WO2009157281A1 - Fusion-bonding process for glass - Google Patents

Fusion-bonding process for glass Download PDF

Info

Publication number
WO2009157281A1
WO2009157281A1 PCT/JP2009/060157 JP2009060157W WO2009157281A1 WO 2009157281 A1 WO2009157281 A1 WO 2009157281A1 JP 2009060157 W JP2009060157 W JP 2009060157W WO 2009157281 A1 WO2009157281 A1 WO 2009157281A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass layer
temperature
layer
laser beam
Prior art date
Application number
PCT/JP2009/060157
Other languages
French (fr)
Japanese (ja)
Inventor
聡 松本
敏光 和久田
丈典 大宮
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to JP2009549320A priority Critical patent/JP5535655B2/en
Publication of WO2009157281A1 publication Critical patent/WO2009157281A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing

Definitions

  • the present invention relates to a glass welding method for producing a glass welded body by welding glass members together.
  • a glass layer containing a laser light-absorbing pigment is baked on one glass member along the planned welding region, and then the other glass is placed on the glass member via the glass layer.
  • a method is known in which one glass member and the other glass member are welded by overlapping the members and irradiating a laser beam along a planned welding region.
  • the glass layer is fixed to the glass member by removing the organic solvent and the binder from the paste layer containing the glass frit, the laser light absorbing pigment, the organic solvent and the binder. Then, the technique which fuses a glass layer by heating the glass member which the glass layer fixed in the baking furnace, and bakes a glass layer on a glass member is common (for example, refer patent document 1).
  • the glass layer fixed to the glass member is irradiated with laser light.
  • Has proposed a technique for melting a glass layer and baking the glass layer on a glass member see, for example, Patent Document 2).
  • the glass layer when the glass layer is baked on the glass member by laser light irradiation, the glass member may be damaged during baking or subsequent welding of the glass members, such as cracks in the glass member.
  • this invention is made
  • the inventor of the present invention leads to breakage of the glass member due to laser light irradiation, as shown in FIG. It has been found out that when the temperature of the glass layer exceeds the melting point Tm, the laser light absorption rate of the glass layer is rapidly increased. That is, in the glass layer fixed to the glass member, light scattering exceeding the absorption characteristics of the laser light absorbing pigment occurs due to the voids due to the removal of the binder and the particle properties of the glass frit, resulting in a low laser light absorption rate. (For example, it looks whitish in visible light). Therefore, as shown in FIG.
  • the glass layer actually reaches a temperature Ta higher than the crystallization temperature Tc, as shown in FIG.
  • the portion of the glass layer located on the opposite side of the glass member to be baked that is, the portion of the glass layer located on the glass member side to be welded
  • the melting point of that portion becomes high. Therefore, at the time of subsequent welding of the glass members, it is necessary to increase the irradiation power and irradiate the laser beam in order to melt the portion located on the glass member side to be welded in the glass layer.
  • the glass member is cracked by heat shock due to excessive heat input.
  • the present inventor has further studied based on this finding and has completed the present invention. It should be noted that the color change of the glass layer under visible light when the laser light absorption rate of the glass layer is increased by melting the glass layer is not limited to that changing from a whitish state to a blackish state, for example, a near infrared laser Some laser-absorbing pigments for light exhibit a green color when the glass layer melts.
  • the glass welding method according to the present invention is a glass welding method for producing a glass welded body by welding a first glass member and a second glass member, and comprises glass powder, a laser light absorbing material, and an organic solvent. And a step of arranging the glass layer formed by removing the organic solvent and the binder from the paste layer containing the binder on the first glass member along the planned welding region, and the temperature of the glass layer is higher than the melting point The glass layer is melted by irradiating the first laser beam along the planned welding region while controlling the irradiation conditions so as to be higher and lower than the crystallization temperature, and the glass layer is applied to the first glass member.
  • a step of fixing a second glass member is superimposed on the first glass member on which the glass layer has been fixed via the glass layer, and the second laser beam is irradiated along the planned welding region. Characterized in that it comprises the step of welding the first glass member and the second glass member.
  • this glass welding method when the glass layer is melted by irradiating the first laser beam along the planned welding region, irradiation is performed so that the temperature of the glass layer is higher than the melting point and lower than the crystallization temperature.
  • the glass layer is fixed on the first glass member by controlling the conditions. At the time of fixing the glass layer, the laser light absorption rate of the glass layer rapidly increases due to melting of the glass layer, but the irradiation conditions are set so that the temperature of the glass layer is higher than the melting point and lower than the crystallization temperature. Since it controls, it will be suppressed that a glass layer will be in a state with excessive heat input.
  • the irradiation conditions may be controlled so that the temperature of the glass layer is higher than the melting point and lower than the crystallization temperature based on the heat radiation emitted from the glass layer.
  • the irradiation conditions are ensured so that the temperature of the glass layer is higher than the melting point and lower than the crystallization temperature. It becomes possible to control to.
  • irradiation conditions are set such that the temperature of the glass layer is higher than the melting point and lower than the crystallization temperature based on the reflected light of the first laser beam reflected by the glass layer.
  • the light reflectance by the reflected light is constant until the temperature of the glass layer reaches the melting point, and shows a decreasing tendency when the temperature of the glass layer exceeds the melting point, and then the temperature of the glass layer exceeds the crystallization temperature and crystallizes. It has the characteristic of showing an increasing trend as the process progresses.
  • the irradiation of the first laser light is controlled based on the reflected light that is the reference of the light reflectance having such characteristics, the temperature of the glass layer is higher than the melting point and lower than the crystallization temperature. As a result, the irradiation conditions can be more reliably controlled.
  • the irradiation condition is the irradiation power of the first laser beam, and the irradiation power is increased or decreased so that the temperature of the glass layer is higher than the melting point and lower than the crystallization temperature. It is preferable to make it. In this case, since the control is performed by increasing or decreasing the irradiation power, it is possible to reliably control the temperature of the glass layer to be higher than the melting point and lower than the crystallization temperature.
  • the irradiation condition is the traveling speed of the first laser light with respect to the glass layer, and the temperature of the glass layer is higher than the melting point and lower than the crystallization temperature. It is preferable to increase or decrease the speed.
  • the control since the control is performed by increasing / decreasing the traveling speed of the first laser beam, it is possible to reliably control the temperature of the glass layer to be higher than the melting point and lower than the crystallization temperature.
  • the traveling speed of the first laser light is often increased. The time required for fixing can be shortened.
  • the “advance speed of the first laser light relative to the glass layer” means the relative advance speed of the first laser light, and when the first laser light is fixed and the glass layer moves, glass is moved.
  • the case where the first laser beam moves while the layer is fixed includes the case where each of the first laser beam and the glass layer moves.
  • a glass layer fixing device is a glass layer for fixing a glass layer formed by removing an organic solvent and a binder from a paste layer containing glass powder, a laser light absorber, an organic solvent and a binder to a glass member.
  • a fixing device for irradiating a glass layer disposed on a glass member with a laser beam; and a laser beam irradiation means for causing the temperature of the glass layer to be higher than a melting point and lower than a crystallization temperature.
  • an irradiation condition control means for controlling the irradiation condition.
  • this glass layer fixing device when irradiating laser light from the laser light irradiation means to melt the glass layer, irradiation condition control is performed so that the temperature of the glass layer is higher than the melting point and lower than the crystallization temperature.
  • the irradiation conditions are controlled by means to fix the glass layer on the first glass member.
  • the laser light absorptance of the glass layer rapidly increases, but the laser light irradiation means is controlled so that the temperature of the glass layer is higher than the melting point and lower than the crystallization temperature. Therefore, it is suppressed that a glass layer will be in a state with excessive heat input. Thereby, even if the glass layer is fixed to the glass member with the laser beam from the laser beam irradiation means, the glass member is cracked at the time of fixing the glass layer or at the subsequent welding of the glass members. It can be prevented from being damaged.
  • the present invention it is possible to prevent the glass members from being damaged and to weld the glass members efficiently.
  • FIG. 1 is a perspective view of a glass welded body manufactured by the glass welding method of the first embodiment.
  • the glass welded body 1 includes a glass member (first glass member) 4 and a glass member (second glass member) through a glass layer 3 formed along the planned welding region R. ) 5 is welded.
  • the glass members 4 and 5 are, for example, rectangular plate-shaped members having a thickness of 0.7 mm made of alkali-free glass, and the welding planned region R is set in a rectangular ring shape along the outer edges of the glass members 4 and 5.
  • the glass layer 3 is made of, for example, low-melting glass (vanadium phosphate glass, lead borate glass, etc.), and is formed in a rectangular ring shape along the planned welding region R.
  • a paste layer 6 is formed on the surface 4a of the glass member 4 along the planned welding region R by applying a frit paste by a dispenser, screen printing or the like.
  • the frit paste is, for example, powdery glass frit (glass powder) 2 made of amorphous low-melting glass (vanadium phosphate glass, lead borate glass, etc.), or an inorganic pigment such as iron oxide.
  • An organic solvent such as luminescent pigment (laser light absorbing material), amyl acetate and the like, and a binder which is a resin component (acrylic or the like) that thermally decomposes below the softening point temperature of glass.
  • the frit paste may be obtained by kneading a glass frit (glass powder) obtained by powdering a low-melting glass to which a laser light absorbing pigment (laser light absorbing material) is added in advance, an organic solvent, and a binder. That is, the paste layer 6 includes the glass frit 2, the laser light absorbing pigment, the organic solvent, and the binder.
  • the paste layer 6 is dried to remove the organic solvent, and the paste layer 6 is heated to remove the binder, whereby the glass layer 3 is formed on the surface 4a of the glass member 4 along the planned welding region R. Secure.
  • the glass layer 3 fixed to the surface 4a of the glass member 4 has light scattering exceeding the absorption characteristics of the laser light absorbing pigment due to the voids due to the removal of the binder and the particle property of the glass frit 2, and the laser light absorption rate is increased. It is in a low state (eg, it looks whitish in visible light).
  • the melting point and crystallization temperature of the glass layer 3 are low melting point glass contained in the glass layer 3 (glass frit contained in the paste layer 6). 2) melting point and crystallization temperature.
  • the glass member 4 is placed on the surface 11 a (here, the polished surface) of the plate-like mounting table 11 of the glass layer fixing device 10 via the glass layer 3.
  • the glass layer 3 formed by removing the organic solvent and the binder from the paste layer 6 is disposed between the glass member 4 and the mounting table 11 so as to be along the planned welding region R.
  • the glass layer fixing device 10 includes a mounting table 11 on which the glass member 4 on which the glass layer 3 is formed, and a laser beam (first laser beam) by combining the light condensing spot on the glass layer 3.
  • the glass layer fixing device 10 is driven, and as shown in FIG. 3 and FIG.
  • the glass layer 3 is melted by irradiating the laser beam L ⁇ b> 1 along and the glass layer 3 is baked on the glass member 4.
  • the temperature of the glass layer 3 at which the laser light absorptance rapidly increases due to melting is higher than the melting point and higher than the crystallization temperature.
  • the control unit 16 controls the irradiation power (irradiation conditions) of the laser light L1 as described below so that the temperature becomes low.
  • the irradiation of the laser beam L1 when the irradiation of the laser beam L1 is started, first, it is confirmed whether or not the temperature of the glass layer 3 is within a predetermined range higher than the melting point Tm and lower than the crystallization temperature Tc (S1). If the temperature of the glass layer 3 is within this predetermined range, the irradiation power of the laser beam L1 is maintained as it is, and the irradiation of the laser beam L1 along the planned welding region R is continued (S2). On the other hand, if the temperature of the glass layer 3 is outside this predetermined range, it is next determined whether the temperature of the glass layer 3 is higher or lower than the predetermined range (S3), and if higher, the irradiation power of the laser light L1 is set.
  • a certain amount is reduced (S4), and if low, the irradiation power of the laser beam L1 is increased by a certain amount (S5), and the irradiation of the laser beam L1 along the planned welding region R is continued. Such control is repeated until baking along the planned welding region R of the glass layer 3 is completed (S6).
  • the glass layer 3 disposed between the glass member 4 and the mounting table 11 is melted and recrystallized in a state where crystallization is suppressed. It solidifies and the glass layer 3 is baked on the surface 4a of the glass member 4.
  • the glass layer 4 since the baking that irradiates the laser beam L1 from the glass member 4 side is performed, the glass layer 4 is securely fixed to the glass member 4 in addition to the glass member 4. Crystallization of the surface 3a of the glass layer 3 which becomes a welding surface when 5 is welded together is further suppressed.
