JP2008115057A - Sealant, manufacturing process of glass panel and dye-sensitized solar cell - Google Patents

Sealant, manufacturing process of glass panel and dye-sensitized solar cell Download PDF

Info

Publication number
JP2008115057A
JP2008115057A JP2006301718A JP2006301718A JP2008115057A JP 2008115057 A JP2008115057 A JP 2008115057A JP 2006301718 A JP2006301718 A JP 2006301718A JP 2006301718 A JP2006301718 A JP 2006301718A JP 2008115057 A JP2008115057 A JP 2008115057A
Authority
JP
Japan
Prior art keywords
glass
laser
dye
glass substrate
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006301718A
Other languages
Japanese (ja)
Inventor
Kenichi Hiwatari
賢一 日渡
Naoto Masuyama
直人 桝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Original Assignee
Electric Power Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd filed Critical Electric Power Development Co Ltd
Priority to JP2006301718A priority Critical patent/JP2008115057A/en
Publication of JP2008115057A publication Critical patent/JP2008115057A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Glass Compositions (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To avoid the occurrence of damages such as cracks and breakage to glass substrates even made of soda lime glass, etc., in the manufacture of glass panels in which pasty sealant comprising glass powder is coated on the glass substrates to form sealing layers, two pieces of the glass substrates are bonded by irradiating the sealing layers with laser beam. <P>SOLUTION: The sealant contains a laser absorbing component comprising not less than one kind of simple element or compound of any of chromium, iron, cobalt, manganese, copper and carbon and a glass component. The difference in coefficient of thermal expansion between the sealant and a material member to be sealed is ≤10×10<SP>-7</SP>/°C. Sealing layer 3 composed of the sealant is formed on sealing positions at least on one of the glass substrates 1. Another glass substrate 2 is laid on top of the substrate. The two glass substrates are bonded by melting the sealing layer by irradiating the sealing layer 3 with laser beam. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、ガラス基板を封止するためなどに用いられる封止材料およびこの封止材料を用いた色素増感太陽電池などの光電変換素子、液晶表示素子、エレクトロルミネッセンス素子、エレクトロクロミック素子、プラズマ表示素子、二重ガラスパネルなどを構成するガラスパネルの製造方法および色素増感太陽電池に関する。   The present invention relates to a sealing material used for sealing a glass substrate and the like, a photoelectric conversion element such as a dye-sensitized solar cell using the sealing material, a liquid crystal display element, an electroluminescence element, an electrochromic element, plasma The present invention relates to a method for producing a glass panel constituting a display element, a double glass panel, and the like, and a dye-sensitized solar cell.

この種のガラスパネルは、2枚のガラス基板をその周縁部において、エポキシ樹脂、紫外線硬化型樹脂、アイオノマーなどの樹脂からなる封止材によって接合して構成され、パネル内の空間への外部からの異物、水分、気体などの侵入を防止し、前記空間に電解液、液晶などの流体が封入されている場合には、この流体の外部への漏洩を防止するようになっている。   This type of glass panel is formed by joining two glass substrates at the periphery with a sealing material made of a resin such as an epoxy resin, an ultraviolet curable resin, or an ionomer, and from the outside to the space in the panel. Intrusion of foreign matter, moisture, gas, etc. is prevented, and when fluid such as electrolyte or liquid crystal is sealed in the space, leakage of this fluid to the outside is prevented.

しかしながら、このようなガラスパネルになっては、樹脂からなる封止材を用いていることから、封止性能の長期信頼性に不安があり、これを改善するために金属酸化物からなるガラス粉末を封止材料として用いることが提案されている。 例えば、特開2003−192378号公報には、酸化ホウ素、酸化バナジウム、酸化バリウム、酸化亜鉛を含むガラス粉末からなる封止材料が開示されている。また、特開2004−59366号公報には、酸化スズ、酸化リン、酸化亜鉛、酸化ケイ素、塩素を含むガラス粉末からなる封止材料が開示されている。   However, since such a glass panel uses a sealing material made of resin, there is concern about the long-term reliability of sealing performance, and in order to improve this, glass powder made of metal oxide It has been proposed to use as a sealing material. For example, JP 2003-192378 A discloses a sealing material made of glass powder containing boron oxide, vanadium oxide, barium oxide, and zinc oxide. Japanese Patent Application Laid-Open No. 2004-59366 discloses a sealing material made of glass powder containing tin oxide, phosphorus oxide, zinc oxide, silicon oxide, and chlorine.

これらの先行発明の封止材料にあっては、これをペースト状として、一方のガラス基板の周縁部に塗布、乾燥して封止層を形成したのち、他方のガラス基板を重ね合わせ、前記封止層にレーザー光を照射して封止層を加熱、溶融し、2枚のガラス基板を接合するようにしている。   In the sealing materials of these prior inventions, this is made into a paste and applied to the peripheral edge of one glass substrate and dried to form a sealing layer. The sealing layer is irradiated with laser light to heat and melt the sealing layer, and the two glass substrates are joined.

このようなガラスからなる封止材料では、封止性能の長期信頼性が向上する利点はあるものの、ガラス基板として熱膨張率が大きいソーダライムガラスなどからなるガラス基板を用いた場合では、レーザー光を照射した後に、ガラス基板にクラックが発生したり、破損したりする不具合があった。
特開2003−192378号公報 特開2004−59366号公報
Although such a glass sealing material has the advantage of improving the long-term reliability of the sealing performance, when a glass substrate made of soda lime glass having a high coefficient of thermal expansion is used as the glass substrate, laser light is used. After the irradiation, there was a problem that the glass substrate was cracked or damaged.
JP 2003-192378 A JP 2004-59366 A

よって、本発明における課題は、ガラス粉末からなる封止材料をペースト状としてガラス基板に塗布して封止層を形成し、この封止層にレーザー光を照射して2枚のガラス基板を接合してガラスパネルを製造する際に、ソーダライムガラスなどからなるガラス基板においてもクラック、割れなどの破損が生じないようにすることにある。   Therefore, the problem in the present invention is that a sealing material made of glass powder is applied as a paste to a glass substrate to form a sealing layer, and this sealing layer is irradiated with laser light to join two glass substrates. Then, when manufacturing a glass panel, it is in preventing breakage, such as a crack and a crack, also in the glass substrate which consists of soda-lime glass.

かかる課題を解決するため、
請求項1にかかる発明は、クロム、鉄、ニッケル、コバルト、マンガン、銅、炭素のいずれか1種以上の単体または化合物からなるレーザー吸収成分とガラス成分を含み、ガラスからなる被封止部材との熱膨張率の差が10×10−7/℃以下である封止材料である。
To solve this problem,
The invention according to claim 1 includes a laser-absorbing component made of one or more of chromium, iron, nickel, cobalt, manganese, copper, and carbon, or a glass component and a sealed member made of glass. Is a sealing material having a difference in thermal expansion coefficient of 10 × 10 −7 / ° C. or less.

請求項2にかかる発明は、請求項1記載の封止材料からなる封止層を少なくとも一方のガラス基板の封止部位に形成したのち、他方のガラス基板を重ね合わせ、前記封止層にレーザー光を照射して封止層を溶融して2枚のガラス基板を接合することを特徴とするガラスパネルの製造方法である。   According to a second aspect of the present invention, after the sealing layer made of the sealing material according to the first aspect is formed on the sealing portion of at least one glass substrate, the other glass substrate is overlaid, and a laser is applied to the sealing layer. A method for producing a glass panel, comprising irradiating light to melt a sealing layer and joining two glass substrates.

請求項3にかかる発明は、前記ガラス基板の一方に、その内面に透明導電膜と、この透明導電膜上の色素担持金属酸化物半導体層とが形成されたものを、他方のガラス基板に、その内面に導電膜が形成されたものを用い、請求項2記載の製造方法で作られた色素増感太陽電池である。   According to a third aspect of the present invention, on the other glass substrate, a transparent conductive film and a dye-supported metal oxide semiconductor layer on the transparent conductive film are formed on one of the glass substrates. A dye-sensitized solar cell produced by the production method according to claim 2, wherein a conductive film is formed on the inner surface.

本発明によれば、封止材料中のレーザー吸収成分がレーザー光を特異的に吸収し熱に変換する。このため、照射されたレーザー光は、選択的に封止層に吸収され、効率よく封止層が加熱、溶融し、被封止部材の接合が短時間に行える。   According to the present invention, the laser absorption component in the sealing material specifically absorbs the laser light and converts it into heat. For this reason, the irradiated laser light is selectively absorbed by the sealing layer, the sealing layer is efficiently heated and melted, and the members to be sealed can be joined in a short time.

また、ガラスからなる被封止部材との熱膨張率の差を10×10−7/℃以下としているので、冷却時の封止層と被封止部材との収縮量がほぼ同程度となり、ソーダライムガラスなどからなるガラス基板等の被封止部材にクラック、割れなどが生じることがない。 In addition, since the difference in thermal expansion coefficient with the sealing member made of glass is 10 × 10 −7 / ° C. or less, the shrinkage amount of the sealing layer and the sealing member during cooling is approximately the same, Cracks and cracks do not occur in a sealed member such as a glass substrate made of soda lime glass.

さらに、ガラスパネルの製造方法を色素増感太陽電池の製造に適用することで、製造工程が簡略化され、生産効率を高めることができる。   Furthermore, a manufacturing process is simplified and production efficiency can be improved by applying the manufacturing method of a glass panel to manufacture of a dye-sensitized solar cell.

[封止材料]
本発明の封止材料は、レーザー吸収成分とガラス成分を含み、ガラスからなる被封止部材との熱膨張率の差が10×10−7/℃以下であるものである。
前記レーザー吸収成分は、クロム、鉄、ニッケル、コバルト、マンガン、銅、炭素のいずれか1種または2種以上の単体または化合物からなるものである。
このレーザー吸収成分は、上述のように、レーザー光を特異的に吸収し、これを熱に変換する機能を有するものである。
[Sealing material]
The sealing material of this invention contains a laser absorption component and a glass component, and the difference of a thermal expansion coefficient with the to-be-sealed member consisting of glass is 10 * 10 < -7 > / degrees C or less.
The laser absorbing component is composed of one or two or more of chromium, iron, nickel, cobalt, manganese, copper, and carbon.
As described above, the laser absorbing component has a function of specifically absorbing laser light and converting it into heat.

このレーザー吸収成分の具体的なものとしては、炭素としてカーボンファイバー、カーボンブラック、コークス、炭化珪素等が挙げられる。また、Fe、Cr、Mn、Ni、Cu、Co、Moから選ばれる1種以上の金属単体またはこれの酸化鉄、酸化ニッケルなど酸化物、硫酸銅、硫酸ニッケルなどの硫酸塩、炭酸マンガンなどの炭酸塩、塩化コバルトなどの塩化物などの金属塩が挙げられる。
また、このレーザー吸収成分は、ガラス成分をなすマトリックスの一部に溶融されていても、またはマトリックス中に溶け込まない状態で偏析されていてもよく、とくに状態にはこだわるものではない。
このレーザー吸収成分の封止材料中に占める割合は、質量比で0.01〜30%とされ、0.01%未満ではレーザー光吸収効果が不十分であり、30%を越えると封止性能が低下する。
Specific examples of the laser absorbing component include carbon fiber, carbon black, coke, silicon carbide and the like. In addition, one or more kinds of single metals selected from Fe, Cr, Mn, Ni, Cu, Co, and Mo, or oxides such as iron oxide and nickel oxide, sulfates such as copper sulfate and nickel sulfate, manganese carbonate, and the like Examples thereof include metal salts such as carbonates and chlorides such as cobalt chloride.
Further, the laser absorption component may be melted in a part of the matrix constituting the glass component or segregated in a state where it does not dissolve in the matrix, and is not particularly concerned with the state.
The ratio of the laser absorbing component in the sealing material is 0.01 to 30% in mass ratio. If it is less than 0.01%, the laser light absorption effect is insufficient, and if it exceeds 30%, the sealing performance is exceeded. Decreases.

前記ガラス成分としては、例えばSiO−Bi−MO系、B−Bi−MO系、SiO−CaO−Na(K)O−MO系、P−MgO−MO系(Mは一種以上の金属元素で、Xは整数である。)などが用いられ、基本的にはSiO骨格、B骨格、P骨格に融点の制御及び化学的な安定性のために他の金属酸化物が含有されたものである。
各ガラス系の主成分であるB、P、Bi、SiOに加えられるアルカリ金属およびアルカリ土類金属の酸化物は、封止材料の融点を下げるものである。
Examples of the glass component include SiO 2 —Bi 2 O 3 —MO X , B 2 O 3 —Bi 2 O 3 —MO X , SiO 2 —CaO—Na (K) 2 O—MO X , P 2 O 5 —MgO—MO X system (M is one or more metal elements, X is an integer) is used, and basically, SiO 2 skeleton, B 2 O 3 skeleton, P 2 O 5 skeleton. In addition, other metal oxides are contained for controlling the melting point and chemical stability.
Alkali metal and alkaline earth metal oxides added to B 2 O 3 , P 2 O 5 , Bi 2 O 3 , and SiO 2 , which are the main components of each glass system, lower the melting point of the sealing material. .

