WO2010087232A1 - ネガ型感光性絶縁樹脂組成物及びそれを用いたパターン形成方法 - Google Patents

ネガ型感光性絶縁樹脂組成物及びそれを用いたパターン形成方法 Download PDF

Info

Publication number
WO2010087232A1
WO2010087232A1 PCT/JP2010/050351 JP2010050351W WO2010087232A1 WO 2010087232 A1 WO2010087232 A1 WO 2010087232A1 JP 2010050351 W JP2010050351 W JP 2010050351W WO 2010087232 A1 WO2010087232 A1 WO 2010087232A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
resin composition
group
insulating resin
photosensitive insulating
Prior art date
Application number
PCT/JP2010/050351
Other languages
English (en)
French (fr)
Inventor
前田 勝美
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010548463A priority Critical patent/JPWO2010087232A1/ja
Priority to US13/146,886 priority patent/US20110281217A1/en
Publication of WO2010087232A1 publication Critical patent/WO2010087232A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • C08F20/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F20/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-acryloylmorpholine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Definitions

  • the present invention relates to a photosensitive insulating resin composition and a pattern forming method, and more particularly to a negative photosensitive resin composition and a pattern forming method applicable to an interlayer insulating film, a surface protective film, and the like of a semiconductor device.
  • Examples of such a photosensitive polyimide resin composition include a positive photosensitive resin composition comprising a polyamic acid, an aromatic bisazide compound, and an amine compound (Patent Document 1).
  • a positive photosensitive resin composition comprising a polyamic acid, an aromatic bisazide compound, and an amine compound (Patent Document 1).
  • an organic solvent such as N-methyl-2-pyrrolidone or ethanol is required, which has been a problem in terms of safety and environmental impact.
  • a photosensitive resin composition has been developed as a pattern forming material that can be developed with an aqueous alkali solution, for example, an aqueous tetramethylammonium hydroxide (TMAH) solution used in a fine pattern forming process of a semiconductor.
  • TMAH aqueous tetramethylammonium hydroxide
  • Non-chemical amplification type photosensitive resin composition comprising a polybenzoxazole precursor and a diazoquinone compound as a photosensitizer (Patent Document 2), a polybenzoxazole precursor and 1,2-naphthoquinonediazide-5-sulfonic acid
  • Non-amplified photosensitive resin composition comprising an ester
  • Non-Patent Document 2 chemically amplified photosensitive resin composition comprising a polybenzoxazole precursor protected with an acid-decomposable group and a photoacid generator
  • Such a photosensitive insulating resin composition changes its structure by heat treatment, forms a benzoxazole ring, and has excellent heat resistance and electrical characteristics.
  • a benzoxazole ring is formed by heat treatment after alkali development, as shown in the following reaction formula A1 and reaction formula A2. Since the benzoxazole ring has a stable structure, interlayer insulating films and surface protective films using a photosensitive composition comprising this polybenzoxazole precursor have excellent film characteristics such as heat resistance, mechanical characteristics, and electrical characteristics. It will be a thing.
  • a photosensitive insulating resin composition that is capable of alkali development while maintaining the conventional film characteristics, is capable of high resolution, and has excellent substrate adhesion in which the formed fine resin pattern is not easily peeled off from the substrate. The development of things is awaited.
  • the present invention has been made to solve the above-mentioned problems.
  • the first object of the present invention is excellent in film properties such as heat resistance, mechanical properties, and electrical properties, alkali development is possible, and high resolution is obtained.
  • Another object of the present invention is to provide a photosensitive insulating resin composition in which the formed resin pattern has excellent substrate adhesion.
  • the second object of the present invention is to provide a pattern forming method using a photosensitive insulating resin composition.
  • a negative photosensitive insulating resin composition comprising an alkali-soluble polymer having a specific structure, a crosslinking agent, and a photoacid generator can be developed with an aqueous alkali solution.
  • the present inventors have found that high resolution can be obtained and that adhesion to a substrate is excellent, and the present invention has been completed.
  • the present invention is a negative photosensitive insulating resin composition
  • a negative photosensitive insulating resin composition comprising an alkali-soluble polymer having a repeating structural unit represented by the following general formula (1), a crosslinking agent, and a photoacid generator. is there.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 to R 5 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
  • this invention is a compound by which the said crosslinking agent contains the functional group represented by following General formula (2), General formula (3) or General formula (4), The following general formula (5) Or it is a negative photosensitive insulating resin composition characterized by being a compound which has an epoxy group.
  • R 6 , R 7 and R 8 each represents an alkyl group having 1 to 6 carbon atoms
  • R 9 represents an acyl group.
  • the compound containing the functional group represented by the general formula (2) is a compound represented by the following general formula (6).
  • R 6 represents an alkyl group having 1 to 6 carbon atoms.
  • the compound containing the functional group represented by the general formula (3) is a compound represented by any one of the following general formulas (7) to (9).
  • R 7 represents an alkyl group having 1 to 6 carbon atoms.
  • the compound containing the functional group represented by the general formula (3) is a compound represented by the following general formula (10) or (11).
  • R 8 represents an alkyl group having 1 to 6 carbon atoms
  • Z 1 represents a direct bond, —CH 2 —, —C (CH 3 ) 2 — or C (CF 3 ) 2- represents
  • Z 2 represents a hydrogen atom or a methyl group.
  • an alkali-soluble polymer having at least a repeating structural unit represented by the general formula (1) is further represented by the following general formula (12) together with the repeating structural unit represented by the general formula (1).
  • the negative photosensitive insulating resin composition is a polymer containing at least one repeating structural unit selected from repeating structural units represented by the following general formula (13).
  • R 10 represents a hydrogen atom or a methyl group
  • R 11 represents an organic group having a lactone structure.
  • R 12 represents a hydrogen atom or a methyl group
  • R 13 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group.
  • the present invention is a pattern forming method characterized by comprising at least the following steps: Application step of the negative photosensitive insulating resin composition on a substrate to be processed; Pre-baking process; Exposure process; Post-exposure baking process; Development step; and post-bake step.
  • the negative photosensitive insulating resin composition and pattern forming method of the present invention it is possible to form a high-resolution pattern by development with an alkaline developer, and heat treatment or heat treatment under a suitable catalyst, A film having excellent heat resistance, mechanical properties, electrical properties, and the like can be formed.
  • the negative photosensitive insulating resin composition of the present invention comprises at least an alkali-soluble polymer having a repeating structural unit represented by the following general formula (1), a crosslinking agent, and a photoacid generator. It can be prepared by mixing an alkali-soluble polymer, a crosslinking agent and a photoacid generator.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 to R 5 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
  • the hydrocarbon group having 1 to 4 carbon atoms represented by R 2 to R 5 Methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group and the like.
  • repeating structural unit represented by the general formula (1) examples include those shown in Table 1 below, but are not limited thereto.
  • a ring-closing reaction occurs by heat treatment to form a benzoxazole ring, and the film has excellent heat resistance, mechanical properties, electrical properties, and the like.
  • a polymer in which R 1 to R 5 are all hydrogen atoms undergoes a cyclization reaction by heat treatment as shown in the following reaction formula B to form a benzoxazole ring.
  • this benzoxazole ring has a stable structure
  • the use of this polymer for an interlayer insulating film or a surface protective film makes it possible to use an interlayer insulating film or a surface protective film excellent in film characteristics such as heat resistance, mechanical characteristics and electrical characteristics. It is possible to form a film.
  • the polymer containing the repeating structural unit represented by the general formula (1) can be synthesized as a polymer containing the repeating structural unit represented by the general formula (1).
  • the raw material is not particularly limited, but a (meth) acrylamide derivative represented by the following general formula (14) can be preferably used.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 to R 5 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the polymer containing at least the repeating structural unit represented by the general formula (1) used in the present invention may be obtained by polymerizing only the (meth) acrylamide derivative represented by the general formula (14). It may be obtained by copolymerization with a comonomer different from the (meth) acrylamide derivative represented by the formula (14).
  • the characteristics from the comonomer to be copolymerized are added to the copolymer, the characteristics useful for the photosensitive insulating resin composition using this polymer (resolution, sensitivity, etc.) can be obtained by using various comonomers. ), Useful properties (for example, heat resistance, mechanical properties, electrical properties, etc.) for interlayer insulating films and surface protective films formed of a photosensitive resin can be improved.
  • a vinyl monomer is preferable because it has sufficient polymerizability with the (meth) acrylamide derivative.
  • the vinyl monomer (meth) acrylamide derivatives other than the above (meth) acrylamide derivatives, butadiene, acrylonitrile, styrene, (meth) acrylic acid, (meth) acrylic ester derivatives, ethylene derivatives, styrene derivatives, etc. can be used. .
  • Examples of the ethylene derivative include ethylene, propylene, vinyl chloride, and the like.
  • Examples of the styrene derivative include ⁇ -methylstyrene, p-hydroxystyrene, chlorostyrene, and a styrene derivative described in JP-A No. 2001-172315.
  • N-phenylmaleimide derivatives examples include N-phenylmaleimide and N- (4-methylphenyl) maleimide.
  • These comonomers may be used alone or in combination of two or more.
  • R 10 represents a hydrogen atom or a methyl group
  • R 11 represents an organic group having a lactone structure.
  • R 12 represents a hydrogen atom or a methyl group
  • R 13 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group.
  • Examples of the repeating structural unit represented by the general formula (12) include those shown in Table 2 below, but are not limited thereto.
  • Examples of the repeating structural unit represented by the general formula (13) include the following examples shown in Table 3, but are not limited thereto.
  • the alkali-soluble polymer used in the present invention occupies the polymer of the repeating structural unit represented by the general formula (1).
  • the proportion is preferably 10 to 100 mol%, more preferably 20 to 100 mol%.
  • the weight average molecular weight (Mw) of the alkali-soluble polymer is usually preferably from 2,000 to 200,000, and more preferably from 4,000 to 100,000.
  • Mw is less than 2,000, it may be difficult to form an interlayer insulating film and a surface protective film uniformly. Further, when Mw exceeds 200,000, resolution may be deteriorated when an interlayer insulating film or a surface protective film is formed.
  • the alkali-soluble polymer containing at least the repeating structural unit represented by the general formula (1) is prepared by subjecting the monomer composition containing the (meth) acrylamide derivative to a commonly used polymerization method such as radical polymerization or anionic polymerization. Can be obtained by polymerization.
  • the monomer composition containing the (meth) acrylamide derivative is dissolved in dry tetrahydrofuran, and a suitable radical polymerization initiator such as 2,2′-azobis (isobutyronitrile) is dissolved therein. Then, the mixture is stirred at 50 to 70 ° C. for 0.5 to 24 hours in an inert gas atmosphere such as argon or nitrogen, whereby the alkali-soluble polymer used in the present invention can be obtained.
  • a suitable radical polymerization initiator such as 2,2′-azobis (isobutyronitrile)
  • examples of the crosslinking agent used in the present invention include compounds containing a functional group represented by the following general formula (2).
  • R 6 represents an alkyl group having 1 to 6 carbon atoms.
  • Specific examples of the compound containing the functional group represented by the general formula (2) include a compound represented by the following general formula (6).
  • R 6 represents an alkyl group having 1 to 6 carbon atoms.
  • alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group, pentyl group, hexyl group and the like.
  • examples of the crosslinking agent used in the present invention include compounds containing a functional group represented by the following general formula (3).
  • R 7 represents an alkyl group having 1 to 6 carbon atoms.
  • Specific examples of the compound having a functional group represented by the general formula (3) include compounds represented by any one of the general formulas (7) to (9).
  • R 7 represents an alkyl group having 1 to 6 carbon atoms.
  • alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group, pentyl group, hexyl group and the like.
  • examples of the crosslinking agent used in the present invention also include compounds containing a functional group represented by the following general formula (4).
  • R 8 represents an alkyl group having 1 to 6 carbon atoms.
  • Specific examples of the compound having a functional group represented by the general formula (4) include compounds represented by the general formula (10) or (11).
  • R 8 represents an alkyl group having 1 to 6 carbon atoms
  • Z 1 represents a direct bond, —CH 2 —, —C (CH 3 ) 2 — or —C ( CF 3 ) 2 —
  • Z 2 represents a hydrogen atom or a methyl group.
  • alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group, pentyl group, hexyl group and the like.
  • R 9 represents an acyl group.
  • acyl group examples include an acetyl group, a propinoyl group, and a butyryl group.
  • the compound having an epoxy group that can be used as a crosslinking agent in the present invention is generally called an epoxy compound and / or an epoxy resin (in the present application, simply referred to as “epoxy compound” unless otherwise specified).
  • crosslinking agents when added, the content thereof is usually 0.5 to 50 parts by mass, preferably 1 to 40 parts by mass with respect to 100 parts by mass of the total component including itself. Moreover, you may use individually or in mixture of 2 or more types.
  • the photoacid generator used in the present invention is preferably a photoacid generator that generates an acid upon irradiation with light used for exposure, and the mixture with the alkali-soluble polymer, the crosslinking agent, etc. of the present invention is an organic solvent. If it can melt