  • the glass layer 3 baked on the surface 4a of the glass member 4 is filled with voids due to melting of the glass frit 2 and its particle property is lost, the absorption characteristic of the laser light absorbing pigment appears remarkably, and the laser light absorption rate Becomes high (eg, it looks dark in visible light).
  • the glass member 4 on which the glass layer 3 has been baked is removed from the mounting table 11.
  • the difference in linear expansion coefficient between the glass frit 2 and the mounting table 11 is larger than the difference in linear expansion coefficient between the glass frit 2 and the glass member 4
  • the glass layer 3 is fixed to the mounting table 11. It is supposed not to.
  • the glass layer 3 baked on the surface 4a of the glass member 4 has the surface 11a of the mounting table 11 polished, the unevenness of the surface 3a opposite to the glass member 4 is flattened. ing.
  • the glass member 5 is superimposed on the glass member 4 on which the glass layer 3 is baked through the glass layer 3. Since the surface 3a of the glass layer 3 is planarized at this time, the surface 5a of the glass member 5 contacts the surface 3a of the glass layer 3 without a gap.
  • the overlapped glass members 4 and 5 are placed on a glass member welding device (not shown), and as shown in FIG.
  • the laser beam L2 is irradiated along the planned welding region R.
  • the glass members 4 and 5 are moved with respect to the laser beam L2 by the glass member welding apparatus, and irradiation is performed.
  • the laser beam L2 is absorbed by the glass layer 3 in a state where the laser beam absorption rate is high over the entire circumference of the planned welding region R, and the glass layer 3 and its peripheral part (the surfaces 4a, 4 of the glass members 4 and 5). 5a portion) is melted and re-solidified, and the glass member 4 and the glass member 5 are welded.
  • the surface 5a of the glass member 5 is in contact with the surface 3a of the glass layer 3 without a gap, and the glass layer 3 baked on the glass member 4 is formed in a state in which crystallization is suppressed over the entire circumference of the planned welding region R. Therefore, the glass member 4 and the glass member 5 are uniformly welded along the planned welding region R without increasing the melting point of the glass layer 3, and damage is prevented.
  • the temperature of the glass layer 3 is the melting point.
  • the glass layer 3 is fixed to the glass member 4 by controlling the irradiation condition of the laser beam L1 so as to be higher than Tm and lower than the crystallization temperature Tc.
  • the laser light absorption rate of the glass layer 3 is rapidly increased by melting of the glass layer 3, but the temperature of the glass layer 3 is higher than the melting point Tm and lower than the crystallization temperature Tc.
  • the irradiation conditions of the laser beam L1 are controlled, it is suppressed that the glass layer 3 will be in the state of excessive heat input.
  • the glass members 4, 5 are fixed when the glass layer 3 is fixed or when the glass members 4, 5 are subsequently welded together. It is possible to prevent the glass members 4 and 5 from being damaged, for example, cracks are generated. Therefore, according to this glass welding method, it becomes possible to prevent the glass members 4 and 5 from being damaged and to weld the glass members 4 and 5 efficiently.
  • the laser beam L1 is set so that the temperature of the glass layer 3 is higher than the melting point Tm and lower than the crystallization temperature Tc based on the heat radiation emitted from the glass layer 3.
  • the irradiation conditions are controlled.
  • the temperature of the glass layer 3 is measured by measuring the heat radiation emitted from the glass layer 3, the temperature of the glass layer 3 is higher than the melting point Tm and lower than the crystallization temperature Tc. It becomes possible to control the irradiation conditions of the laser beam L1 with certainty.
  • the laser beam L1 is irradiated to the glass layer 3 from the glass member 4 side. Therefore, the interface portion between the glass member 4 and the glass layer 3 is sufficiently heated, and the melting temperature on the surface 3a side of the glass layer 3 is controlled to be lower than the melting temperature on the interface portion side. Therefore, not only the glass layer 3 can be firmly baked and fixed on the glass member 4, but also the portion of the glass layer 3 located on the side of the glass member 5 to be welded (the surface 3a portion of the glass layer 3) has excessive heat input. Thus, crystallization can be more reliably suppressed. [Second Embodiment]
  • the temperature of the glass layer 3 is higher than the melting point Tm and the crystallization temperature Tc based on the reflected light of the laser light L1 reflected by the glass layer 3. This is different from the first embodiment in that the irradiation power of the laser beam L1 is controlled to be low.
  • the laser beam reflectance of the laser beam L1 has the following characteristics. That is, as shown in FIG. 8, until the temperature of the glass layer 3 reaches the melting point Tm, the laser beam reflectance is substantially constant, and the intensity of the reflected light is also substantially constant. On the other hand, when the temperature of the glass layer 3 exceeds the melting point Tm and the glass layer 3 starts to melt, the scattering due to binder holes (bubbles) and the particle nature of the glass frit 2 is reduced and the light absorption rate is increased by the laser absorbing pigment. As a result, the laser beam reflectance tends to gradually decrease with an increase in temperature, and the intensity of the reflected light also gradually decreases.
  • the reflectance of the laser beam becomes substantially constant for a while, and when the temperature of the glass layer 3 rises to the crystallization temperature Tc, crystallization starts and crystallization occurs. As the scattering increases, the laser beam reflectance tends to increase again as the temperature rises, and the intensity of the reflected light gradually increases. Thereafter, when the temperature of the glass layer 3 becomes Tc1 and the glass layer 3 is completely crystallized, the laser light reflectance becomes substantially constant again, and the intensity of the reflected light becomes substantially constant.
  • the glass layer 3 is baked on the glass member 4 using the intensity of the reflected light having such characteristics. The steps other than baking in the glass welding method are the same as those in the first embodiment.
  • the glass layer fixing device 20 used in this embodiment will be described.
  • the glass layer fixing device 20 includes a light receiving head 23, a reflected light monitor 24, and a control in addition to the mounting table 11, the laser light irradiation unit 12, and the XY stage 15 used in the first embodiment.
  • Part (irradiation condition control means) 26 is provided.
  • the light receiving head 23 receives the reflected light from the glass layer 3 by the irradiation of the laser light L 1, and outputs intensity information of the received reflected light to the reflected light monitor 24.
  • the reflected light monitor 24 performs reflectance conversion based on the intensity information of the reflected light from the light receiving head 23 and the irradiation power information from the control unit 26, and outputs the intensity information of the reflected light and the laser beam reflectance to the control unit 26.
  • the control unit 26 controls the laser light irradiation unit 12 and the XY stage 15 based on the input reflected light intensity information and laser light reflectance.
  • the glass layer fixing device 20 is driven, a focused spot is aligned with the glass layer 3, and the laser beam L 1 is irradiated along the planned welding region R to melt the glass layer 3.
  • the glass layer 3 is baked on the glass member 4.
  • the temperature of the glass layer 3 at which the laser light absorption rate has suddenly increased due to melting is higher than the melting point Tm and the crystal
  • the control unit 26 controls the irradiation power of the laser light L1 as follows so that the temperature becomes lower than the activation temperature Tc.
  • the irradiation power of the laser beam L1 from the laser beam irradiation unit 12 is gradually increased so that the glass layer 3 is not suddenly crystallized. (S11). Then, it is confirmed whether the intensity of the reflected light received by the light receiving head 23 is within a predetermined range where the temperature of the glass layer 3 does not exceed the melting point Tm (S12). Since the laser beam reflectance is constant until the temperature reaches the melting point Tm, it is confirmed by measuring the intensity of the reflected light that the temperature of the glass layer 3 does not exceed the melting point Tm.
  • the irradiation power of the laser light L1 is maintained as it is, and the irradiation of the laser light L1 along the planned welding region R is continued (S13).
  • the temperature of the glass layer exceeded the melting point Tm, and the laser beam absorptance increased. In this case, the laser beam reflectance from the glass layer 3 is obtained, and it is determined whether or not the laser beam reflectance is lowered (S14).
  • step S14 if the laser beam reflectance tends to decrease, the irradiation power of the laser beam L1 is increased by a certain amount (S15), and the temperature of the glass layer 3 is between the melting point Tm and the crystallization temperature Tc.
  • the laser beam L1 is controlled so as to be within the optimum melting temperature range Tm1 to Tc (see FIG. 8), and the irradiation of the laser beam L1 along the planned welding region R is continued.
  • the optimum melting temperature range Tm1 to Tc coincides with the region where the laser light reflectance is switched from the decreasing tendency to the increasing tendency, and the laser light reflectance is substantially constant. .
  • the laser light reflectance is not lowered, it is determined whether the irradiation power of the laser light reaching the predetermined crystallization temperature Tc, that is, the upper limit value or more (S16). If the irradiation power of the laser beam L1 is equal to or higher than the upper limit value, the glass layer 3 is likely to be crystallized (S17), and the processing is stopped (S18). On the other hand, if the irradiation power of the laser beam L1 is smaller than the upper limit value, the power of the laser beam is increased (S15). Such control is repeated until the baking of the glass layer 3 is completed along the planned welding region R (S19).
  • the temperature of the glass layer 3 is higher than the melting point Tm and crystallized based on the light reflection of the laser light L1 reflected by the glass layer 3.
  • the irradiation power is controlled so that the temperature is lower than the temperature Tc.
  • the laser beam reflectance by the reflected light is constant until the temperature of the glass layer 3 reaches the melting point Tm, and shows a tendency to decrease when the temperature of the glass layer 3 exceeds the melting point Tm. It has a characteristic of showing an increasing tendency as crystallization proceeds beyond the crystallization temperature Tc.
  • the irradiation of the laser light L1 is controlled based on the reflected light that is the reference of the laser light reflectance having such characteristics, the temperature of the glass layer 3 is higher than the melting point Tm and lower than the crystallization temperature Tc.
  • the irradiation power can be reliably controlled so as to reach the temperature.
  • the change region in which the laser beam reflectance tends to increase from the decreasing tendency coincides with the optimum melting temperature range Tm1 to Tc, the laser beam L1 is controlled on the basis of the laser beam reflectance, so that the glass The melting of the layer 3 can be further optimized.
  • the glass members 4 and 5 that are made thinner are used. Therefore, the material of the glass members 4 and 5 should be less likely to be cracked. Low expansion glass is often selected.
  • a filler made of ceramics or the like is added to the glass layer 3. In a large amount. If the glass layer 3 contains a large amount of filler, the laser light absorption rate of the glass layer 3 will change much more before and after the irradiation with the laser light L1. Therefore, the glass welding method described above is particularly effective when low expansion glass is selected as the material of the glass members 4 and 5.
  • the present invention is not limited to the embodiment described above.
  • the amount of heat input to the glass layer 3 that moves at a constant speed is adjusted by changing the irradiation power of the laser beam L1, which is the irradiation condition.
  • the amount of heat input to the glass layer 3 is adjusted by changing the relative irradiation speed of the laser light L1 (that is, the traveling speed of the laser light L1 with respect to the glass layer 3) as the irradiation condition while keeping the irradiation power of the light L1 constant. You may do it.
  • the control is performed by increasing or decreasing the relative speed of the laser light L1, the temperature of the glass layer 3 can be reliably controlled within a predetermined range.
  • the amount of heat input by laser irradiation is often reduced after the melting of the glass layer 3 has progressed and the laser light absorption rate has increased, the relative speed of the laser light L1 is often increased. 3 can be shortened.
  • the glass layer 3 is irradiated with the laser light L1 through the glass member 4 side.
  • the glass layer 3 may be directly irradiated with the laser light L1.
  • the laser beams L1 and L2 are fixed and the glass members 4 and 5 are moved by the XY stage 15 or the like. 4 and 5, the glass members 4 and 5 may be fixed and the laser beams L1 and L2 may be moved, or the glass members 4 and 5 and the laser beams L1 and L2 may be moved. May be moved respectively.
  • the laser light L1 from the laser light irradiation unit 12 for melting the glass layer 3 is used to obtain the intensity of the reflected light and the laser light reflectance.
  • a dedicated laser beam irradiation unit for obtaining the laser beam reflectance may be provided, and the laser beam from such a dedicated laser beam irradiation unit may be used.
  • the present invention it is possible to prevent the glass members from being damaged and to weld the glass members efficiently.
  • SYMBOLS 1 Glass welded body, 2 ... Glass frit (glass powder), 3 ... Glass layer, 4 ... Glass member (1st glass member), 5 ... Glass member (2nd glass member), 6 ... Paste layer, 10 , 20 ... Glass layer fixing device, 12 ... Laser light irradiation unit (laser light irradiation means), 13, 23 ... Light receiving head, 14 ... Radiation thermometer, 15 ... XY stage, 16, 26 ... Control unit (irradiation condition control means) ), 24... Reflected light monitor, R... Expected welding region, L 1... Laser light (first laser light), L 2... Laser light (second laser light).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A glass layer (3) is fixed on a glass member (4) by fusing the glass layer (3) by irradiation with a laser beam (L1) along a scheduled region (R) for fusion bonding, with the irradiation power of the laser beam (L1) being so controlled as to keep the glass layer (3) at a temperature which is higher than the melting point (Tm) and lower than the crystallization temperature (Tc).  In fixing the glass layer (3), the laser beam absorptivity of the glass layer (3) is rapidly enhanced by the fusion of the glass layer (3).  But, the irradiation power of the laser beam (L1) is so controlled as to keep the glass layer (3) at a temperature which is higher than the melting point (Tm) and lower than the crystallization temperature (Tc), whereby the glass layer (3) is protected from excessive heat input and thus inhibited from being crystallized in firing.  Then, a glass member (5) is fusion-bonded to the glass member (4) via the glass layer (3) thus reduced in crystallization.  Thus, a fusion-bonded glass structure (1) is obtained.

