WO2012144103A1 - Laminated inductor element and method for manufacturing same - Google Patents

Laminated inductor element and method for manufacturing same Download PDF

Info

Publication number
WO2012144103A1
WO2012144103A1 PCT/JP2011/076987 JP2011076987W WO2012144103A1 WO 2012144103 A1 WO2012144103 A1 WO 2012144103A1 JP 2011076987 W JP2011076987 W JP 2011076987W WO 2012144103 A1 WO2012144103 A1 WO 2012144103A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive pattern
layer
inductor
multilayer
magnetic
Prior art date
Application number
PCT/JP2011/076987
Other languages
French (fr)
Japanese (ja)
Inventor
家田章弘
大坪喜人
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2012144103A1 publication Critical patent/WO2012144103A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0066Printed inductances with a magnetic layer

Definitions

  • the present invention relates to a multilayer inductor element in which an inductor is formed on a laminate in which at least a plurality of magnetic layers are laminated, and a method for manufacturing the same.
  • FIG. 1 is a cross-sectional view of a multilayer inductor element described in Patent Document 1.
  • a circular coil 102 is formed in a magnetic body portion 101, and a conductor forming the circular coil 102 and the magnetic body portion 101 are not in direct contact with each other.
  • the circumferential coil 102 is provided with a gap 103 around it, so that the stress in the peripheral portion of the circumferential coil 102 can be relieved, and the influence on the magnetic body portion 101 is not affected.
  • the magnetic body portion 101 maintains the magnetic characteristics of the original magnetic material, and the deterioration of the inductance and impedance due to internal stress is eliminated, so that the multilayer inductor element described in Patent Document 1 has a high inductance, a high Impedance is realized.
  • an object of the present invention is to provide a multilayer inductor element and a manufacturing method capable of increasing the inductance value without increasing the manufacturing process.
  • a multilayer inductor element includes a multilayer body in which sheet layers including a plurality of magnetic bodies are laminated, and a conductive pattern that forms an inductor provided between the layers of the multilayer body.
  • a first conductive pattern in an open loop shape provided between the layers of the stacked body, and along the first conductive pattern at a distance from the first conductive pattern in the same layer as the first conductive pattern And an open-loop second conductive pattern that is electrically connected to the first conductive pattern at both ends.
  • the inductor is formed by the first and second conductive patterns arranged in two rows (or more) with an interval (gap) therebetween.
  • a air gap can be formed in the magnetic path, the direct current superposition characteristics of the inductor can be improved, and stress relaxation of the magnetic layer can be achieved.
  • gap is not required.
  • a multilayer inductor element includes a laminate in which sheet layers including a plurality of magnetic bodies are laminated, an open-loop conductive pattern provided between the laminates to form an inductor, and the conductive pattern And a ceramic paste pattern provided along the first conductive pattern at an interval with respect to the conductive pattern.
  • a gap is formed by providing a ceramic paste pattern (preferably a magnetic paste containing a magnetic material) at a distance from the conductive pattern, thereby improving the DC superposition characteristics of the inductor, The body layer is stress-relieved.
  • This ceramic paste pattern is generally provided in order to improve the coplanarity (flatness) of the multilayer inductor element, and the gap can be provided without increasing a special process for providing the gap.
  • the ceramic paste pattern includes a magnetic material.
  • the conductive pattern is provided on a sheet layer including the plurality of magnetic bodies of the multilayer body, and is connected in the stacking direction of the multilayer substrate to form one inductor. It may be configured.
  • one inductor is formed from a conductive pattern provided on a sheet layer including a plurality of magnetic bodies, a multilayer inductor element having a higher inductance value can be obtained.
  • the inductance value of the multilayer inductor element can be increased without increasing the number of manufacturing steps.
  • FIG. 2 is a schematic cross-sectional view of a multilayer inductor element.
  • the upper side of the paper is the upper surface side of the multilayer inductor element 1 and the lower side of the paper is the lower surface side of the multilayer inductor element.
  • the multilayer inductor element 1 is used in, for example, a non-insulated DC-DC converter or a step-down converter mounted on a mobile phone or the like.
  • the multilayer inductor element 1 includes a multilayer body 2 in which a total of 14 magnetic layers 4 and non-magnetic layer 5 ceramic green sheets are laminated.
  • the first layer, the second layer, the seventh layer, the thirteenth layer, and the fourteenth layer counted from the upper surface (upper side of the sheet) of the laminate 2 are the nonmagnetic layer 5, and the other layers are the magnetic layers. 4
  • each layer is provided on the upper surface of each layer (magnetic layer 4 or nonmagnetic layer 5) of the laminate 2, the laminate 2 shown in FIG.
  • Each layer is formed so that its upper surface is on the lower side.
  • the upper surface of the first layer is on the lower side and is joined to the lower surface of the second layer.
  • the magnetic layer 4 is composed mainly of a ferrite containing nickel, zinc, and copper and a ceramic material, for example.
  • the nonmagnetic layer 5 is mainly composed of ferrite containing iron, zinc, and copper and a ceramic material.
  • the inductor 3 has a conductive conductive pattern 30 made of Ag provided on a part of the ceramic green sheets constituting the multilayer body 2, and a via-hole conductor (not shown) is formed with the lamination direction of the multilayer body 2 as an axial direction. Via a spiral connection.
  • the conductive pattern 30 is provided on the upper surfaces (lower sides in the drawing) of the third layer, the fifth layer, the seventh layer, the ninth layer, and the eleventh layer of the stacked body 2.
  • An external electrode (not shown) is formed on the first nonmagnetic material layer 5 which is the uppermost layer of the multilayer body 2, and an IC (Integrated Circuit) 10 a and capacitors 10 b and 10 c are mounted on the external electrode.
  • IC Integrated Circuit
  • the multilayer inductor element becomes an electronic component module (such as a DC-DC converter or a step-down converter).
  • a terminal electrode (not shown) is formed on the 14th nonmagnetic layer 5 which is the lowest layer of the multilayer body 2, and the multilayer inductor element 1 is shipped as an electronic component module to this terminal electrode. Thereafter, an electronic component module is mounted in the product manufacturing process of the electronic device. That is, it becomes a terminal electrode to be connected to a land electrode or the like on the mounting substrate side.
  • the non-magnetic layer 5 of the seventh layer substantially functions as a magnetic gap, and the DC superposition characteristic can be improved by adopting a configuration in which the magnetic gap is provided in the middle of the inductor 3, so that the inductor 3 in the heavy load region can be improved.
  • the inductance value can be improved.
  • the nonmagnetic layer 5 in this embodiment has a lower thermal shrinkage rate than the magnetic layer 4. Therefore, by sandwiching the magnetic layer 4 having a relatively high thermal contraction rate with the nonmagnetic layer 5 having a relatively low thermal contraction rate, the entire element can be compressed by firing to improve the strength. .