  • triarylsulfonium salt derivatives diaryliodonium salt derivatives, dialkylphenacylsulfonium salt derivatives, nitrobenzyl sulfonate derivatives, sulfonic acid ester derivatives of N-hydroxynaphthalimide, sulfonic acid ester derivatives of N-hydroxysuccinimide, etc.
  • diaryliodonium salt derivatives dialkylphenacylsulfonium salt derivatives
  • nitrobenzyl sulfonate derivatives sulfonic acid ester derivatives of N-hydroxynaphthalimide
  • sulfonic acid ester derivatives of N-hydroxysuccinimide etc.
  • the content of the photoacid generator is the sum of the alkali-soluble polymer, the crosslinking agent and the photoacid generator from the viewpoint of realizing sufficient sensitivity of the negative photosensitive insulating resin composition and enabling good pattern formation. Is preferably 0.2% by mass or more, and more preferably 0.5% by mass or more. On the other hand, it is preferably 30% by mass or less, more preferably 15% by mass or less, from the viewpoint of realizing formation of a uniform coating film and suppressing residue (scum) after development.
  • the negative photosensitive insulating resin composition of the present invention containing a photoacid generator When the negative photosensitive insulating resin composition of the present invention containing a photoacid generator is subjected to pattern exposure with actinic rays described later, an acid is generated from the photoacid generator constituting the negative photosensitive insulating resin composition of the exposed portion.
  • the acid acts as a catalyst and causes a crosslinking reaction between the crosslinking agent and the resin.
  • the exposed area becomes insoluble in the alkaline developer, and a difference in solubility (dissolution contrast) occurs between the exposed area and the unexposed area.
  • Pattern formation using this negative photosensitive insulating resin composition is performed utilizing the difference in solubility in such an alkali developer.
  • the solvent is not particularly limited as long as the negative photosensitive insulating resin composition can be sufficiently dissolved and the solution can be uniformly applied by a spin coating method or the like.
  • a dissolution accelerator an adhesion improver, a surfactant, a pigment, a stabilizer, a coatability improver, a dye, etc., as necessary.
  • Other ingredients can also be added.
  • the adhesion can be improved on the substrate of the cured film by adding an adhesion improver composed of an organosilicon compound to the negative photosensitive resin composition.
  • organosilicon compound examples include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, vinyltriethoxysilane, the organosilicon compound described in Japanese Patent No. 3422703, or the following general formula (15). And organosilicon compounds. Note that the present invention is not limited to these.
  • R 14 to R 19 represent a monovalent organic group
  • X 1 and X 2 represent a divalent organic group
  • k represents a positive integer.
  • Examples of the monovalent organic group represented by R 16 to R 19 include alkyl groups such as methyl group, ethyl group, propyl group, and butyl group, and aryl groups such as phenyl group, tolyl group, and naphthyl group. It is done.
  • Examples of the divalent organic group represented by X 1 and X 2 include an alkylene group such as a methylene group, an ethylene group, a propylene group, and a butylene group, an arylene group such as a phenylene group, or a group obtained by combining these. .
  • R 14 and R 15 include a monovalent organic group having an imide bond or an amide bond represented by the following structure.
  • the content thereof is an alkali-soluble polymer, a crosslinking agent, and a photoacid generator from the viewpoint of enabling formation of a pattern with excellent adhesion.
  • 0.1 mass% or more is preferable with respect to the sum total, and 0.5 mass% or more is more preferable.
  • the content is preferably 25% by mass or less, and more preferably 15% by mass or less.
  • the negative photosensitive insulating resin composition of the present invention has excellent pattern resolution, can be developed with an alkaline developer, and has excellent adhesion of the formed pattern to the substrate.
  • a film formed from the negative photosensitive insulating resin composition of the present invention is excellent in film characteristics such as heat resistance, mechanical characteristics, and electrical characteristics. Therefore, such a negative photosensitive insulating resin composition is suitable for forming an interlayer insulating film or a surface protective film.
  • the pattern forming method of the present invention comprises at least a coating step, a pre-bake step, an exposure step, a post-exposure bake step, a development step, and a post-bake step.
  • the pattern forming method of the present invention includes at least A coating process for coating the negative photosensitive insulating resin composition on a substrate to be processed; A pre-bake step for fixing the negative photosensitive insulating resin composition coating film on the substrate to be processed; An exposure step of selectively exposing the negative photosensitive insulating resin composition coating film; A post-exposure baking process for baking the negative photosensitive insulating resin composition coating film after exposure; A developing step of dissolving and removing the unexposed portion of the negative photosensitive insulating resin composition coating film to form a pattern; and -It consists of the post-baking process which hardens the negative photosensitive insulating resin composition coating film in which the pattern was formed.
  • Application step is a step of applying the negative photosensitive insulating resin composition to a substrate to be processed, for example, a silicon wafer, a ceramic substrate or the like.
  • a spin coating method using a spin coater a spray coating method using a spray coater, a dipping method, a printing method, a roll coating method, or the like can be used.
  • the pre-baking step is a step for drying the negative photosensitive insulating resin composition applied on the substrate to be processed to remove the solvent and fixing the negative photosensitive insulating resin composition coating film on the substrate to be processed. It is.
  • the prebaking step is usually preferably performed at 60 to 150 ° C.
  • the exposure step selectively exposes the negative-type photosensitive insulating resin composition coating film through a photomask, generates an exposed portion and an unexposed portion, and forms a pattern on the photomask as a negative-type photosensitive insulating resin composition It is the process of transferring to an object coating film.
  • Actinic rays used for pattern exposure include ultraviolet rays, visible rays, excimer lasers, electron beams, and X-rays, and actinic rays having a wavelength of 180 to 500 nm are preferable.
  • the post-exposure baking step is a step of accelerating the crosslinking reaction between the alkaline soluble polymer and the crosslinking agent by the catalytic action of the acid generated by the exposure.
  • the post-exposure bake step is usually preferably performed at 60 to 150 ° C. *
  • the development step is a step of forming a pattern by dissolving and removing an unexposed portion of the negative photosensitive insulating resin composition coating film with an alkaline developer.
  • the above exposure step causes a difference (dissolution contrast) in the solubility of the alkali-soluble polymer in the alkaline developer between the exposed portion and the unexposed portion of the negative photosensitive insulating resin composition coating film.
  • a pattern a cured film of the negative photosensitive insulating resin composition coating film
  • the alkaline developer examples include an aqueous solution in which a quaternary ammonium base such as tetramethylammonium hydroxide (TMAH) and tetraethylammonium hydroxide is dissolved in water, water-soluble alcohols such as methanol and ethanol, surfactants and the like.
  • TMAH tetramethylammonium hydroxide
  • An aqueous solution or the like to which an appropriate amount has been added can be used. Development is possible by methods such as paddle, dipping and spraying. After the development process, the formed pattern is rinsed with water.
  • the post-bake process is a process in which the obtained pattern is subjected to heat treatment in the air or in an inert gas atmosphere, for example, a nitrogen atmosphere, to improve the adhesion between the pattern and the substrate to be processed, and to cure the pattern. .
  • an inert gas atmosphere for example, a nitrogen atmosphere
  • the post-bake process by heating the pattern formed with the negative photosensitive insulating resin composition, the structure of the alkali-soluble polymer in the negative photosensitive insulating resin composition is changed (modified), and benzo An oxazole ring is formed and the pattern is cured. In this way, a pattern having excellent film properties such as heat resistance, mechanical properties, and electrical properties can be obtained.
  • the post-bake process is usually performed at 100 to 380 ° C. Further, the post-baking process may be performed in one stage or in multiple stages.
  • R 1 is a methyl group and R 2 to R 5 are hydrogen and 70 mol% of a structural unit (A-2 in Table 1) and in the general formula (12), R 10 is a hydrogen atom, Synthesis of polymer C in which R 11 is a structural unit (B-1) having a 2,6-norbornanelactone-5-yl group (B-1) of 30 mol% (the number attached to the repeating unit below indicates mol%)
  • Polymerization was conducted in the same manner as in Synthesis Example 2 except that 5.47 g of styrene was used in place of 5-acryloyloxy-2,6-norbornanelactone to obtain 21.9 g of polymer D (yield 86%).
  • Mw was 20800 (polystyrene conversion), and Mw / Mn was 3.25.
  • Example 1 (A) 10 g of the polymer A obtained in Synthesis Example 1, (b) a crosslinking agent, a compound “Nicalac MW-390” in which R 6 is a methyl group in the general formula (6) (trade name, manufactured by Sanwa Chemical Co., Ltd.) 1.5 g and (c) 0.2 g of a photoacid generator N- (trifluoromethanesulfonyloxy) naphthalimide “NAI-105” (trade name, manufactured by Midori Chemical Co., Ltd.) into (d) 17.25 g of ⁇ -butyrolactone It melt
  • N- (trifluoromethanesulfonyloxy) naphthalimide “NAI-105” (trade name, manufactured by Midori Chemical Co., Ltd.) into (d) 17.25 g of ⁇ -butyrolactone It melt
  • This negative photosensitive insulating resin composition was spin-coated on a 5-inch silicon substrate and dried in an oven at 110 ° C. for 20 minutes to form a thin film having a thickness of 9.4 ⁇ m.
  • pattern exposure was performed with ultraviolet rays (wavelength: 350 to 450 nm) through a photomask.
  • TMAH tetramethylammonium hydroxide
  • the wafer on which the pattern is formed is baked in an oven at 100 ° C. for 1 hour and at 220 ° C. for 1 hour in a nitrogen atmosphere to form a benzoxazole ring.
  • An excellent final pattern was obtained.
  • SEM observation of the formed pattern no cracks or peeling were observed in the pattern.
  • Example 2 (A) The polymer B obtained in Synthesis Example 2 is used as the polymer, and (b) a compound in which Z 1 is a direct bond and R 8 is a methyl group in the general formula (10) as the crosslinking agent.
  • a negative photosensitive insulating resin composition was prepared in the same manner as in Example 1 except that 1.5 g of “TMOM-BP” (trade name, manufactured by Honshu Chemical Industry Co., Ltd.) was used. Etc. to form a negative pattern.
  • Table 4 shows the results of examining the sensitivity and resolution of the through-hole pattern at that time.
  • the obtained pattern was baked in an oven at 100 ° C. for 1 hour and 220 ° C. for 1 hour in a nitrogen atmosphere to form a benzoxazole ring, thereby obtaining a final pattern excellent in heat resistance and the like.
  • SEM observation of the formed pattern no cracks or peeling were observed in the pattern.
  • Example 3 (A) The polymer “C” obtained in Synthesis Example 3 was used as the polymer, and (b) the compound “Nicalac MX-270” in which R 7 is a methyl group in the general formula (7) as the crosslinking agent ( A negative photosensitive resin composition was prepared in the same manner as in Example 1 except that 1.5 g (trade name, manufactured by Sanwa Chemical Co., Ltd.) was used, and spin coating, pattern exposure, and the like were performed. Formed. Table 4 shows the results of examining the sensitivity and resolution of the through-hole pattern at that time.
  • the obtained pattern was baked in an oven at 100 ° C. for 1 hour and 220 ° C. for 1 hour in a nitrogen atmosphere to form a benzoxazole ring, thereby obtaining a final pattern excellent in heat resistance and the like.
  • SEM observation of the formed pattern no cracks or peeling were observed in the pattern.
  • Example 4 (A) The polymer D obtained in Synthesis Example 4 is used as the polymer, and (b) the compound 1,4-bis (acetoxymethyl) in which R 9 is an acetyl group in the general formula (5) is used as the crosslinking agent. ) A negative photosensitive resin composition was prepared in the same manner as in Example 1 except that 1.5 g of benzene was used, and a negative pattern was formed by spin coating, pattern exposure, and the like. Table 4 shows the results of examining the sensitivity and resolution of the through-hole pattern at that time.
  • the obtained pattern was baked in an oven at 100 ° C. for 1 hour and 220 ° C. for 1 hour in a nitrogen atmosphere to form a benzoxazole ring, thereby obtaining a final pattern excellent in heat resistance and the like.
  • SEM observation of the formed pattern no cracks or peeling were observed in the pattern.
  • Example 5 (A) The polymer E obtained in Synthesis Example 5 was used as the polymer, and (b) bisphenol F diglycidyl ether 1.5 g was used as the crosslinking agent in the same manner as in Example 1. A photosensitive resin composition was prepared, and spin coating, pattern exposure, and the like were performed to form a negative pattern. Table 4 shows the results of examining the sensitivity and resolution of the through-hole pattern at that time.
  • the obtained pattern was baked in an oven at 100 ° C. for 1 hour and 220 ° C. for 1 hour in a nitrogen atmosphere to form a benzoxazole ring, thereby obtaining a final pattern excellent in heat resistance and the like.
  • SEM observation of the formed pattern no cracks or peeling were observed in the pattern.
  • R 14 to R 17 methyl group
  • X 1 , X 2 propylene group
  • R 12 , R 13 benzamide group
  • k 1) 0.3 g of (e) ⁇ -butyrolactone 17. It melt
  • This negative photosensitive insulating resin composition was spin-coated on a 5-inch silicon substrate on which Cu was formed, and dried in an oven at 110 ° C. for 20 minutes to form a thin film with a thickness of 9.4 ⁇ m.
  • pattern exposure was performed with ultraviolet rays (wavelength: 350 to 450 nm) through a photomask. After exposure, the film was baked in an oven at 100 ° C. for 10 minutes, developed at room temperature in a 2.38% TMAH aqueous solution for 2 minutes, and then rinsed with pure water for 3 minutes.
  • TMAH aqueous solution for 2 minutes
  • the wafer on which the pattern is formed is baked in an oven at 100 ° C. for 1 hour and at 220 ° C. for 1 hour in a nitrogen atmosphere to form a benzoxazole ring, and heat resistance having a film thickness of 8 ⁇ m, etc. An excellent final pattern was obtained. In SEM observation of the formed pattern, no cracks or peeling were observed in the pattern.
  • the negative photosensitive insulating resin composition of the present invention can be developed with an alkaline aqueous solution and has excellent resolution, and the formed resin pattern has improved substrate adhesion. It is also excellent and can be used as an interlayer insulating film or a surface protective film of a semiconductor element.