Description

ガラス溶着方法Glass welding method
 本発明は、ガラス部材同士を溶着してガラス溶着体を製造するガラス溶着方法に関する。 The present invention relates to a glass welding method for producing a glass welded body by welding glass members together.
 上記技術分野における従来のガラス溶着方法として、レーザ光吸収性顔料を含むガラス層を、溶着予定領域に沿うように一方のガラス部材に焼き付けた後、そのガラス部材にガラス層を介して他方のガラス部材を重ね合わせ、溶着予定領域に沿ってレーザ光を照射することにより、一方のガラス部材と他方のガラス部材とを溶着する方法が知られている。 As a conventional glass welding method in the above technical field, a glass layer containing a laser light-absorbing pigment is baked on one glass member along the planned welding region, and then the other glass is placed on the glass member via the glass layer. A method is known in which one glass member and the other glass member are welded by overlapping the members and irradiating a laser beam along a planned welding region.
 ところで、ガラス部材にガラス層を焼き付ける技術としては、ガラスフリット、レーザ光吸収性顔料、有機溶剤及びバインダを含むペースト層から有機溶剤及びバインダを除去することにより、ガラス部材にガラス層を固着させた後、ガラス層が固着したガラス部材を焼成炉内で加熱することにより、ガラス層を溶融させて、ガラス部材にガラス層を焼き付ける技術が一般的である(例えば、特許文献1参照)。 By the way, as a technique for baking the glass layer on the glass member, the glass layer is fixed to the glass member by removing the organic solvent and the binder from the paste layer containing the glass frit, the laser light absorbing pigment, the organic solvent and the binder. Then, the technique which fuses a glass layer by heating the glass member which the glass layer fixed in the baking furnace, and bakes a glass layer on a glass member is common (for example, refer patent document 1).
 これに対し、焼成炉の使用による消費エネルギの増大及び焼付け時間の長時間化を抑制するという観点(すなわち、高効率化という観点)から、ガラス部材に固着したガラス層にレーザ光を照射することにより、ガラス層を溶融させて、ガラス部材にガラス層を焼き付ける技術が提案されている(例えば、特許文献2参照)。 In contrast, from the viewpoint of suppressing the increase in energy consumption and the lengthening of the baking time due to the use of the baking furnace (that is, from the viewpoint of improving the efficiency), the glass layer fixed to the glass member is irradiated with laser light. Has proposed a technique for melting a glass layer and baking the glass layer on a glass member (see, for example, Patent Document 2).
特表2006-524419号公報JP 2006-524419 A 特開2002-366050号公報JP 2002-366050 A
 しかしながら、ガラス部材に対するガラス層の焼付けをレーザ光の照射によって行うと、焼付け時や、その後のガラス部材同士の溶着時に、ガラス部材にクラックが生じるなど、ガラス部材が破損することがあった。 However, when the glass layer is baked on the glass member by laser light irradiation, the glass member may be damaged during baking or subsequent welding of the glass members, such as cracks in the glass member.
 そこで、本発明は、このような事情に鑑みてなされたものであり、ガラス部材の破損を防止して、効率良くガラス部材同士を溶着することができるガラス溶着方法を提供することを目的とする。 Then, this invention is made | formed in view of such a situation, and it aims at providing the glass welding method which prevents the damage of a glass member and can weld glass members efficiently. .
 本発明者は、上記目的を達成するために鋭意検討を重ねた結果、レーザ光の照射によるガラス層の焼付けがガラス部材の破損に繋がるのは、図11に示されるように、焼付け時にガラス層の温度が融点Tmを超えるとガラス層のレーザ光吸収率が急激に高くなることに起因していることを突き止めた。つまり、ガラス部材に固着したガラス層においては、バインダの除去による空隙やガラスフリットの粒子性によって、レーザ光吸収性顔料の吸収特性を上回る光散乱が起こり、レーザ光吸収率が低い状態となっている(例えば、可視光において白っぽく見える)。そこで、図12に示されるように、ガラス層の温度が融点Tmよりも高く且つ結晶化温度Tcよりも低い温度Tpとなるように照射パワーPでレーザ光を照射すると、ガラスフリットの溶融によって空隙が埋まると共に粒子性が崩れるため、レーザ光吸収性顔料の吸収特性が顕著に現れ、ガラス層のレーザ光吸収率が急激に高くなる(例えば、可視光において黒っぽく見える)。これにより、ガラス層において想定以上のレーザ光の吸収が起こり、入熱過多によるヒートショックでガラス部材にクラックが生じるのである。また、照射パワーPでのレーザ光の照射によって、実際には、図12に示されるように、ガラス層の温度が結晶化温度Tcよりも高い温度Taに達する。ガラス層において焼付け対象のガラス部材と反対側に位置する部分(すなわち、ガラス層において溶着対象のガラス部材側に位置する部分)が入熱過多によって結晶化すると、その部分の融点が高くなる。そのため、その後のガラス部材同士の溶着時に、ガラス層において溶着対象のガラス部材側に位置する部分を溶融させるべく、照射パワーを高くしてレーザ光を照射することが必要となり、焼付け時と同様に入熱過多によるヒートショックでガラス部材にクラックが生じるのである。本発明者は、この知見に基づいて更に検討を重ね、本発明を完成させるに至った。なお、ガラス層の溶融によってガラス層のレーザ光吸収率が高まる場合における可視光下でのガラス層の色変化は、白っぽい状態から黒っぽい状態に変化するものに限定されず、例えば、近赤外レーザ光用のレーザ光吸収性顔料の中には、ガラス層が溶融すると緑色を呈するものも存在する。 As a result of intensive studies to achieve the above object, the inventor of the present invention leads to breakage of the glass member due to laser light irradiation, as shown in FIG. It has been found out that when the temperature of the glass layer exceeds the melting point Tm, the laser light absorption rate of the glass layer is rapidly increased. That is, in the glass layer fixed to the glass member, light scattering exceeding the absorption characteristics of the laser light absorbing pigment occurs due to the voids due to the removal of the binder and the particle properties of the glass frit, resulting in a low laser light absorption rate. (For example, it looks whitish in visible light). Therefore, as shown in FIG. 12, when the laser beam is irradiated with the irradiation power P so that the temperature of the glass layer is higher than the melting point Tm and lower than the crystallization temperature Tc, voids are generated due to melting of the glass frit. Since the particle property is lost as the film is buried, the absorption characteristic of the laser light absorbing pigment appears remarkably, and the laser light absorption rate of the glass layer rapidly increases (for example, it looks dark in visible light). As a result, absorption of laser light more than expected occurs in the glass layer, and cracks occur in the glass member due to heat shock due to excessive heat input. In addition, as a result of the laser beam irradiation at the irradiation power P, the glass layer actually reaches a temperature Ta higher than the crystallization temperature Tc, as shown in FIG. When the portion of the glass layer located on the opposite side of the glass member to be baked (that is, the portion of the glass layer located on the glass member side to be welded) is crystallized due to excessive heat input, the melting point of that portion becomes high. Therefore, at the time of subsequent welding of the glass members, it is necessary to increase the irradiation power and irradiate the laser beam in order to melt the portion located on the glass member side to be welded in the glass layer. The glass member is cracked by heat shock due to excessive heat input. The present inventor has further studied based on this finding and has completed the present invention. It should be noted that the color change of the glass layer under visible light when the laser light absorption rate of the glass layer is increased by melting the glass layer is not limited to that changing from a whitish state to a blackish state, for example, a near infrared laser Some laser-absorbing pigments for light exhibit a green color when the glass layer melts.
 すなわち、本発明に係るガラス溶着方法は、第1のガラス部材と第2のガラス部材とを溶着してガラス溶着体を製造するガラス溶着方法であって、ガラス粉、レーザ光吸収材、有機溶剤及びバインダを含むペースト層から有機溶剤及びバインダが除去されることにより形成されたガラス層を、溶着予定領域に沿うように第1のガラス部材に配置する工程と、ガラス層の温度が融点よりも高く且つ結晶化温度よりも低い温度となるように照射条件を制御しつつ溶着予定領域に沿って第1のレーザ光を照射することによりガラス層を溶融させ、第1のガラス部材にガラス層を定着させる工程と、ガラス層が定着した第1のガラス部材にガラス層を介して第2のガラス部材を重ね合わせ、溶着予定領域に沿って第2のレーザ光を照射することにより、第1のガラス部材と第2のガラス部材とを溶着する工程と、を含むことを特徴とする。 That is, the glass welding method according to the present invention is a glass welding method for producing a glass welded body by welding a first glass member and a second glass member, and comprises glass powder, a laser light absorbing material, and an organic solvent. And a step of arranging the glass layer formed by removing the organic solvent and the binder from the paste layer containing the binder on the first glass member along the planned welding region, and the temperature of the glass layer is higher than the melting point The glass layer is melted by irradiating the first laser beam along the planned welding region while controlling the irradiation conditions so as to be higher and lower than the crystallization temperature, and the glass layer is applied to the first glass member. A step of fixing, a second glass member is superimposed on the first glass member on which the glass layer has been fixed via the glass layer, and the second laser beam is irradiated along the planned welding region. Characterized in that it comprises the step of welding the first glass member and the second glass member.
 このガラス溶着方法では、溶着予定領域に沿って第1のレーザ光を照射してガラス層を溶融させる際、ガラス層の温度が融点よりも高く且つ結晶化温度よりも低い温度となるように照射条件を制御して、第1のガラス部材にガラス層を定着させる。このガラス層の定着時には、ガラス層の溶融によってガラス層のレーザ光吸収率が急激に高くなるが、ガラス層の温度が融点よりも高く且つ結晶化温度よりも低い温度となるように照射条件を制御しているため、ガラス層が入熱過多の状態となることが抑止される。このような制御により、第1のレーザ光の照射によって第1のガラス部材にガラス層を定着させても、ガラス層の定着時や、その後のガラス部材同士の溶着時に、ガラス部材にクラックが生じるなど、ガラス部材が破損するのを防止することができる。従って、このガラス溶着方法によれば、ガラス部材の破損を防止して、効率良くガラス部材同士を溶着することが可能となる。 In this glass welding method, when the glass layer is melted by irradiating the first laser beam along the planned welding region, irradiation is performed so that the temperature of the glass layer is higher than the melting point and lower than the crystallization temperature. The glass layer is fixed on the first glass member by controlling the conditions. At the time of fixing the glass layer, the laser light absorption rate of the glass layer rapidly increases due to melting of the glass layer, but the irradiation conditions are set so that the temperature of the glass layer is higher than the melting point and lower than the crystallization temperature. Since it controls, it will be suppressed that a glass layer will be in a state with excessive heat input. By such control, even if the glass layer is fixed to the first glass member by irradiation with the first laser beam, a crack is generated in the glass member at the time of fixing the glass layer or subsequent welding of the glass members. For example, the glass member can be prevented from being damaged. Therefore, according to this glass welding method, it is possible to prevent the glass members from being damaged and to efficiently weld the glass members together.
 本発明に係るガラス溶着方法においては、ガラス層から放射される熱輻射光に基づいてガラス層の温度が融点よりも高く且つ結晶化温度よりも低い温度となるように照射条件を制御することが好ましい。この場合、ガラス層から放射される熱輻射光でガラス層の温度を測定することになるため、ガラス層の温度が融点よりも高く且つ結晶化温度よりも低い温度となるように照射条件を確実に制御することが可能となる。 In the glass welding method according to the present invention, the irradiation conditions may be controlled so that the temperature of the glass layer is higher than the melting point and lower than the crystallization temperature based on the heat radiation emitted from the glass layer. preferable. In this case, since the temperature of the glass layer is measured by the heat radiation emitted from the glass layer, the irradiation conditions are ensured so that the temperature of the glass layer is higher than the melting point and lower than the crystallization temperature. It becomes possible to control to.
 本発明に係るガラス溶着方法においては、ガラス層で反射された第1のレーザ光の反射光に基づいてガラス層の温度が融点よりも高く且つ結晶化温度よりも低い温度となるように照射条件を制御することが好ましい。反射光による光反射率は、ガラス層の温度が融点に至るまでは一定であり、ガラス層の温度が融点を超えると低下傾向を示し、その後、ガラス層の温度が結晶化温度を超えて結晶化が進むと増加傾向を示すといった特性を有している。そこで、このような特性を有する光反射率の基準となる反射光に基づいて第1のレーザ光の照射を制御することから、ガラス層の温度が融点よりも高く且つ結晶化温度よりも低い温度になるように照射条件を更に確実に制御することが可能となる。 In the glass welding method according to the present invention, irradiation conditions are set such that the temperature of the glass layer is higher than the melting point and lower than the crystallization temperature based on the reflected light of the first laser beam reflected by the glass layer. Is preferably controlled. The light reflectance by the reflected light is constant until the temperature of the glass layer reaches the melting point, and shows a decreasing tendency when the temperature of the glass layer exceeds the melting point, and then the temperature of the glass layer exceeds the crystallization temperature and crystallizes. It has the characteristic of showing an increasing trend as the process progresses. Therefore, since the irradiation of the first laser light is controlled based on the reflected light that is the reference of the light reflectance having such characteristics, the temperature of the glass layer is higher than the melting point and lower than the crystallization temperature. As a result, the irradiation conditions can be more reliably controlled.
 本発明に係るガラス溶着方法においては、照射条件は、第1のレーザ光の照射パワーであり、ガラス層の温度が融点よりも高く且つ結晶化温度よりも低い温度となるように照射パワーを増減させることが好ましい。この場合、照射パワーの増減で制御するので、ガラス層の温度が融点よりも高く且つ結晶化温度よりも低い温度となるように確実に制御することが可能となる。 In the glass welding method according to the present invention, the irradiation condition is the irradiation power of the first laser beam, and the irradiation power is increased or decreased so that the temperature of the glass layer is higher than the melting point and lower than the crystallization temperature. It is preferable to make it. In this case, since the control is performed by increasing or decreasing the irradiation power, it is possible to reliably control the temperature of the glass layer to be higher than the melting point and lower than the crystallization temperature.