  • FIG. 3 is a schematic diagram showing the conductive pattern 30 constituting the inductor 3.
  • FIG. 3 is a top view of one of the layers (for example, the third layer) of the stacked body 2 provided with the conductive pattern 30.
  • Other layers provided with the conductive pattern 30 are the same as in FIG. 3 and are electrically connected via via-hole conductors formed in the respective layers.
  • 2 is a cross-sectional view taken along the line II-II in FIG.
  • the conductive pattern 30 has two conductive patterns 31 and 32 formed in an open loop shape with the substantially central portion of the layer (the magnetic layer 4 in FIG. 3) as the center.
  • the conductive patterns 31 and 32 are provided with a slit-shaped gap 33 therebetween, and are electrically connected at both ends of the open loop.
  • Via hole conductors 34 and 35 are formed at both ends, and are electrically connected to the conductive pattern 30 of the other layer.
  • the conductive patterns 30 of the respective layers are spirally connected to form one inductor 3.
  • the widths of the two conductive patterns 31 and 32 are determined by determining the width of the conductive pattern 30 and dividing the determined width into two. For example, when a single conductive pattern having no gap 33 is provided in each layer of the multilayer body 2 to form an inductor of a multilayer inductor element as in the prior art, a necessary width (for example, 100 ⁇ m) of the conductive pattern is required. When determined, the width of each of the two conductive patterns 31 and 32 is determined to be a value obtained by dividing the determined width into two (for example, 50 ⁇ m).
  • the inductor 3 is provided with the air gap 33 between the two rows of the conductive patterns 31 and 32, that is, in the magnetic path, the magnetic flux density of the inductor 3 is unlikely to be excessive.
  • a predetermined inductance value can be obtained even in the load region. That is, the direct current superimposition characteristic of the inductor 3 can be improved.
  • the magnetic sheet is generally harder than the dielectric sheet and has a property of not easily deforming even when the sheet is pressed, the space formed between the conductive patterns 31 and 32 is not easily filled with the magnetic sheet.
  • the air gap 33 for increasing the inductance value of the inductor 3 is formed by providing the conductive patterns 31 and 32, a process for forming the air gap 33, for example, a process of printing carbon or the like and flying it by firing. Is not required separately.
  • the gap 33 between the conductive patterns 31 and 32 has a width that is not buried by the conductive patterns 31 and 32 due to the pressure when the laminate 2 is crimped.
  • the width of the gap 33 is preferably 35 to 250 ⁇ m.
  • the relationship between the width of the gap 33 and the thickness of the layer is not limited to this, and can be changed as appropriate.
  • the gap 33 is not filled with the conductive patterns 31 and 32. However, even if the gap 33 is buried, the conductive patterns 31 and 32 are electrically connected to each other at the end portions. The characteristics are not greatly affected. Therefore, the unusable multilayer inductor element 1 is not wasted.
  • the multilayer inductor element is manufactured by the following process.
  • an alloy (conductive paste) containing Ag or the like is applied on the ceramic green sheets to be the magnetic layer 4 and the nonmagnetic layer 5 to form a conductive pattern that forms the inductor 3 and the like.
  • the alloy is applied so that the conductive patterns 31, 32 that are conductive at both ends are formed at a predetermined interval. Thereby, after each layer is pressure-bonded and fired, a gap 33 is formed between the conductive patterns 31 and 32.
  • each ceramic green sheet is laminated. That is, in order from the lower surface side, a ceramic green sheet to be the nonmagnetic layer 5, a ceramic green sheet to be the magnetic layer 4, a ceramic green sheet to be the nonmagnetic layer 5, a ceramic green sheet to be the magnetic layer 4, and Ceramic green sheets to be the nonmagnetic layer 5 are laminated and subjected to temporary pressure bonding. Thereby, the mother laminated body before baking is formed.
  • the thickness of each layer is adjusted by adjusting the number of ceramic green sheets or the thickness of each sheet.
  • an electrode paste whose main component is silver is applied to the surface of the formed mother laminate to form external electrodes and terminal electrodes, and then fired. Thereby, the fired mother laminated body is obtained.
  • the multilayer inductor element 1 thus manufactured becomes an electronic component module by mounting electronic components such as the IC 10a and the capacitors 10b and 10c.
  • the gap 33 for improving the DC superposition characteristics of the inductor 3 is formed by forming the conductive patterns 31 and 32 in the manufacturing process, a special process for forming the gap 33 is performed. There is no need to do extra.
  • FIG. 4 is a schematic cross-sectional view of a multilayer inductor element having a conductive pattern in which no gap is formed.
  • the conductive patterns 30 formed in the fifth layer and the ninth layer have gaps 33, but the conductive patterns 30A formed in the third layer, the seventh layer, and the eleventh layer are , Does not have voids. In this way, by mixing conductive patterns without providing a gap, the inductance value of the inductor 3 can be adjusted.
  • FIG. 5 is a schematic diagram showing another example of the conductive pattern constituting the inductor 3.
  • one conductive pattern 36 is formed in an open loop shape around the substantially central portion of the layer 2 (magnetic layer 4 in FIG. 5).
  • the conductive pattern 36 is formed with via-hole conductors 37 and 38 at both ends, and is electrically connected to the conductive patterns in the other layers. As a result, the conductive patterns of the respective layers are spirally connected to form one inductor 3.
  • ceramic patterns 40 are formed along the conductive patterns 36 at intervals.
  • the ceramic pattern 40 is preferably formed by applying a ceramic paste containing a magnetic material.
  • the space between the conductive pattern 36 and the ceramic pattern 40 has the same function as the gap 33 described in the above embodiment.
  • the ceramic pattern 40 is generally provided in order to eliminate unevenness caused by forming the conductive pattern 36 and to improve the coplanarity (flatness) of the multilayer inductor element.
  • the gap is provided using the ceramic pattern 40 that is not for providing the gap, the gap can be provided without increasing the number of special steps. Further, in the case of FIG. 5, since the diameter of the inductor is not reduced in comparison with the case of FIG. 3, a higher impedance value can be obtained without changing the impedance value.
  • the ceramic pattern 40 instead of the ceramic pattern 40, another resin pattern may be used.
  • the ceramic pattern 40 is preferably formed after the conductive pattern 36 is formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

Provided are a laminated inductor element wherein an inductance value is increased without increasing manufacturing steps, and a method for manufacturing the laminated inductor element. A laminated inductor element (1) is provided with a laminated body (2) having magnetic material layers (4) and non-magnetic material layers (5) laminated therein; and open loop-shaped conductive patterns (30), which are provided between the layers of the laminated body (2), and form inductors (3). Each of the conductive patterns (30) is provided with conductive patterns (31, 32) in the magnetic material layer (4) or the non-magnetic material layer (5), said conductive patterns (31, 32) being formed at an interval such that a void (33) is formed.