Abstract

 本発明は、少なくとも下記一般式(1)で表される繰り返し構造単位を有するアルカリ可溶性重合体、架橋剤及び光酸発生剤よりなることを特徴とするネガ型感光性絶縁樹脂組成物であり、該感光性絶縁樹脂組成物は耐熱性、機械特性及び電気特性等の膜特性に優れ、アルカリ現像が可能で、高解像度が得られる。(式中、Rは水素原子又はメチル基、R~Rはそれぞれ独立に水素原子又は炭素数1~4の炭化水素基を表す。)

Description

ネガ型感光性絶縁樹脂組成物及びそれを用いたパターン形成方法
 本発明は、感光性絶縁樹脂組成物、及びパターン形成方法に関し、詳しくは、半導体デバイスの層間絶縁膜や表面保護膜等に適用可能なネガ型感光性樹脂組成物及びパターン形成方法に関する。
 従来、半導体デバイスの層間絶縁膜や表面保護膜には、耐熱性、機械特性及び電気特性等の膜特性に優れたポリイミド樹脂が用いられてきた。しかし、非感光性ポリイミド樹脂を層間絶縁膜等として用いる際には、パターン形成プロセスでポジ型レジストを用い、エッチング、レジスト除去工程等が必要となり、製造工程が複雑となるため、優れた感光性を有する感光性ポリイミド樹脂の検討がなされてきた。
 このような感光性ポリイミド樹脂組成物としては、ポリアミド酸と芳香族ビスアジド系化合物及びアミン化合物からなるポジ型感光性樹脂組成物が挙げられる(特許文献1)。しかし、感光性ポリイミド樹脂のパターン形成プロセスにおける現像工程では、N-メチル-2-ピロリドンやエタノールといった有機溶媒が必要であるため、安全性や環境への影響の点で問題となっていた。
 そこで、近年では、半導体の微細なパターン形成プロセスに使用されているアルカリ水溶液、例えば、テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で現像可能なパターン形成材料として、感光性樹脂組成物が開発されている。例えば、ポリベンゾオキサゾール前躯体と感光剤であるジアゾキノン化合物とからなる非化学増幅型の感光性樹脂組成物(特許文献2)、ポリベンゾオキサゾール前躯体と1,2-ナフトキノンジアジド-5-スルホン酸エステルとからなる非化学増幅型の感光性樹脂組成物(非特許文献1)、酸分解性基で保護したポリベンゾオキサゾール前躯体と光酸発生剤とからなる化学増幅型の感光性樹脂組成物(非特許文献2)などが報告されている。
 このような感光性絶縁樹脂組成物は、加熱処理によって構造が変化し、ベンゾオキサゾール環が形成され、耐熱性や電気特性に優れたものとなる。例えば、非特許文献1に記載されているポリベンゾオキサゾール前躯体は、下記反応式A1及び反応式A2に示すように、アルカリ現像後の加熱処理によりベンゾオキサゾール環が形成される。ベンゾオキサゾール環は安定な構造であるため、このポリベンゾオキサゾール前躯体からなる感光性組成物を用いた層間絶縁膜や表面保護膜は、耐熱性、機械特性及び電気特性等の膜特性に優れたものとなる。
[規則26に基づく補充 17.03.2010] 
Figure WO-DOC-CHEMICAL-1
[規則26に基づく補充 17.03.2010] 
Figure WO-DOC-CHEMICAL-2
 近年、半導体デバイスの製造分野では、デバイスのより一層の高密度化や高集積化、配線パターンの微細化が要求されている。これに伴い、特に層間絶縁膜や表面保護膜等に用いられる感光性絶縁樹脂組成物に対する要求は厳しくなっているが、上記の各文献に記載の感光性樹脂組成物は、解像度の点からは充分満足のいくものではなかった。
 このため、従来の膜特性を維持しつつ、アルカリ現像が可能で、高解像度が得られ、さらに形成した微細な樹脂パターンが基板から容易に剥がれない基板密着性にも優れた感光性絶縁樹脂組成物の開発が待たれている。
特公平3-36861号公報 特公平1-46862号公報
M.Uedaら、ジャーナル オブ フォトポリマー サイエンス アンド テクノロジー(Journal of Photopolymer Science and Technology)、第16巻、第2号、第237~242頁(2003年) K.Ebaraら、ジャーナル オブ フォトポリマー サイエンス アンド テクノロジー、第16巻、第2号、第287~292頁(2003年)
 本発明は、上記課題を解決するためになされたものであって、その第1の目的は、耐熱性、機械特性、電気特性等の膜特性に優れ、アルカリ現像が可能で、高解像度が得られ、かつ、形成した樹脂パターンが基板密着性に優れた感光性絶縁樹脂組成物を提供することにある。また、本発明の第2の目的は、感光性絶縁樹脂組成物を用いたパターン形成方法を提供することにある。
 本発明者らは、上記目的を達成するために検討した結果、特定構造のアルカリ可溶性の重合体、架橋剤及び光酸発生剤からなるネガ型感光性絶縁樹脂組成物が、アルカリ水溶液で現像可能で高解像度が得られ、かつ、基板への密着性にも優れることを見出し、本発明を完成した。
 すなわち、本発明は、少なくとも下記一般式(1)で表される繰り返し構造単位を有するアルカリ可溶性重合体、架橋剤及び光酸発生剤よりなることを特徴とするネガ型感光性絶縁樹脂組成物である。
Figure JPOXMLDOC01-appb-C000011
(式(1)中、Rは、水素原子又はメチル基を表し、R~Rは、それぞれ独立に、水素原子又は炭素数1~4の炭化水素基を表す。)
 また、本発明は、前記架橋剤が、下記一般式(2)、一般式(3)または一般式(4)で表される官能基を含む化合物、下記一般式(5)で表される化合物またはエポキシ基を有する化合物であることを特徴とするネガ型感光性絶縁樹脂組成物である。
Figure JPOXMLDOC01-appb-C000012
(式中、R、RおよびRは、それぞれ炭素数1~6のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000013
(式(5)中、Rはアシル基を表す。)
 前記一般式(2)で表される官能基を含む化合物が、下記一般式(6)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000014
(式(6)中、Rは、炭素数1~6のアルキル基を表す。)
 前記一般式(3)で表される官能基を含む化合物が、下記一般式(7)乃至(9)のいずれかで表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000015
 (式(7)乃至(9)中、Rは、炭素数1~6のアルキル基を表す。)
 前記一般式(3)で表される官能基を含む化合物が、下記一般式(10)又は(11)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
(式(10)及び(11)中、Rは、炭素数1~6のアルキル基を表し、Zは、直結合、-CH-、-C(CH-又はC(CF-を表し、Zは、水素原子又はメチル基を表す。)
 また、本発明は、少なくとも一般式(1)で表される繰り返し構造単位を有するアルカリ可溶性重合体が、一般式(1)で表される繰り返し構造単位と共に、さらに下記一般式(12)で表される繰返し構造単位及び下記一般式(13)で表される繰返し構造単位から選ばれる繰り返し構造単位1種以上を含む重合体であることを特徴とするネガ型感光性絶縁樹脂組成物である。
Figure JPOXMLDOC01-appb-C000017
(式(12)中、R10は、水素原子又はメチル基を表し、R11は、ラクトン構造を有する有機基を表す。)
Figure JPOXMLDOC01-appb-C000018
(式(13)中、R12は、水素原子又はメチル基を表し、R13は、水素原子、又は炭素数1~4のアルキル基、アルコキシ基を表す。)
 さらに、本発明は、少なくとも、下記工程からなることを特徴とするパターン形成方法である:
 上記のネガ型感光性絶縁樹脂組成物の被加工基板上への塗布工程;
 プリベーク工程;
 露光工程;
 露光後ベーク工程;
 現像工程;及び
 ポストベーク工程。
 本発明のネガ型感光性絶縁樹脂組成物及びパターン形成方法では、アルカリ現像液による現像により高解像度のパターンを形成することが可能であり、また加熱処理又は適当な触媒下での加熱処理で、耐熱性や機械特性及び電気特性等に優れた膜が形成できる。
 以下、本発明のネガ型感光性絶縁樹脂組成物及びパターン形成方法について説明する。
<感光性絶縁樹脂組成物>
 本発明のネガ型感光性絶縁樹脂組成物は、少なくとも下記一般式(1)で表される繰り返し構造単位を有するアルカリ可溶性重合体、架橋剤及び光酸発生剤を含むものであり、通常、該アルカリ可溶性重合体、架橋剤及び光酸発生剤を混合することにより調製できる。
Figure JPOXMLDOC01-appb-C000019
(式(1)中、Rは、水素原子又はメチル基を表し、R~Rは、それぞれ独立に、水素原子又は炭素数1~4の炭化水素基を表す。)
 本発明のネガ型感光性絶縁樹脂組成物に用いるアルカリ可溶性重合体の一般式(1)で表される繰り返し構造単位において、R~Rで示される炭素数1~4の炭化水素基として、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基等が挙げられる。
 一般式(1)で表される繰返し構造単位として、具体的に下記表1に示すような例を挙げることができるが、これらだけに限定されるものではない。