 本発明に係るガラス溶着方法においては、照射条件は、ガラス層に対する第1のレーザ光の進行速度であり、ガラス層の温度が融点よりも高く且つ結晶化温度よりも低い温度となるように進行速度を増減させることが好ましい。この場合、第1のレーザ光の進行速度の増減で制御するので、ガラス層の温度が融点よりも高く且つ結晶化温度よりも低い温度となるように確実に制御することが可能となる。しかも、ガラス層の溶融が進んでレーザ光吸収率が上昇した後はレーザ照射による入熱量を低下させることが多いことから、第1のレーザ光の進行速度を速める場合が多くなり、ガラス層の定着に要する時間を短縮化させることが可能となる。なお、「ガラス層に対する第1のレーザ光の進行速度」とは、第1のレーザ光の相対的な進行速度を意味し、第1のレーザ光が固定されてガラス層が移動する場合、ガラス層が固定されて第1のレーザ光が移動する場合、第1のレーザ光及びガラス層のそれぞれが移動する場合を含む。 In the glass welding method according to the present invention, the irradiation condition is the traveling speed of the first laser light with respect to the glass layer, and the temperature of the glass layer is higher than the melting point and lower than the crystallization temperature. It is preferable to increase or decrease the speed. In this case, since the control is performed by increasing / decreasing the traveling speed of the first laser beam, it is possible to reliably control the temperature of the glass layer to be higher than the melting point and lower than the crystallization temperature. Moreover, since the amount of heat input by laser irradiation is often reduced after the melting of the glass layer has progressed and the laser light absorptance has increased, the traveling speed of the first laser light is often increased. The time required for fixing can be shortened. The “advance speed of the first laser light relative to the glass layer” means the relative advance speed of the first laser light, and when the first laser light is fixed and the glass layer moves, glass is moved. The case where the first laser beam moves while the layer is fixed includes the case where each of the first laser beam and the glass layer moves.
 本発明に係るガラス層定着装置は、ガラス粉、レーザ光吸収材、有機溶剤及びバインダを含むペースト層から有機溶剤及びバインダが除去されることにより形成されたガラス層をガラス部材に定着させるガラス層定着装置であって、ガラス部材に配置されたガラス層にレーザ光を照射するレーザ光照射手段と、ガラス層の温度が融点よりも高く且つ結晶化温度よりも低い温度となるようにレーザ光の照射条件を制御する照射条件制御手段と、を備えたことを特徴とする。 A glass layer fixing device according to the present invention is a glass layer for fixing a glass layer formed by removing an organic solvent and a binder from a paste layer containing glass powder, a laser light absorber, an organic solvent and a binder to a glass member. A fixing device for irradiating a glass layer disposed on a glass member with a laser beam; and a laser beam irradiation means for causing the temperature of the glass layer to be higher than a melting point and lower than a crystallization temperature. And an irradiation condition control means for controlling the irradiation condition.
 このガラス層定着装置では、レーザ光照射手段からレーザ光を照射してガラス層を溶融させる際、ガラス層の温度が融点よりも高く且つ結晶化温度よりも低い温度となるように、照射条件制御手段によって照射条件を制御して、第1のガラス部材にガラス層を定着させる。このガラス層の定着時には、ガラス層のレーザ光吸収率が急激に高くなるが、ガラス層の温度が融点よりも高く且つ結晶化温度よりも低い温度となるようにレーザ光照射手段を制御しているため、ガラス層が入熱過多の状態となることが抑止される。これにより、レーザ光照射手段からのレーザ光でガラス部材にガラス層を定着させても、ガラス層の定着時や、その後のガラス部材同士の溶着時に、ガラス部材にクラックが生じるなど、ガラス部材が破損するのを防止することができる。 In this glass layer fixing device, when irradiating laser light from the laser light irradiation means to melt the glass layer, irradiation condition control is performed so that the temperature of the glass layer is higher than the melting point and lower than the crystallization temperature. The irradiation conditions are controlled by means to fix the glass layer on the first glass member. At the time of fixing the glass layer, the laser light absorptance of the glass layer rapidly increases, but the laser light irradiation means is controlled so that the temperature of the glass layer is higher than the melting point and lower than the crystallization temperature. Therefore, it is suppressed that a glass layer will be in a state with excessive heat input. Thereby, even if the glass layer is fixed to the glass member with the laser beam from the laser beam irradiation means, the glass member is cracked at the time of fixing the glass layer or at the subsequent welding of the glass members. It can be prevented from being damaged.
 本発明によれば、ガラス部材の破損を防止して、効率良くガラス部材同士を溶着することができる。 According to the present invention, it is possible to prevent the glass members from being damaged and to weld the glass members efficiently.
第1実施形態のガラス溶着方法によって製造されたガラス溶着体の斜視図である。It is a perspective view of the glass welded body manufactured by the glass welding method of 1st Embodiment. 第1実施形態のガラス溶着方法を説明するための斜視図である。It is a perspective view for demonstrating the glass welding method of 1st Embodiment. 第1実施形態のガラス溶着方法を説明するための断面図である。It is sectional drawing for demonstrating the glass welding method of 1st Embodiment. 第1実施形態で用いられるガラス層定着装置の概略構成図である。It is a schematic block diagram of the glass layer fixing apparatus used by 1st Embodiment. 第1実施形態におけるガラス層の焼付け制御を示すフローチャートである。It is a flowchart which shows the baking control of the glass layer in 1st Embodiment. 第1実施形態のガラス溶着方法を説明するための斜視図である。It is a perspective view for demonstrating the glass welding method of 1st Embodiment. 第1実施形態のガラス溶着方法を説明するための斜視図である。It is a perspective view for demonstrating the glass welding method of 1st Embodiment. ガラス層の温度とレーザ光反射率との関係を示すグラフである。It is a graph which shows the relationship between the temperature of a glass layer, and a laser beam reflectance. 第2実施形態で用いられるガラス層定着装置の概略構成図である。It is a schematic block diagram of the glass layer fixing apparatus used by 2nd Embodiment. 第2実施形態におけるガラス層の焼付け制御を示すフローチャートである。It is a flowchart which shows the baking control of the glass layer in 2nd Embodiment. ガラス層の温度とレーザ光吸収率との関係を示すグラフである。It is a graph which shows the relationship between the temperature of a glass layer, and a laser beam absorptance. レーザパワーとガラス層の温度との関係を示すグラフである。It is a graph which shows the relationship between a laser power and the temperature of a glass layer.
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[第1実施形態]
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping description is abbreviate | omitted.
[First Embodiment]
 図1は、第1実施形態のガラス溶着方法によって製造されたガラス溶着体の斜視図である。図1に示されるように、ガラス溶着体1は、溶着予定領域Rに沿って形成されたガラス層3を介して、ガラス部材(第1のガラス部材)4とガラス部材(第2のガラス部材)5とが溶着されたものである。ガラス部材4,5は、例えば、無アルカリガラスからなる厚さ0.7mmの矩形板状の部材であり、溶着予定領域Rは、ガラス部材4,5の外縁に沿って矩形環状に設定されている。ガラス層3は、例えば、低融点ガラス(バナジウムリン酸系ガラス、鉛ホウ酸ガラス等)からなり、溶着予定領域Rに沿って矩形環状に形成されている。 FIG. 1 is a perspective view of a glass welded body manufactured by the glass welding method of the first embodiment. As shown in FIG. 1, the glass welded body 1 includes a glass member (first glass member) 4 and a glass member (second glass member) through a glass layer 3 formed along the planned welding region R. ) 5 is welded. The glass members 4 and 5 are, for example, rectangular plate-shaped members having a thickness of 0.7 mm made of alkali-free glass, and the welding planned region R is set in a rectangular ring shape along the outer edges of the glass members 4 and 5. Yes. The glass layer 3 is made of, for example, low-melting glass (vanadium phosphate glass, lead borate glass, etc.), and is formed in a rectangular ring shape along the planned welding region R.
 次に、上述したガラス溶着体1を製造するためのガラス溶着方法について説明する。 Next, a glass welding method for manufacturing the glass welded body 1 described above will be described.
 まず、図2に示されるように、ディスペンサやスクリーン印刷等によってフリットペーストを塗布することにより、溶着予定領域Rに沿ってガラス部材4の表面4aにペースト層6を形成する。フリットペーストは、例えば、非晶質の低融点ガラス(バナジウムリン酸系ガラス、鉛ホウ酸ガラス等)からなる粉末状のガラスフリット(ガラス粉)2、酸化鉄等の無機顔料であるレーザ光吸収性顔料(レーザ光吸収材)、酢酸アミル等である有機溶剤、及びガラスの軟化点温度以下で熱分解する樹脂成分(アクリル等)であるバインダを混練したものである。フリットペーストは、レーザ光吸収性顔料(レーザ光吸収材)が予め添加された低融点ガラスを粉末状にしたガラスフリット(ガラス粉)、有機溶剤、及びバインダを混練したものであってもよい。つまり、ペースト層6は、ガラスフリット2、レーザ光吸収性顔料、有機溶剤及びバインダを含んでいる。 First, as shown in FIG. 2, a paste layer 6 is formed on the surface 4a of the glass member 4 along the planned welding region R by applying a frit paste by a dispenser, screen printing or the like. The frit paste is, for example, powdery glass frit (glass powder) 2 made of amorphous low-melting glass (vanadium phosphate glass, lead borate glass, etc.), or an inorganic pigment such as iron oxide. An organic solvent such as luminescent pigment (laser light absorbing material), amyl acetate and the like, and a binder which is a resin component (acrylic or the like) that thermally decomposes below the softening point temperature of glass. The frit paste may be obtained by kneading a glass frit (glass powder) obtained by powdering a low-melting glass to which a laser light absorbing pigment (laser light absorbing material) is added in advance, an organic solvent, and a binder. That is, the paste layer 6 includes the glass frit 2, the laser light absorbing pigment, the organic solvent, and the binder.
 続いて、ペースト層6を乾燥させて有機溶剤を除去し、更に、ペースト層6を加熱してバインダを除去することにより、溶着予定領域Rに沿ってガラス部材4の表面4aにガラス層3を固着させる。なお、ガラス部材4の表面4aに固着したガラス層3は、バインダの除去による空隙やガラスフリット2の粒子性によって、レーザ光吸収性顔料の吸収特性を上回る光散乱が起こり、レーザ光吸収率が低い状態となっている(例えば、可視光において白っぽく見える)。また、ガラス層3にはレーザ光吸収性顔料やフィラーが含有されるので、ガラス層3の融点、及び結晶化温度は、ガラス層3に含まれる低融点ガラス(ペースト層6に含まれるガラスフリット2)の融点、及び結晶化温度となっている。 Subsequently, the paste layer 6 is dried to remove the organic solvent, and the paste layer 6 is heated to remove the binder, whereby the glass layer 3 is formed on the surface 4a of the glass member 4 along the planned welding region R. Secure. Note that the glass layer 3 fixed to the surface 4a of the glass member 4 has light scattering exceeding the absorption characteristics of the laser light absorbing pigment due to the voids due to the removal of the binder and the particle property of the glass frit 2, and the laser light absorption rate is increased. It is in a low state (eg, it looks whitish in visible light). Further, since the glass layer 3 contains a laser light absorbing pigment and filler, the melting point and crystallization temperature of the glass layer 3 are low melting point glass contained in the glass layer 3 (glass frit contained in the paste layer 6). 2) melting point and crystallization temperature.
 続いて、図3及び図4に示されるように、ガラス層定着装置10の板状の載置台11の表面11a(ここでは、研磨面)に、ガラス層3を介してガラス部材4を載置する。これにより、ペースト層6から有機溶剤及びバインダが除去されることにより形成されたガラス層3が、溶着予定領域Rに沿うようにガラス部材4と載置台11との間に配置される。このガラス層定着装置10は、図4に示されるように、ガラス層3が形成されたガラス部材4が載置される載置台11と、ガラス層3に集光スポットを合わせてレーザ光(第1のレーザ光)L1を照射するレーザ光照射部(レーザ光照射手段)12と、レーザ光L1の照射によってガラス層3から放射される熱輻射光を受光する受光ヘッド13と、受光ヘッド13が受光した熱輻射光に基づいてレーザ光L1の集光スポットにおけるガラス層3の温度を検出する放射温度計14と、載置台11を溶着予定領域Rに沿ったXY方向に移動させるXYステージ15と、レーザ光照射部12及びXYステージ15を制御する制御部(照射条件制御手段)16と、を備えている。 Subsequently, as shown in FIGS. 3 and 4, the glass member 4 is placed on the surface 11 a (here, the polished surface) of the plate-like mounting table 11 of the glass layer fixing device 10 via the glass layer 3. To do. Thereby, the glass layer 3 formed by removing the organic solvent and the binder from the paste layer 6 is disposed between the glass member 4 and the mounting table 11 so as to be along the planned welding region R. As shown in FIG. 4, the glass layer fixing device 10 includes a mounting table 11 on which the glass member 4 on which the glass layer 3 is formed, and a laser beam (first laser beam) by combining the light condensing spot on the glass layer 3. A laser beam irradiating unit (laser beam irradiating means) 12 that irradiates L1; a light receiving head 13 that receives thermal radiation emitted from the glass layer 3 by the irradiation of the laser light L1, and a light receiving head 13; A radiation thermometer 14 for detecting the temperature of the glass layer 3 at the condensing spot of the laser light L1 based on the received heat radiation light, an XY stage 15 for moving the mounting table 11 in the XY direction along the planned welding region R, and And a control unit (irradiation condition control means) 16 for controlling the laser beam irradiation unit 12 and the XY stage 15.
 載置台11へのガラス部材4の載置に続いて、ガラス層定着装置10を駆動して、図3及び図4に示されるように、ガラス層3に集光スポットを合わせて溶着予定領域Rに沿ってレーザ光L1を照射することにより、ガラス層3を溶融させ、ガラス部材4にガラス層3を焼き付ける。このとき、受光ヘッド13で受光されたガラス層3からの熱輻射光に基づいて、溶融によって急激にレーザ光吸収率が高くなったガラス層3の温度が融点よりも高く且つ結晶化温度よりも低い温度となるように、制御部16で次のようなレーザ光L1の照射パワー(照射条件)の制御を行う。 Following the placement of the glass member 4 on the mounting table 11, the glass layer fixing device 10 is driven, and as shown in FIG. 3 and FIG. The glass layer 3 is melted by irradiating the laser beam L <b> 1 along and the glass layer 3 is baked on the glass member 4. At this time, based on the heat radiation light from the glass layer 3 received by the light receiving head 13, the temperature of the glass layer 3 at which the laser light absorptance rapidly increases due to melting is higher than the melting point and higher than the crystallization temperature. The control unit 16 controls the irradiation power (irradiation conditions) of the laser light L1 as described below so that the temperature becomes low.