Description

積層型インダクタ素子及び製造方法Multilayer inductor element and manufacturing method
 本発明は、少なくとも複数の磁性体層が積層された積層体にインダクタが構成された積層型インダクタ素子及びその製造方法に関する。 The present invention relates to a multilayer inductor element in which an inductor is formed on a laminate in which at least a plurality of magnetic layers are laminated, and a method for manufacturing the same.
 近年、電子部品の小型化又は薄型化が進んでいる。例えば、ガラスセラミックスからなる絶縁層が積層されたセラミック基板の内部にインダクタを形成した積層型インダクタ素子がある。積層型インダクタ素子において、磁気飽和し難くして(直流重畳特性を上げる)、インダクタのインダクタンス値を高くすることを目的として、または、磁性体材料の熱収縮率の違いに起因する応力緩和を図ることを目的として、インダクタ近傍に空隙を設けることが知られている(例えば、特許文献1参照)。 In recent years, electronic components are becoming smaller or thinner. For example, there is a multilayer inductor element in which an inductor is formed inside a ceramic substrate on which insulating layers made of glass ceramics are laminated. In a multilayer inductor element, it is difficult to cause magnetic saturation (increasing DC superimposition characteristics), and the purpose is to increase the inductance value of the inductor or to relieve stress caused by the difference in thermal contraction rate of the magnetic material. For this purpose, it is known to provide a gap in the vicinity of the inductor (see, for example, Patent Document 1).
 図1は特許文献1に記載の積層型インダクタ素子の断面図である。図1に示す積層型インダクタ素子は、磁性体部101内に周回コイル102が形成されており、周回コイル102を形成する導体と磁性体部101とが直に接触しない状態となっている。周回コイル102には、周囲に空隙部103が設けられており、周回コイル102の周辺部の応力を緩和させることができ、磁性体部101への応力による影響を及ぼさなくしている。これにより、磁性体部101が本来の磁性材料の持つ磁気特性を維持し、内部応力によるインダクタンス及びインピーダンスの劣化を解消することで、特許文献1に記載の積層型インダクタ素子は、高インダクタンス、高インピーダンスを実現している。 FIG. 1 is a cross-sectional view of a multilayer inductor element described in Patent Document 1. In the multilayer inductor element shown in FIG. 1, a circular coil 102 is formed in a magnetic body portion 101, and a conductor forming the circular coil 102 and the magnetic body portion 101 are not in direct contact with each other. The circumferential coil 102 is provided with a gap 103 around it, so that the stress in the peripheral portion of the circumferential coil 102 can be relieved, and the influence on the magnetic body portion 101 is not affected. As a result, the magnetic body portion 101 maintains the magnetic characteristics of the original magnetic material, and the deterioration of the inductance and impedance due to internal stress is eliminated, so that the multilayer inductor element described in Patent Document 1 has a high inductance, a high Impedance is realized.
特開平11-219821号公報Japanese Patent Laid-Open No. 11-219821
 特許文献1に記載の積層型インダクタンス素子において、磁性体部101の各層にカーボンや樹脂等の焼失材ペーストを印刷し、その後、890~900℃の高温で焼成することにより、カーボン等が分解除去され、その結果、空隙部103が形成される。すなわち、空隙部103を形成するために、カーボン等を印刷するといった製造工程を別途増やす必要がある。このため、積層型インダクタンス素子の高インダクタンスを得る際における製造工程の簡略化が望まれている。 In the multilayer inductance element described in Patent Document 1, carbon or the like is decomposed and removed by printing a burnt material paste such as carbon or resin on each layer of the magnetic body 101 and then firing at a high temperature of 890 to 900 ° C. As a result, the gap 103 is formed. That is, in order to form the gap 103, it is necessary to additionally increase a manufacturing process such as printing of carbon or the like. For this reason, simplification of the manufacturing process when obtaining a high inductance of the multilayer inductance element is desired.
 そこで、本発明の目的は、製造工程を増やすことなくインダクタンス値を高くことができる積層型インダクタ素子及び製造方法を提供することにある。 Therefore, an object of the present invention is to provide a multilayer inductor element and a manufacturing method capable of increasing the inductance value without increasing the manufacturing process.
 本発明に係る積層型インダクタ素子は、複数の磁性体を含むシート層が積層された積層体と、該積層体の層間に設けられたインダクタを形成する導電パターンと、を備え、前記導電パターンは、前記積層体の層間に設けられた開ループ状の第1導電パターンと、該第1導電パターンと同一層内において、前記第1導電パターンに対して間隔をおいて前記第1導電パターンに沿って設けられ、両端部で前記第1導電パターンと導通している開ループ状の第2導電パターンと、を有する。 A multilayer inductor element according to the present invention includes a multilayer body in which sheet layers including a plurality of magnetic bodies are laminated, and a conductive pattern that forms an inductor provided between the layers of the multilayer body. A first conductive pattern in an open loop shape provided between the layers of the stacked body, and along the first conductive pattern at a distance from the first conductive pattern in the same layer as the first conductive pattern And an open-loop second conductive pattern that is electrically connected to the first conductive pattern at both ends.
 この構成では、間隔(空隙)を介して2列(又はそれ以上)に配列された第1及び第2導電パターンによりインダクタが形成されている。この空隙により、磁路中に空隙を形成でき、インダクタの直流重畳特性を改善でき、また、磁性体層の応力緩和を図ることができる。また、導電パターンを設ける際に空隙が形成されるため、空隙を設けるための特別な工程を要しない。 In this configuration, the inductor is formed by the first and second conductive patterns arranged in two rows (or more) with an interval (gap) therebetween. By this air gap, a air gap can be formed in the magnetic path, the direct current superposition characteristics of the inductor can be improved, and stress relaxation of the magnetic layer can be achieved. Moreover, since a space | gap is formed when providing a conductive pattern, the special process for providing a space | gap is not required.
 本発明に係る積層型インダクタ素子は、複数の磁性体を含むシート層が積層された積層体と、該積層体の層間に設けられ、インダクタを形成する開ループ状の導電パターンと、該導電パターンと同一層内において、前記導電パターンに対して間隔をおいて前記第1導電パターンに沿って設けられたセラミックペーストパターンと、を備える。 A multilayer inductor element according to the present invention includes a laminate in which sheet layers including a plurality of magnetic bodies are laminated, an open-loop conductive pattern provided between the laminates to form an inductor, and the conductive pattern And a ceramic paste pattern provided along the first conductive pattern at an interval with respect to the conductive pattern.
 この構成では、導電パターンと間隔をおいてセラミックペースト(好ましくは、磁性体材料を含んだ磁性ペースト)パターンを設けることで空隙を形成することで、インダクタの直流重畳特性を改善し、また、磁性体層の応力緩和を図っている。このセラミックペーストパターンは、積層型インダクタ素子のコプラナリティ(平坦度)を改善するために一般的に設けられるものであり、空隙を設けるための特別な工程を増やすことなく、空隙を設けることができる。 In this configuration, a gap is formed by providing a ceramic paste pattern (preferably a magnetic paste containing a magnetic material) at a distance from the conductive pattern, thereby improving the DC superposition characteristics of the inductor, The body layer is stress-relieved. This ceramic paste pattern is generally provided in order to improve the coplanarity (flatness) of the multilayer inductor element, and the gap can be provided without increasing a special process for providing the gap.