 本発明に用いるアルカリ可溶性重合体は、パターンを形成した後に、加熱処理により閉環反応が起き、ベンゾオキサゾール環が形成され、耐熱性や機械特性及び電気特性等に優れた膜となる。
 例えば、R~Rが全て水素原子である重合体は、下記反応式Bに示すように加熱処理により閉環反応が起き、ベンゾオキサゾール環が形成される。
Figure JPOXMLDOC01-appb-C000021
 このベンゾオキサゾール環は、安定な構造であるので、この重合体を層間絶縁膜や表面保護膜に用いることにより、耐熱性、機械特性及び電気特性等の膜特性に優れた層間絶縁膜や表面保護膜を形成することが可能である。
 本発明に用いるアルカリ可溶性重合体において、少なくとも一般式(1)で表される繰返し構造単位を含む重合体は、一般式(1)で表される繰返し構造単位を含む重合体を合成することができれば、その原料は特に制限されないが、下記一般式(14)で表される(メタ)アクリルアミド誘導体を好適に用いることができる。
Figure JPOXMLDOC01-appb-C000022
(式(14)中、Rは、水素原子又はメチル基を表し、R~Rは、それぞれ独立に、水素原子又は炭素数1~4のアルキル基を表す。)
 本発明に用いる少なくとも一般式(1)で表される繰返し構造単位を含む重合体は、一般式(14)で表される(メタ)アクリルアミド誘導体のみを重合して得たものでもよいが、一般式(14)で表される(メタ)アクリルアミド誘導体とは異なるコモノマーと共重合して得たものでもよい。なお、該共重合体には、共重合するコモノマーからの特性が付加されているので、種々のコモノマーを用いることにより、この重合体を用いる感光性絶縁樹脂組成物に有用な特性(解像度、感度)、感光性樹脂で形成される層間絶縁膜や表面保護膜に有用な特性(例えば、耐熱性、機械特性、電気特性等)を向上させることができる。
 コモノマーとしては、上記(メタ)アクリルアミド誘導体と十分な重合性を有することから、ビニル単量体が好ましい。ビニル単量体としては、上記(メタ)アクリルアミド誘導体以外の(メタ)アクリルアミド誘導体、ブタジエン、アクリロニトリル、スチレン、(メタ)アクリル酸、(メタ)アクリル酸エステル誘導体、エチレン誘導体、スチレン誘導体等が使用できる。
 エチレン誘導体として、エチレン、プロピレン、塩化ビニル等が挙げられ、スチレン誘導体として、α-メチルスチレン、p-ヒドロキシスチレン、クロロスチレン、特開2001-172315号公報記載のスチレン誘導体等が挙げられる。
 ビニル単量体の他に、無水マレイン酸、N-フェニルマレイミド誘導体等も使用可能である。N-フェニルマレイミド誘導体としては、N-フェニルマレイミド、N-(4-メチルフェニル)マレイミド等が挙げられる。
 これらのコモノマーは1種でもよいが、2種以上を用いることもできる。
 上記のコモノマーからの繰り返し構造単位の具体的な例として、下記一般式(12)で表されるラクトン環を有する(メタ)アクリルエステルに由来する構造単位や、下記一般式(13)で表されるアクリルアミド誘導体に由来する構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000023
(式(12)中、R10は、水素原子又はメチル基を表し、R11は、ラクトン構造を有する有機基を表す。)
Figure JPOXMLDOC01-appb-C000024
(式(13)中、R12は、水素原子又はメチル基を表し、R13は、水素原子、又は炭素数1~4のアルキル基、アルコキシ基を表す。)
 一般式(12)で表される繰り返し構造単位としては、下記表2のような例を挙げることができるが、これらだけに限定されるものではない。
Figure JPOXMLDOC01-appb-T000025
 一般式(13)で表される繰り返し構造単位としては、下記表3のような例を挙げることができるが、これらだけに限定されるものではない。
[規則26に基づく補充 17.03.2010] 
Figure WO-DOC-TABLE-3
 本発明に用いるアルカリ可溶性重合体を層間絶縁膜や表面保護膜に用いた場合に、優れた膜特性を発揮させるためは、一般式(1)で表される繰返し構造単位の重合体中に占める割合は、10~100モル%が好ましく、20~100モル%がより好ましい。
 なお、アルカリ可溶性重合体の重量平均分子量(Mw)としては、通常、2,000~200,000が好ましく、4,000~100,000がより好ましい。Mwが2,000未満である場合は、層間絶縁膜や表面保護膜を均一に形成することが困難となることがある。また、Mwが200,000を超える場合は、層間絶縁膜や表面保護膜を形成する際に解像度が悪くなることがある。
 少なくとも一般式(1)で表される繰返し構造単位を含むアルカリ可溶性重合体は、上記(メタ)アクリルアミド誘導体を含む単量体組成物を、ラジカル重合、アニオン重合等の通常用いられている重合方法で重合することによって得ることができる。
 例えば、ラジカル重合の場合、上記(メタ)アクリルアミド誘導体を含む単量体組成物を乾燥テトラヒドロフランに溶解し、これに適当なラジカル重合開始剤、例えば、2,2’-アゾビス(イソブチロニトリル)を加えた後、アルゴンや窒素等の不活性ガス雰囲気下、50~70℃で0.5~24時間攪拌して、本発明に用いるアルカリ可溶性重合体を得ることができる。
 本発明で用いる架橋剤として、まず、下記一般式(2)で表される官能基を含む化合物を挙げることができる。
[規則26に基づく補充 17.03.2010] 
Figure WO-DOC-CHEMICAL-16
(式(2)中、Rは、炭素数1~6のアルキル基を表す。)
 一般式(2)で表される官能基を含む化合物として、具体的には、下記一般式(6)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000028
(式(6)中、Rは、炭素数1~6のアルキル基を表す。)
 炭素数1~6のアルキル基として、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基等が挙げられる。
 また、本発明で用いる架橋剤として、下記一般式(3)で表される官能基を含む化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000029
(式(3)中、Rは、炭素数1~6のアルキル基を表す。)
 一般式(3)で表される官能基を有する化合物として、具体的には、一般式(7)乃至(9)のいずれかで表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000030
(式(7)乃至(9)中、Rは、炭素数1~6のアルキル基を表す。)
 炭素数1~6のアルキル基として、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基等が挙げられる。
 さらに、本発明に用いる架橋剤として、下記一般式(4)で表される官能基を含む化合物も挙げることができる。
Figure JPOXMLDOC01-appb-C000031
(式(4)中、Rは、炭素数1~6のアルキル基を表す。)
 一般式(4)で表される官能基を有する化合物として、具体的には、一般式(10)又は(11)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000032
(式(10)及び(11)中、Rは、炭素数1~6のアルキル基を表し、Zは、直結合、-CH-、-C(CH-又は-C(CF-を表し、Zは、水素原子又はメチル基を表す。)
 炭素数1~6のアルキル基として、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基等が挙げられる。
 そして、本発明に用いる架橋剤としては、下記一般式(5)で表される化合物も使用可能である。
Figure JPOXMLDOC01-appb-C000033
(式(5)中、Rはアシル基を表す。)
 アシル基として、アセチル基、プロピノイル基、ブチリル基等が挙げられる。
 また、本発明に架橋剤として使用できるエポキシ基を有する化合物は、一般にエポキシ化合物及び/あるいはエポキシ樹脂と呼ばれるもの(本願では、特に断らない限り、単に「エポキシ化合物」という)であり、具体的に、ビスフェノールAジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールAプロポキシレートジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、1,2-シクロヘキサンカルボン酸ジグリシジルエステル、3,4-エポキシシクロヘキサンカルボン酸3,4-エポキシシクロヘキシルメチル、トリスエポキシプロピルイソシアヌレート、2-エポキシエチルビシクロ[2,2,1]ヘプチルグリシジルエーテル、エチレングリコールビス(2-エポキシエチルビシクロ[2,2,1]ヘプチル)エーテル、ビス(2-エポキシエチルビシクロ[2,2,1]ヘプチル)エーテル等を挙げることができる。
 また、これら架橋剤を加える場合、その含有率は、それ自身を含む全構成分100質量部に対して通常0.5~50質量部、好ましくは1~40質量部である。また、単独でも、2種以上を混合して用いてもよい。