 すなわち、図5に示すように、レーザ光L1の照射が開始されたら、まず、ガラス層3の温度が融点Tmより高く且つ結晶化温度Tcより低い所定の範囲内か否かを確認し(S1)、ガラス層3の温度がこの所定の範囲内であれば、レーザ光L1の照射パワーをそのまま維持して、溶着予定領域Rに沿ったレーザ光L1の照射を続ける(S2)。一方、ガラス層3の温度がこの所定の範囲外であれば、次に、ガラス層3の温度が所定の範囲より高いか低いかを判断し(S3)、高ければレーザ光L1の照射パワーを一定量低減し(S4)、低ければレーザ光L1の照射パワーを一定量増加させて(S5)、溶着予定領域Rに沿ったレーザ光L1の照射を続ける。そして、このような制御をガラス層3の溶着予定領域Rに沿った焼付けが終了するまで繰り返し行う(S6)。 That is, as shown in FIG. 5, when the irradiation of the laser beam L1 is started, first, it is confirmed whether or not the temperature of the glass layer 3 is within a predetermined range higher than the melting point Tm and lower than the crystallization temperature Tc (S1). If the temperature of the glass layer 3 is within this predetermined range, the irradiation power of the laser beam L1 is maintained as it is, and the irradiation of the laser beam L1 along the planned welding region R is continued (S2). On the other hand, if the temperature of the glass layer 3 is outside this predetermined range, it is next determined whether the temperature of the glass layer 3 is higher or lower than the predetermined range (S3), and if higher, the irradiation power of the laser light L1 is set. A certain amount is reduced (S4), and if low, the irradiation power of the laser beam L1 is increased by a certain amount (S5), and the irradiation of the laser beam L1 along the planned welding region R is continued. Such control is repeated until baking along the planned welding region R of the glass layer 3 is completed (S6).
 このような照射パワーの制御を行ってガラス層3の焼付けを行うことにより、ガラス部材4と載置台11との間に配置されたガラス層3は、結晶化が抑止された状態で溶融・再固化し、ガラス部材4の表面4aにガラス層3が焼き付けられる。しかも、本実施形態では、ガラス部材4側からレーザ光L1を照射する焼付けが行われていることから、ガラス層3のガラス部材4への定着が確実に行われることに加え、ガラス部材4,5同士を溶着する際の溶着面となるガラス層3の表面3aの結晶化が更に抑止されるようになっている。なお、ガラス部材4の表面4aに焼き付けられたガラス層3は、ガラスフリット2の溶融によって空隙が埋まると共に粒子性が崩れるため、レーザ光吸収性顔料の吸収特性が顕著に現れ、レーザ光吸収率が高い状態となる(例えば、可視光において黒っぽく見える)。 By controlling the irradiation power and baking the glass layer 3, the glass layer 3 disposed between the glass member 4 and the mounting table 11 is melted and recrystallized in a state where crystallization is suppressed. It solidifies and the glass layer 3 is baked on the surface 4a of the glass member 4. In addition, in the present embodiment, since the baking that irradiates the laser beam L1 from the glass member 4 side is performed, the glass layer 4 is securely fixed to the glass member 4 in addition to the glass member 4. Crystallization of the surface 3a of the glass layer 3 which becomes a welding surface when 5 is welded together is further suppressed. Since the glass layer 3 baked on the surface 4a of the glass member 4 is filled with voids due to melting of the glass frit 2 and its particle property is lost, the absorption characteristic of the laser light absorbing pigment appears remarkably, and the laser light absorption rate Becomes high (eg, it looks dark in visible light).
 そして、溶着予定領域R全周にわたって結晶化が抑止されたガラス層3の焼付けが終了すると、ガラス層3が焼き付けられたガラス部材4を載置台11より取り外す。この際、ガラスフリット2と載置台11との線膨張係数の差がガラスフリット2とガラス部材4との線膨張係数の差よりも大きくなっていることから、ガラス層3は載置台11に固着しないようになっている。また、ガラス部材4の表面4aに焼き付けられたガラス層3は、載置台11の表面11aが研磨されていることから、ガラス部材4と反対側の表面3aの凹凸が平坦化された状態となっている。 Then, when the baking of the glass layer 3 in which the crystallization is suppressed is completed over the entire circumference of the planned welding region R, the glass member 4 on which the glass layer 3 has been baked is removed from the mounting table 11. At this time, since the difference in linear expansion coefficient between the glass frit 2 and the mounting table 11 is larger than the difference in linear expansion coefficient between the glass frit 2 and the glass member 4, the glass layer 3 is fixed to the mounting table 11. It is supposed not to. Moreover, since the glass layer 3 baked on the surface 4a of the glass member 4 has the surface 11a of the mounting table 11 polished, the unevenness of the surface 3a opposite to the glass member 4 is flattened. ing.
 ガラス層3の焼付けに続いて、図6に示されるように、ガラス層3が焼き付けられたガラス部材4に対し、ガラス層3を介してガラス部材5を重ね合わせる。このとき、ガラス層3の表面3aが平坦化されているため、ガラス部材5の表面5aがガラス層3の表面3aに隙間なく接触する。 Subsequent to the baking of the glass layer 3, as shown in FIG. 6, the glass member 5 is superimposed on the glass member 4 on which the glass layer 3 is baked through the glass layer 3. Since the surface 3a of the glass layer 3 is planarized at this time, the surface 5a of the glass member 5 contacts the surface 3a of the glass layer 3 without a gap.
 続いて、この重ね合わされたガラス部材4,5を不図示のガラス部材溶着装置に載置して、図7に示されるように、ガラス層3に集光スポットを合わせて、レーザ光(第2のレーザ光)L2を溶着予定領域Rに沿って照射する。なお、この際、ガラス部材溶着装置によりガラス部材4,5がレーザ光L2に対して移動して照射が行われる。これにより、溶着予定領域R全周にわたってレーザ光吸収率が高い状態となっているガラス層3にレーザ光L2が吸収されて、ガラス層3及びその周辺部分(ガラス部材4,5の表面4a,5a部分)が溶融・再固化し、ガラス部材4とガラス部材5とが溶着される。このとき、ガラス部材5の表面5aがガラス層3の表面3aに隙間なく接触すると共にガラス部材4に焼き付けられたガラス層3が溶着予定領域R全周にわたって結晶化が抑止された状態に形成されているため、ガラス層3の融点が高くなることなく、ガラス部材4とガラス部材5とが溶着予定領域Rに沿って均一に溶着され、破損が防止される。 Subsequently, the overlapped glass members 4 and 5 are placed on a glass member welding device (not shown), and as shown in FIG. The laser beam L2 is irradiated along the planned welding region R. At this time, the glass members 4 and 5 are moved with respect to the laser beam L2 by the glass member welding apparatus, and irradiation is performed. Thereby, the laser beam L2 is absorbed by the glass layer 3 in a state where the laser beam absorption rate is high over the entire circumference of the planned welding region R, and the glass layer 3 and its peripheral part (the surfaces 4a, 4 of the glass members 4 and 5). 5a portion) is melted and re-solidified, and the glass member 4 and the glass member 5 are welded. At this time, the surface 5a of the glass member 5 is in contact with the surface 3a of the glass layer 3 without a gap, and the glass layer 3 baked on the glass member 4 is formed in a state in which crystallization is suppressed over the entire circumference of the planned welding region R. Therefore, the glass member 4 and the glass member 5 are uniformly welded along the planned welding region R without increasing the melting point of the glass layer 3, and damage is prevented.
 以上説明したように、ガラス溶着体1を製造するためのガラス溶着方法においては、溶着予定領域Rに沿ってレーザ光L1を照射してガラス層3を溶融させる際、ガラス層3の温度が融点Tmよりも高く且つ結晶化温度Tcよりも低い温度となるようにレーザ光L1の照射条件を制御して、ガラス部材4にガラス層3を定着させる。このガラス層3の定着時には、ガラス層3の溶融によってガラス層3のレーザ光吸収率が急激に高くなるが、ガラス層3の温度が融点Tmより高く且つ結晶化温度Tcよりも低い温度となるようにレーザ光L1の照射条件を制御しているため、ガラス層3が入熱過多の状態となることが抑止される。このような制御により、レーザ光L1の照射によってガラス部材4にガラス層3を定着させても、ガラス層3の定着時や、その後のガラス部材4,5同士の溶着時に、ガラス部材4,5にクラックが生じるなど、ガラス部材4,5が破損するのを防止することができる。従って、このガラス溶着方法によれば、ガラス部材4,5の破損を防止して、効率良くガラス部材4,5同士を溶着することが可能となる。 As described above, in the glass welding method for manufacturing the glass welded body 1, when the glass layer 3 is melted by irradiating the laser beam L1 along the planned welding region R, the temperature of the glass layer 3 is the melting point. The glass layer 3 is fixed to the glass member 4 by controlling the irradiation condition of the laser beam L1 so as to be higher than Tm and lower than the crystallization temperature Tc. At the time of fixing the glass layer 3, the laser light absorption rate of the glass layer 3 is rapidly increased by melting of the glass layer 3, but the temperature of the glass layer 3 is higher than the melting point Tm and lower than the crystallization temperature Tc. Thus, since the irradiation conditions of the laser beam L1 are controlled, it is suppressed that the glass layer 3 will be in the state of excessive heat input. With such control, even if the glass layer 3 is fixed to the glass member 4 by irradiation with the laser light L1, the glass members 4, 5 are fixed when the glass layer 3 is fixed or when the glass members 4, 5 are subsequently welded together. It is possible to prevent the glass members 4 and 5 from being damaged, for example, cracks are generated. Therefore, according to this glass welding method, it becomes possible to prevent the glass members 4 and 5 from being damaged and to weld the glass members 4 and 5 efficiently.
 また、上述したガラス溶着方法においては、ガラス層3から放射される熱輻射光に基づいてガラス層3の温度が融点Tmよりも高く且つ結晶化温度Tcよりも低い温度となるようにレーザ光L1の照射条件を制御している。この場合、ガラス層3から放射される熱輻射光を測定することでガラス層3の温度を測定することになるため、ガラス層3の温度が融点Tmより高く且つ結晶化温度Tcよりも低い温度になるようにレーザ光L1の照射条件を確実に制御することが可能となる。 In the glass welding method described above, the laser beam L1 is set so that the temperature of the glass layer 3 is higher than the melting point Tm and lower than the crystallization temperature Tc based on the heat radiation emitted from the glass layer 3. The irradiation conditions are controlled. In this case, since the temperature of the glass layer 3 is measured by measuring the heat radiation emitted from the glass layer 3, the temperature of the glass layer 3 is higher than the melting point Tm and lower than the crystallization temperature Tc. It becomes possible to control the irradiation conditions of the laser beam L1 with certainty.
 また、上述したガラス溶着方法においては、レーザ光L1がガラス部材4側からガラス層3に照射される。そのため、ガラス部材4とガラス層3との界面部分が十分に加熱されると共に、ガラス層3の表面3a側の溶融温度が界面部分側の溶融温度より低くなるように制御される。従って、ガラス部材4にガラス層3を強固に焼き付けて定着させることができるだけでなく、ガラス層3において溶着対象のガラス部材5側に位置する部分(ガラス層3の表面3a部分)が入熱過多によって結晶化するのを更に確実に抑止することができる。
[第2実施形態]
Moreover, in the glass welding method mentioned above, the laser beam L1 is irradiated to the glass layer 3 from the glass member 4 side. Therefore, the interface portion between the glass member 4 and the glass layer 3 is sufficiently heated, and the melting temperature on the surface 3a side of the glass layer 3 is controlled to be lower than the melting temperature on the interface portion side. Therefore, not only the glass layer 3 can be firmly baked and fixed on the glass member 4, but also the portion of the glass layer 3 located on the side of the glass member 5 to be welded (the surface 3a portion of the glass layer 3) has excessive heat input. Thus, crystallization can be more reliably suppressed.
[Second Embodiment]
 次に、本発明の第2実施形態について説明する。本実施形態は、ガラス層3をガラス部材4に焼き付ける際に、ガラス層3で反射されたレーザ光L1の反射光に基づいて、ガラス層3の温度が融点Tmより高く且つ結晶化温度Tcより低くなるようにレーザ光L1の照射パワーを制御する点で、第1実施形態と異なっている。 Next, a second embodiment of the present invention will be described. In the present embodiment, when the glass layer 3 is baked on the glass member 4, the temperature of the glass layer 3 is higher than the melting point Tm and the crystallization temperature Tc based on the reflected light of the laser light L1 reflected by the glass layer 3. This is different from the first embodiment in that the irradiation power of the laser beam L1 is controlled to be low.
 レーザ光L1のレーザ光反射率は次のような特性を有している。すなわち、図8に示されるように、ガラス層3の温度が融点Tmに至るまでは、レーザ光反射率は略一定であり、反射光の強度も略一定となる。一方、ガラス層3の温度が融点Tmを超え、ガラス層3が溶け始めるとバインダの抜け穴(気泡)やガラスフリット2の粒子性に起因する散乱の減少やレーザ吸収性顔料による光吸収率の上昇により、温度上昇に応じてレーザ光反射率が徐々に低下する傾向となり、反射光の強度も漸減する。 The laser beam reflectance of the laser beam L1 has the following characteristics. That is, as shown in FIG. 8, until the temperature of the glass layer 3 reaches the melting point Tm, the laser beam reflectance is substantially constant, and the intensity of the reflected light is also substantially constant. On the other hand, when the temperature of the glass layer 3 exceeds the melting point Tm and the glass layer 3 starts to melt, the scattering due to binder holes (bubbles) and the particle nature of the glass frit 2 is reduced and the light absorption rate is increased by the laser absorbing pigment. As a result, the laser beam reflectance tends to gradually decrease with an increase in temperature, and the intensity of the reflected light also gradually decreases.
 そして、ガラス層3の温度がTm1でガラス層3が完全に溶融すると、レーザ光反射率はしばらく略一定となり、ガラス層3の温度が結晶化温度Tcまで上昇すると結晶化が始まり、結晶化による散乱の増加で、温度上昇に応じてレーザ光反射率は再び上昇する傾向となり、反射光の強度も漸増する。その後、ガラス層3の温度がTc1となって完全に結晶化されると、再び、レーザ光反射率は略一定となり、反射光の強度も略一定となる。本実施形態では、このような特性を有する反射光の強度を用いて、ガラス層3をガラス部材4に焼き付ける。なお、ガラス溶着方法における焼付け以外の工程は、第1実施形態と同様である。 When the temperature of the glass layer 3 is Tm1 and the glass layer 3 is completely melted, the reflectance of the laser beam becomes substantially constant for a while, and when the temperature of the glass layer 3 rises to the crystallization temperature Tc, crystallization starts and crystallization occurs. As the scattering increases, the laser beam reflectance tends to increase again as the temperature rises, and the intensity of the reflected light gradually increases. Thereafter, when the temperature of the glass layer 3 becomes Tc1 and the glass layer 3 is completely crystallized, the laser light reflectance becomes substantially constant again, and the intensity of the reflected light becomes substantially constant. In the present embodiment, the glass layer 3 is baked on the glass member 4 using the intensity of the reflected light having such characteristics. The steps other than baking in the glass welding method are the same as those in the first embodiment.