 本発明に係る積層型インダクタ素子において、前記セラミックペーストパターンは磁性体を含むことが好ましい。 In the multilayer inductor element according to the present invention, it is preferable that the ceramic paste pattern includes a magnetic material.
 本発明に係る積層型インダクタ素子において、前記導電パターンは、前記積層体の複数の前記磁性体を含むシート層に設けられ、前記積層基板の積層方向に接続されて一つのインダクタを形成している構成でもよい。 In the multilayer inductor element according to the present invention, the conductive pattern is provided on a sheet layer including the plurality of magnetic bodies of the multilayer body, and is connected in the stacking direction of the multilayer substrate to form one inductor. It may be configured.
 この構成では、複数の磁性体を含むシート層に設けられた導電パターンから一つのインダクタが形成されているため、より高インダクタンス値な積層型インダクタ素子とすることができる。 In this configuration, since one inductor is formed from a conductive pattern provided on a sheet layer including a plurality of magnetic bodies, a multilayer inductor element having a higher inductance value can be obtained.
 本発明によれば、製造工程を増やすことなく積層型インダクタ素子のインダクタンス値を高くことができる。 According to the present invention, the inductance value of the multilayer inductor element can be increased without increasing the number of manufacturing steps.
特許文献1に記載の積層型セラミック電子部品の断面図Sectional view of multilayer ceramic electronic component described in Patent Document 1 積層型インダクタ素子の模式断面図Schematic cross section of multilayer inductor element インダクタを構成する導電パターンを示す模式図Schematic diagram showing the conductive pattern composing the inductor 積層型インダクタ素子の他の例の模式断面図Schematic cross section of another example of multilayer inductor element インダクタを構成する導電パターンの他の例を示す模式図Schematic diagram showing another example of the conductive pattern constituting the inductor
 図2は積層型インダクタ素子の模式断面図である。図2に示す断面図は、紙面上側を積層型インダクタ素子1の上面側とし、紙面下側を積層型インダクタ素子の下面側とする。積層型インダクタ素子1は、例えば、携帯電話機等に搭載される非絶縁型DC-DCコンバータ又は降圧型コンバータ等に用いられる。 FIG. 2 is a schematic cross-sectional view of a multilayer inductor element. In the cross-sectional view shown in FIG. 2, the upper side of the paper is the upper surface side of the multilayer inductor element 1 and the lower side of the paper is the lower surface side of the multilayer inductor element. The multilayer inductor element 1 is used in, for example, a non-insulated DC-DC converter or a step-down converter mounted on a mobile phone or the like.
 積層型インダクタ素子1は、合計14層の磁性体層4及び非磁性体層5のセラミックグリーンシートが積層されてなる積層体2を備える。積層体2の上面(紙面上側)から数えて第1層、第2層、第7層、第13層及び第14層が非磁性体層5となっており、それ以外の層が磁性体層4となっている。 The multilayer inductor element 1 includes a multilayer body 2 in which a total of 14 magnetic layers 4 and non-magnetic layer 5 ceramic green sheets are laminated. The first layer, the second layer, the seventh layer, the thirteenth layer, and the fourteenth layer counted from the upper surface (upper side of the sheet) of the laminate 2 are the nonmagnetic layer 5, and the other layers are the magnetic layers. 4
 なお、後述のインダクタ3を形成する導電パターン30は積層体2の各層(磁性体層4又は非磁性体層5)の上面に設けられているものとするが、図2に示す積層体2は、上面が下側となるように各層が積層されて形成されているものとする。例えば、第1層の上面は下側となり、第2層の下面に接合している。 2 is provided on the upper surface of each layer (magnetic layer 4 or nonmagnetic layer 5) of the laminate 2, the laminate 2 shown in FIG. Each layer is formed so that its upper surface is on the lower side. For example, the upper surface of the first layer is on the lower side and is joined to the lower surface of the second layer.
 磁性体層4は、例えば、ニッケル、亜鉛、および銅を含むフェライトとセラミック材料とを主成分とするものである。非磁性体層5は、鉄、亜鉛、および銅を含むフェライトとセラミック材料とを主成分とするものである。 The magnetic layer 4 is composed mainly of a ferrite containing nickel, zinc, and copper and a ceramic material, for example. The nonmagnetic layer 5 is mainly composed of ferrite containing iron, zinc, and copper and a ceramic material.
 積層体2の内部には、インダクタ3が形成されている。インダクタ3は、積層体2を構成する一部のセラミックグリーンシート上に設けられたAgからなる導電性の導電パターン30が、積層体2の積層方向を軸方向として、ビアホール導体(不図示)を介して螺旋状に接続されて構成されている。図2では、積層体2の第3層、第5層、第7層、第9層及び第11層の各層上面(図中では下側)に導電パターン30が設けられている。 An inductor 3 is formed inside the laminate 2. The inductor 3 has a conductive conductive pattern 30 made of Ag provided on a part of the ceramic green sheets constituting the multilayer body 2, and a via-hole conductor (not shown) is formed with the lamination direction of the multilayer body 2 as an axial direction. Via a spiral connection. In FIG. 2, the conductive pattern 30 is provided on the upper surfaces (lower sides in the drawing) of the third layer, the fifth layer, the seventh layer, the ninth layer, and the eleventh layer of the stacked body 2.
 積層体2の最上層となる第1層の非磁性体層5には、不図示の外部電極が形成されており、その外部電極にはIC(Integrated Circuit)10a及びキャパシタ10b,10c等が実装されている。これにより、積層型インダクタ素子は、電子部品モジュール(DC-DCコンバータ又は降圧型コンバータ等)となる。 An external electrode (not shown) is formed on the first nonmagnetic material layer 5 which is the uppermost layer of the multilayer body 2, and an IC (Integrated Circuit) 10 a and capacitors 10 b and 10 c are mounted on the external electrode. Has been. As a result, the multilayer inductor element becomes an electronic component module (such as a DC-DC converter or a step-down converter).
 また、積層体2の最下層となる第14層の非磁性体層5には、不図示の端子電極が形成され、この端子電極には、積層型インダクタ素子1が電子部品モジュールとして出荷された後、電子機器の製品製造工程において、電子部品モジュールが実装される。すなわち、実装基板側のランド電極等と接続されるための端子電極となる。 In addition, a terminal electrode (not shown) is formed on the 14th nonmagnetic layer 5 which is the lowest layer of the multilayer body 2, and the multilayer inductor element 1 is shipped as an electronic component module to this terminal electrode. Thereafter, an electronic component module is mounted in the product manufacturing process of the electronic device. That is, it becomes a terminal electrode to be connected to a land electrode or the like on the mounting substrate side.
 第7層の非磁性体層5は、実質的に磁気ギャップとして機能し、インダクタ3の途中に磁気ギャップが設けられる構成とすることにより直流重畳特性を改善でき、重負荷領域でのインダクタ3のインダクタンス値を向上させることができる。 The non-magnetic layer 5 of the seventh layer substantially functions as a magnetic gap, and the DC superposition characteristic can be improved by adopting a configuration in which the magnetic gap is provided in the middle of the inductor 3, so that the inductor 3 in the heavy load region can be improved. The inductance value can be improved.
 また、本実施形態における非磁性体層5は、磁性体層4よりも熱収縮率が低くなっている。そのため、相対的に熱収縮率の高い磁性体層4を、相対的に熱収縮率の低い非磁性体層5で挟みこむことで、焼成により素子全体を圧縮して強度を向上させることができる。 Further, the nonmagnetic layer 5 in this embodiment has a lower thermal shrinkage rate than the magnetic layer 4. Therefore, by sandwiching the magnetic layer 4 having a relatively high thermal contraction rate with the nonmagnetic layer 5 having a relatively low thermal contraction rate, the entire element can be compressed by firing to improve the strength. .