 本発明に用いる光酸発生剤としては、露光に用いる光の光照射により酸を発生する光酸発生剤であることが望ましく、本発明のアルカリ可溶性重合体、架橋剤などとの混合物が有機溶媒に十分に溶解し、かつその溶液を用いて、スピンコートなどの製膜法で均一な塗布膜が形成できるものであれば特に制限されない。また、光酸発生剤は、1種でも、2種以上を混合して用いてもよい。具体的には、トリアリールスルホニウム塩誘導体、ジアリールヨードニウム塩誘導体、ジアルキルフェナシルスルホニウム塩誘導体、ニトロベンジルスルホナート誘導体、N-ヒドロキシナフタルイミドのスルホン酸エステル誘導体、N-ヒドロキシスクシンイミドのスルホン酸エステル誘導体等が挙げられるが、これらだけに限定されるものではない。
 光酸発生剤の含有量は、ネガ型感光性絶縁樹脂組成物の十分な感度を実現し、良好なパターン形成を可能とする観点から、アルカリ可溶性重合体、架橋剤及び光酸発生剤の総和に対して、0.2質量%以上が好ましく、0.5質量%以上がより好ましい。一方、均一な塗布膜の形成を実現し、現像後の残渣(スカム)を抑制する観点から、30質量%以下が好ましく、15質量%以下がより好ましい。
 そして、光酸発生剤を含む本発明のネガ型感光性絶縁樹脂組成物に、後記化学線でパターン露光すると、露光部のネガ型感光性絶縁樹脂組成物を構成する光酸発生剤から酸が発生し、酸が触媒となり、架橋剤と樹脂の架橋反応を起す。その結果、露光部ではアルカリ現像液に対して不溶となり、露光部と未露光部で溶解性に差(溶解コントラスト)が生じる。このネガ型感光性絶縁樹脂組成物を用いたパターン形成は、こうしたアルカリ現像液に対する溶解性の差を利用して行われる。
 本発明のネガ型感光性絶縁樹脂組成物を調製する際に、必要に応じて、適当な溶剤を用いる。
 溶剤としては、ネガ型感光性絶縁樹脂組成物が充分に溶解でき、その溶液をスピンコート法などで均一に塗布できる有機溶媒等であれば特に制限されない。具体的には、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸エチル、2-ヘプタノン、酢酸2-メトキシブチル、酢酸2-エトキシエチル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、N-メチル-2-ピロリドン(NMP)、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン(MIBK)、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル等を使用することができる。これらは、単独でも2種類以上を混合して用いてもよい。 
 さらに、本発明のネガ型感光性絶縁樹脂組成物を調製する際に、必要に応じて、溶解促進剤、密着性向上剤、界面活性剤、色素、安定剤、塗布性改良剤、染料などの他の成分を添加することもできる。 
 例えば、有機ケイ素化合物からなる密着性向上剤をネガ型感光性樹脂組成物に添加することで、硬化皮膜の基板上へ密着性を向上させることができる。
 該有機ケイ素化合物として、例えば、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、ビニルトリエトキシシラン、特許第3422703号に記載の有機ケイ素化合物、又は下記一般式(15)で表される有機ケイ素化合物を挙げることができる。なお、これらのみに限定されるものではない。
Figure JPOXMLDOC01-appb-C000034
(式(15)中、R14~R19は1価の有機基を表し、X及びXは2価の有機基を表す。また、kは正の整数を表す。)
 なお、R16~R19で表される1価の有機基としては、メチル基、エチル基、プロピル基、ブチル基等のアルキル基、フェニル基、トリル基、ナフチル基等のアリール基などが挙げられる。
 X及びXで表される2価の有機基としては、メチレン基、エチレン基、プロピレン基、ブチレン基等のアルキレン基、フェニレン基等のアリーレン基、又はこれらを組み合わせた基などが挙げられる。
 R14及びR15で表される1価の有機基としては、具体的には、下記構造で表されるイミド結合又はアミド結合を有する1価の有機基が挙げられる。
Figure JPOXMLDOC01-appb-C000035
 密着性向上剤をネガ型感光性絶縁樹脂組成物に添加する場合、その含有量は、密着性が優れたパターンの形成を可能とする観点から、アルカリ可溶性重合体、架橋剤及び光酸発生剤の合計に対して0.1質量%以上が好ましく、0.5質量%以上がより好ましい。良好な解像性を可能とするため、25質量%以下が好ましく、15質量%以下がより好ましい。
 本発明のネガ型感光性絶縁樹脂組成物は、パターンの解像度に優れ、アルカリ現像液で現像処理が可能であり、形成したパターンの基板への密着性にも優れる。また本発明のネガ型感光性絶縁樹脂組成物から形成されてなる膜は、耐熱性、機械特性及び電気特性等の膜特性に優れている。したがって、このようなネガ型感光性絶縁樹脂組成物は、層間絶縁膜や表面保護膜の形成用に好適である。
<パターン形成方法>
 本発明のパターン形成方法は、少なくとも、塗布工程、プリベーク工程、露光工程、露光後ベーク工程、現像工程及びポストベーク工程からなるものである。
 詳しくは、本発明のパターン形成方法は、少なくとも、
・上記のネガ型感光性絶縁樹脂組成物を被加工基板上に塗布する塗布工程、
・該ネガ型感光性絶縁樹脂組成物塗膜を被加工基板上に定着させるプリベーク工程、
・該ネガ型感光性絶縁樹脂組成物塗膜を選択的に露光する露光工程、
・露光後のネガ型感光性絶縁樹脂組成物塗膜をベークする露光後ベーク工程、
・該ネガ型感光性絶縁樹脂組成物塗膜の未露光部を溶解除去してパターンを形成する現像工程、及び、
・パターンが形成されたネガ型感光性絶縁樹脂組成物塗膜を硬化させるポストベーク工程
からなっている。 
 塗布工程は、上記ネガ型感光性絶縁樹脂組成物を、被加工基板、例えば、シリコンウェハ、セラミック基板等に塗布する工程である。その塗布方法として、スピンコータを用いた回転塗布法、スプレーコータを用いた噴霧塗布法、浸漬法、印刷法、ロールコーティング法等を用いることができる。
 プリベーク工程は、被加工基板上に塗布されたネガ型感光性絶縁樹脂組成物を乾燥して溶剤を除去し、被加工基板上にネガ型感光性絶縁樹脂組成物塗膜を定着させるための工程である。プリベーク工程は、通常、好ましくは、60~150℃で行われる。
 露光工程は、フォトマスクを介してネガ型感光性絶縁樹脂組成物塗膜を選択的に露光し、露光部と未露光部を生じさせて、フォトマスク上のパターンをネガ型感光性絶縁樹脂組成物塗膜に転写する工程である。パターン露光に用いる化学線としては、紫外線、可視光線、エキシマレーザ、電子線、X線等があり、180~500nmの波長の化学線が好ましい。
 露光後ベーク工程は、露光により発生した酸の触媒作用による、アルカリ性可溶重合体と架橋剤の架橋反応を促進させる工程である。露光後ベーク工程は、通常、好ましくは、60~150℃で行われる。 
 現像工程は、ネガ型感光性絶縁樹脂組成物塗膜の未露光部をアルカリ現像液で溶解除去し、パターンを形成する工程である。上記の露光工程により、ネガ型感光性絶縁樹脂組成物塗膜の露光部と未露光部でのアルカリ可溶性重合体のアルカリ現像液に対する溶解性に差(溶解コントラスト)が生じる。この溶解コントラストを利用することにより、ネガ型感光性絶縁樹脂組成物塗膜の未露光部が溶解して除去され、パターンが形成されたネガ型感光性絶縁樹脂組成物塗膜の硬化膜(以下、単に「パターン」という)が得られる。アルカリ現像液としては、テトラメチルアンモニウムヒドロキシド(TMAH)、テトラエチルアンモニウムヒドロキシド等の第四アンモニウム塩基を水に溶解した水溶液、さらにこれにメタノール、エタノール等の水溶性アルコール類、界面活性剤等を適当量添加した水溶液等を用いることができる。現像は、パドル、浸漬、スプレー等の方法で可能である。現像工程後、形成したパターンを水でリンスする。
 ポストベーク工程は、得られたパターンに、空気中又は不活性ガス雰囲気下、例えば窒素雰囲気下で、加熱処理を行い、パターンと被加工基板との密着性を高め、パターンを硬化させる工程である。このポストベーク工程では、ネガ型感光性絶縁樹脂組成物で形成されたパターンを加熱することにより、ネガ型感光性絶縁樹脂組成物中のアルカリ可溶性重合体の構造が変化し(変性し)、ベンゾオキサゾール環が形成され、そのパターンが硬化する。このようにして、耐熱性、機械特性及び電気特性等の膜特性に優れたパターンを得ることが可能となる。ポストベーク工程は、通常、100~380℃で行われる。また、ポストベーク工程は、一段階で行ってもよいし多段階で行ってもよい。
 以下、実施例を挙げて本発明をさらに具体的に説明する。
(合成例1) 
 一般式(1)においてR~Rが水素原子である構造単位(表1中のA-1)が100モル%である重合体A(下記、繰り返し単位に付した数字はモル%を示す)の合成
Figure JPOXMLDOC01-appb-C000036
 N-(2-ヒドロキシフェニル)アクリルアミド30gをテトラヒドロフラン100mlに溶解し、そこに2,2’-アゾビス(イソブチロニトリル)0.603gを加え、アルゴン雰囲気下で、4時間加熱還流した。放冷後、ジエチルエーテル1000mlにて再沈し、析出したポリマーをろ別し、もう一度再沈精製して、重合体A28gを得た(収率93%)。GPC分析による重量平均分子量(Mw)は5100(ポリスチレン換算)であり、分散度(Mw/Mn)は2.38であった。
(合成例2) 
 一般式(1)においてR~Rが水素である構造単位(A-1)70モル%と一般式(12)においてR10が水素原子であり、R11が2,6-ノルボルナンラクトン-5-イル基である構造単位(表2中のB-1)30モル%である重合体B(下記、繰り返し単位に付した数字はモル%を示す)の合成
Figure JPOXMLDOC01-appb-C000037
 N-(2-ヒドロキシフェニル)アクリルアミド20gと5-アクロイルオキシ-2,6-ノルボルナンラクトン10.94gをテトラヒドロフラン72mlに溶解し、そこに2,2’-アゾビス(イソブチロニトリル)0.288gを加え、アルゴン雰囲気下で、4時間加熱還流した。放冷後、ジエチルエーテル700mlにて再沈し、析出したポリマーをろ別し、もう一度再沈精製して、重合体B28.46gを得た(収率92%)。Mwは26500(ポリスチレン換算)であり、Mw/Mnは3.08であった。
(合成例3)
 一般式(1)においてRがメチル基、R~Rが水素である構造単位(表1中のA-2)70モル%と一般式(12)においてR10が水素原子であり、R11が2,6-ノルボルナンラクトン-5-イル基である構造単位(B-1)30モル%である重合体C(下記、繰り返し単位に付した数字はモル%を示す)の合成
Figure JPOXMLDOC01-appb-C000038
 N-(2-ヒドロキシフェニル)アクリルアミドに替えて、N-(2-ヒドロキシフェニル)メタクリルアミド21.71gを用いる外は、合成例2と同様に重合して、重合体C17.58gを得た(収率79%)。Mwは21800(ポリスチレン換算)であり、Mw/Mnは2.78であった。
(合成例4) 
 一般式(1)においてR~Rが水素である構造単位(A-1)70モル%とスチレンに由来する構造単位30モル%である重合体D(下記、繰り返し単位に付した数字はモル%を示す)の合成
Figure JPOXMLDOC01-appb-C000039
 5-アクロイルオキシ-2,6-ノルボルナンラクトンに替えて、スチレン5.47gを用いる外は、合成例2と同様に重合して、重合体D21.9gを得た(収率86%)。Mwは20800(ポリスチレン換算)であり、Mw/Mnは3.25であった。
(合成例5) 
 一般式(1)においてR~Rが水素である構造単位(A-1)70モル%とN-フェニルアクリルアミドに由来する構造単位30モル%である重合体E(下記、繰り返し単位に付した数字はモル%を示す)の合成
Figure JPOXMLDOC01-appb-C000040
 5-アクロイルオキシ-2,6-ノルボルナンラクトンに替えて、N-フェニルアクリルアミド8.21gを用いる外は、合成例2と同様に重合して、重合体E25.6gを得た(収率91%)。Mwは20100(ポリスチレン換算)であり、Mw/Mnは3.15であった。
(実施例1)
 (a)合成例1で得た重合体A10g、(b)架橋剤、一般式(6)においてRがメチル基である化合物「ニカラックMW-390」(商品名、株式会社三和ケミカル製)1.5g及び(c)光酸発生剤N-(トリフルオロメタンスルホニルオキシ)ナフタルイミド「NAI-105」(商品名、みどり化学株式会社製)0.2gを(d)γ-ブチロラクトン17.25gに溶解し、0.2μmのテフロン(登録商標)フィルターを用いてろ過して、ネガ型感光性樹脂組成物を調製した。
 このネガ型感光性絶縁樹脂組成物を、5インチシリコン基板上にスピンコート塗布し、オーブン中110℃で20分間乾燥して、膜厚9.4μmの薄膜を形成した。次に、フォトマスクを介して、紫外線(波長350~450nm)でパターン露光した。露光後、オーブン中100℃で10分間ベークした後、室温で2.38%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液中で2分間浸漬法による現像を行い、続けて3分間純水でリンス処理した。その結果、感光性樹脂膜の未露光部分のみが現像液に溶解除去され、ネガ型のパターンが得られた。得られたパターンをSEM観察した結果、感度800mJ/cmで、15μmのスルーホールパターンが解像できていることが分かった。
 次に、パターンが形成されたウェハーを窒素雰囲気下、100℃で1時間、220℃で1時間、オーブン中でベークして、ベンゾオキサゾール環を形成させ、膜厚が8μmである耐熱性等に優れた最終パターンを得た。形成されたパターンのSEM観察では、パターンにクラックや剥離は観測されなかった。
(実施例2)
 (a)重合体として、合成例2で得た重合体Bを用い、また、(b)架橋剤として、一般式(10)において、Zが直結合で、Rがメチル基である化合物「TMOM-BP」(商品名、本州化学工業株式会社製)1.5gを用いた外は、実施例1と同様にして、ネガ型感光性絶縁樹脂組成物を調製し、スピンコート、パターン感光等を行い、ネガ型パターンを形成した。そのときの感度及びスルーホールパターンの解像度を調べた結果を表4に示す。
 得られたパターンを窒素雰囲気下、100℃で1時間、220℃で1時間、オーブン中でベークして、ベンゾオキサゾール環を形成させ、耐熱性等に優れた最終パターンを得た。形成されたパターンのSEM観察では、パターンにクラックや剥離は観測されなかった。
(実施例3)
 (a)重合体として、合成例3で得た重合体Cを用い、また、(b)架橋剤として、一般式(7)において、Rがメチル基である化合物「ニカラックMX-270」(商品名、株式会社三和ケミカル製)1.5gを用いた外は、実施例1と同様にして、ネガ型感光性樹脂組成物を調製し、スピンコート、パターン感光等を行い、ネガ型パターンを形成した。そのときの感度及びスルーホールパターンの解像度を調べた結果を表4に示す。
 得られたパターンを窒素雰囲気下、100℃で1時間、220℃で1時間、オーブン中でベークして、ベンゾオキサゾール環を形成させ、耐熱性等に優れた最終パターンを得た。形成されたパターンのSEM観察では、パターンにクラックや剥離は観測されなかった。
(実施例4)
 (a)重合体として、合成例4で得た重合体Dを用い、また、(b)架橋剤として、一般式(5)においてRがアセチル基である化合物1,4-ビス(アセトキシメチル)ベンゼン1.5gを用いた外は、実施例1と同様にして、ネガ型感光性樹脂組成物を調製し、スピンコート、パターン感光等を行い、ネガ型パターンを形成した。そのときの感度及びスルーホールパターンの解像度を調べた結果を表4に示す。
 得られたパターンを窒素雰囲気下、100℃で1時間、220℃で1時間、オーブン中でベークして、ベンゾオキサゾール環を形成させ、耐熱性等に優れた最終パターンを得た。形成されたパターンのSEM観察では、パターンにクラックや剥離は観測されなかった。
(実施例5)
 (a)重合体として、合成例5で得た重合体Eを用い、また、(b)架橋剤として、ビスフェノールFジグリシジルエーテル1.5gを用いた外は、実施例1と同様にして、感光性樹脂組成物を調製し、スピンコート、パターン感光等を行い、ネガ型パターンを形成した。そのときの感度及びスルーホールパターンの解像度を調べた結果を表4に示す。
 得られたパターンを窒素雰囲気下、100℃で1時間、220℃で1時間、オーブン中でベークして、ベンゾオキサゾール環を形成させ、耐熱性等に優れた最終パターンを得た。形成されたパターンのSEM観察では、パターンにクラックや剥離は観測されなかった。
Figure JPOXMLDOC01-appb-T000041
(実施例6)
(a)重合体A10g、(b)架橋剤TMOM-BP(商品名)1.5g、(c)光酸発生剤「NAI-105」(商品名)0.2g及び(d)有機ケイ素化合物(一般式(14)において、R14~R17=メチル基、X、X=プロピレン基、R12、R13=ベンズアミド基、k=1)0.3gを(e)γ-ブチロラクトン17.25gに溶解し、0.2μmのテフロン(登録商標)フィルターを用いてろ過し、ネガ型感光性樹脂組成物を調製した。 
 このネガ型感光性絶縁樹脂組成物を、Cuを製膜した5インチシリコン基板上にスピンコート塗布し、オーブン中110℃で20分間乾燥して、膜厚9.4μmの薄膜を形成した。次に、フォトマスクを介して、紫外線(波長350~450nm)でパターン露光した。露光後、オーブン中100℃で10分間ベークした後、室温で2.38%TMAH水溶液中2分間浸漬法による現像を行い、続けて3分間純水でリンス処理を行なった。その結果、ネガ型感光性絶縁樹脂組成物塗膜の未露光部分のみが現像液に溶解除去され、ネガ型のパターンが得られた。得られたパターンをSEM観察した結果、感度600mJ/cmで、8μmのスルーホールパターンが解像できていることが分かった。
 次に、パターンが形成されたウェハーを、窒素雰囲気下、100℃で1時間、220℃で1時間、オーブン中でベークして、ベンゾオキサゾール環を形成させ、膜厚が8μmである耐熱性等に優れた最終パターンを得た。形成されたパターンのSEM観察では、パターンにクラックや剥離は観測されなかった。
 以上の説明から明らかなように、本発明のネガ型感光性絶縁樹脂組成物を用いることで、アルカリ水溶液で現像可能で、かつ解像性に優れ、さらに形成された樹脂パターンが基板密着性にも優れており、半導体素子の層間絶縁膜や表面保護膜等に利用可能である。
 この出願は、2009年1月29日に出願された日本出願特願2009-018194及び2009年6月17日に出願された日本出願特願2009-144148を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (7)

  1.  少なくとも、下記一般式(1)で表される繰り返し構造単位を有するアルカリ可溶性重合体、架橋剤及び光酸発生剤よりなることを特徴とするネガ型感光性絶縁樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、水素原子又はメチル基を表し、R~Rは、それぞれ独立に、水素原子又は炭素数1~4の炭化水素基を表す。)
  2.  前記架橋剤が、下記一般式(2)、一般式(3)または一般式(4)で表される官能基を含む化合物、下記一般式(5)で表される化合物またはエポキシ基を有する化合物であることを特徴とする請求項1記載のネガ型感光性絶縁樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R、RおよびRは、それぞれ炭素数1~6のアルキル基を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式(5)中、Rはアシル基を表す。)
  3.  前記一般式(2)で表される官能基を含む化合物が、下記一般式(6)で表される化合物であることを特徴とする請求項2に記載のネガ型感光性絶縁樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式(6)中、Rは、炭素数1~6のアルキル基を表す。)
  4.  前記一般式(3)で表される官能基を含む化合物が、下記一般式(7)乃至(9)のいずれかで表される化合物であることを特徴とする請求項2に記載のネガ型感光性絶縁樹脂組成物。
    Figure JPOXMLDOC01-appb-C000005
    (式(7)乃至(9)中、Rは、炭素数1~6のアルキル基を表す。)
  5.  前記一般式(4)で表される官能基を含む化合物が、下記一般式(10)又は(11)で表される化合物であることを特徴とする請求項6に記載のネガ型感光性絶縁樹脂組成物。
    Figure JPOXMLDOC01-appb-C000006
    (式(10)及び(11)中、Rは、炭素数1~6のアルキル基を表し、Zは、直結合、-CH-、-C(CH-又は-C(CF-を表し、Zは、水素原子又はメチル基を表す。)
  6.  一般式(1)で表される繰返し構造単位を含む重合体が、一般式(1)で表される繰り返し構造単位と共に、さらに一般式(12)で表される繰返し構造単位及び一般式(13)で表される繰り返し構造単位から選ばれる繰り返し構造単位を一種以上含む重合体である請求項1乃至5に記載のネガ型感光性絶縁樹脂組成物。
    Figure JPOXMLDOC01-appb-C000007
    (式(12)中、R10は、水素原子又はメチル基を表し、R11はラクトン構造を有する有機基を表す。)
    Figure JPOXMLDOC01-appb-C000008
    (式(13)中、R12は、水素原子又はメチル基を表し、R13は、水素原子、又は炭素数1~4のアルキル基、アルコキシ基を表す。)
  7.  少なくとも、下記工程からなることを特徴とするパターン形成方法:
     請求項1~6のいずれかに記載のネガ型感光性絶縁樹脂組成物の被加工基板上への塗布工程;
     プリベーク工程;
     露光工程;
     露光後ベーク工程;
     現像工程;及び
     ポストベーク工程。
PCT/JP2010/050351 2009-01-29 2010-01-14 ネガ型感光性絶縁樹脂組成物及びそれを用いたパターン形成方法 WO2010087232A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010548463A JPWO2010087232A1 (ja) 2009-01-29 2010-01-14 ネガ型感光性絶縁樹脂組成物及びそれを用いたパターン形成方法
US13/146,886 US20110281217A1 (en) 2009-01-29 2010-01-14 Negative photosensitive insulating resin composition and method for patterning using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-018194 2009-01-29
JP2009018194 2009-01-29
JP2009-144148 2009-06-17
JP2009144148 2009-06-17

Publications (1)

Publication Number Publication Date
WO2010087232A1 true WO2010087232A1 (ja) 2010-08-05

Family

ID=42395494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050351 WO2010087232A1 (ja) 2009-01-29 2010-01-14 ネガ型感光性絶縁樹脂組成物及びそれを用いたパターン形成方法

Country Status (3)

Country Link
US (1) US20110281217A1 (ja)
JP (1) JPWO2010087232A1 (ja)
WO (1) WO2010087232A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140106570A1 (en) * 2011-05-20 2014-04-17 Nissan Chemical Industries, Ltd. Composition for forming organic hard mask layer for use in lithography containing polymer having acrylamide structure
JP2015135476A (ja) * 2013-12-16 2015-07-27 Jsr株式会社 着色組成物、着色硬化膜及び表示素子

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018155016A1 (ja) * 2017-02-21 2019-12-12 日本ゼオン株式会社 ネガ型感光性樹脂組成物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004078703A1 (ja) * 2003-03-05 2004-09-16 Jsr Corporation 酸発生剤、スルホン酸、スルホニルハライド化合物および感放射線性樹脂組成物
JP2007052120A (ja) * 2005-08-16 2007-03-01 Nec Corp 光導波路形成用感光性樹脂組成物、光導波路及び光導波路パターンの形成方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100668244B1 (ko) * 1999-02-15 2007-01-17 에이제토 엘렉토로닉 마티리알즈 가부시키가이샤 감광성 수지 조성물
IL139788A (en) * 2000-11-20 2006-10-05 Minelu Zonnenschein Stapler for endoscopes
TW200600975A (en) * 2004-02-20 2006-01-01 Jsr Corp Bilayer laminated film for bump formation and method of bump formation
US7566526B2 (en) * 2004-12-22 2009-07-28 Macronix International Co., Ltd. Method of exposure for lithography process and mask therefor
JP4727351B2 (ja) * 2005-04-12 2011-07-20 富士フイルム株式会社 感光性組成物、カラーフィルタ及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004078703A1 (ja) * 2003-03-05 2004-09-16 Jsr Corporation 酸発生剤、スルホン酸、スルホニルハライド化合物および感放射線性樹脂組成物
JP2007052120A (ja) * 2005-08-16 2007-03-01 Nec Corp 光導波路形成用感光性樹脂組成物、光導波路及び光導波路パターンの形成方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140106570A1 (en) * 2011-05-20 2014-04-17 Nissan Chemical Industries, Ltd. Composition for forming organic hard mask layer for use in lithography containing polymer having acrylamide structure
US9514949B2 (en) * 2011-05-20 2016-12-06 Nissan Chemical Industries, Ltd. Composition for forming organic hard mask layer for use in lithography containing polymer having acrylamide structure
JP2015135476A (ja) * 2013-12-16 2015-07-27 Jsr株式会社 着色組成物、着色硬化膜及び表示素子

Also Published As

Publication number Publication date
US20110281217A1 (en) 2011-11-17
JPWO2010087232A1 (ja) 2012-08-02

Similar Documents

Publication Publication Date Title
JP5245407B2 (ja) (メタ)アクリルアミド誘導体、重合体、化学増幅型感光性樹脂組成物及びパターン形成方法
JP5585065B2 (ja) 感光性絶縁樹脂組成物及びその硬化物並びに絶縁膜の製造方法
JP4640051B2 (ja) 絶縁膜形成用感放射線性樹脂組成物および絶縁膜の製造方法
KR101434010B1 (ko) 감광성 절연 수지 조성물 및 그의 경화물
JPWO2006006581A1 (ja) 感光性絶縁樹脂組成物、その硬化物およびその用途
JP4586920B2 (ja) 感光性樹脂組成物
JP4811594B2 (ja) スチレン系誘導体、スチレン系重合体、感光性樹脂組成物、及びパターン形成方法
JP2007186680A (ja) アミド誘導体、重合体、化学増幅型感光性樹脂組成物、及びパターン形成方法
JP6255740B2 (ja) ポジ型感光性樹脂組成物、硬化膜、保護膜、絶縁膜、半導体装置、表示体装置、およびポジ型感光性樹脂組成物の製造方法
JP5141552B2 (ja) 重合体及びそれを含有する感光性樹脂組成物
EP4066059B1 (en) Chemically amplified photoresist
WO2010087232A1 (ja) ネガ型感光性絶縁樹脂組成物及びそれを用いたパターン形成方法
WO2010001779A1 (ja) 感光性絶縁樹脂組成物及びそれを用いたパターン形成方法
TW201910363A (zh) 聚合體、樹脂組成物、樹脂膜、圖案化樹脂膜的製造方法及電子零件
WO2010087195A1 (ja) ポジ型感光性絶縁樹脂組成物、及びそれを用いたパターン形成方法
WO2009099083A1 (ja) アクリルアミド系ポリマー、アクリルアミド化合物、化学増幅型感光性樹脂組成物及びパターン形成方法
JP5251452B2 (ja) ポジ型感光性絶縁樹脂組成物及びその硬化物
JP2014044438A (ja) 感光性絶縁樹脂組成物及びその硬化物並びに絶縁膜の製造方法
WO2010067665A1 (ja) 感光性絶縁樹脂組成物及びその硬化物
JP2018169547A (ja) 支持体付き感光性フィルム及びその製造方法
KR102642893B1 (ko) 감광성 수지 조성물
JP5321498B2 (ja) 封止材パターンの形成方法
TWI477906B (zh) 負片型感光性樹脂組成物、圖案的製造方法以及電子零件
JP2010134388A (ja) ポジ型感光性絶縁樹脂組成物及びその硬化物
JP2015079191A (ja) 感光性樹脂組成物、パターン硬化膜とその製造方法、半導体素子及び電子デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10735702

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010548463

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13146886

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10735702

Country of ref document: EP

Kind code of ref document: A1