 まず、本実施形態で使用されるガラス層定着装置20について説明する。ガラス層定着装置20は、図9に示されるように、第1実施形態で使用された載置台11、レーザ光照射部12、XYステージ15に加え、受光ヘッド23、反射光モニタ24、及び制御部(照射条件制御手段)26を備えている。受光ヘッド23は、レーザ光L1の照射によるガラス層3からの反射光を受光して、受光した反射光の強度情報を反射光モニタ24へ出力する。反射光モニタ24は、受光ヘッド23からの反射光の強度情報及び制御部26からの照射パワー情報に基づき反射率換算を行い、反射光の強度情報やレーザ光反射率を制御部26に出力する。制御部26は、入力された反射光の強度情報やレーザ光反射率に基づきレーザ光照射部12及びXYステージ15を制御する。 First, the glass layer fixing device 20 used in this embodiment will be described. As shown in FIG. 9, the glass layer fixing device 20 includes a light receiving head 23, a reflected light monitor 24, and a control in addition to the mounting table 11, the laser light irradiation unit 12, and the XY stage 15 used in the first embodiment. Part (irradiation condition control means) 26 is provided. The light receiving head 23 receives the reflected light from the glass layer 3 by the irradiation of the laser light L 1, and outputs intensity information of the received reflected light to the reflected light monitor 24. The reflected light monitor 24 performs reflectance conversion based on the intensity information of the reflected light from the light receiving head 23 and the irradiation power information from the control unit 26, and outputs the intensity information of the reflected light and the laser beam reflectance to the control unit 26. . The control unit 26 controls the laser light irradiation unit 12 and the XY stage 15 based on the input reflected light intensity information and laser light reflectance.
 次に、本実施形態におけるガラス部材4へのガラス層3の焼付けについて説明する。ガラス層3の焼付けでは、ガラス層定着装置20を駆動して、ガラス層3に集光スポットを合わせて、溶着予定領域Rに沿ってレーザ光L1を照射することにより、ガラス層3を溶融させ、ガラス部材4にガラス層3を焼き付ける。このとき、受光ヘッド23で受光されたガラス層3で反射された反射光の強度に基づいて、溶融によって急激にレーザ光吸収率が高くなったガラス層3の温度が融点Tmよりも高く且つ結晶化温度Tcよりも低い温度となるように、制御部26で次のようなレーザ光L1の照射パワーの制御を行う。 Next, baking of the glass layer 3 on the glass member 4 in the present embodiment will be described. In the baking of the glass layer 3, the glass layer fixing device 20 is driven, a focused spot is aligned with the glass layer 3, and the laser beam L 1 is irradiated along the planned welding region R to melt the glass layer 3. The glass layer 3 is baked on the glass member 4. At this time, based on the intensity of the reflected light reflected by the glass layer 3 received by the light receiving head 23, the temperature of the glass layer 3 at which the laser light absorption rate has suddenly increased due to melting is higher than the melting point Tm and the crystal The control unit 26 controls the irradiation power of the laser light L1 as follows so that the temperature becomes lower than the activation temperature Tc.
 すなわち、図10に示されるように、レーザ光L1の照射が開始されたら、まず、ガラス層3がいきなり結晶化しないように、レーザ光照射部12からのレーザ光L1の照射パワーを徐々に増加させる(S11)。そして、受光ヘッド23で受光された反射光の強度がガラス層3の温度が融点Tmを超えない所定の範囲内か確認する(S12)。なお、温度が融点Tmに至るまでは、レーザ光反射率が一定であるため、反射光の強度を測定することで、ガラス層3の温度が融点Tmを超えていないことを確認する。 That is, as shown in FIG. 10, when the irradiation of the laser beam L1 is started, first, the irradiation power of the laser beam L1 from the laser beam irradiation unit 12 is gradually increased so that the glass layer 3 is not suddenly crystallized. (S11). Then, it is confirmed whether the intensity of the reflected light received by the light receiving head 23 is within a predetermined range where the temperature of the glass layer 3 does not exceed the melting point Tm (S12). Since the laser beam reflectance is constant until the temperature reaches the melting point Tm, it is confirmed by measuring the intensity of the reflected light that the temperature of the glass layer 3 does not exceed the melting point Tm.
 続いて、反射光の強度がこの所定の範囲内であれば、レーザ光L1の照射パワーをそのまま維持して溶着予定領域Rに沿ったレーザ光L1の照射を続ける(S13)。一方、レーザ光L1の照射パワーを維持して照射を続けたところ、ガラス層の温度が融点Tmを超えてレーザ光吸収率が上昇した結果、反射光の強度がこの所定の範囲外になった場合、ガラス層3からのレーザ光反射率を求めて、このレーザ光反射率が低下しているかどうか判断する(S14)。 Subsequently, if the intensity of the reflected light is within this predetermined range, the irradiation power of the laser light L1 is maintained as it is, and the irradiation of the laser light L1 along the planned welding region R is continued (S13). On the other hand, when the irradiation was continued while maintaining the irradiation power of the laser beam L1, the temperature of the glass layer exceeded the melting point Tm, and the laser beam absorptance increased. In this case, the laser beam reflectance from the glass layer 3 is obtained, and it is determined whether or not the laser beam reflectance is lowered (S14).
 ステップS14での判断の結果、レーザ光反射率が低下傾向であれば、レーザ光L1の照射パワーを一定量増加させて(S15)、ガラス層3の温度が融点Tmと結晶化温度Tcとの間の最適溶融温度範囲Tm1~Tc(図8参照)の間になるように、レーザ光L1を制御して、溶着予定領域Rに沿ったレーザ光L1の照射を続ける。なお、この最適溶融温度範囲Tm1~Tcは、図8に示されるように、レーザ光反射率が低下傾向から上昇傾向に切り替わる領域と一致しており、レーザ光反射率は略一定となっている。 As a result of the determination in step S14, if the laser beam reflectance tends to decrease, the irradiation power of the laser beam L1 is increased by a certain amount (S15), and the temperature of the glass layer 3 is between the melting point Tm and the crystallization temperature Tc. The laser beam L1 is controlled so as to be within the optimum melting temperature range Tm1 to Tc (see FIG. 8), and the irradiation of the laser beam L1 along the planned welding region R is continued. As shown in FIG. 8, the optimum melting temperature range Tm1 to Tc coincides with the region where the laser light reflectance is switched from the decreasing tendency to the increasing tendency, and the laser light reflectance is substantially constant. .
 一方、レーザ光反射率が低下していなければ、予め定められた結晶化温度Tcに到達するレーザ光の照射パワーすなわち上限値以上か判断する(S16)。レーザ光L1の照射パワーが上限値以上であれば、ガラス層3が結晶化してしまっている可能性が高いため(S17)、加工を中止する(S18)。一方、レーザ光L1の照射パワーが上限値より小さければ、レーザ光のパワーを増加させる(S15)。そして、このような制御をガラス層3の焼付けが溶着予定領域Rに沿って終了するまで繰り返し行う(S19)。 On the other hand, if the laser light reflectance is not lowered, it is determined whether the irradiation power of the laser light reaching the predetermined crystallization temperature Tc, that is, the upper limit value or more (S16). If the irradiation power of the laser beam L1 is equal to or higher than the upper limit value, the glass layer 3 is likely to be crystallized (S17), and the processing is stopped (S18). On the other hand, if the irradiation power of the laser beam L1 is smaller than the upper limit value, the power of the laser beam is increased (S15). Such control is repeated until the baking of the glass layer 3 is completed along the planned welding region R (S19).
 以上説明したように、ガラス溶着体1を製造するためのガラス溶着方法においては、ガラス層3で反射されたレーザ光L1の光反射に基づいてガラス層3の温度が融点Tmよりも高く結晶化温度Tcよりも低い温度となるように照射パワーを制御している。反射光によるレーザ光反射率は、ガラス層3の温度が融点Tmに至るまでは一定であり、ガラス層3の温度が融点Tmを超えると低下傾向を示し、その後、ガラス層3の温度が結晶化温度Tcを超えて結晶化が進むと増加傾向を示すといった特性を有している。そこで、このような特性を有するレーザ光反射率の基準となる反射光に基づいてレーザ光L1の照射を制御することから、ガラス層3の温度が融点Tmより高く且つ結晶化温度Tcよりも低い温度になるように照射パワーを確実に制御することが可能となる。しかも、レーザ光反射率が低下傾向から上昇傾向になる変更領域が、最適溶融温度範囲Tm1~Tcと一致していることから、レーザ光反射率に基づいてレーザ光L1を制御することで、ガラス層3の溶融を一層、最適状態とすることが可能となる。 As described above, in the glass welding method for manufacturing the glass welded body 1, the temperature of the glass layer 3 is higher than the melting point Tm and crystallized based on the light reflection of the laser light L1 reflected by the glass layer 3. The irradiation power is controlled so that the temperature is lower than the temperature Tc. The laser beam reflectance by the reflected light is constant until the temperature of the glass layer 3 reaches the melting point Tm, and shows a tendency to decrease when the temperature of the glass layer 3 exceeds the melting point Tm. It has a characteristic of showing an increasing tendency as crystallization proceeds beyond the crystallization temperature Tc. Therefore, since the irradiation of the laser light L1 is controlled based on the reflected light that is the reference of the laser light reflectance having such characteristics, the temperature of the glass layer 3 is higher than the melting point Tm and lower than the crystallization temperature Tc. The irradiation power can be reliably controlled so as to reach the temperature. In addition, since the change region in which the laser beam reflectance tends to increase from the decreasing tendency coincides with the optimum melting temperature range Tm1 to Tc, the laser beam L1 is controlled on the basis of the laser beam reflectance, so that the glass The melting of the layer 3 can be further optimized.
 ところで、有機ELパッケージ等においては、容器自体が小型であるため、より薄型化されたガラス部材4,5が使用されることから、ガラス部材4,5の材料としては、割れを生じ難くすべく低膨張ガラスが選択されることが多い。このとき、ガラス層3の線膨張係数をガラス部材4,5の線膨張係数と合わせるために(すなわち、ガラス層3の線膨張係数を低くするために)、セラミックス等からなるフィラーをガラス層3に多量に含有させる。ガラス層3にフィラーを多量に含有させると、レーザ光L1の照射の前後でガラス層3のレーザ光吸収率がより一層大きく変化することになる。従って、上述したガラス溶着方法は、ガラス部材4,5の材料として低膨張ガラスを選択する場合に、特に有効である。 By the way, in the organic EL package or the like, since the container itself is small, the glass members 4 and 5 that are made thinner are used. Therefore, the material of the glass members 4 and 5 should be less likely to be cracked. Low expansion glass is often selected. At this time, in order to match the linear expansion coefficient of the glass layer 3 with the linear expansion coefficient of the glass members 4 and 5 (that is, to lower the linear expansion coefficient of the glass layer 3), a filler made of ceramics or the like is added to the glass layer 3. In a large amount. If the glass layer 3 contains a large amount of filler, the laser light absorption rate of the glass layer 3 will change much more before and after the irradiation with the laser light L1. Therefore, the glass welding method described above is particularly effective when low expansion glass is selected as the material of the glass members 4 and 5.
 本発明は、上述した実施形態に限定されるものではない。 The present invention is not limited to the embodiment described above.
 例えば、上記第1及び第2実施形態では、照射条件であるレーザ光L1の照射パワーを変更することにより一定の速度で移動するガラス層3への入熱量を調整するようにしていたが、レーザ光L1の照射パワーを一定として、レーザ光L1の相対的な照射速度(つまり、レーザ光L1のガラス層3に対する進行速度)を照射条件として変更させることによりガラス層3への入熱量を調整するようにしてもよい。この場合、レーザ光L1の相対的な速度の増減で制御するので、ガラス層3の温度を所定の範囲に確実に制御することが可能となる。しかも、ガラス層3の溶融が進んでレーザ光吸収率が上昇した後はレーザ照射による入熱量を低下させることが多いことから、レーザ光L1の相対的な速度を速める場合が多くなり、ガラス層3の焼付けにかかる時間を短縮化させることが可能となる。 For example, in the first and second embodiments, the amount of heat input to the glass layer 3 that moves at a constant speed is adjusted by changing the irradiation power of the laser beam L1, which is the irradiation condition. The amount of heat input to the glass layer 3 is adjusted by changing the relative irradiation speed of the laser light L1 (that is, the traveling speed of the laser light L1 with respect to the glass layer 3) as the irradiation condition while keeping the irradiation power of the light L1 constant. You may do it. In this case, since the control is performed by increasing or decreasing the relative speed of the laser light L1, the temperature of the glass layer 3 can be reliably controlled within a predetermined range. Moreover, since the amount of heat input by laser irradiation is often reduced after the melting of the glass layer 3 has progressed and the laser light absorption rate has increased, the relative speed of the laser light L1 is often increased. 3 can be shortened.
 また、上記第1及び第2実施形態では、ガラス部材4側を介してガラス層3にレーザ光L1を照射させていたが、ガラス層3に直接レーザ光L1を照射させるようにしてもよい。 In the first and second embodiments, the glass layer 3 is irradiated with the laser light L1 through the glass member 4 side. However, the glass layer 3 may be directly irradiated with the laser light L1.
 また、上記第1及び第2実施形態では、レーザ光L1,L2を固定して、ガラス部材4,5をXYステージ15などで移動させるようにしているが、レーザ光L1,L2が各ガラス部材4,5に対して相対的に進行すればよく、ガラス部材4,5を固定してレーザ光L1,L2を移動させるようにしてもよいし、ガラス部材4,5とレーザ光L1,L2とをそれぞれ移動させるようにしてもよい。 In the first and second embodiments, the laser beams L1 and L2 are fixed and the glass members 4 and 5 are moved by the XY stage 15 or the like. 4 and 5, the glass members 4 and 5 may be fixed and the laser beams L1 and L2 may be moved, or the glass members 4 and 5 and the laser beams L1 and L2 may be moved. May be moved respectively.
 また、上記第2実施形態では、反射光の強度やレーザ光反射率を得るためにガラス層3を溶融するためのレーザ光照射部12によるレーザ光L1を用いているが、反射光の強度やレーザ光反射率を得るための専用のレーザ光照射部を設け、このような専用のレーザ光照射部によるレーザ光を用いるようにしてもよい。 In the second embodiment, the laser light L1 from the laser light irradiation unit 12 for melting the glass layer 3 is used to obtain the intensity of the reflected light and the laser light reflectance. A dedicated laser beam irradiation unit for obtaining the laser beam reflectance may be provided, and the laser beam from such a dedicated laser beam irradiation unit may be used.
 本発明によれば、ガラス部材の破損を防止して、効率良くガラス部材同士を溶着することができる。 According to the present invention, it is possible to prevent the glass members from being damaged and to weld the glass members efficiently.
 1…ガラス溶着体、2…ガラスフリット(ガラス粉)、3…ガラス層、4…ガラス部材(第1のガラス部材)、5…ガラス部材(第2のガラス部材)、6…ペースト層、10,20…ガラス層定着装置、12…レーザ光照射部(レーザ光照射手段)、13,23…受光ヘッド、14…放射温度計、15…XYステージ、16,26…制御部(照射条件制御手段)、24…反射光モニタ、R…溶着予定領域、L1…レーザ光(第1のレーザ光)、L2…レーザ光(第2のレーザ光)。 DESCRIPTION OF SYMBOLS 1 ... Glass welded body, 2 ... Glass frit (glass powder), 3 ... Glass layer, 4 ... Glass member (1st glass member), 5 ... Glass member (2nd glass member), 6 ... Paste layer, 10 , 20 ... Glass layer fixing device, 12 ... Laser light irradiation unit (laser light irradiation means), 13, 23 ... Light receiving head, 14 ... Radiation thermometer, 15 ... XY stage, 16, 26 ... Control unit (irradiation condition control means) ), 24... Reflected light monitor, R... Expected welding region, L 1... Laser light (first laser light), L 2... Laser light (second laser light).

