WO2013089442A1 - 보행과 유영의 복합 이동 기능을 갖는 다관절 해저 로봇 및 이를 이용한 해저탐사시스템 - Google Patents

보행과 유영의 복합 이동 기능을 갖는 다관절 해저 로봇 및 이를 이용한 해저탐사시스템 Download PDF

Info

Publication number
WO2013089442A1
WO2013089442A1 PCT/KR2012/010813 KR2012010813W WO2013089442A1 WO 2013089442 A1 WO2013089442 A1 WO 2013089442A1 KR 2012010813 W KR2012010813 W KR 2012010813W WO 2013089442 A1 WO2013089442 A1 WO 2013089442A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
joint
subsea
underwater
walking
Prior art date
Application number
PCT/KR2012/010813
Other languages
English (en)
French (fr)
Inventor
전봉환
심형원
박진영
김방현
백혁
이판묵
Original Assignee
한국해양연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110135580A external-priority patent/KR101283417B1/ko
Priority claimed from KR1020110135194A external-priority patent/KR101283415B1/ko
Application filed by 한국해양연구원 filed Critical 한국해양연구원
Priority to JP2014547100A priority Critical patent/JP6001085B2/ja
Priority to US14/364,659 priority patent/US9498883B2/en
Priority to CN201280061961.2A priority patent/CN103998186B/zh
Publication of WO2013089442A1 publication Critical patent/WO2013089442A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/52Tools specially adapted for working underwater, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/08Propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H19/00Marine propulsion not otherwise provided for
    • B63H19/08Marine propulsion not otherwise provided for by direct engagement with water-bed or ground
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2221/00Methods and means for joining members or elements
    • B63B2221/20Joining substantially rigid elements together by means that allow one or more degrees of freedom, e.g. hinges, articulations, pivots, universal joints, telescoping joints, elastic expansion joints, not otherwise provided for in this class
    • B63B2221/22Joining substantially rigid elements together by means that allow one or more degrees of freedom, e.g. hinges, articulations, pivots, universal joints, telescoping joints, elastic expansion joints, not otherwise provided for in this class by means that allow one or more degrees of angular freedom, e.g. hinges, articulations, pivots, universal joints, not otherwise provided for in this class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/30Propulsive elements directly acting on water of non-rotary type
    • B63H1/36Propulsive elements directly acting on water of non-rotary type swinging sideways, e.g. fishtail type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/01Mobile robot
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/14Arm movement, spatial
    • Y10S901/15Jointed arm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/27Arm part
    • Y10S901/28Joint
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/46Sensing device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/46Sensing device
    • Y10S901/47Optical

Definitions

  • the present invention relates to a multi-joint subsea robot having a combined movement function of walking and swimming, and a subsea exploration system using the same. More specifically, unlike a conventional submarine robot that obtains thrust by a propeller method, a leg composed of several joints is provided.
  • the present invention relates to a subsea exploration system using a multi-joint subsea robot that can move a walk and swim close to the sea floor.
  • the average depth of the sea is 3800m, which occupies 99% of the space where life can live on Earth, and the deep sea occupies 85% of this space, but humans have not yet observed 1% of the deep sea.
  • the number of species of life that has not yet been found on the earth is estimated at 10 million to 30 million, and only 1.4 million have been found to date.
  • due to the depletion of terrestrial resources deep sea oil and gas drilling projects are increasing every year from 2% of total oil production in 2002 to 8% in 2009, and are expected to reach 15% in 2015.
  • Underwater robots also known as unmanned underwater vehicles (UUVs) are largely divided into autonomous unmanned submersibles (AUVs) and remote unmanned submersibles (ROVs).
  • Autonomous unmanned submersibles are mainly used for scientific investigations or exploration covering an area from hundreds of meters to hundreds of kilometers. Most AUVs developed to date are used for scientific research or military purposes.
  • Remote unmanned submersibles are used for underwater surveys and precision work with positional precision of several tens of centimeters or less. Remote unmanned submersibles are used for various tasks such as submarine cable laying, subsea pipelines and maintenance of subsea structures.
  • Submarine remote unmanned submersibles gain mobility in two main ways.
  • the propeller method is effective in the molds such as AUV, but it is not easy to obtain control stability in ROV which requires precise work. This is because the fluid force acting on the ROV in water is nonlinear, and the thrust also has strong nonlinearity such as deadband, response delay, and saturation.
  • it is difficult to secure posture stability and mobility when exposed to strong currents such as tidal currents on the west coast of Korea, which makes it difficult to obtain positional precision, operational precision, and clear ultrasound images.
  • the direction of algae changes four times a day, and the maximum flow rate of algae in Korea is 3 to 7 knots.
  • there are problems such as unstable maneuverability and high energy consumption in a strong algal environment.
  • the caterpillar type propulsion method is difficult to travel irregular seabed terrain or obstacle area and has the disadvantage of disturbing the seabed due to the characteristics of the driving method.
  • the seabed has difficulty in traveling in the caterpillar system because there are always various obstacles such as sunken ships, fishing grounds, ropes, and closed nets, and seabed topography such as reefs and soft ground.
  • a propeller or caterpillar submarine robot inevitably disturbs the seabed.
  • seabed surveys there are many surveys that must be conducted in an undisturbed environment.
  • One object of the present invention is to provide a multi-joint subsea robot and a subsea exploration system using the same as a means for supplementing the problems of the conventional propeller method or the endless track method.
  • Another object of the present invention is a multi-portable subsea robot having a swimming and walking function, and a seabed exploration system using the same, capable of performing the seabed work without disturbing the environment in the sedimentary soil of the seabed which is easily disturbed by the flow by the propeller. To provide.
  • a subsea exploration system using a multi-movement subsea robot capable of a multi-movement multi-joint subsea robot, a buffer, and an underwater state transmitted from the subsea robot It includes a bus bar for storing data and monitoring and controlling the direction of movement of the submarine robot, the shock absorber is connected to the ground bus by a primary cable, the articulated submarine robot is connected to a depressor by a secondary cable, The resistance of the primary cable is up to the shock absorber and is not transmitted to the submarine robot.
  • the articulated submarine robot Preferably, the articulated submarine robot
  • a first switching hub for switching a plurality of signals
  • An optical fiber converter for converting a received signal into an optical signal
  • a computer coupled to the first switching hub to process input and output signals
  • a second switching hub having one end connected to the first switching hub and another end connected to a plurality of network cameras
  • a video encoder having one end connected to the first switching hub and another end connected to a plurality of analog cameras
  • an ultrasound camera connected to the first switching hub and configured to photograph and transmit a front image.
  • Switching hub for switching a plurality of signals
  • An optical fiber converter connected to the switching hub and converting a received signal transmitted through the switching hub into an optical signal and transmitting the optical signal to a bus bar;
  • a computer which processes input and output signals, one end of which is connected to the RS232 and the other end of which is connected to the switching hub;
  • a video encoder connected at one end to a plurality of analog cameras and at the other end to the switching hub;
  • bus bar is
  • a plurality of computers are connected at one end, and first and second optical fiber converters at the other end for transmitting an optical signal.
  • the first and second optical fiber transducers are connected to the optical fiber transducer of the subsea robot and the optical fiber transducer of the buffer, respectively.
  • the articulated subsea robot is a streamlined body;
  • a multi-jointed walking leg having a plurality of pairs mounted on the left and right sides of the body and composed of a plurality of joints;
  • Control means mounted in the body;
  • Walking leg driving means controlled by the control means and driving the articulated walking leg;
  • Sensing means mounted in the body to sense a posture of the body and contact with an external object;
  • Communication means for transmitting and receiving wired and wireless signals with an external device;
  • control means for controlling the walking state and the swimming state in the water through the walking bridge.
  • the buoyancy detection means is variable to adjust the weight of the subsea robot to -10kg to + 10kg, and the two walking legs on the front side of the articulated walking leg is provided with a gripper to selectively have a robot arm function desirable.
  • a subsea robot moves in close contact with the sea floor by using a six-seabed robot with a completely different concept from propeller propulsion.
  • the seabed exploration system using a multi-movement multi-sea subsea robot according to the present invention is equipped with the ultrasonic imaging equipment on the seabed robot can be searched in the turbidity of the water and the front two legs are also used as a robot arm And deep sea exploration is effective to perform effectively.
  • FIG. 1A and 1B are schematic conceptual views of a seabed exploration system using a multi-joint seabed robot capable of moving in accordance with the present invention.
  • Figure 2 is a perspective view schematically showing a multi-movement multi-sea subsea robot according to an embodiment of the present invention.
  • Figure 3 is a block diagram of a multi-moveable multi-sea subsea robot according to the present invention.
  • FIG. 4 is a view showing a simulation state of estimating the distribution of pressure acting on a subsea robot placed in a fluid having a flow rate by the CFD method using the conceptual design of the subsea robot according to the present invention.
  • FIG. 5 shows a vector diagram and a link coordinate system of an underwater link of a multi-joint manual robot capable of complex movement according to the present invention.
  • FIG. 6 is a view conceptually showing the compensation of the posture for the fluid flow, showing the low flow rate, high flow rate and the rear flow rate state, respectively.
  • FIG. 7 is a conceptual diagram of a fluid force corresponding posture compensation of a multi-joint subsea robot according to the present invention.
  • FIG. 8 is a detailed block diagram of a subsea exploration system using a multi-joint subsea robot according to a preferred embodiment of the present invention.
  • FIG. 9 is a detailed view showing the joint portion of the robot leg of the articulated subsea robot according to a preferred embodiment of the present invention.
  • FIG. 10 is a partial side cross-sectional view of a pressure-resistant waterproof joint structure consisting of an electric motor and a harmonic reducer of a multi-joint anatomical robot according to a preferred embodiment of the present invention.
  • Figure 11 is a detailed view showing the joint portion of the robot arm combined leg according to a preferred embodiment of the present invention.
  • FIG. 12 is a view showing the kinematic structure of the robot leg and robot arm combined leg according to a preferred embodiment of the present invention.
  • FIG. 1A and 1B are schematic conceptual views of a seabed exploration system using a multi-joint seabed robot capable of moving in accordance with the present invention.
  • the sea floor exploration system 1000 using the multi-joint seabed robot capable of complex movement shows a state in which the multi-joint seabed robot 100 capable of complex movement reaches and reaches 200 m below the sea floor.
  • the articulated subsea robot 100 is connected to the depressor 200 by a secondary cable 240, and the shock absorber 200 is connected to the bus bar 300 by a primary cable 220.
  • the resistance of the primary cable 220 takes up to the shock absorber 200 and is not transmitted to the subsea robot 100.
  • the subsea exploration system 1000 using the 200 m multi-role subsea robot 100 capable of moving complex is a depressor 200 to minimize the influence of the fluid force acting on the tether cable to the robot in the heavy current environment. It is a concept to put and operate).
  • the subsea exploration system 1000 has two tasks as follows.
  • Robotic arms are used to cut, grind and drill wires, which are necessary for the investigation and observation of subsea structures and sinking ships.
  • FIG. 1B another embodiment of the present invention shows a state in which a deep sea submarine exploration system 1000-1 capable of exploring by complex movement reaches and swims and walks at 6000 m under the sea, and the articulated seafloor
  • the robot 100-1 is connected by a cable to the depressor 200, and the shock absorber 200 is connected by a cable to the bus bar 300.
  • the shock absorber 200 and the articulated subsea robot 100-1 are capable of wired communication or wireless communication.
  • the subsea exploration system 1000 using the 6,000 m exploration articulated subsea robot 100 that is capable of combined movement was designed to assume a deep sea environment with little algae, but to minimize the effect of the weight of the tether cable on the robot. It is a concept of operating by operating a depressor (200). Deep articulated subsea robots have a buoyancy control function to minimize disturbance to deep sea sediment and prevent the robot's foot from falling into the sea soil.
  • the subsea exploration system 1000 has two tasks as follows.
  • Samples of organisms, soil, and seawater needed for scientific research are taken from up to 6,000 meters of seabed.
  • the wireless autonomous control mode In the wireless autonomous control mode, it operates alone without a buffer and observes a long-term view of a fixed area with minimal energy.
  • submarine robots are used instead of divers in environments where it is dangerous for divers to work directly.
  • the diver's diving time limit is overcome by using a subsea robot.
  • the robot overcomes the algae by maintaining a posture in which the grounding force is increased by being in close contact with the seabed, and by placing the buffer 200 between the subsea robot 100 and the mothership 300, the algae force applied to the cable is the subsea robot 100 Reduce the impact on
  • the newly proposed submarine robot provides a new concept of submarine robot that moves and walks and walks close to the sea floor by using legs consisting of several joints.
  • undersea robots The concept of undersea robots is similar to the way crabs and lobsters move and work on the bottom of the sea, so the robot is named 'Crabster'.
  • the subsea robot according to the present invention performs a sunken ship exploration and marine science survey in the seabed up to 200m deep offshore in Korea (also performs marine science survey in the seabed up to 6000m depth). In particular, it can work in the environment of the west coast where the tidal current is strong and visibility is poor, and it has a swimming and walking function without disturbing the environment in the sedimented soil.
  • Table 1 shows schematic specifications for FIGS. 1A and 1B, which are examples of the multi-joint seabed robot capable of moving in accordance with the present invention, respectively.
  • the number of legs is four walking legs and two robot arm combined legs.
  • the subsea robot according to the present invention is provided with a device capable of detecting a bad clock on the sea floor.
  • the basic specifications (when the legs are folded) are 2.2m in length, 1m in width, 1.1m in height, maximum weight 300kg (including load), 0.5m above ground level, 4 feet of walking legs, 4 DOF legs, 6 DOF legs 2, the maximum specification is the maximum walking speed 0.5m / sec (1.8km / h), the maximum operating depth 200m, the maximum detonation speed 2 knots, the maximum power consumption 20kW or less.
  • the ability to overcome sea conditions is the maximum working condition Sea state 3 and the maximum survival condition Sea state 4.
  • the bad watch detection capability can be performed in two types, the detection distance of 100m or more and the 10m or more.
  • a front scanning sonar that can scan the front from the sea floor with a maximum detection distance of 100m or more
  • an ultrasonic camera that provides real-time sonar images with a maximum detection distance of 10m or more to secure a clock in a bad clock environment.
  • the control method is wired remote control method, and the power supply uses a tether cable.
  • -Launching can be lifted at sea level 3 or below
  • the subsea robot 100 and its supporting devices are easy to disassemble, assemble and replace.
  • the submarine robot 100 transmits its underwater position by ultrasonic wave using its own power for 3 days or more.
  • the 6,000m exploration submarine robot according to the present invention is similar to the 200m exploration submarine robot but has little effect of algae and aims to conduct scientific research in a stable deep-sea environment with a good watch, and further has a built-in buoyancy control function. By having a swimming function, disturbance of sediment soil is minimized. In addition, wireless communication and autonomous control were added to expand the type and method of exploration.
  • a low-speed, high-torque BDC motor is adopted, a heat dissipation structure is designed using sea water and filling oil, and a hole center type for joint position feedback.
  • a proximity limit sensor and an electric absolute position encoder are applied.
  • compliance controller design is applied.
  • Figure 2 is a perspective view schematically showing a multi-joint subsea robot according to an embodiment of the present invention.
  • the articulated subsea robot of FIG. 2 is merely an embodiment, and its appearance is deformable.
  • the articulated subsea robot 100 is a streamlined body (110);
  • a multi-jointed walking leg having a plurality of pairs mounted on the left and right sides of the body and composed of a plurality of joints;
  • Control means mounted in the body and controlling a walking state and a swimming state in the water through the articulated walking leg;
  • Walking leg driving means controlled by the control means for generating a driving signal for driving the articulated walking leg;
  • Sensing means mounted in the body to sense a posture of the body and contact with an external object;
  • a buoyancy sensing means for detecting buoyancy of the body and communication means for transmitting / receiving a wired / wireless signal with an external device mounted in the body.
  • the buoyancy sensing means has a buoyancy sensor for providing a buoyancy sensing function, and provides a function to adjust the buoyancy of the body according to the sense signal detected by the buoyancy sensor.
  • the sensing means is characterized in that it comprises a posture and motion measurement sensor 42, the underwater position tracking device 50, and a force / moment sensor 43 installed on the bottom of the body.
  • the photographing means comprises an ultrasonic camera 20 and the pan / tilt function underwater camera 22 and the lighting device (22a, not shown) It is done.
  • the communication means is characterized in that it comprises an optical communication modem (60).
  • the communication means is characterized in that connected to the shock absorber through the optical fiber and the power cable built-in secondary cable 240.
  • the body is characterized in that made of lightweight high strength composite fiber material.
  • the sensing means is characterized in that it comprises a moment sensor is installed on the two front front legs of the subsea robot to perform the ground detection.
  • a plurality of articulated walking legs 121, 122, 123 (not shown), 124, 125 (not shown), and 126 are provided on the side of the body portion 110 of the subsea robot 100, and two are provided on each side thereof. (123, 124, 125, 126), two (121, 122) are provided on the front side. Two articulated walking legs (121, 122) attached to the double front side is a robot arm combined legs to perform the functions of the legs and arms.
  • Each articulated walking leg 121, 122, 123, 124, 125, 126 is composed of a plurality of joints (for example, 121a, 121b, 122a, 122b, etc.).
  • the multi-joint subsea robot 100 can walk on the seabed in a group of 6 or 4, and two front legs can also be used as robot arms.
  • the four legs 123, 124, 125 and 126 have four joint structures actively controlled by the electric motor, and the front two legs have six joints and one gripper.
  • This concept is based on lobster robots, which focus on biomechanical simulation, and a technique in which each leg consists of a joint and a pedal [Christina, G., Meyer, N., Martin, B., "Simulation of an underwater hexapod robot," Ocean Engineering, Vol 36, pp 39-47, 2009.].
  • it is a new submarine robot that actively controls posture in response to fluid force.
  • leg of the articulated undersea robot When the submarine robot moves, it is possible to walk quickly while securing posture stability using six legs. When working or moving things using the robot arm combined legs, support the body or walk with four legs. When the submarine robot moves on four legs, walking stability and speed are relatively lower than when moving on six legs, but all the necessary work and moving functions can be achieved underwater.
  • the multi-moveable multi-sea subsea robot 100 has a streamlined body 110 and a leg structure of a multi-joint structure so as to be suitable for working in a stressed environment, and detects disturbance due to fluid force and the like. It has the function of controlling body and leg posture to minimize the influence.
  • Figure 3 is a block diagram of a multi-joint subsea robot capable of moving in accordance with the present invention.
  • control system 10 for controlling the swimming and walking process of the multi-joint seabed robot 100 that can move complex
  • Front-scanning sonar 20 to shoot up to 100m ahead with ultrasound
  • Ultrasonic camera 20a for capturing a front image up to 10m with ultrasound in real time
  • Data storage unit 30 for storing the sensed data and the captured image data during the swimming and walking process
  • Posture and motion measurement sensor 42 for detecting the posture of the subsea robot and measuring the state of movement
  • Force / moment sensor 43 for sensing the force and moment acting on the walking leg of the subsea robot
  • Speed sensor 48 for sensing the speed and flow rate of the robot
  • Underwater position tracking device for tracking and sensing the underwater position of the performing robot in real time (50),
  • Optical communication modem 60 which handles the signal transmission and reception with the buffer
  • Motor driving unit 70 for generating a drive signal of the electric motor
  • a control system 10 for transmitting and receiving signals to and from a buffer and a ground bus through an optical communication modem, and controlling a function of transmitting data obtained when swimming and walking the submarine robot;
  • Power supply unit 80 for supplying power
  • Each other leg end is equipped with a force sensor or a sensing sensor for ground sensing (not shown).
  • the multi-movement multi-joint subsea robot according to the present invention is installed on the sea floor and is connected to the buffer medium and connected through the ground bus and the shock absorber.
  • the ground bus receives and stores the photographed image information of the seabed topography through the seabed robot, and transmits a movement command signal to search for a specific area.
  • Submarine robots move along the sea floor to a specific area and can walk or swim when moving.
  • the posture is deformed through the posture sensor which is a sensing means according to the current (see FIGS. 6 and 7).
  • the posture sensor which is a sensing means according to the current (see FIGS. 6 and 7).
  • it waits by moving or stopping along the sea floor while checking the grounding state of the legs through the moment sensor, which is a sensing means installed on the articulated walking leg.
  • the exploration area is photographed through an ultrasonic camera, a pan / tilting underwater camera (optical camera), and a multi-beam illumination device moves forward brightly.
  • the multi-joint seabed robot 100 has a structure that actively performs subsea walking with 28 joints on 6 legs. Each joint is driven by the first to Nth electric motors 74-1, ..., 74-N.
  • the technique of mechanically and electrically designing and controlling the joints of the submarine robot is defined as the underwater mechanism technology.
  • the articulation mechanisms applied on land have been extended or redesigned to apply in seawater where water pressure exists.
  • the joint mechanism refers to a joint mechanism composed of each of the six legs of the articulated link subsea robot according to the present invention, as shown in Figure 2, each leg is connected to four joints, the front two legs are 6 Connected to the joints of the dog. Joints connected to the two anterior legs each serve as a robot arm.
  • Each joint mechanism consists of a joint drive motor, harmonic reducer, joint angle sensor, and joint limit sensor.
  • the joint drive motor was designed and mounted in a pressure resistant waterproof housing using a frameless BLDC motor to obtain a small, lightweight, low speed, high torque.
  • the pressure-resistant waterproof housing was watertight using an O-ring.
  • the harmonic drive reducer is adopted to minimize the backlash of the joint and to obtain the proper reduction ratio.
  • the absolute angle of the joint can be obtained by attaching an absolute encoder to the joint to the reducer output.
  • the joint angle limit is equipped with a magnetic proximity switch.
  • Figure 10 shows such a joint structure.
  • FIG. 4 is a view showing a simulation state of estimating the distribution of pressure acting on a subsea robot placed in a fluid having a flow rate by the CFD method using the conceptual design of the subsea robot according to the present invention.
  • the fluid force acting on the seabed robot can be calculated and analyzed according to the attitude and the direction of the fluid.
  • the robot arm combined legs 121a, 121b, 122a and 122b, and the remaining right walking legs 124a, 124b, 126a and 126b, and the left walking legs 123a, 123b, 125a and 125b among the walking legs. It is composed.
  • FIG. 5 shows a vector diagram and a link coordinate system of an underwater link of a multi-joint manual robot capable of complex movement according to the present invention.
  • the underwater robot arm kinematic equation can be expressed as Equation (1) by adding a fluid force to the robot arm kinematic equation of the land.
  • M is the inertia matrix with added mass
  • C Coriolis and centrifugal force
  • D is fluid resistance and lift
  • G is buoyancy and gravity
  • the fluid resistance and lift are functions of the fluid force coefficient according to the joint angle, joint angular velocity, fluid velocity, and link shape.
  • the link is divided into thin disks and the fluid forces acting on the disks are approximated to approximate the fluid forces acting on the links by their integration. If the coordinates, velocity and force vector of the link of the submarine robot are defined as shown in FIG. 5, the fluid resistance force acting on the j- th link can be expressed approximately as in Equation (2) with respect to the i- th coordinate.
  • C Dj is the two-dimensional fluid resistance coefficient of the j th link
  • d pj is the original The length projected on the vector perpendicular to. Is the translational velocity component of the disc perpendicular to the longitudinal direction of the j th link. From this, the fluid force torque acting on the i- th joint can be expressed by Equation 3 considering the position vector i r j of the disc.
  • Velocity vector to determine these fluid forces and torques Is expressed as a joint angular velocity vector, and a generalized torque can be obtained, and the fluid resistivity term D of Equation (1) can be approximately obtained.
  • the core technology is to improve the efficiency of the system by optimizing the fluid force because it receives 1000 times as much fluid force in water than in air.
  • the degree of freedom is taken into account in the planning of the step, and the angle and speed of the joint are planned to maximize the propulsion of the body acting by the fluid force acting on the joint.
  • This problem of fluid force optimum walking path planning can be formulated as follows. That is, a joint that satisfies the following inequality conditions given by Equation (4) below and satisfies the joint constraint given according to the step, and minimizes the fluid force objective function g as shown in Equation 5 acting on the legs moving underwater. Get the path parameters.
  • Maintaining stable posture in algae is a key concept of posture compensation control technology to cope with external force such as algae.
  • FIG. 6 is a view conceptually showing the compensation of the posture for the fluid flow, showing the low flow rate, high flow rate and the rear flow rate state, respectively.
  • FIG. 7 is a conceptual diagram of a fluid force corresponding posture compensation of a multi-joint subsea robot according to the present invention.
  • the attitude compensation method of the crawfish is introduced as shown in FIG.
  • Lobsters adjust their grip by varying their posture depending on the size and direction of the flow rate. If the lift and the resistance obtained by the body posture can be obtained through the above-mentioned computational fluid dynamics analysis method, it is possible to derive the conditions to work on the seabed.
  • the condition that the robot will not be blown by the current is that the frictional force of the ground tip generated by the weight and lift of the robot is greater than the fluid resistance. That is, the relationship with the following equation (6) can be obtained from FIG.
  • f D and f E are functions of flow velocity and robot posture, so the tide can be overcome by compensating the attitude so that the inequality of Equation (6) is satisfied.
  • a flow velocity sensor or speed sensor
  • force / torque sensor or posture and motion measurement sensor
  • ground force sensor or moment sensor
  • the multi-joint subsea robot according to the present invention has six legs, and both front legs also function as robot arms.
  • it is a seabed robot of the concept of moving in close contact with the seabed to overcome the disturbance caused by birds by using the shape and posture of the body and perform the subsea work in a stable posture.
  • the core technologies of the subsea robot according to the present invention are four such as underwater joint mechanism, fluid force analysis and modeling, fluid force optimal walking path planning, and external force response attitude compensation control.
  • FIG. 8 is a detailed block diagram of a subsea exploration system using a multi-joint subsea robot according to a preferred embodiment of the present invention.
  • the subsea robot 100 includes a switching hub 150 for switching a plurality of signals and an optical fiber converter 152 for transmitting an optical signal, in addition to the configuration shown in FIG. 3.
  • a forward looking sonar (FLS) 20 or a forward scanning sonar or ultrasound camera 20a is connected.
  • FLS forward looking sonar
  • the buffer 200 includes a switching hub 210 for switching a plurality of signals, an optical fiber converter 222 for transmitting an optical signal, a computer 230 for processing input and output signals and an RS232 connection, and a plurality of analog cameras 242, 243, 244, 245. Is connected to the video encoder 240, and a plurality of network cameras (252, 254) are connected.
  • the bus bar 300 includes a switching hub 310 to which a plurality of computers 331 to 339 are connected and to which the optical fiber converters 322 and 324 are connected.
  • the optical fiber converter 322 is connected to the optical fiber converter 222 of the buffer 200
  • the optical fiber converter 324 is connected to the optical fiber converter 152 of the subsea robot 100-1.
  • the plurality of computers include a submarine robot computer 331, a buffer computer 332, a video computer 333, a sonar computer 334, a Hypack computer 335, a USBL computer 336, a multibeam computer ( 337), UC computer 338 and spare computer 339 are shown.
  • FIG. 9 is a detailed view showing the joint portion of the robot leg of the articulated subsea robot according to a preferred embodiment of the present invention
  • Figure 10 is an electric motor and a harmonic reducer of the articulated sea robot according to a preferred embodiment of the present invention
  • Figure 11 is a detailed view showing the joint portion of the robot arm combined leg according to a preferred embodiment of the present invention
  • Figure 12 is a robot leg and robot arm according to a preferred embodiment of the present invention It is a figure which shows the kinematic structure of a combined leg.
  • the joint portion of the robot leg of the articulated subsea robot is the first joint (125a), the second joint (125b), the third joint (125c) and the fourth joint ( 125d).
  • the robot leg 124a is connected to the end of the fourth joint 125d, and the robot leg 124b is connected between the third joint 125c and the fourth joint 125d.
  • the first joint 125a, the second joint 125b, and the third joint 125c are waterproof assembled by the pressure-resistant waterproof joint structure (see FIG. 10).
  • the first joint 125a, the second joint 125b, and the third joint 125c are waterproof-assembled by the pressure-resistant waterproof joint structure, specifically, the first waterproof body 410.
  • the second waterproof body 420 and the third waterproof body 430, and the first waterproof body 410 is frameless BLDC motor 72-1 is wrapped by the waterproof O-ring 414, pressure-resistant waterproof housing Inscribed to 418 is mounted via the bearing 412.
  • the speed reducer 74-1 for reducing the driving force of the frameless BLDC motor 72-1 is rotatably connected to the waterproof housing 418 through a bearing 412.
  • the joint portion of the robot arm combined leg is the first joint 125a, the second joint 125b, the third joint 125c, the fourth joint 124d, It consists of the 5th joint 125e and the 6th joint 125f.
  • a gripper 122a-1 is connected to an end of the sixth joint 125f
  • a robot leg 121c is connected between the third joint 125c and the fourth joint 125d
  • a fourth joint 125d is connected.
  • a robot leg 121b is connected between the fifth joint 125e and a robot leg 121a is connected between the fifth joint 125e and the sixth joint 125f.
  • the first joint 125a, the second joint 125b, and the third joint 125c are waterproof assembled by the pressure-resistant waterproof joint structure (see FIG. 10). Other joints are also assembled in a pressure-resistant waterproof structure. Feedback of each joint may be detected through a limit sensor installed in the joint, and the limit sensor may be a hall sensor (not shown).
  • the articulated subsea robot 100-1 has a structure that actively performs subsea walking with 28 joints on a total of six legs. Each joint is driven by the first to Nth electric motors 74-1, ..., 74-N.
  • the technique of mechanically and electrically designing and controlling the joints of the subsea robot 100-1 is defined as an underwater mechanism technology.
  • the articulation mechanisms applied on land have been extended or redesigned to be applied in seawater with hydraulic pressure.
  • the joint mechanism refers to a joint mechanism composed of each of the six legs of the articulated link subsea robot according to the present invention, as shown in Figure 2, each leg is connected to four joints, the front two legs are 6 Connected to the joints of the dog. Joints connected to the two anterior legs each serve as a robot arm.
  • Each joint mechanism is a joint drive motor (72-1, ..., 72-N), harmonic reducer (74-1, .... 74-N), joint angle sensor (76-1, ... .76-N), and joint limit sensors (78-1, .., 78-N).
  • the joint drive motor was designed and mounted in a pressure resistant waterproof housing using a frameless BLDC motor to obtain a small, light weight, low speed and high torque.
  • the pressure-resistant waterproof housing was watertight using an O-ring.
  • the harmonic drive reducer is adopted to minimize the backlash of the joint and to obtain the proper reduction ratio.
  • the absolute angle of the joint can be obtained by installing an electric encoder that provides an absolute angle, that is, a joint angle sensor on the reducer output side of the joint.
  • the joint angle limit sensor consists of a magnetic proximity switch.
  • the electric motor of the sixth joint 125f installed in the robot arm combined leg part is for operating the gripper.
  • control system control means
  • a subsea robot moves in close contact with the sea floor by using a six-seabed robot with a completely different concept from propeller propulsion.
  • the seabed exploration system using a multi-movement multi-sea subsea robot according to the present invention is equipped with the ultrasonic imaging equipment on the seabed robot can be searched in the turbidity of the water and the front two legs are also used as a robot arm And deep sea exploration is effective to perform effectively.