 以下に、積層体2に形成されるインダクタ3について説明する。図3は、インダクタ3を構成する導電パターン30を示す模式図である。図3は、導電パターン30が設けられた積層体2の層(例えば、第3層)の一つの上面図である。導電パターン30が設けられた他の層は、図3と同様であり、各層に形成されたビアホール導体を介して導通している。なお、図2は、図3のII-II線における断面図である。 Hereinafter, the inductor 3 formed in the multilayer body 2 will be described. FIG. 3 is a schematic diagram showing the conductive pattern 30 constituting the inductor 3. FIG. 3 is a top view of one of the layers (for example, the third layer) of the stacked body 2 provided with the conductive pattern 30. Other layers provided with the conductive pattern 30 are the same as in FIG. 3 and are electrically connected via via-hole conductors formed in the respective layers. 2 is a cross-sectional view taken along the line II-II in FIG.
 導電パターン30は、層(図3では磁性体層4)の略中央部を中心とした開ループ状に形成された二つの導電パターン31,32を有している。この導電パターン31,32は、間にスリット状の空隙33を介して設けられており、開ループの両端部で導通している。両端部には、ビアホール導体34,35が形成されており、他層の導電パターン30と導通している。これにより、各層の導電パターン30が螺旋状に接続され、一つのインダクタ3を形成している。 The conductive pattern 30 has two conductive patterns 31 and 32 formed in an open loop shape with the substantially central portion of the layer (the magnetic layer 4 in FIG. 3) as the center. The conductive patterns 31 and 32 are provided with a slit-shaped gap 33 therebetween, and are electrically connected at both ends of the open loop. Via hole conductors 34 and 35 are formed at both ends, and are electrically connected to the conductive pattern 30 of the other layer. As a result, the conductive patterns 30 of the respective layers are spirally connected to form one inductor 3.
 二つの導電パターン31,32の幅は、導電パターン30の幅が決定され、その決定された幅を二分した値に決定される。例えば、従来のように積層体2の各層に空隙33を有さない一つの導電パターンを設けて、積層型インダクタ素子のインダクタを形成する場合において、必要な導電パターンの幅(例えば、100μm)が決定されると、二つの導電パターン31,32それぞれの幅は、その決定された幅を二分した値(例えば、50μm)に決定される。 The widths of the two conductive patterns 31 and 32 are determined by determining the width of the conductive pattern 30 and dividing the determined width into two. For example, when a single conductive pattern having no gap 33 is provided in each layer of the multilayer body 2 to form an inductor of a multilayer inductor element as in the prior art, a necessary width (for example, 100 μm) of the conductive pattern is required. When determined, the width of each of the two conductive patterns 31 and 32 is determined to be a value obtained by dividing the determined width into two (for example, 50 μm).
 また、インダクタ3は、二列の導電パターン31,32の間、すなわち、磁路中に空隙33が設けられているため、インダクタ3の磁束密度は過大となり難く、従って磁気飽和が抑制され、軽負荷領域でも所定のインダクタンス値を得ることができる。すなわち、インダクタ3の直流重畳特性を向上させることができる。磁性体シートは、一般的に誘電体シートよりも硬く、シート圧着時においても、変形しにくい性質を有しているので、導電パターン31、32の間に生じる空間が磁性体シートで埋まりにくい。 In addition, since the inductor 3 is provided with the air gap 33 between the two rows of the conductive patterns 31 and 32, that is, in the magnetic path, the magnetic flux density of the inductor 3 is unlikely to be excessive. A predetermined inductance value can be obtained even in the load region. That is, the direct current superimposition characteristic of the inductor 3 can be improved. Since the magnetic sheet is generally harder than the dielectric sheet and has a property of not easily deforming even when the sheet is pressed, the space formed between the conductive patterns 31 and 32 is not easily filled with the magnetic sheet.
 インダクタ3のインダクタンス値を高くするための空隙33は、導電パターン31,32を設けることで形成されるため、空隙33を形成するための工程、例えば、カーボン等を印刷して、焼成により飛ばす工程を別途必要としない。 Since the air gap 33 for increasing the inductance value of the inductor 3 is formed by providing the conductive patterns 31 and 32, a process for forming the air gap 33, for example, a process of printing carbon or the like and flying it by firing. Is not required separately.
 また、衝撃時等に積層体2に圧がかかっても、導電パターン31,32に空隙33が挟まれているため衝撃が緩和され、空隙33にクラックが生じなることがなく、積層型インダクタ素子1の破損を抑制することができる。 Further, even when pressure is applied to the multilayer body 2 at the time of impact or the like, since the gap 33 is sandwiched between the conductive patterns 31 and 32, the impact is alleviated and no crack is generated in the gap 33. 1 damage can be suppressed.
 導電パターン31,32間の空隙33は、積層体2の圧着時の圧により導電パターン31,32により埋もれない程度の幅を有していることが好ましい。例えば、導電パターン31,32が設けられた層の厚みが6~20μmの場合、空隙33の幅は、35~250μmであることが好ましい。この空隙33の幅及び層の厚みの関係はこれに限定されることなく、適宜変更可能である。 It is preferable that the gap 33 between the conductive patterns 31 and 32 has a width that is not buried by the conductive patterns 31 and 32 due to the pressure when the laminate 2 is crimped. For example, when the thickness of the layer provided with the conductive patterns 31 and 32 is 6 to 20 μm, the width of the gap 33 is preferably 35 to 250 μm. The relationship between the width of the gap 33 and the thickness of the layer is not limited to this, and can be changed as appropriate.
 なお、空隙33は導電パターン31,32により埋もれないことが好ましいが、たとえ埋もれた場合であっても、導電パターン31,32は端部で互いに導通しているため、積層型インダクタ素子1の電気特性に大きな影響が及ぼされることはない。従って、使えない積層型インダクタ素子1が無駄に製造されることがない。 It is preferable that the gap 33 is not filled with the conductive patterns 31 and 32. However, even if the gap 33 is buried, the conductive patterns 31 and 32 are electrically connected to each other at the end portions. The characteristics are not greatly affected. Therefore, the unusable multilayer inductor element 1 is not wasted.
 次に、積層型インダクタ素子1の製造工程について説明する。積層型インダクタ素子は、以下の工程により製造される。 Next, the manufacturing process of the multilayer inductor element 1 will be described. The multilayer inductor element is manufactured by the following process.
 まず、磁性体層4及び非磁性体層5となるセラミックグリーンシート上に、それぞれAg等が含まれる合金(導電性ペースト)が塗布され、インダクタ3等を形成する導電パターンが形成される。 First, an alloy (conductive paste) containing Ag or the like is applied on the ceramic green sheets to be the magnetic layer 4 and the nonmagnetic layer 5 to form a conductive pattern that forms the inductor 3 and the like.
 このとき、両端部で導通する導電パターン31,32が所定の間隔をおいて形成されるように合金が塗布される。これにより、各層が圧着されて焼成された後、導電パターン31,32の間に空隙33が形成されるようになる。 At this time, the alloy is applied so that the conductive patterns 31, 32 that are conductive at both ends are formed at a predetermined interval. Thereby, after each layer is pressure-bonded and fired, a gap 33 is formed between the conductive patterns 31 and 32.