Claims (6)

  1.  第1のガラス部材と第2のガラス部材とを溶着してガラス溶着体を製造するガラス溶着方法であって、
     ガラス粉、レーザ光吸収材、有機溶剤及びバインダを含むペースト層から前記有機溶剤及び前記バインダが除去されることにより形成されたガラス層を、溶着予定領域に沿うように前記第1のガラス部材に配置する工程と、
     前記ガラス層の温度が融点よりも高く且つ結晶化温度よりも低い温度となるように照射条件を制御しつつ前記溶着予定領域に沿って第1のレーザ光を照射することにより前記ガラス層を溶融させ、前記第1のガラス部材に前記ガラス層を定着させる工程と、
     前記ガラス層が定着した前記第1のガラス部材に前記ガラス層を介して前記第2のガラス部材を重ね合わせ、前記溶着予定領域に沿って第2のレーザ光を照射することにより、前記第1のガラス部材と前記第2のガラス部材とを溶着する工程と、を含むことを特徴とするガラス溶着方法。
    A glass welding method for producing a glass welded body by welding a first glass member and a second glass member,
    A glass layer formed by removing the organic solvent and the binder from a paste layer containing glass powder, a laser light absorbing material, an organic solvent and a binder is applied to the first glass member so as to be along the planned welding region. Arranging, and
    The glass layer is melted by irradiating the first laser light along the planned welding region while controlling the irradiation conditions so that the temperature of the glass layer is higher than the melting point and lower than the crystallization temperature. And fixing the glass layer to the first glass member;
    By superposing the second glass member on the first glass member to which the glass layer has been fixed via the glass layer and irradiating a second laser beam along the planned welding region, And a step of welding the second glass member to the glass member.
  2.  前記ガラス層から放射される熱輻射光に基づいて前記ガラス層の温度が融点よりも高く且つ結晶化温度よりも低い温度となるように前記照射条件を制御することを特徴とする請求項1記載のガラス溶着方法。 2. The irradiation condition is controlled based on thermal radiation emitted from the glass layer so that the temperature of the glass layer is higher than the melting point and lower than the crystallization temperature. Glass welding method.
  3.  前記ガラス層で反射された前記第1のレーザ光の反射光に基づいて前記ガラス層の温度が融点よりも高く且つ結晶化温度よりも低い温度となるように前記照射条件を制御することを特徴とする請求項1記載のガラス溶着方法。 The irradiation condition is controlled based on the reflected light of the first laser beam reflected by the glass layer so that the temperature of the glass layer is higher than the melting point and lower than the crystallization temperature. The glass welding method according to claim 1.
  4.  前記照射条件は、前記第1のレーザ光の照射パワーであり、
     前記ガラス層の温度が融点よりも高く且つ結晶化温度よりも低い温度となるように前記照射パワーを増減させることを特徴とする請求項1記載のガラス溶着方法。
    The irradiation condition is an irradiation power of the first laser beam,
    The glass welding method according to claim 1, wherein the irradiation power is increased or decreased so that the temperature of the glass layer is higher than the melting point and lower than the crystallization temperature.
  5.  前記照射条件は、前記ガラス層に対する前記第1のレーザ光の進行速度であり、
     前記ガラス層の温度が融点よりも高く且つ結晶化温度よりも低い温度となるように前記進行速度を増減させることを特徴とする請求項1記載のガラス溶着方法。
    The irradiation condition is a traveling speed of the first laser beam with respect to the glass layer,
    The glass welding method according to claim 1, wherein the progression rate is increased or decreased so that the temperature of the glass layer is higher than the melting point and lower than the crystallization temperature.
  6.  ガラス粉、レーザ光吸収材、有機溶剤及びバインダを含むペースト層から前記有機溶剤及び前記バインダが除去されることにより形成されたガラス層をガラス部材に定着させるガラス層定着装置であって、
     前記ガラス部材に配置された前記ガラス層にレーザ光を照射するレーザ光照射手段と、
     前記ガラス層の温度が融点よりも高く且つ結晶化温度よりも低い温度となるように前記レーザ光の照射条件を制御する照射条件制御手段と、を備えたことを特徴とするガラス層定着装置。
    A glass layer fixing device that fixes a glass layer formed by removing the organic solvent and the binder from a paste layer containing glass powder, a laser light absorbing material, an organic solvent and a binder,
    Laser light irradiation means for irradiating the glass layer disposed on the glass member with laser light;
    An irradiation condition control means for controlling the irradiation condition of the laser beam so that the temperature of the glass layer is higher than the melting point and lower than the crystallization temperature.
PCT/JP2009/060157 2008-06-23 2009-06-03 Fusion-bonding process for glass WO2009157281A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009549320A JP5535655B2 (en) 2008-06-23 2009-06-03 Glass welding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-163687 2008-06-23
JP2008163687 2008-06-23