封止材料中のガラス成分の熱膨張率の制御には、例えば酸化物フィラーとしてアルミナ、チタニア、ジルコン、シリカ、コーディエライト、ムライト、β−ユークリプタイト、スポジューメン、アノーサイト、セルシアン、フォルステライト、チタン酸アルミニウムなどが用いられる。そして、封止材料の熱膨張率と被封止部材のそれとの差が10×10−7/℃以下となるように、これら酸化物フィラーの配合比率が定められる。 For example, alumina, titania, zircon, silica, cordierite, mullite, β-eucryptite, spodomen, anorthite, celsian, forsterite can be used to control the thermal expansion coefficient of the glass component in the sealing material. Aluminum titanate or the like is used. And the compounding ratio of these oxide fillers is determined so that the difference between the thermal expansion coefficient of the sealing material and that of the member to be sealed is 10 × 10 −7 / ° C. or less.

さらに、この封止材料の溶融温度は、600℃以下、好ましくは400〜550℃の範囲とされる。溶融温度をこの範囲にするには、封止材料を構成するガラス成分中に含まれるアルカリ金属酸化物、アルカリ金属酸化物の配合量や、他の金属酸化物の配合量を適宜定めることで可能となる。   Furthermore, the melting temperature of the sealing material is 600 ° C. or lower, preferably 400 to 550 ° C. In order to make the melting temperature within this range, it is possible to appropriately determine the blending amount of alkali metal oxide, alkali metal oxide, and other metal oxides contained in the glass component constituting the sealing material. It becomes.

この封止材料の製造は、まずレーザー吸収成分を構成する金属単体または金属化合物の粉末とガラス成分を構成する金属酸化物粉末とを所定量比で混合し、るつぼに入れ、約1000〜1200℃に加熱して溶融し、冷却後の固化物を粉砕機により粉砕し、平均粒径100μm以下、好ましくは10μm以下に分級するなどの方法で行われる。   The sealing material is manufactured by first mixing a metal simple substance or metal compound powder constituting the laser absorption component and a metal oxide powder constituting the glass component in a predetermined amount ratio, putting the mixture in a crucible, and about 1000 to 1200 ° C. The mixture is heated and melted, and the cooled solidified product is pulverized by a pulverizer and classified to an average particle size of 100 μm or less, preferably 10 μm or less.

本発明の封止材料は、その使用に際してはペーストとして用いられる。ペーストの作成は、上記の平均粒径の粉末状の封止材料に有機溶剤、樹脂などを添加して混練することで行われる。前記有機溶剤、樹脂には、500〜600℃の温度で完全に燃焼し、残査が残らないものがよく、例えばポリビニルアルコール、ポリエチレングリコール、エチルセルロース、アクリル樹脂などが用いられる。
ペースト中に占める封止材料の割合は、チクソトロピー性から多い方がよく、少なくとも50質量%以上とされる。
このペーストの粘度は、回転粘度計による測定値で、測定条件が20℃、回転数20rpmで80〜100Pa・sとすることが好ましい。
The sealing material of the present invention is used as a paste when used. The paste is prepared by adding an organic solvent, a resin, or the like to the powdery sealing material having the average particle diameter and kneading. The organic solvent or resin is preferably one that completely burns at a temperature of 500 to 600 ° C. and does not leave a residue. For example, polyvinyl alcohol, polyethylene glycol, ethyl cellulose, acrylic resin, or the like is used.
The ratio of the sealing material occupying in the paste is better from the thixotropy, and is at least 50% by mass or more.
The viscosity of the paste is a value measured by a rotational viscometer, and the measurement conditions are preferably 20 to 100 Pa · s at 20 ° C. and a rotation speed of 20 rpm.

また、この封止材料によって接合あるいは封止される被封止部材をなすガラスとしては、例えばソーダライムガラス、石英ガラスやホウ酸ガラス、鉛ガラス等があり、特にガラスの種類や組成に限定されるものではない。また、これらの各種ガラスからなる基板がガラスパネルの製造に用いられる。   Further, examples of the glass constituting the member to be sealed that is bonded or sealed with this sealing material include soda lime glass, quartz glass, borate glass, lead glass, and the like, and are particularly limited to the type and composition of the glass. It is not something. Moreover, the board | substrate which consists of these various glass is used for manufacture of a glass panel.

[ガラスパネルの製造方法]
次に、本発明のガラスパネルの製造方法について説明する。
まず、2枚のガラス基板のいずれか一方または両方の一方の面の周辺部に上述の封止材料からなるペーストを塗布し、乾燥、仮焼成して封止層を作成する。ペーストの塗布は、スクリーン印刷法によって行うことが好ましいが、これ以外のブレードによる塗布、スプレー塗布などによってもよい。
[Glass panel manufacturing method]
Next, the manufacturing method of the glass panel of this invention is demonstrated.
First, a paste made of the above-described sealing material is applied to the periphery of one or both surfaces of two glass substrates, and dried and temporarily fired to form a sealing layer. The paste is preferably applied by screen printing, but may be applied by other blades, spray application, or the like.

ペーストの塗布厚さは50〜300μm程度でよく、塗布幅は1〜5mm程度でよいが、1mm未満ではシール性が低下する恐れがある。
ペーストの塗布後、ガラス基板を600℃以下の温度で加熱し、ペーストを乾燥し、仮焼成して封止層とする。600℃を越える温度で加熱すると、封止材料が溶融して流れることになる。
The coating thickness of the paste may be about 50 to 300 μm, and the coating width may be about 1 to 5 mm, but if it is less than 1 mm, the sealing performance may be lowered.
After application of the paste, the glass substrate is heated at a temperature of 600 ° C. or lower, the paste is dried, and temporarily fired to form a sealing layer. When heated at a temperature exceeding 600 ° C., the sealing material melts and flows.

ついで、2枚のガラス基板をそれぞれの封止層が内側となるようにして重ね合わせ、軽く加圧した状態とする。加圧の際の荷重は、1gf/cm〜10000gf/cm、好ましくは10gf/cm〜100gf/cmの範囲とされる。
この加圧状態で封止層にレーザー光を照射して封止層を溶融して2枚のガラス基板を接合する。
Next, the two glass substrates are overlaid so that the respective sealing layers are inside, and lightly pressed. Load during the pressurization, 1gf / cm 2 ~10000gf / cm 2, and preferably in the range of 10gf / cm 2 ~100gf / cm 2 .
In this pressurized state, the sealing layer is irradiated with laser light to melt the sealing layer and join the two glass substrates.

図1は、このレーザー光の照射による接合方法を模式的に示したもので、図中符号1は第1のガラス基板を、符号2は第2のガラス基板を示す。
これら2枚のガラス基板1、2の封止部位には、前記ペーストが塗布され、乾燥、仮焼成された封止層3が形成されている。
そして、図示しないレーザー光源からのレーザー光がレーザーヘッド4に導かれ、レーザーヘッド4から第2のガラス基板2を貫通して封止層3をめがけて照射され、これにより2枚のガラス基板1、2が接合される。
FIG. 1 schematically shows a bonding method by laser light irradiation. In the figure, reference numeral 1 denotes a first glass substrate, and reference numeral 2 denotes a second glass substrate.
A sealing layer 3 is formed on the sealing portions of the two glass substrates 1 and 2 by applying the paste, drying, and pre-baking.
Then, laser light from a laser light source (not shown) is guided to the laser head 4 and is irradiated from the laser head 4 through the second glass substrate 2 toward the sealing layer 3, thereby the two glass substrates 1. 2 are joined.

図2は、他の接合方法を示すもので、この例では、2枚の基板1、2全体がホットフレート5上に配置され、基板1、2を100〜150℃に加温できるようになっている。また、第2のガラス基板2上には、これらガラス基板1、2を加圧するための重し部材6が置かれている。そして、レーザーヘッド4からのレーザー光が第2のガラス基板2の上からこれを貫通して封止層3にめがけて照射されるようになっている。   FIG. 2 shows another bonding method. In this example, the entire two substrates 1 and 2 are arranged on the hot flate 5 so that the substrates 1 and 2 can be heated to 100 to 150 ° C. ing. Further, a weight member 6 for pressing the glass substrates 1 and 2 is placed on the second glass substrate 2. The laser beam from the laser head 4 penetrates from above the second glass substrate 2 and is irradiated toward the sealing layer 3.

図3は、他の接合方法を示すもので、図1における封止層3の外側にペーストをさらに塗布し、乾燥、仮焼成して第2のガラス基板2の端面および封止層3の外部を外側封止層31で被覆しておき、レーザーヘッド4からレーザー光をこの外側封止層31に向けて照射し、外側封止層31および封止層3を溶融して2枚のガラス基板1、2を接合するものである。   FIG. 3 shows another bonding method, in which a paste is further applied to the outside of the sealing layer 3 in FIG. 1, dried and pre-fired, and then the end face of the second glass substrate 2 and the outside of the sealing layer 3. Is coated with the outer sealing layer 31, and laser light is irradiated from the laser head 4 toward the outer sealing layer 31, and the outer sealing layer 31 and the sealing layer 3 are melted to form two glass substrates. 1 and 2 are joined.

レーザー光には、炭酸ガスレーザー、エキシマレーザー、YAGレーザー、HeNeレーザー等からのレーザー光が用いられ、ガラス板に対するレーザー光の透過性やフォーカス径等の観点から波長の短いものが良く、例えば工業的に普及しているYAGレーザーを用いることが望ましい。
レーザー光の照射の方法としては、一つのレーザー光により局所的に封止層3のみを加熱して接合することができるが、二つ以上のレーザー光を用いて接合することもできる。
Laser light from a carbon dioxide laser, excimer laser, YAG laser, HeNe laser or the like is used as the laser light, and a laser with a short wavelength is preferable from the viewpoints of laser light transmission to a glass plate, focus diameter, and the like. It is desirable to use a YAG laser that is widely used.
As a method of laser beam irradiation, only the sealing layer 3 can be locally heated and bonded by one laser beam, but bonding can also be performed by using two or more laser beams.

具体的には第1のレーザー光を用いて局所的な熱勾配を作らないように封止層3を中心に幅数百から数千μmを連続照射しておき、第2のレーザー光により封止層3を軟化、溶融させる温度まで加熱することにより接合するものである。 この際に、第2のレーザー光を用いないで、図2に示したように、ガラス基板1、2全体をホットプレート5等の加熱装置上に置き、150℃程度までに加熱して、第1のレーザー光により局部的に封止層3を軟化、溶融させる温度まで加熱することにより接合することでも同様な効果が得られる。   Specifically, several hundred to several thousand μm in width are continuously irradiated around the sealing layer 3 so as not to create a local thermal gradient using the first laser light, and sealed with the second laser light. It joins by heating to the temperature which softens and melts the stop layer 3. At this time, without using the second laser beam, as shown in FIG. 2, the entire glass substrates 1 and 2 are placed on a heating device such as a hot plate 5 and heated to about 150 ° C. The same effect can be obtained by joining by heating to a temperature at which the sealing layer 3 is locally softened and melted by the laser beam 1.

レーザーの発振モードとしては、連続発振モードよりもパルスモードの方がガラス基板の割れが抑えられ、発振周波数は10〜10000Hz レーザーのパワーは少なくとも10W以上であることが望ましい。
レーザー光の走査速度としては特に限定されるものではないが、生産上の観点から0.01cm/sec以上が望ましい。
また。レーザーの発振周波数fとレーザーのビーム径Φの積f×Φが少なくともレーザー走査速度Vとした時、f×Φ≧Vであることが望ましく、f×Φは走査速度の数倍が良い。レーザー光の照射時にレーザーヘッド4に傷や汚れがつかないようにアシストガスを流しても良く、特に空気、酸素、二酸化炭素、窒素等のガスの種類は限定されない。
As the laser oscillation mode, it is desirable that the pulse mode suppresses the glass substrate from cracking more than the continuous oscillation mode, and the oscillation frequency is 10 to 10,000 Hz. The laser power is preferably at least 10 W or more.
The scanning speed of the laser beam is not particularly limited, but is preferably 0.01 cm / sec or more from the viewpoint of production.
Also. When the product f × Φ of the laser oscillation frequency f and the laser beam diameter Φ is at least the laser scanning speed V, it is desirable that f × Φ ≧ V, and f × Φ is several times the scanning speed. The assist gas may be flowed so that the laser head 4 is not scratched or soiled when irradiated with laser light, and the type of gas such as air, oxygen, carbon dioxide, nitrogen, etc. is not particularly limited.

レーザー光の照射時間は1cm当たり0.1〜60秒で十分であり、封止層3にレーザー吸収成分が含まれているの、短時間のレーザー照射で封止層3が速やかに溶融する。
封止層3が冷却し固化すれば、2枚のガラス基板1、2は、封止層3により接合され、ガラスパネルが得られる。
このようにして作製したガラスパネルの周端部をアクリル樹脂やエポキシ樹脂、ウレタン樹脂等の接着剤で固定したり、さらに外周部にブチルゴムやシリコンゴム系等の弾性的な材質により保護し、アルミフレームやSUSフレームにより周端部の補強を行うことが望ましい。
The irradiation time of the laser light is sufficient from 0.1 to 60 seconds per 1 cm, and since the sealing layer 3 contains a laser absorbing component, the sealing layer 3 is rapidly melted by a short laser irradiation.
If the sealing layer 3 cools and solidifies, the two glass substrates 1 and 2 will be joined by the sealing layer 3, and a glass panel will be obtained.
The peripheral edge of the glass panel produced in this way is fixed with an adhesive such as acrylic resin, epoxy resin, or urethane resin, and the outer peripheral part is protected with an elastic material such as butyl rubber or silicon rubber. It is desirable to reinforce the peripheral edge with a frame or SUS frame.

[色素増感太陽電池の製造]
このようなガラスパネルの製造において、一方のガラス基板として、その内面にITO、FTOなどからなる透明導電膜とこの透明導電膜上に色素を担持した酸化チタン膜などの色素担持金属酸化物半導体層とを形成したものを、他方のガラス基板として、その内面に導電膜を形成したものを用いてガラスパネルを作成し、ついでこのガラスパネル内部の空隙に電解液を注入すれば、色素増感太陽電池が製造できる。
[Manufacture of dye-sensitized solar cells]
In the production of such a glass panel, as one glass substrate, a transparent conductive film made of ITO, FTO or the like on its inner surface and a dye-supported metal oxide semiconductor layer such as a titanium oxide film supporting a dye on the transparent conductive film Is used as the other glass substrate, and a glass panel is formed using a conductive film formed on the inner surface of the glass substrate, and then an electrolyte is injected into the voids inside the glass panel. A battery can be manufactured.

色素増感太陽電池に用いられるガラス基板として、2枚のガラス基板のうち、少なくとも一方がソーダライムガラス系の材料よりなり、Si、Ca、Na、K、Mg、Alの酸化物を主成分に含んだものが好ましく、具体的にはソーダガラスとしてはSiOが70〜73質量%前後で含有し、Na、Kの酸化物が10〜15質量%程度、CaOが7〜12質量%程度含有されており、軟化温度が720〜730℃、線膨張率として85〜90×10−7/℃前後のものである。 As a glass substrate used for a dye-sensitized solar cell, at least one of the two glass substrates is made of a soda lime glass material, and mainly contains oxides of Si, Ca, Na, K, Mg, and Al. In particular, the soda glass contains about 70 to 73% by mass of SiO 2, about 10 to 15% by mass of oxides of Na and K, and about 7 to 12% by mass of CaO. The softening temperature is 720 to 730 ° C., and the linear expansion coefficient is around 85 to 90 × 10 −7 / ° C.

このガラス基板の上に透明導電膜は、FTO(フッ素ドープ酸化錫)、ITO(スズドープ酸化インジュウム)を成膜したものであり、シート抵抗として10〜100Ωcm程度のものである。   The transparent conductive film is formed by depositing FTO (fluorine-doped tin oxide) and ITO (tin-doped indium oxide) on the glass substrate, and has a sheet resistance of about 10 to 100 Ωcm.

酸化チタンからなる半導体層としては、アナターゼ型結晶構造の酸化チタン以外にSn、Znの酸化物を含ませても良く、また酸化チタンもルチル型結晶構造を持つものが含まれたものでも良い。酸化チタンからなる半導体層としては、酸化チタンがネット構造を形成し、多孔質膜となっているものが好ましく、望ましくは貫通型の多孔質体、空隙がつながったような多孔質体である方が良い。   The semiconductor layer made of titanium oxide may contain Sn and Zn oxides in addition to the anatase type crystal structure titanium oxide, and the titanium oxide may also contain a rutile type crystal structure. The semiconductor layer made of titanium oxide is preferably a porous film in which titanium oxide forms a net structure, preferably a through-type porous body or a porous body in which voids are connected. Is good.

酸化チタンからなる多孔質の半導体層に吸着させる色素としては、例えばルテニウムビピリジン系色素、アゾ系色素、キノン系色素、キノンイミン系色素、キナクリドン系色素、スクアリリウム系色素、シアニン系色素、メロシアニン系色素、トリフェニルメタン系色素、キサンテン系色素、ポリフィリン系色素、フタロシアニン系色素、ベリレン系色素、インジゴ系色素、ナフタロシアニン系色素などが挙げられる。   Examples of the dye to be adsorbed on the porous semiconductor layer made of titanium oxide include ruthenium bipyridine dye, azo dye, quinone dye, quinone imine dye, quinacridone dye, squarylium dye, cyanine dye, merocyanine dye, And triphenylmethane dyes, xanthene dyes, porphyrin dyes, phthalocyanine dyes, berylene dyes, indigo dyes, naphthalocyanine dyes, and the like.

前記半導体層に色素を吸着させる方法としては、例えば、基板上に形成された半導体層を、色素を溶解した溶液(色素吸着用溶液)に浸漬する方法が挙げられる。
色素を溶解させる溶剤としては、色素を溶解するものであればよく、具体的には、エタノールなどのアルコール類、アセトンなどのケトン類、ジエチルエーテル、テトラヒドロフランなどのエーテル類、アセトニトリルなどの窒素化合物類、クロロホルムなどのハロゲン化脂肪族炭化水素、ヘキサンなどの脂肪族炭化水素、ベンゼンなどの芳香族炭化水素、酢酸エチルなどのエステル類が挙げられる。これらの溶剤は2種類以上を混合して用いることもできる。
溶液中の色素濃度は、使用する色素および溶剤の種類により適宜調整することができるが、吸着機能を向上させるためにはできるだけ高濃度である方が好ましいが、高濃度であると酸化チタン表面に過剰に吸着した層が形成されるので、低濃度が好ましく3×10−4モル/リットル以上であればよい。
Examples of the method for adsorbing the dye on the semiconductor layer include a method of immersing the semiconductor layer formed on the substrate in a solution in which the dye is dissolved (dye adsorption solution).
The solvent for dissolving the dye may be any solvent that dissolves the dye. Specifically, alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether and tetrahydrofuran, and nitrogen compounds such as acetonitrile. , Halogenated aliphatic hydrocarbons such as chloroform, aliphatic hydrocarbons such as hexane, aromatic hydrocarbons such as benzene, and esters such as ethyl acetate. Two or more of these solvents can be used in combination.
The concentration of the dye in the solution can be adjusted as appropriate depending on the type of dye and solvent to be used, but it is preferably as high as possible in order to improve the adsorption function. Since an excessively adsorbed layer is formed, a low concentration is preferable, and it may be 3 × 10 −4 mol / liter or more.

電解液を構成する酸化還元対としては、I /I系の電解質、Br /Br系の電解質などのレドックス電解質等が挙げられるが、酸化還元対を構成する酸化体がI であり、かつ、前記酸化還元対を構成する還元体がIであるI /I系の電解質が好ましく、LiI、NaI、KI、CsI、CaIなどの金属ヨウ化物、およびテトラアルキルアンモニウムヨーダイド、ピリジニウムヨーダイド、イミダゾリウムヨーダイドなど4級アンモニウム化合物のヨウ素塩などのヨウ化物と、Iとの組み合わせが挙げられる。
このような電解液においてこのようなヨウ素系レドックス溶液からなる電解質が用いられる場合には、正極側は白金又は導電性炭素材料からなること、及び、触媒粒子が白金又は導電性炭素材料からなることが好ましい
Examples of the redox couple constituting the electrolyte include redox electrolytes such as an I 3 / I system electrolyte and a Br 3 / Br system electrolyte. 3 - and, the reductant constituting the redox pair is I - / I - - I 3 are based electrolyte is preferably, LiI, NaI, KI, CsI, metal iodide such as CaI 2, and A combination of iodides such as iodine salts of quaternary ammonium compounds such as tetraalkylammonium iodide, pyridinium iodide, imidazolium iodide, and I 2 can be used.
When an electrolyte made of such an iodine-based redox solution is used in such an electrolytic solution, the positive electrode side is made of platinum or a conductive carbon material, and the catalyst particles are made of platinum or a conductive carbon material. Is preferred

電解液を構成する溶剤としては、エチレンカーボネート、プロピレンカーボネートなどのカーボネート化合物;3−メチル−2−オキサゾリジノンなどの複素環化合物;ジオキサン、ジエチルエーテルなどのエーテル化合物;エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテルなどのエーテル類;メタノール、エタノールなどのアルコール類;エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリンなどの多価アルコール類;アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル化合物;ジメチルスルフォキシド、スルフォランなど非プロトン極性物質などが挙げられる。   Solvents constituting the electrolyte include carbonate compounds such as ethylene carbonate and propylene carbonate; heterocyclic compounds such as 3-methyl-2-oxazolidinone; ether compounds such as dioxane and diethyl ether; ethylene glycol dialkyl ether and propylene glycol dialkyl ether , Polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, ethers such as polyethylene glycol monoalkyl ether, polypropylene glycol monoalkyl ether; alcohols such as methanol and ethanol; ethylene glycol, Propylene glycol, polyethylene glycol, poly B propylene glycol, polyhydric alcohols such as glycerin; acetonitrile, glutarodinitrile, methoxy acetonitrile, propionitrile, nitrile compounds such as benzonitrile; dimethyl sulfoxide, and the like aprotic polar substances such as sulfolane.

電解質濃度は、電解質や溶剤の種類などにより適宜設定すればよく、例えば、0.01〜1.5モル/リットル、好ましくは0.01〜0.7モル/リットルである。具体的な電解液の一例としては、リチウムアイオダイド0.06モル/リットル、ヨウ素0.06モル/リットル、ターシャルブチルピリジン0.3モル/リットルの濃度となるようにそれぞれをアセトニトリルに溶解させたものが挙げられる。   The electrolyte concentration may be appropriately set depending on the type of electrolyte and solvent, and is, for example, 0.01 to 1.5 mol / liter, preferably 0.01 to 0.7 mol / liter. As an example of a specific electrolytic solution, lithium iodide is dissolved in acetonitrile so as to have concentrations of 0.06 mol / liter, iodine 0.06 mol / liter, and tertiary butylpyridine 0.3 mol / liter. Can be mentioned.

具体的な色素増感太陽電池の作製方法は、以下のようになされる。
透明導電膜を成膜したガラス基板の中心部に酸化チタン粉のペーストを用いてスクリーン印刷法により厚み10〜50μmの塗膜を形成し、これを100〜150℃で大気中にて乾燥後、400〜550℃にて0.5〜2.0時間焼成する。
この後、ガラス基板の周辺部に前記封止材料からなるペーストを50〜200μmになるようにスクリーン印刷で塗膜して、100〜150℃で大気中にて乾燥後、200〜550℃にて0.5〜2.0時間焼成して封止層を形成する。この際、一度にスクリーン印刷により酸化チタン膜を塗膜形成し、続いてペーストを同様に塗膜形成し、同時に焼成することでも良い。
この後に、色素を溶解した溶液に浸漬して酸化チタン膜に色素を吸着させる。この後に必要に応じて非水溶媒に浸漬して過剰な色素を取る。
A specific method for producing a dye-sensitized solar cell is as follows.
A coating film having a thickness of 10 to 50 μm is formed by screen printing using a paste of titanium oxide powder at the center of a glass substrate on which a transparent conductive film has been formed, and this is dried in the atmosphere at 100 to 150 ° C., Bake at 400-550 ° C. for 0.5-2.0 hours.
Thereafter, a paste made of the sealing material is applied to the periphery of the glass substrate by screen printing so as to have a thickness of 50 to 200 μm, dried in the atmosphere at 100 to 150 ° C., and then at 200 to 550 ° C. A sealing layer is formed by baking for 0.5 to 2.0 hours. At this time, a titanium oxide film may be formed at a time by screen printing, and then a paste may be formed in the same manner and fired at the same time.
Thereafter, the dye is adsorbed on the titanium oxide film by dipping in a solution in which the dye is dissolved. After that, if necessary, it is immersed in a non-aqueous solvent to remove excess dye.

色素を吸着させた酸化チタンからなる半導体層を形成したガラス基板と透明導電膜に白金を担持させたガラス基板を対面させ固定化した後、ガラス基板に荷重を掛けてレーザーで照射して封止層を溶着させる。
この後、白金電極基板側または半導体層を形成したガラス基板の、少なくともどちらかに溶着させる前に形成した注入口から電解液を入れて注入口をマスクガラス等で塞ぎ、密閉化して色素増感型太陽電池を作製する。
この接合する際に色素を吸着させた酸化チタンからなる半導体層を形成したガラス基板と透明導電膜に白金を担持させたガラス基板を対面させアイオノマー等の有機材料を用いて仮固定してから、ガラス基板に荷重を掛けてレーザー光を照射して封止層を溶融させて接合しても良い。
A glass substrate with a semiconductor layer made of titanium oxide adsorbed with a dye and a glass substrate with platinum supported on a transparent conductive film are faced and fixed, then the glass substrate is loaded and irradiated with a laser to seal Weld the layers.
After this, the electrolyte solution is introduced from the injection port formed before welding to at least one of the platinum electrode substrate side or the glass substrate on which the semiconductor layer is formed, and the injection port is closed with a mask glass etc. Type solar cell is produced.
The glass substrate on which a semiconductor layer made of titanium oxide adsorbed with a dye was adsorbed at the time of bonding and the glass substrate on which platinum was supported on a transparent conductive film faced each other and temporarily fixed using an organic material such as an ionomer, The glass substrate may be bonded by applying a load and irradiating laser light to melt the sealing layer.

なお、前記色素吸着工程において、同時に複数枚を処理でき、コストの低減ができ品質の管理に優位な浸漬法を用いて、酸化チタンに色素を吸着させた酸化チタンの電極膜を保持したガラス基板の接合方法を説明したが、酸化チタンに色素吸着させない状態で、レーザーによりガラス基板を同様に接合して、接合したガラスセル一つずつに注入口から色素溶液を注入して酸化チタン膜に吸着させ、更に電解液を注入させても良い。   In the dye adsorption process, a glass substrate holding a titanium oxide electrode film in which a dye is adsorbed to titanium oxide by using a dipping method capable of simultaneously processing a plurality of sheets, reducing costs, and superior in quality control. In the state where the dye was not adsorbed to titanium oxide, the glass substrate was similarly bonded by laser, and the dye solution was injected from the injection port into each bonded glass cell and adsorbed to the titanium oxide film. Further, an electrolytic solution may be injected.

この色素増感太陽電池の製造では、レーザー光の照射部位がガラス基板の周縁部に限定されるので、色素担持金属酸化物半導体層が加熱されることがなく、担持色素の熱劣化、金属酸化物半導体層のガラス基板からの剥離などが防止される。   In the production of this dye-sensitized solar cell, the irradiation part of the laser beam is limited to the peripheral part of the glass substrate, so that the dye-supported metal oxide semiconductor layer is not heated, and the heat deterioration of the supported dye, metal oxidation The peeling of the physical semiconductor layer from the glass substrate is prevented.

従来では、2枚のガラス基板を重ね合わせた状態でガラス基板全体を加熱して、封止層を溶融してガラスパネルとする方法が取られていたため、色素の担持をガラスパネルの製作後に行う必要があった。この場合には、色素溶液をガラスパネル内部の空隙に注入、循環させる方法が行われるが、良好な色素溶液の循環ができず、色素の十分な担持が困難であった。
これに対して、上述の方法では、ガラス基板の状態で色素を担持できるこのような不都合は生じない。
Conventionally, the method of heating the entire glass substrate in a state where two glass substrates are overlapped to melt the sealing layer to form a glass panel is employed, and thus the dye is supported after the glass panel is manufactured. There was a need. In this case, a method of injecting and circulating the dye solution into the voids inside the glass panel is performed, but satisfactory circulation of the dye solution is not possible, and it is difficult to sufficiently support the dye.
On the other hand, the above-described method does not cause such inconvenience that the pigment can be supported in the state of the glass substrate.

以下、具体例を示す。
図1に示した接合方法において、詳細に接合条件を検討した結果を以下にしめす。
用いたガラス基板はセントラル硝子製の建材ガラス 厚み3mm 5cm角のソーダライムガラスを用いた。このガラス基板の熱膨張率は89×10−7/℃であった。このガラス板を二枚用いてYAGレーザーにより溶着による接合試験を行った。
Specific examples are shown below.
In the joining method shown in FIG. 1, the results of detailed examination of joining conditions are shown below.
The glass substrate used was soda lime glass having a thickness of 3 mm and a 5 cm square made of Central Glass. The thermal expansion coefficient of this glass substrate was 89 × 10 −7 / ° C. Two glass plates were used, and a joining test was performed by welding with a YAG laser.

封止材料からなるペーストには、奥野製薬製のB−Bi−ZnO系低融点ガラスペーストを用いた。この材料の軟化点は430℃であり、加熱温度400℃で20分間加熱することで溶剤、樹脂が飛散するものであった。
ペーストの熱膨張率の制御には酸化チタンや酸化マグネシウム、酸化アルミニウム等を添加して行った。この際、ガラスペーストにはレーザー吸収成分として、平均粒径0.1μmのCrとFeの等比の混合物粉をガラス成分に対して3重量パーセントになるように一定に添加し、この後に熱膨張率を制御するためのフィラーを添加して調節した。ペーストの粘度は95Pa・sであった。
The paste of sealing material, was used Okuno Seiyaku of B 2 O 3 -Bi 2 O 3 -ZnO -based low-melting glass paste. The softening point of this material was 430 ° C., and the solvent and resin were scattered by heating at a heating temperature of 400 ° C. for 20 minutes.
The thermal expansion coefficient of the paste was controlled by adding titanium oxide, magnesium oxide, aluminum oxide or the like. At this time, a mixed powder of Cr 2 O 3 and Fe 2 O 3 having an average particle size of 0.1 μm in an equal ratio as a laser absorbing component is added to the glass paste constantly so as to be 3 weight percent with respect to the glass component. Thereafter, a filler for controlling the coefficient of thermal expansion was added and adjusted. The viscosity of the paste was 95 Pa · s.

このペーストをソーダライムガラス基板の周端部に幅3mm、厚み100μmになるようにスクリーン印刷で塗布した。塗布後、120℃で乾燥後、450℃で0.5時間の仮焼成を行った。この後、二枚のガラス基板の間にガラスペースト層が挟まるように固定して接合試験を行った。
レーザーの照射強度は35Wの周波数200Hzのパルスモードで、レーザーの走査速度は80mm/minの一定条件とした。またYAGレーザーの出力用光学ヘッドからの距離を40mmとして、レーザーのビーム径は0.1mmΦで固定した。
この結果、表1のようにガラス基板の熱膨張率に対して、ペースト中のガラス成分の熱膨張率の差が±10×10−7/℃の範囲において接合ガラス基板のクラックが減少することを解った。
This paste was applied to the peripheral edge of the soda lime glass substrate by screen printing so as to have a width of 3 mm and a thickness of 100 μm. After coating, drying at 120 ° C. and calcination for 0.5 hours at 450 ° C. were performed. Then, it fixed so that a glass paste layer might be pinched | interposed between two glass substrates, and the joining test was done.
The laser irradiation intensity was a 35 W pulse mode with a frequency of 200 Hz, and the laser scanning speed was a constant condition of 80 mm / min. The distance from the output optical head of the YAG laser was 40 mm, and the laser beam diameter was fixed at 0.1 mmΦ.
As a result, as shown in Table 1, with respect to the thermal expansion coefficient of the glass substrate, cracks in the bonded glass substrate are reduced when the difference in the thermal expansion coefficient of the glass component in the paste is ± 10 × 10 −7 / ° C. I solved.

Figure 2008115057
Figure 2008115057

前記実施例においては、レーザー吸収成分として、CrとFeの等比の混合物粉を用いた例を示したが、カーボンブラック、炭化珪素粉、Fe、Cr、Mn、Ni、Cu、Co、Mo等の金属粉、またはFe、NiO、CuO、CuO、Cr、CrO、CoO、Mn、CoFe、MnFe等酸化物粉、CuSO、NiSO、CoCl、MnCO等の粉末でも同様な効果が得られた。
比較例として、これらのレーザー吸収成分を入れないものでは加熱ができないため、溶着しなかった。
In the above embodiment, as the laser absorbing component, an example of using a mixture powder of geometric of Cr 2 O 3 and Fe 2 O 3, carbon black, silicon carbide powder, Fe, Cr, Mn, Ni, Metal powder such as Cu, Co, Mo, or oxide such as Fe 3 O 4 , NiO, CuO, Cu 2 O, Cr 2 O 3 , CrO, CoO, Mn 2 O 3 , CoFe 2 O 4 , MnFe 2 O 4 Similar effects were obtained with powders such as powder, CuSO 4 , NiSO 4 , CoCl 2 , and MnCO 3 .
As a comparative example, it was not possible to heat without using these laser-absorbing components.

前記例では、ペーストの中にレーザー吸収成分を添加したが、ガラス基板の上にスプレー法により前記の第二酸化鉄を厚さ0.1μm程度に塗膜形成し、この上にガラス基板との熱膨張率の差が±10×10−7/℃になるようにペースト組成を変えて試験を行ったが、同様な効果が得られた。
この際、ペースト中にはレーザー吸収成分は添加しなかった。この第二酸化鉄以外にFe、NiO、CuO、CuO、Cr、CrO、CoO、Mn等でも同様な効果が得られ、また住友金属鉱山製のCu、Ni粉、戸田工業製のFe粉でも同様な効果が確認された。
In the above example, the laser absorbing component was added to the paste, but the coating film of the ferric oxide was formed on the glass substrate to a thickness of about 0.1 μm by the spray method, and the heat with the glass substrate was formed thereon. A test was performed by changing the paste composition so that the difference in expansion coefficient was ± 10 × 10 −7 / ° C., but the same effect was obtained.
At this time, no laser absorbing component was added to the paste. In addition to this ferric oxide, similar effects can be obtained with Fe 3 O 4 , NiO, CuO, Cu 2 O, Cr 2 O 3 , CrO, CoO, Mn 2 O 3, etc. Also, Cu, Ni made by Sumitomo Metal Mining The same effect was confirmed with powder and Fe powder manufactured by Toda Kogyo.

次に前記例においてレーザーによるガラス基板の接合の際に、レーザーのパワーだけを変え評価を行った。
ガラス基板の熱膨張率に対して、ペーストのガラス成分の熱膨張率の差が2×10−7/℃にし、レーザー吸収成分としてはCrを固形分において3重量パーセントになるように添加した。その他の条件は同一にした。
この試験結果を以下の表2に示す。この結果より、0.1mmΦの面積に加えるパワーの大きさとしては、20〜80Wが良く、単位面積でのパワー密度とすると、3×10〜1×10W/cmが良いことが分かった。
Next, in the above example, when the glass substrates were joined by laser, evaluation was performed by changing only the laser power.
The difference in thermal expansion coefficient of the glass component of the paste is 2 × 10 −7 / ° C. with respect to the thermal expansion coefficient of the glass substrate, and Cr 2 O 3 is 3 weight percent in solid content as the laser absorption component. Added. Other conditions were the same.
The test results are shown in Table 2 below. From this result, the power applied to the area of 0.1 mmΦ is preferably 20-80 W, and the power density per unit area is preferably 3 × 10 5 to 1 × 10 6 W / cm 2. I understood.

Figure 2008115057
Figure 2008115057

次に、レーザー照射する際にレーザーの発振モードを変えて評価を行った。この際、レーザーのパワーを50Wで固定して、連続発振モードとパルスモードで比較を行った。パルスモードでは、10Hzから10kHzの範囲で行い、走査速度は50mm/minで一定とした。また、レーザーヘッドからガラス基板の接合部分までの距離を変え、ビーム径を70μmΦとした。アシストガスとしては空気を10L/minでヘッド近傍から基板側に向けて吹き付けた。この結果、連続発振モードにおいては、融着して接合する際にガラス基板に割れが発生しやすいことが分かった。またパルスモードを低周波にすると、レーザーのスポット溶接に近い状態になり緻密なシールが出来なくなるので、少なくともレーザービーム径Φに周波数fを掛けた数値Φ×fがレーザーの走査速度(mm/sec)よりも大きくなる必要があることが分かった。   Next, evaluation was performed by changing the laser oscillation mode when laser irradiation was performed. At this time, the laser power was fixed at 50 W, and the comparison was made between the continuous oscillation mode and the pulse mode. In the pulse mode, the scanning was performed in the range of 10 Hz to 10 kHz, and the scanning speed was fixed at 50 mm / min. Moreover, the distance from the laser head to the bonded portion of the glass substrate was changed, and the beam diameter was set to 70 μmΦ. As assist gas, air was sprayed from the vicinity of the head toward the substrate side at 10 L / min. As a result, it was found that in the continuous oscillation mode, the glass substrate is easily cracked when fused and bonded. When the pulse mode is set to a low frequency, it becomes a state close to laser spot welding and a dense seal cannot be obtained. Therefore, at least a numerical value Φ × f obtained by multiplying the laser beam diameter Φ by the frequency f is a laser scanning speed (mm / sec). ) Was found to be larger than

図2に示す接合法でのレーザー照射する際にガラス基板にホットプレートにより温度を加えて接合状態を確認する試験を行った。
ガラス基板の熱膨張率に対して、ペーストのガラス成分の熱膨張率の差が8×10−7/℃にし、レーザー吸収成分としてはCrを固形分において3重量パーセントになるように添加した。レーザーパワーとしては50W、単位面積でのパワー密度とすると0.64×10W/cmの条件にした。その他の条件は同一にした。ホットプレートによる温度の条件としては、室温から300℃の範囲とした。
以下にこの試験結果を表3で示す。この結果、温度が上がると接合時の割れの低減効果があることが分かった。
When laser irradiation was performed in the bonding method shown in FIG. 2, a test was performed to check the bonding state by applying temperature to the glass substrate with a hot plate.
The difference in thermal expansion coefficient of the glass component of the paste with respect to the thermal expansion coefficient of the glass substrate is 8 × 10 −7 / ° C., and Cr 2 O 3 is 3 weight percent in solid content as a laser absorption component. Added. The laser power was 50 W, and the power density per unit area was 0.64 × 10 6 W / cm 2 . Other conditions were the same. The temperature condition by the hot plate was in the range of room temperature to 300 ° C.
The test results are shown in Table 3 below. As a result, it was found that there is an effect of reducing cracks during joining when the temperature rises.

Figure 2008115057
Figure 2008115057

次に、レーザー照射する際にガラス基板に荷重を加えて接合状態を確認する試験を行った。ガラス基板の熱膨張率に対して、レーザー吸収封着ガラスペーストのガラス成分の熱膨張率の差が2×10−7/℃にし、レーザー吸収材料としてはCrを固形分において3重量パーセントになるように添加した。レーザーパワーとしては80W、単位面積でのパワー密度とすると1×10W/cmの条件にした。その他の条件は同一にした。
荷重条件としては、図3に示すようにガラス基板の上から角柱により一定荷重を掛けるようにして、単位面積当たり1gf/cmから100gf/cmの荷重範囲とした。
以下にこの試験結果を表4で示す。この結果、荷重があると、接合強度が改善することが分かった。特に20gf/cm以上にすることにより顕著に改善された。この時の配線に加わる圧力として評価すると、83gf/cm以上にすることが良いことが分かった。
Next, a test was performed to confirm the bonding state by applying a load to the glass substrate when laser irradiation was performed. To thermal expansion of the glass substrate, the difference in thermal expansion coefficient of the glass component of the laser absorbing sealing glass paste to 2 × 10 -7 / ℃, 3 weight in solid content Cr 2 O 3 as a laser absorbing material It added so that it might become a percentage. The laser power was 80 W, and the power density per unit area was 1 × 10 6 W / cm 2 . Other conditions were the same.
The loading conditions, so as to apply a predetermined load by a prism over a glass substrate as shown in FIG. 3, and the per unit area 1 gf / cm 2 and a load range of 100 gf / cm 2.
The test results are shown in Table 4 below. As a result, it was found that when there is a load, the bonding strength is improved. In particular, it was remarkably improved by setting it to 20 gf / cm 2 or more. When evaluated as the pressure applied to the wiring at this time, it was found that 83 gf / cm 2 or more is preferable.

Figure 2008115057
Figure 2008115057

次に、色素増感太陽電池セルを試作して評価を行った。
セルに使用したソーダライムガラス板として厚み3mm 5cm角のソーダライムガラスを用いた。このガラス板の熱膨張率は88×10−7/℃であった。このソーダライムガラス板にスプレー法によりITOの透明導電膜を厚さ1μmで成膜し、大気中にて450℃で1時間の焼成を行った。この透明導電膜を形成したガラス基板の一枚をスパッター法によりPtを30nm成膜し、ドリルにより1mmΦの径の穴を二箇所対角線方向に両端に形成した。
Next, a dye-sensitized solar cell was prototyped and evaluated.
Soda lime glass having a thickness of 3 mm and 5 cm square was used as the soda lime glass plate used in the cell. The thermal expansion coefficient of this glass plate was 88 × 10 −7 / ° C. An ITO transparent conductive film having a thickness of 1 μm was formed on this soda lime glass plate by spraying, and baked at 450 ° C. for 1 hour in the air. One glass substrate on which this transparent conductive film was formed was formed into a Pt film having a thickness of 30 nm by a sputtering method, and holes with a diameter of 1 mmΦ were formed at two opposite ends in a diagonal direction by a drill.

もう一枚の透明導電膜を形成したガラス基板はこの上にスクリーン印刷法により酸化チタンP25(Degussa社製、商品名;「P25」)のペーストを30μmの厚みで塗布した。この際、ガラス板の周端部から5mmの部分には酸化チタンペーストが付かないように印刷を行った。酸化チタンP25のペーストはテルピオーネに固形分濃度として70重量パーセント加えたものを用いた。周端部には端から3mmの部分までペーストを厚み100μmになるようにスクリーン印刷で塗布した。   Another glass substrate with a transparent conductive film formed thereon was coated with a paste of titanium oxide P25 (Degussa, trade name: “P25”) with a thickness of 30 μm by screen printing. At this time, printing was performed so that a portion of 5 mm from the peripheral edge of the glass plate was not attached with the titanium oxide paste. The paste of titanium oxide P25 used was terpione added with 70% by weight as a solid concentration. The paste was applied to the peripheral edge portion by screen printing so that the thickness was 100 μm from the end to a portion of 3 mm.

ペーストとしては、東洋ガラス製のP−SnO系にNiOを1重量パーセント添加しP−WO−ZrO系フィラーにより熱膨張率を84×10−7/℃にしたものを用いた。
次に、この酸化チタン膜が塗布されたガラス基板を大気中で120℃にて乾燥し、500℃にて一時間焼成した。この後、ルテニウム錯体系の色素:ルテニウム535(SOLARONIX 製品名: ルテニウム535)を濃度5×10−4モル/リットルにしたエタノール溶液に浸漬して8時間保持した。無水エタノールに浸漬して過剰の色素を取り除き、100℃にて乾燥した。
The paste obtained by the thermal expansion coefficient 84 × 10 -7 / ℃ by adding 1% by weight of NiO into P 2 O 5 -SnO-based manufactured by Toyo Glass P 2 O 5 -WO 3 -ZrO 2 filler Was used.
Next, the glass substrate coated with the titanium oxide film was dried at 120 ° C. in the atmosphere and baked at 500 ° C. for 1 hour. Thereafter, a ruthenium complex dye: ruthenium 535 (SOLARAONIX product name: ruthenium 535) was immersed in an ethanol solution having a concentration of 5 × 10 −4 mol / liter and held for 8 hours. Excess dye was removed by immersion in absolute ethanol and dried at 100 ° C.

この色素吸着させたガラス板を用いて、もう一枚の白金膜を形成したガラス板を対面させ、二枚のガラス板の間にペーストからなる封止層を挟むように設置した。
この二枚のガラス板に50gf/cmの荷重を掛けて、単位面積でのレーザーパワー密度として、1×106W/cmで照射した。この時のレーザーはYAGレーザーを用いてパルスモード100Hzにし、走査速度としては80mm/minの条件で行った。
Using this glass plate adsorbed with the dye, another glass plate on which a platinum film was formed was faced and a sealing layer made of paste was sandwiched between the two glass plates.
A load of 50 gf / cm 2 was applied to the two glass plates, and irradiation was performed at 1 × 10 6 W / cm 2 as a laser power density in a unit area. At this time, a YAG laser was used as the laser at a pulse mode of 100 Hz, and the scanning speed was 80 mm / min.

作製したセルにLiIとIを溶かしたアセトニトリル電解液を注入口より入れて、セル全体に均一になるように注入した。このサンプルの光電変換特性を調べた。
比較例として、レーザーを用いないで60μmのアイオノマー(三井デュポンポリケミカル社製のスペーサS(商品名:「ハイミラン」))を用いて同じ形状になるように120℃で融着させたものを用いた。
本発明の方法で作製したセルと比較例の色素増感太陽電池の短絡電流密度(Jsc)、開放電圧(Voc)、フィルファクタ(F.F.)、及びエネルギー変換効率(η(%))を測定した。
Acetonitrile electrolyte solution to produce the cells were dissolved LiI and I 2 were placed from the inlet, and injected to be uniform throughout the cell. The photoelectric conversion characteristics of this sample were examined.
As a comparative example, a 60 μm ionomer (spacer S (trade name: “Hi-Millan” manufactured by Mitsui DuPont Polychemicals)) fused without using a laser and fused at 120 ° C. is used. It was.
Short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor (FF), and energy conversion efficiency (η (%)) of the cell prepared by the method of the present invention and the dye-sensitized solar cell of the comparative example Was measured.

なお、色素増感太陽電池のエネルギー変換効率(η(%))は、下記式(1)で表される。ここで、下記式(1)中、Poは入射光強度[mWcm−2]、Vocは開放電圧[V]、Jscは短絡電流密度[mA・cm−2]、F.F.は曲線因子(Filling Factor)を示す。
η=100×(Voc×Jsc×F.F.)/Po・・・(1)
In addition, the energy conversion efficiency ((eta) (%)) of a dye-sensitized solar cell is represented by following formula (1). Here, in the following formula (1), Po is the incident light intensity [mWcm −2 ], Voc is the open circuit voltage [V], Jsc is the short circuit current density [mA · cm −2 ], F.V. F. Indicates a fill factor.
η = 100 × (Voc × Jsc × FF) / Po (1)

電池特性評価試験は、ソーラーシミュレータ(山下電装製、商品名;「YSS−100A型」)を用い、AMフィルター(AM1.5)を通したキセノンランプ光源からの疑似太陽光の照射条件を、100mW/cmとする(いわゆる「1Sun」の照射条件)測定条件の下で行った。光電変換効率の結果を表5に示す。 The battery characteristic evaluation test was performed using a solar simulator (trade name: “YSS-100A type” manufactured by Yamashita Denso Co., Ltd.) and the irradiation condition of pseudo-sunlight from a xenon lamp light source through an AM filter (AM1.5) was 100 mW. / Cm 2 (so-called “1Sun” irradiation condition). The results of photoelectric conversion efficiency are shown in Table 5.

Figure 2008115057
Figure 2008115057

次に、この二つのサンプルを用いて85℃の恒温槽に設置して一週間保持した。この結果、アイオノマーで封止したサンプルでは電解液が外部に漏れ枯渇していたが、本発明のレーザー吸収封着ガラスペーストを用いて固定化したものでは外観的に変化が全く見られなかった。   Next, using these two samples, they were placed in a constant temperature bath at 85 ° C. and held for one week. As a result, in the sample sealed with ionomer, the electrolyte solution leaked to the outside and was depleted, but in the sample fixed with the laser-absorbing sealing glass paste of the present invention, no change was observed in appearance.

次に、色素増感太陽電池セルとしてアイオノマーとレーザーによる接合により図4に示すような接合形態で試作して評価を行った。
セルに使用したソーダライムガラス板1、2として厚み3mm 5cm角のソーダライムガラスを用いた。このガラス板の熱膨張率は89×10−7/℃であった。このソーダライムガラス板にスクリーン印刷法によりITOの透明導電膜を厚さ10μmで成膜し、大気中にて450℃で1時間の焼成を行った。この透明導電膜を形成したガラス基板2の一枚をスパッター法によりPtを300nm成膜し、ドリルにより1mmΦの径の穴を角の位置の4箇所に形成した。
Next, as a dye-sensitized solar battery cell, evaluation was performed by making a prototype with a joining form as shown in FIG. 4 by joining with an ionomer and a laser.
As the soda lime glass plates 1 and 2 used in the cell, soda lime glass having a thickness of 3 mm and 5 cm square was used. The thermal expansion coefficient of this glass plate was 89 × 10 −7 / ° C. An ITO transparent conductive film having a thickness of 10 μm was formed on this soda lime glass plate by screen printing, and baked at 450 ° C. for 1 hour in the air. One glass substrate 2 on which the transparent conductive film was formed was formed into a Pt film with a thickness of 300 nm by a sputtering method, and holes with a diameter of 1 mmΦ were formed at four corner positions by a drill.

もう一枚の透明導電膜を形成したガラス基板1には、この上にスクリーン印刷法により酸化チタンP25のペーストを20μmの厚みで塗布した。この際、ガラス板の周端部から6mmの部分には酸化チタンペーストが付かないように印刷を行った。酸化チタンP25のペーストはテルピオーネに固形分濃度として70重量パーセント加えたものを用いた。周端部には端から3mmの部分までペーストを厚み100μmになるようにスクリーン印刷で塗布した。   On the glass substrate 1 on which another transparent conductive film was formed, a titanium oxide P25 paste was applied thereon to a thickness of 20 μm by screen printing. At this time, printing was performed so that the titanium oxide paste was not attached to a portion 6 mm from the peripheral edge of the glass plate. The paste of titanium oxide P25 used was terpione added with 70% by weight as a solid concentration. The paste was applied to the peripheral edge portion by screen printing so that the thickness was 100 μm from the end to a portion of 3 mm.

ペーストとしては、SiO−CaO−Na(K)O系にCuOを1重量パーセント添加し、特にNaOの添加量により軟化点を変えAlフィラーの添加量により熱膨張率を84×10−7/℃にしたものを用いた。次にこの酸化チタンペーストが塗布されたガラス基板を大気中で120℃にて乾燥し、500℃にて1時間焼成した。この焼成によりペーストが仮焼成されて封止層3および酸化チタンペーストが焼成されて半導体層8が形成される。
この後、ルテニウム錯体系の色素ルテニウム535(SOLARONIX 製品名: ルテニウム535)を濃度5×10−4モル/リットルにした溶液に浸漬して8時間保持した。無水エタノールに浸漬して過剰の色素を取り除き、100℃にて乾燥した。
As a paste, 1 weight percent of CuO is added to the SiO 2 —CaO—Na (K) 2 O system, and the softening point is changed depending on the amount of Na 2 O added, and the coefficient of thermal expansion is increased depending on the amount of Al 2 O 3 filler added. 84 × 10 −7 / ° C. was used. Next, the glass substrate coated with the titanium oxide paste was dried at 120 ° C. in the air and baked at 500 ° C. for 1 hour. By this firing, the paste is temporarily fired, and the sealing layer 3 and the titanium oxide paste are fired to form the semiconductor layer 8.
Thereafter, the ruthenium complex dye ruthenium 535 (SOLARAONIX product name: ruthenium 535) was immersed in a solution having a concentration of 5 × 10 −4 mol / liter and held for 8 hours. Excess dye was removed by immersion in absolute ethanol and dried at 100 ° C.

この二つのガラス板でPtをスパッターで成膜したガラス基板の方に、外側から3mmより内側に厚み60μm、幅3mmのアイオノマー製シール7を置き、この外側の封止層3を挟むように設置し、100gf/cmの荷重を掛けた。この状態において120℃でアイオノマーにより熱融着させた。引き続き、この二枚のガラス板に50gf/cmの荷重を掛けて、単位面積でのレーザーパワー密度として、1×10W/cmで照射した。この時のレーザーはYAGレーザーを用いてパルスモード300Hzにし、走査速度としては80mm/minの条件で行った。 An ionomer seal 7 having a thickness of 60 μm and a width of 3 mm is placed inside 3 mm from the outside on the glass substrate on which Pt is formed by sputtering with these two glass plates, and the outside sealing layer 3 is sandwiched between them. And a load of 100 gf / cm 2 was applied. In this state, heat fusion was performed at 120 ° C. with an ionomer. Subsequently, by applying a load of 50 gf / cm 2 on the glass plate of the two, as the laser power density on a unit area, were irradiated with 1 × 10 6 W / cm 2 . At this time, the YAG laser was used as the laser at a pulse mode of 300 Hz, and the scanning speed was 80 mm / min.

作製したセルにLiIとIを溶かしたアセトニトリル電解液9を注入口より入れて、セル全体に均一になるように注入した。このサンプルの光電変換特性を調べた。比較例として、前記のレーザーを用いないで60μmのアイオノマーを用いて同じ形状になるように120℃で融着させたものを用いた。
以下に光電変換効率の結果を表6に示す。
Acetonitrile electrolyte solution 9 to produce the cells were dissolved LiI and I 2 put from the inlet, and injected to be uniform throughout the cell. The photoelectric conversion characteristics of this sample were examined. As a comparative example, a material fused at 120 ° C. so as to have the same shape using a 60 μm ionomer without using the above laser was used.
The results of photoelectric conversion efficiency are shown in Table 6 below.

Figure 2008115057
Figure 2008115057

この二つのサンプルを用いて85℃の恒温槽に設置して一週間保持した。この結果、アイオノマーで封止したサンプルでは電解液が外部に漏れ枯渇していたが、アイオノマーと本発明のレーザー吸収封着ガラスペーストを用いて固定化したものでは外観的に変化が全く見られなかった。   Using these two samples, they were placed in a constant temperature bath at 85 ° C. and held for one week. As a result, in the sample sealed with ionomer, the electrolyte leaked to the outside and was depleted, but in the sample fixed with the ionomer and the laser-absorbing sealing glass paste of the present invention, no change in appearance was seen. It was.

本発明の製造方法の第1の例を示す概略構成図である。It is a schematic block diagram which shows the 1st example of the manufacturing method of this invention. 本発明の製造方法の第2の例を示す概略構成図である。It is a schematic block diagram which shows the 2nd example of the manufacturing method of this invention. 本発明の製造方法の第3の例を示す概略構成図である。It is a schematic block diagram which shows the 3rd example of the manufacturing method of this invention. 本発明の製造方法で作成した色素増感型太陽電池の概略構成図である。It is a schematic block diagram of the dye-sensitized solar cell created with the manufacturing method of this invention.

符号の説明Explanation of symbols

1・・第1のガラス基板、2・・第2のガラス基板、3・・封止層、31・・外側封止層、4・・レーザーヘッド、5・・ホットプレート、6・・重し部材 1 ·· First glass substrate 2 ·· Second glass substrate 3 ·· Sealing layer 31 ·· Outside sealing layer 4 ·· Laser head 5 ·· Hot plate 6 ·· Weight Element

Claims (3)

クロム、鉄、ニッケル、コバルト、マンガン、銅、炭素のいずれか1種以上の単体または化合物からなるレーザー吸収成分とガラス成分を含み、ガラスからなる被封止部材との熱膨張率の差が10×10−7/℃以下である封止材料。 The difference in thermal expansion coefficient between the laser-absorbing component consisting of one or more of chromium, iron, nickel, cobalt, manganese, copper, and carbon and a glass component, and a sealed member made of glass is 10 Sealing material that is × 10 −7 / ° C. or lower. 請求項1記載の封止材料からなる封止層を少なくとも一方のガラス基板の封止部位に形成したのち、他方のガラス基板を重ね合わせ、前記封止層にレーザー光を照射して封止層を溶融して2枚のガラス基板を接合することを特徴とするガラスパネルの製造方法。   A sealing layer made of the sealing material according to claim 1 is formed on a sealing portion of at least one glass substrate, the other glass substrate is overlaid, and the sealing layer is irradiated with laser light to seal the sealing layer. A method for producing a glass panel, comprising melting two pieces and joining two glass substrates. 前記ガラス基板の一方に、その内面に透明導電膜と、この透明導電膜上の色素担持金属酸化物半導体層とが形成されたものを、
他方のガラス基板に、その内面に導電膜が形成されたものを用い、請求項2記載の製造方法で作られた色素増感太陽電池。
On one of the glass substrates, a transparent conductive film and a dye-supported metal oxide semiconductor layer on the transparent conductive film are formed on the inner surface.
A dye-sensitized solar cell produced by the production method according to claim 2, wherein the other glass substrate has a conductive film formed on the inner surface thereof.
JP2006301718A 2006-11-07 2006-11-07 Sealant, manufacturing process of glass panel and dye-sensitized solar cell Withdrawn JP2008115057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006301718A JP2008115057A (en) 2006-11-07 2006-11-07 Sealant, manufacturing process of glass panel and dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006301718A JP2008115057A (en) 2006-11-07 2006-11-07 Sealant, manufacturing process of glass panel and dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2008115057A true JP2008115057A (en) 2008-05-22

Family

ID=39501313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006301718A Withdrawn JP2008115057A (en) 2006-11-07 2006-11-07 Sealant, manufacturing process of glass panel and dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2008115057A (en)

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147154A (en) * 2006-11-17 2008-06-26 Sumitomo Chemical Co Ltd Photoelectrochemical cell
JP2008166197A (en) * 2006-12-28 2008-07-17 Univ Of Tokyo Manufacturing method of panel body
US20090242017A1 (en) * 2008-03-31 2009-10-01 Koito Manufacturing Co., Ltd. Dye-sensitized solar cell
JP2009234816A (en) * 2008-03-26 2009-10-15 Nippon Electric Glass Co Ltd Sealing material for organic el display
WO2009145044A1 (en) * 2008-05-26 2009-12-03 浜松ホトニクス株式会社 Glass welding method
WO2009145046A1 (en) * 2008-05-26 2009-12-03 浜松ホトニクス株式会社 Glass fusion method
WO2009150975A1 (en) * 2008-06-11 2009-12-17 浜松ホトニクス株式会社 Fusion-bonding process for glass
WO2009150976A1 (en) * 2008-06-11 2009-12-17 浜松ホトニクス株式会社 Fusion-bonding process for glass
WO2009157282A1 (en) * 2008-06-23 2009-12-30 浜松ホトニクス株式会社 Fusion-bonding process for glass
WO2009157281A1 (en) * 2008-06-23 2009-12-30 浜松ホトニクス株式会社 Fusion-bonding process for glass
JP2010042999A (en) * 2009-11-25 2010-02-25 Hamamatsu Photonics Kk Method for fixing glass layer
JP2010043000A (en) * 2009-11-25 2010-02-25 Hamamatsu Photonics Kk Fixing method of glass layer
JP2010042960A (en) * 2008-08-13 2010-02-25 Nippon Electric Glass Co Ltd Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell
WO2010044738A1 (en) * 2008-10-13 2010-04-22 Solibro Research Ab A method for manufacturing a thin film solar cell module
WO2010055888A1 (en) 2008-11-14 2010-05-20 旭硝子株式会社 Method for producing glass member provided with sealing material layer, and method for manufacturing electronic device
WO2010061853A1 (en) 2008-11-26 2010-06-03 旭硝子株式会社 Glass member having sealing/bonding material layer, electronic device using same, and manufacturing method thereof
WO2010064213A1 (en) * 2008-12-05 2010-06-10 Efacec - Engenharia, S.A. Glass sealing of dye-sensitized solar cells
WO2010067848A1 (en) 2008-12-12 2010-06-17 旭硝子株式会社 Sealing glass, glass member having sealing material layer, and electronic device and method for producing the same
JP2010153073A (en) * 2008-12-24 2010-07-08 Kyocera Corp Photoelectric conversion device
JP2010198821A (en) * 2009-02-24 2010-09-09 Fujikura Ltd Photoelectric conversion element
JP2010198833A (en) * 2009-02-24 2010-09-09 Fujikura Ltd Photoelectric conversion element module
WO2010113838A1 (en) * 2009-03-31 2010-10-07 セントラル硝子株式会社 Colored lead-free glass for sealing
WO2010128679A1 (en) * 2009-05-08 2010-11-11 旭硝子株式会社 Glass member with sealing material layer, electronic device using same, and manufacturing method thereof
WO2010137667A1 (en) * 2009-05-28 2010-12-02 旭硝子株式会社 Glass member with sealing material layer attached thereto, electronic device produced using same, and process for producing same
WO2011001987A1 (en) * 2009-06-30 2011-01-06 旭硝子株式会社 Glass member with sealing material layer, electronic device using same, and method for manufacturing the electronic device
JP2011018608A (en) * 2009-07-10 2011-01-27 Toyo Seikan Kaisha Ltd Joining method of metal substrate and glass substrate
WO2011010489A1 (en) * 2009-07-23 2011-01-27 旭硝子株式会社 Method and apparatus for manufacturing glass member provided with sealing material layer and method for manufacturing electronic device
WO2011013423A1 (en) * 2009-07-28 2011-02-03 株式会社フジクラ Method for manufacturing dye-sensitized solar cell
JP2011032153A (en) * 2009-07-06 2011-02-17 Nippon Electric Glass Co Ltd Refractory filler powder and sealing material using the same
JP2011051811A (en) * 2009-08-31 2011-03-17 Asahi Glass Co Ltd Method for manufacturing glass member with sealing material layer and method for manufacturing electronic device
JP2011057477A (en) * 2009-09-08 2011-03-24 Nippon Electric Glass Co Ltd Sealing material
WO2011046483A1 (en) * 2009-10-16 2011-04-21 Lars Eriksson A method to enclose solar cells
WO2011065109A1 (en) * 2009-11-25 2011-06-03 浜松ホトニクス株式会社 Glass welding method and glass layer fixing method
WO2011065103A1 (en) * 2009-11-25 2011-06-03 浜松ホトニクス株式会社 Glass welding method and glass layer fixing method
WO2011065105A1 (en) * 2009-11-25 2011-06-03 浜松ホトニクス株式会社 Glass welding method and glass layer fixing method
WO2011065111A1 (en) * 2009-11-25 2011-06-03 浜松ホトニクス株式会社 Glass welding method and glass layer fixing method
WO2011065106A1 (en) * 2009-11-25 2011-06-03 浜松ホトニクス株式会社 Glass welding method and glass layer fixing method
WO2011065112A1 (en) * 2009-11-25 2011-06-03 浜松ホトニクス株式会社 Glass welding method and glass layer fixing method
WO2011065108A1 (en) * 2009-11-25 2011-06-03 浜松ホトニクス株式会社 Glass welding method and glass layer fixing method
WO2011065104A1 (en) * 2009-11-25 2011-06-03 浜松ホトニクス株式会社 Glass welding method
WO2011065107A1 (en) * 2009-11-25 2011-06-03 浜松ホトニクス株式会社 Glass welding method
WO2011065110A1 (en) * 2009-11-25 2011-06-03 浜松ホトニクス株式会社 Glass welding method and glass layer fixing method
WO2011122218A1 (en) * 2010-03-29 2011-10-06 日本電気硝子株式会社 Sealing material and paste material using same
JP2011256092A (en) * 2010-06-11 2011-12-22 Asahi Glass Co Ltd Method and apparatus for producing glass member with sealing material layer, and method for producing electron device
US8133829B2 (en) 2008-03-28 2012-03-13 Asahi Glass Company, Limited Frit
JP2012508472A (en) * 2009-10-13 2012-04-05 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Thermally conductive materials for solar panel components
US20120234048A1 (en) * 2009-11-12 2012-09-20 Hamamatsu Photonics K.K. Glass welding method
JP2012533770A (en) * 2009-07-15 2012-12-27 アップル インコーポレイテッド Display module
JP2013049613A (en) * 2011-07-29 2013-03-14 Nippon Electric Glass Co Ltd Method for producing glass substrate with sealing material layer
JP2013053046A (en) * 2011-09-05 2013-03-21 Nippon Electric Glass Co Ltd Glass substrate with sealing material layer
JP2013081947A (en) * 2011-10-06 2013-05-09 Disco Corp Semiconductor substrate ablation method
JP2013170114A (en) * 2012-02-23 2013-09-02 Nippon Electric Glass Co Ltd Glass substrate with sealing material layer and glass package using the same
JP2014001134A (en) * 2008-02-28 2014-01-09 Nippon Electric Glass Co Ltd Method of manufacturing an organic el display
JP2014063153A (en) * 2012-08-28 2014-04-10 Semiconductor Energy Lab Co Ltd Display device, and electronic device
US8778469B2 (en) 2010-03-19 2014-07-15 Asahi Glass Company, Limited Electronic device and method for manufacturing same
KR101446472B1 (en) * 2012-08-06 2014-10-02 연세대학교 산학협력단 Paste composition for laser sealing
WO2015026575A1 (en) * 2013-08-21 2015-02-26 Siva Power, Inc. Hermetically sealed glass photovoltaic module
JP2015511922A (en) * 2012-01-20 2015-04-23 ガーディアン・インダストリーズ・コーポレーション Thermal expansion coefficient filler for vanadium-based frit material and / or production method thereof and / or utilization method thereof
US9085483B2 (en) 2010-06-14 2015-07-21 Asahi Glass Company, Limited Sealing material paste and process for producing electronic device employing the same
JP2016521675A (en) * 2013-06-14 2016-07-25 コーニング インコーポレイテッド Laminate sealing sheet
TWI576189B (en) * 2014-06-23 2017-04-01 綠點高新科技股份有限公司 Method for joining components by using laser and a combination made thereof
WO2017188221A1 (en) * 2016-04-26 2017-11-02 株式会社フジクラ Base member assembly and method for manufacturing same
US10125045B2 (en) 2011-02-22 2018-11-13 Guardian Glass, LLC Coefficient of thermal expansion filler for vanadium-based frit materials and/or methods of making and/or using the same
US10329187B2 (en) 2011-02-22 2019-06-25 Guardian Glass, LLC Coefficient of thermal expansion filler for vanadium-based frit materials and/or methods of making and/or using the same
CN111897165A (en) * 2019-05-06 2020-11-06 康惠(惠州)半导体有限公司 Ultra-micro linear spacing infrared liquid crystal light valve and manufacturing method thereof

Cited By (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147154A (en) * 2006-11-17 2008-06-26 Sumitomo Chemical Co Ltd Photoelectrochemical cell
JP2008166197A (en) * 2006-12-28 2008-07-17 Univ Of Tokyo Manufacturing method of panel body
JP2014001134A (en) * 2008-02-28 2014-01-09 Nippon Electric Glass Co Ltd Method of manufacturing an organic el display
JP2014012634A (en) * 2008-02-28 2014-01-23 Nippon Electric Glass Co Ltd Glass substrate with dry film for organic el display
JP2009234816A (en) * 2008-03-26 2009-10-15 Nippon Electric Glass Co Ltd Sealing material for organic el display
US8133829B2 (en) 2008-03-28 2012-03-13 Asahi Glass Company, Limited Frit
US20090242017A1 (en) * 2008-03-31 2009-10-01 Koito Manufacturing Co., Ltd. Dye-sensitized solar cell
JP2009280470A (en) * 2008-05-26 2009-12-03 Hamamatsu Photonics Kk Method for welding glass
WO2009145046A1 (en) * 2008-05-26 2009-12-03 浜松ホトニクス株式会社 Glass fusion method
WO2009145044A1 (en) * 2008-05-26 2009-12-03 浜松ホトニクス株式会社 Glass welding method
US8516852B2 (en) 2008-05-26 2013-08-27 Hamamatsu Photonics K.K. Glass fusion method
JP2009280469A (en) * 2008-05-26 2009-12-03 Hamamatsu Photonics Kk Glass welding method
US9181126B2 (en) 2008-05-26 2015-11-10 Hamamatsu Photonics K.K. Glass fusion method
KR101532110B1 (en) * 2008-05-26 2015-06-26 하마마츠 포토닉스 가부시키가이샤 Glass welding method
US8863553B2 (en) 2008-05-26 2014-10-21 Hamamatsu Photonics K.K. Glass welding method
JP2010116319A (en) * 2008-06-11 2010-05-27 Hamamatsu Photonics Kk Fixing method for glass layer
CN102056858B (en) * 2008-06-11 2013-09-25 浜松光子学株式会社 Fusion-bonding process for glass
JP5535654B2 (en) * 2008-06-11 2014-07-02 浜松ホトニクス株式会社 Glass welding method
WO2009150975A1 (en) * 2008-06-11 2009-12-17 浜松ホトニクス株式会社 Fusion-bonding process for glass
JP5535652B2 (en) * 2008-06-11 2014-07-02 浜松ホトニクス株式会社 Glass welding method
US8839643B2 (en) 2008-06-11 2014-09-23 Hamamatsu Photonics K.K. Fusion bonding process for glass
KR101665727B1 (en) * 2008-06-11 2016-10-12 하마마츠 포토닉스 가부시키가이샤 Fusion-bonding process for glass
KR20110016870A (en) * 2008-06-11 2011-02-18 하마마츠 포토닉스 가부시키가이샤 Fusion-bonding process for glass
CN102066277B (en) * 2008-06-11 2013-09-11 浜松光子学株式会社 Fusion-bonding process for glass
US10322469B2 (en) 2008-06-11 2019-06-18 Hamamatsu Photonics K.K. Fusion bonding process for glass
WO2009150976A1 (en) * 2008-06-11 2009-12-17 浜松ホトニクス株式会社 Fusion-bonding process for glass
CN102066277A (en) * 2008-06-11 2011-05-18 浜松光子学株式会社 Fusion-bonding process for glass
CN102056858A (en) * 2008-06-11 2011-05-11 浜松光子学株式会社 Fusion-bonding process for glass
US20110088431A1 (en) * 2008-06-11 2011-04-21 Hamamatsu Photonics K.K. Fusion-bonding process for glass
JP2011063499A (en) * 2008-06-11 2011-03-31 Hamamatsu Photonics Kk Method for fixing glass layer
US20110067448A1 (en) * 2008-06-11 2011-03-24 Hamamatsu Photonics K.K. Fusion-bonding process for glass
JP5535653B2 (en) * 2008-06-23 2014-07-02 浜松ホトニクス株式会社 Glass welding method
WO2009157281A1 (en) * 2008-06-23 2009-12-30 浜松ホトニクス株式会社 Fusion-bonding process for glass
JP2012176898A (en) * 2008-06-23 2012-09-13 Hamamatsu Photonics Kk Method for fixing glass layer
CN102066279B (en) * 2008-06-23 2013-09-11 浜松光子学株式会社 Fusion-bonding process for glass
US9045365B2 (en) * 2008-06-23 2015-06-02 Hamamatsu Photonics K.K. Fusion-bonding process for glass
JP2010105913A (en) * 2008-06-23 2010-05-13 Hamamatsu Photonics Kk Method and apparatus for fixing glass layer
US20110088430A1 (en) * 2008-06-23 2011-04-21 Hamamatsu Photonics K.K. Fusion-bonding process for glass
JP5535655B2 (en) * 2008-06-23 2014-07-02 浜松ホトニクス株式会社 Glass welding method
JP2011073956A (en) * 2008-06-23 2011-04-14 Hamamatsu Photonics Kk Method for fusion-bonding glass layer
WO2009157282A1 (en) * 2008-06-23 2009-12-30 浜松ホトニクス株式会社 Fusion-bonding process for glass
JP2010042960A (en) * 2008-08-13 2010-02-25 Nippon Electric Glass Co Ltd Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell
WO2010044738A1 (en) * 2008-10-13 2010-04-22 Solibro Research Ab A method for manufacturing a thin film solar cell module
CN102203026A (en) * 2008-11-14 2011-09-28 旭硝子株式会社 Method for producing glass member provided with sealing material layer, and method for manufacturing electronic device
WO2010055888A1 (en) 2008-11-14 2010-05-20 旭硝子株式会社 Method for producing glass member provided with sealing material layer, and method for manufacturing electronic device
EP2351717A4 (en) * 2008-11-26 2012-04-25 Asahi Glass Co Ltd Glass member having sealing/bonding material layer, electronic device using same, and manufacturing method thereof
WO2010061853A1 (en) 2008-11-26 2010-06-03 旭硝子株式会社 Glass member having sealing/bonding material layer, electronic device using same, and manufacturing method thereof
EP2351717A1 (en) * 2008-11-26 2011-08-03 Asahi Glass Company Limited Glass member having sealing/bonding material layer, electronic device using same, and manufacturing method thereof
JP5673102B2 (en) * 2008-11-26 2015-02-18 旭硝子株式会社 Glass member with sealing material layer, electronic device using the same, and manufacturing method thereof
US8287995B2 (en) 2008-11-26 2012-10-16 Asahi Glass Company, Limited Glass member provided with sealing material layer, and electronic device using it and process for producing the electronic device
JP2012511236A (en) * 2008-12-05 2012-05-17 エファセック エンジェニャリア エー システマス,ソシエダッド アノニマ Glass sealing method for dye-sensitized solar cell
WO2010064213A1 (en) * 2008-12-05 2010-06-10 Efacec - Engenharia, S.A. Glass sealing of dye-sensitized solar cells
US8567110B2 (en) 2008-12-05 2013-10-29 Efacec Engenharia E Sistemas S.A. Process for glass sealing of dye-sensitized solar cells
WO2010067848A1 (en) 2008-12-12 2010-06-17 旭硝子株式会社 Sealing glass, glass member having sealing material layer, and electronic device and method for producing the same
JP2010153073A (en) * 2008-12-24 2010-07-08 Kyocera Corp Photoelectric conversion device
JP2010198833A (en) * 2009-02-24 2010-09-09 Fujikura Ltd Photoelectric conversion element module
JP2010198821A (en) * 2009-02-24 2010-09-09 Fujikura Ltd Photoelectric conversion element
JP2010235408A (en) * 2009-03-31 2010-10-21 Central Glass Co Ltd Colored lead-free glass for sealing
WO2010113838A1 (en) * 2009-03-31 2010-10-07 セントラル硝子株式会社 Colored lead-free glass for sealing
JP5598469B2 (en) * 2009-05-08 2014-10-01 旭硝子株式会社 Glass member with sealing material layer, electronic device using the same, and manufacturing method thereof
WO2010128679A1 (en) * 2009-05-08 2010-11-11 旭硝子株式会社 Glass member with sealing material layer, electronic device using same, and manufacturing method thereof
WO2010137667A1 (en) * 2009-05-28 2010-12-02 旭硝子株式会社 Glass member with sealing material layer attached thereto, electronic device produced using same, and process for producing same
WO2011001987A1 (en) * 2009-06-30 2011-01-06 旭硝子株式会社 Glass member with sealing material layer, electronic device using same, and method for manufacturing the electronic device
JP5418594B2 (en) * 2009-06-30 2014-02-19 旭硝子株式会社 Glass member with sealing material layer, electronic device using the same, and manufacturing method thereof
US8697242B2 (en) 2009-06-30 2014-04-15 Asahi Glass Company, Limited Glass member provided with sealing material layer, electronic device using it and process for producing the electronic device
JP2011032153A (en) * 2009-07-06 2011-02-17 Nippon Electric Glass Co Ltd Refractory filler powder and sealing material using the same
JP2011018608A (en) * 2009-07-10 2011-01-27 Toyo Seikan Kaisha Ltd Joining method of metal substrate and glass substrate
JP2012533770A (en) * 2009-07-15 2012-12-27 アップル インコーポレイテッド Display module
CN102066280A (en) * 2009-07-23 2011-05-18 旭硝子株式会社 Method and apparatus for manufacturing glass member provided with sealing material layer and method for manufacturing electronic device
WO2011010489A1 (en) * 2009-07-23 2011-01-27 旭硝子株式会社 Method and apparatus for manufacturing glass member provided with sealing material layer and method for manufacturing electronic device
US8490434B2 (en) 2009-07-23 2013-07-23 Asahi Glass Company, Limited Process and apparatus for producing glass member provided with sealing material layer and process for producing electronic device
JPWO2011010489A1 (en) * 2009-07-23 2012-12-27 旭硝子株式会社 Manufacturing method and manufacturing apparatus of glass member with sealing material layer, and manufacturing method of electronic device
WO2011013423A1 (en) * 2009-07-28 2011-02-03 株式会社フジクラ Method for manufacturing dye-sensitized solar cell
US8293562B2 (en) 2009-07-28 2012-10-23 Fujikura Ltd. Dye-sensitized solar cell manufacturing method
JP5241912B2 (en) * 2009-07-28 2013-07-17 株式会社フジクラ Method for producing dye-sensitized solar cell
JP2011051811A (en) * 2009-08-31 2011-03-17 Asahi Glass Co Ltd Method for manufacturing glass member with sealing material layer and method for manufacturing electronic device
JP2011057477A (en) * 2009-09-08 2011-03-24 Nippon Electric Glass Co Ltd Sealing material
JP2012508472A (en) * 2009-10-13 2012-04-05 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Thermally conductive materials for solar panel components
WO2011046483A1 (en) * 2009-10-16 2011-04-21 Lars Eriksson A method to enclose solar cells
US9073778B2 (en) 2009-11-12 2015-07-07 Hamamatsu Photonics K.K. Glass welding method
US20120234048A1 (en) * 2009-11-12 2012-09-20 Hamamatsu Photonics K.K. Glass welding method
CN102666414B (en) * 2009-11-25 2014-11-26 浜松光子学株式会社 Glass welding method and glass layer fixing method
CN102666416B (en) * 2009-11-25 2014-10-22 浜松光子学株式会社 Glass welding method and glass layer fixing method
CN102762511A (en) * 2009-11-25 2012-10-31 浜松光子学株式会社 Glass welding method and glass layer fixing method
WO2011065109A1 (en) * 2009-11-25 2011-06-03 浜松ホトニクス株式会社 Glass welding method and glass layer fixing method
CN102666413A (en) * 2009-11-25 2012-09-12 浜松光子学株式会社 Glass welding method and glass layer fixing method
CN102666418A (en) * 2009-11-25 2012-09-12 浜松光子学株式会社 Glass welding method and glass layer fixing method
US9922790B2 (en) 2009-11-25 2018-03-20 Hamamatsu Photonics K.K. Glass welding method
US9887059B2 (en) 2009-11-25 2018-02-06 Hamamatsu Photonics K.K. Glass welding method
US9701582B2 (en) 2009-11-25 2017-07-11 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
WO2011065103A1 (en) * 2009-11-25 2011-06-03 浜松ホトニクス株式会社 Glass welding method and glass layer fixing method
CN102666416A (en) * 2009-11-25 2012-09-12 浜松光子学株式会社 Glass welding method and glass layer fixing method
TWI402127B (en) * 2009-11-25 2013-07-21 Hamamatsu Photonics Kk Glass welding method and glass layer fixation method
TWI402126B (en) * 2009-11-25 2013-07-21 Hamamatsu Photonics Kk Glass welding method and glass layer fixation method
CN102666414A (en) * 2009-11-25 2012-09-12 浜松光子学株式会社 Glass welding method and glass layer fixing method
CN102666419A (en) * 2009-11-25 2012-09-12 浜松光子学株式会社 Glass welding method and glass layer fixing method
US9236213B2 (en) 2009-11-25 2016-01-12 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
CN102666415A (en) * 2009-11-25 2012-09-12 浜松光子学株式会社 Glass welding method and glass layer fixing method
KR101165566B1 (en) 2009-11-25 2012-07-16 하마마츠 포토닉스 가부시키가이샤 Glass welding method and glass layer fixing method
KR101162902B1 (en) 2009-11-25 2012-07-05 하마마츠 포토닉스 가부시키가이샤 Glass welding method and glass layer fixing method
TWI410291B (en) * 2009-11-25 2013-10-01 Hamamatsu Photonics Kk Glass welding method and glass layer fixation method
KR101162028B1 (en) 2009-11-25 2012-07-03 하마마츠 포토닉스 가부시키가이샤 Glass welding method and glass layer fixing method
US9233872B2 (en) 2009-11-25 2016-01-12 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9227871B2 (en) 2009-11-25 2016-01-05 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
JP2011111344A (en) * 2009-11-25 2011-06-09 Hamamatsu Photonics Kk Glass welding method and glass layer fixing method
JP2010042999A (en) * 2009-11-25 2010-02-25 Hamamatsu Photonics Kk Method for fixing glass layer
JP2011111339A (en) * 2009-11-25 2011-06-09 Hamamatsu Photonics Kk Glass welding method and glass layer fixing method
JP2011111343A (en) * 2009-11-25 2011-06-09 Hamamatsu Photonics Kk Glass welding method and glass layer fixing method
JP2011111347A (en) * 2009-11-25 2011-06-09 Hamamatsu Photonics Kk Glass welding method
JP2011111353A (en) * 2009-11-25 2011-06-09 Hamamatsu Photonics Kk Glass welding method and glass layer fixing method
WO2011065110A1 (en) * 2009-11-25 2011-06-03 浜松ホトニクス株式会社 Glass welding method and glass layer fixing method
WO2011065105A1 (en) * 2009-11-25 2011-06-03 浜松ホトニクス株式会社 Glass welding method and glass layer fixing method
WO2011065107A1 (en) * 2009-11-25 2011-06-03 浜松ホトニクス株式会社 Glass welding method
WO2011065104A1 (en) * 2009-11-25 2011-06-03 浜松ホトニクス株式会社 Glass welding method
JP2010043000A (en) * 2009-11-25 2010-02-25 Hamamatsu Photonics Kk Fixing method of glass layer
WO2011065108A1 (en) * 2009-11-25 2011-06-03 浜松ホトニクス株式会社 Glass welding method and glass layer fixing method
US20120240628A1 (en) * 2009-11-25 2012-09-27 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
CN102666415B (en) * 2009-11-25 2014-11-26 浜松光子学株式会社 Glass welding method and glass layer fixing method
WO2011065112A1 (en) * 2009-11-25 2011-06-03 浜松ホトニクス株式会社 Glass welding method and glass layer fixing method
WO2011065106A1 (en) * 2009-11-25 2011-06-03 浜松ホトニクス株式会社 Glass welding method and glass layer fixing method
WO2011065111A1 (en) * 2009-11-25 2011-06-03 浜松ホトニクス株式会社 Glass welding method and glass layer fixing method
US9021836B2 (en) 2009-11-25 2015-05-05 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9016091B2 (en) 2009-11-25 2015-04-28 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US8778469B2 (en) 2010-03-19 2014-07-15 Asahi Glass Company, Limited Electronic device and method for manufacturing same
JP5692218B2 (en) * 2010-03-19 2015-04-01 旭硝子株式会社 Electronic device and manufacturing method thereof
WO2011122218A1 (en) * 2010-03-29 2011-10-06 日本電気硝子株式会社 Sealing material and paste material using same
CN102822109A (en) * 2010-03-29 2012-12-12 日本电气硝子株式会社 Sealing material and paste material using same
US20120325789A1 (en) * 2010-03-29 2012-12-27 Noriaki Masuda Sealing material and paste material using same
US9090498B2 (en) 2010-03-29 2015-07-28 Nippon Electric Glass Co., Ltd. Sealing material and paste material using same
JP2011256092A (en) * 2010-06-11 2011-12-22 Asahi Glass Co Ltd Method and apparatus for producing glass member with sealing material layer, and method for producing electron device
US9085483B2 (en) 2010-06-14 2015-07-21 Asahi Glass Company, Limited Sealing material paste and process for producing electronic device employing the same
US10752535B2 (en) 2011-02-22 2020-08-25 Guardian Glass, LLC Coefficient of thermal expansion filler for vanadium-based frit materials and/or methods of making and/or using the same
US11028009B2 (en) 2011-02-22 2021-06-08 Guardian Glass, LLC Coefficient of thermal expansion filler for vanadium-based frit materials and/or methods of making and/or using the same
US10329187B2 (en) 2011-02-22 2019-06-25 Guardian Glass, LLC Coefficient of thermal expansion filler for vanadium-based frit materials and/or methods of making and/or using the same
US10125045B2 (en) 2011-02-22 2018-11-13 Guardian Glass, LLC Coefficient of thermal expansion filler for vanadium-based frit materials and/or methods of making and/or using the same
JP2013049613A (en) * 2011-07-29 2013-03-14 Nippon Electric Glass Co Ltd Method for producing glass substrate with sealing material layer
JP2013053046A (en) * 2011-09-05 2013-03-21 Nippon Electric Glass Co Ltd Glass substrate with sealing material layer
JP2013081947A (en) * 2011-10-06 2013-05-09 Disco Corp Semiconductor substrate ablation method
JP2015511922A (en) * 2012-01-20 2015-04-23 ガーディアン・インダストリーズ・コーポレーション Thermal expansion coefficient filler for vanadium-based frit material and / or production method thereof and / or utilization method thereof
JP2013170114A (en) * 2012-02-23 2013-09-02 Nippon Electric Glass Co Ltd Glass substrate with sealing material layer and glass package using the same
KR101446472B1 (en) * 2012-08-06 2014-10-02 연세대학교 산학협력단 Paste composition for laser sealing
US10317736B2 (en) 2012-08-28 2019-06-11 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
JP2014063153A (en) * 2012-08-28 2014-04-10 Semiconductor Energy Lab Co Ltd Display device, and electronic device
JP2016521675A (en) * 2013-06-14 2016-07-25 コーニング インコーポレイテッド Laminate sealing sheet
US10236402B2 (en) 2013-08-21 2019-03-19 Siva Power, Inc. Methods of hermetically sealing photovoltaic modules
US9257585B2 (en) 2013-08-21 2016-02-09 Siva Power, Inc. Methods of hermetically sealing photovoltaic modules using powder consisting essentially of glass
US10727362B2 (en) 2013-08-21 2020-07-28 First Solar, Inc. Methods of hermetically sealing photovoltaic modules
WO2015026575A1 (en) * 2013-08-21 2015-02-26 Siva Power, Inc. Hermetically sealed glass photovoltaic module
TWI576189B (en) * 2014-06-23 2017-04-01 綠點高新科技股份有限公司 Method for joining components by using laser and a combination made thereof
WO2017188221A1 (en) * 2016-04-26 2017-11-02 株式会社フジクラ Base member assembly and method for manufacturing same
CN111897165A (en) * 2019-05-06 2020-11-06 康惠(惠州)半导体有限公司 Ultra-micro linear spacing infrared liquid crystal light valve and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2008115057A (en) Sealant, manufacturing process of glass panel and dye-sensitized solar cell
JP2008226552A (en) Dye-sensitized solar cell and manufacturing method therefor
JP4467879B2 (en) Manufacturing method of dye-sensitized solar cell
TWI542065B (en) Electronic parts and their preparation method, sealing material paste, filler particles
JP2004292247A (en) Joining method of glass substrate
JP5430970B2 (en) Method for manufacturing photoelectric conversion element and method for manufacturing photoelectric conversion element module
JP5008034B2 (en) Photoelectric conversion element and manufacturing method thereof
KR20110009184A (en) Photoelectric conversion element module and method for manufacturing photoelectric conversion element module
JP5286325B2 (en) Method for producing dye-sensitized solar cell
JP2007280906A (en) Functional device and manufacturing method therefor
JP2009289737A (en) Photoelectric conversion element module
JP2007042460A (en) Dye-sensitized solar cell and its sealing method
EP2858167A1 (en) Dye-sensitized solar cell
JP2007048674A (en) Dye-sensitized solar cell and its sealing method
JP5398256B2 (en) Photoelectric conversion device
JP2008177022A (en) Electrode for dye-sensitized solar cell and dye-sensitized solar cell
JP5574657B2 (en) Photoelectric conversion device
JP2006004827A (en) Photoelectric conversion element and its manufacturing method
JP4830323B2 (en) Method for producing dye-sensitized solar cell module
JP2007265648A (en) Surface side electrode member for dye-sensitized solar cell and its manufacturing method
WO2011083688A1 (en) Method for manufacturing dye-sensitized solar cell
JP5089911B2 (en) Method for producing dye-sensitized solar cell
JP2011154988A (en) Semiconductor electrode layer, its manufacturing method, and electrochemical device
JP2008226553A (en) Seal part of dye-sensitized solar cell, and the dye-sensitized solar cell
JP5465446B2 (en) Photoelectric conversion element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100202