 次に、各セラミックグリーンシートが積層される。すなわち、下面側から順に、非磁性体層5となるセラミックグリーンシート、磁性体層4となるセラミックグリーンシート、非磁性体層5となるセラミックグリーンシート、磁性体層4となるセラミックグリーンシート、及び非磁性体層5となるべきセラミックグリーンシートが、それぞれ積層され、仮圧着を行われる。これにより、焼成前のマザー積層体が形成される。 Next, each ceramic green sheet is laminated. That is, in order from the lower surface side, a ceramic green sheet to be the nonmagnetic layer 5, a ceramic green sheet to be the magnetic layer 4, a ceramic green sheet to be the nonmagnetic layer 5, a ceramic green sheet to be the magnetic layer 4, and Ceramic green sheets to be the nonmagnetic layer 5 are laminated and subjected to temporary pressure bonding. Thereby, the mother laminated body before baking is formed.
 このとき、各セラミックグリーンシートの枚数、またはシート毎の厚みを調整することにより、各層の厚みが調整される。 At this time, the thickness of each layer is adjusted by adjusting the number of ceramic green sheets or the thickness of each sheet.
 次に、形成したマザー積層体の表面には、主成分が銀である電極ペーストが塗布され、外部電極及び端子電極が形成され、その後、焼成がなされる。これにより、焼成されたマザー積層体が得られる。 Next, an electrode paste whose main component is silver is applied to the surface of the formed mother laminate to form external electrodes and terminal electrodes, and then fired. Thereby, the fired mother laminated body is obtained.
 そして、最後にマザー積層体の外部電極表面にめっきが施される。めっき処理は、マザー積層体をめっき液に浸漬させ、揺動させることによって行われる。このようにして製造された積層型インダクタ素子1は、IC10a及びキャパシタ10b,10c等の電子部品を実装することで、電子部品モジュールとなる。 Finally, the surface of the external electrode of the mother laminate is plated. The plating process is performed by immersing the mother laminate in a plating solution and swinging. The multilayer inductor element 1 thus manufactured becomes an electronic component module by mounting electronic components such as the IC 10a and the capacitors 10b and 10c.
 以上のように、製造工程において、インダクタ3の直流重畳特性を改善するための空隙33は、導電パターン31,32を形成することで形成されるため、空隙33を形成するための特別な工程を余分に行う必要がない。 As described above, since the gap 33 for improving the DC superposition characteristics of the inductor 3 is formed by forming the conductive patterns 31 and 32 in the manufacturing process, a special process for forming the gap 33 is performed. There is no need to do extra.
 なお、積層型インダクタ素子1の具体的構成などは、適宜設計変更可能であり、上述の実施形態に記載された作用及び効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、上述の実施形態に記載されたものに限定されるものではない。 The specific configuration and the like of the multilayer inductor element 1 can be changed as appropriate, and the actions and effects described in the above-described embodiments are merely a list of the most preferable actions and effects resulting from the present invention. The operations and effects of the present invention are not limited to those described in the above embodiment.
 例えば、上述の実施形態では、導電パターン30が形成されている層(磁性体層4又は非磁性体層5)すべてに空隙33が形成される構成としているが、これに限定されない。図4は、空隙を形成していない導電パターンを有する積層型インダクタ素子の模式断面図である。図4に示すように、第5層及び第9層に形成された導電パターン30は空隙33を有しているが、第3層、第7層及び第11層に形成された導電パターン30Aは、空隙を有していない。このように、空隙を設けない導電パターンを混合することで、インダクタ3のインダクタンス値を調整することが可能となる。 For example, in the above-described embodiment, the gap 33 is formed in all the layers (the magnetic layer 4 or the nonmagnetic layer 5) where the conductive pattern 30 is formed, but the present invention is not limited to this. FIG. 4 is a schematic cross-sectional view of a multilayer inductor element having a conductive pattern in which no gap is formed. As shown in FIG. 4, the conductive patterns 30 formed in the fifth layer and the ninth layer have gaps 33, but the conductive patterns 30A formed in the third layer, the seventh layer, and the eleventh layer are , Does not have voids. In this way, by mixing conductive patterns without providing a gap, the inductance value of the inductor 3 can be adjusted.
 また、上述の実施形態では、間隔をおいて導電パターン31,32を形成することで、インダクタ3に空隙33が形成される構成としているが、これに限定されない。図5は、インダクタ3を構成する導電パターンの他の例を示す模式図である。図5では、一つの導電パターン36が積層体2の層(図5では磁性体層4)の略中央部を中心とした開ループ状に形成されている。この導電パターン36は、両端部にあるビアホール導体37,38が形成されており、他層の導電パターンと導通している。これにより、各層の導電パターンが螺旋状に接続され、一つのインダクタ3を形成している。 In the above-described embodiment, the gaps 33 are formed in the inductor 3 by forming the conductive patterns 31 and 32 at intervals. However, the present invention is not limited to this. FIG. 5 is a schematic diagram showing another example of the conductive pattern constituting the inductor 3. In FIG. 5, one conductive pattern 36 is formed in an open loop shape around the substantially central portion of the layer 2 (magnetic layer 4 in FIG. 5). The conductive pattern 36 is formed with via- hole conductors 37 and 38 at both ends, and is electrically connected to the conductive patterns in the other layers. As a result, the conductive patterns of the respective layers are spirally connected to form one inductor 3.
 また、磁性体層4には、間隔をおいて導電パターン36に沿ってセラミックパターン40が形成されている。セラミックパターン40には、好ましくは磁性体材料を含んだセラミックペーストが塗布されて形成されている。導電パターン36とセラミックパターン40との間が、上述の実施形態で説明した空隙33と同じ機能を有することとなる。このセラミックパターン40は、導電パターン36を形成することで生じる凹凸を無くし、積層型インダクタ素子のコプラナリティ(平坦度)を改善するために一般的に設けられるものでる。 In the magnetic layer 4, ceramic patterns 40 are formed along the conductive patterns 36 at intervals. The ceramic pattern 40 is preferably formed by applying a ceramic paste containing a magnetic material. The space between the conductive pattern 36 and the ceramic pattern 40 has the same function as the gap 33 described in the above embodiment. The ceramic pattern 40 is generally provided in order to eliminate unevenness caused by forming the conductive pattern 36 and to improve the coplanarity (flatness) of the multilayer inductor element.
 従って、空隙を設けるためのものではないセラミックパターン40を利用して空隙を設けるため、特別な工程を増やすことなく、空隙を設けることができる。また、図5の場合、図3の場合との対比において、インダクタの径が小さくなることがないため、インピーダンス値を変えないより高インピーダンス値を得ることができる。なお、セラミックパターン40に代えて、他の樹脂パターンであってもよい。 Therefore, since the gap is provided using the ceramic pattern 40 that is not for providing the gap, the gap can be provided without increasing the number of special steps. Further, in the case of FIG. 5, since the diameter of the inductor is not reduced in comparison with the case of FIG. 3, a higher impedance value can be obtained without changing the impedance value. Instead of the ceramic pattern 40, another resin pattern may be used.
 なお、図5に示す層の製造工程では、セラミックパターン40は、導電パターン36が形成された後に形成されることが好ましい。 In the layer manufacturing process shown in FIG. 5, the ceramic pattern 40 is preferably formed after the conductive pattern 36 is formed.
1-積層型インダクタ素子
2-積層体
3-インダクタ
4-磁性体層(誘電体層)
5-非磁性体層(誘電体層)
30-導電パターン
31,32-導電パターン
33-空隙
40-セラミックパターン
1-layered inductor element 2-laminated body 3-inductor 4-magnetic layer (dielectric layer)
5-Non-magnetic layer (dielectric layer)
30-conductive pattern 31, 32-conductive pattern 33-gap 40-ceramic pattern

