged water and 5 g of sulfuric acid to 3 kg of 88% formic acid aqueous solution in a jacketed container, stir it, soak 3 kg of cup lamp (moisture content 29%), and heat it so that the total temperature is 50 ° C. did.
  • the 30% hydrogen peroxide solution 118g was dripped here in 3 hours, and it was made to react for 5 hours. After pulling it up, it was subjected to a tap water shower for 20 seconds, then dipped in a 2% aqueous sodium carbonate solution for 10 minutes, again showered with tap water for 20 seconds, and then dried. Drying was carried out in an oven at 90 ° C. for 4 hours to obtain an epoxidized natural rubber.
  • Example 2-8 Epoxidized natural rubber was obtained in the same manner as in Example 2-7, except that 197 g of 30% hydrogen peroxide was used.
  • Example 2-9 Epoxidized natural rubber was obtained in the same manner as in Example 2-7 except that 394 g of 30% hydrogen peroxide was used.
  • Example 2-10 An epoxidized natural rubber was obtained in the same manner as in Example 2-7, except that 789 g of 30% hydrogen peroxide was used.
  • Example 2-11 Add 3 kg of ion-exchanged water and 5 g of sulfuric acid to 3 kg of 88% formic acid aqueous solution in a jacketed container, stir it, soak 3 kg of cup lamp (moisture content 29%), and heat it so that the total temperature is 50 ° C. did. To this, 394 g of 30% hydrogen peroxide solution was dropped over 3 hours and reacted for 5 hours. After pulling this up, the epoxidation was carried out while gradually introducing into the extruder together with the peracetic acid-containing liquid d-2 and kneading.
  • a plate with a hole is attached to the exit of the extruder, the udon-like rubber that has come out is washed with water, immersed in a 2% aqueous sodium carbonate solution for 2 hours, and then sprayed with water again to wash away the alkali, and then shredder And then dried at 90 ° C. for 4 hours to obtain an epoxidized natural rubber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided are: a simple and easy method for producing a relatively uniform epoxidized natural rubber at low cost; a rubber composition for tires, which contains the epoxidized natural rubber; and a pneumatic tire which is produced using the rubber composition for tires. The present invention relates to a method for producing an epoxidized natural rubber, which comprises: a step (1) wherein a granular solid rubber is prepared by solidifying a natural rubber latex into granules; and a step (2) wherein the thus-obtained granular solid rubber is treated with an epoxidation liquid so that the granular solid rubber is epoxidized.

Description

エポキシ化天然ゴムの製造方法、タイヤ用ゴム組成物及び空気入りタイヤProcess for producing epoxidized natural rubber, rubber composition for tire and pneumatic tire
本発明は、エポキシ化天然ゴムの製造方法、該製造方法により得られたエポキシ化天然ゴムを用いたタイヤ用ゴム組成物及び空気入りタイヤに関する。 The present invention relates to a method for producing an epoxidized natural rubber, a tire rubber composition using the epoxidized natural rubber obtained by the production method, and a pneumatic tire.
従来からタイヤなどのゴム製品にエポキシ化天然ゴムが使用されており、このエポキシ化天然ゴムは、一般的に、ヘベアブラジリエンシスなどのゴムノキから採取されるフィールドラテックスを遠心分離で濃縮する工程、得られた濃縮ラテックスに界面活性剤を添加後、攪拌しながらギ酸を添加する工程、数時間かけて過酸化水素をゆっくりと投入し、エポキシ化反応を約1日間進める工程、得られたラテックス状のエポキシ化天然ゴムを凝固させる工程、凝固させた天然ゴムラテックスを必要に応じて中和、水洗して乾燥する工程を経て製造されている。 Conventionally, epoxidized natural rubber has been used in rubber products such as tires, and this epoxidized natural rubber is generally a process of concentrating field latex collected from rubber trees such as Hevea brasiliensis by centrifugation. , Adding a surfactant to the concentrated latex obtained, adding formic acid while stirring, slowly adding hydrogen peroxide over several hours, and allowing the epoxidation reaction to proceed for about 1 day, resulting latex The epoxidized natural rubber is coagulated, and the coagulated natural rubber latex is neutralized, washed with water and dried as necessary.
この一連の製造工程によると、ゴムがラテックス中で存在するサイズ(0.1~数μm)のままエポキシ化されるため、ゴムが均一にエポキシ化されるメリットがあるものの、反応に長時間を要すること、高価な薬品を使用すること、工程数が多いこと、などの理由から、エポキシ化天然ゴムの製造コストが非常に高額になるという問題がある。また、ゴムが不安定化して固まりやすく界面活性剤が必要なために高コスト化するとともに、最終ゴム製品に界面活性剤が残存すると吸水によりゴム物性が低下する、エポキシ化反応の温度制御が困難で作業者が常時監視する必要がある、などの問題もある。 According to this series of manufacturing processes, the rubber is epoxidized with the size (0.1 to several μm) existing in the latex, so there is a merit that the rubber is uniformly epoxidized, but the reaction takes a long time. There is a problem that the production cost of the epoxidized natural rubber is very high due to the necessity, the use of expensive chemicals, and the large number of processes. In addition, the rubber becomes unstable and hardens and requires a surfactant, which increases the cost, and if the surfactant remains in the final rubber product, the rubber properties deteriorate due to water absorption, making it difficult to control the temperature of the epoxidation reaction. However, there is a problem that the worker needs to monitor constantly.
一方、特許文献1には、酢酸および/もしくは無水酢酸と過酸化水素から過酢酸を調製した後、その過酢酸と天然ゴムラテックスを混合してエポキシ化天然ゴムラテックスを製造する方法が開示され、これによれば、迅速かつ定量的に化学反応が進行し、所望のエポキシ化率に迅速に到達できる。しかし、この方法では、酢酸や無水酢酸と過酸化水素との反応が平衡反応で必要な過酢酸を得るために余分な酢酸と過酸化水素を要するので、高コストの薬品が過剰に必要になること、過剰な薬品の排水処理のための費用も必要になることなどの問題がある。 On the other hand, Patent Document 1 discloses a method for preparing epoxidized natural rubber latex by preparing peracetic acid from acetic acid and / or acetic anhydride and hydrogen peroxide, and then mixing the peracetic acid and natural rubber latex. According to this, the chemical reaction proceeds promptly and quantitatively, and a desired epoxidation rate can be reached quickly. However, in this method, the reaction between acetic acid or acetic anhydride and hydrogen peroxide requires excessive acetic acid and hydrogen peroxide in order to obtain the peracetic acid required for the equilibrium reaction. In addition, there is a problem that the cost for waste water treatment of excessive chemicals is also required.
特開2009-293011号公報JP 2009-293011 A
本発明は、前記課題を解決し、簡便かつ安価で、比較的均一なエポキシ化天然ゴムの製造方法、該エポキシ化天然ゴムを含むタイヤ用ゴム組成物、及び該タイヤ用ゴム組成物を用いて作製した空気入りタイヤを提供することを目的とする。 The present invention solves the above problems and uses a simple, inexpensive and relatively uniform method for producing epoxidized natural rubber, a tire rubber composition containing the epoxidized natural rubber, and the tire rubber composition. It aims at providing the produced pneumatic tire.
本発明は、天然ゴムラテックスを粒状に凝固させ、粒状固形ゴムを調製する工程1と、得られた粒状固形ゴムをエポキシ化液で処理し、該粒状固形ゴムをエポキシ化する工程2とを含むエポキシ化天然ゴムの製造方法に関する。 The present invention includes a step 1 for solidifying a natural rubber latex into a granular form to prepare a granular solid rubber, and a step 2 for treating the obtained granular solid rubber with an epoxidizing liquid and epoxidizing the granular solid rubber. The present invention relates to a method for producing an epoxidized natural rubber.
前記エポキシ化液は、過酢酸含有液及び/又は過ギ酸含有液であることが好ましい。ここで、前記過酢酸含有液としては、酢酸及び/又は無水酢酸と過酸化水素とを混合し、反応させて得られるものが好ましく、前記過ギ酸含有液としては、ギ酸と過酸化水素とを混合し、反応させて得られるものが好ましい。 The epoxidation liquid is preferably a peracetic acid-containing liquid and / or a formic acid-containing liquid. Here, the peracetic acid-containing liquid is preferably one obtained by mixing and reacting acetic acid and / or acetic anhydride and hydrogen peroxide, and the formic acid-containing liquid includes formic acid and hydrogen peroxide. What is obtained by mixing and reacting is preferable.
前記天然ゴムラテックスとして、フィールドラテックス、フィールドラテックスを濃縮した濃縮ラテックス、及びこれらから非ゴム成分を除去した改質天然ゴムラテックスからなる群より選択される少なくとも1種を使用することが好ましい。 As the natural rubber latex, it is preferable to use at least one selected from the group consisting of field latex, concentrated latex obtained by concentrating field latex, and modified natural rubber latex obtained by removing non-rubber components therefrom.
前記工程1は、酸を用いて前記天然ゴムラテックスを粒状に凝固させ、粒状固形ゴムを調製する工程であることが好ましく、酸及び凝集剤を用いて前記天然ゴムラテックスを粒状に凝固させ、粒状固形ゴムを調製する工程であることがより好ましい。 The step 1 is preferably a step of coagulating the natural rubber latex into particles using an acid to prepare a granular solid rubber, and coagulating the natural rubber latex into particles using an acid and a flocculant, More preferably, it is a step of preparing a solid rubber.
前記粒状固形ゴムの粒子径は、20mm以下であることが好ましく、12mm以下であることがより好ましい。 The particle size of the granular solid rubber is preferably 20 mm or less, and more preferably 12 mm or less.
本発明は、前述の製造方法により得られるエポキシ化天然ゴムに関する。
ここで、前記エポキシ化天然ゴムは、エポキシ化度が0.1~50%であることが好ましい。
The present invention relates to an epoxidized natural rubber obtained by the above-described production method.
Here, the epoxidized natural rubber preferably has an epoxidation degree of 0.1 to 50%.
本発明は、前記エポキシ化天然ゴムを含むタイヤ用ゴム組成物に関する。
本発明はまた、前記タイヤ用ゴム組成物を用いて作製した空気入りタイヤに関する。
The present invention relates to a tire rubber composition containing the epoxidized natural rubber.
The present invention also relates to a pneumatic tire produced using the tire rubber composition.
本発明によれば、天然ゴムラテックスを粒状に凝固させ、粒状固形ゴムを調製する工程1と、得られた粒状固形ゴムをエポキシ化液で処理し、該粒状固形ゴムをエポキシ化する工程2とを含むエポキシ化天然ゴムの製造方法であるので、従来の製法に比べて、エポキシ化天然ゴムを簡便かつ安価に、そして比較的均一に製造できる。 According to the present invention, natural rubber latex is solidified into a granular form to prepare a granular solid rubber, and the obtained granular solid rubber is treated with an epoxidizing liquid to epoxidize the granular solid rubber; Therefore, the epoxidized natural rubber can be produced easily, at a low cost, and relatively uniformly as compared with the conventional production method.
具体的には、天然ゴムラテックスを粒状に凝固させて作製した粒状固形ゴムをエポキシ化することで、エポキシ化に使用する高価な薬剤を無駄なく、繰り返し再利用でき、エポキシ化に必要な試薬のロスを無くすことができる。また、非常に大きな表面積を持つ粒状の固形天然ゴムをエポキシ化する製法であるため、比較的均一なエポキシ化天然ゴムが得られる。更に、ゴム生産量に対する廃液の比率が、ラテックスからエポキシ化する場合に比べて非常に少なく、種々の化学薬品を使う必要がないため、環境負荷を低減することも可能になる。 Specifically, by epoxidizing a granular solid rubber produced by coagulating natural rubber latex into particles, expensive chemicals used for epoxidation can be reused without waste, and reagents necessary for epoxidation can be reused. Loss can be eliminated. Moreover, since it is the manufacturing method which epoxidizes the granular solid natural rubber with a very large surface area, a comparatively uniform epoxidized natural rubber is obtained. Furthermore, the ratio of the waste liquid to the amount of rubber production is very small compared with the case of epoxidizing from latex, and it is not necessary to use various chemicals, so that it is possible to reduce the environmental burden.
〔エポキシ化天然ゴムの製造方法〕
本発明のエポキシ化天然ゴムの製造方法は、天然ゴムラテックスを粒状に凝固させ、粒状固形ゴムを調製する工程1と、得られた粒状固形ゴムをエポキシ化液で処理し、該粒状固形ゴムをエポキシ化する工程2とを含む。
[Method for producing epoxidized natural rubber]
The method for producing an epoxidized natural rubber according to the present invention comprises a step 1 of coagulating a natural rubber latex into a granular form to prepare a granular solid rubber, and treating the obtained granular solid rubber with an epoxidizing liquid, And epoxidizing step 2.
天然ゴムの樹木から採取されるフィールドラテックスにエポキシ化を施す従来の製法では、エポキシ化工程までの全工程を液状条件下で行った後、ゴムの凝固、残存する酸のアルカリによる中和、洗浄、乾燥工程を実施してエポキシ化天然ゴムが調製される。つまり、このような製法では、エポキシ化に使用される薬品は、ほぼそのままゴム中に残存し、残存薬品を洗浄工程で洗い流すので、薬品は一度きり使用され、再利用されることはない。加えて、洗浄排水は未反応のギ酸と過酸化水素を含んでおり、酸の中和と過酸化水素の分解をするための廃液処理も必要である。 In the conventional method of epoxidizing field latex collected from natural rubber trees, the entire process up to the epoxidation process is performed under liquid conditions, then the rubber is solidified, the remaining acid is neutralized with alkali, and washed. An epoxidized natural rubber is prepared by performing a drying process. That is, in such a manufacturing method, the chemical used for epoxidation remains in the rubber almost as it is, and the residual chemical is washed away in the cleaning process, so that the chemical is used once and never reused. In addition, the washing waste water contains unreacted formic acid and hydrogen peroxide, and waste liquid treatment for neutralizing the acid and decomposing the hydrogen peroxide is also necessary.
これに対して、本発明の製造方法では、天然ゴムラテックスを粒状に凝固させて得られた粒状固形ゴムをゴムのエポキシ化が可能なエポキシ化液で処理すること、例えば、酢酸や無水酢酸と過酸化水素をブレンドすることで生成する過酢酸含有液、ギ酸と過酸化水素をブレンドした混合液(過ギ酸含有液)などのエポキシ化液中に粒状固形ゴムを浸漬すること、該エポキシ化液を粒状固形ゴムにスプレー処理することなどによりゴムのエポキシ化を進行させる。そのため、従来の液状条件下でのエポキシ化工程とは異なって、浸漬やスプレー処理に用いたエポキシ化液の回収が可能である。また、過酢酸、過ギ酸は天然ゴム(固形、ラテックスとも)が近傍に存在すると、即座にゴムをエポキシ化すると同時に、酢酸、ギ酸に戻るので、処理後の液に、濃度調整のために新たに酢酸、ギ酸や過酸化水素を加えることで、再び過酢酸や過ギ酸を生成させることができる。また、ラテックスと違って水分がほとんど増加しないので、液がほとんど希釈されないというメリットも併せ持つので、処理液に用いる高価な化学薬品の再利用が可能である。また、再利用可能なため、排水もほとんど出ないことから、廃水処理が不要で、コストと環境負荷の両面でメリットがある。また、反応液の温度を制御できずにラテックス全体が固まる心配もないため、反応中の作業者の厳重な監視も不要であり、コスト低減にも寄与する。 On the other hand, in the production method of the present invention, the granular solid rubber obtained by coagulating natural rubber latex in a granular form is treated with an epoxidizing liquid capable of epoxidizing rubber, for example, acetic acid or acetic anhydride. Immersing a granular solid rubber in an epoxidized liquid such as a peracetic acid-containing liquid produced by blending hydrogen peroxide or a mixed liquid (formic acid-containing liquid) in which formic acid and hydrogen peroxide are blended, the epoxidized liquid The epoxidation of the rubber is progressed, for example, by spraying into a solid rubber solid. Therefore, unlike the conventional epoxidation process under liquid conditions, it is possible to recover the epoxidation liquid used for dipping or spraying. Peracetic acid and performic acid are instantly epoxidized when natural rubber (both solid and latex) is present in the vicinity. At the same time, the rubber returns to acetic acid and formic acid. By adding acetic acid, formic acid or hydrogen peroxide to the mixture, peracetic acid or formic acid can be generated again. In addition, unlike latex, moisture hardly increases, and the liquid is hardly diluted, so that expensive chemicals used in the processing liquid can be reused. In addition, since it is reusable, there is almost no drainage, so there is no need for wastewater treatment, and there are advantages in both cost and environmental impact. In addition, since the temperature of the reaction solution cannot be controlled and there is no fear that the entire latex is hardened, it is unnecessary to closely monitor the worker during the reaction, which contributes to cost reduction.
非ゴム成分を除去した改質天然ゴムにおいては、その製造プロセスにエポキシ化工程を追加するという簡易な手法で、エポキシ化天然ゴムの製造が可能になる。 In the modified natural rubber from which the non-rubber component is removed, the epoxidized natural rubber can be produced by a simple technique of adding an epoxidation step to the production process.
更に、本発明では、圧倒的に大きい表面積を持つ粒状固形ゴムを調製し、それをエポキシ化するので、比較的均一にエポキシ化されたゴムを調製できる。なお、ラテックス状態が最大の表面積を有するが、前記のようにエポキシ化薬剤を再利用できないので、ラテックスを粒状で固める本発明の製法が望ましい。 Furthermore, in the present invention, a granular solid rubber having an overwhelmingly large surface area is prepared and epoxidized, so that a relatively uniformly epoxidized rubber can be prepared. Although the latex state has the largest surface area, the epoxidation agent cannot be reused as described above, and therefore the production method of the present invention in which the latex is solidified in a granular form is desirable.
従って、本発明によると、比較的均一にエポキシ化されたエポキシ化天然ゴムを少ない工程で短時間かつ簡便に製造でき、また、製造の際に、エポキシ化液に使用される薬品を再利用することで、薬品のロスを無くし、廃液処理コストや環境負荷を低減でき、更に反応中の作業者の厳重な監視も不要である。 Therefore, according to the present invention, an epoxidized natural rubber that has been epoxidized relatively uniformly can be produced in a short time and easily with a small number of steps, and the chemicals used in the epoxidized liquid can be reused during the production. This eliminates chemical loss, reduces waste liquid treatment costs and environmental burdens, and eliminates the need for strict monitoring of the worker during the reaction.
(工程1)
工程1では、天然ゴムラテックスを粒状に凝固させ、粒状固形ゴムが調製される。
天然ゴムラテックスは酸や塩の添加で凝固することが一般に知られている。これは、ラテックスの粒子はピーク粒径で1μmの粒径を持ち、表面が負電荷を帯びて互いに反発しあい、漿液中で安定的に存在しているが、この負電荷が酸や塩中の陽イオンにより弱められ、ラテックスの量が充分に多ければ、ゴムが一気に凝集して10cm以上の大きな塊になるものである。このような状態になると、ゴムの表面積が重量に対して極めて小さくなり、エポキシ化しようとしてもごくわずかしか反応しないため、実質上、改質は不可能になる。これを避けるために少量ずつ凝固させても、工業的規模で実施する場合に、タンクに移すと、ゴム同士がくっつきあって結局大きな塊になってしまう。これに対し、本発明は、天然ゴムラテックス中のゴムを粒子状に凝固させて作製した粒状天然ゴムをエポキシ化する製法であるため、表面積が大きく、均一にエポキシ化されたエポキシ化天然ゴムが得られる。
(Process 1)
In step 1, natural rubber latex is solidified into a granular form to prepare a granular solid rubber.
It is generally known that natural rubber latex coagulates with the addition of acid or salt. This is because latex particles have a peak particle size of 1 μm, the surfaces are negatively charged and repel each other, and exist stably in the serum, but this negative charge is present in acids and salts. If it is weakened by cations and the amount of latex is sufficiently large, the rubber will aggregate at once and become a large lump of 10 cm or more. In such a state, the surface area of the rubber becomes very small with respect to the weight, and even if it is epoxidized, it reacts very little, so that the modification is virtually impossible. Even if it is solidified little by little to avoid this, when it is carried out on an industrial scale, if it is transferred to a tank, the rubbers stick together and eventually become a large lump. On the other hand, the present invention is a method for epoxidizing granular natural rubber produced by coagulating rubber in natural rubber latex into particles, so that an epoxidized natural rubber having a large surface area and uniformly epoxidized is obtained. can get.
天然ゴムラテックスとしては、ヘベア樹などの天然ゴムの樹木をタッピングして採取される生ラテックス(フィールドラテックス)、フィールドラテックスを遠心分離法やクリーミング法によって濃縮した濃縮ラテックス(精製ラテックス、常法によりアンモニアを添加したハイアンモニアラテックス、亜鉛華とTMTDとアンモニアによって安定化させたLATZラテックスなど)、これらのラテックスからタンパク質、リン脂質などの非ゴム成分を除去した脱蛋白天然ゴムラテックス、ケン化天然ゴムラテックスなどの改質天然ゴムラテックスなどを使用できる。ここで、脱蛋白天然ゴムラテックス、ケン化天然ゴムラテックスは、タンパク質分解酵素、アルカリによるケン化処理など、公知の方法により調製できる。 As natural rubber latex, raw latex (field latex) collected by tapping natural rubber trees such as Hevea tree, concentrated latex (purified latex, ammonia by conventional methods) concentrated by centrifugation or creaming method. High-ammonia latex, zinc oxide, TMTD, and ammonia-stabilized LATZ latex), non-rubber components such as proteins and phospholipids removed from these latexes, and saponified natural rubber latex Modified natural rubber latex such as can be used. Here, deproteinized natural rubber latex and saponified natural rubber latex can be prepared by a known method such as proteolytic enzyme or saponification treatment with alkali.
天然ゴムラテックスを粒状に凝固させ、粒状固形ゴムを調製する方法としては、天然ゴムラテックスのpHをコントロールする方法などが挙げられ、特に小粒径のゴム粒子を作製するためには、天然ゴムラテックスのpHをコントロールした条件下で凝集剤を添加する方法が好ましい。 Examples of a method for preparing a granular solid rubber by coagulating a natural rubber latex include a method for controlling the pH of the natural rubber latex. Particularly, in order to produce rubber particles having a small particle diameter, natural rubber latex is used. A method in which the flocculant is added under the condition of controlling the pH of is preferable.
前記pHのコントロール(pH調整)は、好ましくは3.0~5.0、より好ましくは3.5~4.5の範囲に調整する。上記範囲内にpH調整することで、粒子状のゴム(粒状固形ゴム)が得られる。なお、pHのコントロールは、ギ酸、酢酸、硫酸などの酸、水酸化ナトリウム、水酸化カリウムなどのアルカリにより実施でき、なかでも、酸を用いることが好ましい。 The pH control (pH adjustment) is preferably 3.0 to 5.0, more preferably 3.5 to 4.5. By adjusting the pH within the above range, particulate rubber (granular solid rubber) can be obtained. The pH can be controlled with an acid such as formic acid, acetic acid or sulfuric acid, or an alkali such as sodium hydroxide or potassium hydroxide, and it is preferable to use an acid.
凝集剤としては、高分子凝集剤などを使用できる。高分子凝集剤としては、ジメチルアミノエチル(メタ)アクリレートの塩化メチル4級塩の重合体等のカチオン性高分子凝集剤、アクリル酸塩の重合体等のアニオン系高分子凝集剤、アクリルアミド重合体等のノニオン性高分子凝集剤、ジメチルアミノエチル(メタ)アクリレートの塩化メチル4級塩-アクリル酸塩の共重合体等の両性高分子凝集剤などが挙げられる。なかでも、粒状ゴムが効率的に得られるという理由から、カチオン性高分子凝集剤が好ましく、ジメチルアミノエチル(メタ)アクリレートの塩化メチル4級塩の重合体等のポリ(メタ)アクリル酸エステル系がより好ましく、ジメチルアミノエチル(メタ)アクリレートの塩化メチル4級塩の重合体が更に好ましい。また、カチオン性高分子凝集剤は、強カチオン性、中カチオン性、弱カチオン性いずれも使用可能であるが、強カチオン性の高分子凝集剤が好ましい。 As the flocculant, a polymer flocculant or the like can be used. Examples of polymer flocculants include cationic polymer flocculants such as methyl chloride quaternary salt polymers of dimethylaminoethyl (meth) acrylate, anionic polymer flocculants such as acrylate polymers, and acrylamide polymers. And a nonionic polymer flocculant such as a methyl chloride quaternary salt-acrylate copolymer of dimethylaminoethyl (meth) acrylate. Among these, a cationic polymer flocculant is preferable because it is possible to efficiently obtain a granular rubber, and a poly (meth) acrylic acid ester based polymer such as a polymer of dimethylaminoethyl (meth) acrylate methyl chloride quaternary salt. Is more preferable, and a polymer of dimethyl quaternary salt of dimethylaminoethyl (meth) acrylate is more preferable. As the cationic polymer flocculant, any of strong cationic, medium cationic and weak cationic can be used, but strong cationic polymer flocculants are preferred.
凝集剤の添加量は、天然ゴムラテックスの固形分100質量部に対して、下限は0.05質量部以上が好ましく、0.1質量部以上がより好ましい。0.05質量部未満では、添加量が不充分で、部分的にしか粒状固形ゴムが得られないおそれがある。上限は5.0質量部以下が好ましく、1.5質量部以下がより好ましい。5.0質量部を超えると、1つの粒子に吸着する凝集剤の量が多くなり過ぎて、粒子間の反発作用で分散し、凝集物が得られなくなるおそれがある。更に経済的観点からも経済的でない。 The lower limit of the addition amount of the flocculant is preferably 0.05 parts by mass or more and more preferably 0.1 parts by mass or more with respect to 100 parts by mass of the solid content of the natural rubber latex. If it is less than 0.05 parts by mass, the amount added is insufficient, and there is a possibility that a granular solid rubber can be obtained only partially. The upper limit is preferably 5.0 parts by mass or less, and more preferably 1.5 parts by mass or less. When the amount exceeds 5.0 parts by mass, the amount of the aggregating agent adsorbed on one particle becomes too large, and the particles may be dispersed by the repulsive action between the particles, and the aggregate may not be obtained. Furthermore, it is not economical from an economic point of view.
工程1は、良好に粒状固形ゴムが調製されるという理由から、界面活性剤の存在下で行われても良い。界面活性剤としては、陰イオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤が使用可能である。陰イオン性界面活性剤としては、例えばカルボン酸系、スルホン酸系、硫酸エステル系、リン酸エステル系等の陰イオン性界面活性剤があげられる。非イオン性界面活性剤としては、例えばポリオキシアルキレンエーテル系、ポリオキシアルキレンエステル系、多価アルコール脂肪酸エステル系、糖脂肪酸エステル系、アルキルポリグリコシド系等の非イオン性界面活性剤があげられる。両性界面活性剤としては、例えばアミノ酸型、ベタイン型、アミンオキサイド型等の両性界面活性剤があげられる。なかでも、陰イオン性界面活性剤が好ましく、スルホン酸系の陰イオン性界面活性剤がより好ましい。 Step 1 may be performed in the presence of a surfactant because the granular solid rubber is well prepared. As the surfactant, an anionic surfactant, a nonionic surfactant, and an amphoteric surfactant can be used. Examples of the anionic surfactant include carboxylic acid-based, sulfonic acid-based, sulfate ester-based and phosphate ester-based anionic surfactants. Examples of nonionic surfactants include nonionic surfactants such as polyoxyalkylene ethers, polyoxyalkylene esters, polyhydric alcohol fatty acid esters, sugar fatty acid esters, and alkyl polyglycosides. Examples of the amphoteric surfactant include amphoteric surfactants such as amino acid type, betaine type, and amine oxide type. Among these, an anionic surfactant is preferable, and a sulfonic acid anionic surfactant is more preferable.
界面活性剤は特段添加しなくても良いが、添加する場合、その添加量は、天然ゴムラテックスの固形分100質量部に対して、下限は0.1質量部以上が好ましく、0.2質量部以上がより好ましく、また、上限は5.0質量部以下が好ましく、2.0質量部以下がより好ましい。上記範囲内に調整することで、粒状固形ゴムが良好に得られる。 The surfactant does not need to be added in particular, but when added, the addition amount is preferably 0.1 parts by mass or more, and 0.2 parts by mass with respect to 100 parts by mass of the solid content of the natural rubber latex. The upper limit is preferably 5.0 parts by mass or less, and more preferably 2.0 parts by mass or less. By adjusting within the above range, a granular solid rubber can be obtained satisfactorily.
工程1により粒状固形ゴムが得られるが、その粒子径は、好ましくは20mm以下、より好ましくは12mm以下、更に好ましくは10mm以下、特に好ましくは5mm以下である。厳密なpHコントロール、更に必要に応じて適切な攪拌条件下において凝集剤を添加することで、ゴムを粒状に凝固させ、上記粒径のゴム粒子が得られる。粒状固形ゴムの粒子径の下限は特に限定されず、小粒径であるほど好適であるが、通常、0.1mm以上である。なお、粒子径は、目視、顕微鏡写真などにより測定可能である。 Granular solid rubber is obtained by Step 1, but the particle diameter is preferably 20 mm or less, more preferably 12 mm or less, still more preferably 10 mm or less, and particularly preferably 5 mm or less. By strictly controlling the pH and, if necessary, adding a flocculant under appropriate stirring conditions, the rubber is solidified into granules, and rubber particles having the above particle diameter can be obtained. The lower limit of the particle diameter of the granular solid rubber is not particularly limited, and the smaller the particle diameter, the more suitable, but usually 0.1 mm or more. The particle diameter can be measured by visual observation, a micrograph or the like.
このようにして得られた粒状の天然ゴムには、漿液中の非ゴム成分がまだ多く含まれていることから、必要に応じて水洗しても良く、また、表面に残るタンパク質等を更にアルカリ雰囲気下で除去し、その後水洗しても良い。水洗により、ゴムの粒径は凝固直後よりも大きくなる傾向があるが、適切な攪拌条件で攪拌することで、その粒径の成長を抑制し、大半の粒子を数mm以下のサイズに保つことが可能となる。本発明におけるゴム粒子を大きく成長させない技術は一般のラテックス技術者でも認識していない技術である。 The granular natural rubber obtained in this way still contains a large amount of non-rubber components in the serum, so it may be washed with water if necessary. It may be removed under an atmosphere and then washed with water. By washing with water, the rubber particle size tends to be larger than that immediately after coagulation, but by stirring under appropriate stirring conditions, growth of the particle size is suppressed and most particles are kept to a size of several mm or less. Is possible. The technology that does not grow rubber particles greatly in the present invention is a technology that is not recognized by general latex engineers.
洗浄工程は、例えば、ゴム分(凝固物)に水を添加し、一定時間攪拌しながらゴム分を水に懸濁させた後、固液分離を行い、ゴム分を取り出す方法が挙げられる。固液分離は、例えば、ゴム分と水との比重差を利用して行えばよい。具体的には、例えば、ゴム分を水に懸濁させた後、一定時間静置し、ゴム分に比べて比重の大きい水を容器の下部から抜き取ればよい。また、遠心分離を行ってもよい。 The washing step includes, for example, a method in which water is added to a rubber component (coagulated product), the rubber component is suspended in water while stirring for a certain period of time, solid-liquid separation is performed, and the rubber component is taken out. Solid-liquid separation may be performed using, for example, the specific gravity difference between rubber and water. Specifically, for example, after the rubber component is suspended in water, the rubber component is allowed to stand for a certain period of time, and water having a higher specific gravity than the rubber component is extracted from the lower part of the container. Centrifugation may also be performed.
(工程2)
工程1で得られた粒状固形ゴムをエポキシ化液で処理して粒状固形ゴムがエポキシ化される。
本発明で使用されるエポキシ化液としては、天然ゴムラテックスを粒状に凝固させて作製した粒状固形ゴムをエポキシ化させることが可能な液であれば特に限定されず、過酢酸含有液、過ギ酸含有液などを好適に使用できる。
(Process 2)
The granular solid rubber obtained in step 1 is treated with an epoxidation liquid to epoxidize the granular solid rubber.
The epoxidation liquid used in the present invention is not particularly limited as long as it is a liquid capable of epoxidizing a granular solid rubber produced by solidifying natural rubber latex into particles, and a peracetic acid-containing liquid, performic acid. A containing liquid etc. can be used conveniently.
過酢酸含有液としては、過酢酸を含む又は過酢酸を生成する液であれば特に限定されず、例えば、酢酸及び/又は無水酢酸と過酸化水素とを混合し、反応させて得られるものを好適に使用できる。この場合、反応で生成した過酢酸によってエポキシ化を進行させることができるとともに、処理後の液に、酢酸、無水酢酸や過酸化水素を加えて濃度を調整し、再び過酢酸を生成させることで、処理液の再利用も可能になる。 The peracetic acid-containing liquid is not particularly limited as long as it contains peracetic acid or generates peracetic acid. For example, a liquid obtained by mixing and reacting acetic acid and / or acetic anhydride with hydrogen peroxide. It can be used suitably. In this case, epoxidation can be promoted by peracetic acid generated by the reaction, and the concentration of the solution after the treatment is adjusted by adding acetic acid, acetic anhydride or hydrogen peroxide to generate peracetic acid again. In addition, the processing solution can be reused.
酢酸、無水酢酸としては特に限定されず、例えば、氷酢酸又は市販の酢酸を任意の濃度に薄めたものを使用できる。生産効率を考慮すると、濃度80~100質量%の酢酸が好ましく、90~100質量%の酢酸がより好ましい。 Acetic acid and acetic anhydride are not particularly limited, and for example, glacial acetic acid or commercially available acetic acid diluted to an arbitrary concentration can be used. Considering production efficiency, acetic acid having a concentration of 80 to 100% by mass is preferable, and acetic acid having a concentration of 90 to 100% by mass is more preferable.
過酸化水素としては特に限定されず、市販の過酸化水素水溶液などを使用できる。該過酸化水素水溶液の濃度は、10~60質量%が好ましく、反応効率の点からは30~60質量%が特に好ましい。10質量%未満であると、液を繰返し使用した際に、すぐに薄まってしまい、60質量%を超えると、爆発する可能性がある。特に爆発の可能性の点では、50質量%以下で、当該濃度に近いものが好適である。 The hydrogen peroxide is not particularly limited, and a commercially available aqueous hydrogen peroxide solution can be used. The concentration of the aqueous hydrogen peroxide solution is preferably 10 to 60% by mass, and particularly preferably 30 to 60% by mass from the viewpoint of reaction efficiency. If the amount is less than 10% by mass, the liquid may be diluted immediately after repeated use. If the amount exceeds 60% by mass, explosion may occur. In particular, in terms of the possibility of explosion, it is preferably 50% by mass or less and close to the concentration.
酢酸及び/又は無水酢酸と過酸化水素とを混合し、反応させる方法としては、特に限定されず、従来公知の方法を使用できる。例えば、30質量%過酸化水素水溶液と90質量%酢酸を静かに混合して、1~2日反応させると、過酢酸が生成するが、100%反応するわけではなく、過酸化水素、過酢酸、酢酸が共存した状態の平衡状態となる。そして、この状態の過酢酸含有液に粒状固形ゴムを入れると、過酢酸が素早くゴムと反応して、ゴムがエポキシ化され、過酢酸は酢酸に戻る。つまり酢酸は触媒であり、過酸化水素が水と酸素に分かれ、その酸素がゴムと反応する機構である。 A method of mixing and reacting acetic acid and / or acetic anhydride and hydrogen peroxide is not particularly limited, and a conventionally known method can be used. For example, when 30% by mass hydrogen peroxide aqueous solution and 90% by mass acetic acid are gently mixed and reacted for 1 to 2 days, peracetic acid is produced, but it does not react 100%. In this state, acetic acid coexists. When granular solid rubber is added to the peracetic acid-containing liquid in this state, peracetic acid reacts quickly with the rubber, the rubber is epoxidized, and peracetic acid returns to acetic acid. In other words, acetic acid is a catalyst, hydrogen peroxide is divided into water and oxygen, and this oxygen reacts with rubber.
過酸化水素は、酢酸及び/又は無水酢酸1モルに対し0.05~5モル添加することが好ましく、安全性及び効率を考慮すれば、0.1~2モルがより好ましい。0.05モル未満であると、酢酸の転化率が著しく低下するおそれがあり、経済的ではない。また、5モルを超えると、過酸化水素の転化率が著しく低下するおそれがあり、経済的ではない。
なお、反応を早く進めるために、酸、例えば硫酸を微量添加することが好ましい。
Hydrogen peroxide is preferably added in an amount of 0.05 to 5 mol per mol of acetic acid and / or acetic anhydride, and more preferably 0.1 to 2 mol in view of safety and efficiency. If the amount is less than 0.05 mol, the conversion of acetic acid may be significantly reduced, which is not economical. On the other hand, when the amount exceeds 5 mol, the conversion rate of hydrogen peroxide may be remarkably lowered, which is not economical.
In order to advance the reaction quickly, it is preferable to add a small amount of an acid such as sulfuric acid.
反応後の過酢酸含有液には、実際にはほとんど過酢酸は残っていない。そのため、ここに過酸化水素と必要に応じて酢酸又は氷酢酸とを添加して、再び時間をおくと過酢酸が再度生成し、これをゴムと反応させることが可能で、反応後の液を再利用できる。過酢酸はゴムと定量的に反応するために、含有液量と過酢酸濃度からゴムをエポキシ化するレベルをコントロールすることが可能となる。 In the peracetic acid-containing liquid after the reaction, practically no peracetic acid remains. Therefore, hydrogen peroxide and, if necessary, acetic acid or glacial acetic acid are added here, and after a period of time again, peracetic acid is generated again, which can be reacted with rubber. Can be reused. Since peracetic acid reacts quantitatively with rubber, it becomes possible to control the level of epoxidation of rubber from the amount of liquid contained and the concentration of peracetic acid.
過ギ酸含有液としては、過ギ酸を含む又は過ギ酸を生成する液であれば特に限定されず、例えば、ギ酸と過酸化水素との混合液、ギ酸と過酸化水素とを混合し、反応させて得られる液、などを好適に使用できる。この場合、反応で生成した過ギ酸によってエポキシ化を進行させることができるとともに、処理後の液に、ギ酸や過酸化水素を加えて濃度を調整し、再び過ギ酸を生成させることで、処理液の再利用も可能になる。 The formic acid-containing liquid is not particularly limited as long as it contains formic acid or produces formic acid. For example, a mixed liquid of formic acid and hydrogen peroxide, formic acid and hydrogen peroxide are mixed and reacted. The liquid obtained by this can be used suitably. In this case, the epoxidation can proceed with the formic acid generated by the reaction, and the formic acid and hydrogen peroxide are added to the liquid after the treatment to adjust the concentration, and then the formic acid is generated again. Can be reused.
ギ酸としては特に限定されず、例えば、市販のギ酸を任意の濃度に薄めたものを使用できる。生産効率、安全性、目標とするエポキシ化度を考慮すると、濃度10~100質量%のギ酸が好ましく、30~94質量%のギ酸がより好ましい。
過酸化水素としては特に限定されず、前記と同様のものを使用できる。
Formic acid is not particularly limited, and for example, commercially available formic acid diluted to an arbitrary concentration can be used. Considering production efficiency, safety, and target degree of epoxidation, formic acid with a concentration of 10 to 100% by mass is preferable, and formic acid with 30 to 94% by mass is more preferable.
The hydrogen peroxide is not particularly limited, and those similar to the above can be used.
過ギ酸含有液としては、予めギ酸及び過酸化水素を混合して過ギ酸を生成させた液を使用しても良いが、過ギ酸は不安定であるため、ギ酸と過酸化水素とを混合した液を使用することが望ましい。具体的には、ギ酸中に粒状固形ゴムを浸漬し、ここに過酸化水素を順次滴下、混合して過ギ酸を生成させ、粒状固形ゴムと過ギ酸とを反応させることが好ましい。ギ酸と過酸化水素とを混合した過ギ酸含有液に粒状固形ゴムを入れると、過ギ酸が素早くゴムと反応して、ゴムがエポキシ化され、過ギ酸はギ酸に戻る。つまりギ酸は触媒であり、過酸化水素が水と酸素に分かれ、その酸素がゴムと反応する機構である。なお、ギ酸と酢酸及び/又は無水酢酸とを共存させ、これらと過酸化水素を反応させて過ギ酸及び過酢酸を共に生成させ、これら両成分を含有するエポキシ化液も使用可能である。 As the formic acid-containing liquid, a liquid obtained by mixing formic acid and hydrogen peroxide in advance to form formic acid may be used. However, because formic acid is unstable, formic acid and hydrogen peroxide are mixed. It is desirable to use a liquid. Specifically, it is preferable to immerse the granular solid rubber in formic acid, and then drop and mix hydrogen peroxide in this order to form performic acid to react the granular solid rubber with the formic acid. When the solid solid rubber is put into the liquid containing formic acid mixed with formic acid and hydrogen peroxide, the formic acid reacts quickly with the rubber, the rubber is epoxidized, and the formic acid returns to formic acid. In other words, formic acid is a catalyst, hydrogen peroxide is divided into water and oxygen, and the oxygen reacts with rubber. It is also possible to use an epoxidation liquid containing both of these components by coexisting formic acid with acetic acid and / or acetic anhydride and reacting these with hydrogen peroxide to form both formic acid and peracetic acid.
過酸化水素は、ギ酸1モルに対し0.05~5モル添加することが好ましく、安全性及び効率を考慮すれば、0.1~2モルがより好ましい。0.05モル未満であると、ギ酸の転化率が著しく低下するおそれがあり、経済的ではない。また、5モルを超えると、過酸化水素の転化率が著しく低下するおそれがあり、経済的ではない。
なお、反応を早く進めるために、酸、例えば硫酸を微量添加することが好ましい。
Hydrogen peroxide is preferably added in an amount of 0.05 to 5 mol per mol of formic acid, and more preferably 0.1 to 2 mol in view of safety and efficiency. If it is less than 0.05 mol, the conversion of formic acid may be significantly reduced, which is not economical. On the other hand, when the amount exceeds 5 mol, the conversion rate of hydrogen peroxide may be remarkably lowered, which is not economical.
In order to advance the reaction quickly, it is preferable to add a small amount of an acid such as sulfuric acid.
反応後の過ギ酸含有液には、実際にはほとんど過ギ酸は残っていない。そのため、ここに過酸化水素と必要に応じてギ酸とを添加し、得られた混合液をゴムと反応させることが可能で、反応後の液を再利用できる。過ギ酸はゴムと定量的に反応するために、含有液量と過ギ酸濃度からゴムをエポキシ化するレベルをコントロールすることが可能となる。 In the formic acid-containing liquid after the reaction, practically no formic acid remains. Therefore, it is possible to add hydrogen peroxide and, if necessary, formic acid here, to react the resulting mixed solution with rubber, and to reuse the solution after the reaction. Since performic acid reacts quantitatively with rubber, the level of epoxidation of rubber can be controlled from the amount of liquid contained and the concentration of performic acid.
本発明では、粒状固形ゴムをエポキシ化液で処理してエポキシ化される。
処理方法としては、粒状固形ゴムとエポキシ化液とを接触させることが可能な方法であれば特に限定されず、浸漬;スプレー、シャワーなどによる噴霧などが挙げられる。具体的には、浸漬法としては、穴の空いたカゴ状のケースに粒状固形ゴムを入れ、それをそのままエポキシ化液に浸漬して反応させ、その後引き揚げる方法が簡便である。また、噴霧法としては、エポキシ化液のシャワー中にそのようなカゴを通過させる方法、そのようなカゴにエポキシ化液のスプレーを噴霧する方法などがある。これらの方法を用いると、余剰や処理後のエポキシ化液を容易に回収し、再利用できる。また、このようにすれば後述する、表面に残存する酸を洗い流すことが非常に容易になる。
In the present invention, the granular solid rubber is epoxidized by treatment with an epoxidizing liquid.
The treatment method is not particularly limited as long as it is a method capable of bringing the granular solid rubber into contact with the epoxidized liquid, and includes immersion; spraying by spraying, showering, and the like. Specifically, as a dipping method, a method of putting granular solid rubber in a hole-shaped cage-like case, immersing it in an epoxidation solution as it is, and then pulling it up is convenient. Further, as a spraying method, there are a method of passing such a basket during the shower of the epoxidized liquid, a method of spraying a spray of the epoxidized liquid on such a basket, and the like. When these methods are used, surplus and treated epoxidation liquid can be easily recovered and reused. In addition, this makes it very easy to wash away the acid remaining on the surface, which will be described later.
なお、特段このようなカゴを使用しなくても、エポキシ化液を投入した通常のタンクに粒状固形ゴムを直接入れて反応させ、それを取り出すことでもエポキシ化処理は可能である。具体的には、粒子径が小さいゴムが多く含まれている場合、タンクに凝集した粒状の天然ゴムを入れ、ここにエポキシ化液を注ぎ、反応させた後、底からエポキシ化液のみを抜き出すことが可能である。これは天然ゴムの比重が0.91~0.93と軽く、ゴムが浮くためであり、また、抜き出したエポキシ化液は、前述のように再利用可能である。このプロセスはバッチ単位で行うことも可能であるし、連続的にエポキシ化液と粒状固形ゴムを供給しながら反応させて、ゴムを連続的に取り出すことも可能である。反応を行う容器は通常のタンクでよい。酸性雰囲気下にあるため、表面をコーティングしたり、ステンレスを用いたり、不活性な樹脂を用いても良い。反応中は系全体を均一にするために、攪拌することが望ましいが、攪拌は必須ではない。 Even if such a cage is not used, the epoxidation treatment can also be performed by directly putting the granular solid rubber into a normal tank charged with the epoxidized liquid and reacting it and taking it out. Specifically, when a large amount of rubber having a small particle size is contained, put agglomerated natural rubber into a tank, pour the epoxidized liquid into this tank, react it, and then extract only the epoxidized liquid from the bottom. It is possible. This is because natural rubber has a light specific gravity of 0.91 to 0.93 and the rubber floats, and the extracted epoxidized liquid can be reused as described above. This process can be carried out in batch units, or it is possible to continuously take out the rubber by continuously reacting while supplying the epoxidized liquid and the granular solid rubber. The container for the reaction may be a normal tank. Since it is in an acidic atmosphere, the surface may be coated, stainless steel, or an inert resin may be used. In order to make the whole system uniform during the reaction, stirring is desirable, but stirring is not essential.
エポキシ化液を用いて粒状固形ゴムを処理する時間は、所望のエポキシ化を進行させることが可能であれば特に限定されず、例えば、1秒~48時間実施すればよい。下限未満では、反応が十分に進まない傾向があり、上限を超えても問題はないが、既に反応はほぼ完了し、生産効率が良くない点、残存する過酸化水素によるゴムの劣化を防ぐ点から、1時間以内とすることが望ましい。 The time for treating the granular solid rubber with the epoxidized liquid is not particularly limited as long as the desired epoxidation can proceed, and for example, it may be carried out for 1 second to 48 hours. Below the lower limit, the reaction does not tend to proceed sufficiently, and there is no problem even if the upper limit is exceeded, but the reaction is almost complete and the production efficiency is not good, and the deterioration of rubber due to residual hydrogen peroxide is prevented. To within 1 hour.
特に、過酢酸含有液を用いて粒状固形ゴムを処理する場合、下限は1秒以上、好ましくは10秒以上、より好ましくは30秒以上であり、上限は特に限定されないが、1時間以内、好ましくは30分以内、より好ましくは10分以内である。また、過ギ酸含有液を用いて粒状固形ゴムを処理する場合、下限は、好ましくは10秒以上、より好ましくは30秒以上であり、上限は特に限定されないが、48時間以内、好ましくは24時間以内である。 In particular, when the granular solid rubber is treated with a peracetic acid-containing liquid, the lower limit is 1 second or more, preferably 10 seconds or more, more preferably 30 seconds or more, and the upper limit is not particularly limited, but preferably within 1 hour. Is within 30 minutes, more preferably within 10 minutes. Moreover, when processing granular solid rubber using a formic acid containing liquid, a minimum is preferably 10 seconds or more, more preferably 30 seconds or more, and the upper limit is not particularly limited, but is within 48 hours, preferably 24 hours. Is within.
処理温度(反応温度)は、所望のエポキシ化を進行させることが可能であれば特に限定されず、例えば、10~75℃で実施すればよい。特に、過酢酸含有液を用いて粒状固形ゴムを処理する場合、反応速度が大きいため、処理温度は、さほど高くする必要がなく、10℃以上、好ましくは15℃以上、より好ましくは20℃以上であり、上限は特に限定されないが、30~40℃でも十分に反応は進行し、室温雰囲気下で反応が進むため、エネルギーの観点からも好ましい。また、過ギ酸含有液を用いて粒状固形ゴムを処理する場合、反応温度は、30℃以上、好ましくは50℃以上であり、上限は過ギ酸の爆発性が懸念される点から、75℃以下に調整することが好ましい。 The treatment temperature (reaction temperature) is not particularly limited as long as the desired epoxidation can proceed, and for example, it may be carried out at 10 to 75 ° C. In particular, when the granular solid rubber is treated using a peracetic acid-containing liquid, the reaction temperature is high, so the treatment temperature does not need to be so high, and is 10 ° C. or higher, preferably 15 ° C. or higher, more preferably 20 ° C. or higher. The upper limit is not particularly limited, but the reaction proceeds sufficiently even at 30 to 40 ° C., and the reaction proceeds in a room temperature atmosphere, which is preferable from the viewpoint of energy. Moreover, when processing granular solid rubber using a formic acid containing liquid, reaction temperature is 30 degreeC or more, Preferably it is 50 degreeC or more, and the upper limit is 75 degreeC or less from a point with concern about explosive property of a formic acid. It is preferable to adjust to.
エポキシ化のレベルについては、求める物性に応じて調整が可能である。エポキシ化はそもそも、天然ゴム(cis-1,4-イソプレン)の二重結合の一部が、下記のように変化する反応である。全二重結合のうち、いくつがエポキシ化したかがエポキシ化度である。市販されているものは、エポキシ化度が12.5%、25%、37.5%、50%、60%であるが、エポキシ化度はこれらの数値に限定されるものではない。たとえば1%未満も可能であり、また上限は60%を超えることも可能である。タイヤにおいては、部位にもよるが、0.1~50%程度のものを使用でき、性能のバランスを考慮して、上限は30%程度である。
なお、エポキシ化度は、液中に存在する過酢酸や過ギ酸の量とゴム中の二重結合の量の関係で決まるので、これらにより調整可能である。
The level of epoxidation can be adjusted according to the required physical properties. Epoxidation is a reaction in which part of the double bond of natural rubber (cis-1,4-isoprene) changes as follows. The degree of epoxidation is how many of the full double bonds are epoxidized. Commercially available products have an epoxidation degree of 12.5%, 25%, 37.5%, 50%, 60%, but the epoxidation degree is not limited to these values. For example, it can be less than 1%, and the upper limit can exceed 60%. Depending on the part of the tire, about 0.1 to 50% can be used, and considering the balance of performance, the upper limit is about 30%.
The degree of epoxidation is determined by the relationship between the amount of peracetic acid or performic acid present in the liquid and the amount of double bonds in the rubber, and can be adjusted accordingly.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
このようにして作製したエポキシ化を施したゴムは、水又はアルカリ水溶液中に浸漬することやこれらをスプレー・シャワーなどで噴霧することにより、酸を洗い流すことが望ましい。酸が残存していると、スコーチが短くなったり、加硫が遅れるおそれがあるが、過酢酸は既にゴムと反応しているため、酸を洗い流すことで反応が阻害されたり、エポキシ化度が低下することはない。なお、アルカリ水溶液を使用した際、最終的にはほぼ中性の水で洗い流すことが望ましい。 The epoxidized rubber thus produced is preferably washed away by immersing it in water or an aqueous alkaline solution or spraying it with a spray shower or the like. If the acid remains, the scorch may be shortened or the vulcanization may be delayed. However, since peracetic acid has already reacted with the rubber, the reaction is inhibited by washing away the acid, and the degree of epoxidation is reduced. There is no decline. In addition, when using alkaline aqueous solution, it is desirable to finally wash away with substantially neutral water.
アルカリ水溶液としては、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、アンモニア水、水酸化ナトリウム、水酸化カリウム等が使用可能であるが、臭気や安全性の面で、0.5~5%程度の炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム等が好適に使用可能である。 As the alkaline aqueous solution, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, ammonia water, sodium hydroxide, potassium hydroxide and the like can be used. However, in terms of odor and safety, 0.5 to 5 can be used. % Of sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate and the like can be suitably used.
アルカリ水溶液や水での中和・洗浄の処理時間は、表面に残存している酸を充分に中和・洗浄できる点から、1秒~1日、好ましくは10秒~4時間、より好ましくは20秒~2時間である。 The treatment time for neutralization / washing with an alkaline aqueous solution or water is from 1 second to 1 day, preferably from 10 seconds to 4 hours, more preferably from the viewpoint of sufficiently neutralizing and washing the acid remaining on the surface. 20 seconds to 2 hours.
前記で得られたゴムは、必要に応じて適宜乾燥工程が行われ、それにより、本発明によるエポキシ化天然ゴムが得られる。該乾燥工程において、乾燥方法は特に限定されず、通常のTSRの乾燥用ドライヤーを使用することができ、また、ベルトコンベヤーにゴムを載せて熱風により乾燥させることも可能である。更に一般的ではないが、マイクロ波による加熱や真空乾燥も可能である。ゴムをクレーパー等でシート形状にして、そのまま乾燥させることも可能である。 The rubber obtained above is appropriately subjected to a drying step as necessary, whereby the epoxidized natural rubber according to the present invention is obtained. In the drying step, the drying method is not particularly limited, and a normal TSR dryer can be used, and rubber can be placed on a belt conveyor and dried with hot air. Although not generally used, heating by microwave and vacuum drying are also possible. It is also possible to make rubber into a sheet shape with a creper or the like and dry it as it is.
乾燥温度は特に限定されず、通常室温以上なら乾燥可能であるが、生産性を考えると、60℃以上、好ましくは70℃以上、より好ましくは80℃以上である。また上限は、温度が高いとゴムが劣化しやすいという点から、140℃以下、好ましくは135℃以下、より好ましくは130℃以下である。乾燥時間は、乾燥温度により、未乾燥部分がなくなる時間を適宜設定すればよい。なお、エポキシ化により、通常の天然ゴムよりも耐熱性が低下する傾向があるため、生産性を阻害しない範囲で低めの方が好ましい。 The drying temperature is not particularly limited, and drying is usually possible at room temperature or higher, but considering productivity, it is 60 ° C. or higher, preferably 70 ° C. or higher, more preferably 80 ° C. or higher. Further, the upper limit is 140 ° C. or lower, preferably 135 ° C. or lower, more preferably 130 ° C. or lower, because the rubber is likely to deteriorate when the temperature is high. The drying time may be set as appropriate according to the drying temperature. In addition, since heat resistance tends to be lower than that of normal natural rubber due to epoxidation, a lower value is preferable as long as productivity is not hindered.
本発明の粒状固形ゴムをエポキシ化液で処理しエポキシ化する手法では、かなり均質には仕上がるが、ラテックスをエポキシ化する方法に比べると、ゴム表面がエポキシ化される傾向は残る。しかし、得られたゴムを単独もしくは別のゴム、例えば天然ゴムやSBRなどとブレンドした際には、特にシリカ配合において、エポキシ化天然ゴムとシリカの親和性が向上し、シリカの分散性も向上して、tanδの低減やゴム強度の向上が見られる。その効果はラテックスから作製した高価なエポキシ化天然ゴムと遜色のないレベルでありながら、コスト面で大幅な低減が可能となる。 The method of treating the granular solid rubber of the present invention with an epoxidizing liquid and epoxidizing it produces a fairly homogeneous finish, but the tendency of the rubber surface to be epoxidized remains as compared with the method of epoxidizing latex. However, when the resulting rubber is used alone or blended with another rubber, such as natural rubber or SBR, the affinity between epoxidized natural rubber and silica is improved, especially in the case of silica compounding, and the dispersibility of silica is also improved. Thus, tan δ is reduced and rubber strength is improved. The effect is comparable to expensive epoxidized natural rubber made from latex, but can be greatly reduced in cost.
〔他のエポキシ化天然ゴムの製造方法〕
本発明のエポキシ化天然ゴムの製造方法として、前述の方法の他に、天然ゴムラテックスが凝固した固形ゴムをエポキシ化液で処理し、該固形ゴムをエポキシ化する工程を含む製造方法も挙げられる。
[Manufacturing method of other epoxidized natural rubber]
As a method for producing the epoxidized natural rubber of the present invention, in addition to the above-mentioned method, a production method including a step of treating a solid rubber coagulated with a natural rubber latex with an epoxidizing liquid and epoxidizing the solid rubber may be mentioned. .
前記他の製造方法では、天然ゴムラテックスを凝固させて得られた固形ゴムをゴムのエポキシ化が可能なエポキシ化液で処理することによりゴムのエポキシ化を進行させる。そのため、従来の液状条件下でのエポキシ化工程とは異なって、浸漬やスプレー処理に用いたエポキシ化液の回収が可能である。また、過酢酸、過ギ酸は天然ゴム(固形、ラテックスとも)が近傍に存在すると、即座にゴムをエポキシ化すると同時に、酢酸、ギ酸に戻るので、処理後の液に、濃度調整のために新たに酢酸、ギ酸や過酸化水素を加えることで、再び過酢酸や過ギ酸を生成させることができる。また、ラテックスと違って水分がほとんど増加しないので、液がほとんど希釈されないというメリットも併せ持つので、処理液に用いる高価な化学薬品の再利用が可能である。また、再利用可能なため、排水もほとんど出ないことから、廃水処理が不要で、コストと環境負荷の両面でメリットがある。また、反応液の温度を制御できずにラテックス全体が固まる心配もないため、反応中の作業者の厳重な監視も不要であり、コスト低減にも寄与する。 In the other production method, the epoxidation of the rubber is advanced by treating the solid rubber obtained by coagulating the natural rubber latex with an epoxidizing liquid capable of epoxidizing the rubber. Therefore, unlike the conventional epoxidation process under liquid conditions, it is possible to recover the epoxidation liquid used for dipping or spraying. Peracetic acid and performic acid are instantly epoxidized when natural rubber (both solid and latex) is present in the vicinity. At the same time, the rubber returns to acetic acid and formic acid. By adding acetic acid, formic acid or hydrogen peroxide to the mixture, peracetic acid or formic acid can be generated again. In addition, unlike latex, moisture hardly increases, and the liquid is hardly diluted, so that expensive chemicals used in the processing liquid can be reused. In addition, since it is reusable, there is almost no drainage, so there is no need for wastewater treatment, and there are advantages in both cost and environmental impact. In addition, since the temperature of the reaction solution cannot be controlled and there is no fear that the entire latex is hardened, it is unnecessary to closely monitor the worker during the reaction, which contributes to cost reduction.
更に、通常のTSR製造工程にエポキシ化工程を追加するという簡易な手法で、エポキシ化天然ゴムの製造が可能になる。
従って、前記他の製造方法によると、エポキシ化天然ゴムを少ない工程で短時間かつ簡便に製造でき、また、製造の際に、エポキシ化液に使用される薬品を再利用することで、薬品のロスを無くし、廃液処理コストや環境負荷を低減でき、更に反応中の作業者の厳重な監視も不要である。
Furthermore, epoxidized natural rubber can be produced by a simple method of adding an epoxidation step to the normal TSR production step.
Therefore, according to the other production method, the epoxidized natural rubber can be produced easily in a short time with few steps, and the chemical used in the epoxidized liquid can be reused during the production. Loss can be eliminated, waste liquid treatment cost and environmental load can be reduced, and strict monitoring of the worker during the reaction is also unnecessary.
(固形ゴム)
前記他の製造方法において、天然ゴムラテックスは、前記と同様のものを使用できる。
このような天然ゴムラテックスが凝固した固形ゴムとしては、カップランプ、未燻製シート(アンスモークトシート:USS)、カップランプをフィールドラテックスで固めたもの(スラブ)などが挙げられる。
(Solid rubber)
In the other production method, the same natural rubber latex as described above can be used.
Examples of the solid rubber obtained by solidifying the natural rubber latex include a cup lamp, an unmade sheet (unsmoked sheet: USS), and a cup lamp solidified with field latex (slab).
カップランプとしては、天然ゴムを採取するカップに天然ゴムラテックスが溜まり、それが微生物による非ゴム成分の分解で生じる脂肪酸によって自然に凝固した天然ゴム、又は予め天然ゴムラテックスを凝固させる機能を有する薬品をカップに入れておき、強制的に素早く凝固させた天然ゴムなどが挙げられる。前記薬品としては、そのような機能を有するものであれば特に限定されず、例えば、硫酸、ギ酸、塩酸、酢酸などの酸、カルシウムイオンなどの陽イオンやそれらの塩類、メタノール、エタノールなどの有機溶剤などが挙げられる。このカップランプは、文字通り、カップの形状で、ゴミを含んでいる。そのため、このままエポキシ化しても最表面しかエポキシ化されず、ゴム全体でエポキシ化される割合が低くなるため、本発明では、固形ゴムとして、細断されたものを使用することが好適である。 As a cup lamp, natural rubber latex is collected in a cup that collects natural rubber, and natural rubber that is naturally coagulated by fatty acids generated by the decomposition of non-rubber components by microorganisms, or chemicals that have a function of coagulating natural rubber latex in advance. Natural rubber that has been put in a cup and forced to coagulate quickly. The chemical is not particularly limited as long as it has such a function, for example, an acid such as sulfuric acid, formic acid, hydrochloric acid or acetic acid, a cation such as calcium ion or a salt thereof, an organic such as methanol or ethanol. A solvent etc. are mentioned. This cup lamp literally has the shape of a cup and contains dust. For this reason, even if epoxidized as it is, only the outermost surface is epoxidized, and the ratio of epoxidation in the whole rubber becomes low. Therefore, in the present invention, it is preferable to use a chopped solid rubber.
カップランプは通常TSRと呼ばれる技術的格付けゴムに加工されるもので、その過程において、プリブレーカーやハンマーミル等の機械で細断と水洗が繰り返されるとともに、複数台のクレーパーによりゴムの厚みを薄くしてゴムの中に含まれる不純物が洗い流され、更に水溶性物質が除去される。これを最終的にシュレッダーと呼ばれる機械により、2~3mm以下のサイズまで細断してから乾燥される。この状態では、ゴムの表面積が非常に大きくなっているので、エポキシ化液への浸漬やエポキシ化液のスプレーなどにより処理することで、固形ゴム中の多くの部分がエポキシ化される。仮に表面積が小さいまま(大きな塊の状態で)エポキシ化すると、表面のエポキシ化が過度に進み、内部のエポキシ化は進行しないので、得られたゴムを混練した時に変性された部分が固い凝集物のようになるおそれがある。またエポキシ化の際に、ゴムが凝固する懸念がないため、反応温度のコントロールに厳密な注意を払う必要がなく、工程の自動化も可能である。 Cup lamps are usually processed into technically graded rubber called TSR, and in the process, they are repeatedly shredded and washed with machines such as prebreakers and hammer mills, and the thickness of the rubber is reduced by multiple crepers. Thus, impurities contained in the rubber are washed away, and further water-soluble substances are removed. This is finally cut into a size of 2 to 3 mm or less by a machine called a shredder and then dried. In this state, since the rubber has a very large surface area, many parts in the solid rubber are epoxidized by treatment by immersion in the epoxidized liquid or spraying of the epoxidized liquid. If epoxidation is performed with a small surface area (in the form of a large lump), the surface epoxidation proceeds excessively and the internal epoxidation does not proceed. Therefore, the modified parts are hard aggregates when the resulting rubber is kneaded. There is a risk of becoming. In addition, since there is no concern that the rubber solidifies during epoxidation, it is not necessary to pay close attention to the control of the reaction temperature, and the process can be automated.
(エポキシ化液)
前記他の製造方法で使用されるエポキシ化液としては、天然ゴムラテックスを凝固させて作製した固形ゴムをエポキシ化させることが可能な液であれば特に限定されず、前述の過酢酸含有液、過ギ酸含有液などを好適に使用できる。
(Epoxidation liquid)
The epoxidation liquid used in the other production method is not particularly limited as long as it is a liquid capable of epoxidizing a solid rubber produced by coagulating natural rubber latex, and the peracetic acid-containing liquid described above, A performic acid-containing liquid or the like can be suitably used.
(エポキシ化工程)
前記他の製造方法では、固形ゴムをエポキシ化液で処理してエポキシ化される。
処理方法としては、固形ゴムとエポキシ化液とを接触させることが可能な方法であれば特に限定されず、前記と同様の方法が挙げられ、処理時間及び処理温度も同条件で実施できる。
(Epoxidation process)
In the other manufacturing method, the solid rubber is treated with an epoxidation liquid to be epoxidized.
The treatment method is not particularly limited as long as it is a method capable of bringing the solid rubber and the epoxidized liquid into contact with each other, and the same method as described above can be used, and the treatment time and the treatment temperature can be carried out under the same conditions.
また、前記他の製造方法におけるエポキシ化工程として、固形ゴム及びエポキシ化液を混練しながら該固形ゴムをエポキシ化する方法も使用できる。つまり、例えば、固形ゴム及びエポキシ化液を混練機、押出機などの混合機に投入し、これらの材料を混練しながら該固形ゴムをエポキシ化できる。特に、細断した固形ゴムを用いた場合は、細断された状態でもゴムの表面に対する内部の比率は高いが、押出機や混練機、又はクレーパーなど、ゴムを練って新たな表面を出す効果のある機械を使用し、細断したゴムとエポキシ化液とを供給しながら混練すると、内部までエポキシ化することが可能になる。 Further, as the epoxidation step in the other production method, a method of epoxidizing the solid rubber while kneading the solid rubber and the epoxidized liquid can also be used. That is, for example, the solid rubber and the epoxidized liquid can be put into a mixer such as a kneader or an extruder, and the solid rubber can be epoxidized while kneading these materials. In particular, when chopped solid rubber is used, the internal ratio to the rubber surface is high even in the chopped state, but the effect of kneading the rubber to give a new surface, such as an extruder, kneader, or creper When a kneaded machine is used and kneaded while supplying the chopped rubber and the epoxidized liquid, the interior can be epoxidized.
更にエポキシ化工程として、固形ゴムをエポキシ化液で処理した後、得られたエポキシ化固形ゴムと必要に応じて別途添加した過酢酸含有液、過ギ酸含有液などのエポキシ化液とを混練しながら該エポキシ化固形ゴムをエポキシ化することも好適である。この場合も細断した固形ゴムを用いることで内部まで充分にエポキシ化できる。
なお、エポキシ化のレベルは、前記と同様、求める物性に応じて調整が可能である。
Furthermore, as a epoxidation step, after the solid rubber is treated with an epoxidation liquid, the obtained epoxidized solid rubber is kneaded with an epoxidation liquid such as a peracetic acid-containing liquid or a formic acid-containing liquid added separately as necessary. However, it is also suitable to epoxidize the epoxidized solid rubber. Also in this case, the inside can be sufficiently epoxidized by using a chopped solid rubber.
In addition, the level of epoxidation can be adjusted according to the desired physical properties as described above.
(中和・洗浄)
このようにして作製したエポキシ化を施したゴムに、前記と同様の方法により、中和・洗浄工程を施せばよい。
(Neutralization / washing)
The epoxidized rubber thus produced may be neutralized and washed by the same method as described above.
なお、固形ゴム及びエポキシ化液を押出機や混練機を使用して練り込んだ場合は、ゴムサイズが大きくなっている可能性がある。そのような状態ではゴムを洗浄することも、乾燥することも難しいため、中和・洗浄工程前に、シュレッダーを再度通して、ゴムを細断しておくことが望ましい。 In addition, when the solid rubber and the epoxidized liquid are kneaded using an extruder or a kneader, the rubber size may be large. In such a state, it is difficult to clean and dry the rubber. Therefore, before the neutralization / cleaning step, it is desirable to pass the shredder again to chop the rubber.
更に、固形ゴム及びエポキシ化液を押出機や混練機を使用して練り込んだ場合、内部の酸を完全に中和するために、浸漬時間を少なくとも1時間、好ましくは2~4時間確保することが好適である。また、アルカリ水溶液で中和した場合、その後に水道水等でシャワーして液を洗い流すことが望ましい。 Further, when the solid rubber and the epoxidized liquid are kneaded using an extruder or a kneader, the immersion time is secured for at least 1 hour, preferably 2 to 4 hours, in order to completely neutralize the internal acid. Is preferred. Further, when neutralized with an alkaline aqueous solution, it is desirable to wash away the liquid by showering with tap water or the like thereafter.
(乾燥)
前記で得られたゴムは、必要に応じて適宜乾燥工程が行われ、それにより、本発明によるエポキシ化天然ゴムが得られる。該乾燥工程は、前記と同様の方法を用いて実施できる。
(Dry)
The rubber obtained above is appropriately subjected to a drying step as necessary, whereby the epoxidized natural rubber according to the present invention is obtained. This drying process can be implemented using the method similar to the above.
前記他の製造方法によれば、天然ゴムラテックスが凝固した固形ゴムをエポキシ化液で処理し、該固形ゴムをエポキシ化する工程を含むエポキシ化天然ゴムの製造方法であるので、従来の製法に比べて、エポキシ化天然ゴムを簡便かつ安価に製造できる。 According to the other production method, since the solid rubber coagulated with natural rubber latex is treated with an epoxidation liquid and the solid rubber is epoxidized, the production method of epoxidized natural rubber includes the conventional production method. In comparison, epoxidized natural rubber can be produced easily and inexpensively.
具体的には、天然ゴムの固形ゴムをエポキシ化することで、エポキシ化に使用する高価な薬剤を無駄なく、繰り返し再利用でき、エポキシ化に必要な試薬のロスを無くすことができる。また、従来のラテックスを凝固、中和するプロセスを省略できるので、製造時間を大幅に短縮できる。更に、通常のエポキシ化天然ゴムの工場では、ラテックスを貯蔵するタンク、反応タンク、凝固装置(例えば水蒸気を使用)、長い水槽、ドライヤーなどを必要とするが、本製法であれば、TSR工場の工程にエポキシ化プロセスを加えるだけで済むため、TSRを作りながら、一部エポキシ化天然ゴムを作ることも可能であり、大幅なコストダウンが可能である。加えて、ゴム生産量に対する廃液の比率が、ラテックスからエポキシ化する場合に比べて非常に少なく、種々の化学薬品を使う必要がないため、環境負荷を低減することも可能になる。 Specifically, by epoxidizing a solid rubber of natural rubber, expensive chemicals used for epoxidation can be reused without waste, and loss of reagents necessary for epoxidation can be eliminated. In addition, since the conventional process of coagulating and neutralizing latex can be omitted, the manufacturing time can be greatly shortened. Furthermore, a normal epoxidized natural rubber factory requires a tank for storing latex, a reaction tank, a coagulator (for example, using water vapor), a long water tank, a dryer, etc. Since it is only necessary to add an epoxidation process to the process, it is possible to make a part of epoxidized natural rubber while making TSR, which can greatly reduce the cost. In addition, the ratio of waste liquid to the amount of rubber production is very small compared to the case of epoxidizing from latex, and it is not necessary to use various chemicals, so it is possible to reduce the environmental burden.
また、前記他の製造方法による固形ゴムをエポキシ化液で処理しエポキシ化する手法では、ゴム表面のみがエポキシ化され、ラテックスのようにゴム全体を均一にエポキシ化させることは困難である。しかし、このゴムを単独もしくは別のゴム、例えば天然ゴムやSBRなどとブレンドした際には、特にシリカ配合において、エポキシ化天然ゴムとシリカの親和性が向上し、シリカの分散性も向上して、tanδの低減やゴム強度の向上が見られる。その効果はラテックスから作製した高価なエポキシ化天然ゴムと遜色のないレベルでありながら、コスト面で大幅な低減が可能となる。 Further, in the method of treating the solid rubber by the other production method with an epoxidizing liquid and epoxidizing only the rubber surface, it is difficult to uniformly epoxidize the entire rubber like latex. However, when this rubber is blended alone or with another rubber, such as natural rubber or SBR, the affinity between epoxidized natural rubber and silica is improved, especially in the case of silica compounding, and the dispersibility of silica is also improved. , Tan δ is reduced and rubber strength is improved. The effect is comparable to expensive epoxidized natural rubber made from latex, but can be greatly reduced in cost.
〔エポキシ化天然ゴム〕
本発明の製造方法や前記他の製造方法により得られたエポキシ化天然ゴムは、特にタイヤの材料として有用である。
天然ゴムのエポキシ化により、天然ゴムのガラス転移点が上昇し、具体的には、エポキシ化度が1%上昇すると、ガラス転移点も約1度上昇する。エポキシ化度が高い場合、ガラス転移点が大きく上昇するため、湿潤時の摩擦係数が上昇し、雨天時の制動距離が短くなる。その一方で、転がり抵抗が高くなり、燃費が悪くなる傾向があり、また、低温時には固くなって、例えば冬用タイヤには適さなくなる傾向がある。一方、エポキシ化度が低い場合には、低温での弾性率が小さくなり、冬用タイヤなどに好適に使用可能となる。また、エポキシ化することによりゴムの極性が上昇し、充填剤として用いられるシリカとの親和性が高くなり、燃費が向上する。本発明では、エポキシ化度が上述したような小さい場合であっても、シリカとの親和性は充分であり、ガラス転移点を低くできるので、冬用タイヤなどに好適に使用可能となる。
[Epoxidized natural rubber]
The epoxidized natural rubber obtained by the production method of the present invention or the other production methods is particularly useful as a tire material.
Due to the epoxidation of natural rubber, the glass transition point of natural rubber increases. Specifically, when the degree of epoxidation increases by 1%, the glass transition point also increases by about 1 degree. When the degree of epoxidation is high, the glass transition point is greatly increased, so that the coefficient of friction when wet is increased and the braking distance when raining is shortened. On the other hand, the rolling resistance tends to be high, the fuel consumption tends to be poor, and it becomes hard at low temperatures and tends not to be suitable for, for example, winter tires. On the other hand, when the degree of epoxidation is low, the elastic modulus at a low temperature is small and can be suitably used for winter tires and the like. Moreover, the polarity of rubber | gum raises by epoxidizing, affinity with the silica used as a filler becomes high, and a fuel consumption improves. In the present invention, even when the degree of epoxidation is small as described above, the affinity with silica is sufficient and the glass transition point can be lowered, so that it can be suitably used for winter tires and the like.
〔タイヤ用ゴム組成物〕
本発明のエポキシ化天然ゴムを含むタイヤ用ゴム組成物としては、該エポキシ化天然ゴムを含むゴム成分と、カーボンブラック及び/又は白色充填剤とを含むものが挙げられる。
[Rubber composition for tire]
Examples of the rubber composition for tires containing the epoxidized natural rubber of the present invention include a rubber component containing the epoxidized natural rubber and carbon black and / or a white filler.
前記ゴム組成物において、ゴム成分100質量%中の前述のエポキシ化天然ゴムの含有量は、好ましくは5質量%以上、より好ましくは50質量%以上、更に好ましくは80質量%以上であり、100質量%でもよい。5質量%未満であると、シリカ配合において充分なシリカ分散性が得られないおそれがある。 In the rubber composition, the content of the epoxidized natural rubber in 100% by mass of the rubber component is preferably 5% by mass or more, more preferably 50% by mass or more, and further preferably 80% by mass or more. It may be mass%. If it is less than 5% by mass, sufficient silica dispersibility may not be obtained in silica blending.
前記ゴム組成物は、前記エポキシ化天然ゴム以外のゴム成分を含んでもよく、例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、エチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)などが挙げられる。 The rubber composition may contain a rubber component other than the epoxidized natural rubber. For example, natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), styrene isoprene butadiene. Examples thereof include rubber (SIBR), ethylene propylene diene rubber (EPDM), chloroprene rubber (CR), acrylonitrile butadiene rubber (NBR), and the like.
前記ゴム組成物は、白色充填剤として、シリカを含むものが好ましい。
シリカの窒素吸着比表面積(NSA)は、80m/g以上、好ましくは100m/g以上、より好ましくは120m/g以上である。また、シリカのNSAは、好ましくは250m/g以下、より好ましくは200m/g以下である。上記範囲のシリカを使用することで、低燃費性、ゴム強度などの物性を確保できる。
なお、シリカのNSAは、ASTM D3037-93に準じてBET法で測定される値である。
The rubber composition preferably contains silica as a white filler.
The nitrogen adsorption specific surface area (N 2 SA) of silica is 80 m 2 / g or more, preferably 100 m 2 / g or more, more preferably 120 m 2 / g or more. Further, N 2 SA of silica is preferably 250 m 2 / g or less, more preferably 200 m 2 / g or less. By using silica in the above range, physical properties such as low fuel consumption and rubber strength can be secured.
Note that N 2 SA of silica is a value measured by the BET method according to ASTM D3037-93.
シリカの含有量は、ゴム成分100質量部に対して、好ましくは10質量部以上、より好ましくは30質量部以上である。該含有量は、好ましくは150質量部以下、より好ましくは100質量部以下である。上記範囲内であると、低燃費性、ゴム強度などの物性を確保できる。 The content of silica is preferably 10 parts by mass or more, more preferably 30 parts by mass or more with respect to 100 parts by mass of the rubber component. The content is preferably 150 parts by mass or less, more preferably 100 parts by mass or less. Within the above range, physical properties such as low fuel consumption and rubber strength can be secured.
本発明のゴム組成物には、上記の材料以外にも、酸化亜鉛、ステアリン酸、各種老化防止剤、硫黄、加硫促進剤などのタイヤ工業において一般的に用いられている各種材料が適宜配合されていてもよい。 In addition to the above materials, the rubber composition of the present invention is appropriately blended with various materials generally used in the tire industry such as zinc oxide, stearic acid, various anti-aging agents, sulfur, and vulcanization accelerators. May be.
本発明のゴム組成物の製造方法としては、公知の方法を用いることができ、例えば、上記各成分をオープンロール、バンバリーミキサーなどのゴム混練装置を用いて混練し、その後加硫する方法等により製造できる。該ゴム組成物は、タイヤの各部材に使用でき、なかでも、トレッドなどに好適に使用できる。 As a method for producing the rubber composition of the present invention, known methods can be used. For example, the above components are kneaded using a rubber kneader such as an open roll or a Banbury mixer, and then vulcanized. Can be manufactured. The rubber composition can be used for each member of a tire, and in particular, can be suitably used for a tread or the like.
〔空気入りタイヤ〕
本発明の空気入りタイヤは、上記ゴム組成物を用いて通常の方法によって製造される。すなわち、必要に応じて各種材料を配合したゴム組成物を、未加硫の段階でトレッドなどの形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形することにより未加硫タイヤを形成した後、加硫機中で加熱加圧して製造できる。
[Pneumatic tire]
The pneumatic tire of the present invention is produced by a usual method using the rubber composition. That is, if necessary, a rubber composition containing various materials is extruded into a shape such as a tread at an unvulcanized stage and molded by a normal method on a tire molding machine. After forming a vulcanized tire, it can be manufactured by heating and pressing in a vulcanizer.
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.
〔評価〕
実施例において、作製した生ゴム、加硫ゴムシートの物性は、以下の方法で評価し、結果を表1~3に示した。なお、加硫ゴムシートについては、以下の方法で作製した。
(加硫ゴムシートの作製)
表1~3に示す配合処方に従って、1.7Lバンバリーを用いて、硫黄及び加硫促進剤以外の薬品を混練りした。次に、ロールを用いて、得られた混練り物に硫黄及び加硫促進剤を添加して練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を170℃で6分間プレス加硫して加硫ゴムシートを得た。
[Evaluation]
In the examples, the physical properties of the prepared raw rubber and vulcanized rubber sheets were evaluated by the following methods, and the results are shown in Tables 1 to 3. The vulcanized rubber sheet was produced by the following method.
(Production of vulcanized rubber sheet)
In accordance with the formulation shown in Tables 1 to 3, a chemical other than sulfur and a vulcanization accelerator was kneaded using 1.7 L Banbury. Next, using a roll, sulfur and a vulcanization accelerator were added to the obtained kneaded product and kneaded to obtain an unvulcanized rubber composition. The obtained unvulcanized rubber composition was press vulcanized at 170 ° C. for 6 minutes to obtain a vulcanized rubber sheet.
(エポキシ化度の測定)
得られたエポキシ化天然ゴムをロールで1分間混練した後、数カ所サンプリングし、トルエンに溶解させ、これをメタノール中で再沈殿させ、乾燥させたもの(精製品)をサンプルとして使用した。測定は日本電子(株)製JNM-ECAシリーズのH-NMR装置を用いて行った。
エポキシ化度(%)は、下式により計算した。
エポキシ化度(%)=B/(A+B)×100
(式中Aは、シスのプロトンに由来するピーク(5.0-5.2ppm)の積分値、式中Bは、エポキシ基のプロトンに由来するピーク(2.6-2.8ppm)の積分値を表す。)
また簡易的には、パーキンエルマー社製の示差走査熱量計Pyris Jade DSCを用いて、ポリマーのガラス転移点を求め、検量線からエポキシ化度を推測した。検量線は、市販エポキシ化天然ゴムNMRによるエポキシ化度とガラス転移点から作成した。
(Measurement of degree of epoxidation)
The obtained epoxidized natural rubber was kneaded with a roll for 1 minute, sampled at several places, dissolved in toluene, reprecipitated in methanol, and dried (refined product) was used as a sample. The measurement was performed using a JNM-ECA series 1 H-NMR apparatus manufactured by JEOL Ltd.
The degree of epoxidation (%) was calculated by the following formula.
Epoxidation degree (%) = B / (A + B) × 100
(In the formula, A is the integrated value of the peak derived from the cis proton (5.0-5.2 ppm), and B in the formula is the integrated value of the peak derived from the proton of the epoxy group (2.6-2.8 ppm)). Represents the value.)
Moreover, simply, the glass transition point of the polymer was obtained using a differential scanning calorimeter Pyris Jade DSC manufactured by PerkinElmer, and the degree of epoxidation was estimated from a calibration curve. A calibration curve was prepared from the degree of epoxidation measured by commercially available epoxidized natural rubber NMR and the glass transition point.
(ゴム強度)
得られた加硫ゴムシートを用いて、3号ダンベル型ゴム試験片を作製し、JIS K 6251「加硫ゴム及び熱可塑性ゴム-引張特性の求め方」に準じて引張試験を行い、破断強度(TB)及び破断時伸び(EB)を測定し、その積(TB×EB)を算出した。下記計算式により、比較例1
のゴム強度(TB×EB)を100として、下記計算式により指数表示した。なお、指数が大きいほど、ゴム強度に優れることを示す。
(ゴム強度指数)=(各配合のTB×EB)/(比較例1
のTB×EB)×100
(Rubber strength)
Using the resulting vulcanized rubber sheet, a No. 3 dumbbell-type rubber test piece was prepared and subjected to a tensile test according to JIS K 6251 “Vulcanized rubber and thermoplastic rubber-Determination of tensile properties” to determine the breaking strength. (TB) and elongation at break (EB) were measured, and the product (TB × EB) was calculated. Comparative Example 1 by the following formula
The rubber strength (TB.times.EB) of 100 was taken as 100, and indexed by the following formula. In addition, it shows that it is excellent in rubber | gum strength, so that an index | exponent is large.
(Rubber strength index) = (TB × EB of each compound) / (Comparative Example 1)
TB x EB) x 100
(シリカ分散)
得られた加硫ゴムシートを用いて、カーボンブラックの分散度測定法ASTM D2663-B法に準じて、シリカの分散度を測定した。数値が大きいほど分散がよく、100%が最高である。結果を下記に従い、記号で表した。
◎:分散度≧97.5%
○:97.5%>分散度 ≧95%
△:95%>分散度≧92%
×:92%>分散度
(Silica dispersion)
Using the obtained vulcanized rubber sheet, the degree of dispersion of silica was measured according to the method of measuring the degree of dispersion of carbon black, ASTM D2663-B. The larger the value, the better the dispersion, with 100% being the highest. The results are represented by symbols according to the following.
A: Dispersity ≧ 97.5%
○: 97.5%> dispersion degree ≧ 95%
Δ: 95%> dispersity ≧ 92%
×: 92%> dispersion degree
以下に、実施例1-1~1-5及び比較例1-1~1-4で用いた各種薬品について説明する。
フィールドラテックス(FL):タイ南部で採取された、採取後3日以内のフィールドラテックス(腐敗および凝固防止のため、アンモニア水が添加され、アンモニア量が0.2質量%に調整されている。乾燥ゴム分は30%に調整されている。)
天然ゴムラテックス:アンモニア及び微量の酸化亜鉛とテトラチウラムジスルフィドを添加して耐腐敗性・安定性を付与したローアンモニアラテックス(乾燥ゴム分60質量%、アンモニア分0.2質量%)
界面活性剤A-1:ポリオキシエチレン脂肪酸アルコール(アルコールの炭素数C12~C18、曇点70~80℃)
界面活性剤B-1:ポリオキシエチレンラウリルエーテル硫酸ナトリウム
酢酸:有効成分98%、94%試薬1級
ギ酸:有効成分88%試薬1級
過酸化水素水:有効成分50%、これを適宜希釈して使用した。
硫酸:有効成分98%
炭酸ナトリウム:無水炭酸ナトリウム(純度99%以上)
水酸化ナトリウム:純度98%
凝集剤:カチオン系高分子凝集剤(純度100%、MTアクアポリマー(株)製の強カチオン性高分子凝集剤「アロンフロックC312」(ポリメタアクリル酸エステル系))
Hereinafter, various chemicals used in Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-4 will be described.
Field latex (FL): Field latex collected in southern Thailand within 3 days after collection (ammonia water is added to prevent spoilage and coagulation, and the amount of ammonia is adjusted to 0.2% by mass. Drying) The rubber content is adjusted to 30%.)
Natural rubber latex: Raw ammonia latex added with anti-corrosion and stability by adding ammonia, trace amount of zinc oxide and tetrathiuram disulfide (60% dry rubber content, 0.2% ammonia content)
Surfactant A-1: Polyoxyethylene fatty acid alcohol (alcohol carbon number C 12 to C 18 , cloud point 70 to 80 ° C.)
Surfactant B-1: Polyoxyethylene lauryl ether sodium sulfate acetic acid: active ingredient 98%, 94% reagent primary formic acid: active ingredient 88% reagent primary hydrogen peroxide solution: 50% active ingredient, diluted appropriately Used.
Sulfuric acid: 98% active ingredient
Sodium carbonate: anhydrous sodium carbonate (purity 99% or more)
Sodium hydroxide: 98% purity
Flocculant: Cationic polymer flocculant (100% purity, strong aquatic polymer flocculant “Aron Flock C312” (polymethacrylate ester type) manufactured by MT Aqua Polymer Co., Ltd.)
シリカ:デグサ社のウルトラジルVN3
シランカップリング剤:Si266(ビス(3-トリエトキシシリルプロピル)ジスルフィド)
酸化亜鉛:三井金属鉱業(株)の第2種酸化亜鉛
ステアリン酸:日油(株)製のビーズステアリン酸 つばき
ステアリン酸カルシウム:日油(株)製のカルシウムステアレートGF-200
オイル:パームオイルオレイン
硫黄:5%オイル入り硫黄
加硫促進剤TBBS:大内新興化学工業(株)製のノクセラーNS
加硫促進剤DPG:大内新興化学工業(株)製のノクセラーD
Silica: Degussa Ultrasil VN3
Silane coupling agent: Si266 (bis (3-triethoxysilylpropyl) disulfide)
Zinc oxide: Type 2 zinc oxide stearate of Mitsui Mining & Smelting Co., Ltd .: Beads stearic acid manufactured by NOF Corporation Tsubaki Calcium stearate: Calcium stearate GF-200 manufactured by NOF Corporation
Oil: Palm oil Olein sulfur: Sulfur vulcanization accelerator containing 5% oil TBBS: Noxeller NS manufactured by Ouchi Shinsei Chemical Co., Ltd.
Vulcanization accelerator DPG: NOCELLER D manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
<実施例1-1~1-5及び比較例1-1~1-4> <Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-4>
〔製造例1-1 過酢酸の調製〕
(過酢酸含有液a-1の調製)
98%酢酸612g、20%過酸化水素水850g、及び、98%硫酸5gを混合し、40℃で2日放置することで、過酢酸含有液a-1を調製した。過酢酸濃度を測定したところ、8.3質量%生成していることがわかった。なお、過酢酸濃度の測定は、平沼産業(株)製の過酢酸カウンタPA-300により行い、以下でも同様に行った。
[Production Example 1-1 Preparation of peracetic acid]
(Preparation of peracetic acid-containing liquid a-1)
A peracetic acid-containing liquid a-1 was prepared by mixing 612 g of 98% acetic acid, 850 g of 20% aqueous hydrogen peroxide, and 5 g of 98% sulfuric acid and allowing to stand at 40 ° C. for 2 days. When the peracetic acid concentration was measured, it was found that 8.3% by mass was produced. The peracetic acid concentration was measured using a peracetic acid counter PA-300 manufactured by Hiranuma Sangyo Co., Ltd.
(過酢酸含有液b-1の調製)
後述する実施例1-1で使用した過酢酸含有液a-1の残液に20%過酸化水素水155gを添加し、40℃で2日放置することで、過酢酸含有液b-1を調製した。過酢酸濃度を測定したところ、7.8質量%生成していることがわかった。
(Preparation of peracetic acid-containing liquid b-1)
The peracetic acid-containing liquid b-1 was added to the residual liquid of the peracetic acid-containing liquid a-1 used in Example 1-1 to be described later by adding 155 g of 20% hydrogen peroxide water and leaving it at 40 ° C. for 2 days. Prepared. When the peracetic acid concentration was measured, it was found that 7.8% by mass was produced.
〔製造例1-2 界面活性剤水溶液A-1の調製〕
ポリオキシエチレン脂肪酸アルコール(アルコールの炭素数C12~C18、曇点75℃)150gをイオン交換水850gに溶かして15質量%の界面活性剤水溶液A-1を調製した。
[Production Example 1-2 Preparation of Aqueous Surfactant A-1]
150 g of polyoxyethylene fatty acid alcohol (carbon number C 12 to C 18 of alcohol, cloud point 75 ° C.) 150 g was dissolved in 850 g of ion-exchanged water to prepare a 15% by mass aqueous surfactant solution A-1.
〔製造例1-3 界面活性剤水溶液B-1の調製〕
ポリオキシエチレンラウリルエーテル硫酸ナトリウム100g(有効成分70%)をイオン交換水600gに溶かして10質量%の界面活性剤水溶液B-1を調製した。
[Production Example 1-3 Preparation of Surfactant Aqueous Solution B-1]
100 g of polyoxyethylene lauryl ether sodium sulfate (active ingredient 70%) was dissolved in 600 g of ion-exchanged water to prepare a 10% by mass surfactant aqueous solution B-1.
(実施例1-1)
FL(乾燥ゴム分30質量%) 3kgに対して、界面活性剤水溶液B-1を60g添加し、ついで2質量%硫酸を添加してpHを4.0に調整した。これに0.1質量%凝集剤を3kg添加し、ゴムを粒状で凝固させた。粒子サイズ(粒子径)は細かいものは1mm以下、粗いもので5mm程度で、およそほとんどが1~3mmの範囲であった。攪拌を止め、下の水相をほとんど除去し、その後水を添加、攪拌し、浮いたゴムをすくい取り、また水洗する作業を3回繰り返して洗浄した。ゴムのサイズは洗浄後もほぼ同じで、1~3mmがほとんどであった。
上記の水を含んだゴムをざるで、水を切り、うち約1kgを過酢酸含有液a-1に、初期温度30℃で10分間浸漬した(浸漬する際にはゴムが均等に浸かるように、ゴムを回転させ、押さえ込みながら浸かるようにした)。これを引き揚げた後、水道水のシャワーを20秒間かけた後、2質量%炭酸ナトリウム水溶液に10分間浸漬し、再度水道水のシャワーを20秒間かけた。その後、90℃のオーブンで4時間乾燥し、エポキシ化天然ゴムを得た。
Example 1-1
60 g of aqueous surfactant solution B-1 was added to 3 kg of FL (dry rubber content 30% by mass), and then 2% by mass sulfuric acid was added to adjust the pH to 4.0. To this, 3 kg of 0.1% by mass flocculant was added to solidify the rubber in granular form. The particle size (particle diameter) was 1 mm or less for fine particles and about 5 mm for coarse particles, and was almost in the range of 1 to 3 mm. Stirring was stopped, the lower aqueous phase was almost removed, water was then added and stirred, the floated rubber was scooped and washed with water three times for washing. The size of the rubber was almost the same after washing and was almost 1 to 3 mm.
Drain the rubber containing the above water, drain the water, and immerse about 1 kg in the peracetic acid-containing liquid a-1 at an initial temperature of 30 ° C. for 10 minutes (so that the rubber is evenly immersed when immersed). Rotate the rubber and dip it while holding it down.) After pulling this up, a tap water shower was applied for 20 seconds, followed by immersion in a 2% by weight aqueous sodium carbonate solution for 10 minutes, and a tap water shower was again applied for 20 seconds. Then, it dried in 90 degreeC oven for 4 hours, and obtained the epoxidized natural rubber.
(実施例1-2)
FL 3kgに対して、室温にて界面活性剤水溶液B-1を60g添加し、ついで水酸化ナトリウムを90g溶かした水酸化ナトリウム水溶液360gを添加し、攪拌しながら24時間放置した。これにフェノール系老化防止剤(大内新興化学工業(株)製 ノクラックNS-6) 9gを含む分散体を添加し、さらに2時間攪拌した。このFLに2質量%ギ酸をゆっくり添加し、pH4にした上、0.1質量%凝集剤を3kg添加し、ゴムを粒子状に凝集させた。粒子径はほとんどが1~3mm程度のサイズとなった。この凝集物をざるですくい取り、水洗をする作業を計4回繰り返した。この水を含んだゴムをざるで、水を切り、うち約1kgを実施例1-1とは別に準備した過酢酸含有液a-1に、初期温度30℃で10分間浸漬した(浸漬する際にはゴムが均等に浸かるように、ゴムを回転させ、押さえ込みながら浸かるようにした)。これを引き揚げた後、水道水のシャワーを20秒間かけた後、2質量%炭酸ナトリウム水溶液に10分間浸漬し、再度水道水のシャワーを20秒間かけた。その後、90℃のオーブンで4時間乾燥し、エポキシ化天然ゴムを得た。
Example 1-2
To 3 kg of FL, 60 g of surfactant aqueous solution B-1 was added at room temperature, and then 360 g of sodium hydroxide aqueous solution in which 90 g of sodium hydroxide was dissolved was added and left for 24 hours with stirring. To this was added a dispersion containing 9 g of a phenolic anti-aging agent (Nocrack NS-6 manufactured by Ouchi Shinsei Chemical Co., Ltd.), and the mixture was further stirred for 2 hours. To this FL, 2% by mass formic acid was slowly added to adjust the pH to 4, and 3 kg of 0.1% by mass flocculant was added to aggregate the rubber into particles. Most of the particle diameters were about 1 to 3 mm. The operation of scooping up the agglomerates and washing with water was repeated a total of 4 times. This rubber containing water is drained, water is drained, and about 1 kg of the rubber is immersed in a peracetic acid-containing liquid a-1 prepared separately from Example 1-1 at an initial temperature of 30 ° C. for 10 minutes (during immersion). In order to soak the rubber evenly, the rubber was rotated and soaked while pressing down). After pulling this up, a tap water shower was applied for 20 seconds, followed by immersion in a 2% by weight aqueous sodium carbonate solution for 10 minutes, and a tap water shower was again applied for 20 seconds. Then, it dried in 90 degreeC oven for 4 hours, and obtained the epoxidized natural rubber.
(実施例1-3)
FL 3kgに対して、室温にて界面活性剤水溶液B-1を60g添加し、ついで水酸化ナトリウムを90g溶かした水酸化ナトリウム水溶液360gを添加し、攪拌しながら24時間放置した。これにフェノール系老化防止剤(大内新興化学工業(株)製 ノクラックNS-6) 9gを含む分散体を添加し、さらに2時間攪拌した。このFLに2質量%ギ酸をゆっくり添加し、pH4にした上、0.1質量%凝集剤を3kg添加し、ゴムを粒子状に凝集させた。粒子径はほとんどが1~3mm程度のサイズとなった。この凝集物をざるですくい取り、水洗をする作業を計4回繰り返した。この水を含んだゴムを2質量%炭酸ナトリウム水溶液に1時間漬けたのち、水道水のシャワーを20秒間かけて水洗した。このゴムをざるで、水を切り、うち約1kgを実施例1-1、1-2とは別に準備した過酢酸含有液a-1に、初期温度30℃で10分間浸漬した(浸漬する際にはゴムが均等に浸かるように、ゴムを回転させ、押さえ込みながら浸かるようにした)。これを引き揚げた後、水道水のシャワーを20秒間かけた後、2質量%炭酸ナトリウム水溶液に10分間浸漬し、再度水道水のシャワーを20秒間かけた。その後、90℃のオーブンで4時間乾燥し、エポキシ化天然ゴムを得た。
(Example 1-3)
To 3 kg of FL, 60 g of surfactant aqueous solution B-1 was added at room temperature, and then 360 g of sodium hydroxide aqueous solution in which 90 g of sodium hydroxide was dissolved was added and left for 24 hours with stirring. To this was added a dispersion containing 9 g of a phenolic anti-aging agent (Nocrack NS-6 manufactured by Ouchi Shinsei Chemical Co., Ltd.), and the mixture was further stirred for 2 hours. To this FL, 2% by mass formic acid was slowly added to adjust the pH to 4, and 3 kg of 0.1% by mass flocculant was added to aggregate the rubber into particles. Most of the particle diameters were about 1 to 3 mm. The operation of scooping up the agglomerates and washing with water was repeated a total of 4 times. The rubber containing water was soaked in a 2% by weight aqueous sodium carbonate solution for 1 hour, and then washed with tap water for 20 seconds. The rubber was drained, water was drained, and about 1 kg of the rubber was immersed in a peracetic acid-containing liquid a-1 prepared separately from Examples 1-1 and 1-2 at an initial temperature of 30 ° C. for 10 minutes (during immersion). In order to soak the rubber evenly, the rubber was rotated and soaked while pressing down). After pulling this up, a tap water shower was applied for 20 seconds, followed by immersion in a 2% by weight aqueous sodium carbonate solution for 10 minutes, and a tap water shower was again applied for 20 seconds. Then, it dried in 90 degreeC oven for 4 hours, and obtained the epoxidized natural rubber.
(実施例1-4)
FL 3kgに対して、界面活性剤水溶液B-1を60g添加し、ついで2質量%硫酸を添加してpHを4.0に調整した。これに0.1質量%凝集剤を3kg添加し、ゴムを粒状で凝固させた。粒子サイズは細かいものは1mm以下、粗いもので5mm程度で、およそほとんどが1~3mmの範囲であった。攪拌を止め、下の水相をほとんど除去し、その後水を添加、攪拌し、浮いたゴムをすくい取り、また水洗する作業を3回繰り返して洗浄した。ゴムのサイズは洗浄後もほぼ同じで、1~3mmがほとんどであった。
上記の水を含んだゴムをざるで、水を切り、うち約1kgを過酢酸含有液b-1に、初期温度30℃で10分間浸漬した(浸漬する際にはゴムが均等に浸かるように、ゴムを回転させ、押さえ込みながら浸かるようにした)。これを引き揚げた後、水道水のシャワーを20秒間かけた後、2質量%炭酸ナトリウム水溶液に10分間浸漬し、再度水道水のシャワーを20秒間かけた。その後、90℃のオーブンで4時間乾燥し、エポキシ化天然ゴムを得た。
(Example 1-4)
60 g of surfactant aqueous solution B-1 was added to 3 kg of FL, and then 2 mass% sulfuric acid was added to adjust the pH to 4.0. To this, 3 kg of 0.1% by mass flocculant was added to solidify the rubber in granular form. The particle size was 1 mm or less for fine particles and about 5 mm for coarse particles, and was almost in the range of 1 to 3 mm. Stirring was stopped, the lower aqueous phase was almost removed, water was then added and stirred, the floated rubber was scooped and washed with water three times for washing. The size of the rubber was almost the same after washing and was almost 1 to 3 mm.
Drain the rubber containing the above water, drain the water, and immerse about 1 kg in peracetic acid-containing liquid b-1 at an initial temperature of 30 ° C. for 10 minutes (so that the rubber is immersed evenly when immersed). Rotate the rubber and dip it while holding it down.) After pulling this up, a tap water shower was applied for 20 seconds, followed by immersion in a 2% by weight aqueous sodium carbonate solution for 10 minutes, and a tap water shower was again applied for 20 seconds. Then, it dried in 90 degreeC oven for 4 hours, and obtained the epoxidized natural rubber.
(実施例1-5)
FL 3kgに対して、界面活性剤水溶液B-1を60g添加し、ついで2質量%硫酸を添加してpHを4.0に調整した。これに0.1質量%凝集剤を3kg添加し、ゴムを粒状で凝固させた。粒子サイズは細かいものは1mm以下、粗いもので5mm程度で、およそほとんどが1~3mmの範囲であった。攪拌を止め、下の水相をほとんど除去し、その後水を添加、攪拌し、浮いたゴムをすくい取り、また水洗する作業を3回繰り返して洗浄した。ゴムのサイズは洗浄後もほぼ同じで、1~3mmがほとんどであった。
上記の水を含んだゴムをざるですくいイオン交換水2kg、ギ酸920gを混ぜたギ酸水溶液中に移した。これに50質量%過酸化水素500gをゆっくり添加した。5時間後、ゴムを取り出し、水道水のシャワーを20秒間かけた後、2質量%炭酸ナトリウム水溶液に10分間浸漬し、再度水道水のシャワーを20秒間かけた。その後、90℃のオーブンで4時間乾燥し、エポキシ化天然ゴムを得た。
(Example 1-5)
60 g of surfactant aqueous solution B-1 was added to 3 kg of FL, and then 2 mass% sulfuric acid was added to adjust the pH to 4.0. To this, 3 kg of 0.1% by mass flocculant was added to solidify the rubber in granular form. The particle size was 1 mm or less for fine particles and about 5 mm for coarse particles, and was almost in the range of 1 to 3 mm. Stirring was stopped, the lower aqueous phase was almost removed, water was then added and stirred, the floated rubber was scooped and washed with water three times for washing. The size of the rubber was almost the same after washing and was almost 1 to 3 mm.
The above-mentioned rubber containing water was transferred to a formic acid aqueous solution in which 2 kg of scooping ion exchange water and 920 g of formic acid were mixed. To this, 500 g of 50 mass% hydrogen peroxide was slowly added. After 5 hours, the rubber was taken out and subjected to a tap water shower for 20 seconds, then immersed in a 2% by weight aqueous sodium carbonate solution for 10 minutes, and then a tap water shower was again applied for 20 seconds. Then, it dried in 90 degreeC oven for 4 hours, and obtained the epoxidized natural rubber.
(比較例1-1)
乾燥ゴム分60質量%のローアンモニア天然ゴムラテックス500g(うち乾燥ゴム分300g)に蒸留水440gを添加し、界面活性剤水溶液A-1 60g(有効成分9g)を添加してへらでゆっくりと2分間攪拌した。これを攪拌機で攪拌しながら、ギ酸(88質量%)52.3gをゆっくり添加し、更に過酸化水素水93.5gを3時間かけてチューブポンプを用いて添加した。ラテックスの温度は40℃からスタートし、反応が進むと60℃を超えるため、60~65℃となるように周囲を冷却しながら反応させた。過酸化水素水の添加開始から4時間、8時間、24時間とサンプリングして、ゴムを水蒸気凝固させ、2質量%炭酸ナトリウム水溶液で16時間中和後、乾燥し、作製されたゴムのエポキシ化度をNMRによりエポキシ化度を調べた。その結果、エポキシ化度は4時間で12.5%、8時間で18.5%、24時間で25.4%であり、エポキシ化されているものの、非常に長時間要した。また、ギ酸は凝固時にゴムに含まれているため、再利用はできず、界面活性剤が使用されているため、そのコストも上昇した。更に、界面活性剤が残存すると、吸水しゴム物性が悪化するため、非常に入念に洗浄する必要があった。
(Comparative Example 1-1)
Add 440 g of distilled water to 500 g of low ammonia natural rubber latex with a dry rubber content of 60% by mass (of which 300 g of dry rubber), add 60 g of surfactant aqueous solution A-1 (9 g of active ingredient), and slowly add 2 Stir for minutes. While stirring this with a stirrer, 52.3 g of formic acid (88% by mass) was slowly added, and further 93.5 g of hydrogen peroxide was added over 3 hours using a tube pump. The temperature of the latex started from 40 ° C., and exceeded 60 ° C. when the reaction progressed. Therefore, the reaction was carried out while cooling the surroundings so as to be 60 to 65 ° C. Sampling 4 hours, 8 hours, and 24 hours from the start of hydrogen peroxide water addition, the rubber is coagulated with water vapor, neutralized with a 2% by weight aqueous sodium carbonate solution for 16 hours, and then dried and epoxidized. The degree of epoxidation was examined by NMR. As a result, the degree of epoxidation was 12.5% in 4 hours, 18.5% in 8 hours, and 25.4% in 24 hours. Although epoxidized, it took a very long time. Further, since formic acid is contained in rubber at the time of coagulation, it cannot be reused, and a surfactant is used, so that its cost also increases. Furthermore, if the surfactant remains, it absorbs water and deteriorates the physical properties of the rubber, so it has been necessary to wash it very carefully.
(比較例1-2)
乾燥ゴム分60質量%のローアンモニア天然ゴムラテックス500g(うち乾燥ゴム分300g)に蒸留水460gを添加し、界面活性剤水溶液A-1 40g(有効成分6g)を添加してへらでゆっくりと2分間攪拌した。送液量を調整したチューブポンプ(チューブの内径4mm)を用いて、このラテックスを10.0g/分の割合で、混合装置(サイズ:25cc)に送り込み、同時に過酢酸含有液a-1を7.6g/分となるように混合装置に送り込んだ。混合装置内で攪拌翼を用いてこれらを十分混合した後、送液量が17.6g/分(850mm/分)となるように調整したチューブポンプ(チューブの内径5mm)により凝固装置に送液した。混合時の混合液の温度は25℃、送液時の混合液の温度は55℃であった。なお、混合装置内には、液はほとんど貯まらないようにしたので、混合装置内で液が滞留する時間はほとんど無かった。一方チューブ内の滞留時間は15分であった。凝固装置は下から水蒸気が一定量吹き出るようになっており、上からは混合液が壁に沿って降りるようになっている。ラテックスは下に落ちる間に水蒸気により凝固し、ゴムと漿液に一部分離した。凝固装置から出てきたゴムを10分毎にサンプリングし、これを水で冷却後、1~3質量%の炭酸水素ナトリウム水溶液中で一昼夜浸漬し、その後再度水洗後、恒量になるまで乾燥し、作製されたゴムのエポキシ化度をNMRで調べた。
その結果、エポキシ化度は25.1%、25.3%、25.1%、25.4%、25.4%、25.7%、25.3%、25.5%であり、非常に安定していることが確認された。非常に早く反応が進んでいるが、材料のロスが非常に大きく、エネルギーを大量に消費する水蒸気を使用し、また中和や洗浄に大きな手間がかかるため、全体のコストが非常にかかっていた。
(Comparative Example 1-2)
460 g of distilled water was added to 500 g of low ammonia natural rubber latex having a dry rubber content of 60% by mass (of which 300 g of dry rubber was added), and 40 g of surfactant aqueous solution A-1 (6 g of active ingredient) was added slowly with a spatula. Stir for minutes. This latex was fed into the mixing device (size: 25 cc) at a rate of 10.0 g / min using a tube pump (tube inner diameter: 4 mm) with adjusted liquid feeding amount. It was fed into the mixing apparatus so as to be 6 g / min. After sufficiently mixing them using a stirring blade in the mixing apparatus, the liquid is fed to the coagulation apparatus by a tube pump (inner diameter of the tube 5 mm) adjusted so that the liquid feeding amount is 17.6 g / min (850 mm / min). did. The temperature of the mixed solution at the time of mixing was 25 ° C., and the temperature of the mixed solution at the time of feeding was 55 ° C. Since the liquid was hardly stored in the mixing apparatus, there was almost no time for the liquid to stay in the mixing apparatus. On the other hand, the residence time in the tube was 15 minutes. In the coagulation apparatus, a certain amount of water vapor is blown from the bottom, and from the top, the mixed liquid descends along the wall. The latex coagulated with water vapor while falling down and partially separated into rubber and serum. The rubber coming out of the coagulator is sampled every 10 minutes, cooled with water, immersed in an aqueous solution of 1 to 3% by weight of sodium bicarbonate for a whole day and then washed again with water, dried to a constant weight, The degree of epoxidation of the produced rubber was examined by NMR.
As a result, the degree of epoxidation was 25.1%, 25.3%, 25.1%, 25.4%, 25.4%, 25.7%, 25.3%, 25.5%, It was confirmed to be stable. Although the reaction is proceeding very quickly, the overall cost is very high because the loss of material is very large, water vapor that consumes a lot of energy is used, and it takes a lot of time for neutralization and washing. .
(比較例1-3)
TSR20を用いた他は、実施例1-1と同様の方法で加硫ゴムシートを作製し、物性を調べた。
(Comparative Example 1-3)
A vulcanized rubber sheet was prepared in the same manner as in Example 1-1 except that TSR20 was used, and the physical properties were examined.
(比較例1-4)
FL 3kgに対して、2質量%硫酸を添加してゴムを凝固させた。ゴムは直径20cm程度の大きな塊となった。このため全体をエポキシ化は不可能であり、以後のエポキシ化工程は断念した。
(Comparative Example 1-4)
To 3 kg of FL, 2% by mass sulfuric acid was added to coagulate the rubber. The rubber became a large lump with a diameter of about 20 cm. Therefore, epoxidation of the whole was impossible, and the subsequent epoxidation process was abandoned.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
表1から明らかなように、実施例の製法では、比較例1-1に比べて反応が非常に早く、エポキシ化に要するコストが低かった。また、エポキシ化量が比較的少ないものでも、シリカの分散性が、反応時間が長くかつ高コストの比較例の製法と同等のレベルに達しており、ゴム強度も高いという特徴を有していた。更に、実施例ではラテックス状態でエポキシ化する方法と同様、均一なエポキシ化天然ゴムが得られた。 As is apparent from Table 1, in the production methods of the examples, the reaction was much faster than that of Comparative Example 1-1, and the cost required for epoxidation was low. In addition, even when the amount of epoxidation is relatively small, the dispersibility of silica has reached the same level as the manufacturing method of the comparative example with a long reaction time and high cost, and has the characteristics that the rubber strength is also high. . Further, in the examples, a uniform epoxidized natural rubber was obtained in the same manner as in the method of epoxidation in the latex state.
以下に、実施例2-1~2-11及び比較例2-1~2-4で用いた各種薬品について説明する。
天然ゴムラテックス:アンモニア及び微量の酸化亜鉛とテトラチウラムジスルフィドを添加して耐腐敗性・安定性を付与したローアンモニアラテックス(乾燥ゴム分60質量%、アンモニア分0.2質量%)
カップランプ:タイ国東北地方で採取され、TSR加工所に販売される一般的なものについて通常のTSR製造工程で処理を行ったもの(スラブカッター、プリブレーカー、ロータリーカッター等で破砕し、水洗した後、クレーパーとシュレッダーにより1~3mm程度に細断した固形ゴム)
界面活性剤:ポリオキシエチレン脂肪酸アルコール(アルコールの炭素数C12~C18、曇点70~80℃)
酢酸:有効成分98%、94%試薬1級
ギ酸:有効成分88%試薬1級
過酸化水素水:有効成分50%及び30%(濃度を記していないときは50%)
硫酸:有効成分98%
炭酸ナトリウム:無水炭酸ナトリウム(純度99%以上)
Hereinafter, various chemicals used in Examples 2-1 to 2-11 and Comparative Examples 2-1 to 2-4 will be described.
Natural rubber latex: Raw ammonia latex added with anti-corrosion and stability by adding ammonia, trace amount of zinc oxide and tetrathiuram disulfide (60% dry rubber content, 0.2% ammonia content)
Cup lamps: Common ones collected in the Tohoku region of Thailand and sold to TSR processing plants that have been processed in the normal TSR manufacturing process (slab cutters, prebreakers, rotary cutters, etc.) Afterwards, solid rubber shredded to about 1 to 3 mm with a creper and a shredder)
Surfactant: Polyoxyethylene fatty acid alcohol (alcohol carbon number C 12 to C 18 , cloud point 70 to 80 ° C.)
Acetic acid: active ingredient 98%, 94% reagent primary formic acid: active ingredient 88% reagent primary hydrogen peroxide solution: active ingredient 50% and 30% (50% when no concentration is indicated)
Sulfuric acid: 98% active ingredient
Sodium carbonate: anhydrous sodium carbonate (purity 99% or more)
シリカ:デグサ社のウルトラジルVN3
シランカップリング剤:Si266(ビス(3-トリエトキシシリルプロピル)ジスルフィド)
酸化亜鉛:三井金属鉱業(株)の第2種酸化亜鉛
ステアリン酸:日油(株)製のビーズステアリン酸 つばき
ステアリン酸カルシウム:日油(株)製のカルシウムステアレートGF-200
オイル:パームオイルオレイン
硫黄:5%オイル入り硫黄
加硫促進剤TBBS:大内新興化学工業(株)製のノクセラーNS
加硫促進剤DPG:大内新興化学工業(株)製のノクセラーD
Silica: Degussa Ultrasil VN3
Silane coupling agent: Si266 (bis (3-triethoxysilylpropyl) disulfide)
Zinc oxide: Type 2 zinc oxide stearate of Mitsui Mining & Smelting Co., Ltd .: Beads stearic acid manufactured by NOF Corporation Tsubaki Calcium stearate: Calcium stearate GF-200 manufactured by NOF Corporation
Oil: Palm oil Olein sulfur: Sulfur vulcanization accelerator containing 5% oil TBBS: Noxeller NS manufactured by Ouchi Shinsei Chemical Co., Ltd.
Vulcanization accelerator DPG: NOCELLER D manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
<実施例2-1~2-11及び比較例2-1~2-4> <Examples 2-1 to 2-11 and Comparative Examples 2-1 to 2-4>
〔製造例2-1 過酢酸の調製〕
(過酢酸含有液a-2の調製)
98%酢酸243g、過酸化水素水270g、及び、硫酸4gを混合し、40℃で1日放置することで、過酢酸含有液a-2を調製した。滴定により過酢酸を定量したところ、60.4g生成していることがわかった。
[Production Example 2-1 Preparation of Peracetic Acid]
(Preparation of peracetic acid-containing liquid a-2)
A peracetic acid-containing liquid a-2 was prepared by mixing 243 g of 98% acetic acid, 270 g of hydrogen peroxide solution, and 4 g of sulfuric acid and allowing to stand at 40 ° C. for 1 day. When peracetic acid was quantified by titration, it was found that 60.4 g was produced.
(過酢酸含有液b-2の調製)
後述する実施例2-1で使用した過酢酸含有液a-2の残液に過酸化水素水54gを添加し、40℃で1日放置することで、過酢酸含有液b-2を調製した。滴定により過酢酸を定量したところ、過酢酸は液全体で59g生成している計算となった。
(Preparation of peracetic acid-containing liquid b-2)
A peracetic acid-containing liquid b-2 was prepared by adding 54 g of hydrogen peroxide water to the residual liquid of the peracetic acid-containing liquid a-2 used in Example 2-1 to be described later and allowing to stand at 40 ° C. for 1 day. . When peracetic acid was quantified by titration, it was calculated that 59 g of peracetic acid was generated in the whole liquid.
(過酢酸含有液c-2の調製)
後述する実施例2-4で使用した過酢酸含有液b-2の残液に過酸化水素水61gを添加し、40℃で1日放置することで、過酢酸含有液c-2を調製した。滴定により過酢酸を定量したところ、過酢酸は液全体で58g生成している計算となった。
(Preparation of peracetic acid-containing liquid c-2)
A peracetic acid-containing liquid c-2 was prepared by adding 61 g of hydrogen peroxide water to the residual liquid of the peracetic acid-containing liquid b-2 used in Example 2-4, which will be described later, and allowing it to stand at 40 ° C. for 1 day. . When peracetic acid was quantified by titration, it was calculated that 58 g of peracetic acid was generated in the whole liquid.
(過酢酸液d-2の調製) 
94%酢酸500g、30%過酸化水素水887g、及び、硫酸4gを混合し、40℃で1日放置することで、過酢酸含有液d-2を調製した。滴定により過酢酸を定量したところ、過酢酸は液全体で95.2g生成していることが判明した。なお、実施例2-11では、試薬の量をすべて10倍にして液を調製して使用した。
(Preparation of peracetic acid solution d-2)
A peracetic acid-containing liquid d-2 was prepared by mixing 500 g of 94% acetic acid, 887 g of 30% aqueous hydrogen peroxide, and 4 g of sulfuric acid and allowing to stand at 40 ° C. for 1 day. When peracetic acid was quantified by titration, it was found that 95.2 g of peracetic acid was produced as a whole. In Example 2-11, all of the reagent amounts were prepared 10 times and used.
〔製造例2-2 界面活性剤水溶液の調製〕
ポリオキシエチレン脂肪酸アルコール(アルコールの炭素数C12~C18、曇点75℃)150gをイオン交換水850gに溶かして15質量%の界面活性剤水溶液を調製した。
[Production Example 2-2 Preparation of aqueous surfactant solution]
150 g of polyoxyethylene fatty acid alcohol (carbon number C 12 to C 18 of alcohol, cloud point 75 ° C.) 150 g was dissolved in 850 g of ion-exchanged water to prepare a 15% by mass aqueous surfactant solution.
(実施例2-1)
カップランプ(水分率29%)3kgを過酢酸含有液a-2 517gに、温度30℃で5分間浸漬した(浸漬する際にはゴムが均等に浸かるように、ゴムを回転させ、押さえ込みながら浸かるようにした)。これを引き揚げた後、水道水のシャワーを20秒間かけた後、2%炭酸ナトリウム水溶液に5分間浸漬し、再度水道水のシャワーを20秒間かけた。その後、90℃のオーブンで4時間乾燥し、エポキシ化天然ゴムを得た。
Example 2-1
3 kg of a cup lamp (water content 29%) was immersed in 517 g of peracetic acid-containing liquid a-2 for 5 minutes at a temperature of 30 ° C. (When soaking, rotate the rubber so that the rubber is immersed evenly, soak it while pressing it down) ) After pulling this up, a tap water shower was applied for 20 seconds, then immersed in a 2% aqueous sodium carbonate solution for 5 minutes, and a tap water shower was again applied for 20 seconds. Then, it dried in 90 degreeC oven for 4 hours, and obtained the epoxidized natural rubber.
(実施例2-2)
過酢酸含有液a-2の量を1034gに変更した他は、実施例2-1と同様にしてエポキシ化天然ゴムを得た。
(Example 2-2)
Epoxidized natural rubber was obtained in the same manner as in Example 2-1, except that the amount of peracetic acid-containing liquid a-2 was changed to 1034 g.
(実施例2-3)
過酢酸含有液a-2の量を2067gに変更した他は、実施例2-1と同様にしてエポキシ化天然ゴムを得た。
(Example 2-3)
An epoxidized natural rubber was obtained in the same manner as in Example 2-1, except that the amount of the peracetic acid-containing liquid a-2 was changed to 2067 g.
(実施例2-4)
過酢酸含有液a-2を過酢酸含有液b-2に変更した他は、実施例2-1と同様にしてエポキシ化天然ゴムを得た。
(Example 2-4)
An epoxidized natural rubber was obtained in the same manner as in Example 2-1, except that the peracetic acid-containing liquid a-2 was changed to the peracetic acid-containing liquid b-2.
(実施例2-5)
過酢酸含有液a-2を過酢酸含有液c-2に変更した他は、実施例2-1と同様にしてエポキシ化天然ゴムを得た。
(Example 2-5)
An epoxidized natural rubber was obtained in the same manner as in Example 2-1, except that the peracetic acid-containing liquid a-2 was changed to a peracetic acid-containing liquid c-2.
(実施例2-6)
カップランプ(水分率29%)30kgを過酢酸含有液a-2 5.17kgに、温度30℃で5分間浸漬した(浸漬する際にはゴムが均等に浸かるように、ゴムを回転させ、押さえ込みながら浸かるようにした)。これを引き揚げた後、押出機に引き揚げたゴムと、過酢酸含有液a-2 10.34kg(上記浸漬したものとは別に調製した過酢酸濃度が10質量%以上のもの)を小量ずつ投入し、穴の開いた押出プレートからうどん状のゴムを得た。これに水道水のシャワーを20秒間かけた後、2%炭酸ナトリウム水溶液に5分浸漬し、再度水道水のシャワーを20秒間かけた。その後、90℃のオーブンで4時間乾燥し、エポキシ化天然ゴムを得た。
(Example 2-6)
30 kg of a cup lamp (water content 29%) was immersed in 5.17 kg of peracetic acid-containing liquid a-2 for 5 minutes at a temperature of 30 ° C. (Rotating and pressing the rubber so that the rubber was evenly immersed when immersed) I was immersed in it). After pulling this up, the rubber pulled into the extruder and 10.34 kg of peracetic acid-containing liquid a-2 (peracetic acid concentration prepared separately from the above-mentioned soaked one is 10% by mass or more) are added in small amounts. Then, udon-like rubber was obtained from the extruded plate having holes. This was subjected to a tap water shower for 20 seconds, then immersed in a 2% aqueous sodium carbonate solution for 5 minutes, and then again a tap water shower for 20 seconds. Then, it dried in 90 degreeC oven for 4 hours, and obtained the epoxidized natural rubber.
(比較例2-1)
比較例1-1と同様の方法でゴムを作製した。
(Comparative Example 2-1)
A rubber was produced in the same manner as in Comparative Example 1-1.
(比較例2-2)
乾燥ゴム分60質量%のローアンモニア天然ゴムラテックス500g(うち乾燥ゴム分300g)に蒸留水460gを添加し、更に15質量%の界面活性剤水溶液40g(有効成分6g)を添加してへらでゆっくりと2分間攪拌した。送液量を調整したチューブポンプ(チューブの内径4mm)を用いて、このラテックスを10.0g/分の割合で、混合装置(サイズ:25cc)に送り込み、同時に過酢酸含有液a-2を7.6g/分となるように混合装置に送り込んだ。混合装置内で攪拌翼を用いてこれらを十分混合した後、送液量が17.6g/分(850mm/分)となるように調整したチューブポンプ(チューブの内径5mm)により凝固装置に送液した。混合時の混合液の温度は25℃、送液時の混合液の温度は55℃であった。なお、混合装置内には、液はほとんど貯まらないようにしたので、混合装置内で液が滞留する時間はほとんど無かった。一方チューブ内の滞留時間は15分であった。凝固装置は下から水蒸気が一定量吹き出るようになっており、上からは混合液が壁に沿って降りるようになっている。ラテックスは下に落ちる間に水蒸気により凝固し、ゴムと漿液に一部分離した。凝固装置から出てきたゴムを10分毎にサンプリングし、これを水で冷却後、1~3%の炭酸水素ナトリウム水溶液中で一昼夜浸漬し、その後再度水洗後、恒量になるまで乾燥し、作製されたゴムのエポキシ化度をNMRで調べた。その結果、エポキシ化度は25.1%、25.3%、25.1%、25.4%、25.4%、25.7%、25.3%、25.5%であり、非常に安定していることが確認された。非常に早く反応が進んでいるが、材料のロスが非常に大きく、エネルギーを大量に消費する水蒸気を使用し、また中和や洗浄に大きな手間がかかるため、全体のコストが非常にかかっていた。
(Comparative Example 2-2)
460 g of distilled water is added to 500 g of low ammonia natural rubber latex having a dry rubber content of 60% by mass (of which 300 g of dry rubber is added), and 40 g of a 15% by mass aqueous surfactant solution (6 g of active ingredient) is further added with a spatula. And stirred for 2 minutes. This latex was fed into the mixing device (size: 25 cc) at a rate of 10.0 g / min using a tube pump (tube inner diameter: 4 mm) with an adjusted feed rate, and 7 peracetic acid-containing solution a-2 was simultaneously introduced. It was fed into the mixing apparatus so as to be 6 g / min. After sufficiently mixing them using a stirring blade in the mixing apparatus, the liquid is fed to the coagulation apparatus by a tube pump (inner diameter of the tube 5 mm) adjusted so that the liquid feeding amount is 17.6 g / min (850 mm / min). did. The temperature of the mixed solution at the time of mixing was 25 ° C., and the temperature of the mixed solution at the time of feeding was 55 ° C. Since the liquid was hardly stored in the mixing apparatus, there was almost no time for the liquid to stay in the mixing apparatus. On the other hand, the residence time in the tube was 15 minutes. In the coagulation apparatus, a certain amount of water vapor is blown from the bottom, and from the top, the mixed liquid descends along the wall. The latex coagulated with water vapor while falling down and partially separated into rubber and serum. Sample the rubber coming out of the coagulator every 10 minutes, cool it with water, immerse it in a 1 to 3% aqueous solution of sodium bicarbonate for a whole day and then wash it again and dry it to a constant weight. The degree of epoxidation of the resulting rubber was examined by NMR. As a result, the degree of epoxidation was 25.1%, 25.3%, 25.1%, 25.4%, 25.4%, 25.7%, 25.3%, 25.5%, It was confirmed to be stable. Although the reaction is proceeding very quickly, the overall cost is very high because the loss of material is very large, water vapor that consumes a lot of energy is used, and it takes a lot of time for neutralization and washing. .
(比較例2-3)
乾燥ゴム分60質量%のローアンモニア天然ゴムラテックス500g(うち乾燥ゴム分300g)に蒸留水440gを添加し、更に15質量%の界面活性剤水溶液60g(有効成分9g)を添加してへらでゆっくりと2分間攪拌した。これを攪拌機で攪拌しながら、酢酸(98%)9.18gをゆっくり添加し、更に過酸化水素水(30%)34gを3時間かけてチューブポンプを用いて添加した。ラテックスの温度は40℃からスタートし、反応が進むと60℃を超えることがあるため、60~65℃となるように周囲温を調整しながら反応させた。過酸化水素水の添加開始から4時間、8時間、20時間、24時間、27時間とサンプリングして、ゴムを水蒸気凝固させ、中和後乾燥し、作製されたゴムのエポキシ化度をNMRによりエポキシ化度を調べた。その結果、エポキシ化度は4時間で1.5%、8時間で3.2%、20時間で4.6%、24時間で4.9%、27時間で5.1%であり、エポキシ化は徐々に確実に進行しているものの、非常に長時間を要した。また使用した試薬はすべて回収不能で、プロセスも比較例2と同様、非常に長く、コストがかかった。
(Comparative Example 2-3)
440 g of distilled water is added to 500 g of low ammonia natural rubber latex having a dry rubber content of 60% by weight (of which 300 g of dry rubber is added), and 60 g of a 15% by weight aqueous surfactant solution (9 g of active ingredient) is added slowly with a spatula. And stirred for 2 minutes. While stirring with a stirrer, 9.18 g of acetic acid (98%) was slowly added, and 34 g of hydrogen peroxide (30%) was further added using a tube pump over 3 hours. The temperature of the latex started from 40 ° C., and when the reaction progressed, it might exceed 60 ° C. Therefore, the reaction was carried out while adjusting the ambient temperature to be 60 to 65 ° C. Sampling 4 hours, 8 hours, 20 hours, 24 hours, and 27 hours from the start of hydrogen peroxide water addition, the rubber was coagulated with water vapor, neutralized and dried, and the epoxidation degree of the produced rubber was measured by NMR. The degree of epoxidation was examined. As a result, the degree of epoxidation was 1.5% at 4 hours, 3.2% at 8 hours, 4.6% at 20 hours, 4.9% at 24 hours, and 5.1% at 27 hours. Although the process gradually progressed gradually, it took a very long time. Moreover, all the used reagents were uncollectable, and the process was very long and costly as in Comparative Example 2.
(比較例2-4)
TSR20を用いた他は、実施例2-1と同様の方法で加硫ゴムシートを作製し、物性を調べた。
(Comparative Example 2-4)
A vulcanized rubber sheet was prepared in the same manner as in Example 2-1, except that TSR20 was used, and the physical properties were examined.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
表2から明らかなように、実施例の製法では、反応が非常に早く、エポキシ化に要するコストも低かった。また、エポキシ化量が比較的少ないものでも、シリカの分散性が、反応時間を長くかつ高コストの比較例の製法と同等のレベルに達しており、ゴム強度も高いという特徴を有していた。 As is clear from Table 2, in the production methods of the examples, the reaction was very fast and the cost required for epoxidation was low. In addition, even when the amount of epoxidation is relatively small, the dispersibility of silica has reached the same level as the production method of the comparative example with a long reaction time and high cost, and has the characteristics of high rubber strength. .
(実施例2-7)
ジャケット付きの容器に88%ギ酸水溶液3kgにイオン交換水3kg、硫酸5gを添加・攪拌し、これにカップランプ(水分率29%)3kgを浸漬し、全体の温度が50℃になるように加熱した。ここに30%過酸化水素液118gを3時間で滴下し、5時間反応させた。これを引き揚げた後、水道水のシャワーを20秒間かけた後、2%炭酸ナトリウム水溶液に10分浸漬し、再度水道水のシャワーを20秒かけた後、乾燥した。乾燥は90℃のオーブンで4時間実施してエポキシ化天然ゴムを得た。
(Example 2-7)
Add 3 kg of ion-exchanged water and 5 g of sulfuric acid to 3 kg of 88% formic acid aqueous solution in a jacketed container, stir it, soak 3 kg of cup lamp (moisture content 29%), and heat it so that the total temperature is 50 ° C. did. The 30% hydrogen peroxide solution 118g was dripped here in 3 hours, and it was made to react for 5 hours. After pulling it up, it was subjected to a tap water shower for 20 seconds, then dipped in a 2% aqueous sodium carbonate solution for 10 minutes, again showered with tap water for 20 seconds, and then dried. Drying was carried out in an oven at 90 ° C. for 4 hours to obtain an epoxidized natural rubber.
(実施例2-8)
30%過酸化水素197gを用いた他は、実施例2-7と同様にして、エポキシ化天然ゴムを得た。
(Example 2-8)
Epoxidized natural rubber was obtained in the same manner as in Example 2-7, except that 197 g of 30% hydrogen peroxide was used.
(実施例2-9)
30%過酸化水素394gを用いた他は、実施例2-7と同様にして、エポキシ化天然ゴムを得た。
(Example 2-9)
Epoxidized natural rubber was obtained in the same manner as in Example 2-7 except that 394 g of 30% hydrogen peroxide was used.
(実施例2-10)
30%過酸化水素789gを用いた他は、実施例2-7と同様にして、エポキシ化天然ゴムを得た。
(Example 2-10)
An epoxidized natural rubber was obtained in the same manner as in Example 2-7, except that 789 g of 30% hydrogen peroxide was used.
(実施例2-11)
ジャケット付きの容器に88%ギ酸水溶液3kgにイオン交換水3kg、硫酸5gを添加・攪拌し、これにカップランプ(水分率29%)3kgを浸漬し、全体の温度が50℃になるように加熱した。ここに30%過酸化水素液394gを3時間で滴下し、5時間反応させた。これを引き揚げた後、押出機に過酢酸含有液d-2とともに徐々に投入して混練しながらエポキシ化を実施した。押出機出口には穴のあいたプレートを取りつけておき、出てきたうどん状のゴムを水洗し、2%炭酸ナトリウム水溶液に2時間浸漬し、その後再度水をスプレーしてアルカリを洗い流した後、シュレッダーで細断、90℃で4時間乾燥させ、エポキシ化天然ゴムを得た。
(Example 2-11)
Add 3 kg of ion-exchanged water and 5 g of sulfuric acid to 3 kg of 88% formic acid aqueous solution in a jacketed container, stir it, soak 3 kg of cup lamp (moisture content 29%), and heat it so that the total temperature is 50 ° C. did. To this, 394 g of 30% hydrogen peroxide solution was dropped over 3 hours and reacted for 5 hours. After pulling this up, the epoxidation was carried out while gradually introducing into the extruder together with the peracetic acid-containing liquid d-2 and kneading. A plate with a hole is attached to the exit of the extruder, the udon-like rubber that has come out is washed with water, immersed in a 2% aqueous sodium carbonate solution for 2 hours, and then sprayed with water again to wash away the alkali, and then shredder And then dried at 90 ° C. for 4 hours to obtain an epoxidized natural rubber.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
表3から明らかなように、実施例2-7~2-11でも非常に簡便にエポキシ化が可能で、エポキシ化に要するコストを低下できた。また、前記と同様、エポキシ化量が比較的少ないものでも、シリカの分散性が高く、ゴム強度も優れていた。 As is apparent from Table 3, also in Examples 2-7 to 2-11, epoxidation was possible very easily, and the cost required for epoxidation could be reduced. Further, as described above, even those having a relatively small amount of epoxidation exhibited high silica dispersibility and excellent rubber strength.

Claims (13)

  1. 天然ゴムラテックスを粒状に凝固させ、粒状固形ゴムを調製する工程1と、得られた粒状固形ゴムをエポキシ化液で処理し、該粒状固形ゴムをエポキシ化する工程2とを含むエポキシ化天然ゴムの製造方法。 An epoxidized natural rubber comprising a step 1 for coagulating natural rubber latex into a granular form to prepare a granular solid rubber, and a step 2 for treating the obtained granular solid rubber with an epoxidizing liquid and epoxidizing the granular solid rubber Manufacturing method.
  2. 前記エポキシ化液は、過酢酸含有液及び/又は過ギ酸含有液である請求項1記載のエポキシ化天然ゴムの製造方法。 The method for producing an epoxidized natural rubber according to claim 1, wherein the epoxidized liquid is a peracetic acid-containing liquid and / or a formic acid-containing liquid.
  3. 前記過酢酸含有液は、酢酸及び/又は無水酢酸と過酸化水素とを混合し、反応させて得られるものである請求項2記載のエポキシ化天然ゴムの製造方法。 The method for producing an epoxidized natural rubber according to claim 2, wherein the peracetic acid-containing liquid is obtained by mixing and reacting acetic acid and / or acetic anhydride and hydrogen peroxide.
  4. 前記過ギ酸含有液は、ギ酸と過酸化水素とを混合し、反応させて得られるものである請求項2記載のエポキシ化天然ゴムの製造方法。 The method for producing an epoxidized natural rubber according to claim 2, wherein the liquid formic acid-containing liquid is obtained by mixing and reacting formic acid and hydrogen peroxide.
  5. 前記天然ゴムラテックスは、フィールドラテックス、フィールドラテックスを濃縮した濃縮ラテックス、及びこれらから非ゴム成分を除去した改質天然ゴムラテックスからなる群より選択される少なくとも1種である請求項1~4のいずれかに記載のエポキシ化天然ゴムの製造方法。 The natural rubber latex is at least one selected from the group consisting of field latex, concentrated latex obtained by concentrating field latex, and modified natural rubber latex obtained by removing non-rubber components therefrom. A process for producing an epoxidized natural rubber according to claim 1.
  6. 前記工程1は、酸を用いて前記天然ゴムラテックスを粒状に凝固させ、粒状固形ゴムを調製するものである請求項1~5のいずれかに記載のエポキシ化天然ゴムの製造方法。 The method for producing an epoxidized natural rubber according to any one of claims 1 to 5, wherein the step 1 comprises solidifying the natural rubber latex into a granular form using an acid to prepare a granular solid rubber.
  7. 前記工程1は、酸及び凝集剤を用いて前記天然ゴムラテックスを粒状に凝固させ、粒状固形ゴムを調製するものである請求項1~5のいずれかに記載のエポキシ化天然ゴムの製造方法。 The method for producing an epoxidized natural rubber according to any one of claims 1 to 5, wherein in the step 1, the natural rubber latex is coagulated into particles using an acid and a flocculant to prepare a granular solid rubber.
  8. 前記粒状固形ゴムの粒子径が20mm以下である請求項1~7のいずれかに記載のエポキシ化天然ゴムの製造方法。 The method for producing an epoxidized natural rubber according to any one of claims 1 to 7, wherein the particle size of the granular solid rubber is 20 mm or less.
  9. 前記粒状固形ゴムの粒子径が12mm以下である請求項1~7のいずれかに記載のエポキシ化天然ゴムの製造方法。 The method for producing an epoxidized natural rubber according to any one of claims 1 to 7, wherein a particle diameter of the granular solid rubber is 12 mm or less.
  10. 請求項1~9のいずれかに記載の製造方法により得られるエポキシ化天然ゴム。 An epoxidized natural rubber obtained by the production method according to any one of claims 1 to 9.
  11. エポキシ化度が0.1~50%である請求項10記載のエポキシ化天然ゴム。 The epoxidized natural rubber according to claim 10, which has an epoxidation degree of 0.1 to 50%.
  12. 請求項10又は11記載のエポキシ化天然ゴムを含むタイヤ用ゴム組成物。 A rubber composition for tires comprising the epoxidized natural rubber according to claim 10 or 11.
  13. 請求項12記載のタイヤ用ゴム組成物を用いて作製した空気入りタイヤ。 A pneumatic tire produced using the tire rubber composition according to claim 12.
PCT/JP2013/051208 2012-01-23 2013-01-22 Method for producing epoxidized natural rubber, rubber composition for tires, and pneumatic tire WO2013111753A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13741529.5A EP2808347B1 (en) 2012-01-23 2013-01-22 Method for producing epoxidized natural rubber, rubber composition for tires, and pneumatic tire
US14/368,592 US9193806B2 (en) 2012-01-23 2013-01-22 Method for producing an epoxidized natural rubber, rubber composition for tires, and pneumatic tire
BR112014017944A BR112014017944A8 (en) 2012-01-23 2013-01-22 METHOD FOR PRODUCING AN EPOXID NATURAL RUBBER, RUBBER COMPOSITION FOR TIRES, AND TYRES
CN201380005818.6A CN104053677B (en) 2012-01-23 2013-01-22 Method for producing epoxidized natural rubber, rubber composition for tires, and pneumatic tire

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-011407 2012-01-23
JP2012011407 2012-01-23
JP2012046879A JP5715586B2 (en) 2012-01-23 2012-03-02 Process for producing epoxidized natural rubber, rubber composition for tire and pneumatic tire
JP2012-046879 2012-03-02
JP2012-212685 2012-09-26
JP2012212685A JP5654539B2 (en) 2012-09-26 2012-09-26 Process for producing epoxidized natural rubber, rubber composition for tire and pneumatic tire

Publications (1)

Publication Number Publication Date
WO2013111753A1 true WO2013111753A1 (en) 2013-08-01

Family

ID=51505589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051208 WO2013111753A1 (en) 2012-01-23 2013-01-22 Method for producing epoxidized natural rubber, rubber composition for tires, and pneumatic tire

Country Status (4)

Country Link
US (1) US9193806B2 (en)
EP (1) EP2808347B1 (en)
CN (1) CN104053677B (en)
WO (1) WO2013111753A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105820389A (en) * 2015-01-28 2016-08-03 住友橡胶工业株式会社 Rubber composition for tire and tire

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3046603B1 (en) * 2016-01-11 2017-12-29 Michelin & Cie METHOD FOR MODIFYING NATURAL RUBBER AND MODIFIED NATURAL RUBBER
MX2018012259A (en) * 2016-04-05 2019-02-07 Cooper Tire & Rubber Co Process for producing epoxidized polymers.
CN106863050A (en) * 2017-01-22 2017-06-20 山东优特智能科技有限公司 A kind of valve stem is ground beveler
WO2022259044A1 (en) 2021-06-11 2022-12-15 Universidade De Coimbra Fibre-reinforced aerogel composites from mixed silica and rubber sols and a method to produce the rubber-silica aerogel composites

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044708A (en) * 1998-08-03 2000-02-15 Rejitekkusu:Kk Surface-treatment of rubber article
JP2002338603A (en) * 2001-05-16 2002-11-27 Sumitomo Rubber Ind Ltd Method for manufacturing naturel rubber particulates
JP2003292658A (en) * 2002-04-01 2003-10-15 Regitex:Kk Method of treating surface of rubber product
JP2006213751A (en) * 2005-02-01 2006-08-17 Bridgestone Corp Natural rubber and method for producing the same
JP2009293011A (en) 2008-05-09 2009-12-17 Sumitomo Rubber Ind Ltd Method for producing modified natural rubber and modified natural rubber latex, modified natural rubber, modified natural rubber latex, and tire using modified natural rubber

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2375542A (en) * 2001-05-17 2002-11-20 Reckitt Benckiser Water soluble container
EP1697422A1 (en) * 2003-12-24 2006-09-06 Pirelli Tyre S.p.A. Process for producing an epoxidized elastomeric polymer
JP4805584B2 (en) * 2005-01-21 2011-11-02 住友ゴム工業株式会社 Rubber composition for tread and tire comprising the same
JP2008044708A (en) * 2006-08-14 2008-02-28 Oki Electric Ind Co Ltd Paper sheet separation and delivery mechanism
WO2008139762A1 (en) * 2007-05-15 2008-11-20 Sumitomo Rubber Industries, Ltd. Rubber composition for tire and pneumatic tire
JP4810568B2 (en) * 2008-12-15 2011-11-09 住友ゴム工業株式会社 Modified natural rubber and method for producing the same
US8658728B2 (en) * 2008-12-15 2014-02-25 Sumitomo Rubber Industries, Ltd. Natural rubber and method for producing the same, rubber composition and pneumatic tire using the same, modified natural rubber and method for producing the same, and rubber composition for tread or for covering carcass cord and pneumatic tire using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044708A (en) * 1998-08-03 2000-02-15 Rejitekkusu:Kk Surface-treatment of rubber article
JP2002338603A (en) * 2001-05-16 2002-11-27 Sumitomo Rubber Ind Ltd Method for manufacturing naturel rubber particulates
JP2003292658A (en) * 2002-04-01 2003-10-15 Regitex:Kk Method of treating surface of rubber product
JP2006213751A (en) * 2005-02-01 2006-08-17 Bridgestone Corp Natural rubber and method for producing the same
JP2009293011A (en) 2008-05-09 2009-12-17 Sumitomo Rubber Ind Ltd Method for producing modified natural rubber and modified natural rubber latex, modified natural rubber, modified natural rubber latex, and tire using modified natural rubber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2808347A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105820389A (en) * 2015-01-28 2016-08-03 住友橡胶工业株式会社 Rubber composition for tire and tire
EP3050715A1 (en) * 2015-01-28 2016-08-03 Sumitomo Rubber Industries, Ltd. Rubber composition for tire and tire
JP2016138198A (en) * 2015-01-28 2016-08-04 住友ゴム工業株式会社 Rubber composition for tire and tire

Also Published As

Publication number Publication date
CN104053677A (en) 2014-09-17
CN104053677B (en) 2017-05-17
EP2808347A4 (en) 2016-03-02
US20140378619A1 (en) 2014-12-25
US9193806B2 (en) 2015-11-24
EP2808347B1 (en) 2017-05-17
EP2808347A1 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5456650B2 (en) Modified natural rubber, rubber composition for tire and pneumatic tire
CN102585041B (en) Modified natural rubber, its production method, rubber composition for tire and pneumatic tyre
JP5426605B2 (en) Highly purified natural rubber and method for producing the same
WO2013111753A1 (en) Method for producing epoxidized natural rubber, rubber composition for tires, and pneumatic tire
JP2010144001A (en) Method for manufacturing natural rubber
JP7263750B2 (en) Rubber composition and pneumatic tire
JP5603363B2 (en) Process for producing epoxidized natural rubber, rubber composition for tire and pneumatic tire
JP5654539B2 (en) Process for producing epoxidized natural rubber, rubber composition for tire and pneumatic tire
JP5650802B2 (en) Rubber composition for inner liner and pneumatic tire
JP5475696B2 (en) Manufacturing method of natural rubber, rubber composition for tire and pneumatic tire
JP5715586B2 (en) Process for producing epoxidized natural rubber, rubber composition for tire and pneumatic tire
JP2019189747A (en) Rubber composition for tire tread and tire
JP5650803B2 (en) Rubber composition for pneumatic tire and pneumatic tire
JP7378196B2 (en) pneumatic tires
JP2019189744A (en) Manufacturing method of natural rubber composition and rubber composition for tire using the same
JP2019189745A (en) Manufacturing method of natural rubber composition and rubber composition for tire using the same
JP6215606B2 (en) Process for producing epoxidized natural rubber, epoxidized natural rubber, rubber composition for tire and pneumatic tire
JP5650800B2 (en) Rubber composition for bead apex and pneumatic tire
JP5650794B2 (en) Sidewall rubber composition and pneumatic tire
JP2019189746A (en) Manufacturing method of natural rubber composition and rubber composition for tire using the same
Sasidharan et al. Natural Rubber Latex Filler Masterbatch by Soap Sensitised Coagulation-Preparation, Processing and Evaluation
JP2019189748A (en) Manufacturing method of natural rubber composition and rubber composition for tire using the same
JP5650801B2 (en) Clinch apex rubber composition and pneumatic tire
CN116323791A (en) Method for preparing styrene butadiene rubber containing recycled rubber powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741529

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14368592

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201403878

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013741529

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013741529

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014017944

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014017944

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140721