Abstract

프로펠러 방식으로 추력을 얻는 기존의 해저로봇과는 달리 여러 개의 관절로 이루어진 다리를 이용하여 해저면에 근접해서 보행과 유영으로 이동하는 새로운 개념의 복합이동이 가능한 다관절 해저로봇을 이용한 해저탐사시스템이 개시된다. 본 발명에 따른 복합이동이 가능한 다관절 해저로봇을 이용한 해저탐사시스템은 복합이동이 가능한 다관절 해저로봇과, 완충기와, 상기 해저로봇으로부터 송신된 수중 상태 데이터를 저장하고 해저로봇의 이동방향을 모니터링하고 제어하는 모선을 포함하고, 상기 완충기는 지상 모선에 1차 케이블로 연결되고, 상기 다관절 해저로봇은 완충기(depressor)에 2차 케이블로 연결되어, 1차 케이블의 저항력은 완충기까지 걸리며 해저로봇으로 전달되지 않는 것을 특징으로 한다.

Description

보행과 유영의 복합 이동 기능을 갖는 다관절 해저 로봇 및 이를 이용한 해저탐사시스템
본 발명은 보행과 유영의 복합 이동 기능을 갖는 다관절 해저 로봇 및 이를 이용한 해저탐사시스템에 관한 것으로, 보다 상세하게는 프로펠러 방식으로 추력을 얻는 기존의 해저로봇과는 달리 여러 개의 관절로 이루어진 다리를 이용하여 해저면에 근접해서 보행과 유영으로 이동하는 새로운 개념의 복합이동이 가능한 다관절 해저로봇을 이용한 해저탐사시스템에 관한 것이다.
바다의 평균수심은 3800m로 지구에서 생명이 살 수 있는 공간의 99%를 차지하고, 심해는 이 공간의 85%를 차지하지만, 인간은 아직 심해의 1%도 관찰하지 못하였다. 또한, 지구상에는 아직 발견되지 않은 생명의 종의 수가 1000만∼3000만 종으로 추산되며 현재까지 140만종만이 발견되었을 뿐이다. 아직 발견되지 않은 대다수의 종은 바다에 살고 있다. 이는 지난 25년간 심해에서는 평균 2주에 한 종 꼴로 새로운 생명이 발견되었다는 사실이 반증해 주고 있다. 또한, 육상 자원의 고갈에 따라 심해 석유 및 가스시추사업은 2002년 전체 석유생산량의 2%에서 2009년 8%로 매년 증가하고 있으며 2015년에는 15%에 이를 것으로 예상된다. 2009년 우리나라는 국토해양부와 4개 민간기업이 ' 해저 열수광상 개발사업단’을 구성하여 통가 광구에서 2012년 이후 본격 상업개발 착수할 계획이다. 이처럼 해양은 거대한 탐사의 가치를 갖고 있지만, 위험한 해양 환경은 인류가 쉽게 바다 속에 접근할 수 있도록 허용하지 않는다. 무인 해저로봇은 이러한 문제점에 대한 하나의 대안으로 개발되고 있으며, 현재까지 전 세계적으로 널리 활용되어 왔고 그 활용 범위가 점점 확대되어 가고 있다. 해저로봇은 역할에 따라 주로 넓은 영역을 탐사하는 자율무인잠수정과 상대적으로 좁은 영역에서 정밀 작업을 수행하는 ROV로 나누어 질 수 있고, 대부분의 해저로봇은 프로펠러를 추진장치로 이용하고 있다. 프로펠러는 오랜 기간 동안 수중 추진기로 사용되어 왔으며, 그 추진 메카니즘에 대한 이론이 잘 확립되어 있으며, 특정 영역에서는 그 효율 또한 높다. 그러나, 우리나라의 서해안은 조수간만의 차가 크고 조류가 세며, 시계가 나쁜 특수한 지역으로 일반적으로 사용되는 프로펠러 추진방식의 해저로봇으로는 해저 정밀 작업에 많은 어려움을 겪고 있다. 또한, 퇴적토양으로 이루어진 심해를 정밀 현장 조사할 경우, 프로펠러 유동에 의한 해저의 교란이 문제가 되기도 한다.
프로펠러와는 다른 형태의 해저로봇으로 무한궤도를 이용하는 방법과 여러 개의 다리를 이용하는 방법이 있다. 생체모사 연구의 일환으로 가재로봇이 개발된 바 있다[Joseph, A. (2004). "Underwater walking", Arthropod Structure & Development Vol 33, pp 347-360.]. 이를 통해 가재의 기구학적 구조와 걸음걸이를 분석하였고, 인공근육 액츄에이터와 명령뉴런에 기초한 중앙제어기를 구현하였다. 상기 로봇은 실제 작업용 보다는 생체모사 인식 및 보행 연구에 초점을 두고 있다. 또한, 해안선을 조사할 목적으로 수륙 양용 6족 보행 로봇이 연구된 바 있다[Tanaka, T., Sakai, H., Akizono, J. (2004). "Design concept of a prototype amphibious walking robot for automated shore line survey work", Oceans '04 MTS/IEEE Techno-Ocean '04, pp 834-839.]. 상기 로봇을 통해 방수형 수중관절을 개발하였고, 여러 차례에 걸쳐 로봇을 개선하여 경량화 하였다. 그러나, 육상의 로봇을 수중으로 확장하는 데에 초점을 두고 있어 유체역학적 관점에서의 적극적인 접근은 이루지 못하였다. 한편, 페달을 이용하여 보행과 유영을 하도록 설계된 6개의 페달을 가진 수륙양용 로봇이 개발된 바 있지만, 각각 페달은 1자유도의 단순한 형태로 다관절 다족 로봇의 형태는 아니다[Christina, G., Meyer, N., Martin, B., "Simulation of an underwater hexapod robot," Ocean Engineering, Vol 36, pp 39-47, 2009, Theberge, M. and Dudek, G., "Gone swimming [seagoing robots]", IEEE spectrum, Vol 43, No 6, pp 38-43, 2006.].
해저로봇(underwater robot)은 무인잠수정(UUV; unmanned underwater vehicle)이라고도 하며, 크게 자율무인잠수정(AUV)과 원격무인잠수정(ROV)으로 나누어진다. 자율무인잠수정은 수백미터에서 수백킬로미터까지의 영역에 해당하는 과학적 조사나 탐색에 주로 사용된다. 현재까지 개발된 대부분의 AUV는 과학조사나 군사용 목적으로 활용되고 있다. 원격무인잠수정은 수십 센티미터 이하의 위치 정밀도로 해저 조사나 정밀작업에 활용된다. 원격무인잠수정은 해저케이블 매설을 비롯하여, 해저파이프라인, 해저구조물의 유지보수 등 다양한 작업에 활용되고 있다.
원격무인잠수정의 활용분야는 다음과 같이 요약된다. 첫째, 침몰선 탐사 및 인양작업과 침몰선으로 인한 유류 유출 방지작업, 둘째, 해양과학 조사와 해양 자원 탐사 및 개발, 셋째, 해저구조물 설치, 조사 지원 및 유지보수, 넷째, 기뢰 탐사, 기뢰 제거 등 군사적 목적에 활용된다.
해저작업용 원격무인잠수정은 크게 두 가지 형태로 이동성을 얻는다. 첫째, 프로펠러 방식은 AUV와 같은 항주형에서는 효과적이나 정밀작업을 요구하는 ROV에서는 제어 안정성을 얻기 쉽지 않다. 이는 수중에서 ROV에 작용하는 유체력이 비선형적이고 추력 또한 불감대, 응답지연, 포화 등의 강한 비선형성을 내재하고 있기 때문이다. 특히, 우리나라 서해안의 조류와 같이 강한 해류에 노출될 경우 자세 안정성과 이동성을 확보하기 어려우며, 이로 인해 위치정밀도, 조작정밀도 그리고 선명한 초음파 영상을 얻기 어려워 해저작업이 불가한 경우가 많다. 조류의 방향은 하루에 네 번씩 바뀌고, 우리나라 서해안은 조류에 의한 최대 유속이 3노트에서 7노트에 달한다. 프로펠러를 이용하는 기존의 잠수정에서는, 강한 조류 환경에서 필연적으로 불안정한 조종성과 높은 에너지 소모 등의 문제를 가진다.
둘째, 무한궤도 형태의 추진방식은 불규칙한 해저지형이나 장애물 지역을 주행하기 어려우며 주행방식의 특성상 해저를 교란시키는 단점을 갖고 있다. 해저는 침몰선, 어장, 로프, 폐그물 등 각종 장애물과 암초, 연약지반 등 해저지형의 제약조건이 항상 존재하므로 무한궤도 방식의 주행에 어려움이 있다. 또한, 해저조사의 경우 교란되지 않은 환경에서 교란을 최소화 하면서 이루어져야 하는 현장조사(in-situ survey)가 많은데 이런 용도에 사용하기가 어려운 문제점이 있다.
기존 해저작업의 기술적 한계를 다시 한번 정리하면 다음과 같다.
안전성 문제
다이버가 직접 작업에 참여하는 경우, 잠수병을 비롯한 여러 가지 위험요소에 의한 안전문제가 존재한다.
작업시간 문제
다이버가 작업할 경우 감압 없이 작업할 수 있는 시간은 21m 수심에서 30분, 40m에서는 5분으로 제한된다.
조류 문제
조류의 방향은 하루에 네 번씩 바뀌고, 우리나라 서해안은 조류에 의한 최대 유속이 3노트에서 7노트에 달한다. 다이버는 물론 해저로봇에 있어서도 조류는 가장 극복하기 어렵고 위험한 대상이다. 프로펠러를 이용하는 기존의 잠수정에서는, 강한 조류 환경에서 필연적으로 불안정한 조종성과 높은 에너지 소모 등의 문제점을 갖는다.
악시계 문제
서해의 특성 중 하나는 나쁜 시계이다. 지역과 시간에 따라 차이가 있으나 시계가 불과 20~30cm에 불과한 곳도 많다.
장애물과 불규칙 해저지형 문제
해저는 침몰선, 어장, 로프, 폐그물 등 각종 장애물과 암초 등 불규칙한 해저지형이 항상 존재하고 있어 다이버와 해저로봇의 작업을 방해하고 심지어는 생명을 위협한다.
환경간섭 문제
프로펠러나 캐터필러 방식의 해저로봇은 필연적으로 해저면을 교란시킨다. 해저조사의 경우, 교란되지 않은 환경에서 이루어져야 하는 조사가 많다.
기존의 천해역 해저작업 기술 중 로봇(무인잠수정)을 이용하는 기술의 가장 큰 한계는 강조류와 악시계의 극복으로 요약될 수 있다. 해미래(L3.3m×W1.8m×H2.2m)의 경우 2노트의 조류에서 약 200kg의 저항력을 받으며, 200m 길이의 지름 20mm 케이블은 약 240kg의 저항력을 받는다. 이를 극복하기 위해 추력을 증가시키는 것은 전체 중량과 크기의 증가로 이어져 근본적인 해결책이 되지 못한다.
본 발명의 하나의 목적은 종래 프로펠러 방식이나 무한궤도 방식의 문제점을 보완하기 위한 수단으로 복합이동이 가능한 다관절 해저로봇 및 이를 이용한 해저탐사시스템을 제공하는 것이다.
본 발명의 다른 목적은 프로펠러에 의한 유동에 의해 교란되기 쉬운 해저의 퇴적 토양에서 환경 교란 없이 해저작업을 수행할 수 있도록 유영과 보행기능을 갖는 복합이동이 가능한 다관절 해저로봇 및 이를 이용한 해저탐사시스템을 제공하는 것이다.
상기 하나의 목적을 달성하기 위한 본 발명의 실시예에 따른 복합이동이 가능한 다관절 해저로봇을 이용한 해저탐사시스템은 복합이동이 가능한 다관절 해저로봇과, 완충기와, 상기 해저로봇으로부터 송신된 수중 상태 데이터를 저장하고 해저로봇의 이동방향을 모니터링하고 제어하는 모선을 포함하고, 상기 완충기는 지상 모선에 1차 케이블로 연결되고, 상기 다관절 해저로봇은 완충기(depressor)에 2차 케이블로 연결되어, 1차 케이블의 저항력은 완충기까지 걸리며 해저로봇으로 전달되지 않는 것을 특징으로 한다.
바람직하게는, 상기 다관절 해저로봇은
복수개의 신호를 스위칭하는 제1 스위칭허브;
수신신호를 광신호로 변환하는 광파이버 컨버터;
상기 제1 스위칭 허브에 연결되어 입력 및 출력신호를 처리하는 컴퓨터;
상기 컴퓨터에 연결된 RS232, RS485, USB 및 CAN장치;
상기 제1 스위칭허브에 일단이 연결되며, 타단에는 복수개의 네트워크 카메라가 연결된 제2 스위칭허브;
상기 제1 스위칭허브에 일단이 연결되며, 타단에는 복수개의 아날로그 카메라가 연결된 비디오엔코더;
상기 제1 스위칭허브에 연결되며, 전방을 스캐닝하여 영상신호를 촬영하고 전송하는 전방주시소나(Forward Looking Sonar: FLS, 20) 혹은 전방스캐닝 소나; 및
상기 제1 스위칭허브에 연결되며 전방영상을 촬영하고 전송하는 초음파카메라;를 포함하는 것을 특징으로 한다.
또한 바람직하게는, 상기 완충기는
복수개의 신호를 스위칭하는 스위칭허브,
상기 스위칭허브에 연결되어 스위칭허브를 통해 전송된 수신신호를 광신호로 변환하여 모선으로 전송하는 광파이버 컨버터;
입력 및 출력신호를 처리하고 일단에는 RS232가 연결되고 타단은 상기 스위칭허브에 연결된 컴퓨터;
일단에는 복수개의 아날로그 카메라가 연결되고 타단은 상기 스위칭허브에 연결된 비디오엔코더;
및 상기 스위칭허브에 연결된 복수개의 네트워크 카메라;를 포함하는 것을 특징으로 한다.
또한 바람직하게는, 상기 모선은
일단에는 복수개의 컴퓨터가 연결되며, 타단에는 광신호를 전송하는 제1 및 제2 광파이버 변환기;를 포함하고
상기 제1 및 제2 광파이버 변환기는 상기 해저로봇의 광파이버 변환기 및 상기 완충기의 광파이버 변환기와 각각 연결된 것을 특징으로 한다.
바람직하게는, 상기 다관절 해저로봇은 유선형의 몸체; 상기 몸체 좌우측에 각각 한 쌍씩 복수개가 장착되며 다수개의 관절로 구성된 다관절 보행다리; 상기 몸체내에 장착된 제어수단; 상기 제어수단에 의해 제어되며 상기 다관절 보행다리를 구동시키는 보행다리 구동수단; 상기 몸체내에 장착되어 몸체의 자세 및 외부 물체와의 접촉을 감지하는 감지수단; 부력감지수단; 외부장치와 유무선 신호를 송수신하는 통신수단; 및 상기 보행다리를 통해 보행상태 및 수중에서의 유영상태를 제어하는 제어수단;을 포함하는 것을 특징으로 한다.
또한, 상기 부력감지수단은 상기 해저 로봇의 중량을 -10kg 내지 +10kg 로 가변 조절하고, 상기 다관절 보행다리 중, 전방측의 두 개의 보행 다리는 로봇팔 기능을 선택적으로 갖도록 그리퍼를 구비하는 것이 바람직하다.
본 발명에 따른 복합이동이 가능한 다관절 해저로봇을 이용한 해저탐사시스템은 프로펠러 추진과는 전혀 다른 새로운 개념의 6개의 다리로 구성된 해저로봇을 이용함으로써 해저로봇이 해저에 밀착되어 이동하며 자세 및 운동감지센서를 이용하여 자세를 유지하면서 조류를 극복하고 해저에서 유영 및 보행할 수 있고 해저로봇을 통한 해저 데이터를 실시간으로 완충기를 경유하여 지상의 모선으로 유무선 통신수단을 통해 전송됨으로써 천해 및 심해에서의 해저탐사를 할 수 있는 효과가 있다.
또한, 본 발명에 따른 복합이동이 가능한 다관절 해저로봇을 이용한 해저탐사시스템은 해저로봇에 초음파영상장비를 탑재하여 탁도가 높은 수중에서도 탐색이 가능하고 앞의 두 다리는 로봇팔로도 사용하게 됨으로써 천해 및 심해에서 해저탐사가 효과적으로 수행되는 효과가 있다.
도 1a 및 도 1b는 본 발명에 따른 복합이동이 가능한 다관절 해저로봇을 이용한 해저탐사시스템에 관한 개략적인 개념도이다.
도 2는 본 발명의 실시예에 따른 복합이동이 가능한 다관절 해저로봇을 개략적으로 나타낸 사시도이다.
도 3은 본 발명에 따른 복합이동이 가능한 다관절 해저로봇의 블록구성도이다.
도 4는 본 발명에 따른 해저로봇의 개념설계를 이용하여 CFD 방법으로 유속이 있는 유체 속에 놓인 해저로봇에 작용하는 압력의 분포를 추정한 시뮬레이션 상태를 나타낸 도면이다.
도 5는 본 발명에 따른 복합이동이 가능한 다관절 수동로봇의 수중 링크의 벡터도와 링크 좌표계를 나타낸 것이다.
도 6은 유체흐름에 대한 자세의 보상을 개념적으로 나타낸 도면으로서 각각 저유속, 고유속 및 후측 유속상태를 나타낸 도면이다.
도 7은 본 발명에 따른 복합이동이 가능한 다관절 해저로봇의 유체력 대응 자세 보상 개념도이다.
도 8은 본 발명의 바람직한 실시예에 따른 다관절 해저로봇을 이용한 해저탐사시스템의 구체적인 블록구성도이다.
도 9 는 본 발명의 바람직한 실시예에 따른 다관절 해저로봇의 로봇다리의 관절부분을 나타낸 상세도이다.
도 10은 본 발명의 바람직한 실시예에 따른 다관절 해절로봇의 전동모터와 하모닉 감속기로 이루어지는 내압방수 관절구조의 일부 측단면도이다.
도 11은 본 발명의 바람직한 실시예에 따른 로봇팔 겸용다리의 관절부분을 나타낸 상세도이다.
도 12는 본 발명의 바람직한 실시예에 따른 로봇다리 및 로봇팔 겸용다리의 기구학적 구조를 나타낸 도면이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 복합이동이 가능한 다관절 해저로봇에 관하여 상세히 설명하면 다음과 같다.
도 1a 및 도 1b는 본 발명에 따른 복합이동이 가능한 다관절 해저로봇을 이용한 해저탐사시스템에 관한 개략적인 개념도이다.
도 1a를 참조하면, 본 발명에 따른 복합이동이 가능한 다관절 해저로봇을 이용한 해저탐사시스템(1000)은 복합이동이 가능한 다관절 해저로봇(100)이 해저 200m에 도달하여 보행하는 상태를 나타내고, 상기 다관절 해저로봇(100)은 완충기(depressor)(200)에 2차 케이블(240)로 연결되고, 완충기(200)는 모선(300)에 1차 케이블(220)로 연결된다. 1차 케이블(220)의 저항력은 완충기(200)까지 걸리며 해저로봇(100)으로 전달되지 않는다.
상기 복합이동이 가능한 200m 탐사용 다관절 해저로봇(100)을 이용한 해저탐사시스템(1000)은 강조류 환경에서 테더 케이블에 작용하는 유체력이 로봇에 주는 영향을 최소화하기 위하여 완충기(depressor)(200)를 두어 운용하는 개념이다. 상기 해저탐사시스템(1000)은 다음과 같이 두 가지 임무를 갖는다.
해저 구조물이나 침몰선박의 조사·관찰
강조류 환경에서 해저에 밀착 이동함으로써 해저구조물이나 침몰선박 등에 접근하고, 광학 및 음향 장비를 이용하여 악시계 해저환경에 존재하는 구조물을 조사·관찰한다.
해저구조물이나 침몰선박의 조사·관찰을 위해 필요한, 와이어 절단, 그라인딩, 드릴링 등의 작업을 로봇팔로 수행한다.
천해역 해양과학 조사
200m 이내의 해저환경에서 다족 보행으로 이동함으로써 해저의 교란을 최소화하면서 해양 물리, 화학, 생물, 지질 등의 연구에 필요한 과학조사 데이터를 취득한다.
200m 이내의 해저에서 과학조사를 위해 필요한 생물, 토양, 해수 등의 샘플을 채취한다.
도 1b를 참조하면, 본 발명의 또 다른 구현예인 6,000m까지 복합이동으로 탐사가 가능한 심해용 해저탐사시스템(1000-1)이 해저 6000m에 도달하여 유영하고 보행하는 상태를 나타내고, 상기 다관절 해저로봇(100-1)은 완충기(depressor)(200)에 케이블로 연결되고, 완충기(200)는 모선(300)에 케이블로 연결된다. 완충기(200)와 다관절 해저로봇(100-1)은 유선 통신 또는 무선 통신이 가능하다.
상기 복합이동이 가능한 6,000m 탐사용 다관절 해저로봇(100)을 이용한 해저탐사시스템(1000)은 조류가 거의 없는 심해환경을 상정하여 고안되었으나, 테더 케이블의 중량이 로봇에 주는 영향을 최소화하기 위하여 완충기(depressor)(200)를 두어 운용하는 개념이다. 심해용 다관절 해저롭로봇은 심해의 퇴적층에 대한 교란을 최소화하고, 로봇의 발이 해저 토양에 빠지는 것을 방지하기 위해 부력조절 기능을 갖는다. 상기 해저탐사시스템(1000)은 다음과 같이 두 가지 임무를 갖는다.
심해 해양과학 조사
퇴적 토양으로 이루어진 연약지반의 심해저 환경에서 해저교란을 최소화 하면서 해양 물리, 화학, 생물, 지질 등의 연구에 필요한 과학조사 데이터를 취득한다.
6,000m 까지의 해저에서 과학조사를 위해 필요한 생물, 토양, 해수 등의 샘플을 채취한다.
장기 정밀 해저 조사
해저 열수광상 등 불규칙한 해저지형을 근접 정밀 탐사한다.
무선자율제어 모드에서는 완충기 없이 단독으로 운용되며 에너지를 최소화 하면서 정해진 지역을 장기 관측한다.
본 발명에서는 기존의 프로펠러 방식의 잠수정과는 다른 새로운 개념의 해저로봇으로 기존 한계를 극복하고자 하며, 이를 위하여 도 2와 같은 복합이동이 가능한 다관절 해저로봇을 개시한다. 종래기술에서 언급된 기존의 한계는 아래와 같은 개념으로 극복한다.
안전성에 관하여, 다이버가 직접 작업하기에 위험한 환경에서는 다이버 대신 해저로봇을 작업에 이용한다.
작업시간에 관하여, 해저로봇을 이용함으로써 다이버의 잠수시간 한계를 극복한다.
조류에 대하여, 로봇은 해저에 밀착하여 접지력이 커지는 자세를 유지함으로써 조류를 극복하고, 해저로봇(100)과 모선(300) 사이에 완충기(200)를 두어 케이블에 걸리는 조류력이 해저로봇(100)에 미치는 영향을 줄인다.
악시계에 관하여, 비교적 탁도의 영향을 덜 받는 다양한 초음파 영상장치를 활용하고 광학카메라는 근접 확인용으로 활용한다.
장애물과 불규칙 해저지형에 관하여, 스스로 장애물에 얽히지 않도록 다족을 이용하여 해저에 착지하여 정적 안정성을 유지하고 불규칙 해저지형에서도 다관절 다리를 이용하여 원하는 몸체의 자세를 유지하며 보행이동 한다.
환경간섭에 관하여, 해저의 교란을 최소화 할 수 있도록 해저 보행의 방법으로 이동 및 작업한다.
본 발명에 따른 복합이동이 가능한 다관절 해저로봇을 개발하기 위한 네 가지 핵심기술을 정의하며, 기술개발의 접근방법을 제안한다. 새로이 제안되는 해저로봇은 프로펠러 방식으로 추력을 얻는 기존의 해저로봇과는 달리 여러 개의 관절로 이루어진 다리를 이용하여 해저면에 근접해서 보행과 유영으로 이동하는 새로운 개념의 해저로봇을 제공하는 것이다.
이 해저로봇의 개념은 마치 게(Crab)와 가재(Lobster)가 해저면에서 이동하고 작업하는 형태와 유사하여 로봇의 이름을 'Crabster'라고 명명하였다.
본 발명에 따른 해저로봇은 우리나라 연근해 200m 수심까지의 해저에서 침몰선 탐사와 해양과학 조사를 수행한다(또한 6000m 수심까지의 해저에서 해양과학 조사를 수행한다). 특히, 조류(Tidal current)가 세고, 시계(Visibility)가 나쁜 서해안의 환경에서 작업할 수 있고, 또한 퇴적 토양에서 환경교란 없이 유영과 보행기능을 갖는 형태이다.
표 1은 본 발명에 따른 복합이동이 가능한 다관절 해저로봇의 구현 예인 도 1a와 도 1b 에 대한 개략적인 제원을 각각 나타낸 것이다.
[표 1]
Figure PCTKR2012010813-appb-I000001
표 1 에 도시된 바와 같이, 다리수는 보행다리가 4개이고, 로봇팔겸용다리는 2개이다.
또한 본 발명에 따른 해저로봇은 해저에서 악시계를 탐지할 수 있는 장치를 구비한다. 기본제원(다리를 접었을 때)은 길이 2.2m, 폭 1m, 높이 1.1m, 최대중량 300kg(적재하중 포함), 최대지상고 0.5m, 다리수는 보행다리 4 DOF 4개, 로봇팔 겸용다리 6 DOF 2개, 최대사양은 최대보행속도 0.5m/sec(1.8km/h), 최대작동수심 200m, 최대극복조속 2 knots, 최대전력 소모량 20kW이하이다. 해상상태 극복능력은 최대작업조건 Sea state 3, 최대생존조건 Sea state 4 이다. 악시계 탐지능력은 탐지거리 100m이상 및 10m이상 두 가지 형태를 수행할 수 있다. 즉, 최대탐지거리 100m이상으로 해저에서 전방을 스캐닝할 수 있는 전방스캐닝 소나와 최대탐지거리 10m이상으로 실시간 소나 영상을 제공하는 초음파카메라가 장착되어 악시계 환경에서의 시계를 확보한다. 제어방식은 유선원격제어방식이 사용되고, 전원공급은 테더케이블을 이용한다.
상기 복합이동이 가능한 해저로봇의 필요기능을 다시 한번 정리한다.
기능
- 해저에 착지하여 다관절 다족으로 몸체의 자세를 조절하고 보행 이동.
- 해저에서 작업용 로봇팔 2기 장착.
- 악시계를 극복하기 위하여 초음파 영상장비 장착.
- 탁도, 용존산소량, 전도도, 온도, 심도, pH 계측센서 내장.
- 해저로봇의 모든 정보는 실시간으로 원격모니터링.
- 불규칙 지형, 조류 등 외란에 의한 전복위험 대응 자세 안정화 및 걸음새 보정 기능.
내압 수밀 방식
- 200m의 수심에서 구조적으로 안정한 내압,수밀 성능.
- 회전축계 등 유적식 수밀의 경우, 절연유 내 작동보장.
- 해수와 염분에 의한 부식에 대한 방식 기능.
강인성
- 해상상태 3에서 동작, 해상상태 4에서 생존.
- 2노트의 해류에서 이동 및 작업, 3노트의 해류에서 생존.
- 영하 10도에서 영상 40도까지의 온도 환경에서 정상 작동, 영하 30도에서 75도까지의 환경에서 생존.
신뢰성
- 수중 및 해상에서 24시간 연속으로 사용 가능.
- 과학조사 데이터는 국제사회 공인 신뢰도 유지.
운용편의성
- 해상상태 3 이하에서 진수 인양 가능
- 조작자 편리를 위한 사용자 그래픽 인터페이스 장착
- 일부 자동기능을 제공하여 조작자의 부담 경감
유지보수성
- 해저로봇(100)과 그 지원장치는 장비의 분해,조립,교체 용이.
- 모듈화 제작, 충분한 여유품 확보.
- 다양한 모선을 활용가능, 포장, 이동, 설치 용이성 확보.
확장성
- 추가 장비를 위한 여유 채널의 통신라인과 전원라인 확보.
- 수중 작업 공구들의 로봇팔 교체 장착.
비상상태 대처기능
- 해저로봇(100)과 원격시스템과의 기계적 연결 장치가 끊어졌을 경우 해저로봇(100)은 3일 이상 자체 전원을 이용하여 자신의 수중위치를 초음파로 송신.
-해저로봇(100)이 수중에서 과도한 해저의 급경사나 순간적인 해류 또는 운용의 실수로 전복되었을 경우, 스스로 또는 원격 지원장치의 도움을 받아 그 자세를 회복할 수 있는 기능 확보.
본 발명에 따른 6,000m 탐사용 해저로봇은 200m 탐사용 해저로봇과 유사하나 조류의 영향이 거의 없고 시계가 좋은 안정된 심해 환경에서 과학조사를 수행하는 것을 목적으로 하므로, 부력조절 기능을 추가로 내장하고 유영기능을 가짐으로써, 퇴적토양의 교란을 최소화 한다. 또한, 무선통신기능과 자율제어기능을 추가하여 탐사의 종류와 방식을 확장하였다.
본 발명에 따른 해저로봇의 수중관절 메커니즘 개발의 접근방법에 대한 내용은 아래 표 2에 정리하였다.
[표 2]
Figure PCTKR2012010813-appb-I000002
표 2에 따르면, 수중관절 메커니즘에 주요 요구기능으로서 먼저 기계분야에서는 내압/수밀이 요구되고, 모터/기어/베어링 일체 방수형 관절 모듈이 개발되었으며, 유적식 오링구조에 의한 회전 축계의 내압방식 구조 개발을 수행한다. 방식에 있어서, 알루미늄, 스텐레스등 내식성 재료가 적용되었고, 절연유 충전 방식의 유적식 설계가 적용되었으며, 희생양극 설치에 의한 방식 구조를 가진다. 또한, 하모닉 드라이브 감속기를 채택하여 제로 백래쉬가 되도록 하였고, 구조해석 기반 최적 설계를 수행하였으며, 경량 고강도 재질을 사용하였다.
전기분야에서는 소형 경량 고출력 관절을 가진 해저로봇을 제공하기 위하여, 저속 고토크 비엘디씨(BLDC)모터를 채택하였으며, 해수와 충진유를 이용한 방열구조를 설계하였고, 관절위치 피드백을 위하여, 홀센터 타입 근접 리미트 센서 및 전기식 절대위치 엔코더를 적용하였다. 제어분야에서는 컴플라이언스 제어기 설계를 적용하였다.
본 발명에 따른 다관절 해저로봇의 구조를 도 2 및 도 3에서 보다 상세히 설명하기로 한다.
우선, 도 2는 본 발명의 실시예에 따른 다관절 해저로봇을 개략적으로 나타낸 사시도이다. 도 2의 다관절 해저로봇의 형태는 실시예에 불과하며, 외형은 변형가능하다.
도 2를 참조하면, 다관절 해저로봇(100)은 유선형의 몸체(110); 상기 몸체 좌우측에 각각 한 쌍씩 복수개가 장착되며 다수개의 관절로 구성된 다관절 보행다리; 상기 몸체내에 장착되고, 상기 다관절 보행다리를 통해 보행상태 및 수중에서의 유영상태를 제어하는 제어수단; 상기 제어수단에 의해 제어되며 상기 다관절 보행다리를 구동시키는 구동신호를 발생하는 보행다리 구동수단; 상기 몸체내에 장착되어 몸체의 자세 및 외부 물체와의 접촉을 감지하는 감지수단; 상기 몸체내에 장착되어 몸체의 부력을 감지하는 부력감지수단 및 외부장치와 유무선 신호를 송수신하는 통신수단;을 포함하는 것을 특징으로 한다.
상기 부력감지수단은 부력감지기능을 제공하기 위한 부력감지센서를 구비하며, 부력을 감지센서에 의해 감지된 감지신호 따라 몸체의 부력을 조절할 수 있는 기능을 제공한다.
상기 감지수단은 자세 및 운동 계측센서(42), 수중위치추적장치(50), 및 상기 몸체 저면에 설치된 힘/모멘트 센서(43)를 포함하는 것을 특징으로 한다.
상기 몸체 전면에 장착되어 수중 영상을 촬영하는 촬영수단을 포함하며, 상기 촬영수단은 초음파 카메라(20) 및 팬/틸팅 기능 수중카메라(22) 및 조명장치(22a, 미도시)를 포함하는 것을 특징으로 한다.
상기 통신수단은 광통신모뎀(60)을 포함하는 것을 특징으로 한다.
상기 통신수단은 광섬유 및 전원선 내장 2차케이블(240)을 통해 완충기와 연결되는 것을 특징으로 한다.
상기 몸체는 경량 고강도 복합 섬유소재로 제작된 것을 특징으로 한다.
또한, 상기 감지수단은 해저로봇의 앞쪽 전방 두 개의 다리에 설치되어 접지감지를 수행하는 모멘트센서를 포함하는 것을 특징으로 한다.
상기 해저로봇(100)의 몸체부(110)의 측면에는 복수개의 다관절 보행다리(121,122,123(미도시),124,125(미도시),126)가 총 6개가 구비되는데, 양측면에 각각 두 개씩 구비되고(123,124,125,126), 전방측에 두개(121,122)가 구비된다. 이중 전방측에 부착된 두 개의 다관절 보행다리(121,122)는 로봇팔 겸용 다리로써 다리와 팔의 기능을 수행한다. 각각의 다관절 보행다리(121,122,123,124,125,126)는 각각 복수개의 관절부(예를 들면, 121a,121b,122a,122b 등)로 구성된다.
본 발명에 따른 복합이동이 가능한 다관절 해저로봇(100)은 6족 또는 4족으로 해저보행하고, 두 개의 앞다리는 로봇팔로도 활용될 수 있다. 네 개의 다리(123,124,125,126)는 전동모터에 의해 능동적으로 제어되는 네 개의 관절구조를 가지고, 앞 두 다리는 6개의 관절과 1개의 그리퍼를 가진다. 이러한 개념은 생체기능 모사에 초점을 둔 가재로봇과 각각의 다리가 하나의 관절과 페달로 구성된 기술[Christina, G., Meyer, N., Martin, B., "Simulation of an underwater hexapod robot," Ocean Engineering, Vol 36, pp 39-47, 2009.]과 차별화된다. 또한, 유체력에 대응하여 능동적으로 자세를 제어하는 새로운 해저로봇이다.
다관절 해저로봇의 다리의 구조는 이하 도 9 내지 도 12에서 자세히 설명한다. 해저로봇이 이동할 경우에는 6개의 다리를 이용하여 자세의 안정성을 확보하면서 빠른 보행이 가능하다. 로봇팔겸용 다리를 이용하여 작업하거나 물건을 옮길 경우 네 다리로 몸체를 지지하거나 보행 이동한다. 해저 로봇이 네 다리로 이동할 경우에는 여섯 다리로 이동할 경우에 비해 보행 안정성과 속도가 상대적으로 떨어지지만 수중에서 필요한 작업과 이동 기능은 모두 달성될 수 있다.
본 발명에 따른 복합이동이 가능한 다관절 해저로봇(100)은 강조류 환경에서 작업하기 적합하도록 유선형의 몸체(110)와 다관절 구조의 다리 형상을 가지며, 유체력 등에 의한 외란을 감지하고 이에 따른 영향을 최소화하도록 몸과 다리의 자세를 제어하는 기능을 갖는다.
다음으로, 도 3은 본 발명에 따른 복합이동이 가능한 다관절 해저로봇의 블록구성도이다.
도 3을 참조하면, 복합이동이 가능한 다관절 해저로봇(100)의 유영 및 보행과정을 제어하는 제어시스템(10)과,
초음파로 100m까지의 전방을 촬영하는 전방스캐닝 소나(20)
초음파로 10m까지의 전방영상을 실시간으로 촬영하는 초음파카메라(20a),
수중상태를 촬영하고 회전 및 각도전환이 가능한 팬/틸팅기능 수중카메라(22) 및 조명장치 (22a, 미도시),
유영 및 보행과정시 센싱된 데이터 및 촬영된 영상데이터를 저장하는 데이터저장부(30),
해저로봇의 자세를 감지하고 운동상태를 계측하는 자세 및 운동계측센서(42),
해저로봇의 보행다리에 작용하는 힘과 모멘트를 센싱하는 힘/모멘트센서(43),
관절 각도의 리미트를 감지하기 위한 근접센서 (44),
로봇의 속도와 유속을 센싱하는 속도센서(48),
수행로봇의 수중위치를 실시간으로 추적하고 센싱하는 수중위치추적장치 (50),
완충기와의 신호 송수신을 처리하는 광통신모뎀(60),
전동모터의 구동신호를 발생하는 모터구동부(70),
모터구동부의 신호에 따라 동작하는 제1 내지 제N전동모터(72-1,....72-N),
전동모터에 따라 동작되고 관절메카니즘과 연결되어 모터의 동작을 전달하는 제1 내지 제N감속기(74-1,...74-N),
광통신모뎀을 통해 완충기 및 지상 모선과 신호를 송수신하고, 해저로봇의 유영 및 보행시 입수된 데이터를 전송하는 기능을 제어하는 제어시스템(10); 및
전원을 공급하는 전원부(80),
를 포함한다.
기타 각각의 다리부분 단부에는 접지 감지를 위한 힘센서 혹은 감지센서가 장착된다(도시안됨).
본 발명에 따른 복합이동이 가능한 다관절 해저로봇은 해저에 설치되며 완충기에 중간 연결되고 지상모선과 완충기를 통해 연결된다. 지상모선은 해저 지형에 대한 촬영된 영상정보를 해저로봇을 통해 전송받아 저장하며, 특정 지역의 탐색을 위해 이동 명령신호를 송신한다.
해저로봇은 특정 지역을 향해 해저 지면을 따라 이동하며, 이동시 보행 또는 유영이 가능하다. 조류에 따라 감지수단인 자세 센서를 통해 자세를 변형시킨다(도 6 및 도 7참조). 이때, 전방에서 밀려오는 조류에 대항하여 수그린 자세를 취함으로써 뒤집어지는 등의 사고를 방지하게 된다. 보행시에는 다관절 보행다리에 설치된 감지수단인 모멘트센서를 통해 다리의 접지상태를 확인하면서 해저 지면을 따라 이동하거나 정지하여 대기한다. 유영시에는 다관절 보행다리의 모든 관절을 일자로 쭉 펴서 헤엄치듯 이동한다. 악시계를 극복하기 위하여 촬영수단인 초음파카메라, 팬/틸팅 수중카메라(광학카메라)를 통해 탐사지역을 촬영하며 멀티-빔(multi-beam) 조명장치를 통해 전방 주위를 밝게 비추면서 이동한다.
본 발명의 바람직한 실시예에 따른 복합이동이 가능한 다관절 해저로봇(100)은 총 6개의 다리에 28개의 관절을 가지고 능동적으로 해저 보행을 수행하는 구조이다. 각 관절은 제1 내지 제 N 전동모터(74-1,....74-N)에 의해 구동된다. 해저로봇의 관절을 기계적, 전기적으로 설계하고 제어하는 기술은 수중 메커니즘 기술로 정의한다. 육상에서 적용되는 관절 메커니즘 기술은 수압이 존재하는 해수 중에서 적용될 수 있도록 확장 또는 재설계 되었다.
상기 관절메카니즘은 도 2에 도시된 바와 같은, 본 발명에 따른 다관절 링크 해저로봇의 6개의 다리 각각에 구성된 관절메카니즘을 말하며, 각각의 다리는 4개의 관절로 연결되며, 전방 두개의 다리는 6개의 관절로 연결된다. 전방 두 개의 다리에 연결된 관절은 각각 로봇팔 역할을 겸한다.
각 관절 메커니즘은 관절구동 모터, 하모닉 감속기, 관절각도센서, 관절 리미트센서로 구성된다. 관절구동 모터는 소형 경량 저속 고토크를 얻기 위하여 프래임리스 BLDC 모터를 사용하여, 내압방수하우징을 설계하여 그 안에 장착하였다. 내압방수 하우징은 오링을 이용하여 수밀하였다. 관절의 백래쉬를 최소화하고 적절한 감속비를 얻기 위하여 하모닉드라이브 감속기를 채택하였다. 또한 절대각도를 제공하는 전기식 엔코더를 관절에 감속기 출력 측에 착함으로써 관절의 절대 각도를 얻을 수 있다. 안전을 위하여 관절 각도 리미트에는 마그네틱 형식의 근접 스위치를 장착하였다. 도 10에는 이러한 관절 구조를 나타내었다.
해저로봇에 작용하는 유체력의 해석 및 모델링
본 발명에 따른 복합이동이 가능한 다관절 해저로봇에 작용하는 유체력에 대하여 살펴본다. 물은 공기의 1000배에 달하는 밀도를 가지는 유체이므로 수중환경에서 동작해야 하는 해저로봇은 유체력을 무시할 수 없는 동역학특성을 갖는다. 본 발명에서는 유체력의 해석방법으로 ANSYS 등의 수치계산 툴을 이용하는 전산유체역학(CFD; computational fluid dynamics)방법을 적용한다.
도 4는 본 발명에 따른 해저로봇의 개념설계를 이용하여 CFD 방법으로 유속이 있는 유체 속에 놓인 해저로봇에 작용하는 압력의 분포를 추정한 시뮬레이션 상태를 나타낸 도면이다. 이러한 과정을 통하여 해저로봇에 작용하는 유체력을 자세와 유체의 방향에 따라 계산 분석할 수 있다.
도 4에서, 보행다리 중 로봇팔 겸용다리 (121a,121b,122a,122b), 및 나머지 우측 보행다리(124a,124b,126a,126b), 및 좌측 보행다리(123a,123b,125a,125b)로 구성된다.
도 5는 본 발명에 따른 복합이동이 가능한 다관절 수동로봇의 수중 링크의 벡터도와 링크 좌표계를 나타낸 것이다.
도 5를 참조하면, 유속이 있는 수중에서 다관절 다족을 이용하여 보행 또는 유영할 경우 유체력을 고려한 관절의 경로계획과 제어가 필요하며 이를 위해 필수적으로 선행되어야 할 것이 바로 다리 링크에 작용하는 유체력의 모델링이다. 수중 로봇팔의 동역학식은 육상의 로봇팔 동역학 식에 유체력을 첨가하여 수학식(1)과 같이 표현할 수 있다.
[수학식 1]
Figure PCTKR2012010813-appb-I000003
여기서, M은 부가질량을 포함한 관성행렬이고, C는 코리올리와 원심력, D는 유체저항 및 양력, G는 부력과 중력,
Figure PCTKR2012010813-appb-I000004
는 관절 토크이다. 유체저항력과 양력은 관절의 각도, 관절 각속도, 유체의 속도, 링크의 형상에 따른 유체력 계수의 함수가 된다. 이를 정의하기 위하여 먼저 링크를 얇은 원판으로 쪼개고 각 원판에 작용하는 유체력을 근사적으로 표현함으로써 이들의 적분에 의해 링크에 작용하는 유체력을 근사화한다. 해저로봇의 링크의 좌표와 속도 및 힘 벡터도를 도 5와 같이 정의하면, j번째 링크에 작용하는 유체저항력은 i번째 좌표에 대해 수학식(2)와 같이 근사적으로 표현할 수 있다.
[수학식 2]
Figure PCTKR2012010813-appb-I000005
여기서, CDj는 j번째 링크의 2차원 유체저항계수이고,
Figure PCTKR2012010813-appb-I000006
j번째 링크의 원판의 속도벡터와 유체 속도벡터 사이의 각도이다. dpj는 원판을
Figure PCTKR2012010813-appb-I000007
에 직각인 벡터에 투영한 길이이다.
Figure PCTKR2012010813-appb-I000008
j번째 링크의 길이방향에 직각인 원판의 병진 속도성분이다. 이로부터 i번째 관절에 작용하는 유체력토크는 원판의 위치벡터 irj를 고려하여 다음 수학식 3과 같이 표현할 수 있다.
[수학식 3]
Figure PCTKR2012010813-appb-I000009
이들 유체력과 유체력토크를 결정짓는 속도벡터
Figure PCTKR2012010813-appb-I000010
를 관절 각속도 벡터로 표현하면 일반화 토크를 얻을 수 있고, 수학식(1)식의 유체저항력 항 D를 근사적으로 구할 수 있다.
유체력 최적 보행 경로 계획
수중에서 링크에 작용하는 유체력을 최적화하도록 경로를 계획한다면, 보행이나 유영에 소요되는 에너지의 효율을 높일 수 있을 것이다. 공기중에 비해 수중에서는 1000배에 달하는 유체력을 받기 때문에 유체력을 최적화함으로써 시스템의 효율을 향상시키는 것을 또 하나의 핵심기술로 정의한다. 보행에 있어서는 걸음새의 계획에 유체력을 고려하여 여유 자유도를 활용하고, 유영에서는 관절에 작용하는 유체력에 의해 작용하는 몸체의 추진력이 최대가 되도록 관절의 각도와 속도를 계획하는 것이다. 이러한 유체력 최적 보행 경로 계획의 문제는 다음과 같이 정형화될 수 있다. 즉, 아래 수학식(4)로 주어지는 아래의 부등식 조건들을 만족하고 걸음새에 따라 주어지는 관절 제약조건을 만족하면서, 수중에서 움직이는 다리에 작용하는 수학식 5와 같은 유체력 목적함수 g를 최소로 하는 관절경로 파라미터를 구한다.
[수학식 4]
Figure PCTKR2012010813-appb-I000011
[수학식 5]
Figure PCTKR2012010813-appb-I000012
외력대응 자세보상 제어
프로펠러 방식과 달리 조류 속에서 안정한 자세를 유지하는 것이 CRABSTER의 주요 개념이므로 조류와 같은 외력에 대응하기 위한 자세 보상 제어기술을 핵심기술로 정의한다.
도 6은 유체흐름에 대한 자세의 보상을 개념적으로 나타낸 도면으로서 각각 저유속, 고유속 및 후측유속상태를 나타낸 도면이다.
도 7은 본 발명에 따른 복합이동이 가능한 다관절 해저로봇의 유체력 대응 자세 보상 개념도이다.
해류가 존재하는 바다 속에서 해류에 의해 전복되거나 날려 가지 않으면서 안정한 자세를 유지하기 위한 접근방법으로 도 6과 같이 가재의 자세보상 방법을 도입한다. 가재는 유속의 크기와 방향에 따라 자세를 변화하면서 접지력을 조절한다. 상기에서 언급한 전산유체역학 해석방법을 통하여 몸체의 자세별로 얻을 수 있는 양력과 저항력을 얻는다면 이를 이용하여 해저에서 작업할 수 있는 조건을 도출할 수 있다. 로봇이 해류에 날려가지 않을 조건은 로봇의 자중과 양력에 의해 발생하는 접지 발끝의 마찰력이 유체저항력 보다 큰 것이다. 즉, 도 7로부터 다음 수학식 6과 관계를 얻을 수 있다.
[수학식 6]
Figure PCTKR2012010813-appb-I000013
여기서, m은 로봇의 질량, g는 중력가속도, B는 로봇의 부력이고, fF는 로봇의 해저면 접지 마찰력, fD는 유체저항력 fE는 그 밖의 기타 외력 성분이며, μ는 접지마찰계수, fL은 로봇에 작용하는 양력이다. 수학식(6)식에서 fD와 fE는 유속과 로봇 자세에 대한 함수 이므로 수학식(6)의 부등식이 만족되도록 자세를 보상함으로써 조류를 극복할 수 있다. 해저로봇에서 자세보상기능을 구현하기 위하여 유속센서(혹은 속도센서), 힘/토크센서, 자세센서(혹은 자세 및 운동계측센서), 접지력 감지 센서(혹은 모멘트 센서) 등이 장착된다. 도 7을 참조하면, 다관절 해저로봇(100)은 다관절 보행다리를 이용하여 자세를 변화시킴으로써 조류를 극복하는 모습을 볼 수 있다. 다관절 해저로봇은 몸체를 앞으로 수그려서 전방에서의 조류에 대응하고 있다.
본 발명에 따른 복합이동이 가능한 다관절 해저로봇은 6개의 다리를 가지며, 두 앞다리는 로봇팔 기능을 겸한다. 또한, 해저에 밀착하여 보행 이동하며 몸체의 형상과 자세를 이용하여 조류에 의한 외란을 극복하고 안정된 자세로 해저 작업을 수행하는 개념의 해저로봇이다. 본 발명에 따른 해저로봇의 핵심기술은 수중관절 메카니즘, 유체력의 해석 및 모델링, 유체력 최적 보행 경로계획 그리고 외력대응 자세보상 제어 등 네 가지이다.
도 8은 본 발명의 바람직한 실시예에 따른 다관절 해저로봇을 이용한 해저탐사시스템의 구체적인 블록구성도이다.
도 8을 참조하면, 해저로봇(100)은 도 3에 도시된 구성외에, 복수개의 신호를 스위칭하는 스위칭허브(150), 광신호를 전송하는 광파이버 컨버터(152)를 포함하고, 상기 스위칭허브(150)에는 RS232 및 RS485장치, USB 및 CAN장치가 연결된 입력 및 출력신호를 처리하는 컴퓨터(162), 복수개의 네트워크 카메라가 연결된 스위칭허브(164), 복수개의 아날로그 카메라가 연결된 비디오엔코더(166), 전방주시소나(Forward Looking Sonar: FLS, 20) 혹은 전방스캐닝 소나, 초음파카메라(20a)가 연결된다.
완충기(200)는 복수개의 신호를 스위칭하는 스위칭허브(210), 광신호를 전송하는 광파이버 컨버터(222), 입력 및 출력신호를 처리하고 RS232가 연결된 컴퓨터(230), 복수개의 아날로그 카메라(242,243,244,245)가 연결된 비디오엔코더(240), 및 복수개의 네트워크 카메라(252,254)가 연결된다.
모선(300)은 복수개의 컴퓨터(331 내지 339)가 연결되며, 상기 광파이버 컨버터(322,324)가 연결된 스위칭 허브(310)를 포함한다. 상기 광파이버 컨버터(322)는 상기 완충기(200)의 광파이버 컨버터(222)와 연결되고, 상기 광파이버 컨버터(324)는 상기 해저로봇(100-1)의 광파이버 컨버터(152)와 연결된다. 상기 복수개의 컴퓨터는 해저로봇용 컴퓨터(331), 완충기용 컴퓨터(332), 비디오 컴퓨터(333), 소나용 컴퓨터(334), Hypack용 컴퓨터(335), USBL 컴퓨터(336), 멀티빔 컴퓨터(337), UC용 컴퓨터(338), 예비컴퓨터(339)를 나타낸다.
상기와 같이 연결된 해저로봇(100), 완충기(200) 및 모선(300)을 포함한 해저탐사시스템을 통해 해저지형을 관찰하기 위한 시스템을 구축하고, 해저로봇(100-1)을 제어하여 해저지형에 대한 데이터를 확보할 수 있다.
도 9 는 본 발명의 바람직한 실시예에 따른 다관절 해저로봇의 로봇다리의 관절부분을 나타낸 상세도이고, 도 10은 본 발명의 바람직한 실시예에 따른 다관절 해절로봇의 전동모터와 하모닉 감속기로 이루어지는 내압방수 관절구조의 일부 측단면도이고, 도 11은 본 발명의 바람직한 실시예에 따른 로봇팔 겸용다리의 관절부분을 나타낸 상세도이고, 도 12는 본 발명의 바람직한 실시예에 따른 로봇다리 및 로봇팔 겸용다리의 기구학적 구조를 나타낸 도면이다.
도 9를 참조하면, 본 발명의 바람직한 실시예에 따른 다관절 해저로봇의 로봇다리의 관절부분은 제1관절(125a), 제2관절(125b), 제3관절(125c) 및 제4관절(125d)로 구성된다. 상기 제4 관절(125d) 단부에 로봇다리(124a)가 연결되며, 제3 관절(125c) 및 제4 관절(125d)에 사이에 로봇다리(124b)가 연결된다.
상기 제1관절(125a), 제2관절(125b), 및 제3관절(125c)은 내압방수 관절구조에 의해 방수 조립되어있다(도 10참조).
도 10을 참조하면, 상기 제1관절(125a), 제2관절(125b), 및 제3관절(125c)은 내압방수 관절구조에 의해 방수 조립되어 있는데, 구체적으로는 제1 방수몸체(410), 제2 방수몸체(420) 및 제3 방수몸체(430)으로 구성되며, 제1 방수몸체(410)에는 프레임리스 BLDC모터(72-1)가 방수용오링(414)에 의해 감싸져서 내압방수 하우징(418)에 내접되어 베어링(412)을 매개로 장착된다. 상기 프레임리스 BLDC모터(72-1)의 구동력을 감속시키는 감속기(74-1)는 베어링(412)을 매개로 상기 내방방수 하우징(418)내에 회전가능하게 연결된다.
도 11을 참조하면, 본 발명의 바람직한 실시예에 따른 로봇팔 겸용다리의 관절부분은 제1관절(125a), 제2관절(125b), 제3관절(125c), 제4관절(124d), 제5관절(125e) 및 제6 관절(125f)로 구성된다. 상기 제6 관절(125f) 단부에 그리퍼(122a-1)가 연결되며, 제3 관절(125c) 및 제4 관절(125d)에 사이에 로봇다리(121c)가 연결되고, 제4 관절(125d) 및 제5 관절(125e)에 사이에 로봇다리(121b)가 연결되고, 제5 관절(125e) 및 제6 관절(125f)에 사이에 로봇다리(121a)가 연결된다.
상기 제1관절(125a), 제2관절(125b), 및 제3관절(125c)은 내압방수 관절구조에 의해 방수 조립되어있다(도 10참조). 기타 관절 또한 내압방수구조로 조립된다. 각각의 관절의 피드백(feedback)은 관절에 설치된 리미트센서를 통해 감지될 수 있으며, 리미트 센서는 홀센서(미도시)가 사용될 수 있다.
도 12를 참조하면, 본 발명의 바람직한 실시예에 따른 로봇다리 및 로봇팔 겸용다리의 기구학적 구조를 살펴보면, 해저로봇 몸체(110)에 4개의 로봇다리가 연결되며, 해저로봇 몸체(110)의 전방에 2개의 로봇팔 겸용다리가 연결된다. 각각 X,Y, Z축을 중심으로 롤(ROLL), 피치(PITCH) 및 요축(YAW) 회전운동 한다.
다시한번 정리하면, 본 발명의 바람직한 실시예에 따른 다관절 해저로봇(100-1)은 총 6개의 다리에 28개의 관절을 가지고 능동적으로 해저 보행을 수행하는 구조이다. 각 관절은 제1 내지 제 N 전동모터(74-1,....74-N)에 의해 구동된다. 해저로봇(100-1)의 관절을 기계적, 전기적으로 설계하고 제어하는 기술은 수중 메커니즘 기술로 정의한다. 육상에서 적용되는 관절 메커니즘 기술이 수압이 존재하는 해수 중에서 적용될 수 있도록 확장 또는 재설계 되었다.
상기 관절메카니즘은 도 2에 도시된 바와 같은, 본 발명에 따른 다관절 링크 해저로봇의 6개의 다리 각각에 구성된 관절메카니즘을 말하며, 각각의 다리는 4개의 관절로 연결되며, 전방 두개의 다리는 6개의 관절로 연결된다. 전방 두 개의 다리에 연결된 관절은 각각 로봇팔 역할을 겸한다.
각 관절 메커니즘은 관절구동 모터(72-1,...., 72-N), 하모닉 감속기(74-1,.....74-N), 관절각도센서(76-1,.....76-N), 관절 리미트센서(78-1,..,78-N)로 구성된다. 관절구동 모터는 소형 경량 저속 고토크를 얻기 위하여 프레임리스 BLDC 모터를 사용하여, 내압방수하우징을 설계하여 그 안에 장착하였다. 내압방수 하우징은 오링을 이용하여 수밀하였다. 관절의 백래쉬를 최소화하고 적절한 감속비를 얻기 위하여 하모닉드라이브 감속기를 채택하였다. 또한 절대각도를 제공하는 전기식 엔코더 즉, 관절각도센서를 관절의 감속기 출력 측에 장착함으로써 관절의 절대 각도를 얻을 수 있다. 안전을 위하여 관절 각도 리미트센서는 마그네틱 형식의 근접 스위치로 구성된다.
상기 로봇팔 겸용다리 부분에 설치된 제6 관절(125f)의 전동모터는 감속기는 그리퍼를 작동시키기 위한 것이다.
이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 기술자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형은 본 발명이 제공하는 기술 사상의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.
<부호의 설명>
10: 제어시스템(제어수단)
20: 초음파카메라
30: 데이터저장부
42: 자세 및 운동계측센서
50: 수중위치추적장치
60: 광통신모뎀
70: 모터구동부
80: 전원부
100: 해저로봇
110: 몸체
200: 완충기
300: 모선
본 발명에 따른 복합이동이 가능한 다관절 해저로봇을 이용한 해저탐사시스템은 프로펠러 추진과는 전혀 다른 새로운 개념의 6개의 다리로 구성된 해저로봇을 이용함으로써 해저로봇이 해저에 밀착되어 이동하며 자세 및 운동감지센서를 이용하여 자세를 유지하면서 조류를 극복하고 해저에서 유영 및 보행할 수 있고 해저로봇을 통한 해저 데이터를 실시간으로 완충기를 경유하여 지상의 모선으로 유무선 통신수단을 통해 전송됨으로써 천해 및 심해에서의 해저탐사를 할 수 있는 효과가 있다.
또한, 본 발명에 따른 복합이동이 가능한 다관절 해저로봇을 이용한 해저탐사시스템은 해저로봇에 초음파영상장비를 탑재하여 탁도가 높은 수중에서도 탐색이 가능하고 앞의 두 다리는 로봇팔로도 사용하게 됨으로써 천해 및 심해에서 해저탐사가 효과적으로 수행되는 효과가 있다.

Claims (16)

  1. 유선형의 몸체;
    상기 몸체 좌우측 및 전방에 복수개가 장착되며 다수개의 관절로 구성된 다관절 보행다리;
    상기 몸체내에 장착되고, 상기 다관절 보행다리를 통해 보행상태 및 유영상태를 제어하는 제어수단;
    상기 제어수단에 의해 제어되며 상기 다관절 보행다리를 구동시키는 구동신호를 발생하는 보행다리 구동수단;
    상기 몸체내에 장착되어 몸체의 자세 및 외부 물체와의 접촉을 감지하는 감지수단;
    상기 몸체내에 장착되어 몸체의 부력을 감지하는 부력감지수단; 및
    외부장치와 유무선신호를 송수신하는 통신수단;을 포함하는 것을 특징으로 하는 복합 이동이 가능한 다관절 해저 로봇.
  2. 제 1 항에 있어서,
    상기 몸체 전면에는 초음파 카메라가 장착된 것을 특징으로 하는 복합 이동이 가능한 다관절 해저 로봇.
  3. 제 1 항에 있어서,
    상기 감지수단은 자세 센서 및 운동 계측센서를 포함하는 것을 특징으로 하는 복합 이동이 가능한 다관절 해저 로봇.
  4. 제 1 항에 있어서,
    상기 감지수단은 수중위치추적장치를 포함하는 것을 특징으로 하는 복합 이동이 가능한 다관절 해저 로봇.
  5. 제 1 항에 있어서,
    상기 몸체 전면에 장착되어 수중 영상을 촬영하는 촬영수단을 포함하며, 상기 촬영수단은 팬/틸팅 기능 수중카메라 및 조명장치인 것을 특징으로 하는 복합 이동이 가능한 다관절 해저 로봇.
  6. 제 1 항에 있어서,
    상기 통신수단은 광통신모뎀인 것을 특징으로 하는 복합 이동이 가능한 다관절 해저 로봇.
  7. 제 1 항에 있어서,
    상기 통신수단은 광섬유 및 전원선 내장 2차케이블을 통해 완충기와 연결되는 것을 특징으로 하는 복합 이동이 가능한 다관절 해저 로봇.
  8. 제 1 항에 있어서,
    상기 몸체는 경량 고강도 복합 섬유소재로 제작된 것을 특징으로 하는 복합 이동이 가능한 다관절 해저 로봇.
  9. 제 1 항에 있어서,
    상기 감지수단은 해저 로봇의 몸체와 다리 사이에 설치된 힘/모멘트 센서와 발끝에 설치된 접지력 센서를 포함하는 것을 특징으로 하는 복합 이동이 가능한 다관절 해저 로봇.
  10. 제 1 항에 있어서,
    상기 감지수단은 해저 로봇의 앞쪽 전방 두 개의 다리에 설치되어 접지감지를 수행하는 모멘트센서를 포함하는 것을 특징으로 하는 복합이동이 가능한 다관절 해저 로봇.
  11. 제 1 항에 있어서,
    상기 보행다리 구동수단은
    모터구동신호를 발생하는 모터구동부;
    모터구동부의 신호에 따라 동작하는 제1 내지 제N전동모터, 및
    상기 전동모터에 따라 동작되고 상기 다관절 보행다리 및 로봇팔겸용 보행다리의 링크 연결되어 각각의 모터의 동작을 전달하는 제1 내지 제N 감속기;를 포함하는 것을 특징으로 하는 복합 이동이 가능한 다관절 해저 로봇.
  12. 제 1 항에 있어서,
    상기 부력감지수단은 상기 해저 로봇의 중량을 -10kg 내지 +10kg 로 가변 조절하고,
    상기 다관절 보행다리 중, 전방측의 두 개의 보행 다리는 로봇팔 기능을 선택적으로 갖도록 그리퍼를 구비하는 것을 특징으로 하는 복합 이동이 가능한 다관절 해저 로봇.
  13. 제 1 항에 따른 복합이동이 가능한 다관절 해저로봇과,
    완충기와,
    상기 해저로봇으로부터 송신된 수중 상태 데이터를 저장하고 해저로봇의 이동방향을 모니터링하고 제어하는 모선을 포함하고,
    상기 완충기는 지상 모선에 1차 케이블로 연결되고, 상기 다관절 해저로봇은 완충기(depressor)에 2차 케이블로 연결되어, 1차 케이블의 저항력은 완충기까지 걸리며 해저로봇으로 전달되지 않는 것을 특징으로 하는 복합이동이 가능한 다관절 해저로봇을 이용한 해저탐사시스템.
  14. 제 13 항에 있어서,
    상기 다관절 해저로봇은
    복수개의 신호를 스위칭하는 제1 스위칭허브;
    수신신호를 광신호로 변환하는 광파이버 컨버터;
    상기 제1 스위칭 허브에 연결되어 입력 및 출력신호를 처리하는 컴퓨터;
    상기 컴퓨터에 연결된 RS232, RS485, USB 및 CAN장치;
    상기 제1 스위칭허브에 일단이 연결되며, 타단에는 복수개의 네트워크 카메라가 연결된 제2 스위칭허브;
    상기 제1 스위칭허브에 일단이 연결되며, 타단에는 복수개의 아날로그 카메라가 연결된 비디오엔코더;
    상기 제1 스위칭허브에 연결되며, 전방을 스캐닝하여 영상신호를 촬영하고 전송하는 전방주시소나(Forward Looking Sonar: FLS, 20) 혹은 전방스캐닝 소나; 및
    상기 제1 스위칭허브에 연결되며 전방영상을 촬영하고 전송하는 초음파카메라;를 포함하는 복합이동이 가능한 다관절 해저로봇을 이용한 해저탐사시스템.
  15. 제 13 항에 있어서,
    상기 완충기는
    복수개의 신호를 스위칭하는 스위칭허브,
    상기 스위칭허브에 연결되어 스위칭허브를 통해 전송된 수신신호를 광신호로 변환하여 모선으로 전송하는 광파이버 컨버터;
    입력 및 출력신호를 처리하고 일단에는 RS232가 연결되고 타단은 상기 스위칭허브에 연결된 컴퓨터;
    일단에는 복수개의 아날로그 카메라가 연결되고 타단은 상기 스위칭허브에 연결된 비디오엔코더; 및
    상기 스위칭허브에 연결된 복수개의 네트워크 카메라;를 포함하는 것을 특징으로 하는 다관절 해저로봇을 이용한 해저탐사시스템.
  16. 제 13 항에 있어서,
    상기 모선은
    일단에는 복수개의 컴퓨터가 연결되며, 타단에는 광신호를 전송하는 제1 및 제2 광파이버 변환기;를 포함하고
    상기 제1 및 제2 광파이버 변환기는 상기 해저로봇의 광파이버 변환기 및 상기 완충기의 광파이버 변환기와 각각 연결된 것을 특징으로 하는 다관절 해저로봇을 이용한 해저탐사시스템.
PCT/KR2012/010813 2011-12-15 2012-12-13 보행과 유영의 복합 이동 기능을 갖는 다관절 해저 로봇 및 이를 이용한 해저탐사시스템 WO2013089442A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014547100A JP6001085B2 (ja) 2011-12-15 2012-12-13 歩行と遊泳の複合移動機能を有する多関節海底ロボット及びこれを用いた海底探査システム
US14/364,659 US9498883B2 (en) 2011-12-15 2012-12-13 Multi-joint underwater robot having complex movement functions of walking and swimming and underwater exploration system using same
CN201280061961.2A CN103998186B (zh) 2011-12-15 2012-12-13 具有复合移动功能的多关节海底机器人及海底探测系统

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020110135580A KR101283417B1 (ko) 2011-12-15 2011-12-15 수중유영이 가능한 다관절 해저 유영로봇
KR10-2011-0135194 2011-12-15
KR10-2011-0135580 2011-12-15
KR1020110135194A KR101283415B1 (ko) 2011-12-15 2011-12-15 복합이동이 가능한 다관절 해저로봇을 이용한 해저탐사시스템

Publications (1)

Publication Number Publication Date
WO2013089442A1 true WO2013089442A1 (ko) 2013-06-20

Family

ID=48612820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010813 WO2013089442A1 (ko) 2011-12-15 2012-12-13 보행과 유영의 복합 이동 기능을 갖는 다관절 해저 로봇 및 이를 이용한 해저탐사시스템

Country Status (4)

Country Link
US (1) US9498883B2 (ko)
JP (1) JP6001085B2 (ko)
CN (1) CN103998186B (ko)
WO (1) WO2013089442A1 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2544045C1 (ru) * 2013-09-05 2015-03-10 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Система для обеспечения технического обслуживания и ремонта подводных добычных комплексов в ледовых условиях
CN108896998A (zh) * 2018-08-15 2018-11-27 上海磐波智能科技有限公司 河道声呐回转扫描装置
CN109795657A (zh) * 2019-02-20 2019-05-24 博雅工道(北京)机器人科技有限公司 一种仿生机器鱼
WO2020042763A1 (zh) * 2018-08-31 2020-03-05 深圳前海达闼云端智能科技有限公司 机器人控制方法、装置、存储介质及电子设备
US10632804B2 (en) 2015-06-01 2020-04-28 Imperial College Innovations Limited Robotic vehicle
CN113119084A (zh) * 2021-03-23 2021-07-16 同济大学 一种基于iic总线的模块化机器人及控制方法
CN113296524A (zh) * 2021-04-25 2021-08-24 哈尔滨工程大学 水下仿生球形/半球形机器人的推力矢量分配优化方法
CN113665768A (zh) * 2021-08-09 2021-11-19 哈尔滨工程大学 一种用于海洋检测的章鱼机器人
CN114872013A (zh) * 2022-04-29 2022-08-09 厦门大学 一种多运动模式微机器人及其运动控制方法

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2686224A2 (en) 2011-03-17 2014-01-22 Raytheon Company Robotic mobile low-profile transport vehicle
KR101327975B1 (ko) * 2012-05-17 2013-11-13 한국해양과학기술원 해저 로봇의 기능 시험용 테스트 베드
WO2014110682A1 (en) * 2013-01-18 2014-07-24 Robotiq Inc. Force/torque sensor, apparatus and method for robot teaching and operation
GB2523600B (en) * 2014-03-01 2016-07-06 Seadrift Holdings Ltd Connecting an underwater vehicle to a tether
US10507896B2 (en) * 2015-03-12 2019-12-17 Nec Corporation Maneuvering device
SG11201707026QA (en) * 2015-03-16 2017-09-28 Saudi Arabian Oil Co Communications among water environment mobile robots
CN104960652B (zh) * 2015-06-23 2017-04-12 山东科技大学 水下作业机器人及其工作方法
CN105129053B (zh) * 2015-08-04 2017-10-24 杭州华能工程安全科技股份有限公司 一种无缆遥控潜水机器人水下检测方法
CN105083507A (zh) * 2015-09-18 2015-11-25 上海长语信息科技有限公司 外部电源供电潜水装置
US10683675B2 (en) 2015-11-17 2020-06-16 Elliptic Works, LLC System for a pool including visual light communication and related methods
CN105468020A (zh) * 2015-12-29 2016-04-06 天津海之声科技有限公司 基于分布式控制的水下机器人系统
CN105598973B (zh) * 2016-02-04 2016-09-21 山东建筑大学 一种基于落脚点固定的多腿驱动海参捕捞机器人
CN106394833B (zh) * 2016-05-20 2018-08-24 中国船舶重工集团公司第七一九研究所 一种爬游混合型无人潜水器及其使用方法
EP3257740B1 (en) * 2016-06-13 2019-08-14 Korea Institute of Ocean Science and Technology A glass sphere type pressure housing including titanium band and a multi-joint underwater robot system for deep sea exploration using the same
CA2975094A1 (en) * 2016-08-02 2018-02-02 Penguin Automated Systems Inc. Subsurface robotic mapping system and method
US10131057B2 (en) * 2016-09-20 2018-11-20 Saudi Arabian Oil Company Attachment mechanisms for stabilzation of subsea vehicles
CN109715491B (zh) * 2016-09-20 2021-10-08 沙特阿拉伯石油公司 水下交通工具和检查方法
CN106926995B (zh) * 2017-01-22 2018-07-17 浙江大学 一种适于海底环境的行走机器人
WO2018198480A1 (ja) * 2017-04-28 2018-11-01 ソニー株式会社 制御装置、および制御方法
RU2656825C1 (ru) * 2017-08-22 2018-06-06 Федеральное государственное бюджетное учреждение науки Институт проблем морских технологий Дальневосточного отделения Российской академии наук (ИПМТ ДВО РАН) Способ управления подводным робототехническим комплексом по каналу связи
CN107576665A (zh) * 2017-10-12 2018-01-12 上海遨拓深水装备技术开发有限公司 一种基于机器视觉的水下结构物裂缝检测系统
US10882591B2 (en) 2017-11-03 2021-01-05 Aquaai Corporation Modular biomimetic underwater vehicle
CN107953981B (zh) * 2017-11-30 2019-05-24 吉林大学 一种串联式混合动力变翼型仿生机械鱼式潜航器
CN107839860A (zh) * 2017-12-13 2018-03-27 北京圣世信通科技发展有限公司 一种搭载水下超声波测距的水下机器设备
CN108413926B (zh) * 2018-01-31 2020-12-04 上海荟蔚信息科技有限公司 用于海上风电场群桩桩基水下地形高程高精度测量的方法
CN108297638A (zh) * 2018-03-22 2018-07-20 吉林大学 陆空两用仿生六足机器人
JP7137342B2 (ja) * 2018-04-10 2022-09-14 川崎重工業株式会社 自律型無人潜水機
CN109110095B (zh) * 2018-08-09 2020-04-28 哈尔滨工业大学 一种张拉整体式摆动推进机构
CN109367738B (zh) * 2018-10-10 2020-04-28 西北工业大学 一种水下自主作业机器人及其作业方法
CN109298667A (zh) * 2018-11-09 2019-02-01 美钻深海能源科技研发(上海)有限公司 用于水下密度采集设备的数据处理系统及其数据处理方法
CN109649096A (zh) * 2018-12-17 2019-04-19 上海交通大学 一种水陆两栖仿生机器人
WO2020142543A1 (en) * 2018-12-31 2020-07-09 Tomahawk Robotics Systems and methods of detecting intent of spatial control
CN109591983A (zh) * 2019-01-10 2019-04-09 常州机电职业技术学院 无线水下检测机器人
CN109693773B (zh) * 2019-01-23 2023-06-16 湖南科技大学 一种可移动式座底装置及其实现方法
CN110082353A (zh) * 2019-05-29 2019-08-02 浙江省水利水电勘测设计院 一种有压输水隧洞无缆水下检测机器人及检测方法
ES2729816B2 (es) * 2019-09-16 2021-06-25 Univ Madrid Politecnica Sistema subacuatico para labores de acuicultura
US10935986B1 (en) * 2019-11-28 2021-03-02 Institute Of Automation, Chinese Academy Of Sciences Gliding depth control method, system and device for biomimetic gliding robotic dolphin
JP7430320B2 (ja) * 2019-12-12 2024-02-13 国立大学法人東京海洋大学 水中構造物撮影装置
CN111136687B (zh) * 2019-12-31 2023-06-20 哈尔滨工程大学 一种水下机器人视觉控制目标抓取测试系统与方法
KR102329506B1 (ko) * 2020-02-28 2021-11-19 한국로봇융합연구원 수중 플라잉 매니퓰레이터 장치
CN111351908A (zh) * 2020-03-04 2020-06-30 深圳市宇驰检测技术股份有限公司 基于机器人的水生生态调查方法、水下机器人及存储介质
CN111251284B (zh) * 2020-03-25 2023-10-27 南京航空航天大学 一种压电驱动深海机械臂及其驱动方法
CN112078686B (zh) * 2020-09-09 2022-04-08 哈尔滨工业大学 一种水下探测机器人
CN112407211A (zh) * 2020-09-18 2021-02-26 桂林电子科技大学 一种仿金边龙虱游泳足水下推进装置
CN114506428B (zh) * 2020-11-16 2023-05-12 江苏科技大学 一种水下仿龟机器人及其控制方法
EP4020078A3 (en) * 2020-12-23 2022-08-03 A.p.p.a.r.a.t.u.s. LLC Support device
CN113022242B (zh) * 2021-04-14 2022-10-28 哈尔滨工程大学 一种波形可控的两栖仿生推进器
CN113148076B (zh) * 2021-04-25 2022-09-02 哈尔滨工程大学 一种水下仿生球形/半球形机器人及其运动控制方法
CN113001528A (zh) * 2021-04-27 2021-06-22 南京华研动密封科技有限公司 一种水下六自由度高精度机械臂
CN114275127A (zh) * 2022-01-06 2022-04-05 西北工业大学 一种海底钻洞机器人
CN114310063B (zh) * 2022-01-28 2023-06-06 长春职业技术学院 一种基于六轴机器人的焊接优化方法
CN114802659B (zh) * 2022-03-21 2023-06-06 深之蓝海洋科技股份有限公司 一种高抗流水下有缆机器人及其控制方法
CN115070819A (zh) * 2022-05-31 2022-09-20 北京电子科技职业学院 一种仿生探测器
CN117610462B (zh) * 2023-12-04 2024-05-03 中国海洋大学 帆船操纵仿真方法、系统、应用及电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100873723B1 (ko) * 2007-07-25 2008-12-12 인하대학교 산학협력단 복수의 다리를 갖는 이동로봇
KR20090074547A (ko) * 2008-01-02 2009-07-07 한국해양연구원 복합형 심해무인잠수정 시스템

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2270141B1 (ko) 1974-05-08 1978-11-17 Eca
US4010619A (en) 1976-05-24 1977-03-08 The United States Of America As Represented By The Secretary Of The Navy Remote unmanned work system (RUWS) electromechanical cable system
JPS6018355A (ja) 1983-07-11 1985-01-30 Ricoh Co Ltd インクジエツト記録装置
JPH0111431Y2 (ko) * 1985-02-14 1989-04-03
JPS62166181U (ko) * 1986-04-12 1987-10-22
JPH07223589A (ja) * 1994-02-07 1995-08-22 Mitsubishi Heavy Ind Ltd 水中潜水体への充電システム
JP3277076B2 (ja) 1994-09-09 2002-04-22 株式会社小松製作所 歩行ロボットの歩行制御装置および歩行制御方法
JPH09127252A (ja) * 1995-10-26 1997-05-16 Kokusai Denshin Denwa Co Ltd <Kdd> 海底ケーブル探査システム
US20070107029A1 (en) * 2000-11-17 2007-05-10 E-Watch Inc. Multiple Video Display Configurations & Bandwidth Conservation Scheme for Transmitting Video Over a Network
JP4143723B2 (ja) * 2003-11-25 2008-09-03 独立行政法人港湾空港技術研究所 多脚ロボットの歩行制御方法
US7369587B2 (en) * 2004-02-21 2008-05-06 Finisar Corp Temperature control for coarse wavelength division multiplexing systems
JPWO2006070577A1 (ja) * 2004-12-28 2008-06-12 独立行政法人海洋研究開発機構 浮沈フロートおよび浮沈フロートの使用方法
JP4585900B2 (ja) 2005-03-28 2010-11-24 ファナック株式会社 六軸力センサ
DE102005051495A1 (de) 2005-10-26 2007-05-03 Otto Bock Healthcare Ip Gmbh & Co. Kg Sensoranordnung für die Messung von Kräften und/oder Momenten und Verwendung der Sensoranordnung
US7953326B2 (en) * 2006-02-06 2011-05-31 Woods Hole Oceanographic Institution Systems and methods for underwater optical communication
US7427220B2 (en) * 2006-08-02 2008-09-23 Mcgill University Amphibious robotic device
WO2008130682A1 (en) * 2007-04-17 2008-10-30 Woods Hole Oceanographic Institution Systems and methods for tethering underwater vehicles
CN101216711A (zh) 2008-01-08 2008-07-09 哈尔滨工程大学 两栖机械螃蟹的分级控制装置及控制方法
KR101484943B1 (ko) * 2008-05-30 2015-01-21 삼성전자 주식회사 보행로봇
KR101464125B1 (ko) * 2008-06-05 2014-12-04 삼성전자주식회사 보행로봇
CN101332604B (zh) 2008-06-20 2010-06-09 哈尔滨工业大学 人机相互作用机械臂的控制方法
CN101890888B (zh) * 2010-07-12 2011-09-14 华中科技大学 一种两栖仿生龟机器人
CN102001429B (zh) * 2010-11-30 2013-05-08 河海大学 仿生虾水下检测机器人

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100873723B1 (ko) * 2007-07-25 2008-12-12 인하대학교 산학협력단 복수의 다리를 갖는 이동로봇
KR20090074547A (ko) * 2008-01-02 2009-07-07 한국해양연구원 복합형 심해무인잠수정 시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MINISTRY OF LAND, INFRASTRUCTURE AND TRANSPORT: "Press release of Ministry of Land, Infrastructure and Transport", 19 April 2010 (2010-04-19), pages 2, 4, 5 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2544045C1 (ru) * 2013-09-05 2015-03-10 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Система для обеспечения технического обслуживания и ремонта подводных добычных комплексов в ледовых условиях
US10632804B2 (en) 2015-06-01 2020-04-28 Imperial College Innovations Limited Robotic vehicle
CN108896998A (zh) * 2018-08-15 2018-11-27 上海磐波智能科技有限公司 河道声呐回转扫描装置
WO2020042763A1 (zh) * 2018-08-31 2020-03-05 深圳前海达闼云端智能科技有限公司 机器人控制方法、装置、存储介质及电子设备
CN109795657B (zh) * 2019-02-20 2024-03-01 博雅工道(北京)机器人科技有限公司 一种仿生机器鱼
CN109795657A (zh) * 2019-02-20 2019-05-24 博雅工道(北京)机器人科技有限公司 一种仿生机器鱼
CN113119084A (zh) * 2021-03-23 2021-07-16 同济大学 一种基于iic总线的模块化机器人及控制方法
CN113296524A (zh) * 2021-04-25 2021-08-24 哈尔滨工程大学 水下仿生球形/半球形机器人的推力矢量分配优化方法
CN113296524B (zh) * 2021-04-25 2022-11-29 哈尔滨工程大学 水下仿生球形/半球形机器人的推力矢量分配优化方法
CN113665768B (zh) * 2021-08-09 2022-07-15 哈尔滨工程大学 一种用于海洋检测的章鱼机器人
CN113665768A (zh) * 2021-08-09 2021-11-19 哈尔滨工程大学 一种用于海洋检测的章鱼机器人
CN114872013A (zh) * 2022-04-29 2022-08-09 厦门大学 一种多运动模式微机器人及其运动控制方法
CN114872013B (zh) * 2022-04-29 2023-12-15 厦门大学 一种多运动模式微机器人及其运动控制方法

Also Published As

Publication number Publication date
CN103998186B (zh) 2016-12-07
CN103998186A (zh) 2014-08-20
US9498883B2 (en) 2016-11-22
JP2015505278A (ja) 2015-02-19
JP6001085B2 (ja) 2016-10-05
US20140343728A1 (en) 2014-11-20

Similar Documents

Publication Publication Date Title
WO2013089442A1 (ko) 보행과 유영의 복합 이동 기능을 갖는 다관절 해저 로봇 및 이를 이용한 해저탐사시스템
KR101260389B1 (ko) 강조류 악시계 수중 환경 탐사용 다관절 해저 보행 로봇
US9849954B1 (en) Glass sphere type pressure housing including titanium band and a multi-joint underwater robot system for deep sea exploration using the same
KR101283417B1 (ko) 수중유영이 가능한 다관절 해저 유영로봇
WO2012087033A1 (ko) 수중 이동 장치 및 그의 이동 방법
Liljebäck et al. Eelume: A flexible and subsea resident IMR vehicle
KR101283415B1 (ko) 복합이동이 가능한 다관절 해저로봇을 이용한 해저탐사시스템
WO2011059197A2 (ko) 다자유도 무인 수상 로봇 기반의 수중 작업 로봇
Nassiraei et al. Development of ship hull cleaning underwater robot
CN110606174A (zh) 一种用于水下观测打捞救援的机器人装置
CA2760910A1 (en) Underwater vessel with improved propulsion and handling
CN109625220A (zh) 带光、声、磁设备的有缆遥控水下机器人巡检系统及方法
Jun et al. Experience on underwater artefact search using underwater walking robot Crabster CR200
CN116118983A (zh) 一种用于水下结构检修的机器人及其设计方法
CN213768912U (zh) 海上多功能智能打捞系统
KR101249853B1 (ko) 복합이동이 가능한 다관절 해저로봇에 작용하는 유체저항토크의 근사적 모델링방법
CN211223801U (zh) 一种用于水下观测打捞救援的机器人装置
Yamamoto et al. Agile ROV for underwater surveillance
Kim et al. Development of Bioinspired Multimodal Underwater Robot “HERO-BLUE” for Walking, Swimming, and Crawling
CN209878352U (zh) 一种防倒可移动海底大视野观测取样设备
Vasileiou et al. An Underwater Vehicle for Aquaculture Inspections
Park et al. Multi-legged ROV Crabster and an acoustic camera for survey of underwater cultural heritages
Solvang et al. A methodological framework for developing ROV-manipulator systems for underwater unmanned intervention
Wood Modular amphibious research crawler
Moreira Visual servoing on deformable objects: an application to tether shape control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858305

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14364659

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014547100

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858305

Country of ref document: EP

Kind code of ref document: A1