Claims (7)

  1.  複数の磁性体を含むシート層が積層された積層体と、
     該積層体の層間に設けられたインダクタを形成する導電パターンと、
     を備え、
     前記導電パターンは、
     前記積層体の層間に設けられた開ループ状の第1導電パターンと、
     該第1導電パターンと同一層内において、前記第1導電パターンに対して間隔をおいて前記第1導電パターンに沿って設けられ、両端部で前記第1導電パターンと導通している開ループ状の第2導電パターンと、
     を有する積層型インダクタ素子。
    A laminate in which sheet layers including a plurality of magnetic bodies are laminated;
    A conductive pattern forming an inductor provided between the layers of the laminate;
    With
    The conductive pattern is
    An open loop-shaped first conductive pattern provided between the layers of the laminate;
    In the same layer as the first conductive pattern, an open loop shape is provided along the first conductive pattern at an interval with respect to the first conductive pattern, and is electrically connected to the first conductive pattern at both ends. A second conductive pattern of
    A multilayer inductor element.
  2.  複数の磁性体を含むシート層が積層された積層体と、
     該積層体の層間に設けられ、インダクタを形成する開ループ状の導電パターンと、
     該導電パターンと同一層内において、前記導電パターンに対して間隔をおいて前記第1導電パターンに沿って設けられたセラミックペーストパターンと、
     を備える積層型インダクタ素子。
    A laminate in which sheet layers including a plurality of magnetic bodies are laminated;
    An open loop conductive pattern provided between the layers of the laminate and forming an inductor;
    In the same layer as the conductive pattern, a ceramic paste pattern provided along the first conductive pattern at an interval from the conductive pattern;
    A multilayer inductor element comprising:
  3.  前記セラミックペーストパターンは磁性体を含むことを特徴とする請求項2に記載の積層型インダクタ素子。 3. The multilayer inductor element according to claim 2, wherein the ceramic paste pattern includes a magnetic material.
  4.  前記導電パターンは、
     前記積層体の複数の前記磁性体を含むシート層に設けられ、前記積層体の積層方向に接続されて一つのインダクタを形成している、
     請求項1から3の何れか一つに記載の積層型インダクタ素子。
    The conductive pattern is
    Provided in a sheet layer including a plurality of the magnetic bodies of the multilayer body, connected in the stacking direction of the multilayer body to form one inductor,
    The multilayer inductor element according to any one of claims 1 to 3.
  5.  インダクタを形成する導電パターンを設けた磁性体を含むシート層を含む複数の磁性体を含むシート層を積層して積層体を形成する積層型インダクタ素子の製造方法において、
     前記磁性体を含むシート層に、インダクタを形成する開ループ状の第1導電パターンを形成する工程と、
     該第1導電パターンと同一層内において、前記第1導電パターンに対して間隔をおいて前記第1導電パターンに沿って、両端部で前記第1導電パターンと導通する開ループ状の第2導電パターンを設ける工程と、
     を備える製造方法。
    In a method for manufacturing a multilayer inductor element in which a multilayer body is formed by laminating a plurality of sheet layers including a magnetic layer including a magnetic layer provided with a conductive pattern that forms an inductor.
    Forming an open-loop first conductive pattern for forming an inductor on the sheet layer containing the magnetic material;
    In the same layer as the first conductive pattern, the second conductive in an open loop shape that is electrically connected to the first conductive pattern at both ends along the first conductive pattern at an interval from the first conductive pattern. Providing a pattern;
    A manufacturing method comprising:
  6.  インダクタを形成する導電パターンを設けた磁性体を含むシート層を含む複数の磁性体を含むシート層を積層して積層体を形成する積層型インダクタ素子の製造方法において、
     前記磁性体を含むシート層に、インダクタを形成する開ループ状の導電パターンを形成する工程と、
     該導電パターンと同一層内において、前記導電パターンに対して間隔をおいて前記導電パターンに沿って、セラミックペーストパターンを設ける工程と、
     を備える製造方法。
    In a method for manufacturing a multilayer inductor element in which a multilayer body is formed by laminating a plurality of sheet layers including a magnetic layer including a magnetic layer provided with a conductive pattern that forms an inductor.
    Forming an open loop conductive pattern for forming an inductor on the sheet layer containing the magnetic material;
    Providing a ceramic paste pattern along the conductive pattern at an interval from the conductive pattern in the same layer as the conductive pattern;
    A manufacturing method comprising:
  7.  前記セラミックペーストパターンは磁性体を含むことを特徴とする請求項6に記載の製造方法。 The manufacturing method according to claim 6, wherein the ceramic paste pattern includes a magnetic material.
PCT/JP2011/076987 2011-04-19 2011-11-24 Laminated inductor element and method for manufacturing same WO2012144103A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-092922 2011-04-19
JP2011092922 2011-04-19