Publications (1)

Publication Number Publication Date
WO2009157281A1 true WO2009157281A1 (en) 2009-12-30

Family

ID=41444350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060157 WO2009157281A1 (en) 2008-06-23 2009-06-03 Fusion-bonding process for glass

Country Status (3)

Country Link
JP (3) JP5535655B2 (en)
TW (1) TWI424974B (en)
WO (1) WO2009157281A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010489A1 (en) * 2009-07-23 2011-01-27 旭硝子株式会社 Method and apparatus for manufacturing glass member provided with sealing material layer and method for manufacturing electronic device
WO2011065103A1 (en) * 2009-11-25 2011-06-03 浜松ホトニクス株式会社 Glass welding method and glass layer fixing method
JP2011246320A (en) * 2010-05-28 2011-12-08 Hamamatsu Photonics Kk Method for welding glass
US9021836B2 (en) 2009-11-25 2015-05-05 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9045365B2 (en) 2008-06-23 2015-06-02 Hamamatsu Photonics K.K. Fusion-bonding process for glass
US9073778B2 (en) 2009-11-12 2015-07-07 Hamamatsu Photonics K.K. Glass welding method
US9181126B2 (en) 2008-05-26 2015-11-10 Hamamatsu Photonics K.K. Glass fusion method
US9227871B2 (en) 2009-11-25 2016-01-05 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9236213B2 (en) 2009-11-25 2016-01-12 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9233872B2 (en) 2009-11-25 2016-01-12 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9701582B2 (en) 2009-11-25 2017-07-11 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9887059B2 (en) 2009-11-25 2018-02-06 Hamamatsu Photonics K.K. Glass welding method
US9922790B2 (en) 2009-11-25 2018-03-20 Hamamatsu Photonics K.K. Glass welding method
US10322469B2 (en) 2008-06-11 2019-06-18 Hamamatsu Photonics K.K. Fusion bonding process for glass

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5413309B2 (en) * 2010-06-11 2014-02-12 旭硝子株式会社 Manufacturing method and manufacturing apparatus of glass member with sealing material layer, and manufacturing method of electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002366050A (en) * 2001-06-12 2002-12-20 Matsushita Electric Ind Co Ltd Method for manufacturing image display device, manufacturing device and image display device manufactured by using the same
JP2005213125A (en) * 2004-02-02 2005-08-11 Futaba Corp Method for manufacturing electron tube and airtight container for electron tube
JP2006524419A (en) * 2003-04-16 2006-10-26 コーニング インコーポレイテッド Glass package sealed with frit and manufacturing method thereof
JP2008115057A (en) * 2006-11-07 2008-05-22 Electric Power Dev Co Ltd Sealant, manufacturing process of glass panel and dye-sensitized solar cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007067533A2 (en) * 2005-12-06 2007-06-14 Corning Incorporated System and method for frit sealing glass packages
US20080124558A1 (en) * 2006-08-18 2008-05-29 Heather Debra Boek Boro-silicate glass frits for hermetic sealing of light emitting device displays

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002366050A (en) * 2001-06-12 2002-12-20 Matsushita Electric Ind Co Ltd Method for manufacturing image display device, manufacturing device and image display device manufactured by using the same
JP2006524419A (en) * 2003-04-16 2006-10-26 コーニング インコーポレイテッド Glass package sealed with frit and manufacturing method thereof
JP2005213125A (en) * 2004-02-02 2005-08-11 Futaba Corp Method for manufacturing electron tube and airtight container for electron tube
JP2008115057A (en) * 2006-11-07 2008-05-22 Electric Power Dev Co Ltd Sealant, manufacturing process of glass panel and dye-sensitized solar cell

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181126B2 (en) 2008-05-26 2015-11-10 Hamamatsu Photonics K.K. Glass fusion method
US10322469B2 (en) 2008-06-11 2019-06-18 Hamamatsu Photonics K.K. Fusion bonding process for glass
US9045365B2 (en) 2008-06-23 2015-06-02 Hamamatsu Photonics K.K. Fusion-bonding process for glass
JPWO2011010489A1 (en) * 2009-07-23 2012-12-27 旭硝子株式会社 Manufacturing method and manufacturing apparatus of glass member with sealing material layer, and manufacturing method of electronic device
US8490434B2 (en) 2009-07-23 2013-07-23 Asahi Glass Company, Limited Process and apparatus for producing glass member provided with sealing material layer and process for producing electronic device
CN102066280A (en) * 2009-07-23 2011-05-18 旭硝子株式会社 Method and apparatus for manufacturing glass member provided with sealing material layer and method for manufacturing electronic device
WO2011010489A1 (en) * 2009-07-23 2011-01-27 旭硝子株式会社 Method and apparatus for manufacturing glass member provided with sealing material layer and method for manufacturing electronic device
US9073778B2 (en) 2009-11-12 2015-07-07 Hamamatsu Photonics K.K. Glass welding method
WO2011065103A1 (en) * 2009-11-25 2011-06-03 浜松ホトニクス株式会社 Glass welding method and glass layer fixing method
US9021836B2 (en) 2009-11-25 2015-05-05 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9227871B2 (en) 2009-11-25 2016-01-05 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9236213B2 (en) 2009-11-25 2016-01-12 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9233872B2 (en) 2009-11-25 2016-01-12 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9701582B2 (en) 2009-11-25 2017-07-11 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9887059B2 (en) 2009-11-25 2018-02-06 Hamamatsu Photonics K.K. Glass welding method
US9922790B2 (en) 2009-11-25 2018-03-20 Hamamatsu Photonics K.K. Glass welding method
US9016091B2 (en) 2009-11-25 2015-04-28 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
JP2011246320A (en) * 2010-05-28 2011-12-08 Hamamatsu Photonics Kk Method for welding glass

Also Published As

Publication number Publication date
TW201010956A (en) 2010-03-16
TWI424974B (en) 2014-02-01
JP2010105913A (en) 2010-05-13
JP5140201B2 (en) 2013-02-06
JPWO2009157281A1 (en) 2011-12-08
JP2012176898A (en) 2012-09-13
JP5535655B2 (en) 2014-07-02
JP5535592B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5535655B2 (en) Glass welding method
JP5535653B2 (en) Glass welding method
JP5535594B2 (en) Glass layer fixing method
JP5567319B2 (en) Glass welding method and glass layer fixing method
JP5308718B2 (en) Glass welding method
JP5308717B2 (en) Glass welding method
JP5535589B2 (en) Glass welding method and glass layer fixing method
JP5481172B2 (en) Glass welding method and glass layer fixing method
JP5264683B2 (en) Glass layer fixing method
JP5244077B2 (en) Glass layer fixing method
WO2011065107A1 (en) Glass welding method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009549320

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09769991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09769991

Country of ref document: EP

Kind code of ref document: A1