Publications (1)

Publication Number Publication Date
WO2012144103A1 true WO2012144103A1 (en) 2012-10-26

Family

ID=47041240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076987 WO2012144103A1 (en) 2011-04-19 2011-11-24 Laminated inductor element and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2012144103A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033941A (en) * 2011-07-29 2013-02-14 Samsung Electro-Mechanics Co Ltd Multilayer inductor and method of manufacturing the same
WO2014069050A1 (en) * 2012-11-01 2014-05-08 株式会社村田製作所 Laminated inductor
JP2014150096A (en) * 2013-01-31 2014-08-21 Toko Inc Multilayer electronic component
JP2018506321A (en) * 2015-01-09 2018-03-08 ストライカー・コーポレイション Separate force / torque sensor assembly for force control robot
CN111128517A (en) * 2018-10-30 2020-05-08 Tdk株式会社 Laminated coil component
US20200312536A1 (en) * 2019-04-01 2020-10-01 Samsung Electro-Mechanics Co., Ltd. Coil component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04354109A (en) * 1991-05-30 1992-12-08 Taiyo Yuden Co Ltd Manufacture of multilayered chip inductor
JP2004080023A (en) * 2002-07-30 2004-03-11 Sumitomo Special Metals Co Ltd Multilayer inductor
JP2008166385A (en) * 2006-12-27 2008-07-17 Tdk Corp Manufacturing method of laminated inductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04354109A (en) * 1991-05-30 1992-12-08 Taiyo Yuden Co Ltd Manufacture of multilayered chip inductor
JP2004080023A (en) * 2002-07-30 2004-03-11 Sumitomo Special Metals Co Ltd Multilayer inductor
JP2008166385A (en) * 2006-12-27 2008-07-17 Tdk Corp Manufacturing method of laminated inductor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033941A (en) * 2011-07-29 2013-02-14 Samsung Electro-Mechanics Co Ltd Multilayer inductor and method of manufacturing the same
US9041506B2 (en) 2011-07-29 2015-05-26 Samsung Electro-Mechanics Co., Ltd. Multilayer inductor and method of manufacturing the same
WO2014069050A1 (en) * 2012-11-01 2014-05-08 株式会社村田製作所 Laminated inductor
JPWO2014069050A1 (en) * 2012-11-01 2016-09-08 株式会社村田製作所 Multilayer inductor element
US9601253B2 (en) 2012-11-01 2017-03-21 Murata Manufacturing Co., Ltd. Laminated-type inductance device
JP2014150096A (en) * 2013-01-31 2014-08-21 Toko Inc Multilayer electronic component
JP2018506321A (en) * 2015-01-09 2018-03-08 ストライカー・コーポレイション Separate force / torque sensor assembly for force control robot
CN111128517A (en) * 2018-10-30 2020-05-08 Tdk株式会社 Laminated coil component
US20200312536A1 (en) * 2019-04-01 2020-10-01 Samsung Electro-Mechanics Co., Ltd. Coil component
US11631531B2 (en) * 2019-04-01 2023-04-18 Samsung Electro-Mechanics Co., Ltd. Coil component

Similar Documents

Publication Publication Date Title
US9251943B2 (en) Multilayer type inductor and method of manufacturing the same
CN109427463B (en) Coil component
US8159322B2 (en) Laminated coil
US8410887B2 (en) Built-in-coil substrate
US20090115563A1 (en) Laminated inductor and method of manufacture of same
US8736413B2 (en) Laminated type inductor element and manufacturing method therefor
US20180254139A1 (en) Coil-incorporated component
JP5621573B2 (en) Coil built-in board
JP5008926B2 (en) Multilayer inductor and method of adjusting inductance of multilayer inductor
JP5835355B2 (en) Coil parts
JP2001044037A (en) Laminated inductor
WO2012144103A1 (en) Laminated inductor element and method for manufacturing same
US20120062348A1 (en) Laminated coil
WO2012111203A1 (en) Laminate-type inductor element
WO2014115454A1 (en) Built-in multilayer resin substrate inside magnetic core, method for producing same, and electronic device
JP6048509B2 (en) Multilayer inductor element
US20140022042A1 (en) Chip device, multi-layered chip device and method of producing the same
KR101983149B1 (en) Laminated Inductor And Manufacturing Method Thereof
JP5720791B2 (en) Inductor element and manufacturing method thereof
JP2015035486A (en) Laminated coil component
US6551426B2 (en) Manufacturing method for a laminated ceramic electronic component
JP4272183B2 (en) Multilayer electronic components
JP4400430B2 (en) Multilayer inductor
KR20150042169A (en) Multilayer type inductor and method of manufacturing the same
JP2012151243A (en) Multilayer ceramic substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP