WO2009125825A1 - 複数分子の抗原に繰り返し結合する抗原結合分子 - Google Patents

複数分子の抗原に繰り返し結合する抗原結合分子 Download PDF

Info

Publication number
WO2009125825A1
WO2009125825A1 PCT/JP2009/057309 JP2009057309W WO2009125825A1 WO 2009125825 A1 WO2009125825 A1 WO 2009125825A1 JP 2009057309 W JP2009057309 W JP 2009057309W WO 2009125825 A1 WO2009125825 A1 WO 2009125825A1
Authority
WO
WIPO (PCT)
Prior art keywords
antigen
binding molecule
binding
antibody
histidine
Prior art date
Application number
PCT/JP2009/057309
Other languages
English (en)
French (fr)
Inventor
智之 井川
慎也 石井
敦彦 前田
貴士 中井
Original Assignee
中外製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41161956&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009125825(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP19154342.0A priority Critical patent/EP3514180B1/en
Priority to NZ588507A priority patent/NZ588507A/xx
Priority to KR1020177021142A priority patent/KR102057826B1/ko
Priority to EP19154335.4A priority patent/EP3521311A1/en
Priority to ES09729337.7T priority patent/ES2563483T3/es
Priority to PL09729337T priority patent/PL2275443T3/pl
Priority to MX2010011184A priority patent/MX2010011184A/es
Priority to KR1020107025124A priority patent/KR102051275B1/ko
Priority to AU2009234675A priority patent/AU2009234675B2/en
Priority to SI200931376T priority patent/SI2275443T1/sl
Priority to CN2009801224666A priority patent/CN102056946A/zh
Priority to US12/936,587 priority patent/US20110111406A1/en
Priority to EP09729337.7A priority patent/EP2275443B1/en
Priority to KR1020207005619A priority patent/KR102269708B1/ko
Priority to KR1020227040226A priority patent/KR20220162801A/ko
Priority to EP22212441.4A priority patent/EP4238993A3/en
Priority to KR1020217019078A priority patent/KR102469853B1/ko
Priority to KR1020197036522A priority patent/KR102084925B1/ko
Priority to DK09729337.7T priority patent/DK2275443T3/en
Priority to BRPI0911431A priority patent/BRPI0911431B8/pt
Priority to RU2010145939/10A priority patent/RU2571225C2/ru
Application filed by 中外製薬株式会社 filed Critical 中外製薬株式会社
Priority to JP2010507273A priority patent/JP4954326B2/ja
Priority to MYPI2010004751A priority patent/MY195714A/en
Priority to CA2721052A priority patent/CA2721052C/en
Priority to BR122020017346-7A priority patent/BR122020017346B1/pt
Priority to UAA201012805A priority patent/UA108060C2/ru
Publication of WO2009125825A1 publication Critical patent/WO2009125825A1/ja
Priority to IL208516A priority patent/IL208516A/en
Priority to MA33312A priority patent/MA32754B1/fr
Priority to US13/595,139 priority patent/US20130011866A1/en
Priority to US13/889,484 priority patent/US9868948B2/en
Priority to US13/889,512 priority patent/US9890377B2/en
Priority to PH12014502054A priority patent/PH12014502054A1/en
Priority to IL237599A priority patent/IL237599B/en
Priority to CR20150655A priority patent/CR20150655A/es
Priority to CR20150656A priority patent/CR20150656A/es
Priority to HRP20160209T priority patent/HRP20160209T1/hr
Priority to US15/952,951 priority patent/US20180282719A1/en
Priority to US15/952,945 priority patent/US10472623B2/en
Priority to IL259956A priority patent/IL259956B/en
Priority to PH12018501850A priority patent/PH12018501850A1/en
Priority to US16/361,498 priority patent/US20200048627A1/en
Priority to US17/020,543 priority patent/US11371039B2/en
Priority to US17/020,497 priority patent/US11359194B2/en
Priority to US18/156,138 priority patent/US20240002836A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1037Screening libraries presented on the surface of microorganisms, e.g. phage display, E. coli display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/244Interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/244Interleukins [IL]
    • C07K16/248IL-6
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • A61K2039/541Mucosal route
    • A61K2039/544Mucosal route to the airways
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/77Internalization into the cell
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20071Demonstrated in vivo effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value

Definitions

  • the present invention relates to a method for improving the pharmacokinetics of an antigen-binding molecule, a method for increasing the number of times an antigen-binding molecule binds to an antigen, an antigen-binding molecule with improved pharmacokinetics, and an antigen with an improved number of times an antigen-binding molecule binds to an antigen.
  • the present invention relates to a binding molecule and a production method thereof.
  • Non-patent Documents 1 and 2 various technologies that can be applied to second-generation antibody drugs have been developed, such as technologies that improve effector function, antigen binding ability, pharmacokinetics, stability, or reduce immunogenicity risk, etc. has been reported (Non-Patent Document 3). Since antibody drugs generally have a very high dose, it is considered that it is difficult to produce a subcutaneously administered preparation and that the production cost is high. As a method for reducing the dose of the antibody drug, a method for improving the pharmacokinetics of the antibody and a method for improving the affinity between the antibody and the antigen are conceivable.
  • Non-Patent Documents 4 and 5 As a method for improving the pharmacokinetics of an antibody, artificial amino acid substitution in the constant region has been reported (Non-Patent Documents 4 and 5). Affinity maturation technique (Non-patent Document 6) has been reported as a technique for enhancing antigen-binding ability and antigen-neutralizing ability. By introducing mutations into amino acids such as CDR regions of variable regions, binding activity to antigens is reported. Can be enhanced. By enhancing the antigen binding ability, it is possible to improve the biological activity of in vitro, or reduce the dose, and further improve the efficacy in in vivo (Non-patent Document 7).
  • the amount of antigen that can be neutralized per antibody molecule depends on the affinity, and it is possible to neutralize the antigen with a small amount of antibody by increasing the affinity, and strengthen the affinity of the antibody by various methods. Is possible. Furthermore, if it can be covalently bound to an antigen and the affinity can be made infinite, it is possible to neutralize one molecule of antigen (two antigens in the case of bivalent) with one molecule of antibody. However, the conventional methods limit the stoichiometric neutralization reaction of one molecule of antigen (two antigens in the case of bivalent) with one molecule of antibody, and the antigen can be completely removed with an antibody amount less than the antigen amount. It was impossible to neutralize.
  • Non-patent Document 9 there is a limit to the effect of increasing affinity (Non-patent Document 9).
  • a neutralizing antibody in order to maintain the neutralizing effect for a certain period of time, it is necessary to administer an amount of antibody equal to or greater than the amount of antigen produced in vivo during that period.
  • the affinity maturation technique alone has a limit in reducing the required antibody dose.
  • Non-Patent Document 8 As a method of neutralizing a plurality of antigens with one antibody, antigen inactivation by a catalytic antibody imparted with a catalytic function to the antibody can be mentioned. In the case of a protein antigen, it can be inactivated by hydrolyzing the peptide bond of the antigen, and this hydrolysis reaction can be neutralized (inactivated) repeatedly by the antibody catalyzing. It is considered that there is (Non-Patent Document 8).
  • the present invention has been made in view of such circumstances, and the object thereof is a method of binding an antigen-binding molecule to an antigen multiple times, a method of improving the pharmacokinetics of the antigen-binding molecule, and an antigen capable of binding to the antigen multiple times. It is to provide a binding molecule, an antigen binding molecule with improved pharmacokinetics, a pharmaceutical composition containing the antigen binding molecule, and a method for producing them.
  • the present inventors have earnestly studied a method for binding to an antigen of a polypeptide having an antigen-binding ability such as an antigen-binding molecule a plurality of times and a method for improving plasma half-life (half-life in blood) (improving pharmacokinetics). I did research. As a result, the present inventors have found that an antigen-binding molecule having a weak antigen-binding activity at a pH in early endosomes compared to an antigen-binding activity at a pH in plasma (blood) binds to the antigen multiple times, and plasma It was found that the medium half-life is long.
  • the present invention relates to a method in which an antigen-binding molecule binds to an antigen multiple times, a method to improve the pharmacokinetics of the antigen-binding molecule, an antigen-binding molecule that can bind to the antigen multiple times, an antigen-binding molecule with improved pharmacokinetics, and improved pharmacokinetics More specifically, for example, a method for producing an antigen-binding molecule, [1] An antigen-binding molecule having a value of KD (pH 5.8) / KD (pH 7.4), which is a ratio of KD at pH 5.8 to KD at a pH of 7.4, or 2 for an antigen, [2] The antigen-binding molecule according to [1], wherein the value of KD (pH 5.8) / KD (pH 7.4) is 10 or more, [3] The antigen-binding molecule according to [1], wherein the value of KD (pH 5.8) / KD (pH 7.4) is
  • a method of releasing it outside the cell [14] A method for increasing the antigen-dissolving ability of an antigen-binding molecule in plasma by making the antigen-binding activity at pH 5.8 of the antigen-binding molecule weaker than that at pH 7.4, [15] The value of KD (pH 5.8) / KD (pH 7.4), which is the ratio of KD at pH 5.8 to KD at the pH 7.4 to the antigen, is 2 or more [9] To [14] any one of the methods, [16] The method according to any one of [9] to [14], wherein the value of KD (pH 5.8) / KD (pH 7.4) is 10 or more.
  • a method for screening an antigen-binding molecule comprising the following steps: (a) obtaining an antigen-binding activity of the antigen-binding molecule at pH 6.7 to pH 10.0; (b) obtaining an antigen-binding activity of the antigen-binding molecule at pH 4.0 to pH 6.5; (c) selecting an antigen-binding molecule whose antigen-binding activity at pH 6.7 to pH 10.0 is higher than that at pH 4.0 to pH 6.5; [29] The screening method according to [28], wherein an antibody having an antigen binding activity at pH 6.7 to pH 10.0 that is at least twice that of the antigen binding activity at pH 4.0 to pH 6.5 is selected.
  • a method for screening an antigen-binding molecule comprising the following steps: (a) binding an antigen-binding molecule to an antigen under conditions of pH 6.7 to pH 10.0, (b) placing the antigen-binding molecule bound to the antigen of (a) under conditions of pH 4.0 to pH 6.5; (c) obtaining an antigen-binding molecule dissociated under pH 4.0 to pH 6.5 conditions; [31] a method for screening an antigen-binding molecule, wherein the binding activity at the first pH is higher than the binding activity at the second pH, comprising the following steps: (a) a step of binding an antigen-binding molecule to a column immobilized with an antigen under a first pH condition; (b) eluting antigen-binding molecules bound to the column under the first pH condition from the column under the second pH condition; (c) obtaining the eluted antigen-binding molecule, [32] A method for screening an antigen-binding molecule, wherein the binding
  • the antigen-binding molecule is an antigen-binding molecule in which at least one amino acid in the antigen-binding molecule is substituted with histidine, or at least one histidine is inserted.
  • Screening method [35] The screening method according to any one of [28] to [33], which aims to obtain an antigen-binding molecule excellent in plasma retention.
  • a method for producing an antigen-binding molecule comprising the following steps, (a) obtaining an antigen-binding activity of the antigen-binding molecule at pH 6.7 to pH 10.0; (b) obtaining an antigen-binding activity of the antigen-binding molecule at pH 4.0 to pH 6.5; (c) selecting an antigen-binding molecule whose antigen-binding activity at pH 6.7 to pH 10.0 is higher than that at pH 4.0 to pH 6.5; (d) obtaining a gene encoding the following steps, (a) obtaining an antigen-binding activity of the antigen-binding molecule at pH 6.7 to pH 10.0; (b) obtaining an antigen-binding activity of the antigen-binding molecule at pH 4.0 to pH 6.5; (c) selecting an antigen-binding molecule whose antigen-binding activity at pH 6.7 to pH 10.0 is higher than that at pH 4.0 to pH 6.5; (d) obtaining a gene encoding the
  • the present invention provides a method of repeatedly binding one molecule of an antigen binding molecule to a plurality of antigens.
  • the pharmacokinetics of the antigen-binding molecule can be improved, and an effect superior to that of a normal antigen-binding molecule can be exhibited in vivo.
  • 2 is a graph showing the biological neutralizing activity of a pH-dependent binding anti-IL-6 receptor antibody. It is a graph which shows the result of the Biacore sensorgram of the binding to the soluble IL-6 receptor at pH 7.4 of the pH-dependent binding anti-IL-6 receptor antibody.
  • the top is WT
  • the second from the top is H3pI / L73
  • the third from the top is H170 / L82
  • the bottom is CLH5 / L73.
  • the top is WT, the second from the top is H3pI / L73, the third from the top is H170 / L82, and the bottom is CLH5 / L73.
  • It is a graph which shows the result of the Biacore sensorgram of the binding (pH 7.4) and dissociation (pH 5.8) of the pH-dependent binding anti-IL-6 receptor antibody to the membrane IL-6 receptor.
  • the top is WT, the second from the top is H3pI / L73, the third from the top is H170 / L82, and the bottom is CLH5 / L73.
  • FIG. 3 is a Biacore sensorgram showing repeated binding of pH-dependent binding anti-IL-6 receptor antibody to SR344.
  • FIG. 3 is a graph showing changes in antibody plasma concentrations of WT, H3pI / L73-IgG1, Fv2-IgG1, and Fv4-IgG1 in human IL-6 receptor transgenic mice with pH-dependent binding anti-IL-6 receptor antibodies. It is a graph which shows the result of the Biacore sensorgram of the binding (pH 7.4) and dissociation (pH 5.8) of the pH-dependent binding anti-IL-6 receptor antibody to the membrane IL-6 receptor. From the top, WT, Fv4-IgG1, Fv4-IgG2, and Fv4-M58.
  • pH-dependent binding anti-IL-6 receptor antibody H3pI / L73-IgG1, Fv1-M71, Fv1-M73, Fv2-IgG1, Fv3-M73, Fv4-M73 0.5 mg / kg, high affinity Ab 1.0 mg
  • H3pI / L73-IgG1, Fv1-M71, Fv1-M73, Fv2-IgG1, Fv3-M73, Fv4-M73 0.5 mg / kg
  • High affinity Ab 1.0 mg It is a graph which shows the antibody plasma concentration transition when / kg administration. Shows the change in CRP concentration in H3pI / L73-IgG1, Fv1-M71, Fv1-M73, Fv2-IgG1, Fv3-M73, Fv4-M73 and high affinity Ab administration groups in cynomolgus monkeys with pH-dependent binding anti-IL-6 receptor antibody It is a graph.
  • Ab administration group in pH-dependent binding anti-IL-6 receptor antibody cynomolgus monkey 6 is a graph showing changes in receptor concentration. It is a figure which shows FR1, FR2, FR3, FR4 and CDR1, CDR2, CDR3 of heavy chain (VH1, VH2, VH3, VH4) and light chain (VL1, VL2, VL3).
  • An asterisk indicates a site where there is an amino acid variation in the aligned sequence.
  • the present invention provides a method for increasing the number of times an antigen-binding molecule binds to an antigen. More specifically, the present invention provides a method for increasing the number of times an antigen-binding molecule binds to an antigen by making the antigen-binding ability of the antigen-binding molecule at an acidic pH weaker than the antigen-binding ability at a neutral pH. Furthermore, the present invention provides a method for increasing the number of times an antigen-binding molecule binds to an antigen, characterized by substituting at least one amino acid of the antigen-binding molecule with histidine or inserting at least one histidine.
  • the present invention provides a method for increasing the number of times an antigen-binding molecule binds to an antigen, which comprises substitution, deletion, addition and / or insertion of an amino acid in an antibody constant region contained in the antigen-binding molecule.
  • the present invention also provides a method for increasing the number of antigens that can be bound by an antigen-binding molecule. More specifically, the present invention provides a method for increasing the number of antigens that can be bound by an antigen-binding molecule by making the antigen-binding ability of an antigen-binding molecule at acidic pH weaker than that at neutral pH. Furthermore, the present invention provides a method for increasing the number of antigens that can be bound by an antigen-binding molecule, characterized by substituting at least one amino acid of the antigen-binding molecule with histidine or inserting at least one histidine.
  • the present invention provides a method for increasing the number of antigens that can be bound by an antigen-binding molecule, comprising substituting, deleting, adding, and / or inserting amino acids in an antibody constant region contained in the antigen-binding molecule. .
  • the present invention also provides a method for dissociating an antigen bound to an antigen binding molecule outside the cell from the antigen binding molecule inside the cell. More specifically, antigen binding capacity of an antigen binding molecule at acidic pH is weaker than that at neutral pH, so that antigen bound to the antigen binding molecule outside the cell is dissociated from the antigen binding molecule inside the cell. Provide a method. Furthermore, the present invention relates to an antigen binding molecule that is bound to an antigen binding molecule outside the cell, wherein at least one amino acid of the antigen binding molecule is substituted with histidine or at least one histidine is inserted. A method of dissociation is provided.
  • the present invention provides an antigen-binding molecule for an antigen bound to an antigen-binding molecule outside the cell, characterized in that an amino acid in an antibody constant region contained in the antigen-binding molecule is substituted, deleted, added and / or inserted.
  • a method of dissociating from a molecule is provided.
  • the present invention also provides a method for releasing an antigen-binding molecule taken into a cell while bound to an antigen to the outside of the cell while not bound to the antigen. More specifically, the antigen-binding ability of an antigen-binding molecule at an acidic pH is weaker than that at a neutral pH, so that the antigen-binding molecule incorporated into the cell while bound to the antigen is bound to the antigen. Disclosed is a method for releasing it outside the cell. Furthermore, the present invention relates to an antigen-binding molecule incorporated into a cell in an antigen-bound state, characterized in that at least one amino acid of the antigen-binding molecule is substituted with histidine or at least one histidine is inserted.
  • the present invention provides an antigen-binding molecule incorporated into a cell in a state of being bound to an antigen characterized by substituting, deleting, adding and / or inserting an amino acid in an antibody constant region contained in the antigen-binding molecule. And a method for releasing it outside the cell in a state in which it is not bound to an antigen.
  • the present invention also provides a method for increasing the ability of antigen-binding molecules to eliminate antigens in plasma. More specifically, the present invention provides a method for increasing the antigen-dissolving ability of an antigen-binding molecule in plasma by making the antigen-binding ability of the antigen-binding molecule at acidic pH weaker than that at neutral pH. Furthermore, the present invention provides a method for increasing the ability of an antigen-binding molecule to eliminate antigens in plasma, which comprises replacing at least one amino acid of the antigen-binding molecule with histidine or inserting at least one histidine.
  • the present invention provides a method for increasing the ability of an antigen-binding molecule to eliminate an antigen in plasma, comprising substituting, deleting, adding and / or inserting an amino acid in an antibody constant region contained in the antigen-binding molecule. .
  • the present invention provides a method for improving the pharmacokinetics of an antigen-binding molecule. More specifically, a method for improving the pharmacokinetics of the antigen-binding molecule (longer plasma retention) by making the antigen-binding molecule antigen-binding ability at acidic pH weaker than that at neutral pH. I will provide a. Furthermore, the present invention provides a method for improving pharmacokinetics characterized in that at least one amino acid of an antigen-binding molecule is substituted with histidine or at least one histidine is inserted. Furthermore, the present invention provides a method for improving pharmacokinetics characterized by substituting, deleting, adding and / or inserting amino acids in an antibody constant region contained in an antigen-binding molecule.
  • the present invention provides a method for increasing the ability of antigen-binding molecules to eliminate antigens in plasma. More specifically, the present invention provides a method for increasing the antigen-dissolving ability of an antigen-binding molecule in plasma by making the antigen-binding ability of the antigen-binding molecule at an acidic pH weaker than the antigen-binding ability at a neutral pH. Furthermore, the present invention provides a method for increasing the ability of an antigen-binding molecule to eliminate antigens in plasma, which comprises replacing at least one amino acid of the antigen-binding molecule with histidine or inserting at least one histidine.
  • the present invention provides a method for increasing the ability of an antigen-binding molecule to eliminate an antigen in plasma, comprising substituting, deleting, adding and / or inserting an amino acid in an antibody constant region contained in the antigen-binding molecule. .
  • “improvement of pharmacokinetics”, “improvement of pharmacokinetics” or “excellent pharmacokinetics” means “improvement of plasma (blood) retention”, “improvement of plasma (blood) retention” And “excellent plasma (blood) retention”, and these terms are used interchangeably.
  • the antigen-binding ability at an acidic pH is weaker than the antigen-binding ability at a neutral pH.
  • the antigen-binding activity of an antigen-binding molecule at pH 4.0 to pH 6.5 is the same as that at pH 6.7 to pH 10.0. It means weaker than the antigen binding activity.
  • it means that the antigen-binding activity of the antigen-binding molecule at pH 5.5 to pH 6.5 is weaker than that at pH 7.0 to pH 8.0, and particularly preferably, the antigen-binding molecule has a pH of 5. This means that the antigen binding activity at 8 is weaker than the antigen binding activity at pH 7.4.
  • the acidic pH is usually pH 4.0 to pH 6.5, preferably pH 5.5 to pH 6.5, and particularly preferably pH 5.8.
  • the neutral pH is usually pH 6.7 to pH 10.0, preferably pH 7.0 to pH 8.0, and particularly preferably pH 7.4.
  • the expression “to make the antigen-binding ability of an antigen-binding molecule at an acidic pH weaker than the antigen-binding ability at a neutral pH” means that the antigen-binding ability of an antigen-binding molecule is neutral at the pH at an acidic pH. It can also be expressed as higher than Noh. That is, in the present invention, the difference between the antigen-binding ability at an acidic pH and the antigen-binding ability at a neutral pH of the antigen-binding molecule may be increased (for example, KD (pH5.8) / KD (pH7. 4) increase the value).
  • the antigen-binding ability at acidic pH may be lowered or the antigen-binding ability at neutral pH. May be high, or both.
  • Conditions other than pH at the time of measuring the antigen binding activity can be appropriately selected by those skilled in the art and are not particularly limited. For example, measurement is performed under conditions of MES buffer and 37 ° C. as described in Examples. It is possible.
  • the antigen-binding activity of the antigen-binding molecule can be measured by methods known to those skilled in the art. For example, it can be measured using Biacore (GE Healthcare) as described in the Examples. is there.
  • the antigen is a soluble antigen
  • an antigen it is possible to evaluate the ability to bind to a membrane antigen by flowing an antigen-binding molecule as an analyte through a chip on which the antigen is immobilized.
  • the difference between the antigen binding activity at acidic pH and the antigen binding activity at neutral pH is not particularly limited as long as the antigen binding activity at acidic pH is weaker than the antigen binding activity at neutral pH.
  • the value of KD (pH 5.8) / KD (pH 7.4) which is the ratio of KD at .8 to KD (Dissociationociconstant) at pH 7.4, is 2 or more, more preferably KD (pH 5 .8)
  • the value of KD (pH 7.4) is 10 or more, more preferably the value of KD (pH 5.8) / KD (pH 7.4) is 40 or more.
  • KD The upper limit of the value of KD (pH 5.8) / KD (pH 7.4) is not particularly limited, and may be any value such as 400, 1000, 10000, etc., as long as it can be produced by a person skilled in the art.
  • KD dissociation constant
  • the antigen is a soluble antigen
  • KD dissociation constant
  • apparent KD apparent dissociation constant
  • KD (dissociation constant) and apparent KD can be measured by methods known to those skilled in the art. For example, using Biacore (GE healthcare), Scatchard plot, FACS, etc. Is possible.
  • k d (Dissociation rate constant) which is a dissociation rate constant is used as another index indicating the difference between the antigen binding activity at acidic pH and the antigen binding activity at neutral pH. It is also possible.
  • k d dissociation rate constant
  • k d with k d and (dissociation rate constant) pH 7.4 at pH5.8 to antigen (dissociation rate constant)
  • the value of k d (pH 5.8) / k d (pH 7.4), which is a ratio of dissociation rate constants, is preferably 2 or more, more preferably 5 or more, and further preferably 10 or more.
  • k d (pH5.8) / k d (pH7.4) is not particularly limited, as far as possible made in the skill of the art knowledge, like 50, 100, 200, it may be any value.
  • k d dissociation rate constant
  • apparent k d Apparent dissociation rate constant: apparent Can be used.
  • k d dissociation rate constant
  • apparent k d apparent dissociation rate constant
  • the conditions other than the pH are the same.
  • the method for weakening the antigen binding activity at pH 5.8 of the antigen binding molecule compared to the antigen binding activity at pH 7.4 is not particularly limited, and any method may be used.
  • a method of making the antigen binding activity at pH 5.8 weaker than the antigen binding activity at pH 7.4 by substituting amino acids in the antigen binding molecule with histidine or inserting histidine into the antigen binding molecule.
  • a pH-dependent antigen-binding activity can be imparted to an antibody by substituting an amino acid in the antibody with histidine (FEBS Letter, 309 (1), 85-88, (1992)).
  • the position at which the histidine mutation (substitution) or insertion is introduced (performed) is not particularly limited, and the antigen-binding activity at pH 5.8 is weaker than the antigen-binding activity at pH 7.4 compared to before mutation or insertion (KD As long as (pH 5.8) / KD (pH 7.4) increases, any site is acceptable.
  • the antigen-binding molecule is an antibody
  • examples include an antibody variable region.
  • the number of histidine mutations or insertions to be introduced (performed) can be appropriately determined by those skilled in the art, and histidine may be substituted at only one position, or histidine may be inserted at only one position.
  • Two or more places may be replaced with histidine, or histidine may be inserted into two or more places.
  • mutations other than histidine mutations may be introduced simultaneously.
  • histidine mutation and histidine insertion may be performed simultaneously. Substitution to histidine or insertion of histidine may be performed at random by methods known to those skilled in the art, such as histidine scanning in which alanine of alanine scanning is replaced with histidine, or antigen binding molecule live in which histidine mutation or insertion is randomly introduced From the rally, an antigen-binding molecule having a larger value of KD (pH 5.8) / KD (pH 7.4) than before mutation may be selected.
  • the antigen-binding activity at pH 7.4 of the antigen-binding molecule after histidine substitution or insertion is not limited to histidine substitution or insertion. It is preferably equivalent to the antigen-binding activity at pH 7.4 of the previous antigen-binding molecule.
  • the antigen-binding activity at pH 7.4 of the antigen-binding molecule after substitution or insertion of histidine is equivalent to the antigen-binding activity at pH 7.4 of the antigen-binding molecule before substitution or insertion of histidine.
  • the subsequent antigen-binding molecule maintains 10% or more, preferably 50% or more, more preferably 80% or more, more preferably 90% or more of the antigen-binding activity of the antigen-binding molecule before histidine substitution or insertion.
  • the antigen-binding activity of the antigen-binding molecule is lowered by histidine substitution or insertion, the antigen-binding activity is reduced by substitution, deletion, addition and / or insertion of one or more amino acids in the antigen-binding molecule. It may be equivalent to the antigen binding activity before insertion.
  • the present invention also includes antigen-binding molecules whose binding activity is equivalent by substitution, deletion, addition and / or insertion of one or more amino acids after such histidine substitution or insertion.
  • the amino acid in the antigen-binding molecule is replaced with a non-natural amino acid or the amino acid in the antigen-binding molecule is replaced with an amino acid in the antigen-binding molecule.
  • a method of inserting an unnatural amino acid can be mentioned. It is known that unnatural amino acids can artificially control pKa (Angew. Chem. Int. Ed. 2005, 44, 34, Chem Soc Rev. 2004 Sep 10; 33 (7): 422-30 ., Amino Acids. 1999; 16 (3-4): 345-79.).
  • the present invention it is possible to use an unnatural amino acid instead of the above-mentioned histidine. Moreover, the above-described histidine substitution and / or insertion and non-natural amino acid substitution and / or insertion may be performed simultaneously.
  • the non-natural amino acid used in the present invention may be any non-natural amino acid, and non-natural amino acids known to those skilled in the art can be used.
  • the antigen-binding molecule is a substance containing an antibody constant region
  • an antibody contained in the antigen-binding molecule A method for modifying the constant region can be mentioned. Specific examples of such modification of the antibody constant region include, for example, a method of substituting the constant region described in Examples.
  • a plurality of constant region isotypes (IgG1, IgG2, IgG3, IgG4) are studied, and the antigen binding activity at pH 5.8 decreases (the dissociation rate at pH 5.8 is high).
  • a method of selecting an isotype Furthermore, by introducing an amino acid substitution into the amino acid sequence of the wild type isotype (wild type IgG1, IgG2, IgG3, IgG4 amino acid sequence), the antigen binding activity at pH 5.8 is reduced (the dissociation rate at pH 5.8 is increased). A method is mentioned.
  • the sequence of the hinge region of the antibody constant region varies greatly depending on the isotype (IgG1, IgG2, IgG3, IgG4), and the difference in the amino acid sequence of the hinge region greatly affects the antigen binding activity, so the appropriate isotype depends on the type of antigen or epitope.
  • the isotype that reduces the antigen binding activity at pH 5.8 (increases the dissociation rate at pH 5.8).
  • the hinge region is desirable as the amino acid substitution site in the amino acid sequence of the wild type isotype.
  • the value of KD (pH 5.8) / KD (pH 7.4) is usually 2 times or more, preferably 5 times or more, more preferably 10 times or more compared to the base antibody. Is preferred.
  • the pharmacokinetics is improved means that an antigen-binding molecule is administered to an animal such as a human, mouse, rat, monkey, rabbit, or dog until it disappears from plasma (for example, it is degraded intracellularly).
  • the time until the antigen-binding molecule cannot be returned to the plasma in a state where the antigen-binding molecule cannot be returned to the plasma is increased, and the time from the administration of the antigen-binding molecule to the disappearance from the plasma. It also includes an increase in the residence time in plasma in a state capable of binding to an antigen (for example, a state where an antigen-binding molecule is not bound to an antigen).
  • the antigen-binding molecule Even if an antigen-binding molecule is present in plasma, if the antigen is already bound to the antigen-binding molecule, the antigen-binding molecule cannot bind to a new antigen. Therefore, if the time during which the antigen-binding molecule is not bound to the antigen becomes longer, the time for binding to the new antigen becomes longer (the opportunity for binding to the new antigen increases), and the antigen binds to the antigen-binding molecule in vivo. Can be reduced (in other words, the time during which the antigen-binding molecule is bound to the antigen can be increased).
  • the ratio of antigen binding to an antigen-binding molecule relative to the antigen present in the living body such as plasma is usually After an antigen-binding molecule administration, it decreases after a certain time. However, if the time during which the antigen-binding molecule stays in a state capable of binding to the antigen becomes longer, the decrease can be suppressed (for example, the degree of decrease is reduced, etc.), and as a result, a certain period from the antibody administration. The proportion of the antigen bound to the antigen-binding molecule with respect to the antigen present in the living body after the lapse of time increases.
  • the “improvement of pharmacokinetics” of the present invention does not necessarily need to be extended (lengthened) until the antigen-binding molecule disappears after the antigen-binding molecule is administered. Even if there is no change in the time from the administration of the antigen-binding molecule to its disappearance, the antigen-binding molecule stays in the plasma in a state where it can bind to the antigen (for example, when the antigen-binding molecule is not bound to the antigen). When the time during which the antigen is bound is long, the time during which the antigen in the living body is not bound to the antigen-binding molecule is reduced (in other words, the time during which the antigen-binding molecule is bound to the antigen is lengthened).
  • “improvement of pharmacokinetics” of the present invention includes at least the following (1) to (4). (1) Extension of time from administration of an antigen-binding molecule to disappearance of the antigen-binding molecule from plasma. (2) Extension of the time that the antigen-binding molecule is present in plasma in a state capable of binding to the antigen after administration of the antigen-binding molecule.
  • the antigen is a soluble antigen present in plasma
  • the pharmacokinetics (disappearance rate from plasma) of the antigen-binding molecule is the same, the disappearance of the antigen bound to the antigen-binding molecule is rapid. May be. This reduces the pharmacokinetics of the antigen (accelerates its disappearance from the plasma), leading to an improvement in the pharmacokinetics of the antigen-binding molecule relative to the antigen, that is, the antigen-binding molecule becomes an antigen. This leads to an extension of the time present in the plasma in a bindable state.
  • the rate at which soluble antigen disappears from plasma after administration of the antigen-binding molecule (the disappearance of antigen-binding molecule in plasma). Increase).
  • whether one antigen-binding molecule is bound to a plurality of antigens can be determined by whether the pharmacokinetics of the antigen-binding molecule is improved when the antigen is a membrane antigen. Whether or not “pharmacokinetics have improved” can be determined as follows. For example, whether the time from the administration of the antigen-binding molecule to the disappearance of the antigen-binding molecule has been extended is determined by any of the parameters such as the plasma half-life of the antigen-binding molecule, the mean plasma residence time, and the plasma clearance. It can be judged by measuring (pharmacokinetics understanding through exercises (Nanzan Hall)).
  • an antigen-binding molecule when administered to mice, rats, monkeys, rabbits, dogs, humans, etc., the plasma half-life is increased or the average plasma residence time is increased, etc. It can be said that the dynamics have improved.
  • These parameters can be measured by methods known to those skilled in the art, and can be appropriately evaluated by, for example, noncompartmental analysis using the pharmacokinetic analysis software WinNonlin (Pharsight) according to the attached procedure.
  • whether the time in the plasma in which the antigen-binding molecule can be bound to the antigen between the administration and the disappearance of the antigen-bound molecule has been extended is determined by whether the concentration of the antigen-binding molecule that is not bound to the antigen is in plasma. Can be determined by measuring any of the parameters such as plasma half-life, mean plasma residence time, and plasma clearance of antigen-binding molecules not bound to the antigen. Measurement of the plasma concentration of antigen-binding molecules not bound to the antigen can be carried out by methods known to those skilled in the art, for example, as measured in Clin Pharmacol. 2008 Apr; 48 (4): 406-17. Yes.
  • the time during which the antigen in the living body is not bound to the antigen-binding molecule has decreased since the administration of the antigen-binding molecule (the time during which the antigen-binding molecule is bound to the antigen has become longer) Measure the plasma concentration of unbound antigen to which no antigen-binding molecule is bound, and the concentration of unbound antigen in plasma or the ratio of unbound antigen to the total amount of antigen is kept low. It is possible to make a judgment based on the period. Measurement of the concentration of unbound antigen in plasma or the ratio of the amount of antigen of unbound antigen to the total amount of antigen can be performed by methods known to those skilled in the art. For example, Pharm Res.
  • an antigen exhibits some function in vivo
  • whether the antigen is bound by an antigen-binding molecule (antagonist molecule) that neutralizes the function of the antigen is evaluated based on whether the function of the antigen is neutralized. It is also possible to do. Whether the function of the antigen is neutralized can be evaluated by measuring some in vivo marker that reflects the function of the antigen. Whether or not an antigen is bound by an antigen-binding molecule (agonist molecule) that activates the function of the antigen can be evaluated by measuring some in vivo marker that reflects the function of the antigen.
  • Measurements such as measurement of plasma concentration of unbound antigen, measurement of ratio of antigen amount of unbound antigen to total antigen amount, measurement of in vivo marker, etc. are not particularly limited, but antigen binding substance is administered. It is preferable to be performed after a certain period of time elapses. In the present invention, the time after a predetermined time has elapsed since the administration of the antigen-binding substance is not particularly limited, and can be determined by a person skilled in the art according to the nature of the administered antigen-binding substance. 1 day after administration of the binding substance, 3 days after administration of the antigen binding substance, 7 days after administration of the antigen binding substance, 14 days after administration of the antigen binding substance, antigen binding substance And the like can be mentioned after 28 days.
  • mice eg., normal mice, human antigen-expressing transgenic mice, human FcRn-expressing transgenic mice, etc.
  • monkeys eg, cynomolgus monkeys
  • the method for measuring plasma retention is not particularly limited, and can be performed, for example, according to the method described in Examples.
  • an antigen-binding molecule can bind to an antigen multiple times depends on whether the antigen bound to the antigen-binding molecule is dissociated under the same acidic conditions as in endosomes under the same neutral conditions as in plasma, and again under neutral conditions. It is possible to evaluate by measuring how much antigen can be bound. Specifically, using an instrument that evaluates antigen-binding molecule-antigen reaction such as Biacore, the antigen-binding molecule-antigen complex is made under neutral conditions and then exposed to acidic conditions for a certain period of time. It can be evaluated again by measuring whether the antigen-binding molecule can bind to the antigen under neutral conditions.
  • the antigen-binding amount of an antigen-binding molecule imparted with pH-dependent binding ability compared to the antigen-binding molecule before modification was doubled, the pH-dependent binding ability was imparted compared to the antigen-binding molecule before modification. It can be said that the antigen-binding molecule has doubled the number of bindings.
  • the antigen-binding molecule that is bound to the antigen is a membrane-type antigen and is eliminated from the plasma by being taken up via the antigen and degraded by the lysosome, it is more pH-dependent than the antigen-binding molecule before modification.
  • Antigens that have a pH-dependent binding ability compared to the antigen-binding molecule before modification by evaluating how much the pharmacokinetics of the antigen-binding molecule to which the binding ability has been given or how long the binding period to the antigen has improved. It is possible to evaluate whether the number of bindings of the binding molecule has increased. For example, if the binding period of an antigen-binding molecule that has been given pH-dependent binding ability compared to the antigen-binding molecule before modification is doubled, the pH-dependent binding compared to the antigen-binding molecule before modification It can be said that the antigen-binding molecule to which the ability is imparted has doubled the number of binding.
  • the plasma concentration of unbound antigen to which no antigen-binding molecule is bound is measured, and the plasma concentration of unbound antigen, or the ratio of the antigen amount of unbound antigen to the total antigen amount,
  • the time during which the retention time is kept low is doubled, it can be said that the number of times of binding of the antigen-binding molecule imparted with the pH-dependent binding ability is doubled compared to the antigen-binding molecule before modification.
  • the antigen when the antigen is a soluble antigen, if the antigen bound to the antigen-binding molecule is dissociated in the endosome under neutral conditions in plasma and the antigen-binding molecule returns to plasma, the antigen-binding molecule is again in plasma. Since it can bind to an antigen under neutral conditions, an antigen-binding molecule that has the property of dissociating the antigen under acidic conditions in the endosome can bind to the antigen multiple times.
  • the rate of disappearance of the antigen from the plasma increases. That is, it is possible to determine whether or not an antigen-binding molecule can bind to an antigen a plurality of times using the rate at which the antigen disappears from plasma as an index.
  • the rate of disappearance of antigen from plasma can be measured, for example, by administering an antigen (for example, a membrane antigen) and an antigen-binding molecule in vivo, and measuring the concentration of the antigen in plasma after administration. is there.
  • an antigen for example, a membrane antigen
  • the rate of disappearance of the antigen from the plasma increases, the plasma antigen concentration decreases.
  • an index it is also possible to determine whether an antigen-binding molecule can bind to an antigen multiple times.
  • “increasing the number of times an antigen-binding molecule binds to an antigen” means that when the antigen-binding molecule is administered to humans, mice, monkeys, etc., the antigen-binding molecule binds to the antigen and is taken into the cell. This means that the number of processes is increased once, and this process is increased.
  • the antigen-binding molecule When an antigen-binding molecule is taken into a cell, the antigen-binding molecule may be taken in a state in which one antigen is bound, or may be taken in a state in which two or more antigens are bound.
  • the number of times that an antigen-binding molecule binds to an antigen is increased means that it is not necessary to increase the number of antigen-binding molecules of all antigen-binding molecules, for example, among the antigen-binding molecules contained in the antigen-binding molecule composition.
  • the ratio of antigen-binding molecules that bind to an antigen two or more times may increase, or the average number of times of binding of antigen-binding molecules contained in the antigen-binding molecule composition may increase.
  • the present invention it is preferable to increase the number of antigen-binding molecules bound to the antigen when the antigen-binding molecule is administered to a human.
  • measurement results in mice eg, antigen-expressing transgenic mice, human FcRn-expressing transgenic mice, etc.
  • monkeys eg, cynomolgus monkeys
  • the antigen-binding molecule preferably binds to the antigen two or more times, for example, at least 10% or more, preferably 30% or more, more preferably 50% of the antigen-binding molecule contained in the antigen-binding molecule composition. As described above, it is preferable that 80% or more (eg, 90% or more, 95% or more, etc.) of antigen-binding molecules bind to the antigen twice or more.
  • “increasing the number of antigens to which an antigen-binding molecule can bind” refers to the period from when an antigen-binding molecule is administered to animals such as humans, mice, monkeys, etc. until it is degraded by intracellular lysosomes. This means increasing the number of antigens that can be bound by an antigen-binding molecule.
  • an antibody such as IgG has two binding sites, one antibody binds to two antigens at the maximum, and the antibody bound to the antigen is taken into the cell and decomposed together with the antigen in the lysosome.
  • antibodies such as IgG are capable of binding to up to two antigens.
  • Antigen-binding molecules such as antibodies incorporated into cells by making the antigen-binding activity at the pH in endosomes of the antigen-binding molecules such as antibodies weaker than the antigen-binding activity at the pH in plasma by the method of the present invention Can dissociate the antigen in the cell and be released to the outside of the cell again to bind to the antigen.
  • the method of the present invention it is possible to bind to a larger number of antigens than the number of antigen binding sites of the antigen binding molecule.
  • the antibody is a neutralizing antibody
  • “increasing the number of antigens that can be bound by an antigen-binding molecule” can be said to increase the number of antigens that can be neutralized by an antigen-binding molecule. Therefore, when the antibody is a neutralizing antibody, “binding” can be replaced with “neutralization”.
  • “increasing the number of antigens that can be bound by an antigen-binding molecule” does not require an increase in the number of antigens that can be bound by all antigen-binding molecules.
  • antigens contained in an antigen-binding molecule composition The average number of antigens that can be bound by the binding molecule may be increased, or the ratio of antigen binding molecules that can bind to an antigen that is larger than the number of antigen binding sites of the antigen binding molecule may be increased.
  • the antigen-binding molecule when the antigen-binding molecule is administered to a human, it is preferable that the number of antigens that can be bound by the antigen-binding molecule is increased.
  • the number of antigens that can be bound in humans based on the measurement results in mice (eg, antigen-expressing transgenic mice, human FcRn-expressing transgenic mice, etc.) and monkeys (eg, cynomolgus monkeys) You may expect.
  • the antibody is a neutralizing antibody
  • the number of times that the antigen-binding molecule binds to the antigen is considered to correlate with the number of antigens that can be neutralized by the antigen-binding molecule.
  • Measurement of the number of antigens can be performed in the same manner as the above-described measurement of the number of times of binding of an antigen-binding molecule to an antigen.
  • the present invention also provides a method for binding an antigen-binding molecule to an antigen two or more times in the body by administering an antigen-binding molecule whose antigen-binding activity at acidic pH is lower than that at neutral pH.
  • the present invention also provides the antigen-binding molecule having neutralizing activity by administering an antigen-binding molecule whose antigen-binding activity at acidic pH is lower than that at neutral pH. It relates to a method of neutralizing a greater number of antigens. Preferably, the present invention relates to a method for neutralizing three or more antigens, preferably four or more antigens, by administering IgG whose antigen binding activity at acidic pH is lower than that at neutral pH.
  • the present invention provides a method for dissociating an antigen bound to an antigen binding molecule outside the cell from the antigen binding molecule in the cell by making the antigen binding ability of the antigen binding molecule at acidic pH weaker than that at neutral pH.
  • the site where the antigen dissociates from the antigen-binding molecule may be any site as long as it is intracellular, but is preferably in the early endosome.
  • an antigen bound to an antigen-binding molecule outside the cell is dissociated from the antigen-binding molecule in the cell means that all the antigens bound to the antigen-binding molecule and taken into the cell are bound to the antigen in the cell.
  • the present invention promotes the binding of FcRn to an antigen-binding molecule that is not bound to an antigen in a cell by making the antigen-binding ability of the antigen-binding molecule at acidic pH weaker than that at neutral pH.
  • FcRn binds to an antigen-binding molecule in an endosome, but when the antigen-binding molecule is bound to a membrane-type antigen, it is considered impossible to bind to FcRn. Is a membrane-type antigen, the antigen-binding ability of the antigen-binding molecule at the endosomal pH (acidic pH) is made weaker than the antigen-binding ability at the pH (neutral pH) in plasma.
  • Examples thereof include a method of promoting dissociation of an antigen-binding molecule from an antigen and promoting binding between the antigen-binding molecule and FcRn.
  • the antigen is a soluble antigen
  • the antigen-binding molecule can bind to FcRn regardless of whether or not the antigen is bound, but the antigen-binding ability of the antigen-binding molecule at the endosomal pH (acidic pH) is increased in plasma.
  • an antigen-binding molecule that is not bound to the antigen can be returned to the plasma by FcRn, it can bind to the antigen again. By repeating the above, the antigen-binding molecule can bind to the antigen multiple times.
  • “to promote the binding of an antigen-binding molecule and FcRn in a cell” does not require that all antigen-binding molecules bind to FcRn, and does not bind to an antigen that binds to FcRn in the cell.
  • the ratio of the antigen-binding molecule only needs to be higher than before the antigen-binding ability at the pH in the endosome of the antigen-binding molecule is lowered at the pH in plasma.
  • a preferable antigen-binding molecule in the method for promoting the binding between an antigen-binding molecule and FcRn in the cell of the present invention include an antigen-binding molecule that binds to a membrane-type antigen (membrane antigen) such as a membrane protein. it can.
  • Other preferred antigen-binding molecules include antigen-binding molecules that bind to soluble antigens such as soluble proteins.
  • the method for promoting the binding between the antigen-binding molecule and FcRn in the cell can be said to be a method for enhancing the binding activity of the antigen-binding molecule with FcRn in the cell (for example, in endosome).
  • the present invention binds an antigen-binding molecule taken up into a cell in a bound state with an antigen by making the antigen-binding ability of the antigen-binding molecule at an acidic pH weaker than that at a neutral pH. It is related with the method of making it discharge
  • “to release an antigen-binding molecule taken in a cell in a state bound to an antigen to the outside of the cell in a state not bound to the antigen” is taken into the cell in a state bound to the antigen.
  • the antigen-binding molecules it is not necessary for all the antigen-binding molecules to be released to the outside of the cell in a state where they are not bound to the antigen, and the ratio of the antigen-binding molecules released to the outside of the cell binds the antigen-binding ability at the acidic pH of the antigen-binding molecule to a neutral pH. What is necessary is just to be higher than before it makes it lower than the antigen binding ability.
  • the method of releasing an antigen-binding molecule taken into a cell in a state bound to an antigen to the outside of the cell in a state not bound to the antigen is to bind to the antigen when bound to the antigen and taken into the cell. It can also be said that the antigen-binding molecule is imparted with the property of being easily released outside the cell.
  • the present invention relates to a method for increasing the antigen-dissolving ability of an antigen-binding molecule in plasma by making the antigen-binding ability of the antigen-binding molecule at acidic pH weaker than that at neutral pH.
  • plasma antigen-eliminating ability refers to the ability of an antigen present in plasma to disappear from plasma when an antigen-binding molecule is administered in vivo or secreted by the living body.
  • the antigen-dissolving ability of the antigen-binding molecule increases in plasma means that the rate at which the antigen disappears from the plasma when the antigen-binding molecule is administered in vivo is the acidity of the antigen-binding molecule. It may be faster than before the antigen binding ability at pH is lower than that at neutral pH. Whether or not the antigen-dissolving ability of the antigen-binding molecule in the plasma has increased is determined, for example, by administering the soluble antigen and the antigen-binding molecule in vivo and measuring the plasma concentration of the soluble antigen after administration. It is possible to judge.
  • the concentration of soluble antigen and soluble antigen in plasma after administration of antigen-binding molecule is reduced It can be determined that the antigen-dissipating ability of the antigen-binding molecule in plasma has increased.
  • the present invention relates to a method for improving the pharmacokinetics of an antigen-binding molecule by substituting at least one amino acid of the antigen-binding molecule with histidine or an unnatural amino acid, or inserting a histidine or an unnatural amino acid.
  • the present invention also provides a method for increasing the number of times an antigen-binding molecule binds to an antigen by substituting at least one amino acid of the antigen-binding molecule with histidine or a non-natural amino acid, or inserting a histidine or a non-natural amino acid. .
  • the present invention relates to a method for increasing the number of antigens to which an antigen-binding molecule can bind by substituting at least one amino acid of the antigen-binding molecule with histidine or a non-natural amino acid, or inserting a histidine or a non-natural amino acid.
  • the present invention relates to an antigen that binds to an antigen-binding molecule outside the cell by substituting at least one amino acid of the antigen-binding molecule with histidine or an unnatural amino acid, or by inserting histidine or an unnatural amino acid.
  • a method of dissociating from a binding molecule is provided.
  • the present invention relates to an antigen-binding molecule that is incorporated into a cell in a state of being bound to an antigen by substituting at least one amino acid of the antigen-binding molecule with histidine or an unnatural amino acid, or by inserting histidine or an unnatural amino acid. Is released outside the cell in a state in which it is not bound to an antigen.
  • the present invention provides a method for increasing the ability of an antigen-binding molecule to eliminate an antigen in plasma by substituting at least one amino acid of the antigen-binding molecule with histidine or a non-natural amino acid, or inserting a histidine or a non-natural amino acid. To do.
  • the position at which the histidine or unnatural amino acid mutation (substitution, insertion, etc.) is introduced is not particularly limited, and any site may be substituted with histidine or an unnatural amino acid, or histidine or an unnatural amino acid is inserted at any site. May be.
  • Preferable examples of the site at which histidine or an unnatural amino acid is substituted or histidine or an unnatural amino acid is inserted include a region that affects the antigen-binding ability of an antigen-binding molecule.
  • the antigen-binding molecule is an antibody
  • examples include an antibody variable region and CDR.
  • the number of histidine or unnatural amino acid mutations introduced is not particularly limited, and only one position may be replaced with histidine or an unnatural amino acid, or histidine or an unnatural amino acid may be inserted only at one position. Alternatively, two or more sites may be substituted with histidine or an unnatural amino acid, or histidine or an unnatural amino acid may be inserted at multiple sites. In addition to substitution or insertion into histidine or an unnatural amino acid, deletion, addition, insertion and / or substitution of other amino acids may be performed simultaneously.
  • the CDR sequence of the antibody or the sequence that determines the structure of the CDR is considered as a modified place.
  • the amino acid positions are indicated by Kabat numbering (Kabat EA etal. 1991.Sequences of Proteins of Immunological Interest.NIH).
  • Heavy chain H27, H31, H32, H33, H35, H50, H58, H59, H61, H62, H63, H64, H65, H99, H100b, H102
  • Light chain L24, L27, L28, L32, L53, L54, L56, L90, L92, L94
  • H32, H61, L53, L90, and L94 are considered to be highly universal alterations.
  • the following sites can be mentioned as preferable modified sites when the antigen is an IL-6 receptor (for example, human IL-6 receptor).
  • Heavy chain H27, H31, H32, H35, H50, H58, H61, H62, H63, H64, H65, H100b, H102
  • Light chain L24, L27, L28, L32, L53, L56, L90, L92, L94
  • preferable combinations when a plurality of positions are combined and substituted with histidine or an unnatural amino acid include, for example, combinations of H27, H31, and H35, combinations of H27, H31, H32, H35, H58, H62, and H102, A combination of L32 and L53, a combination of L28, L32, and L53 can be exemplified.
  • preferable combinations of heavy and light chain substitution sites include combinations of H27, H31, L32, and L53.
  • the following sites can be exemplified as preferable modified sites when the antigen is IL-6 (for example, human IL-6).
  • Heavy chain H32, H59, H61, H99
  • Light chain L53, L54, L90, L94
  • H33 can be mentioned as a preferred modification site when the antigen is an IL-31 receptor (for example, human IL-31 receptor).
  • These sites may be substituted with histidine or an unnatural amino acid at only one site, or a plurality of sites may be substituted with histidine or an unnatural amino acid.
  • the method of the present invention can be applied to any antigen-binding molecule that does not depend on the type of target antigen.
  • the antigen-binding molecule is not particularly limited as long as it has a specific binding activity to the target antigen.
  • Preferred examples of the antigen-binding molecule include a substance having an antigen-binding region of an antibody. Can be mentioned.
  • Examples of the antigen-binding region of an antibody include CDR and variable region.
  • the antigen-binding region of the antibody is a CDR, it may contain all six CDRs contained in the full-length antibody, or may contain one or more CDRs.
  • the included CDR may have undergone amino acid deletion, substitution, addition and / or insertion, or may be a part of the CDR.
  • the present invention modifies the antibody constant region contained in the antigen-binding molecule (amino acid substitution, deletion, addition and / or insertion, etc.)
  • the present invention relates to a method for improving the pharmacokinetics.
  • the present invention modifies the antibody constant region contained in the antigen-binding molecule (amino acid substitution, deletion, addition and / or insertion, etc.) A method for increasing the number of times of binding to an antigen is provided.
  • an antibody binding region includes an antibody constant region
  • the present invention modifies the antibody constant region included in the antigen binding molecule (amino acid substitution, deletion, addition and / or insertion, etc.) Relates to a method for increasing the number of antigens that can be bound.
  • the present invention modifies the antibody constant region contained in the antigen-binding molecule (amino acid substitution, deletion, addition and / or insertion, etc.)
  • the present invention relates to a method for dissociating an antigen bound to an antigen-binding molecule from the antigen-binding molecule in a cell.
  • an antibody binding region includes an antibody constant region
  • the present invention binds to the antigen by modifying the antibody constant region included in the antigen binding molecule (such as amino acid substitution, deletion, addition and / or insertion).
  • the present invention relates to a method for releasing an antigen-binding molecule taken into a cell in a state in which the antigen-binding molecule is not bound to an antigen.
  • the present invention modifies the antibody constant region contained in the antigen-binding molecule (amino acid substitution, deletion, addition and / or insertion, etc.)
  • the present invention relates to a method for increasing the ability to eliminate antigens in plasma.
  • an antigen-binding substance containing an FcRn binding region can be mentioned.
  • An antigen-binding substance containing an FcRn-binding region can be taken back into the plasma again after being taken into cells by the FcRn salvage pathway.
  • the FcRn binding region is preferably a region that directly binds to FcRn.
  • Preferred examples of the FcRn binding region include an antibody Fc region.
  • the FcRn binding region in the present invention May be a region that binds to such a polypeptide capable of binding to FcRn.
  • the antigen that is recognized by an antigen-binding molecule such as an antibody targeted by the method of the present invention is not particularly limited, and an antibody that recognizes any antigen may be targeted.
  • antibodies that improve pharmacokinetics by the method of the present invention include antibodies that recognize membrane antigens such as receptor proteins (membrane-bound receptors, soluble receptors) and cell surface markers, cytokines, etc. Examples thereof include antibodies that recognize soluble antigens.
  • preferred examples of membrane antigens include membrane proteins.
  • examples of soluble antigens include soluble proteins.
  • antigens recognized by antibodies that improve pharmacokinetics by the method of the present invention include, for example, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL- 7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-15, IL-31, IL-23, IL-2 receptor, IL-6 receptor, OSM receptor, gp130, IL-5 receptor, CD40, CD4, Fas, osteopontin, CRTH2, CD26, PDGF-D, CD20, monocyte chemotactic factor, CD23, TNF- ⁇ , HMGB-1, ⁇ 4 integrin, ICAM-1, Examples include CCR2, CD11a, CD3, IFN ⁇ , BLyS, HLA-DR, TGF- ⁇ , CD52, and IL-31 receptor.
  • a particularly preferred antigen is IL-6 receptor.
  • antigen-binding molecule targeted by the method of the present invention examples include an antigen-binding molecule having antagonist activity (antagonist antigen-binding molecule) and an antigen-binding molecule having agonist activity (agonist antigen-binding molecule).
  • Preferred embodiments include antagonist antigen-binding molecules, particularly antagonist antigen-binding molecules that recognize soluble antigens such as membrane antigens such as receptors and cytokines.
  • an antagonist antigen-binding molecule that recognizes a receptor is an antigen-binding molecule that binds to the receptor, inhibits binding between the receptor and its ligand, and inhibits signal transduction through the receptor.
  • the target antigen-binding molecule is not particularly limited, and any antigen-binding molecule may be used.
  • the antigen-binding molecule used in the present invention preferably has an antigen-binding activity (antigen-binding region) and an FcRn-binding region.
  • an antigen-binding molecule including a binding region with human FcRn is particularly preferable.
  • antigen-binding molecules having antigen-binding activity and FcRn-binding regions include antibodies.
  • a preferred example of the antibody of the present invention is an IgG antibody.
  • IgG antibody When an IgG antibody is used as an antibody, the type thereof is not limited, and it is possible to use IgG of an isotype (subclass) such as IgG1, IgG2, IgG3, IgG4.
  • amino acid mutations may be introduced into the constant region of the isotype IgG constant regions as in M73. Amino acid mutations introduced include, for example, increased or decreased binding to Fc ⁇ receptor (Proc Natl Acad Sci U S A. 2006 Mar 14; 103 (11): 4005-10.), Increased binding to FcRn Alternatively, it can be reduced (J Biol Chem. 2001 Mar 2; 276 (9): 6591-604), but is not limited thereto. It is also possible to change pH-dependent binding by selecting an appropriate constant region such as IgG2.
  • the antibody may be an antibody derived from any animal such as a mouse antibody, a human antibody, a rat antibody, a rabbit antibody, a goat antibody, or a camel antibody.
  • a modified antibody having a substituted amino acid sequence such as a chimeric antibody, particularly a humanized antibody may be used.
  • it may be a bispecific antibody, a modified antibody obtained by binding various molecules, a polypeptide containing an antibody fragment, and the like.
  • a “chimeric antibody” is an antibody produced by combining sequences derived from different animals. Specific examples of the chimeric antibody include an antibody consisting of a mouse antibody heavy chain and light chain variable (V) region and a human antibody heavy chain and light chain constant (C) region.
  • V mouse antibody heavy chain and light chain variable
  • C human antibody heavy chain and light chain constant
  • Humanized antibody refers to an antibody derived from a mammal other than a human, also referred to as a reshaped human antibody, such as a complementarity determination region (CDR) of a mouse antibody to the CDR of a human antibody. It is transplanted.
  • CDR complementarity determination region
  • Methods for identifying CDRs are known (Kabat et al., Sequence of Proteins of Immunological Interest (1987), National Institute of Health, Bethesda, Md .; Chothia et al., Nature (1989) 342: 877) .
  • general gene recombination techniques are also known (see European Patent Application Publication No. EP-125023 and WO96 / 02576).
  • Bispecific antibody refers to an antibody having variable regions that recognize different epitopes in the same antibody molecule.
  • the bispecific antibody may be an antibody that recognizes two or more different antigens, or may be an antibody that recognizes two or more different epitopes on the same antigen.
  • polypeptides containing antibody fragments include Fab fragments, F (ab ') 2 fragments, scFv (NatNBiotechnol. 2005 Sep; 23 (9): 1126-36.) Domain antibody (dAb) (WO2004 / 058821, WO2003 / 002609), scFv-Fc (WO2005037989), dAb-Fc, Fc fusion protein and the like.
  • dAb Domain antibody
  • a molecule containing an Fc region has a binding activity to FcRn, and is therefore suitable for using the method found in the present invention.
  • the antigen-binding molecule to which the present invention can be applied may be an antibody-like molecule.
  • Antibody-like molecules are molecules that function by binding to target molecules (Current Opinion in Biotechnology 2006, 17: 653-658, Current Opinion in Biotechnology 2007, 18: 1-10, Current Opinion in Structural Biology 1997, 7: 463-469, Protein Science 2006, 15: 14-27), for example, DARPins (WO2002 / 020565), Affibody (WO1995 / 001937), Avimer (WO2004 / 044011, WO2005 / 040229), Adnectin ( WO2002 / 032925) and the like. Even these antibody-like molecules can bind to a plurality of target molecules with one molecule if they can bind to the target molecule in a pH-dependent manner.
  • the antigen-binding molecule may be a receptor protein that binds to a target and a receptor Fc fusion protein, such as a TNFR-Fc fusion protein, an IL1R-Fc fusion protein, a VEGFR-Fc fusion protein, a CTLA4-Fc fusion protein, etc. Nat Med. 2003 Jan; 9 (1): 47-52, BioDrugs. 2006; 20 (3): 151-60.). Even these receptor proteins and receptor Fc fusion proteins can bind to a plurality of target molecules with a single molecule if they can bind to the target molecule in a pH-dependent manner.
  • a receptor Fc fusion protein such as a TNFR-Fc fusion protein, an IL1R-Fc fusion protein, a VEGFR-Fc fusion protein, a CTLA4-Fc fusion protein, etc. Nat Med. 2003 Jan; 9 (1): 47-52, BioDrugs. 2006; 20 (3): 151-60.
  • the antigen-binding molecule may also be an artificial ligand protein or an artificial ligand fusion protein that binds to a target but has a neutralizing effect.
  • an artificial ligand protein or an artificial ligand fusion protein that binds to a target but has a neutralizing effect.
  • mutant IL-6 EMBO J. 1994 Dec 15; 13 (24): 5863 -70.
  • Etc Even these artificial ligand proteins and artificial ligand fusion proteins can bind to a plurality of target molecules with a single molecule if they can bind to the target molecule in a pH-dependent manner.
  • sugar chain of the antibody of the present invention may be modified.
  • antibodies with modified sugar chains include, for example, antibodies modified with glycosylation (WO99 / 54342, etc.), antibodies lacking fucose added to sugar chains (WO00 / 61739, WO02 / 31140, WO2006 / 067847). , WO2006 / 067913), and antibodies having a sugar chain having bisecting GlcNAc (WO02 / 79255).
  • antigen binding ability at acidic pH is weaker than antigen binding ability at neutral pH, improvement of pharmacokinetics, and multiple antigens
  • antigen binding ability at neutral pH is weaker than antigen binding ability at neutral pH
  • improvement of pharmacokinetics, and multiple antigens The relationship with the connection to can be explained as follows.
  • the antibody when the antibody is an antibody that binds to a membrane antigen, the antibody administered in vivo binds to the antigen, and then the antibody is taken into the endosome in the cell by internalization together with the antigen while bound to the antigen. Thereafter, the antibody is transferred to the lysosome while bound to the antigen, and the antibody is degraded by the lysosome together with the antigen. Loss from plasma through internalization is called antigen-dependent loss and has been reported for many antibody molecules (Drug Discov Today. 2006 Jan; 11 (1-2): 81-8) .
  • one molecule of an IgG antibody When one molecule of an IgG antibody binds to an antigen bivalently, it is internalized in a state in which one molecule of antibody binds to two molecules of antigen, and is directly degraded by lysosomes. Therefore, in the case of normal antibodies, one molecule of IgG antibody cannot bind to three or more molecules of antigen. For example, in the case of a single molecule IgG antibody having neutralizing activity, it is not possible to neutralize three or more antigens.
  • IgG molecules taken into endosomes by pinocytosis bind to FcRn expressed in endosomes under acidic conditions in endosomes.
  • IgG molecules that could not bind to FcRn travel to lysosomes where they are degraded, but IgG molecules bound to FcRn migrate to the cell surface and dissociate from FcRn under neutral conditions in plasma, and then return to plasma again. .
  • the antibody administered in vivo binds to the antigen, and then the antibody is taken into the cell while bound to the antigen.
  • Most of the antibodies taken into the cells are released to the outside by FcRn, but are released outside the cells while bound to the antigen, and thus cannot be bound to the antigen again. Therefore, in the same way as an antibody that binds to a membrane antigen, in the case of a normal antibody, one molecule of IgG antibody cannot bind to three or more molecules of antigen.
  • the present inventors show that when an antibody bound to an antigen such as a membrane antigen is taken into an intracellular endosome by internalization, the antibody that remains bound to the antigen moves to a lysosome and is degraded. It was considered that the IgG antibody in which the antigen was dissociated in the endosome can bind to FcRn expressed in the endosome. In other words, an antibody that binds strongly to an antigen in plasma and weakly binds to an antigen in endosomes is incorporated into the endosome in the cell by internalization while binding to the antigen in plasma and forming a complex with the antigen.
  • an antigen such as a membrane antigen
  • the present inventors have focused on the fact that the pH in plasma is different from the pH in endosomes.
  • One antibody is one that binds strongly to an antigen under pH conditions in plasma and weakly binds to an antigen under pH conditions in endosomes. It has been found that molecules can bind to a plurality of antigens and have excellent plasma retention.
  • Endosomes are membrane vesicles that control the metabolism of macromolecules in the process from the eukaryotic cell to the lysosome by forming a network in the cytoplasm. It has been reported that the pH in endosomes is generally acidic from pH 5.5 to pH 6.0 (Nat Rev Mol Cell Biol. 2004 Feb; 5 (2): 121-32.) It is known that the pH of is almost neutral (usually pH 7.4).
  • antigen-binding molecules that have weaker antigen-binding activity at acidic pH than antigen-binding activity at neutral pH bind to the antigen in neutral pH plasma, and are taken up into cells before becoming acidic in endosomes at acidic pH. Dissociates from antigen. The antigen-binding molecule dissociated from the antigen binds to FcRn, moves to the cell surface, returns to the plasma again without being bound to the antigen, and can bind to the antigen multiple times, resulting in improved pharmacokinetics. .
  • the present invention provides an antigen-binding molecule whose antigen-binding activity at pH 4.0 to pH 6.5 is lower than that at pH 6.7 to pH 10.0, preferably antigen-binding at pH 5.0 to pH 6.0. It provides an antigen binding molecule whose activity is lower than the antigen binding activity at pH 7.0-8.0.
  • antigen binding activity at pH 5.8 is pH 7.4.
  • An antigen-binding molecule having a lower antigen-binding activity can be mentioned.
  • An antigen-binding molecule whose antigen-binding activity at pH 5.8 is lower than that at pH 7.4 is an antigen-binding molecule whose antigen-binding activity at pH 7.4 is higher than that at pH 5.8 It can also be said.
  • An antigen-binding molecule whose antigen-binding activity at pH 5.8 of the present invention is lower than that at pH 7.4 is as long as the antigen-binding activity at pH 5.8 is lower than that at pH 7.4.
  • the difference is not limited, and it is sufficient that the antigen binding activity at pH 5.8 is low.
  • the antigen-binding activity at pH 5.8 of the present invention is lower than the antigen-binding activity at pH 7.4.
  • the antigen-binding activity at pH 7.4 is at least twice the antigen-binding activity at pH 5.8.
  • an antigen-binding molecule having an antigen-binding activity at pH 7.4 that is 10 times or more of the antigen-binding activity at pH 5.8 can be cited as a more preferred embodiment.
  • KD at pH 5.8 of the present invention is lower than the antigen-binding activity at pH 7.4, KD at pH 5.8 and pH at pH 7.4 for the antigen
  • the upper limit of the value of KD (pH 5.8) / KD (pH 7.4) is not particularly limited, and may be any value such as 400, 1000, 10000, etc., as long as it can be produced by a person skilled in the art.
  • k at k d and pH7.4 at pH5.8 to antigen
  • the upper limit of the value of K d (pH 5.8) / k d (pH 7.4) is not particularly limited, and may be any value such as 50, 100, 200, etc. as long as it can be produced by those skilled in the art.
  • Conditions other than pH at the time of measuring the antigen binding activity can be appropriately selected by those skilled in the art and are not particularly limited. For example, measurement is performed under conditions of MES buffer and 37 ° C. as described in Examples. It is possible.
  • the antigen-binding activity of an antigen-binding molecule can be measured by methods known to those skilled in the art. For example, it can be measured using Biacore T100 (GE Healthcare) as described in the Examples. It is.
  • Antigen-binding molecules that bind weakly to antigens at such acidic pH are thought to easily dissociate from antigens under acidic conditions in endosomes, and are internalized into cells and then released to the outside by binding to FcRn. It is considered easy.
  • the antigen-binding molecule released outside the cell without being degraded inside the cell can bind to the antigen again.
  • an antigen-binding molecule that easily dissociates from the antigen under acidic conditions in the endosome can bind to the antigen multiple times and neutralize the antigen. Is possible.
  • an antigen-binding molecule whose antigen-binding activity at pH 4.0 to pH 6.5 is lower than that at pH 6.7 to pH 10.0 is an antigen-binding molecule excellent in plasma retention.
  • the antigen-binding molecule whose antigen-binding activity at pH 5.8 is lower than that at pH 7.4, at least one of the amino acids in the antigen-binding molecule is substituted with histidine or an unnatural amino acid, or at least Mention may be made of antigen binding molecules into which one histidine or unnatural amino acid has been inserted.
  • the position at which the histidine or unnatural amino acid mutation is introduced is not particularly limited, and the antigen binding activity at pH 5.8 is weaker than the antigen binding activity at pH 7.4 (KD (pH 5.8) / KD).
  • any site may be used.
  • the antigen-binding molecule is an antibody
  • examples include an antibody variable region and CDR.
  • the number of amino acids to be substituted with histidine or an unnatural amino acid, or the number of amino acids to be inserted can be appropriately determined by those skilled in the art, and one amino acid may be substituted with histidine or an unnatural amino acid.
  • An amino acid may be inserted, two or more plural amino acids may be substituted with histidine or an unnatural amino acid, or two or more amino acids may be inserted.
  • substitutions with histidine or an unnatural amino acid or insertion of histidine or an unnatural amino acid may be performed simultaneously.
  • Substitution to histidine or an unnatural amino acid or insertion of histidine or an unnatural amino acid may be performed randomly by a method known to those skilled in the art, such as histidine scanning in which alanine of alanine scanning is replaced with histidine, or histidine or an unnatural amino acid.
  • KD pH 5.8 / KD (pH 7.4) or k d (pH 5.8) / k d (pH 7.4) compared to before the mutation
  • Antigen-binding molecules with increased values may be selected.
  • antigen-binding molecules that have been mutated to histidine or non-natural amino acids and have an antigen-binding activity at pH 5.8 lower than that at pH 7.4 include, for example, histidine or non-natural amino acids. Mention may be made of antigen-binding molecules whose antigen-binding activity at pH 7.4 after mutation to amino acids is equivalent to that at pH 7.4 before mutation to histidine or unnatural amino acids. In the present invention, the antigen-binding molecule after histidine or non-natural amino acid mutation has the same antigen-binding activity as the antigen-binding molecule before histidine or non-natural amino acid mutation.
  • the antigen-binding activity of the antigen-binding molecule after mutation of histidine or an unnatural amino acid is at least 10%, preferably 50% or more, more preferably 80% or more, more preferably 90%. Say that it is more than%.
  • the antigen binding activity at pH 7.4 after histidine or non-natural amino acid mutation may be higher than the antigen binding activity at pH 7.4 before histidine or non-natural amino acid mutation.
  • the antigen-binding activity of an antigen-binding molecule is reduced by substitution or insertion into histidine or a non-natural amino acid, the antigen can be replaced by substitution, deletion, addition and / or insertion of one or more amino acids in the antigen-binding molecule.
  • the binding activity may be equivalent to the antigen binding activity before histidine substitution or insertion.
  • the present invention also includes antigen-binding molecules whose binding activity is equivalent by substitution, deletion, addition and / or insertion of one or more amino acids after such histidine substitution or insertion.
  • the antigen-binding molecule is a substance containing an antibody constant region
  • another preferred embodiment of the antigen-binding molecule whose antigen-binding activity at pH 5.8 is lower than that at pH 7.4 is as follows.
  • a method in which the antibody constant region contained therein is modified can be mentioned.
  • Specific examples of the antibody constant region after modification include the constant regions described in the Examples.
  • the value of KD (pH 5.8) / KD (pH 7.4) is usually 2 times or more, preferably 5 times or more, more preferably 10 times or more compared to the base antibody. Is preferred.
  • the antigen-binding molecule of the present invention may have any other property as long as the antigen-binding activity at pH 4.0 to pH 6.5 is lower than the antigen-binding activity at pH 6.7 to 10.0. It may be an agonist antigen binding molecule or an antagonist antigen binding molecule. An example of a preferable antigen-binding molecule of the present invention is an antagonist antigen-binding molecule.
  • An antagonist antigen-binding molecule is usually an antigen-binding molecule that inhibits the binding between a ligand (agonist) and a receptor and inhibits signal transduction into the cell via the receptor.
  • the present invention provides an antibody in which at least one of the following amino acids is substituted with histidine or an unnatural amino acid.
  • the amino acid positions are indicated by Kabat numbering (Kabat EA etal. 1991.Sequences of Proteins of Immunological Interest.NIH).
  • Heavy chain H27, H31, H32, H33, H35, H50, H58, H59, H61, H62, H63, H64, H65, H99, H100b, H102
  • Light chain L24, L27, L28, L32, L53, L54, L56, L90, L92, L94
  • H32, H61, L53, L90, and L94 are considered to be highly universal alterations.
  • the following sites can be mentioned as preferable modified sites when the antigen is an IL-6 receptor (for example, human IL-6 receptor).
  • Heavy chain H27, H31, H32, H35, H50, H58, H61, H62, H63, H64, H65, H100b, H102
  • Light chain L24, L27, L28, L32, L53, L56, L90, L92, L94
  • preferable combinations when a plurality of positions are combined and substituted with histidine or an unnatural amino acid include, for example, combinations of H27, H31, and H35, combinations of H27, H31, H32, H35, H58, H62, and H102, A combination of L32 and L53, a combination of L28, L32, and L53 can be exemplified.
  • preferable combinations of heavy and light chain substitution sites include combinations of H27, H31, L32, and L53.
  • the following sites can be exemplified as preferable modified sites when the antigen is IL-6 (for example, human IL-6).
  • Heavy chain H32, H59, H61, H99
  • Light chain L53, L54, L90, L94
  • H33 can be mentioned as a preferred modification site when the antigen is an IL-31 receptor (for example, human IL-31 receptor).
  • the antigen recognized by the antigen-binding molecule of the present invention may be any antigen.
  • antigens recognized by the antibody of the present invention include the above-described receptor proteins (membrane-bound receptors, soluble receptors), membrane antigens such as cell surface markers, soluble antigens such as cytokines, For example, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-15, IL-31, IL-23, IL-2 receptor, IL-6 receptor, OSM receptor, gp130, IL-5 receptor, CD40, CD4, Fas, osteopontin, CRTH2, CD26, PDGF- D, CD20, monocyte chemotactic factor, CD23, TNF- ⁇ , HMGB-1, ⁇ 4 integrin, ICAM-1, CCR2, CD11a, CD3, IFN ⁇ , BLyS, HLA-DR
  • Particularly preferred antigens include IL-6 receptor.
  • the antigen-binding molecule of the present invention is as described above.
  • a preferable embodiment of the antigen-binding molecule includes an antibody.
  • an antibody having an antigen binding activity and an FcRn binding region an IgG antibody can be mentioned.
  • an IgG antibody is used as the antibody, the type is not limited, and IgG1, IgG2, IgG3, IgG4, and the like can be used.
  • the origin of the antibody of the present invention is not particularly limited, and any origin may be used.
  • a mouse antibody, a human antibody, a rat antibody, a rabbit antibody, a goat antibody, or a camel antibody can be used.
  • the above-described chimeric antibody, particularly a modified antibody having a substituted amino acid sequence such as a humanized antibody may be used.
  • the above-mentioned bispecific antibodies, modified antibodies obtained by binding various molecules, polypeptides containing antibody fragments, sugar chain-modified antibodies, and the like may be used.
  • a chimeric antibody The production of a chimeric antibody is known.
  • a DNA encoding an antibody V region and a DNA encoding a human antibody C region are ligated, incorporated into an expression vector, and introduced into a host.
  • a chimeric antibody can be obtained by production.
  • Humanized antibody refers to an antibody derived from a mammal other than a human, also referred to as a reshaped human antibody, such as a complementarity determination region (CDR) of a mouse antibody to the CDR of a human antibody. It is transplanted.
  • CDR complementarity determination region
  • Methods for identifying CDRs are known (Kabat et al., Sequence of Proteins of Immunological Interest (1987), National Institute of Health, Bethesda, Md .; Chothia et al., Nature (1989) 342: 877) .
  • general gene recombination techniques are also known (see European Patent Application Publication No. EP-125023 and WO96 / 02576).
  • the humanized antibody is obtained by a known method, for example, by determining the CDR of a mouse antibody, obtaining DNA encoding the antibody in which the CDR and the framework region (FR) of the human antibody are linked, and humanizing the humanized antibody.
  • the antibody can be produced by a system using a normal expression vector.
  • DNA can be synthesized by PCR using several oligonucleotides prepared as primers with overlapping portions in both CDR and FR terminal regions (described in WO98 / 13388). See how).
  • the FR of the human antibody linked via CDR is selected such that the CDR forms a good antigen binding site.
  • the FR amino acid in the variable region of the antibody may be modified so that the CDR of the reshaped human antibody forms an appropriate antigen-binding site (Sato et al., Cancer Res. (1993) 53: 10.01-6).
  • the amino acid residues in FR that can be modified include those that bind directly to the antigen by non-covalent bonds (Amit et al., Science (1986) 233: 747-53), and those that affect or act on the CDR structure (Chothia et al., J. Mol. Biol. 1987 (1987) 196: 901-17) and parts related to the VH-VL interaction (EP239400 patent publication).
  • the C region of these antibodies is preferably derived from a human antibody.
  • C ⁇ 1, C ⁇ 2, C ⁇ 3, C ⁇ 4, etc. can be used for the H chain
  • C ⁇ , C ⁇ , etc. can be used for the L chain.
  • amino acid mutations may be introduced into the human antibody C region as necessary in order to improve antibody stability or antibody production.
  • the chimeric antibody in the present invention preferably comprises a variable region of a non-human mammal-derived antibody and a constant region derived from a human antibody.
  • humanized antibodies are preferably composed of CDRs of antibodies derived from mammals other than humans, and FR and C regions derived from human antibodies.
  • the constant region derived from a human antibody preferably includes an FcRn binding region, and examples of such an antibody include IgG (IgG1, IgG2, IgG3, IgG4).
  • the constant region used for the humanized antibody in the present invention may be a constant region of an antibody belonging to any isotype.
  • the constant region of human IgG is used, but is not limited thereto.
  • the FR derived from a human antibody used for a humanized antibody is not particularly limited, and may be an antibody belonging to any isotype.
  • variable region and constant region of the chimeric antibody and humanized antibody in the present invention may be modified by deletion, substitution, insertion and / or addition as long as they show the binding specificity of the original antibody.
  • Chimeric antibodies and humanized antibodies using human-derived sequences are considered to be useful when administered to humans for therapeutic purposes because of their reduced immunogenicity in the human body.
  • the antibody of the present invention may be obtained by any method, for example, an antibody that originally has an antigen-binding activity at pH 5.8 that is higher than an antigen-binding activity at pH 7.4 or an antibody that has the same antigen-binding activity,
  • the antigen binding activity at pH 5.8 may be artificially made lower than the antigen binding activity at pH 7.4 by substitution with histidine as described above, or obtained from the following antibody library or hybridoma.
  • a plurality of antibodies may be selected by screening an antibody whose antigen binding activity at pH 5.8 is lower than that at pH 7.4.
  • the amino acid sequence of the H chain or L chain of the antibody before the histidine mutation introduction may be a known sequence, or newly obtained by a method known to those skilled in the art. It is also possible to use the amino acid sequence of the antibody.
  • the antibody can be obtained from an antibody library, or can be obtained by cloning a gene encoding the antibody from a hybridoma producing a monoclonal antibody.
  • antibody libraries are already known as antibody libraries, and methods for producing antibody libraries are also known, those skilled in the art can appropriately obtain antibody libraries.
  • antibody phage libraries Clackson et al., Nature 1991, 352: 624-8, Marks et al., J. Mol. Biol. 1991, 222: 581-97, Waterhouses et al., Nucleic Acids Res 1993, 21: 2265-6, Griffiths et al., EMBO J. 1994, 13: 324.0-60, Vaughan et al., Nature Biotechnology 1996, ⁇ 14: 309-14 Can be referred to.
  • variable region of a human antibody is expressed as a single chain antibody (scFv) on the surface of the phage by the phage display method, and a phage that binds to the antigen can be selected.
  • scFv single chain antibody
  • a suitable expression vector can be prepared based on the sequence to obtain a human antibody.
  • WO92 / 01047, WO92 / 20791, WO93 / 06213, WO93 / 11236, WO93 / 19172, WO95 / 01438, and WO95 / 15388 can be referred to.
  • a method for obtaining a gene encoding an antibody from a hybridoma basically uses a known technique, and uses a desired antigen or a cell that expresses a desired antigen as a sensitizing antigen. Therefore, the immune cells obtained are immunized, and the obtained immune cells are fused with known parental cells by a normal cell fusion method, and monoclonal antibody-producing cells (hybridomas) are screened by a normal screening method, and reverse transcription is performed from the obtained hybridoma mRNA. It can be obtained by synthesizing cDNA of an antibody variable region (V region) using an enzyme and ligating it with DNA encoding a desired antibody constant region (C region).
  • V region antibody variable region
  • C region desired antibody constant region
  • the sensitizing antigen for obtaining the antibody gene encoding the H chain and L chain described above shows a complete antigen having immunogenicity and immunogenicity. Contains both incomplete antigens, including no haptens etc.
  • a full-length protein of the target protein or a partial peptide can be used.
  • substances composed of polysaccharides, nucleic acids, lipids and the like can serve as antigens, and the antigen of the antibody of the present invention is not particularly limited.
  • the antigen can be prepared by a method known to those skilled in the art, for example, according to a method using baculovirus (for example, WO98 / 46777).
  • Hybridoma can be prepared according to, for example, the method of Milstein et al. (G. Kohler and C. Milstein, Methods Enzymol. 1981, 73: 3-46).
  • immunization may be performed by binding to an immunogenic macromolecule such as albumin.
  • it can also be made a soluble antigen by combining an antigen with another molecule as required.
  • a transmembrane molecule such as a membrane antigen (for example, a receptor) is used as an antigen
  • the extracellular region of the membrane antigen is used as a fragment, or a cell expressing the transmembrane molecule on the cell surface is used as an immunogen. It is also possible to do.
  • Antibody-producing cells can be obtained by immunizing animals with the appropriate sensitizing antigen described above.
  • antibody-producing cells can be obtained by immunizing lymphocytes capable of producing antibodies in vitro.
  • Various mammals can be used as the animal to be immunized, and rodents, rabbits, and primates are generally used. Examples include rodents such as mice, rats and hamsters, rabbits such as rabbits, and primates such as monkeys such as cynomolgus monkeys, rhesus monkeys, baboons and chimpanzees.
  • transgenic animals having a repertoire of human antibody genes are also known, and human antibodies can be obtained by using such animals (WO96 / 34096; Mendez et al., Nat.
  • a desired human antibody having an antigen-binding activity can be obtained (see Japanese Patent Publication No. 1-59878). Further, a desired human antibody can be obtained by immunizing a transgenic animal having all repertoires of human antibody genes with a desired antigen (WO93 / 12227, WO92 / 03918, WO94 / 02602, WO96 / 34096, (See WO96 / 33735).
  • the sensitizing antigen is appropriately diluted and suspended in Phosphate-Buffered Saline (PBS) or physiological saline, etc., mixed with an adjuvant as necessary, and emulsified, and then intraperitoneally or subcutaneously in the animal. This is done by injection. Thereafter, the sensitizing antigen mixed with Freund's incomplete adjuvant is preferably administered several times every 4 to 21 days. Confirmation of antibody production can be performed by measuring the desired antibody titer in the serum of animals by a conventional method.
  • PBS Phosphate-Buffered Saline
  • physiological saline physiological saline
  • a hybridoma can be prepared by fusing an antibody-producing cell obtained from an animal or lymphocyte immunized with a desired antigen with a myeloma cell using a conventional fusion agent (eg, polyethylene glycol) (Goding , Monoclonal Antibodies: diesPrinciples and Practice, Academic Press, 1986, 59-103). If necessary, hybridoma cells are cultured and expanded, and the binding specificity of the antibody produced from the hybridoma is measured by a known analysis method such as immunoprecipitation, radioimmunoassay (RIA), enzyme-linked immunosorbent assay (ELISA), etc. . Thereafter, if necessary, the hybridoma producing the antibody whose target specificity, affinity or activity is measured can be subcloned by a technique such as limiting dilution.
  • a conventional fusion agent eg, polyethylene glycol
  • a probe for example, an oligo complementary to a sequence encoding an antibody constant region
  • a probe for example, an oligo complementary to a sequence encoding an antibody constant region
  • an antibody-producing cell such as sensitized lymphocyte
  • a gene encoding the selected antibody for example, nucleotides.
  • clone from mRNA by RT-PCR.
  • Immunoglobulins are classified into five different classes: IgA, IgD, IgE, IgG and IgM. Furthermore, these classes are divided into several subclasses (isotypes) (eg, IgG-1, IgG-2, IgG-3, and IgG-4; IgA-1 and IgA-2, etc.).
  • the H chain and L chain used for the production of the antibody in the present invention may be derived from antibodies belonging to any of these classes and subclasses, and are not particularly limited, but IgG is particularly preferred.
  • chimeric antibodies, humanized antibodies and the like can be appropriately prepared.
  • a chimeric antibody is an antibody comprising a human antibody H chain, L chain variable region and a human antibody H chain, L chain constant region, and a DNA encoding the variable region of a mouse antibody.
  • a humanized antibody also called a reshaped human antibody, is a DNA sequence designed to link the complementarity determining regions (CDRs) of non-human mammals such as mouse antibodies.
  • CDRs complementarity determining regions
  • the obtained DNA is obtained by ligating with DNA encoding a human antibody constant region, then incorporating it into an expression vector, introducing it into a host and producing it (see EP239400; WO96 / 02576).
  • the complementarity determining region forms a favorable antigen binding site is selected. If necessary, amino acid in the framework region of the variable region of the antibody may be substituted so that the complementarity determining region of the reshaped human antibody forms an appropriate antigen-binding site (K. Sato et al., Cancer Res 1993, 53: 10.01-10.06).
  • antibody variants with improved biological properties are 70% or more, more preferably 80% or more, more preferably 90% or more (eg, 95% or more, 97%, 98%, 99%, etc.) amino acids It has sequence homology and / or similarity to the amino acid sequence of the variable region of the original antibody.
  • sequence homology and / or similarity is homologous to the original antibody residues after aligning the sequences and introducing gaps as necessary to maximize sequence homology.
  • percentage of amino acid residues that are (same residues) or similar amino acid residues that are grouped in the same group based on the characteristics of the side chains of common amino acids).
  • natural amino acid residues are based on the nature of their side chains.
  • Hydrophobicity alanine, isoleucine, valine, methionine and leucine; (2) Neutral hydrophilicity: asparagine, glutamine, cysteine, threonine and serine; (3) Acidity: aspartic acid and glutamic acid; (4) Basic: arginine, histidine and lysine; (5) residues that affect chain orientation: glycine and proline; and (6) Aromaticity: Classified into tyrosine, tryptophan and phenylalanine groups.
  • variable regions of the H chain and L chain interact to form the antigen binding site of the antibody.
  • CDRs complementarity determining regions
  • the antibody gene encoding the H chain and L chain of the present invention is only required to maintain the binding property of the polypeptide encoded by the gene with the desired antigen. What is necessary is just to encode the fragment part containing a binding site.
  • the heavy chain variable region is usually composed of three CDR regions and four FR regions.
  • the amino acid residue subjected to “modification” can be appropriately selected from, for example, amino acid residues located in the CDR region or FR region.
  • modification of amino acid residues in the CDR region may reduce the ability to bind to an antigen. Therefore, the amino acid residue to be used for “modification” in the present invention is not particularly limited, but is preferably selected from amino acid residues located in the FR region as appropriate. If it is confirmed that the binding ability is not lowered by modification even with CDR, it is possible to select the site.
  • sequences that can be used as FRs of antibody variable regions can be appropriately obtained by those skilled in the art using public databases and the like.
  • the present invention provides a gene encoding the antibody of the present invention.
  • the gene encoding the antibody of the present invention may be any gene, such as DNA, RNA, and other nucleic acid analogs.
  • the present invention provides a host cell having the above gene.
  • the host cell is not particularly limited, and examples thereof include E. coli and various animal cells.
  • the host cell can be used, for example, as a production system for production and expression of the antibody of the present invention.
  • Production systems for polypeptide production include in vitro and in vivo production systems. Examples of in vitro production systems include production systems using eukaryotic cells and production systems using prokaryotic cells.
  • Examples of eukaryotic cells that can be used as host cells include animal cells, plant cells, and fungal cells.
  • Animal cells include mammalian cells such as CHO (J.JExp. Med. (1995) 108: 94.0), COS, HEK293, 3T3, myeloma, BHK (baby hamster kidney), HeLa, Vero and the like, for example, Examples are Xenopus oocytes (Valle et al., Nature (1981) 291: 338-340), and insect cells such as Sf9, Sf21, and Tn5.
  • CHO-DG44, CHO-DX11B, COS7 cells, HEK293 cells, and BHK cells are preferably used.
  • CHO cells are particularly preferred for mass expression purposes.
  • Introduction of a vector into a host cell can be performed by, for example, a calcium phosphate method, a DEAE dextran method, a method using a cationic ribosome DOTAP (Boehringer Mannheim), an electroporation method, a lipofection method, or the like.
  • plant cells for example, cells derived from Nicotiana tabacum and Lemna minor are known as protein production systems, and the antibody of the present invention can be produced by a method of culturing these cells. it can.
  • fungal cells include yeast, for example, cells of the genus Saccharomyces (Saccharomyces cerevisiae, Saccharomyces m pombe, etc.), and fungi, for example, cells of the genus Aspergillus (Spergillus).
  • a protein expression system using niger is known and can be used as a host for antibody production of the present invention.
  • bacterial cells When using prokaryotic cells, there is a production system using bacterial cells.
  • a production system using Bacillus subtilis in addition to the above-mentioned E. coli is known and can be used for the production of the antibody of the present invention.
  • the present invention provides a method for screening an antigen-binding molecule whose antigen-binding activity at acidic pH is lower than that at neutral pH.
  • the present invention also provides a method for screening an antigen-binding molecule capable of binding to a plurality of antigens with a single molecule.
  • the present invention also provides a method for screening an antigen-binding molecule with excellent plasma retention.
  • the present invention also provides a method for screening an antigen-binding molecule that dissociates an antigen bound to an antigen-binding molecule outside the cell.
  • the present invention also provides a method for screening an antigen-binding molecule that is taken into a cell in a state of being bound to an antigen and released to the outside of the cell without being bound to an antigen.
  • the present invention also provides a method for screening an antigen-binding molecule with increased plasma antigen elimination ability.
  • the present invention provides a method for screening an antigen-binding molecule that is particularly useful when used as a pharmaceutical composition.
  • the present invention provides a method for screening an antigen-binding molecule comprising the following steps. (a) obtaining an antigen-binding activity of the antigen-binding molecule at pH 6.7 to pH 10.0; (b) obtaining an antigen-binding activity of the antigen-binding molecule at pH 4.0 to pH 6.5; (c) A step of selecting an antigen-binding molecule having an antigen-binding activity at pH 6.7 to pH 10.0 higher than that at pH 4.0 to pH 6.5.
  • the antigen-binding activity of the antigen-binding molecule at pH 6.7 to pH 10.0 is not particularly limited as long as it is an antigen-binding activity between pH 6.7 and pH 10.0.
  • Antigen binding activity between pH 7.0 and pH 8.0 can be mentioned, and antigen binding activity at pH 7.4 can be mentioned as a more preferable antigen binding activity.
  • the antigen-binding activity of the antigen-binding molecule at pH 4.0 to pH 6.5 is not particularly limited as long as it is an antigen-binding activity between pH 4.0 and pH 6.5, but the preferred antigen-binding activity is pH 5.5 to pH 6.
  • Antigen binding activity between 5 can be mentioned, and more preferable antigen binding activity includes antigen binding activity at pH 5.8 or pH 5.5.
  • the antigen-binding activity of the antigen-binding molecule can be measured by methods known to those skilled in the art, and conditions other than pH can be appropriately determined by those skilled in the art.
  • the antigen-binding activity of an antigen-binding molecule is KD (Dissociation constant), apparent KD (Apparent dissociation constant), dissociation rate k d (Dissociation rate), or apparent k It can be evaluated as d (Apparent dissociation).
  • KD Dissociation constant
  • apparent KD Apparent dissociation constant
  • dissociation rate k d Dissociation rate
  • apparent k It can be evaluated as d (Apparent dissociation).
  • Biacore GE healthcare
  • Scatchard plot FACS and the like can be used.
  • the step of selecting an antigen-binding molecule whose antigen-binding activity at pH 6.7 to pH 10.0 is higher than the antigen-binding activity at pH 4.0 to pH 6.5 is the step of selecting an antigen at pH 4.0 to pH 6.5. This is the same meaning as the step of selecting an antigen-binding molecule whose binding activity is lower than that at pH 6.7 to pH 10.0.
  • the antigen binding activity at pH 6.7 to pH 10.0 is higher than the antigen binding activity at pH 4.0 to pH 6.5, the antigen binding activity at pH 6.7 to pH 10.0 and pH 4.0 to pH 6.5
  • the difference in antigen binding activity is not particularly limited, but preferably the antigen binding activity at pH 6.7 to pH 10.0 is at least twice the antigen binding activity at pH 4.0 to pH 6.5, more preferably 10 times Or more, more preferably 40 times or more.
  • the present invention provides a method for screening an antigen-binding molecule comprising the following steps. (a) binding an antigen-binding molecule to an antigen under conditions of pH 6.7 to pH 10.0, (b) placing the antigen-binding molecule bound to the antigen of (a) under conditions of pH 4.0 to pH 6.5; (c) A step of obtaining antigen-binding molecules dissociated under the conditions of pH 4.0 to pH 6.5.
  • the present invention provides a method for screening an antigen-binding molecule comprising the following steps. (a) selecting an antigen-binding molecule that does not bind to an antigen under the conditions of pH 4.0 to pH 6.5; (b) binding the antigen-binding molecule selected in (a) to an antigen under conditions of pH 6.7 to pH 10.0, (c) A step of obtaining an antigen-binding molecule bound to an antigen under the conditions of pH 6.7 to pH 10.0.
  • the present invention provides a method for screening an antigen-binding molecule comprising the following steps. (a) binding an antigen-binding molecule to an antigen under conditions of pH 6.7 to pH 10.0, (b) placing the antigen-binding molecule bound to the antigen of (a) under conditions of pH 4.0 to pH 6.5; (c) obtaining an antigen-binding molecule dissociated under pH 4.0 to pH 6.5 conditions; (d) amplifying a gene encoding the dissociated antigen-binding molecule; (e) A step of obtaining the eluted antigen-binding molecule.
  • the steps (a) to (d) may be repeated two or more times. Therefore, the present invention provides a method further comprising the step of repeating the steps (a) to (d) twice or more in the above method.
  • the number of times the steps (a) to (d) are repeated is not particularly limited, but is usually within 10 times.
  • the present invention provides a method for screening an antigen-binding molecule comprising the following steps. (a) selecting an antigen-binding molecule that does not bind to an antigen under the conditions of pH 4.0 to pH 6.5; (b) binding the antigen-binding molecule selected in (a) to an antigen under conditions of pH 6.7 to pH 10.0, (c) obtaining an antigen-binding molecule bound to the antigen under conditions of pH 6.7 to pH 10.0, (d) amplifying a gene encoding the dissociated antigen-binding molecule; (e) A step of obtaining the eluted antigen-binding molecule.
  • the steps (a) to (d) may be repeated two or more times. Therefore, the present invention provides a method further comprising the step of repeating the steps (a) to (d) twice or more in the above method.
  • the number of times the steps (a) to (d) are repeated is not particularly limited, but is usually within 10 times.
  • the step of amplifying the gene encoding the antigen-binding molecule can be a step of amplifying the phage.
  • the binding between the antigen and the antigen-binding molecule may be performed in any state and is not particularly limited.
  • the antigen-binding molecule and the antigen may be bound by bringing the antigen into contact with the immobilized antigen-binding molecule, or the antigen-binding molecule and the antigen are bound by bringing the antigen-binding molecule into contact with the immobilized antigen. You may let them.
  • the antigen-binding molecule and the antigen may be bound by bringing the antigen-binding molecule and the antigen into contact with each other in a solution.
  • the present invention provides a method for screening an antigen-binding molecule, wherein the binding activity at the first pH of the antigen-binding molecule is higher than that at the second pH, comprising the following steps.
  • a step of obtaining the eluted antigen-binding molecule comprising the following steps.
  • the present invention provides a method for screening an antigen-binding molecule, wherein the binding activity of the antigen-binding molecule at the first pH is lower than the binding activity at the second pH, comprising the following steps.
  • the present invention provides a method for screening an antigen-binding molecule having a binding activity at a first pH higher than that at a second pH, comprising the following steps. (a) binding an antigen-binding molecule library to a column immobilized with an antigen under a first pH condition; (b) eluting antigen-binding molecules from the column under a second pH condition; (c) amplifying the gene encoding the eluted antigen-binding molecule; (d) A step of obtaining the eluted antigen-binding molecule.
  • the steps (a) to (c) may be repeated twice or more. Accordingly, the present invention provides a method further comprising the step of repeating the steps (a) to (c) two or more times in the above method.
  • the number of times the steps (a) to (c) are repeated is not particularly limited, but is usually within 10 times.
  • the first pH and the second pH may be any pH as long as they are not the same pH.
  • the first pH is a pH between pH 6.7 and 10.0
  • the second pH is a pH between pH 4.0 and pH 6.5.
  • Some combinations may be mentioned, and examples of more preferred combinations include a first pH between pH 7.0 and pH 8.0 and a second pH between pH 5.5 and pH 6.5.
  • Combinations having a pH can be mentioned, and examples of further preferable combinations include a combination in which the first pH is pH 7.4 and the second pH is pH 5.8 or pH 5.5.
  • the first pH is a pH between pH 4.0 and 6.5
  • the second pH is between pH 6.7 and pH 10.0.
  • Combinations that are pH can be mentioned, and examples of more preferred combinations include a first pH between pH 5.5 and pH 6.5 and a second pH between pH 7.0 and pH 8.0.
  • Examples of a more preferable combination include a combination in which the first pH is pH 5.8 or pH 5.5 and the second pH is pH 7.4. it can.
  • the antigen-binding molecule to be screened by the method of the present invention may be any antigen-binding molecule.
  • the above-described antigen-binding molecule can be used for the screening of the present invention.
  • an antigen-binding molecule having a natural sequence may be screened, or an antigen-binding molecule having an amino acid sequence substituted may be screened.
  • Preferable examples of the antigen-binding molecule screened in the present invention include an antigen-binding molecule in which at least one amino acid of the antigen-binding molecule is substituted with histidine or at least one histidine is inserted.
  • the location where histidine substitution or insertion is introduced is not particularly limited, and may be introduced at any location.
  • histidine substitution or insertion may be introduced at one place, or may be introduced at two or more places.
  • the antigen binding molecule containing the modified antibody constant region can be mentioned, for example.
  • the antigen-binding molecule screened by the method of the present invention may be a plurality of different antigen-binding molecules into which histidine substitution or insertion has been introduced at different positions by a method such as histidine scanning.
  • the screening method of the present invention may further comprise the step of substituting at least one amino acid of the antigen-binding molecule with histidine or inserting at least one histidine.
  • the screening method of the present invention may use an unnatural amino acid instead of histidine. Therefore, it is possible to understand the present invention by replacing the histidine described above with an unnatural amino acid.
  • the screening method of the present invention may further include a step of modifying amino acids in the antibody constant region.
  • the antigen-binding substance to be screened by the screening method of the present invention may be prepared in any way, for example, from pre-existing antibodies, pre-existing libraries (such as phage libraries), immunization to animals
  • Antibodies or libraries prepared from B cells from the obtained hybridomas or immunized animals, antibodies or libraries in which these antibodies or libraries have histidine or unnatural amino acid mutations introduced (the content of histidine or unnatural amino acids is It is possible to use an elevated library or a library in which histidine or an unnatural amino acid mutation is introduced at a specific location.
  • the screening method of the present invention can be used as a screening method for obtaining an antigen-binding molecule having excellent plasma retention.
  • the screening method of the present invention makes it possible to obtain an antigen-binding molecule that can bind to an antigen two or more times when administered to animals such as humans, mice, monkeys, and the like. Therefore, the screening method of the present invention can be used as a screening method for obtaining an antigen-binding molecule that can bind to an antigen two or more times.
  • the screening method of the present invention an antigen-binding molecule capable of binding to a larger number of antigens than the number of antigen-binding sites of the antigen-binding molecule when administered to animals such as humans, mice and monkeys is obtained. It is possible. Therefore, the screening method of the present invention can be used as a screening method for obtaining an antigen-binding molecule that can bind to a larger number of antigens than the number of antigen-binding sites of the antigen-binding molecule.
  • the antibody when it is a neutralizing antibody, it can be used as a screening method for obtaining an antigen-binding molecule capable of neutralizing a larger number of antigens than the number of antigen-binding sites of the antigen-binding molecule. it can.
  • the antigen-binding molecule capable of dissociating extracellularly bound antigens intracellularly when administered to animals such as humans, mice and monkeys can be obtained by the screening method of the present invention.
  • the screening method of the present invention can be used as a screening method for obtaining an antigen-binding molecule that dissociates an extracellularly bound antigen inside the cell.
  • the screening method of the present invention can be used as a screening method for obtaining an antigen-binding molecule that is taken into a cell in a state of being bound to an antigen and released to the outside of the cell without being bound to the antigen. .
  • the screening method of the present invention it is possible to obtain an antigen-binding molecule capable of rapidly disappearing an antigen from plasma when administered to animals such as humans, mice and monkeys. Therefore, the screening method of the present invention can be used as a screening method for obtaining an antigen-binding molecule having increased (high) plasma antigen elimination ability.
  • these antigen-binding molecules can be reduced in dosage and administration frequency to a patient, and as a result, the total dose can be reduced. Therefore, it is considered that they are particularly excellent as pharmaceuticals. Therefore, the screening method of the present invention can be used as a screening method for antigen-binding molecules for use as a pharmaceutical composition.
  • the present invention provides a library having an increased proportion of histidine compared to the original library.
  • a library in which the proportion of histidine contained in an antigen-binding molecule contained in the library is high can be used in the screening method described above and the production method described later.
  • a method for preparing a library having an increased proportion containing histidine can be prepared by using a method known to those skilled in the art, and examples thereof include the following methods.
  • 20 tribasic codons encoding 20 amino acids by the trinucleotide method J Mol Biol. 2008 Feb 29; 376 (4): 1182-200.
  • 20 kinds of amino acids can be contained with an equal probability in the library site.
  • the present invention provides a method for producing an antigen-binding molecule in which the antigen-binding activity of the antigen-binding molecule at endosomal pH is lower than the antigen-binding activity at pH in plasma.
  • the present invention also provides a method for producing an antigen-binding molecule with excellent plasma retention.
  • the present invention provides a method for producing an antigen-binding molecule that is particularly useful when used as a pharmaceutical composition.
  • the present invention provides a method for producing an antigen-binding molecule comprising the following steps. (a) obtaining an antigen-binding activity of the antigen-binding molecule at pH 6.7 to pH 10.0; (b) obtaining an antigen-binding activity of the antigen-binding molecule at pH 4.0 to pH 6.5; (c) selecting an antigen-binding molecule whose antigen-binding activity at pH 6.7 to pH 10.0 is higher than that at pH 4.0 to pH 6.5; (d) obtaining a gene encoding the antigen-binding molecule selected in (c), (e) A step of producing an antigen-binding molecule using the gene obtained in (d).
  • this invention provides the manufacturing method of the antigen binding molecule
  • this invention provides the manufacturing method of the antigen binding molecule
  • this invention provides the manufacturing method of the antigen binding molecule
  • the steps (a) to (d) may be repeated two or more times. Therefore, the present invention provides a method further comprising the step of repeating the steps (a) to (d) twice or more in the above method.
  • the number of times the steps (a) to (d) are repeated is not particularly limited, but is usually within 10 times.
  • this invention provides the screening method of an antigen binding molecule
  • the steps (a) to (d) may be repeated two or more times. Therefore, the present invention provides a method further comprising the step of repeating the steps (a) to (d) twice or more in the above method.
  • the number of times the steps (a) to (d) are repeated is not particularly limited, but is usually within 10 times.
  • the present invention provides a method for producing an antigen-binding molecule, wherein the binding activity at the first pH is higher than the binding activity at the second pH, comprising the following steps.
  • the present invention provides a method for producing an antigen-binding molecule, wherein the binding activity at the first pH is higher than the binding activity at the second pH, comprising the following steps. (a) binding an antigen-binding molecule library to a column immobilized with an antigen under a first pH condition; (b) eluting antigen-binding molecules from the column under a second pH condition; (c) amplifying the gene encoding the eluted antigen-binding molecule; (d) obtaining the eluted antigen-binding molecule; (e) obtaining a gene encoding the antigen-binding molecule obtained in (d), (f) A step of producing an antigen-binding molecule using the gene obtained in (e).
  • the steps (a) to (c) may be repeated twice or more. Accordingly, the present invention provides a method further comprising the step of repeating the steps (a) to (c) two or more times in the above method.
  • the number of times the steps (a) to (c) are repeated is not particularly limited, but is usually within 10 times.
  • the step of amplifying the gene encoding the antigen-binding molecule can be a step of amplifying the phage.
  • the antigen-binding substance used in the production method of the present invention may be prepared in any way, for example, obtained from a pre-existing antibody, a pre-existing library (such as a phage library), or immunization to an animal.
  • Antibodies or libraries prepared from B cells from hybridomas or immunized animals, antibodies or libraries in which histidine or unnatural amino acid mutations have been introduced into these antibodies or libraries (high content of histidine or unnatural amino acids) Or a library in which histidine or a non-natural amino acid mutation is introduced at a specific location) can be used.
  • the antigen-binding activity of the antigen-binding molecule at pH 6.7 to pH 10.0 is not particularly limited as long as it is an antigen-binding activity between pH 6.7 and pH 10.0.
  • Antigen binding activity between 0.0 and pH 8.0 can be mentioned, and antigen binding activity at pH 7.4 can be mentioned as a more preferable antigen binding activity.
  • the antigen-binding activity of the antigen-binding molecule at pH 4.0 to pH 6.5 is not particularly limited as long as it is an antigen-binding activity between pH 4.0 and pH 6.5, but the preferred antigen-binding activity is pH 5.5 to pH 6.
  • Antigen binding activity between 5 can be mentioned, and more preferable antigen binding activity includes antigen binding activity at pH 5.8 or pH 5.5.
  • the antigen-binding activity of the antigen-binding molecule can be measured by a method known to those skilled in the art, and conditions other than pH can be appropriately determined by those skilled in the art.
  • the step of selecting an antigen-binding molecule whose antigen binding activity at pH 6.7 to pH 10.0 is higher than that at pH 4.0 to pH 6.5 is that the antigen binding activity at pH 4.0 to pH 6.5 is pH 6 Same meaning as the step of selecting an antigen-binding molecule lower than the antigen-binding activity at .7 to pH 10.0.
  • the antigen binding activity at pH 6.7 to pH 10.0 is higher than the antigen binding activity at pH 4.0 to pH 6.5, the antigen binding activity at pH 6.7 to pH 10.0 and pH 4.0 to pH 6.5
  • the difference in antigen binding activity is not particularly limited, but preferably the antigen binding activity at pH 6.7 to pH 10.0 is at least twice the antigen binding activity at pH 4.0 to pH 6.5, more preferably 10 times Or more, more preferably 40 times or more.
  • the antigen and the antigen-binding molecule may be bound in any state, and is not particularly limited.
  • the antigen-binding molecule and the antigen may be bound by bringing the antigen into contact with the immobilized antigen-binding molecule, or the antigen-binding molecule and the antigen are bound by bringing the antigen-binding molecule into contact with the immobilized antigen. You may let them.
  • the antigen-binding molecule and the antigen may be bound by bringing the antigen-binding molecule and the antigen into contact with each other in a solution.
  • the first pH and the second pH may be any pH as long as they are not the same pH.
  • the first pH is a pH between pH 6.7 and 10.0
  • the second pH is a pH between pH 4.0 and pH 6.5.
  • Some combinations may be mentioned, and examples of more preferred combinations include a first pH between pH 7.0 and pH 8.0 and a second pH between pH 5.5 and pH 6.5.
  • the combination which is pH can be mentioned, As an example of a more preferable combination, there can be mentioned a combination in which the first pH is pH 7.4 and the second pH is pH 5.8 or pH 5.5.
  • the first pH is between pH 4.0 and pH 6.5 and the second pH is between pH 6.7 and pH 10.0.
  • Examples of more preferred combinations include a first pH between pH 5.5 and pH 6.5, and a second pH between pH 7.0 and pH 8. Combinations with a pH between 0 can be mentioned, and more preferred examples of combinations are those where the first pH is pH 5.8 or pH 5.5 and the second pH is pH 7.4. it can.
  • the antigen-binding molecule produced by the above-described production method may be any antigen-binding molecule.
  • an antigen-binding molecule in which at least one amino acid of the antigen-binding molecule is substituted with histidine or at least one histidine is inserted is preferable.
  • the location where such a histidine mutation is introduced is not particularly limited, and it may be introduced at any location.
  • the histidine mutation may be introduced at one place, or may be introduced at two or more places.
  • the production method of the present invention may further include a step of replacing or inserting at least one amino acid of the antigen-binding molecule with histidine.
  • an unnatural amino acid may be used instead of histidine. Therefore, it is possible to understand the present invention by replacing the histidine described above with an unnatural amino acid.
  • antibody constant It may further comprise the step of modifying amino acids in the region.
  • the antigen-binding molecule produced by the production method of the present invention is an antigen-binding molecule with excellent plasma retention. Therefore, the production method of the present invention can be used as a method for producing an antigen-binding molecule having excellent plasma retention.
  • an antigen-binding molecule produced by the production method can bind to an antigen two or more times when administered to animals such as humans, mice, monkeys and the like. Therefore, the production method of the present invention can be used as a method for producing an antigen-binding molecule that can bind to an antigen two or more times.
  • the antigen-binding molecule produced by the production method of the present invention can bind to a larger number of antigens than the number of antigen-binding sites of the antigen-binding molecule when administered to animals such as humans, mice and monkeys. It is thought that. Therefore, the production method of the present invention can be used as a method for producing an antigen-binding molecule capable of binding to a larger number of antigens than the number of antigen-binding sites of the antigen-binding molecule.
  • the antigen-binding molecule produced by the production method of the present invention dissociates an antigen bound to the antigen-binding molecule outside the cell from the antigen-binding molecule when administered to an animal such as a human, mouse, monkey or the like. It is considered possible. Therefore, the production method of the present invention can be used as a method for producing an antigen-binding molecule that can dissociate an extracellularly bound antigen in a cell.
  • the antigen-binding molecule produced by the production method of the present invention binds an antigen-binding molecule incorporated into a cell in a state of being bound to the antigen when administered to an animal such as a human, mouse, monkey or the like. It is thought that it can be released outside the cell in a state where it is not. Therefore, the production method of the present invention can be used as a method for producing an antigen-binding molecule that is taken into a cell in a state of being bound to an antigen and released outside the cell in a state of not being bound to an antigen.
  • the antigen-binding molecule produced by the production method of the present invention can quickly disappear from plasma when administered to animals such as humans, mice, monkeys and the like. Therefore, the production method of the present invention can be used as a method for producing an antigen-binding molecule having increased (high) plasma antigen elimination ability.
  • the production method of the present invention can be used as a method for producing an antigen-binding molecule for use as a pharmaceutical composition.
  • the gene obtained by the production method of the present invention is usually carried (inserted) into an appropriate vector and introduced into a host cell.
  • the vector is not particularly limited as long as it stably retains the inserted nucleic acid.
  • the cloning vector is preferably a pBluescript vector (Stratagene), but is commercially available.
  • Various vectors can be used.
  • an expression vector is particularly useful.
  • the expression vector is not particularly limited as long as it is a vector that expresses an antigen-binding molecule in vitro, in E.
  • coli in cultured cells, or in an individual organism, for example, pBEST vector (manufactured by Promega) for in vitro expression, For Escherichia coli, pET vector (manufactured by Invitrogen), for cultured cells, pME18S-FL3 vector (GenBank Accession No. AB009864), for organisms, pME18S vector (Mol Cell Biol. 8: 466-472 (1988)) Etc. are preferable.
  • the DNA of the present invention can be inserted into a vector by a conventional method, for example, by a ligase reaction using a restriction enzyme site (Current ⁇ ⁇ ⁇ protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons, Section IV 11.4-11.11.
  • the host cell is not particularly limited, and various host cells can be used depending on the purpose.
  • Examples of cells for expressing an antigen-binding molecule include bacterial cells (eg, Streptococcus, Staphylococcus, E. coli, Streptomyces, Bacillus subtilis), fungal cells (eg, yeast, Aspergillus), and insect cells (eg, Drosophila).
  • S2, Spodoptera SF9 animal cells (eg, CHO, COS, HeLa, C127, 3T3, BHK, HEK293, Bowes melanoma cells) and plant cells can be exemplified.
  • Vector introduction into host cells can be performed by, for example, calcium phosphate precipitation method, electric pulse perforation method (Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & SSons.Section 9.1-9.9), lipofection method, micro It can be performed by a known method such as an injection method.
  • Host cell culture can be performed according to a known method. For example, when animal cells are used as hosts, for example, DMEM, MEM, RPMI1640, and IMDM can be used as a culture solution. At that time, the cells may be cultured by serum-free culture, even if serum supplements such as FBS and fetal calf serum (FCS) are used in combination.
  • the pH during culture is preferably about 6-8.
  • the culture is usually performed at about 30 to 40 ° C. for about 15 to 200 hours, and medium exchange, aeration, and agitation are added as necessary.
  • an appropriate secretion signal can be incorporated into the polypeptide of interest.
  • These signals may be endogenous to the antigen-binding molecule of interest or may be heterologous signals.
  • examples of systems that produce polypeptides in vivo include production systems that use animals and production systems that use plants.
  • a target polynucleotide is introduced into these animals or plants, and the polypeptide is produced in the body of the animals or plants and recovered.
  • the “host” in the present invention includes these animals and plants.
  • mammals there are production systems using mammals and insects.
  • mammals goats, pigs, sheep, mice, cows and the like can be used (Vicki Glaser, SPECTRUM Biotechnology Applications (1993)).
  • a transgenic animal can be used.
  • a polynucleotide encoding the antigen-binding molecule of the present invention is prepared as a fusion gene with a gene encoding a polypeptide inherently produced in milk such as goat ⁇ casein.
  • the polynucleotide fragment containing the fusion gene is then injected into a goat embryo and the embryo is implanted into a female goat.
  • the target antigen-binding molecule can be obtained from the milk produced by the transgenic goat born from the goat that received the embryo or its progeny.
  • hormones may be administered to the transgenic goat as appropriate (Ebert et al., Bio / Technology (1994) 12: 699-702). .
  • the target antigen-binding molecule can be obtained from the body fluid of the silkworm by infecting the silkworm with a baculovirus into which a polynucleotide encoding the target antigen-binding molecule is inserted.
  • a plant when a plant is used for producing the antigen-binding molecule of the present invention, for example, tobacco can be used.
  • a polynucleotide encoding a target antigen-binding molecule is inserted into a plant expression vector, for example, pMON ⁇ 530, and this vector is introduced into a bacterium such as Agrobacterium tumefaciens.
  • This bacterium can be infected with tobacco, for example Nicotiana tabacum, to obtain a desired antigen-binding molecule from the leaves of the tobacco (Ma et al., Eur. J. Immunol. (1994) 24: 131-8).
  • a similar antigen-binding molecule can be obtained from a duckweed cell after infecting a similar bacterium with Lemna minor (Cox KM et (al. Nat. Biotechnol. 2006 Dec; 24 (12) : 1591-1597).
  • the antigen-binding molecule thus obtained can be isolated from inside or outside the host cell (medium, milk, etc.) and purified as a substantially pure and uniform antigen-binding molecule. Separation and purification of the antigen-binding molecule may be carried out using separation and purification methods used in usual polypeptide purification, and is not limited at all. For example, chromatography column, filter, ultrafiltration, salting out, solvent precipitation, solvent extraction, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing, dialysis, recrystallization, etc. are appropriately selected, In combination, antigen-binding molecules can be separated and purified.
  • chromatography examples include affinity chromatography, ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, adsorption chromatography, etc. (Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al. (1996) Cold Spring Harbor Laboratory Press). These chromatography can be performed using liquid phase chromatography, for example, liquid phase chromatography such as HPLC and FPLC.
  • Columns used for affinity chromatography include protein A columns and protein G columns. Examples of the column using protein A include Hyper D, POROS, Sepharose F F F (Pharmacia), and the like.
  • an appropriate protein modifying enzyme can be allowed to act before or after purification of the antigen-binding molecule, and the peptide can be partially removed.
  • protein modifying enzymes include trypsin, chymotrypsin, lysyl endopeptidase, protein kinase, glucosidase, and the like.
  • the present invention provides the anti-IL-6 receptor antibody described in any of (a) to (m) below.
  • (a) 27th Tyr, 31st Asp, 32nd Asp, 35th Trp, 51st Tyr, 59th Asn, 63rd Ser in the amino acid sequence of SEQ ID NO: 1 (H53 variable region)
  • An antibody comprising a heavy chain variable region having an amino acid sequence in which at least one of 106th Met and 108th Tyr is substituted with His
  • An antibody (H3pI) comprising a heavy chain variable region having an amino acid sequence in which the 27th Tyr, 31st Asp and 35th Trp are replaced with His in the amino acid sequence of SEQ ID NO: 1 (H53 variable region)
  • (c) 27th Tyr, 31st Asp, 32nd Asp, 35th Trp, 59th Asn, 63rd and Ser, 108th Tyr in the amino acid sequence of SEQ ID NO: 1 (H53 variable region)
  • An antibody comprising a light chain variable region having an amino acid sequence (h) an antibody comprising a light chain variable region having an amino acid sequence in which the 28th Asp, the 32nd Tyr and the 53rd Glu are replaced with His in the amino acid sequence of SEQ ID NO: 2 (PF1L variable region) (L73 ), (i) an antibody (L82) comprising a light chain variable region having an amino acid sequence in which the 32nd Tyr and 53rd Glu are replaced with His in the amino acid sequence of SEQ ID NO: 1 (H53 variable region); (j) In the amino acid sequence of SEQ ID NO: 2 (PF1L variable region), the light chain variable region having an amino acid sequence in which the 32nd Tyr, the 53rd Glu, the 56th Ser and the 92nd Asn are substituted with His.
  • An antibody (CLL5), (k) an antibody comprising the heavy chain variable region of (b) and the light chain variable region of (h), (l) an antibody comprising the heavy chain variable region of (d) and the light chain variable region of (i), (m) An antibody comprising the heavy chain variable region of (f) and the light chain variable region of (h).
  • an amino acid sequence in which at least one of 28th Asp, 32nd Tyr, 53rd Glu, 56th Ser, and 92nd Asn is substituted with His Specific examples of the light chain variable region possessed include the following light chain variable regions.
  • Light chain variable region having the amino acid sequence of SEQ ID NO: 6 (L73)
  • Light chain variable region having the amino acid sequence of SEQ ID NO: 7 (L82)
  • SEQ ID NO: 8 (CLL5)
  • Table 1 below shows amino acid positions and amino acid substitutions in the antibodies H3pI, H170, CLH5, L73, L82, and CLL5 described above. Amino acid positions are indicated based on Kabat numbering.
  • the present invention provides an antibody comprising at least the amino acid substitution described in any of (a) to (j) above and a method for producing the antibody.
  • the antibody of the present invention includes antibodies containing amino acid substitutions other than the amino acid substitutions described in the above (a) to (j) in addition to the amino acid substitutions described in any of the above (a) to (j). included.
  • amino acid substitutions other than the amino acid substitutions described in (a) to (j) above include, for example, substitution, deletion, addition and / or insertion of the amino acid sequence of the CDR portion, substitution of the amino acid sequence of FR, and deletion. Loss, addition and / or insertion.
  • the present invention further provides the anti-IL-6 receptor antibody described in any of (1) to (28) below.
  • an antibody comprising a heavy chain variable region (VH1-IgG1 variable region) having the amino acid sequence of SEQ ID NO: 21 (VH1-IgG1) from position 1 to position 119 (2) an antibody comprising a heavy chain variable region (VH2-IgG1 variable region) having the amino acid sequence from first to 119th of SEQ ID NO: 22 (VH2-IgG1), (3) an antibody comprising a heavy chain variable region (VH3-IgG1 variable region) having the amino acid sequence from first to 119th of SEQ ID NO: 23 (VH3-IgG1), (4) an antibody comprising a heavy chain variable region (VH4-IgG1 variable region) having the amino acid sequence from first to 119th of SEQ ID NO: 24 (VH4-IgG1), (5) an antibody comprising a light chain variable region (VL1-CK variable region) having the amino acid sequence of S
  • the present invention provides any one of the following FRs or CDRs (a) to (v).
  • the heavy chain CDR3 (VH1, 2) set forth in SEQ ID NO: 44
  • the heavy chain CDR3 (VH3,4) set forth in SEQ ID NO: 45
  • the sequences (a) to (v) above are shown together in FIG.
  • the present invention also provides a polypeptide comprising the FR or CDR of any one of (a) to (v) above.
  • the anti-IL-6 receptor antibody of the present invention includes antibody fragments containing any of the amino acid substitutions described above and modified products thereof.
  • antibody fragments include Fab, F (ab ') 2, Fv, or single chain Fv (scFv) in which H chain and L chain Fv are linked by an appropriate linker, H chain single domain or L chain single domain.
  • Fab fragments containing any of the amino acid substitutions described above and modified products thereof.
  • antibody fragments include Fab, F (ab ') 2, Fv, or single chain Fv (scFv) in which H chain and L chain Fv are linked by an appropriate linker, H chain single domain or L chain single domain.
  • scFv single chain Fv
  • the origin of the antibody is not particularly limited, and examples thereof include a human antibody, a mouse antibody, a rat antibody, and a rabbit antibody.
  • the antibody of the present invention may be a chimeric antibody, a humanized antibody, a fully humanized antibody or the like.
  • the antibody is treated with an enzyme such as papain or pepsin to generate antibody fragments, or a gene encoding these antibody fragments is constructed and introduced into an expression vector, and then an appropriate host cell.
  • an enzyme such as papain or pepsin to generate antibody fragments, or a gene encoding these antibody fragments is constructed and introduced into an expression vector, and then an appropriate host cell.
  • the present invention is encoded by a polypeptide of the present invention or a gene encoding a polypeptide of the present invention, comprising the step of culturing a host cell containing a vector into which a polynucleotide encoding the polypeptide of the present invention has been introduced.
  • a method for producing a polypeptide is provided.
  • a method for producing the polypeptide of the present invention comprising the following steps is provided. (a) culturing a host cell containing a vector into which a gene encoding the polypeptide of the present invention has been introduced, (b) A step of obtaining a polypeptide encoded by the gene.
  • ScFv can be obtained by linking antibody H chain V region and L chain V region.
  • the H chain V region and the L chain V region are linked via a linker, preferably a peptide linker (Huston, J. S. et al., Proc. Natl. Acad. Sci. USA (1988) 10.0, 5879-5883).
  • the H chain V region and the L chain V region in scFv may be derived from any of those described as the above antibody.
  • the peptide linker that links the V regions for example, any single chain peptide consisting of amino acid residues 12-19 is used.
  • the constant region may be any type of constant region, for example, a constant region such as IgG1, IgG2, or IgG4 can be used.
  • the constant region is preferably a human antibody constant region. Further, it may be a modified form in which substitution, deletion, addition and / or insertion of an amino acid sequence is performed on constant regions such as human IgG1, human IgG2, and human IgG4.
  • the IL-6 receptor to which the anti-IL-6 receptor antibody of the present invention binds is preferably a human IL-6 receptor.
  • the anti-IL-6 receptor antibody of the present invention is an antibody excellent in plasma retention, and a soluble IL-6 receptor and membrane IL-6 receptor in which the anti-IL-6 receptor antibody is an antigen
  • the time that is present in plasma in a state where it can bind to the body is prolonged, and the time in which soluble IL-6 receptor and membrane IL-6 receptor are bound by anti-IL-6 receptor antibody in vivo Is an extended antibody.
  • the anti-IL-6 receptor antibody can bind to the IL-6 receptor two or more times, and is considered to be able to neutralize three or more IL-6 receptors. .
  • the present invention also relates to a pharmaceutical composition
  • a pharmaceutical composition comprising the antigen-binding molecule of the present invention, the antigen-binding molecule isolated by the screening method of the present invention, or the antigen-binding molecule manufactured by the manufacturing method of the present invention.
  • the antigen-binding molecule of the present invention or the antigen-binding molecule produced by the production method of the present invention is excellent in plasma retention, and is expected to reduce the administration frequency of the antigen-binding molecule, so that it is useful as a pharmaceutical composition. is there.
  • the pharmaceutical composition of the present invention may comprise a pharmaceutically acceptable carrier.
  • the pharmaceutical composition usually refers to a drug for treatment or prevention of a disease, or examination / diagnosis.
  • the pharmaceutical composition of the present invention can be formulated by methods known to those skilled in the art. For example, it can be used parenterally in the form of a sterile solution with water or other pharmaceutically acceptable liquid, or an injection of suspension.
  • a pharmacologically acceptable carrier or medium specifically, sterilized water, physiological saline, vegetable oil, emulsifier, suspension, surfactant, stabilizer, flavoring agent, excipient, vehicle, preservative It is conceivable to formulate by combining with a binder or the like as appropriate and mixing in a unit dosage form generally required for pharmaceutical practice. The amount of the active ingredient in these preparations is set so as to obtain an appropriate volume within the indicated range.
  • a sterile composition for injection can be formulated in accordance with normal pharmaceutical practice using a vehicle such as distilled water for injection.
  • aqueous solutions for injection examples include isotonic solutions containing, for example, physiological saline, glucose and other adjuvants (for example, D-sorbitol, D-mannose, D-mannitol, sodium chloride).
  • a suitable solubilizing agent such as alcohol (ethanol etc.), polyalcohol (propylene glycol, polyethylene glycol etc.), nonionic surfactant (polysorbate 80 (TM), HCO-50 etc.) may be used in combination.
  • oily liquid examples include sesame oil and soybean oil, and benzyl benzoate and / or benzyl alcohol may be used in combination as a solubilizing agent.
  • blend with a buffering agent for example, phosphate buffer and sodium acetate buffer
  • a soothing agent for example, procaine hydrochloride
  • a stabilizer for example, benzyl alcohol and phenol
  • antioxidant for example, benzyl alcohol and phenol
  • composition of the present invention is preferably administered by parenteral administration.
  • the composition can be an injection, nasal, pulmonary, or transdermal composition.
  • it can be administered systemically or locally by intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection, or the like.
  • the administration method can be appropriately selected depending on the age and symptoms of the patient.
  • the dose of the pharmaceutical composition containing the antigen-binding molecule can be set, for example, in the range of 0.0001 mg to 1000 mg per kg of body weight per time. Alternatively, for example, the dose may be 0.001 to 100,000 mg per patient, but the present invention is not necessarily limited to these values.
  • the dose and administration method vary depending on the patient's weight, age, symptoms, etc., but those skilled in the art can set an appropriate dose and administration method in consideration of these conditions.
  • amino acids contained in the amino acid sequences described in the present invention are modified after translation (for example, modification to pyroglutamic acid by pyroglutamylation of N-terminal glutamine is a modification well known to those skilled in the art). In some cases, even if the amino acid is post-translationally modified as such, it is naturally included in the amino acid sequence described in the present invention.
  • SR344 Recombinant human IL-6 receptor of human IL-6 receptor, which is an antigen, was prepared as follows. J. Biochem. 108, 673-676 (1990), a soluble human IL-6 receptor (hereinafter SR344) consisting of the amino acid sequence from the 1st to 344th N-terminal side (hereinafter referred to as SR344) (Yamasaki et al., Science 1988; 241: 825-828 (GenBank # X12830)) was produced.
  • SR344 was purified by three column chromatography: Blue Sepharose 6 FF column chromatography, affinity chromatography using a column with a specific antibody against SR344, and gel filtration column chromatography. did. The fraction eluted as the main peak was used as the final purified product.
  • cIL-6R cynomolgus monkey soluble IL-6 receptor
  • Oligo DNA primers Rhe6Rf1 SEQ ID NO: 16
  • Rhe6Rr2 SEQ ID NO: 17
  • cIL-6R soluble cynomolgus monkey IL-6 receptor
  • Cynomolgus monkey IL-6 was prepared as follows. A base sequence encoding 212 amino acids registered in SWISSPROT Accession No.P79341 was created, cloned into an animal cell expression vector, and introduced into CHO cells to produce a constant expression cell line (cyno.IL-6 production) CHO cells).
  • a BaF3 cell line expressing human gp130 was established as described below.
  • IL-6R cDNA Full-length human IL-6R cDNA was amplified by PCR and cloned into pcDNA3.1 (+) (Invitrogen) to construct hIL-6R / pcDNA3.1 (+).
  • 10 ⁇ g of pCOS2Zeo / gp130 was mixed with BaF3 cells (0.8 ⁇ 10 7 cells) suspended in PBS, and pulsed at a volume of 0.33 kV and 950 ⁇ FD using Gene Pulser (Bio-Rad).
  • BaF3 cells transfected with electroporation were cultured overnight in RPMI1640 medium (Invitrogen) containing 0.2 ng / mL mouse interleukin-3 (Peprotech) and 10% Fetal Bovine Serum (hereinafter FBS, HyClone).
  • FBS Fetal Bovine Serum
  • Select human RPMI1640 medium containing human interleukin-6 (R & D systems), 100 ng / mL human interleukin-6 soluble receptor (R & D systems) and 10% FBS. / gp130) was established.
  • H chain WT is H (WT) (Amino acid sequence SEQ ID NO: 9)
  • L chain WT is L (WT) (amino acid sequence SEQ ID NO: 10)
  • H53 amino acid sequence
  • SEQ ID NO: 1 PF1H (amino acid sequence SEQ ID NO: 11), L28 (amino acid sequence SEQ ID NO: 12) and PF1L (amino acid sequence SEQ ID NO: 2) were prepared as modified L chains.
  • a mutant is prepared by the method described in the attached instructions, and the resulting plasmid fragment is inserted into an animal cell expression vector to express the desired H chain.
  • Vector and L chain expression vector were prepared.
  • the base sequence of the obtained expression vector was determined by a method known to those skilled in the art.
  • Human fetal renal carcinoma cell-derived HEK293H strain (Invitrogen) was suspended in DMEM medium (Invitrogen) containing 10% Fetal Bovine Serum (Invitrogen) , 5 ⁇ 6 ⁇ 10 5 cells / mL cell density in adherent cells dish (diameter 10 mL to each dish of 10 cm, CORNING) After incubating overnight in a CO 2 incubator (37 ° C, 5% CO 2 ), the medium is removed by suction and CHO-S-SFM-II (Invitrogen) medium 6.9 mL was added.
  • the prepared plasmid was introduced into cells by the lipofection method. After collecting the resulting culture supernatant, centrifugation (about 2000 g, 5 min, room temperature) to remove the cells, culture supernatants were sterilized through further 0.22 ⁇ m filter MILLEX (R) -GV (Millipore) Got.
  • the obtained culture supernatant was purified by a method known to those skilled in the art using rProtein A Sepharose TM Fast Flow (Amersham Biosciences).
  • the purified antibody concentration was determined by measuring the absorbance at 280 nm using a spectrophotometer. The antibody concentration was calculated from the obtained value using the extinction coefficient calculated by the PACE method (Protein Science 1995; 4: 2411-2423).
  • target antigens there are two types of target antigens: a soluble antigen in which the antigen is present in plasma and a membrane antigen in which the antigen is expressed on the cell surface.
  • the administered antibody binds to the membrane antigen on the cell surface, and then the antibody stays bound to the membrane antigen and is taken together with the antigen by internalization into intracellular endosomes, and then The antibody is transferred to the lysosome while bound to the antigen, and the antibody is degraded by the lysosome together with the antigen. Disappearance in plasma via membrane antigen internalization is called antigen-dependent disappearance and has been reported for many antibody molecules (Drug Discov Today. 2006 Jan; 11 (1-2): 81- 8).
  • One molecule of an IgG antibody binds to two molecules of antigen when bound to an antigen, and is internalized and degraded as it is by lysosomes. Therefore, in the case of a normal antibody, one molecule of IgG antibody consists of two or more molecules. The antigen cannot be neutralized (FIG. 1).
  • IgG molecules taken into endosomes by pinocytosis bind to FcRn expressed in endosomes under acidic conditions in endosomes.
  • IgG molecules that could not bind to FcRn travel to lysosomes where they are degraded, but IgG molecules bound to FcRn migrate to the cell surface and dissociate from FcRn under neutral conditions in plasma, and then return to plasma again. (FIG. 2).
  • IgG molecules bound to membrane antigens are taken into intracellular endosomes by internalization, transferred to lysosomes while being bound to antigens, and degraded.
  • IgG antibodies bind to antigens bivalently, neutralize two molecules of antigens. And then decomposed together with the antigen. If the IgG antibody can be dissociated from the antigen under acidic conditions in the endosome when it is taken into the endosome in the cell by internalization, the dissociated antibody may bind to FcRn expressed in the endosome. It is considered possible.
  • the administered antibody binds to the antigen in the plasma and stays in the plasma in the form of a complex of the antigen and the antibody.
  • antibody retention in plasma is very long due to the function of FcRn as described above (disappearance rate is very slow), whereas antigen retention in plasma is short (disappearance rate is high).
  • the bound antigen has a plasma retention similar to that of an antibody (disappearance is very slow).
  • the antigen is always produced at a constant rate in the living body, and in the absence of the antibody, the antigen is present in plasma at a concentration in which the production rate of the antigen and the disappearance rate of the antigen are balanced.
  • the neutralization effect on soluble antigens can be neutralized with a lower antibody concentration as the dissociation constant (KD) increases. However, no matter how strong the affinity is, it is less than 1/2 of the existing antigen concentration. The antibody concentration cannot neutralize the antigen (BiochemBioBiophys Res Commun. 2005 Sep 9; 334 (4): 1004-13).
  • KD dissociation constant
  • an IgG molecule to which an antigen is bound is taken into endosomes by pinocytosis in plasma and binds to FcRn expressed in the endosomes under acidic conditions in the endosomes.
  • IgG molecules bound to FcRn remain bound to the antigen, move to the cell surface and dissociate from FcRn under neutral conditions in plasma, so that IgG molecules return to plasma again while bound to the antigen. It cannot bind to a new antigen.
  • the IgG molecule can be dissociated from the antigen under acidic conditions in the endosome, the dissociated antigen cannot bind to FcRn, so that the antigen is considered to be degraded by the lysosome.
  • IgG molecules can return to plasma again by binding to FcRn.
  • the IgG molecules that have returned to the plasma have already dissociated the antigen in the endosome, they can bind to the new antigen again in the plasma. By repeating this, one molecule of IgG molecule can repeatedly bind to a soluble antigen, so that one molecule of IgG molecule can neutralize a plurality of antigens (FIG. 4). .
  • the antigen is a membrane antigen or a soluble antigen
  • IgG antibody can be dissociated from the antigen under acidic conditions in the endosome, one IgG molecule will repeatedly neutralize the antigen. It was thought that this could be achieved.
  • the binding between the antigen and the antibody needs to be significantly weaker than under neutral conditions under acidic conditions. Since it is necessary to neutralize the membrane antigen on the cell surface, it is necessary to bind strongly to the antigen at pH 7.4, which is the cell surface pH. It is reported that the pH in endosome is generally pH 5.5 to pH 6.0 (NatNRev Mol Cell Biol.
  • An antibody that binds weakly to an antigen at pH 6.0 is considered to dissociate from the antigen under acidic conditions within the endosome. That is, if an antibody binds strongly to an antigen at pH 7.4, which is the cell surface pH, and weakly binds to an antigen at pH 5.5 to pH 6.0, which is the pH within the endosome, there are multiple IgG molecules. It was considered possible to neutralize individual antigens and improve pharmacokinetics.
  • protein-protein interaction consists of hydrophobic interaction, electrostatic interaction, and hydrogen bond, and the strength of the bond is generally expressed by the affinity constant or the apparent avidity.
  • PH-dependent binding whose binding strength changes between neutral (pH 7.4) and acidic (pH 5.5 to pH 6.0), exists in naturally occurring protein-protein interactions .
  • IgG molecule and FcRn known as an IgG molecule salvage receptor bind strongly under acidic conditions (pH 5.5 to pH 6.0), and bind extremely under neutral conditions (pH 7.4). weak.
  • histidine residues are involved in the interaction.
  • the pKa of histidine residues is in the vicinity of 6.0 to 6.5, the dissociation state of protons of histidine residues between neutral conditions (pH 7.4) and acidic conditions (pH 5.5 to pH 6.0) Change.
  • the histidine residue is neutral and functions as a hydrogen acceptor under neutral conditions (pH 7.4), and functions as a hydrogen atom acceptor, and under acidic conditions (pH 5.5 to pH 6.0) has a positive charge and hydrogen. Functions as an atomic donor.
  • IgG-FcRn interaction described above, it has been reported that histidine residues present on the IgG side are involved in pH-dependent binding (Mol Cell. 2001 Apr; 7 (4): 867-77. ).
  • IL-6 receptor exists in the body in the form of both soluble IL-6 receptor and membrane IL-6 receptor (Nat Clin Pract Rheumatol. 2006 Nov; 2 (11): 619-26.).
  • Anti-IL-6 receptor antibodies bind to both soluble and membrane-type IL-6 receptors and neutralize their biological effects.
  • the anti-IL-6 receptor antibody binds to the membrane IL-6 receptor, and then is taken into the endosome in the cell by internalization while binding to the membrane IL-6 receptor. It is thought that it moves to the lysosome while bound to the -6 receptor and is degraded by the lysosome together.
  • humanized anti-IL-6 receptor antibodies show non-linear clearance, and it has been reported that antigen-dependent loss greatly contributes to the disappearance of humanized anti-IL-6 receptor antibody (The Journal of Rheumatology, 2003, 30; 71426-1435). That is, one molecule of a humanized anti-IL-6 receptor antibody binds to one or two membrane-type IL-6 receptors (monovalent or bivalent), and is considered to be degraded by lysosomes after internalization. .
  • a modified antibody that greatly reduces only binding under acidic conditions while maintaining binding under neutral conditions of natural humanized anti-IL-6 receptor antibody
  • one molecule of humanized anti-IL-6 receptor antibody can neutralize multiple molecules of IL-6 receptor, thereby comparing with natural humanized anti-IL-6 receptor antibody.
  • the pH-dependent binding anti-IL-6 receptor antibody was considered to be able to improve the persistence of the neutralizing effect at the same dose in vivo.
  • H3pI amino acid sequence SEQ ID NO: 3
  • L73 amino acid sequence SEQ ID NO: 6
  • H3pI / L73 expression vector The amino acid modification for preparing the modified antibody was performed at the selected site. Mutations were introduced into H53 (base sequence SEQ ID NO: 13) and PF1L (base sequence SEQ ID NO: 14) prepared in Example 1, and H3pI (amino acid sequence SEQ ID NO: 3) and L73 (amino acid sequence SEQ ID NO: 6). ) was produced. Specifically, using the QuikChange Site-Directed Mutagenesis Kit (Stratagene), it was prepared by the method described in the attached instructions, the resulting plasmid fragment was inserted into an animal cell expression vector, and the target H chain expression vector and L A chain expression vector was prepared. The base sequence of the obtained expression vector was determined by a method known to those skilled in the art. Expression and purification of H3pI / L73 using H3pI as the H chain and L73 as the L chain were carried out by the method described in Example 1.
  • Example 3 Addition of pH-dependent antigen-binding ability by modification of CDR His using phage display technology Preparation of scFv molecule of humanized PM1 antibody
  • the humanized PM1 antibody (Cancer Res. 1993 Feb 15; 53 (4): 851-6), which is a humanized anti-IL-6R antibody, was converted to scFv.
  • VH and VL regions were amplified by PCR, and humanized PM1 HL scFv having a linker sequence GGGGSGGGGSGGGGS (SEQ ID NO: 15) between VH and VL was prepared.
  • the histidine library in which one of the CDR amino acids becomes histidine was prepared by PCR using the prepared humanized PM1 HL scFv DNA as a template.
  • the library part is constructed by PCR reaction using the CAT primer which is the codon corresponding to histidine as the codon of the amino acid to be libraryed, the other part is prepared by ordinary PCR and ligated by assemble PCR method It was constructed.
  • the constructed library was digested with Sfi I, inserted into the phagemide vector pELBG lacI vector similarly digested with Sfi I, and transformed into XL1-Blue (stratagene).
  • the obtained colonies were used for antigen binding evaluation and HL scFv sequence analysis by phage ELISA.
  • a phage-ELISA using a plate coated with SR344 at 1 ⁇ g / mL was performed.
  • a clone in which binding to SR344 was observed was subjected to sequence analysis using specific primers.
  • Phage titer was determined by ELISA using anti-Etag antibody (GE Healthcare) and anti-M13 antibody (GE Healthcare). Using this value, from the results of phage ELISA for SR344, a place where the binding ability was not significantly changed even when the CDR residue was replaced with histidine was selected as compared with humanized PM1 HL scFv. These locations are shown in Table 2. Numbering of each residue was in accordance with Kabat numbering (Kabat EA et al. 1991. Sequences of Proteins of Immunological Interest.NIH).
  • CDR histidine modified library As shown in Table 2, the amino acid of the CDR residue (position where histidine can be introduced) that does not change greatly in binding ability even if it is substituted with histidine is the original sequence (natural sequence) or histidine. Designed a library. Based on the sequences of the H chain PF1H and L chain PF1L prepared in Example 1, the library was constructed so that the original sequence or histidine (either the original sequence or histidine) was obtained at the library location. .
  • the library part is constructed by PCR reaction using primers designed to be the original amino acid codon or histidine codon, and the rest of the site is designated as normal PCR or library part. Similarly, it was prepared by a PCR reaction using a synthetic primer and ligated by an assemble PCR method (J. Mol. Biol 1996); 256: 77-88).
  • HL scFv was restored by PCR using the obtained DNA pool as a template and specific primers. Digested with Sfi I, inserted into the phagemidide vector pELBG lacI vector similarly digested with Sfi I, and transformed into XL1-Blue (stratagene).
  • E. coli containing the desired plasmid was grown to 0.4-0.6 OD / mL in 2YT / 100 ⁇ g / mL ampicillin / 2% glucose medium.
  • Helper phage (M13KO7, 4.5x10 11 pfu) was added to it, followed by static culture at 37 ° C for 30 minutes and shaking culture at 37 ° C for 30 minutes, then transferred to a 50 mL Falcon tube and centrifuged at 3000 rpm for 10 minutes. Resuspended in 2YT / 100 ⁇ g / mL ampicillin / 25 ⁇ g / mL kanamycin / 0.5 mM IPTG and grown overnight at 30 ° C.
  • the phage solution was prepared by precipitating an overnight culture solution with 2.5M NaCl / 10% PEG and diluting with PBS to obtain a phage library solution.
  • 10% M-PBS PBS containing 10% skim milk
  • 1 M M Tris-HCl were added to the phage library solution to a final concentration of 2.5% M-PBS, pH 7.4.
  • Panning was performed using a general method of panning using an antigen immobilized on magnetic beads (J ⁇ Immunol Methods. 2008 Mar 20; 332 (1-2): 2-9., J Immunol Methods. 2001 Jan 1; 247 (1-2): 191-203., Biotechnol Prog. 2002 Mar-Apr; 18 (2): 212-20.).
  • biotin-labeled SR344 was added to the prepared phage library and contacted with the antigen at 37 ° C. for 60 minutes.
  • Streptavidin coated beads (Dynal M-280) washed with 5% M-PBS (PBS containing 5% skim milk) was added and allowed to bind at 37 ° C for 15 minutes.
  • the beads were washed five times with 0.5 mL of PBST (PBS containing 0.1% Tween-20, pH 7.4) and PBS (pH 7.4).
  • the beads were suspended at 37 ° C. in 1 mL of PBS (pH 5.5), and the phages were collected immediately.
  • the collected phage solution was infected by adding it to log-phase growth phase (OD600 0.4-0.5) XL1-Blue 10 mL and allowing to stand at 37 ° C for 30 minutes.
  • Infected E. coli was plated on 2YT / 100 ⁇ g / mL ampicillin / 2% glucose plates of 225 mm ⁇ x225 mm. The culture was started again from this Escherichia coli, and phages were cultured in the same manner as described above, and panning was repeated 8 times.
  • the medium was changed to 300 ⁇ L of 2YT / 100 ⁇ g / mL ampicillin / 25 ⁇ g / mL kanamycin / 0.5 mM IPTG. Then, it culture
  • panning with an antigen immobilized on magnetic beads or panning with an antigen immobilized on a plate collects “all” phages dissociated under acidic conditions.
  • elution is started by flowing a buffer solution under acidic conditions through the column, and only the “appropriate fraction” is recovered, so that it is possible to selectively recover phages having strong pH-dependent binding ability. Conceivable.
  • a column on which SR344 as an antigen was immobilized was prepared. 200 ⁇ L Streptavidin Sepharose (GE al Healthcare) was washed with 1 mL PBS, suspended in 500 ⁇ L PBS, and contacted with biotin-labeled SR344 400 pmol at room temperature for 1 hour. Thereafter, the above-mentioned sepharose was filled in an empty column (Amersham Pharmcia Biotech), and the column was washed with about 3 mL of PBS. The above PEG-precipitated library phage was diluted 1/25 with 0.5% BSA-PBS (pH 7.4), passed through a 0.45 nm filter, and added to the column.
  • BSA-PBS pH 7.4
  • the infected E. coli was plated on a 2YT / 100 ⁇ g / mL ampicillin / 2% glucose 225 mm ⁇ x225 mm plate. The culture was started again from this Escherichia coli, phages were cultured in the same manner as described above, and panning was repeated 6 times.
  • phage obtained was evaluated by phage ELISA.
  • sequence analysis was performed using specific primers.
  • a plurality of clones were found that showed strong pH-dependent binding compared to WT.
  • clone CL5 H chain CLH5, L chain CLL5
  • CLL5 amino acid sequence SEQ ID NO: 8
  • FIG. 6 compared with WT, clone CL5 (H chain CLH5, L chain CLL5) (CLH5: amino acid sequence SEQ ID NO: 5, CLL5: amino acid sequence SEQ ID NO: 8) has particularly strong pH-dependent binding. confirmed. It was found that antibodies showing strong pH-dependent binding that could not be obtained by panning using antigen immobilized on general magnetic beads can be obtained by panning using a column with immobilized antigen.
  • Example 4 Expression and purification of histidine variant of humanized IL-6 receptor antibody
  • Preparation, expression, and purification of humanized IL-6 receptor antibody histidine-modified antibody expression vectors VH and VL were each obtained by PCR in order to convert IgG into clones that were strongly pH-dependent in phage ELISA. Amplified and inserted into an animal cell expression vector by XhoI / NheI digestion and EcoRI digestion. The base sequence of each DNA fragment was determined by a method known to those skilled in the art. CLH5 / L73 using CLH5 as the H chain and L73 obtained in Example 2 as the L chain was expressed and purified as IgG. Expression and purification were performed by the method described in Example 1.
  • An antibody having a higher pH dependency was prepared by combining the mutation sites. From the location where His was enriched in the phage library, structural information, etc., H32p, H58, H62, and H102 of H3pI obtained in Example 2 as H chains were replaced with histidine, and H95 was replaced with valine, and H99 was replaced with H99. Substitution with isoleucine produced H170 (SEQ ID NO: 4).
  • the modified product was produced by the method described in Example 1.
  • L82 (SEQ ID NO: 7) was prepared by substituting aspartic acid for the 28th histidine of L73 prepared in Example 2 as the L chain.
  • the modified product was produced by the method described in Example 1. By the method described in Example 1, H170 / L82 using H170 as the H chain and L82 as the L chain was expressed and purified as IgG.
  • Example 5 Evaluation of IL-6R neutralization activity of pH-dependent binding antibody Evaluation of human IL-6 receptor neutralizing activity of IgG clones Humanized PM1 antibody (wild type: WT) and H3pI / L73, CLH5 / L73, H170 / L82 prepared in Examples 2 and 4 IL-6 receptor neutralizing activity was evaluated.
  • IL-6 receptor neutralizing activity was evaluated using BaF3 / gp130 showing IL-6 / IL-6 receptor-dependent proliferation.
  • BaF3 / gp130 After washing BaF3 / gp130 three times with RPMI1640 medium containing 10% FBS, 60 ng / mL human interleukin-6 (TORAY), 60 ng / mL recombination is possible to obtain 5 x 10 4 cells / mL
  • the suspension was suspended in RPMI1640 medium containing soluble human IL-6 receptor (SR344) and 10% FBS, and 50 ⁇ L was dispensed into each well of a 96 well-plate (CORNING).
  • the purified antibody was diluted with RPMI1640 containing 10% FBS, and 50 ⁇ L was mixed with each well.
  • WST-8 reagent Cell Counting Kit-8, Dojindo Laboratories, Inc.
  • Absorbance at 450 nm was measured using SUNRISE CLASSIC (TECAN). After culturing for 2 hours, the absorbance at 450 nm (reference wavelength: 620 nm) was measured again, and IL-6 receptor neutralizing activity was evaluated using the change in absorbance during 2 hours as an index.
  • H3pI / L73, CLH5 / L73, and H170 / L82 have equivalent biological neutralizing activity as compared with humanized PM1 antibody (wild type: WT). It was done.
  • Example 6 Biacore analysis of pH-dependent binding antibody Analysis of pH-dependent binding clone binding to soluble IL-6 receptor Humanized PM1 antibody (wild type: WT) and H3pI / L73, CLH5 / L73, H170 / L82 prepared in Examples 2 and 4
  • the kinetic analysis of the antigen-antibody reaction at pH 5.8 and pH 7.4 was performed on 4 types using Biacore T100 (GE Healthcare) (buffer was 10 mM MES pH 7.4 or pH 5.8, 150 mM NaCl, 0.05% Tween20).
  • the pH-dependent binding (affinity) of H3pI / L73, H170 / L82 and CLH5 / L73 to SR344 is 41 times, 394 times and 66 times, respectively. All clones showed pH-dependent binding more than 15 times higher than WT.
  • SR344 was biotinylated according to a method known to those skilled in the art, and biotinylated SR344 was immobilized on the sensor chip via streptavidin using the affinity between streptavidin and biotin.
  • the order of pH-dependent binding / dissociation was different between soluble IL-6 receptor and membrane IL-6 receptor.
  • H170 / L82 which showed the highest pH-dependent binding in the binding analysis to soluble IL-6 receptor, was found to show the lowest pH-dependent binding in the binding analysis to membrane IL-6 receptor. became.
  • IgG molecules bind to soluble antigens with an affinity, whereas they bind to membrane antigens with an avidity. It was considered that the difference in binding mode between such soluble and membrane antigens affected the pH-dependent binding of H170 / L82.
  • Example 7 Confirmation of multiple binding to antigen by pH-dependent binding antibody
  • a pH-dependent binding antibody can bind to an antigen multiple times. That is, the pH-dependent binding antibody to which the antigen is bound is taken into the endosome nonspecifically, but dissociates from the soluble antigen under acidic conditions in the endosome. The antibody returns to plasma again by binding to FcRn, and since the antigen does not bind to the antibody that has returned to plasma, it can bind to a new antigen again. By repeating this, the pH-dependent binding antibody can bind to the antigen multiple times.
  • IgG antibodies that do not have pH-dependent binding do not dissociate all antigens from the antibodies under endosomal acidic conditions, so antibodies that have returned to the plasma by FcRn remain bound to the antigen, and again It cannot bind to a new antigen. Therefore, in most cases, one molecule of IgG antibody can neutralize only two antigens (when bound bivalently).
  • the three types of pH-dependent binding antibodies H3pI / L73, CLH5 / L73, and H170 / L82 prepared in Examples 2 and 4 are antigens compared to the humanized PM1 antibody (wild type: WT). We evaluated whether it was possible to bind to SR344 multiple times.
  • Biacore GEcareHealthcare
  • Biacore GEcareHealthcare
  • the antibody to be evaluated was bound to the sensor chip immobilized with recomb-protein A / G (Pierce) by the amine coupling method, and a mobile phase at pH 7.4 was allowed to flow (step 1).
  • the SR344 solution adjusted to pH 7.4 was run as an analyte, and SR344 was bound to the antibody at pH 7.4 (step 2). This binding at pH 7.4 mimics binding to antigen in plasma.
  • step 3 only the buffer adjusted to pH 5.8 (solution not containing SR344) was flowed as an analyte to expose the antigen bound to the antibody under acidic conditions (step 3).
  • This dissociation at pH 5.8 mimics the binding state of the antibody-antigen complex within the endosome.
  • Step 2 was performed again. This mimics the rebound of the antibody returned to plasma by FcRn to the new antigen.
  • Step 2 was performed again to expose the antibody-antigen complex under acidic conditions.
  • the antibody is repeatedly taken into the endosome by pinocytosis and returned to the plasma by FcRn (Nat Rev Immunol. 2007 Sep; 7 (9): 715-25) It is possible to imitate the state in the living body.
  • the ability to bind to SR344, an antigen at pH 5.8 and pH 7.4 was analyzed multiple times for the prepared pH-dependent binding clones. Specifically, it was performed as follows. All measurements were performed at 37 ° C, and on the sensor chip on which recomb protein A / G (Pierce) was immobilized by the amine coupling method, the mobile phase buffer was 10 M MES pH5.8, 150 mM NaCl, 0.05% The antibody used as the above sample was bound with Tween20 (step 1).
  • SR344 prepared as an analyte at a concentration of about 40 nM was injected for 3 minutes under the condition of pH 7.4 (injected SR344 buffer was 10 M MES pH 7.4, 150 mM NaCl, 0.05% Tween 20). (Step 2). Thereafter, the injection of SR344 was stopped, and the antibody / SR344 complex was exposed to acidic conditions by flowing a mobile phase having a pH of 5.8 for about 70 seconds (step 3). This combination (step 2) and acid exposure (step 3) were taken as one set, and this was repeated continuously for 10 sets. The sensorgram was observed in real time and shown in FIG.
  • the SR344 binding amount for each set of each sample was calculated using Biacore T100 Evaluation Software (Biacore), and the integrated values of 10 sets over time are shown in FIG.
  • the integrated RU value obtained in the 10th set corresponds to the total amount of antigen bound in 10 cycles.
  • pH-dependent binding clones especially H170 / L82 and CLH5 / L73, have the largest amount of total antigen bound, and can repeatedly bind to about four times the amount of antigen compared to WT. It was shown to be possible. From this, it was clarified that by giving pH-dependent binding to WT, it becomes possible to repeatedly bind to an antigen and neutralize a plurality of antigens.
  • PK / PD test of pH-dependent binding antibody using human IL-6 receptor transgenic mice IL-6 receptor is a form of both soluble IL-6 receptor and membrane IL-6 receptor in vivo.
  • Anti-IL-6 receptor antibodies bind to both soluble and membrane-type IL-6 receptors and neutralize their biological effects.
  • the anti-IL-6 receptor antibody binds to the membrane IL-6 receptor, and then is taken into the endosome in the cell by internalization while binding to the membrane IL-6 receptor. It is thought that it moves to the lysosome while bound to the -6 receptor and is degraded by the lysosome together.
  • the pH-dependent binding anti-IL-6 receptor antibodies H3pI / L73, CLH5 / L73, and H170 / L82 evaluated in Example 6 return to plasma via FcRn by dissociating under acidic conditions in the endosome. If it is possible, the antibody returned to the plasma can bind to the antigen again, and a plurality of membrane-type IL-6 receptors can be neutralized by one antibody molecule. Whether or not the pH-dependent binding anti-IL-6 receptor antibodies produced by dissociation under acidic conditions in endosomes and returning to plasma via FcRn can be achieved is that the pharmacokinetics of these antibodies is WT It is possible by evaluating whether it is improved by comparison.
  • human IL-6 receptor transgenic mice (hIL-) were used for humanized PM1 antibody (wild type: WT) and four types of H3pI / L73, CLH5 / L73, and H170 / L82 prepared in Examples 2 and 4.
  • WT and H3pI / L73, CLH5 / L73, and H170 / L82 were administered to hIL-6R tg mice as a single intravenous dose of 25 mg / kg, and blood was collected before administration and over time. The collected blood was immediately centrifuged at 4 ° C. and 15,000 rpm for 15 minutes to obtain plasma. The separated plasma was stored in a freezer set to ⁇ 20 ° C. or lower until measurement was performed.
  • the mouse plasma concentration was measured by ELISA. Calibration curve samples having plasma concentrations of 6.4, 3.2, 1.6, 0.8, 0.4, 0.2, and 0.1 ⁇ g / mL were prepared.
  • An immunoplate (Nunc-Immuno Plate, MaxiSorp (Nalge nunc ⁇ International) manufactured by immobilizing calibration curve samples and mouse plasma measurement samples with Anti-human IgG ( ⁇ -chain specific) F (ab ') 2 (Sigma) ))
  • Goat Anti-Human IgG-BIOT Southern Biotechnology Associates
  • Streptavidin-alkaline phosphatase conjugate (Roche Diagnostics)
  • BluePhos Microwell Phosphatase Substrates A color reaction was performed using System (Kirkegaard® & Perry® Laboratories) as a substrate, and the absorbance at 650 nm was measured with a microplate reader.
  • the mouse plasma concentration was calculated from the absorbance of the calibration curve using the analysis software SOFTmax PRO (Molecular Devices). Changes in plasma concentrations of WT and H3pI / L73, CLH5 / L73, and H170 / L82 are shown in FIG.
  • H3pI / L73 Compared to WT, the pharmacokinetics of all H3pI / L73, CLH5 / L73, and H170 / L82 were improved. Among them, H3pI / L73 and CLH5 / L73 showed significant improvement in pharmacokinetics.
  • Natural anti-IL-6 receptor antibody (WT) bound to membrane-type IL-6 receptor is taken up into endosomes in cells by internalization, transferred to lysosomes while being bound to antigens, and is degraded in plasma. short.
  • H3pI / L73, CLH5 / L73, and H170 / L82 all had improved pharmacokinetics compared to WT, but H170 / L82 had a smaller plasma retention extension effect than H3pI / L73 and CLH5 / L73.
  • IgG molecules normally bind to membrane antigens in a bivalent manner
  • anti-IL-6 receptor antibodies also bind to membrane IL-6 receptors in an avidity and are then internalized. It is done.
  • H170 / L82 rapidly dissociates from the IL-6 receptor at pH 5.8 upon binding to the soluble IL-6 receptor (FIG. 9).
  • Example 9 PK / PD test of cynomolgus monkey with pH-dependent binding antibody
  • the 6-receptor antibody returned to the plasma again via FcRn by dissociating from the membrane-type IL-6 receptor, which is an antigen, under acidic conditions in the endosome. If the antibody that has returned to plasma again can bind to the membrane IL-6 receptor again, the pH-dependent binding anti-IL-6 receptor antibody can be administered at the same dose as compared to the natural anti-IL-6 receptor antibody. It seems that neutralization of the membrane-type IL-6 receptor, which is an antigen, lasts longer. In addition, since IL-6 receptor also has soluble IL-6 receptor, neutralization of soluble IL-6 receptor may continue longer at the same dose.
  • WT and H3pI / L73 were evaluated for pharmacokinetics in cynomolgus monkeys.
  • WT and H3pI / L73 were administered as a single intravenous dose to cynomolgus monkeys at 1 mg / kg, and blood was collected before and over time. The collected blood was immediately centrifuged at 4 ° C. and 15,000 rpm for 15 minutes to obtain plasma. The separated plasma was stored in a freezer set to ⁇ 20 ° C. or lower until measurement was performed.
  • Cynomolgus monkey plasma concentration was measured by ELISA.
  • Anti-Human IgG ( ⁇ -chain specific) F (ab ') 2 Fragment of Antibody (manufactured by SIGMA) is dispensed into Nunc-Immuno Plate and MaxiSoup (manufactured by Nalge nunc ⁇ International), and left at 4 ° C overnight.
  • An Anti-HumanuIgG solid phased plate was prepared.
  • Biotinylated Anti-human IL-6 Anti-antibody R & D was allowed to react at room temperature for 1 hour, and Streptavidin-PolyHRP80 (Stereospecific Detection Technologies) was allowed to react at room temperature for 1 hour, and TMB-One-Component-HRP-Microwell Substrate (BioFX A color reaction was performed using Laboratories as a substrate, and the reaction was stopped with 1N-Sulfuric acid (manufactured by Showa Chemical), and the absorbance at 450 nm was measured with a microplate reader. The cynomolgus monkey plasma concentration was calculated from the absorbance of the calibration curve using analysis software SOFTmax®PRO (Molecular Devices).
  • H3pI / L73 significantly improved pharmacokinetics compared to WT. Since the pharmacokinetics of H3pI / L73, a pH-dependent binding anti-IL-6 receptor antibody, was greatly improved, H3pI / L73 dissociates from the membrane IL-6 receptor, an antigen, under acidic conditions in endosomes. It was thought that it was returned to plasma again via FcRn.
  • CRP C-reactive protein
  • cynomolgus monkey IL-6 containing cynomolgus monkey plasma (cyno.IL-6 prepared in Example 1) 5 ⁇ g / kg It was subcutaneously administered daily to the lumbar region. Blood was collected from the saphenous vein at 24-hour intervals (day 4 to day 11) immediately after the start of cynomolgus monkey IL-6 administration (day 3) and separated into plasma. The CRP concentration of each individual was measured with Sias R CRP (Kanto Chemical Co., Inc.) using an automatic analyzer (TBA-120FR, Toshiba Medical Systems Co., Ltd.). FIG.
  • H3pI / L73 shows changes in CRP concentration during induction with cynomolgus monkey IL-6 of WT and H3pI / L73.
  • H3pI / L73 significantly extended the period of CRP suppression.
  • the pH-dependent binding anti-IL-6 receptor antibody H3pI / L73 returns to plasma again via FcRn by dissociating from the membrane-type IL-6 receptor, which is an antigen, under acidic conditions in the endosome. It was thought that CRP production was suppressed for a longer time than WT by binding to the membrane-type IL-6 receptor and neutralizing again.
  • H3pI / L73 can bind to and neutralize membrane-type IL-6 receptor multiple times with one antibody molecule.
  • H3pI / L73 has a longer time to suppress the production of CRP than WT, so H3pI / L73 has a membrane-type IL-6 receptor, which is an antigen rather than WT, bound by an antibody. It was shown that the time was extended.
  • the concentration of cynomolgus monkey soluble IL-6 receptor in the protein A path solution should be measured. Can measure the concentration of unbound soluble IL-6 receptor.
  • a cynomolgus monkey IL-6 receptor calibration curve sample prepared at 4000, 2000, 1000, 500, 250, 125, 62.5 pg / mL and the above-mentioned Protein A-treated plasma sample with SULFO-TAG NHS Ester (manufactured by Meso Scale ⁇ Discovery) Ruthenated Monoclonal-Anti-human IL-6R-Antibody (R & D) and Biotinylated Anti-human IL-6-R-Antibody (R & D) were mixed and reacted at room temperature for 1 hour. Thereafter, it was dispensed into SA-coated standard MA2400-96-well plate (manufactured by Meso-Scale Discovery).
  • H3pI / L73 dissociates from the soluble IL-6 receptor, which is an antigen, under acidic conditions in the endosome and returns to plasma again via FcRn. It was thought that it was neutralized by binding to soluble IL-6 receptor again.
  • H3pI / L73 has a longer time to suppress the non-binding cynomolgus monkey soluble IL-6 receptor, so H3pI / L73 is a soluble IL that is an antigen than WT. It has been shown that the time during which the -6 receptor is bound by the antibody is prolonged.
  • wild-type anti-IL-6 receptor antibody strongly binds to antigen at pH 7.4, which is the pH in plasma, and weakens binding to antigen at pH 5.8, which is the pH within endosome.
  • the pH-dependent binding anti-IL-6 receptor antibody is the time until the antibody disappears from plasma and the time during which soluble IL-6 receptor and membrane IL-6 receptor are bound by the antibody in vivo. Was found to extend significantly. As a result, it is possible to reduce the dose and frequency of administration to the patient, and as a result, it is possible to reduce the total dose. Therefore, the pH-dependent binding anti-IL-6 receptor antibody is used as an IL-6 antagonist. It is considered to be particularly excellent as a pharmaceutical product.
  • Example 10 Enhancement of pH-dependent binding to membrane-type IL-6 receptor by optimization of variable region Optimization of variable regions H3pI / L73 and CLH5 / L82
  • Example 9 it was shown that an antibody having a pH-dependent binding ability exerted an excellent effect. Therefore, in order to further improve the pH-dependent binding ability
  • mutations were introduced into the CDR sequence of CLH5 obtained in Example 3 to prepare VH1-IgG1 (SEQ ID NO: 21) and VH2-IgG1 (SEQ ID NO: 22).
  • mutations were introduced into the framework sequence and CDR sequence of H3pI to prepare VH3-IgG1 (SEQ ID NO: 23) and VH4-IgG1 (SEQ ID NO: 24) as modified H chains. Mutations were introduced into the CDR sequences of L73 and L82 to prepare VL1-CK (SEQ ID NO: 25), VL2-CK (SEQ ID NO: 26), and VL3-CK (SEQ ID NO: 27) as modified L chains.
  • a mutant is prepared by the method described in the attached instructions, the resulting plasmid fragment is inserted into a mammalian cell expression vector, and the target H chain An expression vector and an L chain expression vector were prepared.
  • the base sequence of the obtained expression vector was determined by a method known to those skilled in the art.
  • Fv2-IgG1 and Fv4-IgG1 were expressed and purified. Expression and purification were performed by the method described in Example 1.
  • the dissociation constants (affinity, KD value) of WT, H3pI / L73-IgG1, Fv2-IgG1, Fv4-IgG1 for SR344 are 2.7 nM, 1.4 nM, 2.0 nM, 1.4, respectively.
  • the value was almost the same as that of nM, and it was shown that Fv2-IgG1 and Fv4-IgG1 have the same or better binding ability to soluble IL-6 receptor than WT.
  • SR344 was biotinylated according to a method known to those skilled in the art, and biotinylated SR344 was immobilized on the sensor chip via streptavidin using the affinity between streptavidin and biotin.
  • PH 5.8 when the sample concentration is 0.25 ⁇ g / mL, bound with 10 mM MES pH 7.4, 150 mM NaCl, 0.05% Tween 20, and dissociated with 10 mM MES pH 5.8, 150 mM NaCl, 0.05% Tween 20.
  • the dissociation rate constant (k d (1 / s)) at pH 5.8 was calculated by fitting only the dissociation phase in Biacore T100 Evaluation Software (GE Healthcare).
  • the pH dependence of binding to four types of membrane type IL-6 receptors of WT, H3pI / L73-IgG1, Fv2-IgG1, and Fv4-IgG1 to SR344 is 1.0 times and 2.59 times, respectively.
  • Fv2-IgG1 and Fv4-IgG1 showed higher pH-dependent dissociation from membrane-type IL-6 receptor than H3pI / L73-IgG1.
  • Fv2-IgG1 and Fv4-IgG1 maintain stronger affinity to soluble IL-6 receptor than WT, but have stronger pH-dependent binding to membrane IL-6 receptor than H3pI / L73-IgG1 It became clear to show.
  • Example 11 PK / PD test using human IL-6 receptor transgenic mouse for pH-dependent binding antibody with optimized variable region Using human IL-6 receptor transgenic mouse used in Example 8, Example The pharmacokinetics of Fv2-IgG1, Fv4-IgG1, and WT and H3pI / L73-IgG1 prepared and evaluated in 10 were evaluated. WT and H3pI / L73-IgG1, Fv2-IgG1, and Fv4-IgG1 were administered to hIL-6R tg mice as a single intravenous dose at 25 mg / kg, and the plasma concentration of each antibody was measured as in Example 8. went.
  • FIG. 18 shows changes in plasma concentrations of WT and H3pI / L73-IgG1, Fv2-IgG1, and Fv4-IgG1.
  • Example 8 the pharmacokinetics of H3pI / L73-IgG1 were improved compared to WT, and Fv2-IgG1 and Fv4-IgG1 further improved the pharmacokinetics of H3pI / L73-IgG1.
  • the unbound IL-6 receptor concentration measured in cynomolgus monkeys in Example 9 was also measured in the same manner in hIL-6R tg mice of this test. Fv2-IgG1 and Fv4-IgG1 were more potent than H3pI / L73-IgG1. Prolonged neutralization period of soluble IL-6 receptor was confirmed (data not shown).
  • Example 12 Improvement of pH-dependent binding to membrane-type IL-6 receptor by optimization of constant region Optimization of constant region of Fv4-IgG1 Generally, it is reported that the binding to the membrane-type antigen varies depending on the constant region of the antibody (J Immunol Methods. 1997 Jun 23; 205 (1): 67-72.) .
  • the constant region of the pH-dependent binding antibody prepared so far was IgG1 isotype. Therefore, optimization of the constant region was investigated to improve pH-dependent binding to membrane-type IL-6 receptor.
  • a mutation was introduced into a constant region IgG2 (SEQ ID NO: 28) as a natural type constant region to prepare a constant region IgG2 ⁇ GK (SEQ ID NO: 29).
  • a mutation was further introduced into the constant region IgG2 ⁇ GK to prepare a constant region M58 (SEQ ID NO: 30). Further mutations were introduced into the constant region IgG2 and the constant region M58 to prepare constant regions M71 (SEQ ID NO: 31) and M73 (SEQ ID NO: 32).
  • VH3-IgG2 ⁇ GK (SEQ ID NO: 33) in which the constant region of VH3-IgG1 prepared in Example 10 was replaced with IgG2 ⁇ GK
  • VH3-M58 (SEQ ID NO: 34) in which the constant region was replaced with M58
  • constant region were replaced with M73 VH3-M73 (SEQ ID NO: 35) was prepared.
  • an expression vector was constructed in which the constant region of VH3 used in Example 10 was replaced with the target constant region by NheI / NotI digestion and ligation.
  • the base sequence of the obtained expression vector was determined by a method known to those skilled in the art.
  • VH3-IgG2 ⁇ GK (SEQ ID NO: 33) as the H chain
  • Fv4-IgG2 using VL3-CK SEQ ID NO: 27
  • VH3-M58 SEQ ID NO: 34
  • VL3- VH3- as the L chain
  • Expression and purification of Fv4-M58 using CK SEQ ID NO: 27
  • VH3-M73 SEQ ID NO: 35
  • Fv4-M73 using VL3-CK SEQ ID NO: 27
  • the dissociation constants (affinity, KD value) of Fv4-IgG1, Fv4-IgG2, Fv4-M58, and Fv4-M73 for SR344 are 1.4 nM, 1.3 nM, 1.4 nM, and 1.4, respectively.
  • the value was almost equivalent to nM, and it was shown that the binding ability of the pH-dependent binding clone to SR344 to soluble IL-6 receptor did not change even when the constant region was altered. From this, it was considered that the ability of Fv1, Fv2, and Fv3 to bind to soluble IL-6 receptor did not change even when the constant region was modified.
  • FIG. 19 shows the results of observing the pH-dependent dissociation of each clone in the mobile phase at pH 5.8 after injecting pH-dependent binding clones under the condition of pH 7.4 and binding with SR344. Further, analysis was performed in the same manner as in Example 10, and the pH-dependent dissociation rate of each clone is shown in Table 10.
  • PK / PD test using human IL-6 receptor transgenic mouse for pH dependent binding antibody with optimized constant region Human IL-6 receptor transgenic mouse (hIL-6R tg mouse used in Example 8) ) was used to evaluate the pharmacokinetics of Fv4-IgG1, Fv4-IgG2, and Fv4-M58 prepared in Example 13, and the influence of the constant region on the pharmacokinetics was examined.
  • WT and Fv4-IgG1, Fv4-IgG2, and Fv4-M58 were administered to hIL-6R tg mice once at 25 mg / kg intravenously, and the plasma concentration of each antibody was measured in the same manner as in Example 8. .
  • the changes in plasma concentrations of WT and Fv4-IgG1, Fv4-IgG2, and Fv4-M58 are shown in FIG.
  • Example 11 the pharmacokinetics of Fv4-IgG1 was improved compared to WT, and the pharmacokinetics of Fv4-IgG2 and Fv4-M58 were improved compared to Fv4-IgG1.
  • the unbound IL-6 receptor concentration measured in cynomolgus monkeys in Example 9 was also measured in the same manner in hIL-6R tg mice of this test.
  • Fv4-IgG2 and Fv4-M58 were more soluble than Fv4-IgG1. Prolonged neutralization period of type IL-6 receptor was confirmed (data not shown).
  • Example 14 Production of pH-dependent binding antibody with optimized variable region and constant region VH2-M71 (SEQ ID NO: 36) using the same method as described above and using VH2-IgG1 constant regions as M71 and M73 ), VH2-M73 (SEQ ID NO: 37), and VH4-M71 (SEQ ID NO: 38) and VH4-M73 (SEQ ID NO: 39), in which the constant regions of VH4-IgG1 were M71 and M73, were prepared.
  • Fv1-M71 using VH2-M71 as H chain VL2-CK as L chain
  • VH2-M73 as H chain Fv1-M73 using VL2-CK as L chain
  • VH4-M71 as H chain L chain
  • Expression and purification of Fv3-M71 using VL1-CK, VH4-M73 as the H chain, and Fv3-M73 using VL1-CK as the L chain were performed. Expression and purification were performed by the method described in Example 1.
  • FIG. 21 shows the results of observing the pH-dependent dissociation of each clone at pH 5.8 of the mobile phase after injecting pH-dependent binding clones under the condition of pH 7.4 and binding with SR344.
  • Fv1-M71, Fv1-M73, Fv3-M71, Fv3-M73 are shown in FIG. 21, and the others are shown in FIGS. 17 and 19.
  • analysis was performed in the same manner as in Example 10, and the pH dependence of the dissociation rate constant for all 11 types of clones is shown in Table 12.
  • Example 9 in the cynomolgus monkey, the time until the antibody disappears from the plasma as compared with WT, and the time during which the soluble IL-6 receptor and membrane IL-6 receptor in the living body are bound by the antibody.
  • Fv1-M71, Fv1-M73, Fv2-IgG1, Fv3-M71, Fv3-M73, Fv4-IgG1, Fv4-IgG2, Fv4 -M58 and Fv4-M73 were both found to have improved pH-dependent binding to membrane IL-6 receptor.
  • VQ8F11-21 is a high-affinity anti-IL-6 receptor antibody described in US 2007/0280945 A1.
  • hIgG1 US 2007/0280945 A1, amino acid sequences 19 and 27
  • the antibody variable region was prepared by a PCR method (assembly PCR) in which synthetic oligo DNAs were combined.
  • the constant region was amplified from the expression vector used in Example 1 by PCR.
  • the antibody variable region and the constant region were combined by Assembly PCR and inserted into a mammalian expression vector.
  • the obtained H chain and L chain DNA fragments were inserted into a mammalian cell expression vector to prepare the desired H chain expression vector and L chain expression vector.
  • the base sequence of the obtained expression vector was determined by a method known to those skilled in the art. Expression and purification were performed using the prepared expression vector. Expression and purification were performed by the method described in Example 1 to obtain a high affinity high IL-6 receptor antibody (high affinity Ab).
  • Cynomolgus monkey PK / PD test pH dependent binding antibodies H3pI / L73-IgG1 and Fv1-M71, Fv1-M73, Fv2-IgG1, Fv3-M73, Fv4-M73 and known high affinity anti-IL-6 receptor antibodies The pharmacokinetics and efficacy in (high affinity Ab) cynomolgus monkeys were evaluated.
  • H3pI / L73-IgG1 and Fv1-M71, Fv1-M73, Fv2-IgG1, Fv3-M73, Fv4-M73 were administered as a single intravenous dose to cynomolgus monkeys at 0.5 mg / kg, and high affinity Ab was 1.0 mg / kg Was administered once intravenously, and blood was collected before and over time.
  • the plasma concentration of each antibody was measured in the same manner as in Example 9.
  • FIG. 21 shows changes in plasma concentrations of H3pI / L73-IgG1, Fv1-M71, Fv1-M73, Fv2-IgG1, Fv3-M73, Fv4-M73, and high affinity Ab.
  • Example 9 In order to evaluate the degree of neutralization of the cynomolgus monkey membrane-type IL-6 receptor, as in Example 9, the third to tenth days after antibody administration (for high affinity Ab, from the sixth day) Until day 10), cynomolgus monkey IL-6 5 ⁇ g / kg was subcutaneously administered every day to the lower back and the CRP concentration of each individual was measured 24 hours later. The CRP concentration transition at the time of administration of each antibody is shown in FIG. In order to evaluate the degree of neutralization of the cynomolgus monkey soluble IL-6 receptor, the concentration of unbound cynomolgus monkey soluble IL-6 receptor in cynomolgus monkey plasma was measured in the same manner as in Example 9. did. FIG. 23 shows the transition of the concentration of unbound cynomolgus monkey soluble IL-6 receptor at the time of administration of each antibody.
  • Fv1-M71, Fv1-M73, Fv2-IgG1, Fv3-M73, and Fv4-M73 all maintain high antibody plasma concentrations, CRP concentrations and non-binding types It was found that the concentration of soluble cynomolgus monkey IL-6 receptor was kept low. That is, in comparison with H3pI / L73-IgG1, the time during which the membrane IL-6 receptor and soluble IL-6 receptor are bound by the antibody (in other words, the time during which they are neutralized) is prolonged. It was shown that
  • pH-dependent binding anti-IL-6 receptor antibodies are half the dose compared to the known high-affinity anti-IL-6 receptor antibody (high affinity Ab) administered at 1.0kgmg / kg. Since neutralization effect and persistence at the same level or higher were confirmed at 0.5 mg / kg, pH-dependent binding antibodies had superior neutralization effects and persistence compared to known high affinity high IL-6 receptor antibodies It became clear to have.
  • H3pI / L73-IgG1 is the time until the antibody disappears from plasma, and the soluble IL-6 receptor and membrane IL-6 receptor in the living body depend on the antibody. It has been found that the time of binding (the persistence of the neutralizing effect) is greatly prolonged.
  • Fv1-M71, Fv1-M73, Fv2-IgG1, Fv3-M71, Fv3-M73, Fv4-IgG1, Fv4-IgG2, Fv4-M58, and Fv4-M73 have a longer neutralization effect than H3pI / L73-IgG1 When compared with WT, it is considered that the sustainability of the neutralizing effect was remarkably improved.
  • the anti-IL-6 receptor antibody has a pH dependence that strongly binds to an antigen at pH 7.4, which is a plasma pH, and weakens binding to an antigen at pH 5.8, an endosome.
  • Anti-IL-6 receptor antibody can reduce the dose and frequency of administration of anti-IL-6 receptor antibody to patients, and as a result, the total dose can be greatly reduced. It is considered to be extremely excellent as a pharmaceutical product as an antagonist.
  • Example 16 Preparation of anti-IL-6 antibody that binds in a pH-dependent manner Expression and Purification of Anti-IL-6 Antibody
  • the variable region of the humanized anti-IL-6 receptor antibody is converted to histidine and the like centering on its CDR sequence.
  • Anti-IL-6 antibody (anti-IL6 wild type consisting of H chain (WT) (amino acid sequence SEQ ID NO: 62) and L chain (WT) (amino acid sequence SEQ ID NO: 63) ), The substitution of histidine for the amino acid of CDR was introduced to give pH dependence to the binding between the antibody and IL-6. As a result of investigating the substitution of histidine for the amino acid of CDR and screening, clones showing pH-dependent binding were significantly reduced at pH 5.5 compared to binding at pH 7.4. Some were obtained. Table 13 shows histidine substitution sites in pH-dependent clones.
  • anti-IL6 clone1 consisting of H chain (c1) (amino acid sequence SEQ ID NO: 64) and L chain (c1) (amino acid sequence SEQ ID NO: 65), and H chain (c1) (amino acid sequence SEQ ID NO: 64). ) And L chain (c2) (amino acid sequence SEQ ID NO: 66).
  • Expression and purification of Anti-IL6 clone1 and anti-IL6 clone2 were performed by the method described in Example 1.
  • anti-IL-6 receptor antibodies are strongly resistant to antigens under neutral conditions in plasma by introducing substitutions for amino acids such as histidine centered on the CDR sequence. It has been shown that it is possible to produce antibodies that bind and have pH-dependent binding that reduces binding to the antigen under acidic conditions in the endosome. As shown in Examples 1 to 15, anti-IL-6 receptor antibody having pH-dependent binding repeatedly binds to IL-6 receptor and PK / PD is greatly improved. -IL6 clone1 and anti-IL6 clone2 were considered to bind to more antigens repeatedly and significantly improve PK / PD compared to anti-IL6 wild type.
  • Example 17 Preparation of anti-IL-31 receptor antibody that binds in a pH-dependent manner Expression and purification of anti-IL-31 receptor antibody
  • examples 1 to 15 in the humanized anti-IL-6 receptor antibody, histidine and the like centered on its CDR sequence against the variable region of the humanized anti-IL-6 receptor antibody. Succeeded in creating multiple antibodies with pH-dependent binding between the humanized anti-IL-6 receptor antibody and the IL-6 receptor, all of which have been transferred to the IL-6 receptor. It was found that PK / PD was greatly improved by repeated binding.
  • H chain (WT) amino acid sequence SEQ ID NO: 67
  • L chain (WT) amino acid sequence sequence
  • a gene fragment encoding the target antibody amino acid sequence was inserted into an animal cell expression vector by a method known to those skilled in the art to prepare target H chain expression vectors and L chain expression vectors.
  • the base sequence of the obtained expression vector was determined by a method known to those skilled in the art.
  • Expression and purification of Anti-IL31R wild type was carried out by the method described in Example 1.
  • Anti-IL-31 receptor antibody consisting of H chain (WT) (amino acid sequence SEQ ID NO: 67) and L chain (WT) (amino acid sequence SEQ ID NO: 68)
  • WT H chain
  • WT amino acid sequence SEQ ID NO: 68
  • anti-IL31R clone1 consisting of an H chain (c1) (amino acid sequence SEQ ID NO: 69) and an L chain (WT). Expression and purification of Anti-IL31R clone1 was performed by the method described in Example 1.
  • anti-IL-6 receptor antibody and anti-IL-6 antibody by introducing substitution of amino acid such as histidine mainly in CDR sequence, It has been shown that it is possible to produce an antibody having a pH-dependent binding that strongly binds to an antigen under sex conditions and decreases with an antigen under acidic conditions in endosomes. As shown in Examples 1 to 15, anti-IL-6 receptor antibody having pH-dependent binding repeatedly binds to IL-6 receptor and PK / PD is greatly improved. It was considered that -IL31R clone1 repeatedly binds to more antigens and significantly improves PK / PD compared to anti-IL31R wild type.
  • Example 18 Repeated binding to antigen by pH-dependent binding antibody Expression and Purification of Mouse Administered Antibody The following four types of humanized IL-6 receptor antibodies were prepared.
  • WT-IgG1 consisting of H (WT) (amino acid sequence SEQ ID NO: 9) and L (WT) (amino acid sequence SEQ ID NO: 10) as a normal antibody that does not show pH-dependent binding to IL-6 receptor
  • H54 / L28-IgG1 consisting of H54 (amino acid sequence SEQ ID NO: 70) and L28 (amino acid sequence SEQ ID NO: 12) was prepared in Example 3 as an antibody exhibiting pH-dependent binding to IL-6 receptor.
  • H170 / L82-IgG1 consisting of H170 (amino acid sequence SEQ ID NO: 4) and L82 (amino acid sequence SEQ ID NO: 7), and VH3-IgG1 (SEQ ID NO: 23) and VL3-CK (sequence) prepared in Example 10 Fv4-IgG1 consisting of No. 27) was expressed and purified by the method shown in Example 1.
  • Biacore T100 (GE Healthcare) was used for four types of WT-IgG1, H54 / L28-IgG1, H170 / L82-IgG1, and Fv4-IgG1 prepared by analyzing the binding of various antibodies to soluble IL-6 receptor.
  • Various antibodies were bound on a sensor chip on which recomb-protein A / G (Pierce) was immobilized by an amine coupling method, and SR344 prepared at an appropriate concentration as an analyte was injected there.
  • mice SR344 human IL-6
  • mice not expressing human IL-6 receptor C57BL / 6J; these anti-human IL-6 receptor antibodies do not bind to mouse IL-6 receptor
  • the pharmacokinetics of SR344 and anti-human IL-6 receptor antibody were evaluated after single administration of receptor: produced in Example 1 or simultaneous administration of SR344 and anti-human IL-6 receptor antibody.
  • SR344 solution (5 ⁇ g / mL) or a mixed solution of SR344 and anti-human IL-6 receptor antibody (5 ⁇ g / mL and 0.1 mg / mL, respectively) was administered once to the tail vein at 10 mL / kg.
  • the anti-human IL-6 receptor antibody concentration in mouse plasma was measured by ELISA.
  • Anti-Human IgG ( ⁇ -chain specific) F (ab ') 2 Fragment of Antibody (SIGMA) was dispensed onto Nunc-Immuno Plate, MaxiSoup (Nalge nunc International), and left at 4 ° C overnight to allow Anti- Human IgG solid phase plate was prepared.
  • FIG. 28 shows changes in plasma antibody concentration after intravenous administration measured by this method.
  • SR344 plasma concentration in mice was measured by electrochemiluminescence method.
  • the final concentration of WT-IgG1 at that time is 333 ⁇ g / mL, which is an excess of the anti-human IL-6 receptor antibody concentration contained in the sample, so that almost all SR344 in the sample is bound to WT-IgG1. It was aimed. Then, it dispensed to MA400 PR Streptavidin Plate (Meso Scale Discovery). Furthermore, after reacting at room temperature for 1 hour and washing, Read Buffer T ( ⁇ 4) (Meso Scale Discovery) was dispensed and immediately measured with a SECTOR PR 400 reader (Meso Scale Discovery). SR344 concentration was calculated from the response of the calibration curve using analysis software SOFTmax PRO (Molecular Devices). FIG. 29 shows changes in plasma SR344 concentration after intravenous administration measured by this method.
  • the plasma half-lives of WT-IgG1, H54 / L28-IgG1, Fv4-IgG1, and H170 / L82-IgG1 are 21.0 and 28.8, respectively. 26.2 and 7.5 days.
  • the administered antibody binds to the antigen in the plasma and stays in the plasma in the form of a complex of the antigen and the antibody.
  • antibody retention in plasma is very long due to the function of FcRn (disappearance rate is very slow), whereas antigen retention in plasma is short (disappearance rate is high), so antigen bound to antibody Has a plasma retention similar to that of an antibody (disappearance is very slow).
  • SR344 soluble human IL-6 receptor
  • H170 / L82-IgG1 or Fv4-IgG1 which is an antibody that shows pH-dependent binding to SR344, is administered simultaneously.
  • the plasma half-life increased (H170 / L82-IgG1 1.3 day, Fv4-IgG1 0.6 day). This tendency was particularly remarkable in Fv4-IgG1. Since the affinity of Fv4-IgG1 at pH 7.4 is equal to or higher than that of WT-IgG1 and H54 / L28-IgG1, SR344 is considered to be almost all bound to Fv4-IgG1.
  • Fv4-IgG1 is significantly faster than SRWT bound to Fv4-IgG1, even though it is comparable to or slightly longer in plasma and slower to disappear than WT-IgG1 and H54 / L28-IgG1. It was. This can be explained by the concept of the present technology shown in FIG. Normal antibodies that do not show pH-dependent binding are those that have antibody-soluble antigen complexes incorporated into endosomes by pinocytosis in plasma and are expressed in endosomes under acidic conditions in endosomes.
  • the antibody-soluble antigen complex bound and bound to FcRn moves to the cell surface as it is and returns to the plasma again, so that the antigen bound to the antibody has a plasma retention that is as long as that of the antibody (disappearance disappears). Very slow).
  • antibodies that exhibit pH-dependent binding dissociate antigens under acidic conditions in endosomes, so only antibodies bind to FcRn and return to plasma again, and antigens dissociated from antibodies do not return to plasma without lysosomes. Therefore, the disappearance of the antigen is significantly faster than that of the antibody that does not show pH-dependent binding.
  • SR344 when SR344 is administered simultaneously with WT-IgG1 or H54 / L28-IgG1, which are antibodies that do not show pH-dependent binding, SR344 binds to WT-IgG1 or H54 / L28-IgG1 in plasma and endosomes Therefore, the disappearance of SR344 is as slow as that of the antibody, but when SR344 is administered at the same time as H170 / L82-IgG1 or Fv4-IgG1, which is an antibody showing pH-dependent binding, low pH in the endosome Since SR344 dissociates from the antibody in the environment, the disappearance of SR344 is extremely rapid.
  • H170 / L82-IgG1 or Fv4-IgG1 which is an antibody showing pH-dependent binding, dissociates SR344 in a low pH environment in the endosome, so that H170 / L82- returned to plasma again by FcRn.
  • Most of IgG1 or Fv4-IgG1 is considered not to bind SR344.
  • an antibody exhibiting pH-dependent binding is dissociated from the antigen in a low pH environment in the endosome, and returned to the plasma by FcRn in a state where it is not bound to the antigen.
  • the antigen is a soluble antigen
  • the antigen bound to the antibody under neutral conditions in plasma is dissociated within the endosome and the antibody returns to plasma by FcRn, the antibody will again react under neutral conditions in plasma. Therefore, an antibody having the property of dissociating the antigen under acidic conditions in the endosome can bind to the antigen multiple times.
  • the antigen bound to the antibody dissociates within the endosome compared to when the antigen bound to the antibody does not dissociate within the endosome (the antigen remains bound to the antibody and returns to the plasma), the antigen is carried to the lysosome. The rate of disappearance of the antigen from the plasma increases due to degradation.
  • an antibody it is possible to determine whether or not an antibody can bind to an antigen a plurality of times using the rate at which the antigen disappears from plasma as an index.
  • the rate of disappearance of the antigen from the plasma can be measured, for example, by administering the antigen and the antibody in vivo as shown in this Example and measuring the concentration of the antigen in the plasma after administration. is there.
  • antibodies that show pH-dependent binding allow a single antibody to bind repeatedly to an antigen multiple times, resulting in a significant increase in antibody dosage. Reduction and a significant extension of the dosing interval.
  • any antigen binds at pH 7.4 in plasma, and at acidic pH in endosomes. If an antibody exhibiting pH-dependent binding that dissociates from an antigen can be prepared, one antibody can repeatedly bind to the antigen multiple times. That is, this technique is useful as a technique that can be generally applied not only to IL-6 receptor, IL-6, and IL-31 receptor but also to antibodies against any antigen regardless of the type of antigen.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pulmonology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

 本発明者らは、血漿中でのpHにおける抗原結合活性と比較して早期エンドソーム内でのpHにおける抗原結合活性が弱い抗体は1分子の抗体で複数分子の抗原に結合することが可能になり、血漿中半減期が長く、抗原に結合可能な期間が改善されることを見出した。

Description

複数分子の抗原に繰り返し結合する抗原結合分子
 本発明は、抗原結合分子の薬物動態を向上する方法、抗原結合分子の抗原への結合回数を増やす方法、薬物動態が向上した抗原結合分子、抗原結合分子の抗原への結合回数が向上した抗原結合分子、および、それらの製造法等に関する。
 抗体は血漿中での安定性が高く、副作用も少ないことから医薬品として注目されている。中でもIgG型の抗体医薬は多数上市されており、現在も数多くの抗体医薬が開発されている(非特許文献1、非特許文献2)。一方、第2世代の抗体医薬に適用可能な技術として様々な技術が開発されており、エフェクター機能、抗原結合能、薬物動態、安定性を向上させる、あるいは、免疫原性リスクを低減させる技術等が報告されている(非特許文献3)。抗体医薬は一般に投与量が非常に高いため、皮下投与製剤の作製が困難であること、製造コストが高いこと等が課題として考えられる。抗体医薬の投与量を低減させる方法として、抗体の薬物動態を向上する方法と抗体と抗原の親和性(アフィニティー)を向上する方法が考えられる。
 抗体の薬物動態を向上させる方法として、定常領域の人工的なアミノ酸置換が報告されている(非特許文献4、5)。抗原結合能、抗原中和能を増強させる技術として、アフィニティーマチュレーション技術(非特許文献6)が報告されており、可変領域のCDR領域などのアミノ酸に変異を導入することで抗原への結合活性を増強することが可能である。抗原結合能の増強によりin vitroの生物活性を向上させる、あるいは投与量を低減することが可能であり、さらにin vivoでの薬効を向上させることも可能である(非特許文献7)。
 一方、抗体1分子あたりが中和できる抗原量はアフィニティーに依存し、アフィニティーを強くすることで少ない抗体量で抗原を中和することが可能であり、様々な方法で抗体のアフィニティーを強くすることが可能である。さらに抗原に共有結合的に結合し、アフィニティーを無限大にすることができれば1分子の抗体で1分子の抗原(2価の場合は2抗原)を中和することが可能である。しかし、これまでの方法では1分子の抗体で1分子の抗原(2価の場合は2抗原)の化学量論的な中和反応が限界であり、抗原量以下の抗体量で抗原を完全に中和することは不可能であった。つまり、アフィニティーを強くする効果には限界が存在していた(非特許文献9)。中和抗体の場合、その中和効果を一定期間持続させるためには、その期間に生体内で産生される抗原量以上の抗体量が投与される必要があり、上述の抗体の薬物動態向上、あるいは、アフィニティーマチュレーション技術だけでは、必要抗体投与量の低減には限界が存在していた。
 そのため、抗原量以下の抗体量で抗原の中和効果を目的期間持続するためには、一つの抗体で複数の抗原を中和する必要がある。1つの抗体で複数の抗原を中和する方法として、抗体に触媒機能を付与した触媒抗体による抗原の不活化が挙げられる。タンパク質抗原の場合、抗原のペプチド結合を加水分解することで不活化することが可能であり、この加水分解反応を抗体が触媒することで、繰り返し抗原を中和(不活化)することが可能であると考えられている(非特許文献8)。これまでに多くの触媒抗体および触媒抗体作製技術に関する報告がされているが、医薬品として十分な触媒活性を有する触媒抗体の報告はない。すなわち、ある抗原に対する抗体のin vivo試験において、通常の触媒機能を有さない中和抗体と比較して、低用量で同等以上の効果を発揮する、あるいは、同じ投与量でより持続的に効果を発揮することができる触媒抗体の報告はこれまでにない。
 このように、1分子の抗体で複数の抗原を中和し、通常の中和抗体より優れたin vivo効果を発揮することができる抗体に関する報告はなく、投与量の低減および持続性の延長のためには1抗体で複数の抗原を中和し、in vivoで通常の中和抗体よりも効果を発揮する新規な抗体作製技術が望まれていた。
 なお、本発明の先行技術文献を以下に示す。
Monoclonal antibody successes in the clinic, Janice M Reichert, Clark J Rosensweig, Laura B Faden & Matthew C Dewitz, Nature Biotechnology 23, 1073 - 1078 (2005) Pavlou AK, Belsey MJ., The therapeutic antibodies market to 2008., Eur J Pharm Biopharm. 2005 Apr;59(3):389-96. Kim SJ, Park Y, Hong HJ., Antibody engineering for the development of therapeutic antibodies., Mol Cells. 2005 Aug 31;20(1):17-29. Review. Hinton PR, Xiong JM, Johlfs MG, Tang MT, Keller S, Tsurushita N., An engineered human IgG1 antibody with longer serum half-life., J Immunol. 2006 Jan 1;176(1):346-56 Ghetie V, Popov S, Borvak J, Radu C, Matesoi D, Medesan C, Ober RJ, Ward ES., Increasing the serum persistence of an IgG fragment by random mutagenesis., Nat Biotechnol. 1997 Jul;15(7):637-40 Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8466-71. Epub 2005 Jun 6. A general method for greatly improving the affinity of antibodies by using combinatorial libraries.Rajpal A, Beyaz N, Haber L, Cappuccilli G, Yee H, Bhatt RR, Takeuchi T, Lerner RA, Crea R. Wu H, Pfarr DS, Johnson S, Brewah YA, Woods RM, Patel NK, White WI, Young JF, Kiener PA. Development of Motavizumab, an Ultra-potent Antibody for the Prevention of Respiratory Syncytial Virus Infection in the Upper and Lower Respiratory Tract. J Mol Biol. 2007, 368, 652-665 Hanson CV, Nishiyama Y, Paul S. Catalytic antibodies and their applications.Curr Opin Biotechnol. 2005 Dec;16(6):631-6. Rathanaswami P, Roalstad S, Roskos L, Su QJ, Lackie S, Babcook J. Demonstration of an in vivo generated sub-picomolar affinity fully human monoclonal antibody to interleukin-8. Biochem Biophys Res Commun. 2005 Sep 9;334(4):1004-13.
 本発明はこのような状況に鑑みて為されたものであり、その目的は抗原結合分子が抗原に複数回結合する方法、抗原結合分子の薬物動態を向上させる方法、複数回抗原に結合できる抗原結合分子、薬物動態が改善された抗原結合分子、当該抗原結合分子を含む医薬組成物、およびそれらの製造方法を提供することにある。
 本発明者らは、抗原結合分子などの抗原結合能を有するポリペプチドの抗原に複数回結合する方法、血漿中半減期(血中半減期)を改善(薬物動態を向上)する方法について、鋭意研究を行った。その結果、本発明者らは、血漿中(血中)でのpHにおける抗原結合活性と比較して早期エンドソーム内でのpHにおける抗原結合活性が弱い抗原結合分子は抗原に複数回結合し、血漿中半減期が長いことを見出した。
 本発明は、抗原結合分子が抗原に複数回結合する方法、抗原結合分子の薬物動態を向上する方法、複数回抗原に結合できる抗原結合分子、薬物動態が向上した抗原結合分子、薬物動態が向上した抗原結合分子の製造方法などに関し、より具体的には、
〔1〕抗原に対するpH5.8でのKDとpH7.4でのKDの比であるKD(pH5.8)/KD(pH7.4)の値が2以上である抗原結合分子、
〔2〕KD(pH5.8)/KD(pH7.4)の値が10以上である〔1〕に記載の抗原結合分子、
〔3〕KD(pH5.8)/KD(pH7.4)の値が40以上である〔1〕に記載の抗原結合分子、
〔4〕少なくとも1つのアミノ酸がヒスチジンで置換され又は少なくとも1つのヒスチジンが挿入されていることを特徴とする〔1〕~〔3〕いずれかに記載の抗原結合分子、
〔5〕アンタゴニスト活性を有することを特徴とする〔1〕~〔4〕いずれかに記載の抗原結合分子、
〔6〕膜抗原又は可溶型抗原に結合することを特徴とする〔1〕~〔5〕いずれかに記載の抗原結合分子、
〔7〕抗原結合分子が抗体であることを特徴とする〔1〕~〔6〕いずれかに記載の抗原結合分子、
〔8〕〔1〕~〔7〕いずれかに記載の抗原結合分子を含む医薬組成物、
〔9〕抗原結合分子のpH5.8における抗原結合活性をpH7.4における抗原結合活性より弱くすることにより抗原結合分子の薬物動態を向上させる方法、
〔10〕抗原結合分子のpH5.8における抗原結合活性をpH7.4における抗原結合活性より弱くすることにより、抗原結合分子の抗原への結合回数を増やす方法、
〔11〕抗原結合分子のpH5.8における抗原結合活性をpH7.4における抗原結合活性より弱くすることにより、抗原結合分子が結合可能な抗原の数を増やす方法、
〔12〕抗原結合分子のpH5.8における抗原結合活性をpH7.4における抗原結合活性より弱くすることにより、細胞外で抗原結合分子に結合した抗原を細胞内で抗原結合分子から解離させる方法、
〔13〕抗原結合分子のpH5.8における抗原結合活性をpH7.4における抗原結合活性より弱くすることにより、抗原と結合した状態で細胞内に取り込まれた抗原結合分子を、抗原と結合していない状態で細胞外に放出させる方法、
〔14〕抗原結合分子のpH5.8における抗原結合活性をpH7.4における抗原結合活性より弱くすることにより、抗原結合分子の血漿中抗原消失能を増加させる方法、
〔15〕抗原に対するpH5.8でのKDとpH7.4でのKDの比であるKD(pH5.8)/KD(pH7.4)の値を2以上とすることを特徴とする〔9〕~〔14〕いずれかに記載の方法、
〔16〕KD(pH5.8)/KD(pH7.4)の値を10以上とすることを特徴とする〔9〕~〔14〕いずれかに記載の方法、
〔17〕KD(pH5.8)/KD(pH7.4)の値を40以上とすることを特徴とする〔9〕~〔14〕いずれかに記載の方法、
〔18〕抗原結合分子の少なくとも1つのアミノ酸をヒスチジンで置換する又は少なくとも1つのヒスチジンを挿入することにより薬物動態を向上させる方法、
〔19〕抗原結合分子の少なくとも1つのアミノ酸をヒスチジンで置換する又は少なくとも1つのヒスチジンを挿入することにより、抗原結合分子の抗原への結合回数を増やす方法、
〔20〕抗原結合分子の少なくとも1つのアミノ酸をヒスチジンで置換する又は少なくとも1つのヒスチジンを挿入することにより、抗原結合分子が結合可能な抗原の数を増やす方法、
〔21〕抗原結合分子の少なくとも1つのアミノ酸をヒスチジンで置換する又は少なくとも1つのヒスチジンを挿入することにより、細胞外で抗原結合分子に結合した抗原を細胞内で抗原結合分子から解離させる方法、
〔22〕抗原結合分子の少なくとも1つのアミノ酸をヒスチジンで置換する又は少なくとも1つのヒスチジンを挿入することにより、抗原と結合した状態で細胞内に取り込まれた抗原結合分子を、抗原と結合していない状態で細胞外に放出させる方法、
〔23〕抗原結合分子の少なくとも1つのアミノ酸をヒスチジンで置換する又は少なくとも1つのヒスチジンを挿入することにより、抗原結合分子の血漿中抗原消失能を増加させる方法、
〔24〕ヒスチジンへの置換又はヒスチジンの挿入により、pH5.8での抗原結合活性とpH7.4での抗原結合活性の比であるKD(pH5.8)/KD(pH7.4)の値がヒスチジン置換又は挿入前と比較して大きくなることを特徴とする〔18〕~〔23〕いずれかに記載の方法、
〔25〕抗原結合分子がアンタゴニスト活性を有することを特徴とする〔9〕~〔24〕いずれかに記載の方法、
〔26〕抗原結合分子が膜抗原又は可溶型抗原に結合することを特徴とする〔9〕~〔25〕いずれかに記載の方法、
〔27〕抗原結合分子が抗体であることを特徴とする〔9〕~〔26〕いずれかに記載の方法、
〔28〕以下の工程を含む抗原結合分子のスクリーニング方法、
(a)pH6.7~pH10.0における抗原結合分子の抗原結合活性を得る工程、
(b)pH4.0~pH6.5における抗原結合分子の抗原結合活性を得る工程、
(c)pH6.7~pH10.0での抗原結合活性がpH4.0~pH6.5での抗原結合活性より高い抗原結合分子を選択する工程、
〔29〕pH6.7~pH10.0における抗原結合活性がpH4.0~pH6.5での抗原結合活性の2倍以上である抗体を選択することを特徴とする〔28〕に記載のスクリーニング方法、
〔30〕以下の工程を含む抗原結合分子のスクリーニング方法、
(a) pH6.7~pH10.0の条件下で抗原結合分子を抗原に結合させる工程、
(b) (a)の抗原に結合した抗原結合分子をpH4.0~pH6.5の条件下に置く工程、
(c) pH4.0~pH6.5の条件下で解離した抗原結合分子を取得する工程、
〔31〕以下の工程を含む第一のpHでの結合活性が第二のpHでの結合活性よりも高い抗原結合分子のスクリーニング方法、
(a) 抗原を固定したカラムに第一のpH条件下で抗原結合分子を結合させる工程、
(b) 第一のpH条件下でカラムに結合した抗原結合分子を、第二のpH条件下でカラムから溶出する工程、
(c) 溶出された抗原結合分子を取得する工程、
〔32〕以下の工程を含む第一のpHでの結合活性が第二のpHでの結合活性よりも高い抗原結合分子のスクリーニング方法、
(a) 抗原結合分子ライブラリーを、抗原を固定したカラムに第一のpH条件下で結合させる工程、
(b) カラムから第二のpH条件下で抗原結合分子を溶出する工程、
(c) 溶出された抗原結合分子をコードする遺伝子を増幅する工程、
(d) 溶出された抗原結合分子を取得する工程、
〔33〕第一のpHがpH6.7.~pH10.0、第二のpHが4.0~pH6.5であることを特徴とする〔31〕または〔32〕に記載のスクリーニング方法、
〔34〕抗原結合分子が、抗原結合分子中の少なくとも1つ以上のアミノ酸がヒスチジンで置換された又は少なくとも1つのヒスチジンが挿入された抗原結合分子である〔28〕~〔33〕いずれかに記載のスクリーニング方法、
〔35〕血漿中滞留性が優れた抗原結合分子を得ることを目的とする〔28〕~〔33〕いずれかに記載のスクリーニング方法、
〔36〕抗原に2回以上結合することができる抗原結合分子を得ることを目的とする〔28〕~〔33〕いずれかに記載のスクリーニング方法、
〔37〕結合可能な抗原の数が抗原結合部位より多い抗原結合分子を得ることを目的とする〔28〕~〔33〕いずれかに記載のスクリーニング方法、
〔38〕細胞外で結合した抗原を細胞内で解離する抗原結合分子を得ることを目的とする〔28〕~〔33〕いずれかに記載のスクリーニング方法、
〔39〕抗原と結合した状態で細胞内に取り込まれ、抗原と結合していない状態で細胞外に放出される抗原結合分子を得ることを目的とする〔28〕~〔33〕いずれかに記載のスクリーニング方法、
〔40〕血漿中抗原消失能が増加した抗原結合分子を得ることを目的とする〔28〕~〔33〕いずれかに記載のスクリーニング方法、
〔41〕抗原結合分子が医薬組成物として用いられる抗原結合分子である〔28〕~〔40〕いずれかに記載のスクリーニング方法、
〔42〕抗原結合分子が抗体であることを特徴とする〔28〕~〔41〕いずれかに記載のスクリーニング方法、
〔43〕以下の工程を含む抗原結合分子の製造方法、
(a) pH6.7~pH10.0における抗原結合分子の抗原結合活性を得る工程、
(b) pH4.0~pH6.5における抗原結合分子の抗原結合活性を得る工程、
(c) pH6.7~pH10.0での抗原結合活性がpH4.0~pH6.5での抗原結合活性より高い抗原結合分子を選択する工程、
(d) (c)で選択された抗原結合分子をコードする遺伝子を得る工程、
(e) (d)で得られた遺伝子を用いて抗原結合分子を製造する工程、
〔44〕以下の工程を含む抗原結合分子の製造方法、
(a) pH6.7~pH10.0の条件下で抗原結合分子を抗原に結合させる工程、
(b) (a)の抗原に結合した抗原結合分子をpH4.0~pH6.5の条件下に置く工程、
(c) pH4.0~pH6.5の条件下で解離した抗原結合分子を取得する工程、
(d) (c)で取得された抗原結合分子をコードする遺伝子を得る工程、
(e) (d)で得られた遺伝子を用いて抗原結合分子を製造する工程、
〔45〕以下の工程を含む第一のpHでの結合活性が第二のpHでの結合活性よりも高い抗原結合分子の製造方法、
(a) 抗原を固定したカラムに第一のpH条件下で抗原結合分子を結合させる工程、
(b) 第一のpH条件下でカラムに結合した抗原結合分子を、第二のpH条件下でカラムから溶出する工程、
(c) 溶出された抗原結合分子を取得する工程、
(d) (c)で取得された抗原結合分子をコードする遺伝子を得る工程、
(e) (d)で得られた遺伝子を用いて抗原結合分子を製造する工程、
〔46〕以下の工程を含む第一のpHでの結合活性が第二のpHでの結合活性よりも高い抗原結合分子の製造方法、
(a) 抗原結合分子ライブラリーを、抗原を固定したカラムに第一のpH条件下で結合させる工程、
(b) カラムから第二のpH条件下で抗原結合分子を溶出する工程、
(c) 溶出された抗原結合分子をコードする遺伝子を増幅する工程、
(d) 溶出された抗原結合分子を取得する工程、
(e) (d)で取得された抗原結合分子をコードする遺伝子を得る工程、
(f) (e)で得られた遺伝子を用いて抗原結合分子を製造する工程、
〔47〕第一のpHがpH6.7.~pH10.0、第二のpHが4.0~pH6.5であることを特徴とする〔45〕または〔46〕に記載の製造方法、
〔48〕抗原結合分子中の少なくとも1つ以上のアミノ酸をヒスチジンで置換する又は少なくとも1つのヒスチジンを挿入する工程をさらに含む〔43〕~〔47〕いずれかに記載の製造方法、
〔49〕抗原結合分子が抗体であることを特徴とする〔43〕~〔48〕いずれかに記載の製造方法、
〔50〕〔43〕~〔49〕いずれかに記載の製造方法により製造された抗原結合分子を含む医薬組成物、
を提供するものである。
 本発明によって、1分子の抗原結合分子を複数の抗原に繰り返し結合させる方法が提供された。1分子の抗原結合分子が複数の抗原に結合することで抗原結合分子の薬物動態を向上させ、in vivoにおいて通常の抗原結合分子よりも優れた効果を発揮させることができる。
膜型抗原に結合した抗体の分解経路を示す図である。 FcRnによるIgG分子のサルベージメカニズムを示す図である。 IgG分子がエンドソーム内で膜型抗原から解離することで再度新たな抗原に結合することを示す模式図である。 IgG分子がエンドソーム内で可溶型抗原から解離することで再度新たな抗原に結合することを示す模式図である。 抗原を固定化したカラムパンニングを示す図である。 カラムパンニングより取得したクローンのファージELISAの結果を示すグラフである。上段がWT、下段がCL5である。 pH依存的結合抗IL-6レセプター抗体の生物学的中和活性を示すグラフである。 pH依存的結合抗IL-6レセプター抗体のpH7.4での可溶型IL-6レセプターへの結合のBiacoreセンサーグラムの結果を示すグラフである。一番上がWT、上から2番目がH3pI/L73、上から3番目がH170/L82、一番下がCLH5/L73である。 pH依存的結合抗IL-6レセプター抗体のpH5.8での可溶型IL-6レセプターへの結合のBiacoreセンサーグラムの結果を示すグラフである。一番上がWT、上から2番目がH3pI/L73、上から3番目がH170/L82、一番下がCLH5/L73である。 pH依存的結合抗IL-6レセプター抗体の膜型IL-6レセプターへの結合(pH7.4)および解離(pH5.8)のBiacoreセンサーグラムの結果を示すグラフである。一番上がWT、上から2番目がH3pI/L73、上から3番目がH170/L82、一番下がCLH5/L73である。 pH依存的結合抗IL-6レセプター抗体のSR344への繰り返し結合を示すBiacoreのセンサーグラムである。 pH依存的結合抗IL-6レセプター抗体のSR344への繰り返し結合実験における総抗原結合量を示すグラフである。 pH依存的結合抗IL-6レセプター抗体のヒトIL-6レセプタートランスジェニックマウスにおける抗体血漿中濃度推移を示すグラフである。 pH依存的結合抗IL-6レセプター抗体のカニクイザルにおける抗体血漿中濃度推移を示すグラフである。 pH依存的結合抗IL-6レセプター抗体のカニクイザルにおけるCRP濃度推移を示すグラフである。 pH依存的結合抗IL-6レセプター抗体のカニクイザルにおける非結合型カニクイザルIL-6レセプター濃度推移を示すグラフである。 pH依存的結合抗IL-6レセプター抗体の膜型IL-6レセプターへの結合(pH7.4)および解離(pH5.8)のBiacoreセンサーグラムの結果を示すグラフである。上からWT、H3pI/L73-IgG1、Fv2-IgG1、Fv4-IgG1である。 pH依存的結合抗IL-6レセプター抗体のヒトIL-6レセプタートランスジェニックマウスにおけるWT、H3pI/L73-IgG1、Fv2-IgG1、Fv4-IgG1の抗体血漿中濃度推移を示すグラフである。 pH依存的結合抗IL-6レセプター抗体の膜型IL-6レセプターへの結合(pH7.4)および解離(pH5.8)のBiacoreセンサーグラムの結果を示すグラフである。一番上からWT、Fv4-IgG1、Fv4-IgG2、Fv4-M58である。 pH依存的結合抗IL-6レセプター抗体のヒトIL-6レセプタートランスジェニックマウスにおけるWT、Fv4-IgG1、Fv4-IgG2、Fv4-M58の抗体血漿中濃度推移を示すグラフである。 pH依存的結合抗IL-6レセプター抗体の膜型IL-6レセプターへの結合(pH7.4)および解離(pH5.8)のBiacoreセンサーグラムの結果を示すグラフである。一番上からFv1-M71、Fv1-M73、Fv3-M71、Fv3-M73 である。 pH依存的結合抗IL-6レセプター抗体のカニクイザルにおけるH3pI/L73-IgG1、Fv1-M71、Fv1-M73、Fv2-IgG1、Fv3-M73、Fv4-M73を0.5 mg/kg、high affinity Abを1.0 mg/kg投与した時の抗体血漿中濃度推移を示すグラフである。 pH依存的結合抗IL-6レセプター抗体のカニクイザルにおけるH3pI/L73-IgG1、Fv1-M71、Fv1-M73、Fv2-IgG1、Fv3-M73、Fv4-M73、high affinity Ab投与群のCRP濃度推移を示すグラフである。 pH依存的結合抗IL-6レセプター抗体のカニクイザルにおける H3pI/L73-IgG1、Fv1-M71、Fv1-M73、Fv2-IgG1、Fv3-M73、Fv4-M73、high affinity Ab投与群の非結合型カニクイザルIL-6レセプター濃度推移を示すグラフである。 重鎖(VH1, VH2, VH3, VH4)および軽鎖(VL1, VL2, VL3)のFR1, FR2, FR3, FR4およびCDR1, CDR2, CDR3を示す図である。アスタリスクは、アライメントした配列におけるアミノ酸の変異がある部位を示す。 pH依存的結合抗IL-6抗体であるAnti-IL6 clone2のpH7.4とpH5.5でのIL-6への結合のBiacoreセンサーグラムの結果を示すグラフである。pH7.4のグラフは、上から100、50、25、12.5、6.25 ng/mL IL-6を示す。 pH依存的結合抗IL-31レセプター抗体であるAnti-IL31R clone1のpH7.4とpH5.5でのIL-31レセプターへの結合のBiacoreセンサーグラムの結果を示すグラフである。pH5.5のグラフは、上から100、50、25、12.5 ng/mL IL-31レセプターを示す。 マウスにSR344および抗ヒトIL-6レセプター抗体の混合溶液を静脈内投与後の血漿中の抗体濃度推移を示した図である。 マウスにSR344および抗ヒトIL-6レセプター抗体の混合溶液を静脈内投与後の血漿中のSR344濃度推移を示した図である。
〔発明を実施するための形態〕
 本発明は、抗原結合分子の抗原への結合回数を増やす方法を提供する。より具体的には抗原結合分子の酸性pHにおける抗原結合能を中性pHにおける抗原結合能よりも弱くすることにより、抗原結合分子の抗原への結合回数を増やす方法を提供する。さらに、本発明は抗原結合分子の少なくとも1つのアミノ酸をヒスチジンに置換する又は少なくとも1つのヒスチジンを挿入することを特徴とする抗原結合分子の抗原への結合回数を増やす方法を提供する。さらに本発明は、抗原結合分子に含まれる抗体定常領域中のアミノ酸を置換、欠失、付加及び/又は挿入することを特徴とする抗原結合分子の抗原への結合回数を増やす方法を提供する。
 又、本発明は、抗原結合分子が結合可能な抗原の数を増やす方法を提供する。より具体的には抗原結合分子の酸性pHにおける抗原結合能を中性pHにおける抗原結合能よりも弱くすることにより、抗原結合分子が結合可能な抗原の数を増やす方法を提供する。さらに、本発明は抗原結合分子の少なくとも1つのアミノ酸をヒスチジンに置換する又は少なくとも1つのヒスチジンを挿入することを特徴とする、抗原結合分子が結合可能な抗原の数を増やす方法を提供する。さらに本発明は、抗原結合分子に含まれる抗体定常領域中のアミノ酸を置換、欠失、付加及び/又は挿入することを特徴とする抗原結合分子が結合可能な抗原の数を増やす方法を提供する。
 又、本発明は、細胞外で抗原結合分子に結合した抗原を細胞内で抗原結合分子から解離させる方法を提供する。より具体的には抗原結合分子の酸性pHにおける抗原結合能を中性pHにおける抗原結合能よりも弱くすることにより、細胞外で抗原結合分子に結合した抗原を細胞内で抗原結合分子から解離させる方法を提供する。さらに、本発明は抗原結合分子の少なくとも1つのアミノ酸をヒスチジンに置換する又は少なくとも1つのヒスチジンを挿入することを特徴とする、細胞外で抗原結合分子に結合した抗原を細胞内で抗原結合分子から解離させる方法を提供する。さらに本発明は、抗原結合分子に含まれる抗体定常領域中のアミノ酸を置換、欠失、付加及び/又は挿入することを特徴とする細胞外で抗原結合分子に結合した抗原を細胞内で抗原結合分子から解離させる方法を提供する。
 又、本発明は、抗原と結合した状態で細胞内に取り込まれた抗原結合分子を、抗原と結合していない状態で細胞外に放出させる方法を提供する。より具体的には抗原結合分子の酸性pHにおける抗原結合能を中性pHにおける抗原結合能よりも弱くすることにより、抗原と結合した状態で細胞内に取り込まれた抗原結合分子を、抗原と結合していない状態で細胞外に放出させる方法を提供する。さらに、本発明は抗原結合分子の少なくとも1つのアミノ酸をヒスチジンに置換する又は少なくとも1つのヒスチジンを挿入することを特徴とする、抗原と結合した状態で細胞内に取り込まれた抗原結合分子を、抗原と結合していない状態で細胞外に放出させる方法を提供する。さらに本発明は、抗原結合分子に含まれる抗体定常領域中のアミノ酸を置換、欠失、付加及び/又は挿入することを特徴とする抗原と結合した状態で細胞内に取り込まれた抗原結合分子を、抗原と結合していない状態で細胞外に放出させる方法を提供する。
 又、本発明は、抗原結合分子の血漿中抗原消失能を増加させる方法を提供する。より具体的には抗原結合分子の酸性pHにおける抗原結合能を中性pHにおける抗原結合能よりも弱くすることにより、抗原結合分子の血漿中抗原消失能を増加させる方法を提供する。さらに、本発明は抗原結合分子の少なくとも1つのアミノ酸をヒスチジンに置換する又は少なくとも1つのヒスチジンを挿入することを特徴とする、抗原結合分子の血漿中抗原消失能を増加させる方法を提供する。さらに本発明は、抗原結合分子に含まれる抗体定常領域中のアミノ酸を置換、欠失、付加及び/又は挿入することを特徴とする抗原結合分子の血漿中抗原消失能を増加させる方法を提供する。
 さらに、本発明は、抗原結合分子の薬物動態を向上する方法を提供する。より具体的には、抗原結合分子の酸性pHにおける抗原結合能を中性pHにおける抗原結合能よりも弱くすることにより、抗原結合分子の薬物動態を向上する(血漿中滞留性を長くする)方法を提供する。さらに、本発明は抗原結合分子の少なくとも1つのアミノ酸をヒスチジンに置換する又は少なくとも1つのヒスチジンを挿入することを特徴とする薬物動態を向上する方法を提供する。さらに本発明は、抗原結合分子に含まれる抗体定常領域中のアミノ酸を置換、欠失、付加及び/又は挿入することを特徴とする薬物動態を向上する方法を提供する。
 さらに、本発明は、抗原結合分子の血漿中抗原消失能を増加させる方法を提供する。より具体的には、抗原結合分子の酸性pHにおける抗原結合能を中性pHにおける抗原結合能よりも弱くすることにより、抗原結合分子の血漿中抗原消失能を増加させる方法を提供する。さらに、本発明は抗原結合分子の少なくとも1つのアミノ酸をヒスチジンに置換する又は少なくとも1つのヒスチジンを挿入することを特徴とする抗原結合分子の血漿中抗原消失能を増加させる方法を提供する。さらに本発明は、抗原結合分子に含まれる抗体定常領域中のアミノ酸を置換、欠失、付加及び/又は挿入することを特徴とする抗原結合分子の血漿中抗原消失能を増加させる方法を提供する。
 本発明において、「薬物動態の向上」、「薬物動態の改善」または「優れた薬物動態」は、「血漿中(血中)滞留性の向上」、「血漿中(血中)滞留性の改善」、「優れた血漿中(血中)滞留性」と言い換えることが可能であり、これらの語句は同じ意味で使用される。
 本発明において、酸性pHにおける抗原結合能を中性pHにおける抗原結合能よりも弱くするとは、抗原結合分子のpH4.0~pH6.5での抗原結合活性をpH6.7~pH10.0での抗原結合活性より弱くすることを意味する。好ましくは、抗原結合分子のpH5.5~pH6.5での抗原結合活性をpH7.0~pH8.0での抗原結合活性より弱くすることを意味し、特に好ましくは、抗原結合分子のpH5.8での抗原結合活性をpH7.4での抗原結合活性より弱くすることを意味する。従って、本発明において酸性pHとは通常、pH4.0~pH6.5であり、好ましくはpH5.5~pH6.5であり、特に好ましくはpH5.8である。又、本発明において中性pHとは通常、pH6.7~pH10.0であり、好ましくは、pH7.0~pH8.0であり、特に好ましくはpH7.4である。
 本発明において、「抗原結合分子の酸性pHにおける抗原結合能を中性pHにおける抗原結合能より弱くする」という表現は、抗原結合分子の中性での抗原結合能を酸性でのpHにおける抗原結合能よりも高くすると表現することもできる。つまり、本発明においては、抗原結合分子の酸性pHにおける抗原結合能と中性pHにおける抗原結合能の差を大きくすればよい(例えば、後述のようにKD(pH5.8)/KD(pH7.4)の値を大きくすればよい)。抗原結合分子の酸性pHにおける抗原結合能と中性pHにおける抗原結合能の差を大きくするためには、例えば、酸性pHにおける抗原結合能を低くしてもよいし、中性pHにおける抗原結合能を高くしてもよいし、又は、その両方でもよい。
 抗原の結合活性を測定する際のpH以外の条件は当業者が適宜選択することが可能であり、特に限定されないが、例えば、実施例に記載のようにMESバッファー、37℃の条件において測定することが可能である。又、抗原結合分子の抗原結合活性の測定は当業者に公知の方法により行うことが可能であり、例えば、実施例に記載のようにBiacore(GE Healthcare)などを用いて測定することが可能である。抗原が可溶型抗原である場合は、抗原結合分子を固定化したチップへの抗原をアナライトとして流すことで可溶型抗原への結合能を評価することが可能であり、抗原が膜型抗原である場合は、抗原を固定化したチップへ抗原結合分子をアナライトとして流すことで膜型抗原への結合能を評価することが可能である。
 本発明において、酸性pHにおける抗原結合活性が中性pHにおける抗原結合活性よりも弱い限り、酸性pHにおける抗原結合活性と中性pHにおける抗原結合活性の差は特に限定されないが、好ましくは抗原に対するpH5.8でのKDとpH7.4でのKD(Dissociation constant:解離定数)の比であるKD(pH5.8)/KD(pH7.4)の値が2以上であり、さらに好ましくはKD(pH5.8)/KD(pH7.4)の値が10以上であり、さらに好ましくはKD(pH5.8)/KD(pH7.4)の値が40以上である。KD(pH5.8)/KD(pH7.4)の値の上限は特に限定されず、当業者の技術において作製可能な限り、400、1000、10000等、いかなる値でもよい。抗原結合活性の値として抗原が可溶型抗原の場合はKD(解離定数)を用いることが可能であるが、抗原が膜型抗原の場合は見かけのKD(Apparent dissociation constant:見かけの解離定数)を用いることが可能である。KD(解離定数)、および、見かけのKD(見かけの解離定数)は、当業者公知の方法で測定することが可能であり、例えばBiacore(GE healthcare)、スキャッチャードプロット、FACS等を用いることが可能である。
 又、本発明においては、酸性pHにおける抗原結合活性と中性pHにおける抗原結合活性の差を示す他の指標として、例えば、解離速度定数であるkd(Dissociation rate constant:解離速度定数)を用いることも可能である。結合活性の差を示す指標としてKD(解離定数)の代わりにkd(解離速度定数)を用いる場合、抗原に対するpH5.8でのkd(解離速度定数)とpH7.4でのkd(解離速度定数)の比であるkd(pH5.8)/kd(pH7.4)の値は、好ましくは2以上であり、さらに好ましくは5以上であり、さらに好ましくは10以上であり、より好ましくは30以上である。kd(pH5.8)/kd(pH7.4)の値の上限は特に限定されず、当業者の技術常識において作製可能な限り、50、100、200等、如何なる値でもよい。
 抗原結合活性の値として抗原が可溶型抗原の場合はkd(解離速度定数)を用いることが可能であるが、抗原が膜型抗原の場合は見かけのkd(Apparent dissociation rate constant:見かけの解離速度定数)を用いることが可能である。kd(解離速度定数)、および、見かけのkd(見かけの解離速度定数)は、当業者公知の方法で測定することが可能であり、例えばBiacore(GE healthcare)、FACS等を用いることが可能である。
 なお本発明において異なるpHで抗原結合分子の抗原結合活性を測定する際は、pH以外の条件は同一とすることが好ましい。
 抗原結合分子のpH5.8における抗原結合活性をpH7.4における抗原結合活性より弱くする方法(pH依存的な結合能を付与する方法)は特に限定されず、如何なる方法により行われてもよい。例えば抗原結合分子中のアミノ酸をヒスチジンに置換する、又は抗原結合分子中にヒスチジンを挿入することによりpH5.8における抗原結合活性をpH7.4における抗原結合活性より弱くする方法を挙げることができる。抗体中のアミノ酸をヒスチジンで置換することによりpH依存性の抗原結合活性を抗体に付与できることは既に知られている(FEBS Letter, 309(1), 85-88, (1992))。ヒスチジン変異(置換)又は挿入が導入される(行われる)位置は特に限定されず、変異又は挿入前と比較してpH5.8における抗原結合活性がpH7.4における抗原結合活性より弱くなる(KD(pH5.8)/KD(pH7.4)の値が大きくなる)限り、如何なる部位でもよい。例えば、抗原結合分子が抗体の場合には、抗体の可変領域などを挙げることができる。ヒスチジン変異又は挿入が導入される(行われる)数は当業者が適宜決定することができ、1箇所のみをヒスチジンで置換してもよいし、又は1箇所のみにヒスチジンを挿入してもよいし、2箇所以上の複数箇所をヒスチジンで置換してもよいし、又は2箇所以上の複数箇所にヒスチジンを挿入してもよい。又、ヒスチジン変異以外の変異(ヒスチジン以外のアミノ酸への変異)を同時に導入してもよい。さらに、ヒスチジン変異とヒスチジン挿入を同時に行ってもよい。ヒスチジンへの置換又はヒスチジンの挿入は当業者に公知のアラニンscanningのアラニンをヒスチジンに置き換えたヒスチジンscanningなどの方法によりランダムに行ってもよく、ヒスチジン変異又は挿入がランダムに導入された抗原結合分子ライブラリーの中から、変異前と比較してKD(pH5.8)/KD(pH7.4)の値が大きくなった抗原結合分子を選択してもよい。
 抗原結合分子のアミノ酸をヒスチジンに置換又は抗原結合分子のアミノ酸にヒスチジンを挿入する場合、特に限定されないが、ヒスチジン置換又は挿入後の抗原結合分子のpH7.4における抗原結合活性が、ヒスチジン置換又は挿入前の抗原結合分子のpH7.4における抗原結合活性と同等であることが好ましい。ここで、ヒスチジン置換又は挿入後の抗原結合分子のpH7.4における抗原結合活性が、ヒスチジン置換又は挿入前の抗原結合分子のpH7.4における抗原結合活性と同等であるとは、ヒスチジン置換又は挿入後の抗原結合分子が、ヒスチジン置換又は挿入前の抗原結合分子が有する抗原結合活性の10%以上、好ましくは50%以上、さらに好ましくは80%以上、より好ましくは90%以上を維持していることを言う。ヒスチジン置換又は挿入により抗原結合分子の抗原結合活性が低くなった場合には、抗原結合分子中の1又は複数のアミノ酸の置換、欠失、付加及び/又は挿入などにより抗原結合活性をヒスチジン置換又は挿入前の抗原結合活性と同等にしてもよい。本発明においては、そのようなヒスチジン置換又は挿入後に1又は複数のアミノ酸の置換、欠失、付加及び/又は挿入を行うことにより結合活性が同等となった抗原結合分子も含まれる。
 又、抗原結合分子のpH5.8における抗原結合活性をpH7.4における抗原結合活性より弱くする他の方法として、抗原結合分子中のアミノ酸を非天然型アミノ酸に置換又は抗原結合分子中のアミノ酸に非天然型アミノ酸を挿入する方法を挙げることができる。非天然アミノ酸は人為的にpKaをコントロールすることができることが知られている(Angew. Chem. Int. Ed. 2005, 44, 34、Chem Soc Rev. 2004 Sep 10;33(7):422-30.、Amino Acids. 1999;16(3-4):345-79.)。従って、本発明においては上述のヒスチジンの代わりに非天然型アミノ酸を用いることが可能である。又、上述のヒスチジン置換及び/又は挿入と、非天然型アミノ酸の置換及び/又は挿入は、同時に行ってもよい。本発明で用いられる非天然型アミノ酸は如何なる非天然型アミノ酸でもよく、当業者に公知の非天然型アミノ酸等を用いることが可能である。
 さらに、抗原結合分子が抗体定常領域を含む物質である場合、抗原結合分子のpH5.8における抗原結合活性をpH7.4における抗原結合活性より弱くする他の方法として、抗原結合分子に含まれる抗体定常領域を改変する方法を挙げることができる。このような抗体定常領域の改変の具体例としては、例えば実施例に記載の定常領域に置換する方法を挙げることが出来る。
 また、抗体定常領域の改変方法としては、例えば、定常領域のアイソタイプ(IgG1、IgG2、IgG3、IgG4)を複数検討し、pH5.8における抗原結合活性が低下する(pH5.8における解離速度が速くなる)アイソタイプを選択する方法が挙げられる。さらに野生型アイソタイプのアミノ酸配列(野生型IgG1、IgG2、IgG3、IgG4アミノ酸配列)にアミノ酸置換を導入することで、pH5.8における抗原結合活性を低下させる(pH5.8における解離速度が速くする)方法が挙げられる。アイソタイプ(IgG1、IgG2、IgG3、IgG4)によって抗体定常領域のヒンジ領域の配列が大きく異なり、ヒンジ領域のアミノ酸配列の違いは抗原結合活性に大きく影響を与えるため、抗原やエピトープの種類によって適切なアイソタイプを選択することでpH5.8における抗原結合活性が低下する(pH5.8における解離速度が速くする)アイソタイプを選択することが可能である。また、ヒンジ領域のアミノ酸配列の違いは抗原結合活性に大きく影響を与えることから、野生型アイソタイプのアミノ酸配列のアミノ酸置換箇所としては、ヒンジ領域が望ましいと考えられる。
 上述の方法等により抗原結合物質のpH5.8における抗原結合活性をpH7.4における抗原結合活性より弱くする(KD(pH5.8)/KD(pH7.4)の値を大きくする)場合、特に限定されないが、KD(pH5.8)/KD(pH7.4)の値が基の抗体と比較して通常、2倍以上、好ましくは5倍以上、さらに好ましくは10倍以上となっていることが好ましい。
 本発明において「薬物動態が向上する」とは、抗原結合分子がヒト、マウス、ラット、サル、ウサギ、イヌなどの動物に投与されてから、血漿中から消失するまで(例えば、細胞内で分解される等して抗原結合分子が血漿中に戻ることが不可能な状態になるまで)の時間が長くなることのみならず、抗原結合分子が投与されてから血漿中から消失するまでの間に抗原に結合可能な状態(例えば、抗原結合分子が抗原に結合していない状態)で血漿中に滞留する時間が長くなることも含む。抗原結合分子が血漿中に存在していても、その抗原結合分子にすでに抗原が結合している場合は、その抗原結合分子は新たな抗原に結合できない。そのため抗原結合分子が抗原に結合していない時間が長くなれば、新たな抗原に結合できる時間が長くなり(新たな抗原に結合できる機会が多くなり)、生体内で抗原が抗原結合分子に結合していない時間を減少させることができる(言い換えれば、抗原に抗原結合分子が結合している時間を長くすることができる)。例えば血漿中などの生体内に存在する抗原(抗原結合分子に結合している分子と抗原結合分子に結合していない抗原の総量)に対する、抗原結合分子に結合している抗原の割合は、通常、抗原結合分子投与後、一定時間が経過すると減少していく。しかし、抗原結合分子が抗原に結合可能な状態で滞留する時間が長くなれば、その減少を抑制(例えば、減少の度合いを少なくする、等)することが可能となり、結果として抗体投与から一定期間経過した後の生体内に存在する抗原に対する、抗原結合分子に結合している抗原の割合が高くなる。
 つまり、本発明の「薬物動態の向上」は、必ずしも抗原結合分子が投与されてから抗原結合分子が消失するまでの時間が延長される(長くなる)必要はない。たとえ抗原結合分子が投与されてから消失するまでの時間に変化がなくても、抗原結合分子が抗原に結合できる状態(例えば、抗原結合分子が抗原に結合していない状態)で血漿中に滞留している時間が長くなっている場合、生体内の抗原が抗原結合分子に結合していない時間が減少している(言い換えれば、抗原に抗原結合分子が結合している時間が長くなっている)場合、又は生体内に存在する抗原に対する抗原結合分子に結合している抗原の割合が高くなっている場合のいずれの場合も、本発明の「薬物動態の向上」に含まれる。従って、本発明の「薬物動態の向上」には少なくとも以下の(1)~(4)が含まれる。
 (1)抗原結合分子が投与されてから、抗原結合分子が血漿中から消失するまでの時間の延長。
 (2)抗原結合分子が投与されてから、抗原結合分子が抗原に結合可能な状態で血漿中に存在する時間の延長。
 (3)抗原結合分子が投与されてから、生体内の抗原が抗原結合分子と結合していない時間の減少(生体内の抗原に抗原結合分子が結合している時間の延長)。
 (4)生体内に存在する抗原に対する抗原結合分子に結合した抗原の割合の上昇。
 又、抗原が血漿中に存在する可溶型抗原の場合、抗原結合分子の薬物動態(血漿中からの消失速度)が同等であっても、抗原結合分子が結合している抗原の消失が早くなることがある。これは抗原の薬物動態を低下させる(血漿中からの消失を早くする)ことで、抗原に対する相対的な抗原結合分子の薬物動態が向上していることにつながり、すなわち、抗原結合分子が抗原に結合可能な状態で血漿中に存在する時間の延長につながる。従って、本発明の抗原結合分子の「薬物動態の向上」の一態様として、抗原結合分子が投与されてから、可溶型抗原が血漿中から消失する速さ(抗原結合分子の血漿中抗原消失能)の上昇も含まれる。
 本発明において、1分子の抗原結合分子が複数の抗原に結合したかどうかは、抗原が膜型抗原の場合、抗原結合分子の薬物動態が向上したかどうかで判断することが可能である。「薬物動態が向上した」か否かは、以下のようにして判断することが可能である。例えば抗原結合分子が投与されてから抗原結合分子が消失するまでの時間が延長されたか否かは、抗原結合分子の血漿中半減期、平均血漿中滞留時間、血漿中クリアランス等のいずれかのパラメーター(ファーマコキネティクス 演習による理解(南山堂))を測定することにより判断することが可能である。例えば、抗原結合分子をマウス、ラット、サル、ウサギ、イヌ、ヒトなどに投与した場合、血漿中半減期が長くなった又は平均血漿中滞留時間が長くなった場合等には抗原結合分子の薬物動態が向上したと言える。これらのパラメーターは当業者に公知の方法により測定することが可能であり、例えば、薬物動態解析ソフトWinNonlin(Pharsight)を用いて、付属の手順書に従いNoncompartmental解析することによって適宜評価することができる。
 又、抗原結合分子が投与されてから消失するまでの間に抗原に結合可能な状態で血漿中に存在する時間が延長されたか否かは、抗原に結合していない抗原結合分子の血漿中濃度を測定し、抗原に結合していない抗原結合分子の血漿中半減期、平均血漿中滞留時間、血漿中クリアランス等のいずれかのパラメーターを測定することにより判断することが可能である。抗原に結合していない抗原結合分子の血漿中濃度の測定は当業者公知の方法で実施することが可能であり、例えば、Clin Pharmacol. 2008 Apr;48(4):406-17において測定されている。
 又、抗原結合分子が投与されてから、生体内の抗原が抗原結合分子に結合していない時間が減少した(抗原に抗原結合分子が結合している時間が長くなった)か否かは、抗原結合分子が結合していない非結合型の抗原の血漿中濃度を測定し、非結合型の抗原の血漿中濃度、あるいは、総抗原量に対する非結合型の抗原量の割合が低く維持されている期間をもとに判断することが可能である。非結合型の抗原の血漿中濃度、あるいは、総抗原量に対する非結合型の抗原の抗原量の割合の測定は当業者公知の方法で実施することが可能であり、例えば、Pharm Res. 2006 Jan;23(1):95-103において測定されている。また、抗原が何らかの機能を生体内で示す場合、抗原が抗原の機能を中和する抗原結合分子(アンタゴニスト分子)によって結合されているかどうかは、その抗原の機能が中和されているかどうかで評価することも可能である。抗原の機能が中和されているかどうかは、抗原の機能を反映する何らかの生体内のマーカーを測定することで評価することが可能である。抗原が抗原の機能を活性化する抗原結合分子(アゴニスト分子)によって結合されているかどうかは、抗原の機能を反映する何らかの生体内のマーカーを測定することで評価することが可能である。
 非結合型の抗原の血漿中濃度の測定、総抗原量に対する非結合型の抗原の抗原量の割合の測定、生体内マーカーの測定などの測定は特に限定されないが、抗原結合物質が投与されてから一定時間が経過した後に行われることが好ましい。本発明において抗原結合物質が投与されてから一定時間が経過した後とは、特に限定されず、投与された抗原結合物質の性質等により当業者が適時決定することが可能であるが、例えば抗原結合物質を投与してから1日経過後、抗原結合物質を投与してから3日経過後、抗原結合物質を投与してから7日経過後、抗原結合物質を投与してから14日経過後、抗原結合物質を投与してから28日経過後などを挙げることができる。
 本発明においては、ヒトにおける薬物動態が向上することが好ましい。ヒトでの血漿中滞留性を測定することが困難である場合には、マウス(例えば、正常マウス、ヒト抗原発現トランスジェニックマウス、ヒトFcRn発現トランスジェニックマウス、等)やサル(例えば、カニクイザルなど)での血漿中滞留性を基に、ヒトでの血漿中滞留性を予測することができる。
 血漿中滞留性の測定方法は、特に限定されないが、例えば実施例に記載の方法に従って行うことができる。
 抗原結合分子が抗原に複数回結合可能であるかどうかは、血漿中と同じ中性条件下で抗原結合分子に結合した抗原がエンドソーム内と同じ酸性条件下で解離し、再び中性条件下でどれだけの抗原に結合できるかどうかを測定することによって評価することが可能である。具体的には、Biacoreのような抗原結合分子-抗原反応を評価する機器を用いて、中性条件下で抗原結合分子-抗原複合体を作らせ、その後一定時間酸性条件下に曝らした後に、再び中性条件下において抗原結合分子が抗原に結合できるかどうかを測定することで評価可能である。改変前の抗原結合分子と比較してpH依存的結合能を付与した抗原結合分子の抗原結合量が2倍向上した場合、改変前の抗原結合分子と比較してpH依存的結合能を付与した抗原結合分子は結合回数が2倍向上していると言える。また、抗原が膜型抗原であって抗原に結合した抗原結合分子が抗原を介して取り込まれライソソームで分解されることで血漿中から消失する場合、改変前の抗原結合分子と比較してpH依存的結合能を付与した抗原結合分子の薬物動態あるいは抗原への結合期間がどれだけ向上したかどうかを評価することによって、改変前の抗原結合分子と比較してpH依存的結合能を付与した抗原結合分子の結合回数が増大しているかどうかを評価することが可能である。例えば、改変前の抗原結合分子と比較してpH依存的結合能を付与した抗原結合分子の抗原への結合期間が2倍向上した場合、改変前の抗原結合分子と比較してpH依存的結合能を付与した抗原結合分子は結合回数が2倍向上していると言える。また、抗原結合分子が結合していない非結合型の抗原の血漿中濃度を測定し、非結合型の抗原の血漿中濃度、あるいは、総抗原量に対する非結合型の抗原の抗原量の割合、が低く維持されている時間が2倍延長した場合、改変前の抗原結合分子と比較してpH依存的結合能を付与した抗原結合分子は結合回数が2倍向上していると言える。
 又、抗原が可溶型抗原の場合、血漿中の中性条件下で抗原結合分子に結合した抗原がエンドソーム内で解離して抗原結合分子が血漿中に戻れば、抗原結合分子は再び血漿中の中性条件下で抗原に結合できるため、エンドソーム内の酸性条件下で抗原を解離する性質を有する抗原結合分子は抗原に複数回結合可能である。抗原結合分子に結合した抗原がエンドソーム内で解離しない場合(抗原は抗原結合分子に結合したまま血漿中に戻る)と比較して、抗原結合分子に結合した抗原がエンドソーム内で解離する場合は、抗原はライソソームに運ばれ分解されるため抗原の血漿中からの消失速度は増加する。すなわち、血漿中から抗原が消失する速度を指標として抗原結合分子が抗原に複数回結合可能であるか否かを判断することも可能である。抗原の血漿中からの消失速度の測定は、例えば、抗原(例えば、膜抗原)と抗原結合分子を生体内に投与し、投与後の血漿中の抗原濃度を測定することにより行うことも可能である。また、抗原(例えば、膜抗原)が生体内で産生(分泌)される場合、抗原の血漿中からの消失速度が増加していれば血漿中抗原濃度は低下することから、血漿中抗原濃度を指標として抗原結合分子が抗原に複数回結合可能であるか否かを判断することも可能である。
 本発明において、「抗原結合分子の抗原への結合回数を増やす」とは、抗原結合分子がヒト、マウス、サルなどに投与された際に、抗原結合分子が抗原に結合し、細胞内に取り込まれる工程を1回とし、この工程が増えることを意味する。つまり本発明において、「抗原結合分子が抗原に2回結合する」とは、抗原結合分子が抗原に結合した状態で細胞内に取り込まれた後に、抗原を解離した状態で細胞外に放出され、放出された抗原結合分子が再度抗原に結合し、細胞内に取り込まれることを意味する。
 抗原結合分子が細胞に取り込まれる際には、抗原結合分子は1つの抗原を結合した状態で取り込まれてもよいし、2つ若しくはそれ以上の抗原を結合した状態で取り込まれてもよい。
 本発明において、「抗原結合分子の抗原への結合回数が増える」とは、全ての抗原結合分子の抗原結合回数が増える必要はなく、例えば、抗原結合分子組成物に含まれる抗原結合分子のうち、2回以上抗原に結合する抗原結合分子の割合が上昇することや、抗原結合分子組成物に含まれる抗原結合分子の結合回数の平均が上昇すること等でもよい。
 本発明においては、抗原結合分子をヒトに投与した際の抗原結合分子の抗原への結合回数が増えることが好ましいが、ヒトでの抗原結合回数を測定することが困難である場合には、in vitroでの測定結果、マウス(例えば、抗原発現トランスジェニックマウス、ヒトFcRn発現トランスジェニックマウス、等)やサル(例えば、カニクイザルなど)などでの測定結果を基にヒトでの抗原結合回数を予想してもよい。
 本発明においては、抗原結合分子が2回以上抗原に結合することが好ましく、例えば、抗原結合分子組成物に含まれる抗原結合分子の少なくとも10%以上、好ましくは30%以上、さらに好ましくは50%以上、より好ましくは80%以上(例えば、90%以上、95%以上など)の抗原結合分子が2回以上抗原に結合することが好ましい。
 本発明において、「抗原結合分子が結合可能な抗原の数を増やす」とは、抗原結合分子がヒト、マウス、サルなどの動物に投与されてから、細胞内のライソソームで分解されるまでの間に抗原結合分子が結合できる抗原の数を増やすことを意味する。
 通常、IgGなどの抗体は2つの結合部位を有するので、1つの抗体は最大で2つの抗原に結合し、抗原に結合した抗体は細胞内に取り込まれ、ライソソームで抗原とともに分解される。従って、通常、IgGなどの抗体は最大で2つの抗原に結合することが可能である。本発明の方法により抗体などの抗原結合分子のエンドソーム内でのpHにおける抗原結合活性を血漿中でのpHにおける抗原結合活性よりも弱くすることにより、細胞内に取り込まれた抗体などの抗原結合分子は、細胞内で抗原を解離し、再び細胞外へと放出されて抗原に結合することが可能となる。つまり、本発明の方法により、抗原結合分子の抗原結合部位の数よりも多い数の抗原に結合することが可能となる。具体的には、例えば2つの結合部位を有するIgGの場合、本発明の方法を用いることにより、抗体が投与されてから抗体が分解されるまでの間に3つ以上、好ましくは4つ以上の抗原に結合することが可能となる。例えば、抗体が中和抗体の場合、「抗原結合分子が結合可能な抗原の数を増やす」とは、抗原結合分子が中和可能な抗原の数を増やす、ということもできる。従って、抗体が中和抗体の場合には、「結合」を「中和」と置き換えることも可能である。
 本発明において、「抗原結合分子が結合可能な抗原の数を増やす」とは、全ての抗原結合分子において結合可能な抗原の数が増える必要はなく、例えば、抗原結合分子組成物に含まれる抗原結合分子の結合可能な抗原の数の平均が増えることでもよいし、抗原結合分子の抗原結合部位の数よりも多い抗原に結合することができる抗原結合分子の割合が上昇することなどでもよい。
 本発明においては、抗原結合分子をヒトに投与した際に抗原結合分子が結合可能な抗原の数が増えることが好ましいが、ヒトでの数を測定することが困難である場合には、in vitroでの測定結果、マウス(例えば、抗原発現トランスジェニックマウス、ヒトFcRn発現トランスジェニックマウス、等)やサル(例えば、カニクイザルなど)などでの測定結果を基にヒトでの結合可能な抗原の数を予想してもよい。一般的に、抗体が中和抗体の場合、上述の抗原結合分子の抗原への結合回数は、抗原結合分子が中和可能な抗原の数と相関すると考えられる為、抗原結合分子が中和可能な抗原の数の測定は、上述の抗原結合分子の抗原への結合回数の測定と同様にして行うことが可能である。
 又、本発明は、酸性pHにおける抗原結合活性が中性pHにおける抗原結合活性より低い抗原結合分子を投与することにより、体内で抗原結合分子を2回以上抗原に結合させる方法を提供する。
 又、本発明は、中和活性を有する抗原結合分子において、酸性pHにおける抗原結合活性が中性pHにおける抗原結合活性より低い抗原結合分子を投与することにより、抗原結合分子の抗原結合部位の数よりも多い数の抗原を中和する方法に関する。好ましくは、酸性pHにおける抗原結合活性が中性pHにおける抗原結合活性より低いIgGを投与することにより、3つ以上、好ましくは4つ以上の抗原を中和する方法に関する。
 さらに、本発明は抗原結合分子の酸性pHにおける抗原結合能を中性pHにおける抗原結合能よりも弱くすることにより細胞外で抗原結合分子に結合した抗原を細胞内で抗原結合分子から解離させる方法に関する。本発明において抗原が抗原結合分子から解離する箇所は細胞内であれば如何なる箇所でもよいが、好ましくは早期エンドソーム内である。本発明において、「細胞外で抗原結合分子に結合した抗原が細胞内で抗原結合分子から解離する」とは、抗原結合分子に結合して細胞内に取り込まれた抗原全てが細胞内で抗原結合分子から解離する必要はなく、細胞内で抗原結合分子から解離する抗原の割合が、抗原結合分子の酸性pHにおける抗原結合能を中性pHにおける抗原結合能を低くする前と比較して高くなっていればよい。
 さらに、本発明は抗原結合分子の酸性pHにおける抗原結合能を中性pHにおける抗原結合能よりも弱くすることにより、細胞内での抗原に結合していない抗原結合分子とFcRnの結合を促進する方法に関する。通常、FcRnはエンドソーム内で抗原結合分子と結合するが、抗原結合分子が膜型抗原に結合している場合はFcRnに結合することが出来ないと考えられるので、本発明の好ましい態様として、抗原が膜型抗原の場合、抗原結合分子のエンドソーム内でのpH(酸性pH)における抗原結合能を血漿中でのpH(中性pH)における抗原結合能よりも弱くすることにより、エンドソーム内での抗原結合分子の抗原からの解離を促進し、抗原結合分子とFcRnの結合を促進する方法を挙げることができる。抗原が可溶型抗原の場合、抗原の結合の有無に関わらず抗原結合分子はFcRnに結合することができるが、抗原結合分子のエンドソーム内でのpH(酸性pH)における抗原結合能を血漿中でのpH(中性pH)における抗原結合能よりも弱くすることにより、エンドソーム内で抗原の抗原結合分子からの解離を促進することができれば、"抗原に結合していない"抗原結合分子とFcRnの結合を促進する方法を挙げることができる。
 抗原が膜型、可溶型どちらの場合であっても、抗原に結合していない抗原結合分子がFcRnにより血漿中に戻ることが出来れば、再び抗原に結合することが可能であるため、これを繰り返すことで抗原結合分子は抗原に複数回結合することが可能である。本発明において、「細胞内での抗原結合分子とFcRnの結合を促進する」とは、全ての抗原結合分子がFcRnと結合する必要はなく、細胞内でFcRnと結合する抗原に結合していない抗原結合分子の割合が、抗原結合分子のエンドソーム内でのpHにおける抗原結合能を血漿中でのpHにおける抗原結合能を低くする前と比較して高くなっていればよい。本発明の細胞内での抗原結合分子とFcRnとの結合を促進する方法において好ましい抗原結合分子の例としては、膜タンパク質などの膜型抗原(膜抗原)に結合する抗原結合分子を挙げることができる。又、他の好ましい抗原結合分子としては、可溶型タンパク質などの可溶型抗原に結合する抗原結合分子を挙げることができる。
 又、細胞内での抗原結合分子とFcRnの結合を促進する方法は、抗原結合分子の細胞内(例えばエンドソーム内)でのFcRnとの結合活性を増強する方法ともいえる。
 さらに本発明は、抗原結合分子の酸性pHにおける抗原結合能を中性pHにおける抗原結合能よりも弱くすることにより、抗原と結合した状態で細胞内に取り込まれた抗原結合分子を、抗原と結合していない状態で細胞外に放出させる方法に関する。本発明において、「抗原と結合した状態で細胞内に取り込まれた抗原結合分子を、抗原と結合していない状態で細胞外に放出させる」とは、抗原と結合した状態で細胞内に取り込まれた抗原結合分子全てが抗原と結合していない状態で細胞外に放出される必要はなく、細胞外に放出される抗原結合分子の割合が抗原結合分子の酸性pHにおける抗原結合能を中性pHにおける抗原結合能より低くする前と比較して高くなっていればよい。好ましくは、細胞外に放出された抗原結合分子は抗原結合能を維持している。又、抗原と結合した状態で細胞内に取り込まれた抗原結合分子を抗原と結合していない状態で細胞外に放出させる方法は、抗原と結合して細胞内に取り込まれた場合に抗原と結合していない状態で細胞外に放出されやすくなる性質を抗原結合分子に付与する方法ともいえる。
 さらに、本発明は抗原結合分子の酸性pHにおける抗原結合能を中性pHにおける抗原結合能よりも弱くすることにより、抗原結合分子の血漿中抗原消失能を増加させる方法に関する。本発明において、「血漿中抗原消失能」とは、抗原結合分子が生体内に投与されたあるいは生体が分泌した際に、血漿中に存在する抗原を血漿中から消失させる能力のことをいう。従って、本発明において、「抗原結合分子の血漿中抗原消失能が増加する」とは、抗原結合分子を生体内に投与した際に血漿中から抗原が消失する速さが、抗原結合分子の酸性pHにおける抗原結合能を中性pHにおける抗原結合能より低くする前と比較して速くなっていればよい。抗原結合分子の血漿中抗原消失能が増加したか否かは、例えば、可溶型抗原と抗原結合分子を生体内に投与し、投与後の可溶型抗原の血漿中濃度を測定することにより判断することが可能である。抗原結合分子の酸性pHにおける抗原結合能を中性pHにおける抗原結合能より低くすることにより、可溶型抗原および抗原結合分子投与後の血漿中の可溶型抗原の濃度が低下している場合には、抗原結合分子の血漿中抗原消失能が増加したと判断することができる。
 さらに、本発明は抗原結合分子の少なくとも1つのアミノ酸をヒスチジン又は非天然アミノ酸で置換する、又はヒスチジン又は非天然アミノ酸を挿入することにより、抗原結合分子の薬物動態を向上する方法に関する。
 又、本発明は抗原結合分子の少なくとも1つのアミノ酸をヒスチジン又は非天然アミノ酸で置換する、又はヒスチジン又は非天然アミノ酸を挿入することにより、抗原結合分子の抗原への結合回数を増やす方法を提供する。
 さらに、本発明は抗原結合分子の少なくとも1つのアミノ酸をヒスチジン又は非天然アミノ酸で置換する、又はヒスチジン又は非天然アミノ酸を挿入することにより、抗原結合分子が結合可能な抗原の数を増やす方法に関する。
 さらに、本発明は抗原結合分子の少なくとも1つのアミノ酸をヒスチジン又は非天然アミノ酸で置換する、又はヒスチジン又は非天然アミノ酸を挿入することにより、細胞外で抗原結合分子に結合した抗原を細胞内で抗原結合分子から解離させる方法を提供する。
 さらに、本発明は抗原結合分子の少なくとも1つのアミノ酸をヒスチジン又は非天然アミノ酸で置換する、又はヒスチジン又は非天然アミノ酸を挿入することにより、抗原と結合した状態で細胞内に取り込まれた抗原結合分子を、抗原と結合していない状態で細胞外に放出させる方法を提供する。
 さらに、本発明は抗原結合分子の少なくとも1つのアミノ酸をヒスチジン又は非天然アミノ酸で置換する、又はヒスチジン又は非天然アミノ酸を挿入することにより、抗原結合分子の血漿中抗原消失能を増加させる方法を提供する。
 ヒスチジン又は非天然アミノ酸変異(置換、挿入等)が導入される位置は特に限定されず、如何なる部位がヒスチジン又は非天然アミノ酸に置換されてもよく、又は如何なる部位にヒスチジン又は非天然アミノ酸が挿入されてもよい。ヒスチジン又は非天然アミノ酸に置換又はヒスチジン又は非天然アミノ酸が挿入される部位の好ましい例として、抗原結合分子の抗原結合能に影響を与える領域を挙げることができる。例えば、抗原結合分子が抗体の場合には、抗体の可変領域やCDRなどを挙げることができる。ヒスチジン又は非天然アミノ酸変異が導入される数は特に限定されず、1箇所のみをヒスチジン又は非天然アミノ酸で置換してもよく、又は1箇所のみにヒスチジン又は非天然アミノ酸を挿入してもよい。あるいは2箇所以上の複数箇所をヒスチジン又は非天然アミノ酸で置換してもよく、又は複数箇所にヒスチジン又は非天然アミノ酸を挿入してもよい。又、ヒスチジン又は非天然アミノ酸への置換又は挿入以外に他のアミノ酸の欠失、付加、挿入および/または置換などを同時に行ってもよい。
 本発明においてヒスチジン又は非天然アミノ酸に置換される箇所の例として、抗原結合分子が抗体の場合には、抗体のCDR配列やCDRの構造を決定する配列が改変箇所として考えられ、例えば以下の箇所を挙げることができる。なお、アミノ酸位置はKabatナンバリング(Kabat EA et al. 1991. Sequences of Proteins of Immunological Interest.NIH)で示している。
 重鎖:H27、H31、H32、H33、H35、H50、H58、H59、H61、H62、H63、H64、H65、H99、H100b、H102
 軽鎖:L24、L27、L28、L32、L53、L54、L56、L90、L92、L94
 これらの改変箇所のうち、H32、H61、L53、L90、L94は普遍性の高い改変箇所と考えられる。
 又、特に限定されないが、抗原がIL-6受容体(例えば、ヒトIL-6受容体)の場合の好ましい改変箇所として以下の箇所を挙げることができる。
 重鎖:H27、H31、H32、H35、H50、H58、H61、H62、H63、H64、H65、H100b、H102
 軽鎖:L24、L27、L28、L32、L53、L56、L90、L92、L94
 複数の箇所を組み合わせてヒスチジン又は非天然アミノ酸に置換する場合の好ましい組み合わせの具体例としては、例えば、H27、H31、H35の組み合わせ、H27、H31、H32、H35、H58、H62、H102の組み合わせ、L32、L53の組み合わせ、L28、L32、L53の組み合わせ等を挙げることができる。さらに、重鎖と軽鎖の置換箇所の好ましい組み合わせの例としては、H27、H31、L32、L53の組み合わせを挙げることができる。
 又、特に限定されないが、抗原がIL-6(例えば、ヒトIL-6)の場合の好ましい改変箇所として以下の箇所を挙げることができる。
 重鎖:H32、H59、H61、H99
 軽鎖:L53、L54、L90、L94
 又、特に限定されないが、抗原がIL-31受容体(例えば、ヒトIL-31受容体)の場合の好ましい改変箇所としてH33を挙げることができる。
 これらの箇所は、1つの箇所のみヒスチジン又は非天然アミノ酸で置換してもよいし、複数の箇所をヒスチジン又は非天然アミノ酸で置換してもよい。
 本発明の方法は、標的抗原の種類によらない任意の抗原結合分子に適応可能である。
 本発明において抗原結合分子は、対象とする抗原への特異的な結合活性を有する物質であれば特に限定されないが、抗原結合分子の好ましい例として、抗体の抗原結合領域を有している物質を挙げることができる。抗体の抗原結合領域の例としては、CDRや可変領域を挙げることができる。抗体の抗原結合領域がCDRである場合、全長抗体に含まれる6つのCDR全てを含んでいてもよいし、1つ若しくは2つ以上のCDRを含んでいてもよい。抗体の結合領域としてCDRを含む場合、含まれるCDRはアミノ酸の欠失、置換、付加及び/又は挿入などが行われていてもよく、又、CDRの一部分であってもよい。
 さらに、抗原結合分子に抗体定常領域が含まれる場合、本発明は抗原結合分子に含まれる抗体定常領域を改変(アミノ酸の置換、欠失、付加および/又は挿入など)することにより、抗原結合分子の薬物動態を向上する方法に関する。
 さらに、抗原結合分子に抗体定常領域が含まれる場合、本発明は抗原結合分子に含まれる抗体定常領域を改変(アミノ酸の置換、欠失、付加および/又は挿入など)することにより、抗原結合分子の抗原への結合回数を増やす方法を提供する。
 さらに、抗原結合分子に抗体定常領域が含まれる場合、本発明は抗原結合分子に含まれる抗体定常領域を改変(アミノ酸の置換、欠失、付加および/又は挿入など)することにより、抗原結合分子が結合可能な抗原の数を増やす方法に関する。
 さらに、抗原結合分子に抗体定常領域が含まれる場合、本発明は抗原結合分子に含まれる抗体定常領域を改変(アミノ酸の置換、欠失、付加および/又は挿入など)することにより、細胞外で抗原結合分子に結合した抗原を細胞内で抗原結合分子から解離させる方法に関する。
 さらに、抗原結合分子に抗体定常領域が含まれる場合、本発明は抗原結合分子に含まれる抗体定常領域を改変(アミノ酸の置換、欠失、付加および/又は挿入など)することにより、抗原と結合した状態で細胞内に取り込まれた抗原結合分子を、抗原と結合していない状態で細胞外に放出させる方法に関する。
 さらに、抗原結合分子に抗体定常領域が含まれる場合、本発明は抗原結合分子に含まれる抗体定常領域を改変(アミノ酸の置換、欠失、付加および/又は挿入など)することにより、抗原結合分子の血漿中抗原消失能を増加させる方法に関する。
 本発明の抗原結合物質の好ましい態様として、FcRn結合領域を含む抗原結合物質を挙げることができる。FcRn結合領域を含む抗原結合物質は、FcRnのサルベージ経路により細胞内に取り込まれた後に再び血漿中に戻ることが可能である。FcRn結合領域は、直接FcRnと結合する領域であることが好ましい。FcRn結合領域の好ましい例として、抗体のFc領域を挙げることができる。しかしながら、アルブミンやIgGなどのFcRnとの結合能を有するポリペプチドに結合可能な領域は、アルブミンやIgGなどを介して間接的にFcRnと結合することが可能であるので、本発明におけるFcRn結合領域はそのようなFcRnとの結合能を有するポリペプチドに結合する領域であってもよい。
 本発明の方法が対象とする抗体等の抗原結合分子が認識する抗原は特に限定されず、如何なる抗原を認識する抗体が対象となってもよい。本発明の方法により薬物動態を向上させる抗体の例としては、例えば、受容体蛋白質(膜結合型受容体、可溶型受容体)や細胞表面マーカーなどの膜抗原を認識する抗体、サイトカインなどの可溶型抗原を認識する抗体などを挙げることができる。本発明において、膜抗原の好ましい例として膜タンパク質を挙げることができる。又、本発明において可溶型抗原の例として可溶型タンパク質を挙げることができる。本発明の方法により薬物動態を向上させる抗体が認識する抗原の具体的な例としては、例えばIL-1、IL-2、IL-3、IL-4、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-11、IL-12、IL-15、IL-31、IL-23、IL-2受容体、IL-6受容体、OSM受容体、gp130、IL-5受容体、CD40、CD4、Fas、オステオポンチン、CRTH2、CD26、PDGF-D、CD20、単球走化活性因子、CD23、TNF-α、HMGB-1、α4インテグリン、ICAM-1、CCR2、CD11a、CD3、IFNγ、BLyS、HLA-DR、TGF-β、CD52、IL-31受容体などを挙げることができる。特に好ましい抗原として、IL-6受容体を挙げることができる。
 又、本発明の方法が対象とする抗原結合分子としてはアンタゴニスト活性を有する抗原結合分子(アンタゴニスト抗原結合分子)、アゴニスト活性を有する抗原結合分子(アゴニスト抗原結合分子)などを挙げることができるが、好ましい態様として、アンタゴニスト抗原結合分子、特に受容体などの膜抗原やサイトカインなどの可溶型抗原を認識するアンタゴニスト抗原結合分子を挙げることができる。例えば、受容体を認識するアンタゴニスト抗原結合分子は、受容体に結合し、受容体とそのリガンドとの結合を阻害し、受容体を介したシグナル伝達を阻害する抗原結合分子である。
 本発明において対象となる抗原結合分子は特に限定されず、如何なる抗原結合分子でもよい。本発明で用いられる抗原結合分子は好ましくは、抗原結合活性(抗原結合領域)とFcRn結合領域を有する。本発明においては、特にヒトFcRnとの結合領域を含む抗原結合分子であることが好ましい。抗原結合活性とFcRn結合領域を有する抗原結合分子の例として、抗体を挙げることができる。本発明の抗体の好ましい例として、IgG抗体を挙げることができる。抗体としてIgG抗体を用いる場合、その種類は限定されず、IgG1、IgG2、IgG3、IgG4などのアイソタイプ(サブクラス)のIgGを用いることが可能である。また、これらのアイソタイプのIgGの定常領域に対して、M73のように定常領域部分にアミノ酸変異を導入しても良い。導入するアミノ酸変異は、例えば、Fcγレセプターへの結合を増大あるいは低減させたもの(Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4005-10.)、FcRnへの結合を増大あるいは低減させたもの(J Biol Chem. 2001 Mar 2;276(9):6591-604)等を挙げることができるが、これらに限定されるものではない。また、IgG2などの適切な定常領域を選択することによって、pH依存的な結合を変化させることも可能である。
 本発明が対象とする抗原結合分子が抗体の場合、抗体はマウス抗体、ヒト抗体、ラット抗体、ウサギ抗体、ヤギ抗体、ラクダ抗体など、どのような動物由来の抗体でもよい。さらに、例えば、キメラ抗体、中でもヒト化抗体などのアミノ酸配列を置換した改変抗体でもよい。また、二種特異性抗体、各種分子を結合させた抗体修飾物、抗体断片を含むポリペプチドなどであってもよい。
 「キメラ抗体」とは、異なる動物由来の配列を組合わせて作製される抗体である。キメラ抗体の具体的な例としては、例えば、マウス抗体の重鎖、軽鎖の可変(V)領域とヒト抗体の重鎖、軽鎖の定常(C)領域からなる抗体を挙げることができる。
 「ヒト化抗体」とは、再構成(reshaped)ヒト抗体とも称される、ヒト以外の哺乳動物由来の抗体、例えばマウス抗体の相補性決定領域(CDR;complementarity determining region)をヒト抗体のCDRへ移植したものである。CDRを同定するための方法は公知である(Kabat et al., Sequence of Proteins of Immunological Interest (1987), National Institute of Health, Bethesda, Md.; Chothia et al., Nature (1989) 342: 877)。また、その一般的な遺伝子組換え手法も公知である(欧州特許出願公開番号EP 125023号公報、WO 96/02576 号公報参照)。
 二重特異性抗体は、異なるエピトープを認識する可変領域を同一の抗体分子内に有する抗体をいう。二種特異性抗体は2つ以上の異なる抗原を認識する抗体であってもよいし、同一抗原上の異なる2つ以上のエピトープを認識する抗体であってもよい。
 又、抗体断片を含むポリペプチドとしては、例えば、Fab断片、F(ab')2断片、scFv(Nat Biotechnol. 2005 Sep;23(9):1126-36.)domain antibody(dAb)(WO2004/058821, WO2003/002609)、scFv-Fc(WO2005037989)、dAb-Fc、Fc融合タンパク質等が挙げられる。これらの分子のうち、特にFc領域を含んでいる分子はFcRnへの結合活性を有することから、本発明で見出された方法を用いるのに適している。
 さらに、本発明が適用できる抗原結合分子は、抗体様分子であってもよい。抗体様分子とは、ターゲット分子に結合することで機能を発揮するような分子であり(Current Opinion in Biotechnology 2006, 17:653-658、Current Opinion in Biotechnology 2007, 18:1-10、Current Opinion in Structural Biology 1997, 7:463-469、Protein Science 2006, 15:14-27)、例えば、DARPins(WO2002/020565)、Affibody(WO1995/001937)、Avimer(WO2004/044011, WO2005/040229)、Adnectin(WO2002/032925)等が挙げられる。これら抗体様分子であっても、標的分子に対してpH依存的に結合することが出来れば、1分子で複数の標的分子に結合することが可能である。
 また抗原結合分子は、標的に結合するレセプタータンパク質およびレセプターFc融合タンパク質であっても良く、例えば、TNFR-Fc融合タンパク、IL1R-Fc融合タンパク、VEGFR-Fc融合タンパク、CTLA4-Fc融合タンパク等(Nat Med. 2003 Jan;9(1):47-52、BioDrugs. 2006;20(3):151-60.)が挙げられる。これらレセプタータンパク質およびレセプターFc融合タンパク質であっても標的分子に対してpH依存的に結合することが出来れば、1分子で複数の標的分子に結合することが可能である。
 また抗原結合分子は、標的に結合するが中和効果を有する人工リガンドタンパク質および人工リガンド融合タンパク質であっても良く、例えば、変異IL-6(EMBO J. 1994 Dec 15;13(24):5863-70.)等が挙げられる。これら人工リガンドタンパク質および人工リガンド融合タンパク質であっても標的分子に対してpH依存的に結合することが出来れば、1分子で複数の標的分子に結合することが可能である。
 さらに、本発明の抗体は糖鎖が改変されていてもよい。糖鎖が改変された抗体の例としては、例えば、グリコシル化が修飾された抗体(WO99/54342など)、糖鎖に付加するフコースが欠損した抗体(WO00/61739、WO02/31140、WO2006/067847、WO2006/067913など)、バイセクティングGlcNAcを有する糖鎖を有する抗体(WO02/79255など)などを挙げることができる。
 本発明の方法は特定の理論により限定されるものではないが、例えば、酸性pHにおける抗原結合能を中性pHにおける抗原結合能よりも弱くすることと薬物動態の向上、および、複数回の抗原への結合との関連は以下のように説明することが可能である。
 例えば、抗体が膜抗原に結合する抗体の場合、生体内に投与した抗体は抗原に結合して、その後、抗体は抗原に結合したまま抗原と一緒にインターナライゼーションによって細胞内のエンドソームに取り込まれる。その後、抗体は抗原に結合したままライソソームへ移行し抗体は抗原と一緒にライソソームにより分解される。インターナライゼーションを介した血漿中からの消失は抗原依存的な消失と呼ばれており、多くの抗体分子で報告されている(Drug Discov Today. 2006 Jan;11(1-2):81-8)。1分子のIgG抗体が2価で抗原に結合した場合、1分子の抗体が2分子の抗原に結合した状態でインターナライズされ、そのままライソソームで分解される。従って、通常の抗体の場合、1分子のIgG抗体が3分子以上の抗原に結合することは出来ない。例えば、中和活性を有する1分子のIgG抗体の場合、3分子以上の抗原を中和することはできない。
 IgG分子の血漿中滞留性が比較的長い(消失が遅い)のは、IgG分子のサルベージレセプターとして知られているFcRnが機能しているためである。ピノサイトーシスによってエンドソームに取り込まれたIgG分子は、エンドソーム内の酸性条件下においてエンドソーム内に発現しているFcRnに結合する。FcRnに結合できなかったIgG分子はライソソームへと進みそこで分解されるが、FcRnへ結合したIgG分子は細胞表面へ移行し血漿中の中性条件下においてFcRnから解離することで再び血漿中に戻る。
 又、抗体が可溶型抗原に結合する抗体の場合、生体内に投与した抗体は抗原に結合し、その後、抗体は抗原に結合したまま細胞内に取り込まれる。細胞内に取り込まれた抗体の多くはFcRnにより細胞外に放出されるが、抗原に結合したまま細胞外に放出される為、再度、抗原に結合することはできない。従って、膜抗原に結合する抗体と同様、通常の抗体の場合、1分子のIgG抗体が3分子以上の抗原に結合することはできない。
 本発明者らは、インターナライゼーションによって膜抗原などの抗原に結合した抗体が細胞内のエンドソームに取り込まれた際に、抗原に結合したままの抗体はライソソームに移行して分解されるのに対して、エンドソーム内において抗原が解離したIgG抗体はエンドソーム内に発現しているFcRnに結合することが出来ると考えた。つまり、血漿中では抗原に強く結合し、エンドソーム内では抗原に弱く結合する抗体は、血漿中で抗原に結合して抗原との複合体を形成したままインターナライゼーションによって細胞内のエンドソーム内に取り込まれ、エンドソーム内で抗原と解離した後に、FcRnに結合して細胞表面に移行し、抗原に結合していない状態で再び血漿中に戻り、複数個の膜型抗原を中和できることを見出した。さらに、血漿中では抗原に強く結合し、エンドソーム内では抗原に弱く結合する性質を有する抗体は、可溶型抗原などの抗原に結合した場合でも、エンドソーム内で抗原と解離することから、抗原に結合していない状態で再び血漿中に放出され、複数個の可溶型抗原を中和できることを見出した。
 特に、本発明者らは血漿中のpHとエンドソーム内のpHが異なることに着目し、血漿中のpH条件では抗原に強く結合し、エンドソーム内のpH条件では抗原に弱く結合する抗体は1抗体分子が複数の抗原に結合することができ、血漿中滞留性が優れていることを見出した。
 エンドソームは膜小胞の一つであり、真核細胞から細胞質内にネットワークを形成して細胞膜からリソソームに至る過程で高分子の代謝をつかさどる。エンドソーム内のpHは一般的にpH5.5~pH6.0の酸性であることが報告されており(Nat Rev Mol Cell Biol. 2004 Feb;5(2):121-32.)、又、血漿中のpHはほぼ中性(通常、pH7.4)であることが知られている。
 従って、酸性pHにおける抗原結合活性が中性pHにおける抗原結合活性よりも弱い抗原結合分子は、中性pHの血漿中において抗原に結合し、細胞内に取り込まれた後に、酸性pHのエンドソーム内で抗原と解離する。抗原と解離した抗原結合分子はFcRnに結合して細胞表面に移行し、抗原と結合していない状態で再び血漿中に戻り、結果として抗原と複数回結合することができ、薬物動態が向上する。
<抗原結合分子物質>
 さらに、本発明はpH4.0~pH6.5での抗原結合活性がpH6.7~pH10.0での抗原結合活性よりも低い抗原結合分子、好ましくはpH5.0~pH6.0での抗原結合活性がpH7.0~8.0での抗原結合活性よりも低い抗原結合分子を提供する。pH4.0~pH6.5での抗原結合活性がpH6.7~10.0での抗原結合活性よりも低い抗原結合分子の具体的な例としては、pH5.8での抗原結合活性がpH7.4での抗原結合活性よりも低い抗原結合分子を挙げることができる。又、pH5.8での抗原結合活性がpH7.4での抗原結合活性よりも低い抗原結合分子は、pH7.4での抗原結合活性がpH5.8での抗原結合活性よりも高い抗原結合分子ということもできる。
 本発明のpH5.8での抗原結合活性がpH7.4での抗原結合活性よりも低い抗原結合分子は、pH5.8での抗原結合活性がpH7.4での結合より低い限り、その結合活性の差は限定されず、僅かでもpH5.8における抗原結合活性が低ければよい。
 本発明のpH5.8での抗原結合活性がpH7.4での抗原結合活性よりも低い抗原結合分子の好ましい態様として、pH7.4における抗原結合活性がpH5.8における抗原結合活性の2倍以上である抗原結合分子を挙げることができ、さらに好ましい態様としてはpH7.4における抗原結合活性がpH5.8における抗原結合活性の10倍以上である抗原結合分子を挙げることができ、より好ましい態様としてはpH7.4における抗原結合活性がpH5.8における抗原結合活性の40倍以上である抗原結合分子を挙げることができる。
 具体的には、本発明のpH5.8での抗原結合活性がpH7.4での抗原結合活性よりも低い抗原結合分子の好ましい態様として、抗原に対するpH5.8でのKDとpH7.4でのKDの比であるKD(pH5.8)/KD(pH7.4)の値が2以上であり、さらに好ましくはKD(pH5.8)/KD(pH7.4)の値が10以上であり、さらに好ましくはKD(pH5.8)/KD(pH7.4)の値が40以上である。KD(pH5.8)/KD(pH7.4)の値の上限は特に限定されず、当業者の技術において作製可能な限り、400、1000、10000等、いかなる値でもよい。
 さらに本発明のpH5.8での抗原結合活性がpH7.4での抗原結合活性よりも低い抗原結合分子の好ましい他の態様として、抗原に対するpH5.8でのkdとpH7.4でのkdの比であるkd(pH5.8)/kd(pH7.4)の値が2以上であり、さらに好ましくはkd(pH5.8)/kd(pH7.4)の値が5以上であり、さらに好ましくはkd(pH5.8)/kd(pH7.4)の値が10以上であり、さらに好ましくはkd(pH5.8)/kd(pH7.4)の値が30以上である。Kd(pH5.8)/kd(pH7.4)の値の上限は特に限定されず、当業者の技術において作製可能な限り、50、100、200等、いかなる値でもよい。
 抗原の結合活性を測定する際のpH以外の条件は当業者が適宜選択することが可能であり、特に限定されないが、例えば、実施例に記載のようにMESバッファー、37℃の条件において測定することが可能である。又、抗原結合分子の抗原結合活性の測定は当業者に公知の方法により行うことが可能であり、例えば、実施例に記載のようにBiacore T100(GE Healthcare)などを用いて測定することが可能である。
 このような酸性pHにおいて抗原に弱く結合する抗原結合分子は、エンドソーム内の酸性条件下において抗原から容易に解離すると考えられ、細胞内にインターナライズされた後にFcRnと結合して細胞外に放出されやすいと考えられる。細胞内で分解されることなく、細胞外に放出された抗原結合分子は再度、抗原に結合することが可能である。従って、例えば抗原結合分子が中和抗原結合分子である場合には、エンドソーム内の酸性条件下において抗原から解離しやすい抗原結合分子は、複数回、抗原に結合し、抗原を中和することが可能である。結果として、pH4.0~pH6.5での抗原結合活性がpH6.7~pH10.0での抗原結合活性よりも低い抗原結合分子は血漿中滞留性において優れた抗原結合分子となる。
 pH5.8での抗原結合活性がpH7.4での抗原結合活性よりも低い抗原結合分子の好ましい態様として、抗原結合分子中のアミノ酸の少なくとも1つがヒスチジン又は非天然アミノ酸に置換されている又は少なくとも1つのヒスチジン又は非天然アミノ酸が挿入されている抗原結合分子を挙げることができる。ヒスチジン又は非天然アミノ酸変異が導入される位置は特に限定されず、置換前と比較してpH5.8における抗原結合活性がpH7.4における抗原結合活性より弱くなる(KD(pH5.8)/KD(pH7.4)の値が大きくなる、又はkd(pH5.8)/kd(pH7.4)の値が大きくなる)限り、如何なる部位でもよい。例えば、抗原結合分子が抗体の場合には、抗体の可変領域やCDRなどを挙げることができる。ヒスチジン又は非天然アミノ酸に置換されるアミノ酸の数、又は挿入されるアミノ酸の数は当業者が適宜決定することができ、1つのアミノ酸をヒスチジン又は非天然アミノ酸で置換してもよいし、1つのアミノ酸を挿入してもよいし、2つ以上の複数のアミノ酸をヒスチジン又は非天然アミノ酸で置換してもよいし、2つ以上のアミノ酸を挿入してもよい。又、ヒスチジン又は非天然アミノ酸への置換又はヒスチジン又は非天然アミノ酸の挿入以外に、他のアミノ酸の欠失、付加、挿入および/または置換などを同時に行ってもよい。ヒスチジン又は非天然アミノ酸への置換又はヒスチジン又は非天然アミノ酸の挿入は、当業者の公知のアラニンscanningのアラニンをヒスチジンに置き換えたヒスチジンscanningなどの方法によりランダムに行ってもよく、ヒスチジン又は非天然アミノ酸変異がランダムに導入された抗原結合分子の中から、変異前と比較してKD(pH5.8)/KD(pH7.4)又はkd(pH5.8)/kd(pH7.4)の値が大きくなった抗原結合分子を選択してもよい。
 このようにヒスチジン又は非天然アミノ酸への変異が行われ、かつpH5.8での抗原結合活性がpH7.4での抗原結合活性よりも低い抗原結合分子の好ましい例として、例えば、ヒスチジン又は非天然アミノ酸への変異後のpH7.4での抗原結合活性がヒスチジン又は非天然アミノ酸への変異前のpH7.4での抗原結合活性と同等である抗原結合分子を挙げることができる。本発明において、ヒスチジン又は非天然アミノ酸変異後の抗原結合分子が、ヒスチジン又は非天然アミノ酸変異前の抗原結合分子と同等の抗原結合活性を有するとは、ヒスチジン又は非天然アミノ酸変異前の抗原結合分子の抗原結合活性を100%とした場合に、ヒスチジン又は非天然アミノ酸変異後の抗原結合分子の抗原結合活性が少なくとも10%以上、好ましくは50%以上、さらに好ましくは80%以上、より好ましくは90%以上であることを言う。ヒスチジン又は非天然アミノ酸変異後のpH7.4での抗原結合活性がヒスチジン又は非天然アミノ酸変異前のpH7.4での抗原結合活性より高くなってもよい。ヒスチジン又は非天然アミノ酸への置換又は挿入により抗原結合分子の抗原結合活性が低くなった場合には、抗原結合分子中の1又は複数のアミノ酸の置換、欠失、付加及び/又は挿入などにより抗原結合活性をヒスチジン置換又は挿入前の抗原結合活性と同等にしてもよい。本発明においては、そのようなヒスチジン置換又は挿入後に1又は複数のアミノ酸の置換、欠失、付加及び/又は挿入を行うことにより結合活性が同等となった抗原結合分子も含まれる。
 さらに、抗原結合分子が抗体定常領域を含む物質である場合、pH5.8での抗原結合活性がpH7.4での抗原結合活性よりも低い抗原結合分子の好ましい他の態様として、抗原結合分子に含まれる抗体定常領域が改変された方法を挙げることができる。改変後の抗体定常領域の具体例としては、例えば実施例に記載の定常領域を挙げることができる。
 上述の方法等により抗原結合物質のpH5.8における抗原結合活性をpH7.4における抗原結合活性より弱くする(KD(pH5.8)/KD(pH7.4)の値を大きくする)場合、特に限定されないが、KD(pH5.8)/KD(pH7.4)の値が基の抗体と比較して通常、2倍以上、好ましくは5倍以上、さらに好ましくは10倍以上となっていることが好ましい。
 本発明の抗原結合分子はpH4.0~pH6.5での抗原結合活性がpH6.7~10.0での抗原結合活性よりも低い限り、他にどのような性質を有していてもよく、例えばアゴニスト抗原結合分子やアンタゴニスト抗原結合分子などであってもよい。本発明の好ましい抗原結合分子の例としてアンタゴニスト抗原結合分子を挙げることができる。アンタゴニスト抗原結合分子は通常、リガンド(アゴニスト)と受容体の結合を阻害し、受容体を介した細胞内へのシグナル伝達を阻害する抗原結合分子である。
 さらに、本発明は以下の少なくとも1つの箇所のアミノ酸がヒスチジン又は非天然アミノ酸に置換された抗体を提供する。なお、アミノ酸位置はKabatナンバリング(Kabat EA et al. 1991. Sequences of Proteins of Immunological Interest.NIH)で示している。
 重鎖:H27、H31、H32、H33、H35、H50、H58、H59、H61、H62、H63、H64、H65、H99、H100b、H102
 軽鎖:L24、L27、L28、L32、L53、L54、L56、L90、L92、L94
 これらの改変箇所のうち、H32、H61、L53、L90、L94は普遍性の高い改変箇所と考えられる。
 又、特に限定されないが、抗原がIL-6受容体(例えば、ヒトIL-6受容体)の場合の好ましい改変箇所として以下の箇所を挙げることができる。
 重鎖:H27、H31、H32、H35、H50、H58、H61、H62、H63、H64、H65、H100b、H102
 軽鎖:L24、L27、L28、L32、L53、L56、L90、L92、L94
 複数の箇所を組み合わせてヒスチジン又は非天然アミノ酸に置換する場合の好ましい組み合わせの具体例としては、例えば、H27、H31、H35の組み合わせ、H27、H31、H32、H35、H58、H62、H102の組み合わせ、L32、L53の組み合わせ、L28、L32、L53の組み合わせ等を挙げることができる。さらに、重鎖と軽鎖の置換箇所の好ましい組み合わせの例としては、H27、H31、L32、L53の組み合わせを挙げることができる。
 又、特に限定されないが、抗原がIL-6(例えば、ヒトIL-6)の場合の好ましい改変箇所として以下の箇所を挙げることができる。
 重鎖:H32、H59、H61、H99
 軽鎖:L53、L54、L90、L94
 又、特に限定されないが、抗原がIL-31受容体(例えば、ヒトIL-31受容体)の場合の好ましい改変箇所としてH33を挙げることができる。
 本発明の抗原結合分子が認識する抗原は如何なる抗原でもよい。本発明の抗体が認識する抗原の具体的な例としては上述の受容体蛋白質(膜結合型受容体、可溶型受容体)、細胞表面マーカーなどの膜抗原やサイトカインなどの可溶型抗原、例えば、IL-1、IL-2、IL-3、IL-4、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-11、IL-12、IL-15、IL-31、IL-23、IL-2受容体、IL-6受容体、OSM受容体、gp130、IL-5受容体、CD40、CD4、Fas、オステオポンチン、CRTH2、CD26、PDGF-D、CD20、単球走化活性因子、CD23、TNF-α、HMGB-1、α4インテグリン、ICAM-1、CCR2、CD11a、CD3、IFNγ、BLyS、HLA-DR、TGF-β、CD52、IL-31受容体などを挙げることができる。
 特に好ましい抗原としては、IL-6受容体を挙げることができる。
 本発明の抗原結合分子については上述の通りである。
 本発明において抗原結合分子の好ましい態様として、抗体を挙げることができる。抗原結合活性とFcRn結合領域を有する抗体の例として、IgG抗体を挙げることができる。抗体としてIgG抗体を用いる場合、その種類は限定されず、IgG1、IgG2、IgG3、IgG4などを用いることが可能である。
 本発明の抗体の由来は特に限定されず、如何なる由来の抗体でもよく、例えば、マウス抗体、ヒト抗体、ラット抗体、ウサギ抗体、ヤギ抗体、ラクダ抗体などを用いることができる。さらに、例えば、上述のキメラ抗体、中でもヒト化抗体などのアミノ酸配列を置換した改変抗体でもよい。また、上述の二種特異性抗体、各種分子を結合させた抗体修飾物、抗体断片を含むポリペプチド、糖鎖改変抗体などであってもよい。
 キメラ抗体の作製は公知であり、例えば、ヒト-マウスキメラ抗体の場合、抗体V領域をコードするDNAとヒト抗体C領域をコードするDNAと連結し、これを発現ベクターに組み込んで宿主に導入し産生させることによりキメラ抗体を得ることができる。
 「ヒト化抗体」とは、再構成(reshaped)ヒト抗体とも称される、ヒト以外の哺乳動物由来の抗体、例えばマウス抗体の相補性決定領域(CDR;complementarity determining region)をヒト抗体のCDRへ移植したものである。CDRを同定するための方法は公知である(Kabat et al., Sequence of Proteins of Immunological Interest (1987), National Institute of Health, Bethesda, Md.; Chothia et al., Nature (1989) 342: 877)。また、その一般的な遺伝子組換え手法も公知である(欧州特許出願公開番号EP 125023号公報、WO 96/02576 号公報参照)。ヒト化抗体は公知の方法により、例えば、マウス抗体のCDRを決定し、該CDRとヒト抗体のフレームワーク領域(framework region;FR)とが連結された抗体をコードするDNAを取得し、ヒト化抗体を通常の発現ベクターを用いた系により産生することができる。このようなDNAは、CDR及びFR両方の末端領域にオーバーラップする部分を有するように作製した数個のオリゴヌクレオチドをプライマーとして用いてPCR法により合成することができる(WO98/13388号公報に記載の方法を参照)。CDRを介して連結されるヒト抗体のFRは、CDRが良好な抗原結合部位を形成するように選択される。必要に応じ、再構成ヒト抗体のCDRが適切な抗原結合部位を形成するように、抗体の可変領域におけるFRのアミノ酸を改変してもよい(Sato et al., Cancer Res. (1993) 53: 10.01-6)。改変できるFR中のアミノ酸残基には、抗原に直接、非共有結合により結合する部分(Amit et al., Science (1986) 233: 747-53)、CDR構造に影響または作用する部分(Chothia et al., J. Mol. Biol. (1987) 196: 901-17)及びVH-VL相互作用に関連する部分(EP239400号特許公報)が含まれる。
 本発明における抗体がキメラ抗体またはヒト化抗体である場合には、これらの抗体のC領域は、好ましくはヒト抗体由来のものが使用される。例えばH鎖では、Cγ1、Cγ2、Cγ3、Cγ4などを、L鎖ではCκ、Cλなどを使用することができる。また、FcγレセプターやFcRnへの結合を増大あるいは低減させるために、抗体の安定性または抗体の産生を改善するために、ヒト抗体C領域を必要に応じアミノ酸変異を導入してもよい。本発明におけるキメラ抗体は、好ましくはヒト以外の哺乳動物由来抗体の可変領域とヒト抗体由来の定常領域とからなる。一方、ヒト化抗体は、好ましくはヒト以外の哺乳動物由来抗体のCDRと、ヒト抗体由来のFRおよびC領域とからなる。ヒト抗体由来の定常領域は、FcRn結合領域を含んでいることが好ましく、そのような抗体の例として、IgG(IgG1、IgG2、IgG3、IgG4)を挙げることができる。本発明におけるヒト化抗体に用いられる定常領域は、どのアイソタイプに属する抗体の定常領域であってもよい。好ましくは、ヒトIgGの定常領域が用いられるが、これに限定されるものではない。また、ヒト化抗体に利用されるヒト抗体由来のFRも特に限定されず、どのアイソタイプに属する抗体のものであってもよい。
 本発明におけるキメラ抗体及びヒト化抗体の可変領域及び定常領域は、元の抗体の結合特異性を示す限り、欠失、置換、挿入及び/または付加等により改変されていてもよい。
 ヒト由来の配列を利用したキメラ抗体及びヒト化抗体は、ヒト体内における免疫原性が低下しているため、治療目的などでヒトに投与する場合に有用と考えられる。
 本発明の抗体は如何なる方法により得られてもよく、例えば、本来はpH5.8での抗原結合活性がpH7.4での抗原結合活性より高い抗体又は抗原結合活性が同程度である抗体を、上述のヒスチジンへの置換等により、人為的にpH5.8での抗原結合活性をpH7.4での抗原結合活性より低くしてもよいし、又、以下に示す抗体ライブラリーやハイブリドーマから得られる複数の抗体の中からpH5.8での抗原結合活性がpH7.4での抗原結合活性より低い抗体をスクリーニングすることで選択してもよい。
 抗体中のアミノ酸をヒスチジンに置換する場合、ヒスチジン変異導入前の抗体のH鎖又はL鎖のアミノ酸配列は既知の配列を用いることも可能であり、又、当業者に公知の方法で新しく取得した抗体のアミノ酸配列を用いることも可能である。例えば、抗体は、抗体ライブラリーから取得することも可能であるし、モノクローナル抗体を産生するハイブリドーマから抗体をコードする遺伝子をクローニングして取得することも可能である。
 抗体ライブラリーについては既に多くの抗体ライブラリーが公知になっており、又、抗体ライブラリーの作製方法も公知であるので、当業者は適宜抗体ライブラリーを入手することが可能である。例えば、抗体ファージライブラリーについては、Clackson et al., Nature 1991, 352: 624-8、Marks et al., J. Mol. Biol. 1991, 222: 581-97、Waterhouses et al., Nucleic Acids Res. 1993, 21: 2265-6、Griffiths et al., EMBO J. 1994, 13: 324.0-60、Vaughan et al., Nature Biotechnology 1996, 14: 309-14、及び特表平20-504970号公報等の文献を参照することができる。その他、真核細胞をライブラリーとする方法(WO95/15393号パンフレット)やリボソーム提示法等の公知の方法を用いることが可能である。さらに、ヒト抗体ライブラリーを用いて、パンニングによりヒト抗体を取得する技術も知られている。例えば、ヒト抗体の可変領域を一本鎖抗体(scFv)としてファージディスプレイ法によりファージの表面に発現させ、抗原に結合するファージを選択することができる。選択されたファージの遺伝子を解析すれば、抗原に結合するヒト抗体の可変領域をコードするDNA配列を決定することができる。抗原に結合するscFvのDNA配列が明らかになれば、当該配列を元に適当な発現ベクターを作製し、ヒト抗体を取得することができる。これらの方法は既に周知であり、WO92/01047、WO92/20791、WO93/06213、WO93/11236、WO93/19172、WO95/01438、WO95/15388を参考にすることができる。
 ハイブリドーマから抗体をコードする遺伝子を取得する方法は、基本的には公知技術を使用し、所望の抗原または所望の抗原を発現する細胞を感作抗原として使用して、これを通常の免疫方法にしたがって免疫し、得られる免疫細胞を通常の細胞融合法によって公知の親細胞と融合させ、通常のスクリーニング法により、モノクローナルな抗体産生細胞(ハイブリドーマ)をスクリーニングし、得られたハイブリドーマのmRNAから逆転写酵素を用いて抗体の可変領域(V領域)のcDNAを合成し、これを所望の抗体定常領域(C領域)をコードするDNAと連結することにより得ることができる。
 より具体的には、特に以下の例示に限定されないが、上記のH鎖及びL鎖をコードする抗体遺伝子を得るための感作抗原は、免疫原性を有する完全抗原と、免疫原性を示さないハプテン等を含む不完全抗原の両方を含む。例えば、目的タンパク質の全長タンパク質、又は部分ペプチドなどを用いることができる。その他、多糖類、核酸、脂質等から構成される物質が抗原となり得ることが知られており、本発明の抗体の抗原は特に限定されるものではない。抗原の調製は、当業者に公知の方法により行うことができ、例えば、バキュロウィルスを用いた方法(例えば、WO98/46777など)などに準じて行うことができる。ハイブリドーマの作製は、たとえば、ミルステインらの方法(G. Kohler and C. Milstein, Methods Enzymol. 1981, 73: 3-46)等に準じて行うことができる。抗原の免疫原性が低い場合には、アルブミン等の免疫原性を有する巨大分子と結合させ、免疫を行えばよい。また、必要に応じ抗原を他の分子と結合させることにより可溶性抗原とすることもできる。膜抗原(例えば、受容体など)のような膜貫通分子を抗原として用いる場合、膜抗原の細胞外領域部分を断片として用いたり、膜貫通分子を細胞表面上に発現する細胞を免疫原として使用することも可能である。
 抗体産生細胞は、上述の適当な感作抗原を用いて動物を免疫化することにより得ることができる。または、抗体を産生し得るリンパ球をin vitroで免疫化して抗体産生細胞とすることもできる。免疫化する動物としては、各種哺乳動物を使用できるが、ゲッ歯目、ウサギ目、霊長目の動物が一般的に用いられる。マウス、ラット、ハムスター等のゲッ歯目、ウサギ等のウサギ目、カニクイザル、アカゲザル、マントヒヒ、チンパンジー等のサル等の霊長目の動物を例示することができる。その他、ヒト抗体遺伝子のレパートリーを有するトランスジェニック動物も知られており、このような動物を使用することによりヒト抗体を得ることもできる(WO96/34096; Mendez et al., Nat. Genet. 1997, 15: 146-56参照)。このようなトランスジェニック動物の使用に代えて、例えば、ヒトリンパ球をin vitroで所望の抗原または所望の抗原を発現する細胞で感作し、感作リンパ球をヒトミエローマ細胞、例えばU266と融合させることにより、抗原への結合活性を有する所望のヒト抗体を得ることもできる(特公平1-59878号公報参照)。また、ヒト抗体遺伝子の全てのレパートリーを有するトランスジェニック動物を所望の抗原で免疫することで所望のヒト抗体を取得することができる(WO93/12227、WO92/03918、WO94/02602、WO96/34096、WO96/33735参照)。
 動物の免疫化は、例えば、感作抗原をPhosphate-Buffered Saline(PBS)または生理食塩水等で適宜希釈、懸濁し、必要に応じてアジュバントを混合して乳化した後、動物の腹腔内または皮下に注射することにより行われる。その後、好ましくは、フロイント不完全アジュバントに混合した感作抗原を4~21日毎に数回投与する。抗体の産生の確認は、動物の血清中の目的とする抗体力価を慣用の方法により測定することにより行われ得る。
 ハイブリドーマは、所望の抗原で免疫化した動物またはリンパ球より得られた抗体産生細胞を、慣用の融合剤(例えば、ポリエチレングリコール)を使用してミエローマ細胞と融合して作成することができる(Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, 1986, 59-103)。必要に応じハイブリドーマ細胞を培養・増殖し、免疫沈降、放射免疫分析(RIA)、酵素結合免疫吸着分析(ELISA)等の公知の分析法により該ハイブリドーマより産生される抗体の結合特異性を測定する。その後、必要に応じ、目的とする特異性、親和性または活性が測定された抗体を産生するハイブリドーマを限界希釈法等の手法によりサブクローニングすることもできる。
 続いて、選択された抗体をコードする遺伝子をハイブリドーマまたは抗体産生細胞(感作リンパ球等)から、抗体に特異的に結合し得るプローブ(例えば、抗体定常領域をコードする配列に相補的なオリゴヌクレオチド等)を用いてクローニングすることができる。また、mRNAからRT-PCRによりクローニングすることも可能である。免疫グロブリンは、IgA、IgD、IgE、IgG及びIgMの5つの異なるクラスに分類される。さらに、これらのクラスは幾つかのサブクラス(アイソタイプ)(例えば、IgG-1、IgG-2、IgG-3、及びIgG-4;IgA-1及びIgA-2等)に分けられる。本発明において抗体の製造に使用するH鎖及びL鎖は、これらいずれのクラス及びサブクラスに属する抗体に由来するものであってもよく、特に限定されないが、IgGは特に好ましいものである。
 ここで、H鎖及びL鎖をコードする遺伝子を遺伝子工学的手法により改変することも可能である。例えば、マウス抗体、ラット抗体、ウサギ抗体、ハムスター抗体、ヒツジ抗体、ラクダ抗体等の抗体について、ヒトに対する異種免疫原性を低下させること等を目的として、人為的に改変した遺伝子組換え型抗体、例えば、キメラ抗体、ヒト化抗体等を適宜作製することができる。キメラ抗体は、ヒト以外の哺乳動物、例えば、マウス抗体のH鎖、L鎖の可変領域とヒト抗体のH鎖、L鎖の定常領域からなる抗体であり、マウス抗体の可変領域をコードするDNAをヒト抗体の定常領域をコードするDNAと連結し、これを発現ベクターに組み込んで宿主に導入し産生させることにより得ることができる。ヒト化抗体は、再構成(reshaped)ヒト抗体とも称され、ヒト以外の哺乳動物、たとえばマウス抗体の相補性決定領域(CDR; complementary determining region)を連結するように設計したDNA配列を、末端部にオーバーラップする部分を有するように作製した数個のオリゴヌクレオチドからPCR法により合成する。得られたDNAをヒト抗体定常領域をコードするDNAと連結し、次いで発現ベクターに組み込んで、これを宿主に導入し産生させることにより得られる(EP239400; WO96/02576参照)。CDRを介して連結されるヒト抗体のFRは、相補性決定領域が良好な抗原結合部位を形成するものが選択される。必要に応じ、再構成ヒト抗体の相補性決定領域が適切な抗原結合部位を形成するように抗体の可変領域のフレームワーク領域のアミノ酸を置換してもよい(K. Sato et al., Cancer Res. 1993, 53: 10.01-10.06)。
 上述のヒト化以外に、例えば、抗原との結合性等の抗体の生物学的特性を改善するために改変を行うことも考えられる。本発明における改変は、部位特異的突然変異(例えば、Kunkel (1910.0) Proc. Natl. Acad. Sci. USA 82: 488参照)、PCR変異、カセット変異等の方法により行うことができる。一般に、生物学的特性の改善された抗体変異体は70%以上、より好ましくは80%以上、さらに好ましくは90%以上(例えば、95%以上、97%、98%、99%等)のアミノ酸配列相同性及び/または類似性を、元となった抗体の可変領域のアミノ酸配列に対して有する。本明細書において、配列の相同性及び/または類似性は、配列相同性が最大の値を取るように必要に応じ配列を整列化、及びギャップ導入した後、元となった抗体残基と相同(同じ残基)または類似(一般的なアミノ酸の側鎖の特性に基き同じグループに分類されるアミノ酸残基)するアミノ酸残基の割合として定義される。通常、天然のアミノ酸残基は、その側鎖の性質に基づいて
(1)疎水性:アラニン、イソロイシン、バリン、メチオニン及びロイシン;
(2)中性親水性:アスパラギン、グルタミン、システイン、スレオニン及びセリン;
(3)酸性:アスパラギン酸及びグルタミン酸;
(4)塩基性:アルギニン、ヒスチジン及びリジン;
(5)鎖の配向に影響する残基:グリシンおよびプロリン;ならびに
(6)芳香族性:チロシン、トリプトファン及びフェニルアラニン
のグループに分類される。
 通常、H鎖及びL鎖の可変領域中に存在する全部で6つの相補性決定領域(超可変部;CDR)が相互作用し、抗体の抗原結合部位を形成している。このうち1つの可変領域であっても全結合部位を含むものよりは低い親和性となるものの、抗原を認識し、結合する能力があることが知られている。従って、本発明のH鎖及びL鎖をコードする抗体遺伝子は、該遺伝子によりコードされるポリペプチドが所望の抗原との結合性を維持していればよく、H鎖及びL鎖の各々の抗原結合部位を含む断片部分をコードしていればよい。
 重鎖可変領域は、上述のように、通常3つのCDR領域と4つのFR領域によって構成されている。本発明の好ましい態様において「改変」に供するアミノ酸残基としては、例えば、CDR領域あるいはFR領域に位置するアミノ酸残基の中から適宜選択することができる。一般的にCDR領域のアミノ酸残基の改変は、抗原に対する結合能を低下させる場合がある。従って、本発明において「改変」に供するアミノ酸残基としては、特に限定されるものではないが、FR領域に位置するアミノ酸残基の中から適宜選択することが好ましい。CDRであっても改変によって結合能が低下しないことが確認された場合は、その箇所を選択することが可能である。また、ヒトもしくはマウス等の生物において、抗体の可変領域のFRとして利用可能な配列を、当業者であれば、公共のデータベース等を利用して適宜取得することができる。
 さらに、本発明は本発明の抗体をコードする遺伝子を提供する。本発明の抗体をコードする遺伝子は如何なる遺伝子でもよく、DNA、RNA、その他核酸類似体などでもよい。
 さらに本発明は、上記遺伝子を有する宿主細胞を提供する。該宿主細胞は、特に制限されず、例えば、大腸菌や種々の動物細胞などを挙げることができる。宿主細胞は、例えば、本発明の抗体の製造や発現のための産生系として使用することができる。ポリペプチド製造のための産生系には、in vitroおよびin vivoの産生系がある。in vitroの産生系としては、真核細胞を使用する産生系及び原核細胞を使用する産生系が挙げられる。
 宿主細胞として使用できる真核細胞として、例えば、動物細胞、植物細胞、真菌細胞が挙げられる。動物細胞としては、哺乳類細胞、例えば、CHO(J. Exp. Med. (1995) 108: 94.0)、COS、HEK293、3T3、ミエローマ、BHK(baby hamster kidney)、HeLa、Vero等、両生類細胞、例えばアフリカツメガエル卵母細胞(Valle et al., Nature (1981) 291: 338-340)、及び昆虫細胞、例えば、Sf9、Sf21、Tn5が例示される。本発明の抗体の発現においては、CHO-DG44、CHO-DX11B、COS7細胞、HEK293細胞、BHK細胞が好適に用いられる。動物細胞において、大量発現を目的とする場合には特にCHO細胞が好ましい。宿主細胞へのベクターの導入は、例えば、リン酸カルシウム法、DEAEデキストラン法、カチオニックリボソームDOTAP(Boehringer Mannheim製)を用いた方法、エレクトロポレーション法、リポフェクションなどの方法で行うことが可能である。
 植物細胞としては、例えば、ニコチアナ・タバカム(Nicotiana tabacum)由来の細胞およびウキクサ(Lemna minor)が蛋白質生産系として知られており、この細胞をカルス培養する方法により本発明の抗体を産生させることができる。真菌細胞としては、酵母、例えば、サッカロミセス(Saccharomyces)属の細胞(サッカロミセス・セレビシエ(Saccharomyces cerevisiae)、サッカロミセス・ポンベ(Saccharomyces pombe)等)、及び糸状菌、例えば、アスペルギルス(Aspergillus)属の細胞(アスペルギルス・ニガー(Aspergillus niger)等)を用いた蛋白質発現系が公知であり、本発明の抗体産生の宿主として利用できる。
 原核細胞を使用する場合、細菌細胞を用いる産生系がある。細菌細胞としては、上述の大腸菌(E. coli)に加えて、枯草菌を用いた産生系が知られており、本発明の抗体産生に利用できる。
<スクリーニング方法>
 本発明は抗原結合分子の酸性pHにおける抗原結合活性が中性pHにおける抗原結合活性よりも低い抗原結合分子をスクリーニングする方法を提供する。又、本発明は1分子で複数の抗原に結合することが可能な抗原結合分子のスクリーニング方法を提供する。又、本発明は血漿中滞留性に優れた抗原結合分子のスクリーニング方法を提供する。又、本発明は細胞外で抗原結合分子に結合した抗原を細胞内で解離する抗原結合分子のスクリーニング方法を提供する。又、本発明は抗原と結合した状態で細胞内に取り込まれ、抗原と結合していない状態で細胞外に放出される抗原結合分子のスクリーニング方法を提供する。又、本発明は血漿中抗原消失能が増加した抗原結合分子のスクリーニング方法を提供する。さらに、本発明は医薬組成物として用いる際に特に有用である抗原結合分子のスクリーニング方法を提供する。
 具体的には、本発明は以下の工程を含む抗原結合分子のスクリーニング方法を提供する。
(a) pH6.7~pH10.0における抗原結合分子の抗原結合活性を得る工程、
(b) pH4.0~pH6.5における抗原結合分子の抗原結合活性を得る工程、
(c) pH6.7~pH10.0での抗原結合活性がpH4.0~pH6.5での抗原結合活性より高い抗原結合分子を選択する工程。
 本発明のスクリーニング方法において、pH6.7~pH10.0における抗原結合分子の抗原結合活性はpH6.7~pH10.0の間の抗原結合活性であれば特に限定されないが、好ましい抗原結合活性として、pH7.0~pH8.0の間の抗原結合活性を挙げることができ、より好ましい抗原結合活性としてpH7.4における抗原結合活性を挙げることができる。又、pH4.0~pH6.5における抗原結合分子の抗原結合活性はpH4.0~pH6.5の間の抗原結合活性であれば特に限定されないが、好ましい抗原結合活性としてpH5.5~pH6.5の間の抗原結合活性を挙げることができ、より好ましい抗原結合活性としてpH5.8またはpH5.5における抗原結合活性を挙げることができる。
 抗原結合分子の抗原結合活性は当業者に公知の方法により測定することが可能であり、pH以外の条件については当業者が適宜決定することが可能である。抗原結合分子の抗原結合活性は、KD(Dissociation constant:解離定数)、見かけのKD(Apparent dissociation constant:見かけの解離定数)、解離速度であるkd(Dissociation rate:解離速度)、又は見かけのkd(Apparent dissociation:見かけの解離速度)等として評価することが可能である。これらは当業者公知の方法で測定することが可能であり、例えばBiacore (GE healthcare)、スキャッチャードプロット、FACS等を用いることが可能である。
 本発明において、pH6.7~pH10.0での抗原結合活性がpH4.0~pH6.5での抗原結合活性より高い抗原結合分子を選択する工程は、pH4.0~pH6.5での抗原結合活性がpH6.7~pH10.0での抗原結合活性より低い抗原結合分子を選択する工程と同じ意味である。
 pH6.7~pH10.0での抗原結合活性がpH4.0~pH6.5での抗原結合活性より高い限り、pH6.7~pH10.0での抗原結合活性とpH4.0~pH6.5での抗原結合活性の差は特に限定されないが、好ましくはpH6.7~pH10.0における抗原結合活性がpH4.0~pH6.5での抗原結合活性の2倍以上であり、さらに好ましくは10倍以上であり、より好ましくは40倍以上である。
 さらに本発明は以下の工程を含む抗原結合分子のスクリーニング方法を提供する。
(a) pH6.7~pH10.0の条件下で抗原結合分子を抗原に結合させる工程、
(b) (a)の抗原に結合した抗原結合分子をpH4.0~pH6.5の条件下に置く工程、
(c) pH4.0~pH6.5の条件下で解離した抗原結合分子を取得する工程。
 さらに本発明は以下の工程を含む抗原結合分子のスクリーニング方法を提供する。
(a) pH4.0~pH6.5の条件下で抗原に結合しない抗原結合分子を選択する工程、
(b) (a)で選択された抗原結合分子をpH6.7~pH10.0の条件下で抗原に結合させる工程、
(c) pH6.7~pH10.0の条件下で抗原に結合した抗原結合分子を取得する工程。
 さらに本発明は以下の工程を含む抗原結合分子のスクリーニング方法を提供する。
(a) pH6.7~pH10.0の条件下で抗原結合分子を抗原に結合させる工程、
(b) (a)の抗原に結合した抗原結合分子をpH4.0~pH6.5の条件下に置く工程、
(c) pH4.0~pH6.5の条件下で解離した抗原結合分子を取得する工程、
(d) 解離した抗原結合分子をコードする遺伝子を増幅する工程、
(e) 溶出された抗原結合分子を取得する工程。
 なお、(a)~(d)の工程は2回以上繰り返されてもよい。従って、本発明は上述の方法において、(a)~(d)の工程を2回以上繰り返す工程をさらに含む方法を提供する。(a)~(d)の工程が繰り返される回数は特に限定されないが、通常10回以内である。
 さらに本発明は以下の工程を含む抗原結合分子のスクリーニング方法を提供する。
(a) pH4.0~pH6.5の条件下で抗原に結合しない抗原結合分子を選択する工程、
(b) (a)で選択された抗原結合分子をpH6.7~pH10.0の条件下で抗原に結合させる工程、
(c) pH6.7~pH10.0の条件下で抗原に結合した抗原結合分子を取得する工程、
(d) 解離した抗原結合分子をコードする遺伝子を増幅する工程、
(e) 溶出された抗原結合分子を取得する工程。
 なお、(a)~(d)の工程は2回以上繰り返されてもよい。従って、本発明は上述の方法において、(a)~(d)の工程を2回以上繰り返す工程をさらに含む方法を提供する。(a)~(d)の工程が繰り返される回数は特に限定されないが、通常10回以内である。
 本発明のスクリーニング方法において、ファージライブラリーなどが用いられる場合には、抗原結合分子をコードする遺伝子を増幅する工程は、ファージを増幅する工程とすることも可能である。
 本発明の方法において抗原と抗原結合分子の結合は如何なる状態で行われてもよく、特に限定されない。例えば、固定化された抗原結合分子に抗原を接触させることにより抗原結合分子と抗原を結合させてもよいし、固定化された抗原に抗原結合分子を接触させることにより抗原結合分子と抗原を結合させてもよい。又、溶液中で抗原結合分子と抗原を接触させることにより抗原結合分子と抗原を結合させてもよい。
 さらに本発明は以下の工程を含む抗原結合分子の第一のpHでの結合活性が第二のpHでの結合活性よりも高い抗原結合分子のスクリーニング方法を提供する。
(a) 抗原を固定したカラムに第一のpH条件下で抗原結合分子を結合させる工程、
(b) 第一のpH条件下でカラムに結合した抗原結合分子を、第二のpH条件下でカラムから溶出する工程、
(c) 溶出された抗原結合分子を取得する工程。
 さらに本発明は以下の工程を含む抗原結合分子の第一のpHでの結合活性が第二のpHでの結合活性よりも低い抗原結合分子のスクリーニング方法を提供する。
(a) 抗原を固定したカラムに第一のpH条件下で抗原結合分子を通過させる工程、
(b) (a)の工程でカラムに結合せずに溶出した抗原結合分子を回収する工程、
(c) (b)で回収された抗原結合分子を第二のpH条件下でカラムに結合させる工程、
(d) (c)の工程においてカラムに結合した抗原結合分子を取得する工程。
 さらに本発明は以下の工程を含む第一のpHでの結合活性が第二のpHでの結合活性よりも高い抗原結合分子のスクリーニング方法を提供する。
(a) 抗原結合分子ライブラリーを、抗原を固定したカラムに第一のpH条件下で結合させる工程、
(b) カラムから第二のpH条件下で抗原結合分子を溶出する工程、
(c) 溶出された抗原結合分子をコードする遺伝子を増幅する工程、
(d) 溶出された抗原結合分子を取得する工程。
 なお、(a)~(c)の工程は2回以上繰り返されてもよい。従って、本発明は上述の方法において、(a)~(c)の工程を2回以上繰り返す工程をさらに含む方法を提供する。(a)~(c)の工程が繰り返される回数は特に限定されないが、通常10回以内である。
 本発明において、第一のpHと第二のpHはそれぞれが同一のpHでない限り、如何なるpHでもよい。好ましい第一のpHと第二のpHの組み合わせの例として、第一のpHがpH6.7~10.0の間のpHであり、第二のpHがpH4.0~pH6.5の間のpHである組み合わせを挙げることができ、より好ましい組み合わせの例としては、第一のpHがpH7.0~pH8.0の間のpHであり、第二のpHがpH5.5~pH6.5の間のpHである組み合わせを挙げることができ、さらに好ましい組み合わせの例としては、第一のpHがpH7.4であり、第二のpHがpH5.8またはpH5.5である組み合わせを挙げることができる。
 他の好ましい第一のpHと第二のpHの組み合わせの例として、第一のpHがpH4.0~6.5の間のpHであり、第二のpHがpH6.7~pH10.0の間のpHである組み合わせを挙げることができ、より好ましい組み合わせの例としては、第一のpHがpH5.5~pH6.5の間のpHであり、第二のpHがpH7.0~pH8.0の間のpHである組み合わせを挙げることができ、さらに好ましい組み合わせの例としては、第一のpHがpH5.8またはpH5.5であり、第二のpHがpH7.4である組み合わせを挙げることができる。
 本発明の方法によりスクリーニングされる抗原結合分子は如何なる抗原結合分子でもよく、例えば上述の抗原結合分子を本発明のスクリーニングに用いることが可能である。例えば、天然の配列を有する抗原結合分子をスクリーニングしてもよいし、アミノ酸配列が置換された抗原結合分子をスクリーニングしてもよい。本発明においてスクリーニングされる抗原結合分子の好ましい例として、例えば、抗原結合分子の少なくとも1つのアミノ酸がヒスチジンで置換された又は少なくとも1つのヒスチジンが挿入された抗原結合分子を挙げることができる。ヒスチジン置換又は挿入が導入される箇所は特に限定されず、如何なる箇所に導入されていてもよい。又、ヒスチジン置換又は挿入は1箇所に導入されてもよいし、2箇所以上の複数の箇所に導入されてもよい。又、本発明においてスクリーニングされる抗原結合分子の好ましい例として、例えば、改変された抗体定常領域を含む抗原結合分子を挙げることができる。
 本発明の方法によりスクリーニングされる抗原結合分子は、例えば、ヒスチジンスキャンなどの方法により、異なる箇所にヒスチジン置換又は挿入が導入された複数の異なる抗原結合分子であってもよい。
 従って、本発明のスクリーニング方法は、抗原結合分子の少なくとも1つのアミノ酸をヒスチジンに置換する又は少なくとも1つのヒスチジンを挿入する工程をさらに含んでもよい。
 なお、本発明のスクリーニング方法はヒスチジンの代わりに非天然アミノ酸を用いてもよい。従って、上述のヒスチジンを非天然アミノ酸と置き換えて本発明を理解することも可能である。
 又、本発明のスクリーニング方法は、抗体定常領域のアミノ酸を改変する工程をさらに含んでもよい。
 本発明のスクリーニング方法でスクリーニングされる抗原結合物質はどのように調製されてもよく、例えば、あらかじめ存在している抗体、あらかじめ存在しているライブラリー(ファージライブラリー等)、動物への免疫から得られたハイブリドーマや免疫動物からのB細胞から作製された抗体又はライブラリー、これらの抗体やライブラリーにヒスチジンや非天然アミノ酸変異を導入した抗体又はライブラリー(ヒスチジン又は非天然アミノ酸の含有率を高くしたライブラリーや特定箇所にヒスチジン又は非天然アミノ酸変異を導入したライブラリー等)などを用いることが可能である。
 本発明のスクリーニング方法により複数回抗原に結合し血漿中滞留性が優れた抗原結合分子を得ることが可能である。従って、本発明のスクリーニング方法は、血漿中滞留性に優れた抗原結合分子を得る為のスクリーニング方法として利用することができる。
 又、本発明のスクリーニング方法により、ヒト、マウス、サルなどの動物に投与した際に、抗原に2回以上結合することが可能である抗原結合分子を得ることが可能である。従って、本発明のスクリーニング方法は、抗原に2回以上結合することができる抗原結合分子を得る為のスクリーニング方法として利用することができる。
 さらに、本発明のスクリーニング方法により、ヒト、マウス、サルなどの動物に投与した際に、抗原結合分子の抗原結合部位の数より多い数の抗原に結合することが可能である抗原結合分子を得ることが可能である。従って、本発明のスクリーニング方法は、抗原結合分子の抗原結合部位の数よりも多い数の抗原に結合することが可能である抗原結合分子を得る為のスクリーニング方法として利用することができる。例えば、抗体が中和抗体の場合には、抗原結合分子の抗原結合部位の数よりも多い数の抗原を中和することが可能である抗原結合分子を得る為のスクリーニング方法として利用することができる。
 さらに、本発明のスクリーニング方法により、ヒト、マウス、サルなどの動物に投与した際に、細胞外で結合した抗原を細胞内で解離することが可能である抗原結合分子を得ることが可能である。従って、本発明のスクリーニング方法は、細胞外で結合した抗原を細胞内で解離する抗原結合分子を得る為のスクリーニング方法として利用することができる。
 さらに本発明のスクリーニング方法により、ヒト、マウス、サルなどの動物に投与した際に、抗原と結合した状態で細胞内に取り込まれ、抗原と結合していない状態で細胞外に放出される抗原結合分子を得ることが可能である。従って、本発明のスクリーニング方法は、抗原と結合した状態で細胞内に取り込まれ、抗原と結合していない状態で細胞外に放出される抗原結合分子を得る為のスクリーニング方法として利用することができる。
 さらに、本発明のスクリーニング方法により、ヒト、マウス、サルなどの動物に投与した際に、抗原を血漿中から速く消失させることができる抗原結合分子を得ることが可能である。従って、本発明のスクリーニング方法は、血漿中抗原消失能が増加した(高い)抗原結合分子を得る為のスクリーニング方法として利用することができる。
 又、これらの抗原結合分子は、患者への投与量や投与頻度を減らすことが可能であり、結果として総投与量を減らすことが可能となる為、医薬品として特に優れていると考えられる。従って、本発明のスクリーニング方法は、医薬組成物として用いる為の抗原結合分子のスクリーニング方法として利用することが可能である。
 さらに、本発明は元のライブラリーと比較してヒスチジンを含む割合を上昇させたライブラリーを提供する。ライブラリー中に含まれる抗原結合分子が有するヒスチジンの割合が高くなっているライブラリーは上述のスクリーニング方法や後述の製造方法に用いることが可能である。
 ヒスチジンを含む割合を高めたライブラリーの作製方法は、当業者に公知の方法を用いることにより作製することが可能であり、例えば以下の方法が挙げられる。ライブラリー作製のための核酸を合成する際に、トリヌクレオチド法(J Mol Biol. 2008 Feb 29;376(4):1182-200.)により、20種類のアミノ酸をコードする20種類の3塩基コドン(トリヌクレオチド)を等しい確率で含有させることによって、ライブラリー化した部位に20種類のアミノ酸が等しい確率で含有させることが可能である。このとき20種類のうちヒスチジンをコードするトリヌクレオチドの割合を他のアミノ酸よりも高くすることによって、ライブラリー化した部位にヒスチジンが出現する可能性を高めることが可能である。
<抗原結合分子製造方法>
 本発明は抗原結合分子のエンドソーム内でのpHにおける抗原結合活性が血漿中でのpHにおける抗原結合活性よりも低い抗原結合分子の製造方法を提供する。又、本発明は血漿中滞留性に優れた抗原結合分子の製造方法を提供する。さらに、本発明は医薬組成物として用いる際に特に有用である抗原結合分子の製造方法を提供する。
 具体的には、本発明は以下の工程を含む抗原結合分子の製造方法を提供する。
(a) pH6.7~pH10.0における抗原結合分子の抗原結合活性を得る工程、
(b) pH4.0~pH6.5における抗原結合分子の抗原結合活性を得る工程、
(c) pH6.7~pH10.0での抗原結合活性がpH4.0~pH6.5での抗原結合活性より高い抗原結合分子を選択する工程、
(d) (c)で選択された抗原結合分子をコードする遺伝子を得る工程、
(e) (d)で得られた遺伝子を用いて抗原結合分子を製造する工程。
 さらに本発明は以下の工程を含む抗原結合分子の製造方法を提供する。
(a) pH6.7~pH10.0の条件下で抗原結合分子を抗原に結合させる工程、
(b) (a)の抗原に結合した抗原結合分子をpH4.0~pH6.5の条件下に置く工程、
(c) pH4.0~pH6.5の条件下で解離した抗原結合分子を取得する工程、
(d) (c)で取得された抗原結合分子をコードする遺伝子を得る工程、
(e) (d)で得られた遺伝子を用いて抗原結合分子を製造する工程。
 さらに本発明は以下の工程を含む抗原結合分子の製造方法を提供する。
(a) pH4.0~pH6.5の条件下で抗原に結合しない抗原結合分子を選択する工程、
(b) (a)で選択された抗原結合分子をpH6.7~pH10.0の条件下で抗原に結合させる工程、
(c) pH6.7~pH10.0の条件下で抗原に結合した抗原結合分子を取得する工程、
(d) (c)で取得された抗原結合分子をコードする遺伝子を得る工程、
(e) (d)で得られた遺伝子を用いて抗原結合分子を製造する工程。
 さらに本発明は以下の工程を含む抗原結合分子の製造方法を提供する。
(a) pH6.7~10.0の条件下で抗原結合分子を抗原に結合させる工程、
(b) (a)の抗原に結合した抗原結合分子をpH4.0~pH6.5の条件下に置く工程、
(c) pH4.0~pH6.5の条件下で解離した抗原結合分子を取得する工程、
(d) 解離した抗原結合分子をコードする遺伝子を増幅する工程、
(e) 溶出された抗原結合分子を取得する工程、
(f) (e)で取得された抗原結合分子をコードする遺伝子を得る工程、
(g) (f)で得られた遺伝子を用いて抗原結合分子を製造する工程。
 なお、(a)~(d)の工程は2回以上繰り返されてもよい。従って、本発明は上述の方法において、(a)~(d)の工程を2回以上繰り返す工程をさらに含む方法を提供する。(a)~(d)の工程が繰り返される回数は特に限定されないが、通常10回以内である。
 さらに本発明は以下の工程を含む、抗原結合分子のスクリーニング方法を提供する。
(a) pH4.0~pH6.5の条件下で抗原に結合しない抗原結合分子を選択する工程、
(b) (a)で選択された抗原結合分子をpH6.7~pH10.0の条件下で抗原に結合させる工程、
(c) pH6.7~pH10.0の条件下で抗原に結合した抗原結合分子を取得する工程、
(d) 解離した抗原結合分子をコードする遺伝子を増幅する工程、
(e) 溶出された抗原結合分子を取得する工程、
(f) (e)で取得された抗原結合分子をコードする遺伝子を得る工程、
(g) (f)で得られた遺伝子を用いて抗原結合分子を製造する工程。
 なお、(a)~(d)の工程は2回以上繰り返されてもよい。従って、本発明は上述の方法において、(a)~(d)の工程を2回以上繰り返す工程をさらに含む方法を提供する。(a)~(d)の工程が繰り返される回数は特に限定されないが、通常10回以内である。
 さらに、本発明は以下の工程を含む第一のpHでの結合活性が第二のpHでの結合活性よりも高い抗原結合分子の製造方法を提供する。
(a) 抗原を固定したカラムに第一のpH条件下で抗原結合分子を結合させる工程、
(b) 第一のpH条件下でカラムに結合した抗原結合分子を、第二のpH条件下でカラムから溶出する工程、
(c) 溶出された抗原結合分子を取得する工程、
(d) (c)で取得された抗原結合分子をコードする遺伝子を得る工程、
(e) (d)で得られた遺伝子を用いて抗原結合分子を製造する工程。
 さらに、本発明は以下の工程を含む第一のpHでの結合活性が第二のpHでの結合活性よりも高い抗原結合分子の製造方法を提供する。
(a) 抗原結合分子ライブラリーを、抗原を固定したカラムに第一のpH条件下で結合させる工程、
(b) カラムから第二のpH条件下で抗原結合分子を溶出する工程、
(c) 溶出された抗原結合分子をコードする遺伝子を増幅する工程、
(d) 溶出された抗原結合分子を取得する工程、
(e) (d)で取得された抗原結合分子をコードする遺伝子を得る工程、
(f) (e)で得られた遺伝子を用いて抗原結合分子を製造する工程。
 なお、(a)~(c)の工程は2回以上繰り返されてもよい。従って、本発明は上述の方法において、(a)~(c)の工程を2回以上繰り返す工程をさらに含む方法を提供する。(a)~(c)の工程が繰り返される回数は特に限定されないが、通常10回以内である。
 本発明の製造方法において、ファージライブラリーなどが用いられる場合には、抗原結合分子をコードする遺伝子を増幅する工程は、ファージを増幅する工程とすることも可能である。
 本発明の製造方法で用いられる抗原結合物質はどのように調製されてもよく、例えば、あらかじめ存在している抗体、あらかじめ存在しているライブラリー(ファージライブラリー等)、動物への免疫から得られたハイブリドーマや免疫動物からのB細胞から作製された抗体又はライブラリー、これらの抗体やライブラリーにヒスチジンや非天然アミノ酸変異を導入した抗体又はライブラリー(ヒスチジン又は非天然アミノ酸の含有率を高くしたライブラリーや特定箇所にヒスチジン又は非天然アミノ酸変異を導入したライブラリー等)などを用いることが可能である。
 上述の製造方法において、pH6.7~pH10.0における抗原結合分子の抗原結合活性はpH6.7~pH10.0の間の抗原結合活性であれば特に限定されないが、好ましい抗原結合活性として、pH7.0~pH8.0の間の抗原結合活性を挙げることができ、さらに好ましい抗原結合活性としてpH7.4における抗原結合活性を挙げることができる。又、pH4.0~pH6.5における抗原結合分子の抗原結合活性はpH4.0~pH6.5の間の抗原結合活性であれば特に限定されないが、好ましい抗原結合活性としてpH5.5~pH6.5の間の抗原結合活性を挙げることができ、さらに好ましい抗原結合活性としてpH5.8またはpH5.5における抗原結合活性を挙げることができる。
 抗原結合分子の抗原結合活性は当業者に公知の方法により測定することが可能であり、pH以外の条件については当業者が適宜決定することが可能である。
 pH6.7~pH10.0での抗原結合活性がpH4.0~pH6.5での抗原結合活性より高い抗原結合分子を選択する工程は、pH4.0~pH6.5での抗原結合活性がpH6.7~pH10.0での抗原結合活性より低い抗原結合分子を選択する工程と同じ意味である。
 pH6.7~pH10.0での抗原結合活性がpH4.0~pH6.5での抗原結合活性より高い限り、pH6.7~pH10.0での抗原結合活性とpH4.0~pH6.5での抗原結合活性の差は特に限定されないが、好ましくはpH6.7~pH10.0における抗原結合活性がpH4.0~pH6.5での抗原結合活性の2倍以上であり、さらに好ましくは10倍以上であり、より好ましくは40倍以上である。
 上述の製造方法において抗原と抗原結合分子の結合は如何なる状態で行われてもよく、特に限定されない。例えば、固定化された抗原結合分子に抗原を接触させることにより抗原結合分子と抗原を結合させてもよいし、固定化された抗原に抗原結合分子を接触させることにより抗原結合分子と抗原を結合させてもよい。又、溶液中で抗原結合分子と抗原を接触させることにより抗原結合分子と抗原を結合させてもよい。
 上述の製造方法において、第一のpHと第二のpHはそれぞれが同一のpHでない限り、如何なるpHでもよい。好ましい第一のpHと第二のpHの組み合わせの例として、第一のpHがpH6.7~10.0の間のpHであり、第二のpHがpH4.0~pH6.5の間のpHである組み合わせを挙げることができ、より好ましい組み合わせの例としては、第一のpHがpH7.0~pH8.0の間のpHであり、第二のpHがpH5.5~pH6.5の間のpHである組み合わせを挙げることができ、さらに好ましい組み合わせの例として第一のpHがpH7.4であり、第二のpHがpH5.8またはpH5.5である組み合わせを挙げることができる。
 他の好ましい第一のpHと第二のpHの組み合わせの例として、第一のpHがpH4.0~pH6.5の間のpHであり、第二のpHがpH6.7~pH10.0の間のpHである組み合わせを挙げることができ、より好ましい組み合わせの例としては、第一のpHがpH5.5~pH6.5の間のpHであり、第二のpHがpH7.0~pH8.0の間のpHである組み合わせを挙げることができ、さらに好ましい組み合わせの例として第一のpHがpH5.8またはpH5.5であり、第二のpHがpH7.4である組み合わせを挙げることができる。
 上述の製造方法により製造される抗原結合分子は如何なる抗原結合分子でもよいが、例えば、抗原結合分子の少なくとも1つのアミノ酸がヒスチジンで置換された又は少なくとも1つのヒスチジンが挿入された抗原結合分子を好ましい例として挙げることができる。そのようなヒスチジン変異が導入される箇所は特に限定されず、如何なる箇所に導入されていてもよい。又、ヒスチジン変異は1箇所に導入されてもよいし、2箇所以上の複数の箇所に導入されてもよい。
 従って、本発明の製造方法においては、抗原結合分子の少なくとも1つのアミノ酸をヒスチジンに置換又は挿入する工程をさらに含んでもよい。
 なお、本発明の製造方法においてはヒスチジンの代わりに非天然アミノ酸を用いてもよい。従って、上述のヒスチジンを非天然アミノ酸と置き換えて本発明を理解することも可能である。
 又、上述の製造方法により製造される抗原結合分子の他の態様として、例えば、改変された抗体定常領域を含む抗原結合分子を挙げることができる、従って、本発明の製造方法においては、抗体定常領域中のアミノ酸を改変する工程をさらに含んでもよい。
 本発明の製造方法により製造される抗原結合分子は血漿中滞留性が優れた抗原結合分子である。従って、本発明の製造方法は、血漿中滞留性に優れた抗原結合分子の製造方法として利用することができる。
 又、製造方法により製造される抗原結合分子は、ヒト、マウス、サルなどの動物に投与した際に、抗原に2回以上結合することが可能であると考えられる。従って、本発明の製造方法は、抗原に2回以上結合することができる抗原結合分子の製造方法として利用することができる。
 さらに、本発明の製造方法により製造される抗原結合分子は、ヒト、マウス、サルなどの動物に投与した際に、抗原結合分子の抗原結合部位の数より多い数の抗原に結合することが可能であると考えられる。従って、本発明の製造方法は、抗原結合分子の抗原結合部位の数よりも多い数の抗原に結合することが可能である抗原結合分子の製造方法として利用することができる。
 さらに、本発明の製造方法により製造される抗原結合分子は、ヒト、マウス、サルなどの動物に投与した際に、細胞外で抗原結合分子に結合した抗原を細胞内で抗原結合分子から解離させることが可能であると考えられる。従って、本発明の製造方法は、細胞外で結合した抗原を細胞内で解離することが可能である抗原結合分子の製造方法として利用することができる。
 さらに、本発明の製造方法により製造される抗原結合分子は、ヒト、マウス、サルなどの動物に投与した際に、抗原と結合した状態で細胞内に取り込まれた抗原結合分子を、抗原と結合していない状態で細胞外に放出させることが可能であると考えられる。従って、本発明の製造方法は、抗原と結合した状態で細胞内に取り込まれ、抗原と結合していない状態で細胞外に放出される抗原結合分子の製造方法として利用することができる。
 さらに、本発明の製造方法により製造される抗原結合分子は、ヒト、マウス、サルなどの動物に投与した際に、抗原を血漿中から速く消失させることができると考えられる。従って、本発明の製造方法は、血漿中抗原消失能が増加した(高い)抗原結合分子の製造方法として利用することができる。
 又、これらの抗原結合分子は、患者への投与回数を減らすことが可能であり、医薬品として特に優れていると考えられる。従って、本発明の製造方法は、医薬組成物として用いる為の抗原結合分子の製造方法として利用することが可能である。
 本発明の製造方法において得られた遺伝子は、通常、適当なベクターへ担持(挿入)され、宿主細胞へ導入される。該ベクターとしては、挿入した核酸を安定に保持するものであれば特に制限されず、例えば宿主に大腸菌を用いるのであれば、クローニング用ベクターとしてはpBluescriptベクター(Stratagene社製)などが好ましいが、市販の種々のベクターを利用することができる。本発明の抗原結合分子を生産する目的においてベクターを用いる場合には、特に発現ベクターが有用である。発現ベクターとしては、試験管内、大腸菌内、培養細胞内、生物個体内で抗原結合分子を発現するベクターであれば特に制限されないが、例えば、試験管内発現であればpBESTベクター(プロメガ社製)、大腸菌であればpETベクター(Invitrogen社製)、培養細胞であればpME18S-FL3ベクター(GenBank Accession No. AB009864)、生物個体であればpME18Sベクター(Mol Cell Biol. 8:466-472(1988))などが好ましい。ベクターへの本発明のDNAの挿入は、常法により、例えば、制限酵素サイトを用いたリガーゼ反応により行うことができる(Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons.Section 11.4-11.11)。
 上記宿主細胞としては特に制限はなく、目的に応じて種々の宿主細胞が用いられる。抗原結合分子を発現させるための細胞としては、例えば、細菌細胞(例:ストレプトコッカス、スタフィロコッカス、大腸菌、ストレプトミセス、枯草菌)、真菌細胞(例:酵母、アスペルギルス)、昆虫細胞(例:ドロソフィラS2、スポドプテラSF9)、動物細胞(例:CHO、COS、HeLa、C127、3T3、BHK、HEK293、Bowes メラノーマ細胞)および植物細胞を例示することができる。宿主細胞へのベクター導入は、例えば、リン酸カルシウム沈殿法、電気パルス穿孔法(Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons.Section 9.1-9.9)、リポフェクション法、マイクロインジェクション法などの公知の方法で行うことが可能である。
 宿主細胞の培養は、公知の方法に従って行うことができる。例えば、動物細胞を宿主とした場合、培養液として、例えば、DMEM、MEM、RPMI1640、IMDMを使用することができる。その際、FBS、牛胎児血清(FCS)等の血清補液を併用しても、無血清培養により細胞を培養してもよい。培養時のpHは、約6~8とするのが好ましい。培養は、通常、約30~40℃で約15~200時間行い、必要に応じて培地の交換、通気、攪拌を加える。
 宿主細胞において発現した抗原結合分子を小胞体の内腔に、細胞周辺腔に、または細胞外の環境に分泌させるために、適当な分泌シグナルを目的のポリペプチドに組み込むことができる。これらのシグナルは目的の抗原結合分子に対して内因性であっても、異種シグナルであってもよい。
 一方、in vivoでポリペプチドを産生させる系としては、例えば、動物を使用する産生系や植物を使用する産生系が挙げられる。これらの動物又は植物に目的とするポリヌクレオチドを導入し、動物又は植物の体内でポリペプチドを産生させ、回収する。本発明における「宿主」とは、これらの動物、植物を包含する。
 動物を使用する場合、哺乳類動物、昆虫を用いる産生系がある。哺乳類動物としては、ヤギ、ブタ、ヒツジ、マウス、ウシ等を用いることができる(Vicki Glaser, SPECTRUM Biotechnology Applications (1993))。また、哺乳類動物を用いる場合、トランスジェニック動物を用いることができる。
 例えば、本発明の抗原結合分子をコードするポリヌクレオチドを、ヤギβカゼインのような乳汁中に固有に産生されるポリペプチドをコードする遺伝子との融合遺伝子として調製する。次いで、この融合遺伝子を含むポリヌクレオチド断片をヤギの胚へ注入し、この胚を雌のヤギへ移植する。胚を受容したヤギから生まれるトランスジェニックヤギ又はその子孫が産生する乳汁から、目的の抗原結合分子を得ることができる。トランスジェニックヤギから産生される抗原結合分子を含む乳汁量を増加させるために、適宜ホルモンをトランスジェニックヤギに投与してもよい(Ebert et al., Bio/Technology (1994) 12: 699-702)。
 また、本発明の抗原結合分子を産生させる昆虫としては、例えばカイコを用いることができる。カイコを用いる場合、目的の抗原結合分子をコードするポリヌクレオチドを挿入したバキュロウィルスをカイコに感染させることにより、このカイコの体液から目的の抗原結合分子を得ることができる。
 さらに、植物を本発明の抗原結合分子産生に使用する場合、例えばタバコを用いることができる。タバコを用いる場合、目的とする抗原結合分子をコードするポリヌクレオチドを植物発現用ベクター、例えばpMON 530に挿入し、このベクターをアグロバクテリウム・ツメファシエンス(Agrobacterium tumefaciens)のようなバクテリアに導入する。このバクテリアをタバコ、例えば、ニコチアナ・タバカム(Nicotiana tabacum)に感染させ、本タバコの葉より所望の抗原結合分子を得ることができる(Ma et al., Eur. J. Immunol. (1994) 24: 131-8)。また、同様のバクテリアをウキクサ(Lemna minor)に感染させ、クローン化した後にウキクサの細胞より所望の抗原結合分子を得ることができる(Cox KM et al. Nat. Biotechnol. 2006 Dec;24(12):1591-1597)。
 このようにして得られた抗原結合分子は、宿主細胞内または細胞外(培地、乳汁など)から単離し、実質的に純粋で均一な抗原結合分子として精製することができる。抗原結合分子の分離、精製は、通常のポリペプチドの精製で使用されている分離、精製方法を使用すればよく、何ら限定されるものではない。例えば、クロマトグラフィーカラム、フィルター、限外濾過、塩析、溶媒沈殿、溶媒抽出、蒸留、免疫沈降、SDS-ポリアクリルアミドゲル電気泳動、等電点電気泳動法、透析、再結晶等を適宜選択、組み合わせて抗原結合分子を分離、精製することができる。
 クロマトグラフィーとしては、例えばアフィニティクロマトグラフィー、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、ゲル濾過、逆相クロマトグラフィー、吸着クロマトグラフィー等が挙げられる(Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al.(1996) Cold Spring Harbor Laboratory Press)。これらのクロマトグラフィーは、液相クロマトグラフィー、例えばHPLC、FPLC等の液相クロマトグラフィーを用いて行うことができる。アフィニティクロマトグラフィーに用いるカラムとしては、プロテインAカラム、プロテインGカラムが挙げられる。例えば、プロテインAを用いたカラムとして、Hyper D, POROS, Sepharose F. F. (Pharmacia製)等が挙げられる。
 必要に応じ、抗原結合分子の精製前又は精製後に適当なタンパク質修飾酵素を作用させることにより、任意に修飾を加えたり、部分的にペプチドを除去することもできる。タンパク質修飾酵素としては、例えば、トリプシン、キモトリプシン、リシルエンドペプチダーゼ、プロテインキナーゼ、グルコシダーゼなどが用いられる。
<抗IL-6受容体抗体>
 さらに、本発明は以下の(a)~(m)のいずれかに記載の抗IL-6受容体抗体を提供する。
(a) 配列番号:1(H53可変領域)のアミノ酸配列において27番目のTyr、31番目のAsp、32番目のAsp、35番目のTrp、51番目のTyr、59番目のAsn、63番目のSer、106番目のMet、108番目のTyrの少なくとも1つがHisに置換されたアミノ酸配列を有する重鎖可変領域を含む抗体、
(b) 配列番号:1(H53可変領域)のアミノ酸配列において27番目のTyr、31番目のAspおよび35番目のTrpがHisに置換されたアミノ酸配列を有する重鎖可変領域を含む抗体(H3pI)、
(c) 配列番号:1(H53可変領域)のアミノ酸配列において27番目のTyr、31番目のAsp、32番目のAsp、35番目のTrp、59番目のAsn、63番目およびSer、108番目のTyrがHisに置換されたアミノ酸配列を有する重鎖可変領域を含む抗体、
(d) 配列番号:1(H53可変領域)のアミノ酸配列において27番目のTyr、31番目のAsp、32番目のAsp、35番目のTrp、59番目のAsn、63番目およびSer、108番目のTyrがHisに置換され、かつ99番目のSerがValに、103番目のThrがIleに置換されたアミノ酸配列を有する重鎖可変領域を含む抗体(H170)、
(e) 配列番号:1(H53可変領域)のアミノ酸配列において31番目のAsp、51番目のTyr、63番目のSer、106番目のMetおよび108番目のTyrがHisに置換されたアミノ酸配列を有する重鎖可変領域を含む抗体、
(f) 配列番号:1(H53可変領域)のアミノ酸配列において31番目のAsp、51番目のTyr、63番目のSer、106番目のMetおよび108番目のTyrがHisに置換され、かつ99番目のSerがPheに、103番目のThrがIleに置換されたアミノ酸配列を有する重鎖可変領域を含む抗体(CLH5)、
(g) 配列番号:2(PF1L可変領域)のアミノ酸配列において、28番目のAsp、32番目のTyr、53番目のGlu、56番目のSer、92番目のAsnの少なくとも1つがHisに置換されたアミノ酸配列を有する軽鎖可変領域を含む抗体、
(h) 配列番号:2(PF1L可変領域)のアミノ酸配列において、28番目のAsp、32番目のTyrおよび53番目のGluがHisに置換されたアミノ酸配列を有する軽鎖可変領域を含む抗体(L73)、
(i) 配列番号:1(H53可変領域)のアミノ酸配列において、32番目のTyrおよび53番目のGluがHisに置換されたアミノ酸配列を有する軽鎖可変領域を含む抗体(L82)、
(j) 配列番号:2(PF1L可変領域)のアミノ酸配列において、32番目のTyr、53番目のGlu、56番目のSerおよび92番目のAsnがHisに置換されたアミノ酸配列を有する軽鎖可変領域を含む抗体(CLL5)、
(k) (b)の重鎖可変領域および(h)の軽鎖可変領域を含む抗体、
(l) (d)の重鎖可変領域および(i)の軽鎖可変領域を含む抗体、
(m) (f)の重鎖可変領域および(h)の軽鎖可変領域を含む抗体。
 配列番号:1(H53可変領域)のアミノ酸配列において27番目のTyr、31番目のAsp、32番目のAsp、35番目のTrp、51番目のTyr、59番目のAsn、63番目のSer、106番目のMet、108番目のTyrの少なくとも1つがHisに置換されたアミノ酸配列を有する重鎖可変領域の具体的な例としては、例えば、以下の重鎖可変領域を挙げることができる。
 配列番号:3(H3pI)のアミノ酸配列を有する重鎖可変領域
 配列番号:4(H170)のアミノ酸配列を有する重鎖可変領域
 配列番号:5(CLH5)のアミノ酸配列を有する重鎖可変領域
 配列番号:2(PF1L可変領域)のアミノ酸配列において、28番目のAsp、32番目のTyr、53番目のGlu、56番目のSer、92番目のAsnの少なくとも1つがHisに置換されたアミノ酸配列を有する軽鎖可変領域の具体的な例としては、例えば、以下の軽鎖可変領域を挙げることができる。
 配列番号:6(L73)のアミノ酸配列を有する軽鎖可変領域
 配列番号:7(L82)のアミノ酸配列を有する軽鎖可変領域
 配列番号:8(CLL5)のアミノ酸配列を有する軽鎖可変領域
 上述のH3pI、H170、CLH5、L73、L82、およびCLL5の各抗体におけるアミノ酸位置とアミノ酸置換について、以下の表1に示す。アミノ酸位置はKabatナンバリングに基づいて示している。
[表1]
Figure JPOXMLDOC01-appb-I000001
*H鎖の33番目、および、L鎖の55番目はWTにおいてヒスチジンの配列を有する。
 本発明は少なくとも上述の(a)~(j)のいずれかに記載のアミノ酸置換を含む抗体及び該抗体の製造方法を提供する。従って本発明の抗体には、上述の(a)~(j)のいずれかに記載のアミノ酸置換に加え、上述の(a)~(j)に記載のアミノ酸置換以外のアミノ酸置換を含む抗体も含まれる。上述の(a)~(j)に記載のアミノ酸置換以外のアミノ酸置換としては、例えば、CDR部分のアミノ酸配列の置換、欠失、付加および/または挿入等や、FRのアミノ酸配列の置換、欠失、付加および/または挿入等が挙げられる。
 さらに本発明は以下の(1)から(28)のいずれかに記載の抗IL-6受容体抗体を提供する。
(1) 配列番号:21(VH1-IgG1)の1番目から119番目までのアミノ酸配列を有する重鎖可変領域(VH1-IgG1可変領域)を含む抗体、
(2) 配列番号:22(VH2-IgG1)の1番目から119番目までのアミノ酸配列を有する重鎖可変領域(VH2-IgG1可変領域)を含む抗体、
(3) 配列番号:23(VH3-IgG1)の1番目から119番目までのアミノ酸配列を有する重鎖可変領域(VH3-IgG1可変領域)を含む抗体、
(4) 配列番号:24(VH4-IgG1)の1番目から119番目までのアミノ酸配列を有する重鎖可変領域(VH4-IgG1可変領域)を含む抗体、
(5) 配列番号:25(VL1-CK)の1番目から107番目までのアミノ酸配列を有する軽鎖可変領域(VL1-CK可変領域)を含む抗体、
(6) 配列番号:26(VL2-CK)の1番目から107番目までのアミノ酸配列を有する軽鎖可変領域(VL2-CK可変領域)を含む抗体、
(7) 配列番号:27(VL3-CK)の1番目から107番目までのアミノ酸配列を有する軽鎖可変領域(VL3-CK可変領域)を含む抗体、
(8) (2)の重鎖可変領域と(6)の軽鎖可変領域を含む抗体(Fv1-IgG1)、
(9) (1)の重鎖可変領域と配列番号:7(L82)に記載のアミノ酸配列を有する軽鎖可変領域を含む抗体(Fv2-IgG1)、
(10) (4)の重鎖可変領域と(5)の軽鎖可変領域を含む抗体(Fv3-IgG1)、
(11) (3)の重鎖可変領域と(7)の軽鎖可変領域を含む抗体(Fv4-IgG1)、
(12) 配列番号:33に記載のアミノ酸配列を有する重鎖を含む抗体(VH3-IgG2ΔGK)、
(13) 配列番号:34に記載のアミノ酸配列を有する重鎖を含む抗体(VH3-M58)、
(14) 配列番号:35に記載のアミノ酸配列を有する重鎖を含む抗体(VH3-M73)、
(15) (12)の重鎖と配列番号:27(VL3-CK)のアミノ酸配列を有する軽鎖を含む抗体(Fv4-IgG2ΔGK)、
(16) (13)の重鎖と配列番号:27(VL3-CK)のアミノ酸配列を有する軽鎖を含む抗体(Fv4-M58)、
(17) (14)の重鎖と配列番号:27(VL3-CK)のアミノ酸配列を有する軽鎖を含む抗体(Fv4-M73)、
(18) 配列番号:36(VH2-M71)のアミノ酸配列を有する重鎖を含む抗体(VH2-M71)、
(19) 配列番号:37(VH2-M73)のアミノ酸配列を有する重鎖を含む抗体(VH2-M73)、
(20) 配列番号:38(VH4-M71)のアミノ酸配列を有する重鎖を含む抗体(VH4-M71)、
(21) 配列番号:39(VH4-M73)のアミノ酸配列を有する重鎖を含む抗体(VH4-M73)、
(22) (18)の重鎖と配列番号:26(VL2-CK)のアミノ酸配列を有する軽鎖を含む抗体(Fv1-M71)、
(23) (19)の重鎖と配列番号:26(VL2-CK)のアミノ酸配列を有する軽鎖を含む抗体(Fv1-M73)、
(24) (20)の重鎖と配列番号:25(VL1-CK)のアミノ酸配列を有する軽鎖を含む抗体(Fv3-M71)、
(25) (21)の重鎖と配列番号:25(VL1-CK)のアミノ酸配列を有する軽鎖を含む抗体(Fv3-M73)、
(26) 配列番号:25(VL1-CK)のアミノ酸配列を有する軽鎖を含む抗体、
(27) 配列番号:26(VL2-CK)のアミノ酸配列を有する軽鎖を含む抗体、
(28) 配列番号:27(VL3-CK)のアミノ酸配列を有する軽鎖を含む抗体。
 さらに本発明は以下の(a)~(v)いずれかのFRまたはCDRを提供する。
(a) 配列番号:40に記載の重鎖CDR1(VH1,2,3,4)、
(b)  配列番号:41に記載の重鎖CDR2(VH1,2)、
(c)  配列番号:42に記載の重鎖CDR2(VH3)、
(d)  配列番号:43に記載の重鎖CDR2(VH4)、
(e)  配列番号:44に記載の重鎖CDR3(VH1,2)、
(f)  配列番号:45に記載の重鎖CDR3(VH3,4)、
(g)  配列番号:46に記載の重鎖FR1(VH1,2)、
(h)  配列番号:47に記載の重鎖FR1(VH3,4)、
(i)  配列番号:48に記載の重鎖FR2(VH1,2,3,4)
(j)  配列番号:49に記載の重鎖FR3(VH1)、
(k)  配列番号:50に記載の重鎖FR3(VH2)、
(l)  配列番号:51に記載の重鎖FR3(VH3,4)、
(m)  配列番号:52に記載の重鎖FR4(VH1,2,3,4)
(n)  配列番号:53に記載の軽鎖CDR1(VL1,2)、
(o)  配列番号:54に記載の軽鎖CDR1(VL3)、
(p)  配列番号:55に記載の軽鎖CDR2(VL1,VL3)、
(q)  配列番号:56に記載の軽鎖CDR2(VL2)、
(r)  配列番号:57に記載の軽鎖CDR3(VL1,2,3)、
(s)  配列番号:58に記載の軽鎖FR1(VL1,2,3)、
(t)  配列番号:59に記載の軽鎖FR2(VL1,2,3)、
(u)  配列番号:60に記載の軽鎖FR3(VL1,2,3)、
(v)  配列番号:61に記載の軽鎖FR4(VL1,2,3)。
 上記(a)~(v)の各配列を、図25にまとめて示す。また本発明は、上記(a)~(v)のいずれかのFRまたはCDRを含むポリペプチドを提供する。
 本発明の抗IL-6受容体抗体には、上述のいずれかに記載のアミノ酸置換を含む抗体の断片やその修飾物も含まれる。例えば、抗体の断片としては、Fab、F(ab')2、Fv又はH鎖とL鎖のFvを適当なリンカーで連結させたシングルチェインFv(scFv)、H鎖単独ドメインやL鎖単独ドメイン(例えば、Nat Biotechnol. 2005 Sep;23(9):1126-36.)、Unibody(WO2007059782 A1)、SMIP(WO2007014278 A2)が挙げられる。また抗体の由来としては、特に限定されないが、ヒト抗体、マウス抗体、ラット抗体、ウサギ抗体などを挙げることができる。又、本発明の抗体はキメラ抗体、ヒト化抗体、完全ヒト化抗体等であってもよい。
 具体的には、抗体を酵素、例えば、パパイン、ペプシンで処理し抗体断片を生成させるか、又は、これら抗体断片をコードする遺伝子を構築し、これを発現ベクターに導入した後、適当な宿主細胞で発現させる(例えば、Co, M.S. et al., J. Immunol. (1994) 152, 2968-2976、Better, M. & Horwitz, A. H. Methods in Enzymology (1989) 178, 476-496 、Plueckthun, A. & Skerra, A. Methods in Enzymology (1989) 178, 497-515 、Lamoyi, E., Methods in Enzymology (1989) 121, 652-663 、Rousseaux, J. et al., Methods in Enzymology (1989) 121, 663-66、Bird, R. E. et al., TIBTECH (1991) 9, 132-137参照)。
 従って、本発明は、本発明のポリペプチドをコードするポリヌクレオチドが導入されたベクターを含む宿主細胞を培養する工程を含む、本発明のポリペプチド又は本発明のポリペプチドをコードする遺伝子によりコードされるポリペプチドを製造する方法を提供する。
 より具体的には、以下の工程を含む本発明のポリペプチドの製造方法を提供する。
(a)本発明のポリペプチドをコードする遺伝子が導入されたベクターを含む宿主細胞を培養する工程、
(b)当該遺伝子によりコードされるポリペプチドを取得する工程。
 scFvは、抗体のH鎖V領域とL鎖V領域を連結することにより得られる。このscFvにおいて、H鎖V領域とL鎖V領域はリンカー、好ましくは、ペプチドリンカーを介して連結される(Huston, J. S. et al.、Proc. Natl. Acad. Sci. U.S.A. (1988) 10.0, 5879-5883)。scFvにおけるH鎖V領域およびL鎖V領域は、上記抗体として記載されたもののいずれの由来であってもよい。V領域を連結するペプチドリンカーとしては、例えばアミノ酸12-19残基からなる任意の一本鎖ペプチドが用いられる。
 本発明の抗IL-6受容体抗体が定常領域を含む場合、定常領域は如何なるタイプの定常領域でもよく、例えばIgG1、IgG2、IgG4などの定常領域を用いることができる。定常領域はヒト抗体の定常領域であることが好ましい。又、ヒトIgG1、ヒトIgG2、ヒトIgG4などの定常領域に対してアミノ酸配列の置換、欠失、付加および/または挿入等を行った改変体であってもよい。
 本発明の抗IL-6受容体抗体が結合するIL-6受容体はヒトIL-6受容体であることが好ましい。
 本発明の抗IL-6受容体抗体は、血漿中滞留性に優れている抗体であり、抗IL-6受容体抗体が抗原である可溶型IL-6受容体および膜型IL-6受容体に結合可能な状態で血漿中に存在する時間が延長し、生体内の可溶型IL-6受容体および膜型IL-6受容体が抗IL-6受容体抗体によって結合されている時間が延長した抗体である。又、当該抗IL-6受容体抗体は、IL-6受容体に2回以上結合することが可能であり、3つ以上のIL-6受容体を中和することが可能であると考えられる。
<医薬組成物>
 また本発明は、本発明の抗原結合分子、本発明のスクリーニング方法により単離された抗原結合分子、または本発明の製造方法により製造された抗原結合分子を含む医薬組成物に関する。本発明の抗原結合分子または本発明の製造方法により製造された抗原結合分子は血漿中滞留性に優れており、抗原結合分子の投与頻度を減らせることが期待されるので医薬組成物として有用である。本発明の医薬組成物は医薬的に許容される担体を含むことができる。
 本発明において医薬組成物とは、通常、疾患の治療もしくは予防、あるいは検査・診断のための薬剤を言う。
 本発明の医薬組成物は、当業者に公知の方法で製剤化することが可能である。例えば、水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、又は懸濁液剤の注射剤の形で非経口的に使用できる。例えば、薬理学上許容される担体もしくは媒体、具体的には、滅菌水や生理食塩水、植物油、乳化剤、懸濁剤、界面活性剤、安定剤、香味剤、賦形剤、ベヒクル、防腐剤、結合剤などと適宜組み合わせて、一般に認められた製薬実施に要求される単位用量形態で混和することによって製剤化することが考えられる。これら製剤における有効成分量は、指示された範囲の適当な容量が得られるように設定する。
 注射のための無菌組成物は注射用蒸留水のようなベヒクルを用いて通常の製剤実施に従って処方することができる。
 注射用の水溶液としては、例えば生理食塩水、ブドウ糖やその他の補助薬(例えばD-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウム)を含む等張液が挙げられる。適当な溶解補助剤、例えばアルコール(エタノール等)、ポリアルコール(プロピレングリコール、ポリエチレングリコール等)、非イオン性界面活性剤(ポリソルベート80(TM)、HCO-50等)を併用してもよい。
 油性液としてはゴマ油、大豆油があげられ、溶解補助剤として安息香酸ベンジル及び/またはベンジルアルコールを併用してもよい。また、緩衝剤(例えば、リン酸塩緩衝液及び酢酸ナトリウム緩衝液)、無痛化剤(例えば、塩酸プロカイン)、安定剤(例えば、ベンジルアルコール及びフェノール)、酸化防止剤と配合してもよい。調製された注射液は通常、適当なアンプルに充填する。
 本発明の医薬組成物は、好ましくは非経口投与により投与される。例えば、注射剤型、経鼻投与剤型、経肺投与剤型、経皮投与型の組成物とすることができる。例えば、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などにより全身または局部的に投与することができる。
 投与方法は、患者の年齢、症状により適宜選択することができる。抗原結合分子含有する医薬組成物の投与量は、例えば、一回につき体重1 kgあたり0.0001 mgから1000 mgの範囲に設定することが可能である。または、例えば、患者あたり0.001~100000 mgの投与量とすることもできるが、本発明はこれらの数値に必ずしも制限されるものではない。投与量及び投与方法は、患者の体重、年齢、症状などにより変動するが、当業者であればそれらの条件を考慮し適当な投与量及び投与方法を設定することが可能である。
 なお、本発明で記載されているアミノ酸配列に含まれるアミノ酸は翻訳後に修飾(例えば、N末端のグルタミンのピログルタミル化によるピログルタミン酸への修飾は当業者によく知られた修飾である)を受ける場合もあるが、そのようにアミノ酸が翻訳後修飾された場合であっても当然のことながら本発明で記載されているアミノ酸配列に含まれる。
 なお本明細書において引用されたすべての先行技術文献は、参照として本明細書に組み入れられる。
 以下本発明を実施例により具体的に説明するが、本発明はこれら実施例に制限されるものではない。
〔実施例1〕改変ヒト化PM1抗体の作製
組み換え可溶型ヒトIL-6レセプター(SR344)の調製
 抗原であるヒトIL-6レセプターの組み換えヒトIL-6レセプターは以下のように調製した。J.Biochem. 108, 673-676 (1990)で報告されているN末端側1番目から344番目のアミノ酸配列からなる可溶型ヒトIL-6レセプター(以下、SR344)(Yamasakiら、Science 1988;241:825-828 (GenBank # X12830))のCHO細胞定常発現株を作製した。
 SR344発現CHO細胞から得られた培養上清から、Blue Sepharose 6 FFカラムクロマトグラフィー、SR344に対する特異抗体を固定したカラムによるアフィニティクロマトグラフィー、ゲルろ過カラムクロマトグラフィーの3つのカラムクロマトグラフィーにより、SR344を精製した。メインピークとして溶出した画分を最終精製品とした。
組み換えカニクイザル可溶型IL-6レセプター(cIL-6R)の調製
 公開されているアカゲザルIL-6レセプター遺伝子配列(Birney et al, Ensembl 2006, Nucleic Acids Res. 2006 Jan 1;34(Database issue):D556-61.)を元にオリゴDNAプライマー Rhe6Rf1(配列番号:16)、Rhe6Rr2(配列番号:17)を作製した。カニクイザル膵臓から調製されたcDNAを鋳型とし、プライマーRhe6Rf1およびRhe6Rr2を用いて、PCR法によりカニクイザルIL-6レセプター遺伝子全長をコードするDNA断片を調製した。得られたDNA断片を鋳型に、オリゴDNAプライマーCynoIL6R N-EcoRI(配列番号:18)およびCynoIL6R C-NotI-His(配列番号:19)を用いて、PCR法によりカニクイザルIL-6レセプター遺伝子のシグナル領域を含む可溶型領域(Met1-Pro363)のC末端に6xHisが付加されたタンパク質をコードする1131 bpのDNA断片(配列番号:20)を増幅した。得られたDNA断片をEcoRI-NotIで消化し、動物細胞発現ベクターへ挿入し、これを用いてCHO定常発現株(cyno.sIL-6R産生CHO細胞)を作製した。
 cyno.sIL-6R産生CHO細胞の培養液をHisTrapカラム(GEヘルスケアバイオサイエンス)で精製後、Amicon Ultra-15 Ultracel-10k(Millipore)を用いて濃縮し、Superdex200pg16/60ゲルろ過カラム(GEヘルスケアバイオサイエンス)でさらに精製を行い、可溶型カニクイザルIL-6レセプター(以下、cIL-6R)の最終精製品とした。
組み換えカニクイザルIL-6(cIL-6)の調製
 カニクイザルIL-6は以下のように調製した。SWISSPROT Accession No.P79341に登録されている212アミノ酸をコードする塩基配列を作成し、動物細胞発現ベクターにクローニングし、CHO細胞に導入することで定常発現細胞株を作製した(cyno.IL-6産生CHO細胞)。cyno.IL-6産生CHO細胞の培養液をSP-Sepharose/FFカラム(GEヘルスケアバイオサイエンス)で精製後、Amicon Ultra-15 Ultracel-5k(Millipore)を用いて濃縮し、Superdex75pg26/60ゲルろ過カラム(GEヘルスケアバイオサイエンス)でさらに精製を行い、Amicon Ultra-15 Ultracel-5k(Millipore)を用いて濃縮し、カニクイザルIL-6(以下、cIL-6)の最終精製品とした。
ヒトgp130発現BaF3細胞株の樹立
 IL-6依存増殖性を示す細胞株を得るために、以下に示すとおり、ヒトgp130を発現したBaF3細胞株の樹立を行った。
 全長ヒトgp130 cDNA(Hibiら、Cell 1990;63:1149-1157 (GenBank # NM_002184))をPCR法により増幅し、pCHOI(Hirataら、FEBS Letter 1994;356:244-248)のDHFR遺伝子発現部位を除去し、Zeocin耐性遺伝子発現部位を挿入した発現ベクターpCOS2Zeoにクローニングし、pCOS2Zeo/gp130を構築した。全長ヒトIL-6R cDNAをPCR法により増幅し、pcDNA3.1(+)(Invitrogen)にクローニングし、hIL-6R/pcDNA3.1(+)を構築した。10μgのpCOS2Zeo/gp130をPBSに懸濁したBaF3細胞(0.8x107 cells)に混合し、Gene Pulser(Bio-Rad)を用いて0.33 kV, 950μFDの容量でパルスを加えた。エレクトロポーレーション処理により遺伝子導入したBaF3細胞を0.2 ng/mLのmouse interleukin-3(Peprotech)、10% Fetal Bovine Serum(以下FBS、HyClone)を含むRPMI1640培地(Invitrogen)で一昼夜培養し、100 ng/mLのhuman interleukin-6(R&D systems)、100 ng/mL のhuman interleukin-6 soluble receptor(R&D systems)および10% FBSを含むRPMI1640培地を加えて選抜し、ヒトgp130発現BaF3細胞株(以下、BaF3/gp130)を樹立した。このBaF/gp130は、human interleukin-6(R&D systems)およびSR344存在下で増殖することから、抗IL-6レセプター抗体の増殖阻害活性(すなわちIL-6レセプター中和活性)の評価に使用することが可能である。
ヒト化抗IL-6レセプター抗体の作製
 Cancer Res. 1993 Feb 15;53(4):851-6においてヒト化されたマウスPM1抗体(以降Wild type、WTと略、H鎖WTをH(WT)(アミノ酸配列 配列番号:9)とし、L鎖WTをL(WT)(アミノ酸配列 配列番号:10)とする)のフレームワーク配列とCDR配列に変異を導入し、改変H鎖としてH53(アミノ酸配列 配列番号:1)、PF1H(アミノ酸配列 配列番号:11)、改変L鎖としてL28(アミノ酸配列 配列番号:12)、PF1L(アミノ酸配列 配列番号:2)を作製した。具体的には、QuikChange Site-Directed Mutagenesis Kit(Stratagene)を用いて、添付説明書記載の方法で変異体を作製し、得られたプラスミド断片を動物細胞発現ベクターに挿入し、目的のH鎖発現ベクターおよびL鎖発現ベクターを作製した。得られた発現ベクターの塩基配列は当業者公知の方法で決定した。
ヒト化抗IL-6レセプター抗体の発現と精製
 抗体の発現は以下の方法を用いて行った。ヒト胎児腎癌細胞由来HEK293H株(Invitrogen)を10 % Fetal Bovine Serum(Invitrogen)を含むDMEM培地(Invitrogen)へ懸濁し、5~6 × 105個 /mLの細胞密度で接着細胞用ディッシュ(直径10 cm, CORNING)の各ディッシュへ10 mLずつ蒔きこみCO2インキュベーター(37℃、5 % CO2)内で一昼夜培養した後に、培地を吸引除去し、CHO-S-SFM-II(Invitrogen)培地6.9 mLを添加した。調製したプラスミドをlipofection法により細胞へ導入した。得られた培養上清を回収した後、遠心分離(約2000 g、5分間、室温)して細胞を除去し、さらに0.22μmフィルターMILLEX(R)-GV(Millipore)を通して滅菌して培養上清を得た。得られた培養上清にrProtein A SepharoseTM Fast Flow(Amersham Biosciences)を用いて当業者公知の方法で精製した。精製抗体濃度は、分光光度計を用いて280 nmでの吸光度を測定した。得られた値からPACE法により算出された吸光係数を用いて抗体濃度を算出した(Protein Science 1995 ; 4 : 2411-2423)。
〔実施例2〕pH依存的結合抗体H3pI/L73の作製
複数回抗原を中和できる抗体の創製方法
 IgG分子は2価であるため2ヶ所で抗原に結合した場合、1分子のIgG分子で最大2分子の抗原を中和することが可能であるが、3分子以上の抗原を中和することは出来ない。そのため中和抗体の場合、その中和効果を一定期間持続させるためには、その一定期間に産生される抗原量以上の抗体量が投与される必要があり、抗体の薬物動態向上やアフィニティー向上技術だけでは、必要抗体投与量の低減には限界が存在する。そこで1分子のIgG分子で2分子以上の抗原を中和することができれば、同じ投与量であれば中和効果の持続性が向上し、また、同じ持続性を達成するために必要な投与量を低減することが可能である。
 中和抗体の場合、ターゲットとなる抗原の種類として、抗原が血漿中に存在する可溶型抗原場合と抗原が細胞表面に発現している膜型抗原の場合の2種類が存在する。
 抗原が膜型抗原の場合、投与した抗体は細胞表面上の膜抗原に結合して、その後、抗体は膜抗原に結合したまま抗原と一緒にインターナライゼーションによって細胞内のエンドソームに取り込まれ、その後、抗原に結合したままライソソームへ移行し抗体は抗原と一緒にライソソームにより分解される。膜抗原によるインターナライゼーションを介した血漿中から消失は抗原依存的な消失と呼ばれており、多くの抗体分子で報告されている(Drug Discov Today. 2006 Jan;11(1-2):81-8)。1分子のIgG抗体は2価で抗原に結合した場合2分子の抗原に結合し、インターナライズされそのままライソソームで分解されることから、通常の抗体の場合、1分子のIgG抗体が2分子以上の抗原を中和することは出来ない(図1)。
 IgG分子の血漿中滞留性が長い(消失が遅い)のは、IgG分子のサルベージレセプターとして知られているFcRnが機能しているためである(Nat Rev Immunol. 2007 Sep;7(9):715-25)。ピノサイトーシスによってエンドソームに取り込まれたIgG分子は、エンドソーム内の酸性条件下においてエンドソーム内に発現しているFcRnに結合する。FcRnに結合できなかったIgG分子はライソソームへと進みそこで分解されるが、FcRnへ結合したIgG分子は細胞表面へ移行し血漿中の中性条件下においてFcRnから解離することで再び血漿中に戻る(図2)。
 膜抗原に結合したIgG分子はインターナライゼーションによって細胞内のエンドソームに取り込まれ、抗原に結合したままライソソームに移行し分解され、IgG抗体が2価で抗原に結合した場合は2分子の抗原を中和して抗原と共に分解される。インターナライゼーションによって細胞内のエンドソームに取り込まれた際に、エンドソーム内の酸性条件下においてIgG抗体が抗原から解離することが出来れば、解離した抗体はエンドソーム内に発現しているFcRnに結合することが出来ると考えられる。抗原から解離しFcRnへ結合したIgG分子は細胞表面へ移行し血漿中の中性条件下においてFcRnから解離することで再び血漿中に戻り、血漿中に戻ったIgG分子は再度新たな膜抗原へ結合することが可能である。これを繰り返すことによって、1分子のIgG分子が繰り返し膜型抗原に結合することが可能になるため、1分子のIgG分子が複数個の抗原を中和することが可能となる(図3)。
 抗原が可溶型抗原の場合、投与した抗体は血漿中で抗原に結合し、抗原と抗体の複合体の形で血漿中を滞留する。通常、抗体の血漿中滞留性は上述のとおりFcRnの機能により非常に長い(消失速度が非常に遅い)のに対して、抗原の血漿中滞留性は短い(消失速度が速い)ため、抗体に結合した抗原は抗体と同程度の血漿中滞留性を有する(消失が非常に遅い)ことになる。抗原は生体内で常に一定の速度で産生されており、抗体非存在下では抗原の産生速度と抗原の消失速度が釣り合った状態の濃度で抗原が血漿中に存在する。抗体存在下では、ほとんどの抗原が抗体に結合し、抗原の消失は非常に遅くなるため血漿中の抗原濃度は抗体非存在下に比べて上昇する(Kidney Int. 2003, 64, 697-703、J. National Cancer Institute 2002, 94(19), 1484-1493、J. Allergy and Clinical Immunology 1997, 100(1), 110-121、Eur. J. Immunol. 1993, 23; 2026-2029 )。仮に抗体の抗原へのアフィニティーが無限大であったとしても、抗原の濃度が上昇し、抗体が血漿中から徐々に消失し、抗体と抗原の濃度が一致した時間以降、抗体の抗原中和効果が切れてしまう。可溶型抗原に対する中和効果は、解離定数(KD)が強いほど少ない抗体濃度で中和することが可能であるが、アフィニティーをどれだけ強くしても存在する抗原濃度の1/2以下の抗体濃度では抗原を中和することができない(Biochem Biophys Res Commun. 2005 Sep 9;334(4):1004-13)。抗原が結合していないIgG分子同様、抗原が結合したIgG分子も血漿中においてピノサイトーシスによってエンドソームに取り込まれ、エンドソーム内の酸性条件下においてエンドソーム内に発現しているFcRnに結合する。FcRnへ結合したIgG分子は抗原に結合したまま、細胞表面へ移行し血漿中の中性条件下においてFcRnから解離することでIgG分子は抗原に結合したまま再び血漿中に戻るため、血漿中で新たな抗原に結合することは出来ない。この際、エンドソーム内の酸性条件下においてIgG分子が抗原から解離することが出来れば、解離した抗原はFcRnに結合することが出来ないため、その抗原はライソソームによって分解されると考えられる。一方、IgG分子はFcRnに結合することにより再び血漿中に戻ることが可能である。血漿中に戻ったIgG分子は、すでにエンドソーム内で抗原を解離していることから、血漿中において再度新しい抗原に結合することが可能になる。これを繰り返すことによって、1分子のIgG分子が繰り返し可溶型抗原に結合することが可能になるため、1分子のIgG分子が複数個の抗原を中和することが可能となる(図4)。
 このように抗原が膜型抗原、可溶型抗原であるに関わらず、エンドソーム内の酸性条件下においてIgG抗体が抗原から解離することが出来れば、1分子のIgG分子が繰り返し抗原を中和することが達成できると考えられた。エンドソーム内の酸性条件下においてIgG抗体が抗原から解離するためには、酸性条件下において抗原と抗体の結合が中性条件下と比較して大幅に弱くなる必要がある。細胞表面では膜抗原を中和する必要があるため、細胞表面のpHであるpH7.4においては抗原に強く結合する必要がある。エンドソーム内のpHは一般的にpH5.5~pH6.0であることが報告されている(Nat Rev Mol Cell Biol. 2004 Feb;5(2):121-32.)ことから、pH5.5~pH6.0において抗原に弱く結合する抗体であれば、エンドソーム内の酸性条件下において抗原から抗体は解離すると考えられる。すなわち、細胞表面のpHであるpH7.4においては抗原に強く結合し、エンドソーム内のpHであるpH5.5~pH6.0において抗原に弱く結合する抗体であれば、1分子のIgG分子が複数個の抗原を中和し、薬物動態を向上することが可能であると考えられた。
 一般的にタンパク質-タンパク質相互作用は疎水相互作用、静電相互作用、水素結合からなり、その結合の強さは一般的に結合定数(affinity)、あるいは見かけの結合定数(avidity)で表現される。中性条件下(pH7.4)と酸性条件下(pH5.5~pH6.0)とで結合の強さが変化するpH依存的な結合は、天然に存在するタンパク質-タンパク質相互作用に存在する。例えば上述したIgG分子とIgG分子のサルベージレセプターとして知られているFcRnの結合は、酸性条件下(pH5.5~pH6.0)で強く結合し中性条件下(pH7.4)で極めて結合が弱い。これら多くのpH依存的に結合が変化するタンパク質-タンパク質相互作用においては、その相互作用にヒスチジン残基が関与している。ヒスチジン残基のpKaは6.0~6.5付近に存在するため、中性条件下(pH7.4)と酸性条件下(pH5.5~pH6.0)との間でヒスチジン残基のプロトンの解離状態が変化する。すなわち、ヒスチジン残基は中性条件下(pH7.4)においては電荷を帯びず中性で水素原子アクセプターとして機能し、酸性条件下(pH5.5~pH6.0)においては正電荷を帯び水素原子ドナーとして機能する。上述のIgG-FcRn相互作用においても、IgG側に存在するヒスチジン残基がpH依存的結合に関与していることが報告されている(Mol Cell. 2001 Apr;7(4):867-77.)。
 そのためタンパク質-タンパク質相互作用に関与するアミノ酸残基をヒスチジン残基に置換する、あるいは、相互作用する箇所にヒスチジンを導入することによってタンパク質-タンパク質相互作用にpH依存性を付与することは可能である。抗体-抗原間のタンパク質-タンパク質相互作用においてもそのような試みがされており、抗卵白リゾチウム抗体のCDR配列にヒスチジンを導入することによって、酸性条件下で抗原に対する結合性が低下した抗体変異体を取得することに成功している(FEBS Letter (vol.309, No.1, 85-88, 1992))。また、CDR配列にヒスチジンを導入することによって、ガン組織の低いpHで特異的に抗原に結合し中性条件下では弱く結合する抗体が報告されている(WO2003105757)。
 このように抗原抗体反応にpH依存性を導入する方法は報告されているが、これまでに体液中のpHであるpH7.4においては抗原に強く結合し、エンドソーム内のpHであるpH5.5~pH6.0において抗原に弱く結合することで、1分子のIgG分子が複数個の抗原を中和する抗体は報告されていない。すなわち、中性条件下での結合を維持しつつ酸性条件下での結合のみを大きく低下させる改変を導入することで、改変前の抗体と比較して改変後の抗体が、in vivoにおいて抗原に複数回結合することで薬物動態が向上し、同じ投与量で中和効果の持続性が向上した抗体の改変に関する報告は無い。
 IL-6レセプターは生体内に可溶型IL-6レセプターおよび膜型IL-6レセプターの両方の形で存在する(Nat Clin Pract Rheumatol. 2006 Nov;2(11):619-26.)。抗IL-6レセプター抗体は可溶型IL-6レセプターおよび膜型IL-6レセプター両方に結合してそれらの生物学的な作用を中和する。抗IL-6レセプター抗体は膜型IL-6レセプターに結合後、膜型IL-6レセプターに結合したままインターナライゼーションによって細胞内のエンドソームに取り込まれ、その後、抗IL-6レセプター抗体は膜型IL-6レセプターに結合したままライソソームへ移行し一緒にライソソームにより分解されると考えられている。実際、ヒト化抗IL-6レセプター抗体は、非線形なクリアランスを示し、抗原依存的な消失がヒト化抗IL-6レセプター抗体の消失に大きく寄与していることが報告されている(The Journal of Rheumatology, 2003, 30;71426-1435)。すなわち、1分子のヒト化抗IL-6レセプター抗体は1分子ないしは2分子の膜型IL-6レセプターに(1価ないしは2価で)結合し、インターナライズ後、ライソソームで分解されると考えられる。そこで、天然型のヒト化抗IL-6レセプター抗体の中性条件下での結合を維持しつつ酸性条件下での結合のみを大きく低下させる改変抗体(pH依存的結合抗IL-6レセプター抗体)を作製することが出来れば、1分子のヒト化抗IL-6レセプター抗体で複数分子のIL-6レセプターを中和できると考えられ、これにより天然型のヒト化抗IL-6レセプター抗体と比較して、pH依存的結合抗IL-6レセプター抗体はin vivoにおいて同じ投与量で中和効果の持続性が向上できると考えた。
pH依存的結合ヒト化IL-6レセプター抗体H3pI/L73の作製
 pH依存的な結合を抗原抗体反応に導入する方法として、CDRにヒスチジンを導入する方法が報告されている(FEBS Letter (vol.309, No.1, 85-88, 1992))。実施例1で作製したH53/PF1Lの可変領域表面に露出するアミノ酸残基および抗原と相互作用していると考えられる残基を確認するために、MOEソフトウェア(Chemical Computing Group Inc.)を用いて、ホモロジーモデリングによりH53/PF1LのFv領域モデルを作製した。H53/PF1Lの配列情報を元に作成した立体構造モデルより、ヒスチジン導入により抗原とのpH依存的結合を導入できると考えられる変異箇所をH27、H31、H35、L28、L32、L53(Kabatナンバリング、Kabat EA et al. 1991. Sequences of Proteins of Immunological Interest.NIH)に選定した。H27、H31、H35の残基をヒスチジンに置換する変異を実施例1で作成したH53に対して導入したものをH3pI(アミノ酸配列 配列番号:3)とし、L28、L32、L53の残基をヒスチジンに置換する変異を実施例1で作成したPF1Lに対して導入したものをL73(アミノ酸配列 配列番号:6)とした。
H3pI/L73の発現ベクターの作製・発現・精製
 選定された箇所について改変抗体を作製するためのアミノ酸改変を行った。実施例1において作製したH53(塩基配列 配列番号:13)およびPF1L(塩基配列 配列番号:14)に変異を導入して、H3pI(アミノ酸配列 配列番号:3)とL73(アミノ酸配列 配列番号:6)を作製した。具体的には、QuikChange Site-Directed Mutagenesis Kit(Stratagene)を用いて、添付説明書記載の方法で作製し、得られたプラスミド断片を動物細胞発現ベクターに挿入し、目的のH鎖発現ベクターおよびL鎖発現ベクターを作製した。得られた発現ベクターの塩基配列は当業者公知の方法で決定した。H鎖としてH3pI、L鎖としてL73を用いたH3pI/L73の発現・精製は実施例1に記載した方法で行った。
〔実施例3〕ファージディスプレイ技術を用いたCDR His改変によるpH依存的抗原結合能の付与
ヒト化PM1抗体のscFv分子の作製
 ヒト化抗IL-6R抗体であるヒト化PM1抗体(Cancer Res. 1993 Feb 15;53(4):851-6)のscFv化を行った。VH、VL領域をPCRによって増幅し、リンカー配列GGGGSGGGGSGGGGS(配列番号:15)をVH、VLの間に持つヒト化PM1 HL scFvを作製した。
ヒスチジンscanningによるヒスチジン導入可能箇所の選定
 作製したヒト化PM1 HL scFv DNAを鋳型にしたPCRにより、各CDRアミノ酸のうちの一つのアミノ酸がヒスチジンとなるヒスチジンライブラリーを作製した。ライブラリー化したいアミノ酸のコドンをヒスチジンに相当するコドンであるCATとしたプライマーを用いたPCR反応によってライブラリー部分を構築、それ以外の部分を通常のPCRによって作製し、assemble PCR法により連結して構築した。構築したライブラリーをSfi Iで消化し、同様にSfi Iで消化したphagemideベクターpELBG lacIベクターに挿入し、XL1-Blue(stratagene)にtransformした。得られたコロニーを用い、phage ELISAによる抗原結合性評価とHL scFv配列解析を行った。J.Mol.Biol 1992 ; 227 : 381-388に習い、SR344を1μg/mLでcoatingしたプレートを用いたphage-ELISAを行った。SR344への結合性が認められたクローンについて、特異的プライマーを用い、配列解析を行った。
 anti-Etag抗体(GE Healthcare)とanti-M13抗体(GE Healthcare)によるELISA法により、phage titerを求めた。この値を用い、SR344に対するphage ELISAの結果から、ヒト化PM1 HL scFvと比べ、CDRの残基をヒスチジンに置換しても結合能に大きな変化がない箇所を選定した。これらの箇所を表2に示した。各残基のナンバリングはKabatナンバリング(Kabat EA et al. 1991. Sequences of Proteins of Immunological Interest.NIH)に従った。
[表2]結合能に大きく影響のないヒスチジン置換箇所
H31, H50, H54, H56, H57, H58, H59, H60, H61, H62, H63, H64, H65, H100a, H100b, H102
L24, L26, L27, L28, L30, L31, L32, L52, L53, L54, L56, L90, L92, L93, L94
CDRヒスチジン改変ライブラリーの構築
 表2に示した、ヒスチジンに置換しても結合能に大きな変化がないCDR残基(ヒスチジン導入可能箇所)のアミノ酸を、元の配列(天然型配列)もしくはヒスチジンとなるライブラリーの設計を行った。実施例1で作製したH鎖PF1H、L鎖PF1Lの配列を元にし、ライブラリー箇所において、元の配列あるいはヒスチジン(元の配列かヒスチジンのどちらか一方)、となるようにライブラリーを構築した。
 ライブラリー化したい箇所を、元のアミノ酸のコドン、もしくはヒスチジンのコドン、となるよう設計したプライマーを用いたPCR反応によってライブラリー部分を構築、それ以外の場所を通常のPCR、もしくはライブラリー部分と同様に合成プライマーを用いたPCR反応によって作製し、assemble PCR法により連結して構築した(J.Mol.Biol 1996 ; 256 : 77-88)。
 このライブラリーを用い、J. Immunological Methods 1999 ;231:119-135に習い、ribosome display用ライブラリーを構築した。大腸菌無細胞系in vitro translationを行うために、SDA配列(ribosome binding site)、T7 promoterを5'側に付加し、ribosome display用のリンカーとして3'側にgene3部分配列をSfi Iを用いてligationした。
ビーズパンニングによるライブラリーからのpH依存的結合scFvの取得
 SR344への結合能をもつscFvのみを濃縮させるため、Nature Biotechnology 2000 Dec ; 18 : 1287-1292 に習い、ribosome display法によるパンニングを2回行った。調製されたSR344を、NHS-PEO4-Biotin(Pierce)を用いてビオチン化し抗原とした。ビオチン化抗原量を40 nM使用し、パンニングを行った。
 得られたDNA poolを鋳型とし、特異的プライマーを用いてPCRすることによりHL scFvを復元した。Sfi Iで消化し、同様にSfi Iで消化したphagemideベクターpELBG lacIベクターに挿入し、XL1-Blue(stratagene)にtransformした。
 目的のプラスミドを有する大腸菌を、2YT/100μg/mLアンピシリン/2% glucose培地中で0.4-0.6 O.D./mLまで増殖させた。そこにHelper phage(M13KO7, 4.5x1011pfu)を加え、37℃で30分間静置培養、37℃で30分間震盪培養を行った後、50 mL Falconチューブに移し3000 rpmで10分間遠心分離し、2YT/100μg/mLアンピシリン/25μg/mLカナマイシン/0.5 mM IPTG中に再懸濁し、そして30℃で一晩増殖させた。
 ファージ液は、一晩培養した培養液を2.5 M NaCl/10%PEGにより沈殿させた後PBSにて希釈しファージライブラリー液とした。ファージライブラリー液に10% M-PBS(10%スキムミルクを含むPBS)、1 M Tris-HClを加え、終濃度2.5% M-PBS, pH7.4とした。パンニングは、一般的な方法である磁気ビーズに固定化した抗原を用いたパンニング方法を用いた(J Immunol Methods. 2008 Mar 20;332(1-2):2-9.、J Immunol Methods. 2001 Jan 1;247(1-2):191-203.、Biotechnol Prog. 2002 Mar-Apr;18(2):212-20.)。具体的には、調製したファージライブラリーに40 pmolのビオチン標識SR344を加え、37℃で60分間抗原と接触させた。5% M-PBS(5%スキムミルクを含むPBS)で洗浄したStreptavidin coated beads(Dynal M-280)を加え、37℃で15分間結合させた。ビーズを0.5 mLのPBST(0.1% Tween-20を含むPBS, pH7.4)とPBS(pH7.4)にて5回ずつ洗浄した。1 mLのPBS(pH5.5)中にビーズを37℃で懸濁し、即にファージを回収した。回収したファージ溶液に、対数増殖期(OD600 0.4-0.5)XL1-Blue 10 mLに添加、37℃, 30分間静置することで感染させた。感染させた大腸菌を、2YT/100μg/mLアンピシリン/2% glucoseの225 mm x 225 mmのプレートへプレーティングした。再度この大腸菌から培養を開始し、上記と同様にファージの培養を行いパンニングを8回繰り返した。
ファージELISAによる評価
 上記のシングルコロニーを100μL 2YT/100μg/mLアンピシリン/2% glucose/12.5μg/mLテトラサイクリンに植菌し、30℃で一晩培養した。この2μLを300μL 2YT/100μg/mLアンピシリン/2% glucoseに植菌、37℃、4時間培養後、ヘルパーファージ(M13KO7)9 x 108pfuを加え、37℃で30分間静置培養、37℃30分間攪拌培養をおこない感染させた。この後2YT/100μg/mLアンピシリン/25μg/mLカナマイシン/0.5 mM IPTG 300μLに培地交換を行った。続いて30℃にて一晩培養し、遠心上清を回収した。遠心上清40μLに50 mM PBS(pH7.4)360μL加え、ELISAに供した。StreptaWell 96マイクロタイタープレート(Roche)を62.5 ng/mLビオチン標識SR344を含むPBS 100μLにて一晩コートした。PBSTにて洗浄し抗原を除いた後、2% BSA-PBS 250μLにて1時間以上ブロッキングした。2% BSA-PBSを除き、ここに調製した培養上清を加え37℃で1時間静置し抗体を結合させた。洗浄後、50 mM PBS(pH7.4)もしくは50 mM PBS(pH5.5)を加え37℃で30分間静置しインキュベートした。洗浄後、2% BSA-PBSにて希釈したHRP結合抗M13抗体(Amersham Parmacia Biotech)とTMB single solution(ZYMED)で検出し、硫酸の添加により反応を停止した後、450 nmの吸光度を測定した。
 しかしながらこの磁気ビーズに固定化した抗原を用いたパンニングでは、強いpH依存的結合能を有するクローンは得られなかった。弱いながらpH依存的結合能が認められたクローンについて、特異的プライマーを用い、配列解析を行った。これらのクローンにおいて、高い確率でヒスチジンとなっていた箇所を表3に示した。
[表3] ファージライブラリー(磁気ビーズパンニング)により見出されたヒスチジン置換箇所
H50, H58, H61, H62, H63, H64, H65, H102
L24, L27, L28, L32, L53, L56, L90, L92, L94
カラムパンニングによるライブラリーからのpH依存的結合scFvの取得
 一般的な磁気ビーズに固定化した抗原を用いたパンニングでは強いpH依存的結合能を有するクローンは得られなかった。磁気ビーズに固定化した抗原を用いたパンニングやプレートに固定化した抗原を用いたパンニングの場合は、磁気ビーズあるいはプレートから酸性条件下で解離したファージを全て回収するため、pH依存性が弱いクローンのファージであっても回収されてしまい、最終的に濃縮されるクローンに強いpH依存性を有するクローンが含まれる可能性が低いことが原因と考えられる。
 そこで、より厳しい条件でのパンニング方法として抗原を固定化したカラムを用いたパンニングを検討した(図5)。抗原を固定化したカラムを用いたパンニングを用いてpH依存的結合能を有するクローンを取得した報告はこれまでにない。抗原を固定化したカラムを用いたパンニングの場合、中性条件下で結合させたファージを酸性条件で溶出させる際、pH依存性が弱いクローンはカラム内で抗原に再結合することで溶出されにくく、pH依存性が強くカラム内の再結合が起こりにくいクローンが選択的にカラムから溶出されることが考えられる。また、磁気ビーズに固定化した抗原を用いたパンニングやプレートに固定化した抗原を用いたパンニングでは酸性条件下で解離したファージを"全て"回収することになるが、抗原を固定化したカラムを用いたパンニングではカラムに酸性条件の緩衝液を流すことで溶出を開始し"適切なフラクションのみ"を回収することで、強いpH依存的結合能を有するファージを選択的に回収することが可能と考えられる。
 まず、抗原であるSR344を固定化したカラムを作製した。200μL Streptavidin Sepharose(GE Healthcare)を1 mL PBSにてwashを行った後、500μL PBSに懸濁し、ビオチン標識SR344 400 pmolと室温で1時間接触させた。その後、空カラム(Amersham Pharmcia Biotech)へ上記のsepharoseを充填し、約3 mLのPBSによりカラムの洗浄を行った。0.5% BSA-PBS(pH7.4)により上記のPEG沈したlibrary phageを1/25に希釈し0.45 nm filterを通した後、カラムに添加した。約6 mLのPBS(pH7.4)にて洗浄した後、50 mM MES-NaCl(pH5.5)を流し、低いpHにすると解離する抗体を溶出した。適切な溶出フラクションを回収し、回収したファージ溶液に、対数増殖期(OD600 0.4-0.5)XL1-Blue 10 mLに添加、37℃, 30分間静置することで感染させた。
 感染させた大腸菌を、2YT/100μg/mLアンピシリン/2% glucoseの225 mm x 225 mmのプレートへプレーティングした。再度この大腸菌から培養を開始し、上記と同様にファージの培養を行い、パンニングを6回繰り返し行った。
ファージELISAによる評価
 ファージELISAにより、得られたphageの評価をおこなった。pH依存性が強く認められたクローンについて、特異的プライマーを用い、配列解析を行った。その結果、WTと比較してpH依存的な結合が強く見られたクローンが複数得られた。図6に示すとおり、WTと比較してクローンCL5(H鎖CLH5、L鎖CLL5)(CLH5:アミノ酸配列 配列番号:5、CLL5:アミノ酸配列 配列番号:8)は特に強いpH依存的な結合が確認された。一般的な磁気ビーズに固定化した抗原を用いたパンニングでは取れなかった強いpH依存的結合を示す抗体が、抗原を固定化したカラムを用いたパンニングにより取得できることが分かり、pH依存的結合抗体をライブラリーから取得する方法としては抗原を固定化したカラムを用いたパンニングが非常に有効であることが分かった。pH依存的な結合が見られた複数のクローンのアミノ酸配列解析の結果、濃縮されたクローンにおいて高い確率でヒスチジンとなっていた箇所を表4に示した。
[表4] ファージライブラリー(カラムパンニング)によるヒスチジン置換箇所
H31, H50, H58, H62, H63, H65, H100b, H102
L24, L27, L28, L32, L53, L56, L90, L92, L94
〔実施例4〕ヒト化IL-6レセプター抗体のヒスチジン改変体の発現と精製
ヒト化IL-6レセプター抗体のヒスチジン改変抗体の発現ベクターの作製・発現・精製
 ファージELISAにてpH依存性が強く認められたクローンについて、IgG化するために、VH、および、VLをそれぞれPCRによって増幅し、XhoI/NheI消化およびEcoRI消化により動物細胞発現用ベクターに挿入した。各DNA断片の塩基配列は、当業者公知の方法で決定した。H鎖としてCLH5、L鎖として実施例2で得られたL73を用いたCLH5/L73をIgGとして発現・精製した。発現・精製は実施例1に記載した方法で行った。
 変異箇所の組み合わせにより、さらに高いpH依存性をもつ抗体作製を行った。ファージライブラリーでHisが濃縮された箇所、構造情報、などから、H鎖として実施例2で得られたH3pIのH32、H58、H62、H102をヒスチジンに置換し、さらにH95をバリンに、H99をイソロイシンに置換し、H170(配列番号:4)を作製した。改変体の作製は実施例1に記載した方法で行った。また、L鎖として実施例2で作成したL73の28番目のヒスチジンをアスパラギン酸に置換したL82(配列番号:7)を作製した。改変体の作製は実施例1に記載した方法で行った。実施例1に記載した方法で、H鎖としてH170、L鎖としてL82を用いたH170/L82をIgGとして発現・精製を行った。
〔実施例5〕pH依存的結合抗体のIL-6R中和活性評価
IgG化したクローンのヒトIL-6レセプター中和活性評価
 ヒト化PM1抗体(野生型:WT)、および、実施例2、4で作製したH3pI/L73、CLH5/L73、H170/L82の4種類についてIL-6レセプター中和活性を評価した。
 具体的にはIL-6/IL-6レセプター依存性増殖を示すBaF3/gp130を用いて、IL-6レセプター中和活性を評価した。BaF3/gp130を10% FBSを含むRPMI1640培地で3回洗浄した後に、5 x 104 cells/mLとなるように60 ng/mLのhuman interleukin-6(TORAY)、60 ng/mLの組換え可溶型ヒトIL-6レセプター(SR344)および10% FBSを含むRPMI1640培地に懸濁し、96 well-plate(CORNING)の各wellに50μLずつ分注した。次に、精製した抗体を10% FBSを含むRPMI1640に希釈して、各wellに50μLずつ混合した。37℃、5% CO2条件下で、3日間培養し、PBSで2倍に希釈したWST-8試薬(Cell Counting Kit-8、株式会社同仁化学研究所)を20μL/wellで加え、直後にSUNRISE CLASSIC(TECAN)を用いて450 nmの吸光度(参照波長620 nm)を測定した。2時間培養した後に、再度450 nmの吸光度(参照波長620 nm)を測定し、2時間の吸光度変化を指標にIL-6レセプター中和活性を評価した。その結果、図7に示すように、ヒト化PM1抗体(野生型:WT)と比較して、H3pI/L73、CLH5/L73、H170/L82は同等の生物学的中和活性を有することが示された。
〔実施例6〕pH依存的結合抗体のBiacore解析
pH依存的結合クローンの可溶型IL-6レセプターへの結合解析
 ヒト化PM1抗体(野生型:WT)、および、実施例2、4で作製したH3pI/L73、CLH5/L73、H170/L82の4種類について、Biacore T100(GE Healthcare)を用いてpH5.8とpH7.4における抗原抗体反応の速度論的解析を実施した(バッファーは10 mM MES pH7.4あるいはpH5.8, 150 mM NaCl, 0.05% Tween20)。アミンカップリング法によりrecomb-proteinA/G(Pierce)を固定化したセンサーチップ上に種々の抗体を結合させ、そこにアナライトとして9.8-400 nMの濃度に調製したSR344を注入した。pH依存的結合クローンのSR344への結合および解離をリアルタイムに観測した(図8および図9)。測定は全て37℃で実施した。Biacore T100 Evaluation Software(GE Healthcare)を用い、結合速度定数 ka(1/Ms)、および解離速度定数 kd(1/s)を算出し、その値をもとに解離定数 KD (M) を算出した(表5)。さらにそれぞれについてpH5.8とpH7.4のaffinity比を算出し、pH依存性結合を評価した。測定は全て37℃で実施した。
 それぞれについてpH5.8とpH7.4のaffinity比を算出した結果、SR344に対するH3pI/L73,H170/L82,CLH5/L73のpH依存性結合(affinity)はそれぞれ41倍,394倍,66倍であり、いずれのクローンもWTと比較して15倍以上の高いpH依存的結合を示した。
 これまでに血漿中のpHであるpH7.4においては抗原に強く結合し、エンドソーム内のpHであるpH5.5~pH6.0において抗原に弱く結合する抗IL-6レセプター抗体は報告されていない。本検討において、WTのヒト化IL-6レセプター抗体と同等の生物学的中和活性およびpH7.4でのaffinityを維持したまま、pH5.8でのaffinityのみを特異的に10倍以上低下させた抗体が得られた。
[表5] SR344に対するpH依存的結合クローンの可溶型IL-6レセプターへの結合比較
Figure JPOXMLDOC01-appb-I000002
pH依存的結合クローンの膜型IL-6レセプターへの結合解析
 作製した上記pH依存的結合クローンについて、Biacore T100(GE Healthcare)を用いてpH5.8, pH7.4における膜型IL-6レセプターへの抗原抗体反応を観測した。センサーチップ上に固定化したIL-6レセプターへの結合を評価することで、膜型IL-6レセプターへの結合を評価した。SR344を当業者公知の方法に従ってビオチン化し、ストレプトアビジンとビオチンの親和性を利用し、ストレプトアビジンを介してビオチン化SR344をセンサーチップ上に固定化した。測定は全て37℃で実施し、移動相のバッファーは10 mM MES pH5.8, 150 mM NaCl, 0.05% Tween20とし、そこにpH依存的結合クローンをpH7.4の条件下で注入してSR344と結合させたのち(注入サンプルのバッファーは10 mM MES pH7.4, 150 mM NaCl, 0.05% Tween20)、移動相のpHである5.8で各クローンのpH依存的な解離を観測した(図10)。
 サンプル濃度を0.5μg/mLとし、10 mM MES pH7.4, 150 mM NaCl, 0.05% Tween20で結合させ、10 mM MES pH5.8, 150 mM NaCl, 0.05% Tween20で解離させたときのpH5.8における解離相のみBiacore T100 Evaluation Software(GE Healthcare)を用いフィッティングすることにより、pH5.8における解離速度(kd(1/s))を算出した。同様にまた、サンプル濃度を0.5μg/mLとし、10 mM MES pH7.4, 150 mM NaCl, 0.05% Tween20で結合させ、10 mM MES pH7.4, 150 mM NaCl, 0.05% Tween20で解離させたときのpH7.4における解離相のみBiacore T100 Evaluation Software(GE Healthcare)を用いフィッティングすることにより、pH7.4における解離速度定数(kd(1/s))を算出した。各クローンのpH依存的な解離速度定数を表6に示した。
[表6] SR344に対するpH依存的結合クローンの膜型IL-6レセプターからの解離速度定数比較
Figure JPOXMLDOC01-appb-I000003
 解離度のpH依存性が大きい順にH3pI/L73,CLH5/L73,H170/L82であり、いずれのクローンもWTよりも高いpH依存性的な膜型IL-6レセプターからの解離を示した。しかし、pH依存的結合・解離の順位は可溶型IL-6レセプターと膜型IL-6レセプターで異なった。可溶型IL-6レセプターへの結合解析において最も高いpH依存性結合を示したH170/L82は、膜型IL-6レセプターへの結合解析においては最も低いpH依存性結合を示すことが明らかとなった。一般に、可溶型の抗原に対してIgG分子は1価(affinity)で結合するのに対して、膜型の抗原に対しては2価(avidity)で結合することが知られている。このような可溶型抗原と膜型抗原では結合様式の違いがH170/L82のpH依存的結合に影響したと考えられた。
〔実施例7〕pH依存的結合抗体による抗原への複数回結合の確認
 実施例2で記したように、pH依存的結合抗体は抗原に複数回結合することが可能になると考えられる。すなわち、抗原が結合したpH依存的結合抗体は非特異的にエンドソーム内に取り込まれるが、エンドソーム内の酸性条件下において可溶型抗原から解離する。抗体はFcRnに結合することによって再び血漿中に戻り、血漿中に戻った抗体には抗原が結合していないことから、再び新たな抗原に結合することが可能である。これを繰り返すことによって、pH依存的結合抗体は抗原に複数回結合することが可能である。しかしながらpH依存的結合を有さないIgG抗体は、エンドソームの酸性条件下で全ての抗原が抗体から解離することは無いため、FcRnにより血漿中に戻った抗体は抗原を結合したままであり、再び新たな抗原に結合することは出来ない。そのため、ほとんどの場合1分子のIgG抗体は2つの抗原しか中和することが出来ない(2価で結合した場合)。
 そこで、実施例2、4で作製したH3pI/L73、CLH5/L73、H170/L82の3種類のpH依存的結合抗体が、ヒト化PM1抗体(野生型:WT)と比較して、抗原であるSR344に複数回結合することが可能になっているかどうかの評価を行った。
 pH7.4で結合し、pH5.8で解離することで抗原に複数回結合可能であることをBiacore(GE Healthcare)によって評価した。アミンカップリング法によりrecomb-proteinA/G(Pierce)を固定化したセンサーチップに対して評価する抗体を結合させ、pH7.4の移動相を流した(工程1)。pH7.4に調整したSR344溶液をアナライトとして流し、pH7.4で抗体にSR344を結合させた(工程2)。このpH7.4での結合は血漿中での抗原への結合を模倣している。その後、pH5.8に調整したバッファーのみ(SR344を含有しない溶液)をアナライトとして流して抗体に結合した抗原を酸性条件下に暴露させた(工程3)。このpH5.8での解離はエンドソーム内での抗体抗原複合体の結合状態を模倣している。その後、再び工程2を行った。これはFcRnによって血漿中に戻った抗体が再び新しい抗原に結合することを模倣している。その後、再び工程2を行い、抗体抗原複合体を酸性条件下に暴露させた。このように"工程2→工程3"を37℃で複数回繰り返すことによって、抗体が血漿中からピノサイトーシスによってエンドソーム内に取り込まれFcRnによって血漿中に戻ることを繰り返している(Nat Rev Immunol. 2007 Sep;7(9):715-25)生体内の状態を模倣することが可能である。
 作製した上記pH依存的結合クローンについて、Biacore T100(GE Healthcare)を用いてpH5.8, pH7.4における抗原であるSR344に対する複数回結合能を解析した。具体的には以下の通り行った。測定は全て37℃で実施し、まずアミンカップリング法によりrecomb-proteinA/G(Pierce)を固定化したセンサーチップ上に、移動相のバッファーは10 mM MES pH5.8, 150 mM NaCl, 0.05% Tween20とし、上述のサンプルとなる抗体を結合させた(工程1)。そこにアナライトとして約40 nMの濃度に調製したSR344をpH7.4の条件下で3分間注入して(注入SR344のバッファーは10 mM MES pH7.4, 150 mM NaCl, 0.05% Tween20)結合させた(工程2)。その後、SR344の注入を停止しpH5.8の移動相を約70秒間流すことにより抗体/SR344複合体を酸性条件下に暴露した(工程3)。この結合(工程2)および酸性暴露(工程3)を1セットとし、これを連続的に10セット繰り返し行い、そのセンサーグラムをリアルタイムに観測し図11に示した。WTは工程3の酸性暴露時のSR344の解離が少ないため、次の工程2で新たに抗原に結合可能な抗体の割合は非常に少ない。それに対して、pH依存的結合クローン、その中でも特にH170/L82とCLH5/L73は、工程3の酸性暴露時の解離が極めて大きく、結合しているSR344のほとんどが解離することから、次の工程2でほとんどの抗体が新たな抗原に結合可能であることが分かった。H170/L82とCLH5/L73は結合(工程2)と酸性暴露(工程3)を10セット繰り返しても、毎セットほとんどの抗体が新たな抗原に結合可能であることが分かった。
 得られたセンサーグラムを用いて、Biacore T100 Evaluation Software(Biacore)を用い、各サンプルの1セットごとのSR344結合量を算出し、10セットの経時的な積算値を図12に示した。10セット目で得られた積算RU値が10回のサイクルの中で結合した総抗原量に相当する。WTと比較して、pH依存的結合クローン、その中でも特にH170/L82とCLH5/L73は、結合した総抗原量が最も多く、WTと比較して4倍量程度の抗原に繰り返し結合することが可能であることが示された。これより、WTに対してpH依存的な結合を付与することによって、繰り返し抗原に結合し、複数の抗原を中和することが可能になることが明らかとなった。
〔実施例8〕pH依存的結合抗体のヒトIL-6レセプタートランスジェニックマウスによるPK/PD試験
 IL-6レセプターは生体内に可溶型IL-6レセプターおよび膜型IL-6レセプターの両方の形で存在する(Nat Clin Pract Rheumatol. 2006 Nov;2(11):619-26)。抗IL-6レセプター抗体は可溶型IL-6レセプターおよび膜型IL-6レセプター両方に結合してそれらの生物学的な作用を中和する。抗IL-6レセプター抗体は膜型IL-6レセプターに結合後、膜型IL-6レセプターに結合したままインターナライゼーションによって細胞内のエンドソームに取り込まれ、その後、抗IL-6レセプター抗体は膜型IL-6レセプターに結合したままライソソームへ移行し一緒にライソソームにより分解されると考えられている。実施例6で評価したpH依存的結合抗IL-6レセプター抗体であるH3pI/L73、CLH5/L73、H170/L82が、エンドソーム内の酸性条件下で解離することでFcRnを介して血漿中へ戻ることが出来れば、血漿中に戻った抗体は再度抗原に結合することが可能になり、抗体1分子で複数の膜型IL-6レセプターを中和することが可能となる。エンドソーム内の酸性条件下で解離することでFcRnを介して血漿中へ戻ることが作製したpH依存的結合抗IL-6レセプター抗体で達成できているかどうかは、これらの抗体の薬物動態がWTと比較して改善しているかどうかを評価することで可能である。
 そこで、ヒト化PM1抗体(野生型:WT)、および、実施例2、4で作製したH3pI/L73、CLH5/L73、H170/L82の4種類について、ヒトIL-6レセプタートランスジェニックマウス(hIL-6R tg マウス、Proc Natl Acad Sci U S A. 1995 May 23;92(11):4862-6)における薬物動態を評価した。WTおよびH3pI/L73、CLH5/L73、H170/L82をhIL-6R tgマウスに25 mg/kgで静脈内に単回投与し、投与前、および、経時的に採血した。採取した血液は直ちに4℃、15,000 rpmで15分間遠心分離し、血漿を得た。分離した血漿は、測定を実施するまで-20℃以下に設定された冷凍庫に保存した。
 マウス血漿中濃度測定はELISA法にて測定した。血漿中濃度として6.4、3.2、1.6、0.8、0.4、0.2、0.1μg/mLの検量線試料を調整した。検量線試料およびマウス血漿測定試料をAnti-human IgG(γ-chain specific) F(ab')2(Sigma社製)で固相化したイムノプレート(Nunc-Immuno Plate,MaxiSorp(Nalge nunc International社製))に分注し、室温で1時間静置後、Goat Anti-Human IgG-BIOT(Southern Biotechnology Associates社製)およびStreptavidin-alkaline phosphatase conjugate(Roche Diagnostics社製)を順次反応させ、BluePhos Microwell Phosphatase Substrates System(Kirkegaard & Perry Laboratories社製)を基質として用い発色反応を行い、マイクロプレートリーダーにて650 nmの吸光度を測定した。マウス血漿中濃度は検量線の吸光度から解析ソフトウェアSOFTmax PRO(Molecular Devices社製)を用いて算出した。WTおよびH3pI/L73、CLH5/L73、H170/L82の血漿中濃度推移を図13に示した。
 WTと比較してH3pI/L73、CLH5/L73、H170/L82いずれも薬物動態が改善した。中でもH3pI/L73およびCLH5/L73は薬物動態が大幅に改善した。膜型IL-6レセプターに結合した天然型抗IL-6レセプター抗体(WT)はインターナライゼーションによって細胞内のエンドソームに取り込まれ、抗原に結合したままライソソームに移行し分解されるため血漿中滞留性が短い。それに対してpH依存的結合抗IL-6レセプター抗体において薬物動態が大幅に改善したことから、pH依存的結合抗IL-6レセプター抗体はエンドソーム内の酸性条件下おいて抗原である膜型IL-6レセプターから解離することでFcRnを介して再び血漿中に戻っていると考えられた。
 WTと比較してH3pI/L73、CLH5/L73、H170/L82いずれも薬物動態が改善したが、H170/L82の血漿中滞留性延長効果がH3pI/L73、CLH5/L73と比較して小さかった。通常IgG分子は膜型抗原には2価で結合すると考えられることから、抗IL-6レセプター抗体も膜型IL-6レセプターには2価(avidity)で結合してその後インターナライズされると考えられる。実施例6で示したように、Biacoreによる解析においてH170/L82は、可溶型IL-6レセプターへの結合の際はpH5.8において速やかにIL-6レセプターから解離する(図9)が、膜型IL-6レセプターへの結合の際はpH5.8においてIL-6レセプターからの解離速度が非常に遅い(図10)ことが分かっている。これよりH170/L82の血漿中滞留性延長効果が小さかったのは、膜型IL-6レセプターへの結合の際のpH5.8での解離が遅かったため、インターナライズされた後にエンドソーム内で十分に解離することが出来なかったためと考えられる。すなわち、膜型抗原に対して、1つのIgG分子が複数の膜型抗原を中和するためには、1価での結合(affinity)でのpH依存性よりも、2価での結合(avidity)からの解離のpH依存性のほうが重要であることが分かった。
〔実施例9〕pH依存的結合抗体のカニクイザルによるPK/PD試験
 実施例8において、pH依存的結合抗IL-6レセプター抗体において薬物動態が大幅に改善したことから、pH依存的結合抗IL-6レセプター抗体はエンドソーム内の酸性条件下において抗原である膜型IL-6レセプターから解離することでFcRnを介して再び血漿中に戻っていると考えられた。再び血漿中に戻った抗体が再度膜型IL-6レセプターに結合することができれば、天然型抗IL-6レセプター抗体と比較して、pH依存的結合抗IL-6レセプター抗体は同じ投与量でより長く抗原である膜型IL-6レセプターの中和が持続すると考えられる。また、IL-6レセプターには可溶型IL-6レセプターも存在することから、可溶型IL-6レセプターの中和に関しても、同じ投与量でより長く中和が持続することが考えられる。
 WTおよびH3pI/L73について、カニクイザルにおける薬物動態を評価した。WTおよびH3pI/L73をカニクイザルに1 mg/kgで静脈内に単回投与し、投与前および経時的に採血した。採取した血液は直ちに4℃、15,000 rpmで15分間遠心分離し、血漿を得た。分離した血漿は、測定を実施するまで-20℃以下に設定された冷凍庫に保存した。
 カニクイザル血漿中濃度測定はELISA法にて測定した。まずAnti-Human IgG(γ-chain specific) F(ab')2 Fragment of Antibody(SIGMA社製)をNunc-Immuno Plate, MaxiSoup(Nalge nunc International社製)に分注し、4℃で1晩静置しAnti-Human IgG固相化プレートを作成した。血漿中濃度として3.2、1.6、0.8、0.4、0.2、0.1、0.05μg/mLの検量線試料と100倍以上希釈したカニクイザル血漿測定試料を調製し、これら検量線試料および血漿測定試料100μLに20 ng/mLのカニクイザルIL-6Rを200μL加え、室温で1時間静置した。その後Anti-Human IgG固相化プレートに分注しさらに室温で1時間静置した。その後Biotinylated Anti-human IL-6 R Antibody(R&D社製)を室温で1時間反応させ、さらにStreptavidin-PolyHRP80(Stereospecific Detection Technologies 社製)を室温で1時間反応させ、TMB One Component HRP Microwell Substrate(BioFX Laboratories社製)を基質として用い発色反応を行い、1N-Sulfuric acid(Showa Chemical社製)で反応停止後、マイクロプレートリーダーにて450 nmの吸光度を測定した。カニクイザル血漿中濃度は検量線の吸光度から解析ソフトウェアSOFTmax PRO(Molecular Devices社製)を用いて算出した。WTおよびH3pI/L73の静脈内投与後の血漿中濃度推移を図14に示した。その結果、カニクイザルにおいてもヒトIL-6レセプタートランスジェニックマウスと同様、WTと比較してH3pI/L73は大幅に薬物動態が改善した。pH依存的結合抗IL-6レセプター抗体であるH3pI/L73において薬物動態が大幅に改善したことから、H3pI/L73はエンドソーム内の酸性条件下において抗原である膜型IL-6レセプターから解離することでFcRnを介して再び血漿中に戻っていると考えられた。
 WTおよびH3pI/L73の静脈内投与によって、カニクイザル膜型IL-6レセプターがどの程度中和されているかを評価するために、カニクイザルIL-6で誘導した血漿C反応性蛋白(CRP)への検体の影響を検討した。IL-6が膜型IL-6レセプターに結合するとCRPが分泌されるため、CRPは膜型IL-6レセプターの中和の指標となる。WTおよびH3pI/L73投与後3日目(day3)から10日目(day10)まで、1% 非働化カニクイザル血漿含有カニクイザルIL-6(実施例1で作製したcyno.IL-6) 5μg/kgを腰背部に連日皮下投与した。カニクイザルIL-6投与開始直前(day3)から投与後24時間間隔(day4~day11)で伏在静脈より血液を採取して、血漿に分離した。各個体のCRP濃度はサイアスR CRP(関東化学株式会社)にて、自動分析装置(TBA-120FR、東芝メディカルシステムズ株式会社)を用いて測定した。WTおよびH3pI/L73のカニクイザルIL-6で誘導時のCRP濃度推移を図15に示した。その結果、WTと比較してH3pI/L73は大幅にCRP抑制の期間が大幅に延長した。このことから、pH依存的結合抗IL-6レセプター抗体であるH3pI/L73はエンドソーム内の酸性条件下において抗原である膜型IL-6レセプターから解離することでFcRnを介して再び血漿中に戻り、再度膜型IL-6レセプターに結合して中和することでWTよりも長時間CRPの産生を抑制していると考えられた。すなわちH3pI/L73は抗体1分子で複数回、膜型IL-6レセプターに結合し中和することが可能であることが示された。H3pI/L73はWTと比較して、CRPの産生を抑制している時間が延長していることから、H3pI/L73はWTよりも抗原である膜型IL-6レセプターが抗体によって結合されている時間が延長していることが示された。
 WTおよびH3pI/L73の静脈内投与によって、カニクイザル可溶型IL-6レセプターがどの程度中和されているかを評価するために、カニクイザル血漿中の非結合型のカニクイザル可溶型IL-6レセプター濃度を測定した。カニクイザルの血漿30μLを0.22μmのフィルターカップ(Millipore)において乾燥させた適量のrProtein A Sepharose Fast Flow(GE Healthcare)樹脂に添加することで血漿中に存在する全てのIgG型抗体(カニクイザルIgG、抗ヒトIL-6レセプター抗体および抗ヒトIL-6レセプター抗体-カニクイザル可溶型IL-6レセプター複合体)をProteinAに吸着させた。その後、高速遠心機でスピンダウンし、通過した溶液(以下、「パス溶液」)を回収した。パス溶液にはproteinAに結合した抗ヒトIL-6レセプター抗体-カニクイザル可溶型IL-6レセプター複合体は含まれないため、proteinAパス溶液中のカニクイザル可溶型IL-6レセプター濃度を測定することによって、非結合型の可溶型IL-6レセプター濃度を測定可能である。4000、2000、1000、500、250、125、62.5 pg/mLに調製したカニクイザルIL-6レセプター検量線試料および上述のProtein A処理した血漿サンプルにSULFO-TAG NHS Ester(Meso Scale Discovery社製)でルテニウム化したMonoclonal Anti-human IL-6R Antibody(R&D社製)とBiotinylated Anti-human IL-6 R Antibody(R&D社製)を混合し室温で1時間反応させた。その後SA coated standard MA2400 96well plate(Meso Scale Discovery社製)に分注した。さらに室温で1時間反応させ洗浄後、Read Buffer T(×4)(Meso Scale Discovery社製)を分注し、ただちにSECTOR Imager 2400(Meso Scale Discovery社製)で測定を行った。カニクイザルIL-6レセプター濃度は検量線のレスポンスから解析ソフトウェアSOFTmax PRO(Molecular Devices社製)を用いて算出した。WTおよびH3pI/L73の非結合型のカニクイザル可溶型IL-6レセプター濃度推移を図16に示した。その結果、WTと比較してH3pI/L73は大幅にカニクイザル可溶型IL-6レセプターの中和期間が大幅に延長した。このことから、pH依存的結合抗IL-6レセプター抗体であるH3pI/L73はエンドソーム内の酸性条件下において抗原である可溶型IL-6レセプターから解離し、FcRnを介して再び血漿中に戻り、再度可溶型IL-6レセプターに結合して中和していると考えられた。H3pI/L73はWTと比較して、非結合型のカニクイザル可溶型IL-6レセプターを抑制している時間が延長していることから、H3pI/L73はWTよりも抗原である可溶型IL-6レセプターが抗体によって結合されている時間が延長していることが示された。
 これらのことから、野生型抗IL-6レセプター抗体に対して、血漿中のpHであるpH7.4において強く抗原に結合し、エンドソーム内のpHであるpH5.8において抗原への結合を弱くしたpH依存的結合抗IL-6レセプター抗体は、抗体が血漿中から消失するまでの時間、および、生体内の可溶型IL-6レセプターおよび膜型IL-6レセプターが抗体によって結合されている時間が大幅に延長することが見出された。これにより、患者への投与量や投与頻度を減らすことが可能であり、結果として総投与量を減らすことが可能となる為、pH依存的結合抗IL-6レセプター抗体は、IL-6アンタゴニストとしての医薬品として特に優れていると考えられる。
〔実施例10〕可変領域の最適化による膜型IL-6レセプターへのpH依存的結合の向上
可変領域H3pI/L73およびCLH5/L82の最適化
 実施例9において、pH依存的結合能を有する抗体が優れた効果を発揮することが示されたことから、さらにpH依存的結合能を向上させるため、実施例3で得られたCLH5のCDR配列に変異を導入し、VH1-IgG1(配列番号:21)、VH2-IgG1(配列番号:22)を作製した。また、H3pIのフレームワーク配列とCDR配列に変異を導入し、改変H鎖としてVH3-IgG1(配列番号:23)、VH4-IgG1(配列番号:24)を作製した。L73、L82のCDR配列に変異を導入し、改変L鎖としてVL1-CK(配列番号:25)、VL2-CK(配列番号:26)、VL3-CK(配列番号:27)を作製した。具体的には、QuikChange Site-Directed Mutagenesis Kit(Stratagene)を用いて、添付説明書記載の方法で変異体を作製し、得られたプラスミド断片を哺乳動物細胞発現ベクターに挿入し、目的のH鎖発現ベクターおよびL鎖発現ベクターを作製した。得られた発現ベクターの塩基配列は当業者公知の方法で決定した。
 H鎖としてVH2-IgG1(配列番号:22)、L鎖としてVL2-CK(配列番号:26)を用いたものをFv1-IgG1、H鎖としてVH1-IgG1(配列番号:21)、L鎖としてL82を用いたものをFv2-IgG1、H鎖としてVH4-IgG1(配列番号:24)、L鎖としてVL1-CK(配列番号:25)を用いたものをFv3-IgG1、H鎖としてVH3-IgG1(配列番号:23)、L鎖としてVL3-CK(配列番号:27)を用いたものをFv4-IgG1とした。これらのうちFv2-IgG1とFv4-IgG1の発現・精製を行った。発現・精製は実施例1に記載した方法で行った。
pH依存的結合クローンの可溶型IL-6レセプターへの結合解析
 ヒト化PM1抗体(野生型:WT)、および、実施例2および10で作製したWT、H3pI/L73-IgG1、Fv2-IgG1、Fv4-IgG1の4種類について、Biacore T100(GE Healthcare)を用いてpH7.4における抗原抗体反応の速度論的解析を実施した(バッファーは10 mM MES pH7.4, 150 mM NaCl, 0.05% Tween20)。アミンカップリング法によりanti-IgG γchain specific F(ab)2(Pierce)を固定化したセンサーチップ上に種々の抗体を結合させ、そこにアナライトとして9.8-40 nMの濃度に調製したSR344を注入した。pH依存的結合クローンのSR344への結合および解離をリアルタイムに観測した。測定は全て37℃で実施した。Biacore T100 Evaluation Software(GE Healthcare)を用い、結合速度定数 ka (1/Ms)、および解離速度定数 kd (1/s) を算出し、その値をもとに 解離定数 KD (M) を算出した(表7)。
[表7] SR344に対するpH依存的結合クローンの可溶型IL-6レセプターからの解離速度定数比較
Figure JPOXMLDOC01-appb-I000004
 それぞれについてpH7.4のaffinityを算出した結果、SR344に対するWT、H3pI/L73-IgG1、Fv2-IgG1、Fv4-IgG1の解離定数(affinity、KD値)はそれぞれ2.7 nM,1.4 nM, 2.0 nM, 1.4 nMとほぼ同等の値であり、Fv2-IgG1、Fv4-IgG1は可溶型IL-6レセプターへの結合能はWTと同等以上であることが示された。
pH依存的結合クローンの膜型IL-6レセプターへの結合解析
 作製したWT、H3pI/L73-IgG1、Fv2-IgG1、Fv4-IgG1の4種類について、Biacore T100(GE Healthcare)を用いてpH5.8, pH7.4における膜型IL-6レセプターへの抗原抗体反応を観測した。センサーチップ上に固定化したIL-6レセプターへの結合を評価することで、膜型IL-6レセプターへの結合を評価した。SR344を当業者公知の方法に従ってビオチン化し、ストレプトアビジンとビオチンの親和性を利用し、ストレプトアビジンを介してビオチン化SR344をセンサーチップ上に固定化した。測定は全て37℃で実施し、移動相のバッファーは10 mM MES pH5.8, 150 mM NaCl, 0.05% Tween20とし、そこにpH依存的結合クローンをpH7.4の条件下で注入してSR344と結合させたのち(注入サンプルのバッファーは10 mM MES pH7.4, 150 mM NaCl, 0.05% Tween20)、移動相のpHである5.8で各クローンのpH依存的な解離を観測した(図17)。
 サンプル濃度を0.25μg/mLとし、10 mM MES pH7.4, 150 mM NaCl, 0.05% Tween20で結合させ、10 mM MES pH5.8, 150 mM NaCl, 0.05% Tween20で解離させたときのpH5.8における解離相のみBiacore T100 Evaluation Software(GE Healthcare)を用いフィッティングすることにより、pH5.8における解離速度定数(kd(1/s))を算出した。同様にまた、サンプル濃度を0.25μg/mLとし、10 mM MES pH7.4, 150 mM NaCl, 0.05% Tween20で結合させ、10 mM MES pH7.4, 150 mM NaCl, 0.05% Tween20で解離させたときのpH7.4における解離相のみBiacore T100 Evaluation Software(GE Healthcare)を用いフィッティングすることにより、pH7.4における解離速度定数(kd(1/s))を算出した。各クローンのpH依存的な解離速度定数を表8に示した。
[表8] SR344に対するpH依存的結合クローンの膜型IL-6レセプターからの解離速度定数比較
Figure JPOXMLDOC01-appb-I000005
 それぞれについてpH依存性を算出した結果SR344に対するWT、H3pI/L73-IgG1、Fv2-IgG1、Fv4-IgG1の4種類の膜型IL-6レセプターへの結合のpH依存性はそれぞれ1.0倍, 2.59倍, 7.18倍, 5.56倍であり、Fv2-IgG1、Fv4-IgG1は、H3pI/L73-IgG1より高いpH依存的な膜型IL-6レセプターからの解離を示した。
 以上より、Fv2-IgG1、Fv4-IgG1はWTと同等以上の可溶型IL-6レセプターへのaffinityを維持したままH3pI/L73-IgG1よりも強い膜型IL-6レセプターへのpH依存的結合を示すことが明らかとなった。
〔実施例11〕可変領域を最適化したpH依存的結合抗体のヒトIL-6レセプタートランスジェニックマウスによるPK/PD試験
 実施例8で使用したヒトIL-6レセプタートランスジェニックマウスを用いて、実施例10で作製・評価したFv2-IgG1とFv4-IgG1およびWTとH3pI/L73-IgG1の薬物動態を評価した。WTおよびH3pI/L73-IgG1、Fv2-IgG1、Fv4-IgG1をhIL-6R tgマウスに25 mg/kgで静脈内に単回投与し、実施例8と同様に各抗体の血漿中濃度の測定を行った。WTおよびH3pI/L73-IgG1、Fv2-IgG1、Fv4-IgG1の血漿中濃度推移を図18に示した。
 実施例8と同様、WTと比較してH3pI/L73-IgG1の薬物動態は向上しており、さらにFv2-IgG1およびFv4-IgG1はH3pI/L73-IgG1よりもさらに薬物動態が向上した。実施例9においてカニクイザルで測定した非結合型IL-6レセプター濃度に関しても同様の方法で本試験のhIL-6R tgマウスにおいて測定したところ、Fv2-IgG1およびFv4-IgG1はH3pI/L73-IgG1よりも可溶型IL-6レセプターの中和期間の延長が確認された(data not shown)。実施例10で示したとおり、Fv2-IgG1およびFv4-IgG1はH3pI/L73-IgG1と比較して膜型IL-6レセプターへのpH依存的結合が向上していることから、膜型IL-6レセプターへのpH依存的結合を向上させることにより、H3pI/L73-IgG1よりさらに薬物動態および可溶型IL-6レセプターの中和期間を向上させることが可能であることが示された。
〔実施例12〕定常領域の最適化による膜型IL-6レセプターへのpH依存的結合の向上
Fv4-IgG1の定常領域の最適化
 一般的に膜型抗原に対する結合は抗体の定常領域によって変化することが報告されている(J Immunol Methods. 1997 Jun 23;205(1):67-72.)。これまで作製したpH依存的結合抗体の定常領域はIgG1アイソタイプであった。そこで膜型IL-6レセプターへのpH依存的結合を向上させるために定常領域の最適化を検討した。
 天然型の定常領域として定常領域IgG2(配列番号:28)に変異を導入して、定常領域IgG2ΔGK(配列番号:29)を作製した。定常領域IgG2ΔGKに対してさらに変異を導入し、定常領域M58(配列番号:30)を作製した。定常領域IgG2および定常領域M58に対してさらに変異を導入し、定常領域M71(配列番号:31)およびM73(配列番号:32)を作製した。
 実施例10で作製したVH3-IgG1の定常領域をIgG2ΔGKに置換したVH3-IgG2ΔGK(配列番号:33)、定常領域をM58に置換したVH3-M58(配列番号:34)、定常領域をM73に置換したVH3-M73(配列番号:35)を作製した。具体的には、実施例10で使用しているVH3の定常領域部分をNheI/NotI消化とligationにより目的の定常領域に置換した発現ベクターを構築した。得られた発現ベクターの塩基配列は当業者公知の方法で決定した。
 H鎖としてVH3-IgG2ΔGK(配列番号:33)、L鎖としてVL3-CK(配列番号:27)を用いたFv4-IgG2、H鎖としてVH3-M58(配列番号:34)、L鎖としてVL3-CK(配列番号:27)を用いたFv4-M58、H鎖としてVH3-M73(配列番号:35)、L鎖としてVL3-CK(配列番号:27)を用いたFv4-M73の発現・精製を行った。発現・精製は実施例1に記載した方法で行った。
定常領域を最適化したFv4の可溶型IL-6レセプターへの結合解析
 作製したFv4-IgG1、Fv4-IgG2、Fv4-M58、Fv4-M73およびWTに関して、実施例10と同様の方法でSR344への結合および解離をリアルタイムに観測した。同様に解析を行い、結合速度定数 ka (1/Ms)、および解離速度定数 kd (1/s) を算出し、その値をもとに解離定数 KD (M) を算出した(表9)。
[表9] SR344に対するpH依存的結合クローンの可溶型IL-6レセプターからの解離速度定数比較
Figure JPOXMLDOC01-appb-I000006
 それぞれについてpH7.4のaffinityを算出した結果、SR344に対するFv4-IgG1、Fv4-IgG2、Fv4-M58、Fv4-M73の解離定数(affinity、KD値)はそれぞれ1.4 nM,1.3 nM, 1.4 nM, 1.4 nMとほぼ同等の値であり、SR344に対するpH依存的結合クローンの可溶型IL-6レセプターへの結合能は定常領域を改変しても変化しないことが示された。このことから、Fv1、Fv2、Fv3についても同様に定常領域を改変しても可溶型IL-6レセプターへの結合能は変化しないと考えられた。
定常領域を最適化したFv4の膜型IL-6レセプターへの結合解析
 作製したFv4-IgG1、Fv4-IgG2、Fv4-M58、Fv4-M73およびWTに関して、実施例10と同様の方法でBiacore T100(GE Healthcare)を用いてpH5.8, pH7.4における膜型IL-6レセプターへの抗原抗体反応を観測した。pH依存的結合クローンをpH7.4の条件下で注入してSR344と結合させたのちに、pH5.8の移動相で各クローンのpH依存的な解離を観測した結果を図19に示す。さらに実施例10と同様の方法で解析を行い、各クローンのpH依存的な解離速度を表10に示した。
[表10] SR344に対するpH依存的結合クローンの膜型IL-6レセプターからの解離速度定数比較
Figure JPOXMLDOC01-appb-I000007
 それぞれについてpH依存性を算出した結果SR344に対するFv4-IgG1、Fv4-IgG2、Fv4-M58、Fv4-M73のpH依存性はそれぞれ5.6倍, 17.0倍, 17.6倍, 10.1倍であり、Fv4-IgG2、Fv4-M58、Fv4-M73のいずれもFv4-IgG1より高いpH依存性的な膜型IL-6レセプターからの解離を示した。
 Fv4の可変領域を用いた可溶型IL-6レセプターへの結合解析結果および膜型IL-6レセプターへの結合解析結果より、定常領域をIgG1からIgG2、M58およびM73に置換することにより可溶型IL-6レセプターへのaffinityを変化させることなく、膜型IL-6レセプターへのpH依存的結合のみを改善可能であることが見出された。また、Fv1、Fv2、Fv3についても同様であると考えられた。
〔実施例13〕定常領域を最適化したpH依存的結合抗体のヒトIL-6レセプタートランスジェニックマウスによるPK/PD試験
 実施例8で使用したヒトIL-6レセプタートランスジェニックマウス(hIL-6R tgマウス)を用いて、実施例13で作成したFv4-IgG1、Fv4-IgG2、Fv4-M58の薬物動態を評価し、定常領域の及ぼす薬物動態への影響を検討した。WTおよびFv4-IgG1、Fv4-IgG2、Fv4-M58をhIL-6R tgマウスに25 mg/kgで静脈内に単回投与し、実施例8と同様に各抗体の血漿中濃度の測定を行った。WTおよびFv4-IgG1、Fv4-IgG2、Fv4-M58の血漿中濃度推移を図20に示した。
 実施例11と同様、WTと比較してFv4-IgG1の薬物動態は向上しており、さらにFv4-IgG2、Fv4-M58はFv4-IgG1よりも薬物動態は向上した。実施例9においてカニクイザルで測定した非結合型IL-6レセプター濃度に関しても同様の方法で本試験のhIL-6R tgマウスにおいて測定したところ、Fv4-IgG2、Fv4-M58はFv4-IgG1よりも可溶型IL-6レセプターの中和期間の延長が確認された(data not shown)。実施例10で示したとおり、Fv4-IgG2、Fv4-M58はFv4-IgG1と比較して膜型IL-6レセプターへのpH依存的結合の向上していることから、定常領域をIgG1からIgG2あるいはM58に置換することにより膜型IL-6レセプターへのpH依存的結合を向上させ、薬物動態および可溶型IL-6レセプターの中和期間を向上させることが可能であることが示された。これより、Fv4のみならずFv1、Fv2、Fv3においても、定常領域をIgG1からIgG2あるいはM58に置換することにより、IgG1よりも薬物動態および可溶型IL-6レセプターの中和期間が向上すると考えられた。
〔実施例14〕可変領域および定常領域を最適化したpH依存的結合抗体の作製
 これまでと同様の方法を用い、VH2-IgG1の定常領域をM71, M73としたVH2-M71(配列番号:36)、VH2-M73(配列番号:37)、VH4-IgG1の定常領域をM71, M73としたVH4-M71(配列番号:38)、VH4-M73(配列番号:39)を作製した。
 H鎖としてVH2-M71、L鎖としてVL2-CKを用いたFv1-M71、H鎖としてVH2-M73、L鎖としてVL2-CKを用いたFv1-M73、H鎖としてVH4-M71、L鎖としてVL1-CKを用いたFv3-M71、H鎖として VH4-M73、L鎖としてVL1-CKを用いたFv3-M73の発現・精製を行った。発現・精製は実施例1に記載した方法で行った。
可変領域および定常領域を最適化したpH依存的結合抗体の可溶型IL-6レセプターへの結合解析
 ヒト化PM1抗体(野生型:WT)、および、これまでに作製したH3pI/L73-IgG1、Fv1-M71、Fv1-M73、Fv2-IgG1、Fv3-M71、Fv3-M73、Fv4-IgG1、Fv4-IgG2、Fv4-M58、Fv4-M73の11種類について、実施例10と同様の方法でSR344への結合および解離をリアルタイムに観測した。同様に解析を行い、結合速度定数 ka (1/Ms) 、および解離速度定数 kd (1/s) を算出し、その値をもとに解離定数 KD (M) を算出した(表11)。
[表11] SR344に対するpH依存的結合クローンの可溶型IL-6レセプターからの解離速度定数比較
Figure JPOXMLDOC01-appb-I000008
 得られた10種類のpH依存的結合クローンは全て可溶型IL-6レセプターに対して、WTと比較して同等以上の解離定数(affinity、KD値)を有していることが見出された。
可変領域および定常領域を最適化したpH依存的結合抗体の膜型IL-6レセプターへの結合解析
 ヒト化PM1抗体(野生型:WT)、および、これまでに作製したH3pI/L73-IgG1、Fv1-M71、Fv1-M73、Fv2-IgG1、Fv3-M71、Fv3-M73、Fv4-IgG1、Fv4-IgG2、Fv4-M58、Fv4-M73の11種類について、実施例10と同様の方法でBiacore T100(GE Healthcare)を用いてpH5.8, pH7.4における膜型IL-6レセプターへの抗原抗体反応を観測した。pH依存的結合クローンをpH7.4の条件下で注入してSR344と結合させたのちに、移動相のpHである5.8で各クローンのpH依存的な解離を観測した結果を図21に示した(Fv1-M71、Fv1-M73、Fv3-M71、Fv3-M73については図21、他は図17および19に示した)。さらに実施例10と同様の方法で解析を行い、全11種類のクローンについて、解離速度定数のpH依存性を表12に示した。
[表12] SR344に対するpH依存的結合クローンの膜型IL-6レセプターからの解離速度定数のpH依存性
Figure JPOXMLDOC01-appb-I000009
 得られた10種類のpH依存的結合クローンは膜型IL-6レセプターに対してpH依存的な結合能を示した。さらに実施例9においてカニクイザルにおいてWTと比較して抗体が血漿中から消失するまでの時間、および、生体内の可溶型IL-6レセプターおよび膜型IL-6レセプターが抗体によって結合されている時間が大幅に延長することが見出されたH3pI/L73-IgG1と比較して、Fv1-M71、Fv1-M73、Fv2-IgG1、Fv3-M71、Fv3-M73、Fv4-IgG1、Fv4-IgG2、Fv4-M58、Fv4-M73のいずれも膜型IL-6レセプターへのpH依存的結合が向上していることが見出された。
〔実施例15〕可変領域と定常領域を最適化したpH依存的結合抗体のカニクイザルによるPK/PD試験
公知の高親和性抗IL-6レセプター抗体の作製
 公知の高親和性抗IL-6レセプター抗体として、US 2007/0280945 A1に記載されている高親和性抗IL-6レセプター抗体であるVQ8F11-21 hIgG1(US 2007/0280945 A1, アミノ酸配列19および27)を発現させるため、動物細胞発現用ベクターを構築した。抗体可変領域については、合成オリゴDNAを組み合わせたPCR法(assembly PCR)により作製した。定常領域については、実施例1で使用した発現ベクターからPCR法により増幅した。Assembly PCR法により抗体可変領域と定常領域を結合させ、哺乳動物発現用ベクターへ挿入した。得られたH鎖およびL鎖DNA断片を哺乳動物細胞発現ベクターに挿入し、目的のH鎖発現ベクターおよびL鎖発現ベクターを作製した。得られた発現ベクターの塩基配列は当業者公知の方法で決定した。作製した発現ベクターを用い、発現・精製を行った。発現・精製は実施例1に記載した方法で行い、高親和性高IL-6レセプター抗体(high affinity Ab)を得た。
カニクイザルによるPK/PD試験
 pH依存的結合抗体であるH3pI/L73-IgG1およびFv1-M71、Fv1-M73、Fv2-IgG1、Fv3-M73、Fv4-M73および公知の高親和性抗IL-6レセプター抗体(high affinity Ab)のカニクイザルにおける薬物動態および薬効を評価した。H3pI/L73-IgG1およびFv1-M71、Fv1-M73、Fv2-IgG1、Fv3-M73、Fv4-M73をカニクイザルに0.5 mg/kgで静脈内に単回投与し、またhigh affinity Abは1.0 mg/kgで静脈内に単回投与し、投与前および経時的に採血した。実施例9と同様に各抗体の血漿中濃度の測定を行った。H3pI/L73-IgG1およびFv1-M71、Fv1-M73、Fv2-IgG1、Fv3-M73、Fv4-M73、high affinity Abの血漿中濃度推移を図21に示した。カニクイザル膜型IL-6レセプターがどの程度中和されているかの薬効を評価するために、実施例9と同様に、抗体投与後3日目から10日目(high affinity Abに関しては6日目から10日目)までカニクイザルIL-6 5μg/kgを腰背部に連日皮下投与し、24時間後の各個体のCRP濃度を測定した。各抗体投与時のCRP濃度推移を図22に示した。カニクイザル可溶型IL-6レセプターがどの程度中和されているかの薬効を評価するために、実施例9と同様に、カニクイザル血漿中の非結合型のカニクイザル可溶型IL-6レセプター濃度を測定した。各抗体投与時の非結合型のカニクイザル可溶型IL-6レセプター濃度推移を図23に示した。
 これより、H3pI/L73-IgG1と比較して、Fv1-M71、Fv1-M73、Fv2-IgG1、Fv3-M73、Fv4-M73はいずれも抗体血漿中濃度が高く維持され、CRP濃度および非結合型のカニクイザル可溶型IL-6レセプター濃度が低く維持されていることが見出された。すなわち、これらはH3pI/L73-IgG1と比較して、膜型IL-6レセプターおよび可溶型IL-6レセプターが抗体によって結合されている時間(言い換えれば中和されている時間)が延長されていることが示された。
 また、これらのpH依存的結合抗IL-6レセプター抗体は、1.0 mg/kgで投与した公知の高親和性抗IL-6レセプター抗体(high affinity Ab)と比較して、半分の投与量である0.5 mg/kgで同等以上の中和効果と持続性が確認されたことから、pH依存的結合抗体は公知の高親和性高IL-6レセプター抗体と比較して優れた中和効果と持続性を有することが明らかとなった。
 表12に記した抗体のうち、本試験でカニクイザルによるPK/PD試験を実施しなかった抗体についても、H3pI/L73-IgG1と比較して、膜型IL-6レセプターへのpH依存的結合が向上していることが確認されていることから、これらについてもH3pI/L73-IgG1と比較して膜型IL-6レセプターおよび可溶型IL-6レセプターが抗体によって結合されている時間(言い換えれば中和されている時間、中和効果の持続性)が延長されていると考えられる。
 実施例9において、H3pI/L73-IgG1はWTと比較して、抗体が血漿中から消失するまでの時間、および、生体内の可溶型IL-6レセプターおよび膜型IL-6レセプターが抗体によって結合されている時間(中和効果の持続性)が大幅に延長することが見出されている。H3pI/L73-IgG1より中和効果の持続性に優れるFv1-M71、Fv1-M73、Fv2-IgG1、Fv3-M71、Fv3-M73、Fv4-IgG1、Fv4-IgG2、Fv4-M58、Fv4-M73はWTと比較した場合、著しく中和効果の持続性が改善されたと考えられる。
 これらのことから、抗IL-6レセプター抗体に対して、血漿中のpHであるpH7.4において強く抗原に結合し、エンドソーム内のpHであるpH5.8において抗原への結合を弱くしたpH依存的結合抗IL-6レセプター抗体は、抗IL-6レセプター抗体の患者への投与量や投与頻度を減らすことが可能であり、結果として総投与量を大幅に減らすことが可能となり、IL-6アンタゴニストとしての医薬品として極めて優れていると考えられる。
〔実施例16〕pH依存的に結合する抗IL-6抗体の作製
抗IL-6抗体の発現と精製
 実施例1~15におけるヒト化抗IL-6レセプター抗体において、ヒト化抗IL-6レセプター抗体の可変領域に対して、そのCDR配列を中心にヒスチジン等への置換を導入することによって、ヒト化抗IL-6レセプター抗体とIL-6レセプターとの結合にpH依存性を付与した抗体を複数創製することに成功し、それらは全てIL-6レセプターへ繰り返し結合し、PK/PDが大きく改善することが見出された。
 そこで、抗IL-6レセプター抗体とは異なる抗原に結合する抗体において同様の方法により、抗原と抗体との結合にpH依存性を付与できるかどうかを検討した。異なる抗原としてヒトIL-6を選択し、WO2004/039826に記載されたヒトIL-6に結合するH鎖(WT)(アミノ酸配列 配列番号:62)とL鎖(WT)(アミノ酸配列 配列番号:63)からなる抗IL-6抗体(anti-IL6 wild type)を作製した。当業者公知の方法で目的の抗体アミノ酸配列をコードする遺伝子断片を動物細胞発現ベクターに挿入し、目的のH鎖発現ベクターおよびL鎖発現ベクターを作製した。得られた発現ベクターの塩基配列は当業者公知の方法で決定した。Anti-IL6 wild typeの発現と精製は実施例1に記載した方法で行った。
pH依存的抗IL-6抗体の作製
 H鎖(WT)(アミノ酸配列 配列番号:62)とL鎖(WT)(アミノ酸配列 配列番号:63)からなる抗IL-6抗体(anti-IL6 wild type)に対して、CDRのアミノ酸に対してヒスチジンへの置換を導入することで、抗体とIL-6の結合にpH依存性を付与する検討を行った。CDRのアミノ酸に対してヒスチジンへの置換を検討し、スクリーニングを行った結果、pH7.4における結合と比較して、pH5.5における結合が大幅に低下し、pH依存的な結合を示すクローンがいくつか得られた。pH依存的クローンにおけるヒスチジン置換箇所を表13に示した。そのうち、H鎖(c1)(アミノ酸配列 配列番号:64)とL鎖(c1)(アミノ酸配列 配列番号:65)からなるanti-IL6 clone1、および、H鎖(c1)(アミノ酸配列 配列番号:64)とL鎖(c2)(アミノ酸配列 配列番号:66)からなるanti-IL6 clone2、が挙げられた。Anti-IL6 clone1とanti-IL6 clone2の発現と精製は実施例1に記載した方法で行った。
[表13] pH依存的クローンにおけるヒスチジン置換箇所 
H32、H59、H61、H99
L53、L54、L90、L94
pH依存的結合クローンのヒトIL-6への結合解析
 上記で作製したanti-IL6 wild type、anti-IL6 clone1、および、anti-IL6 clone2の3種類について、Biacore T100 (GE Healthcare) を用いてpH5.5とpH7.4における抗原抗体反応の速度論的解析を実施した(バッファーはDPBS(-) pH7.4あるいはpH5.5, 150 mM NaCl)。アミンカップリング法によりrecomb-proteinA/G (Pierce) を固定化したセンサーチップ上に種々の抗体を結合させ、そこにアナライトとして適切な濃度に調製したヒトIL-6(TORAY)を注入した。測定は全て37℃で実施した。Biacore T100 Evaluation Software (GE Healthcare)を用い、結合速度定数 ka (1/Ms) 、および解離速度定数 kd (1/s) を算出し、その値をもとに解離定数 KD (M) を算出した(表14)。さらにそれぞれについてpH5.5とpH7.4のaffinity比を算出し、pH依存性結合を評価した。
[表14] IL-6に対するpH依存的結合クローンのIL-6への結合比較
Figure JPOXMLDOC01-appb-I000010
 それぞれについてpH5.5とpH7.4のaffinity比(KD(pH5.5)/KD(pH7.4))を算出した結果、ヒトIL-6に対するanti-IL6 wild type、anti-IL6 clone1、anti-IL6 clone2のpH依存性結合はそれぞれ0.8倍、10.3倍、13.5倍であり、いずれのクローンもWTと比較して10倍以上の高いpH依存的結合を示した。Anti-IL6 clone2のpH7.4とpH5.5でのセンサーグラムを図26に示した。
 これより、抗IL-6レセプター抗体のみならず、抗IL-6抗体においても、CDR配列を中心にヒスチジン等のアミノ酸への置換を導入することによって、血漿中の中性条件下では抗原に強く結合し、エンドソーム中の酸性条件下では抗原との結合が低下するpH依存的な結合を有する抗体を作製することが可能であることが示された。実施例1~15に示したとおり、pH依存的な結合を有する抗IL-6レセプター抗体がIL-6レセプターに繰り返し結合しPK/PDが大きく改善したことから、pH依存的な結合を有するanti-IL6 clone1、anti-IL6 clone2は、anti-IL6 wild typeと比較して、より多くの抗原に繰り返し結合しPK/PDが大きく改善すると考えられた。
〔実施例17〕pH依存的に結合する抗IL-31レセプター抗体の作製
抗IL-31レセプター抗体の発現と精製
 実施例1~15において、ヒト化抗IL-6レセプター抗体において、ヒト化抗IL-6レセプター抗体の可変領域に対して、そのCDR配列を中心にヒスチジン等への置換を導入することによって、ヒト化抗IL-6レセプター抗体とIL-6レセプターとの結合にpH依存性を付与した抗体を複数創製することに成功し、それらは全てIL-6レセプターへ繰り返し結合し、PK/PDが大きく改善することが見出された。
 そこで、抗IL-6レセプター抗体とは異なる抗原に結合する抗体において同様の方法により、抗原と抗体との結合にpH依存性を付与できるかどうかを検討した。異なる抗原としてマウスIL-31レセプターを選択し、WO2007/142325に記載されたマウスIL-31レセプターに結合するH鎖(WT)(アミノ酸配列 配列番号:67)とL鎖(WT)(アミノ酸配列 配列番号:68)からなる抗IL-31レセプター抗体(anti-IL31R wild type)を作製した。当業者公知の方法で目的の抗体アミノ酸配列をコードする遺伝子断片を動物細胞発現ベクターに挿入し、目的のH鎖発現ベクターおよびL鎖発現ベクターを作製した。得られた発現ベクターの塩基配列は当業者公知の方法で決定した。Anti-IL31R wild typeの発現と精製は実施例1に記載した方法で行った。
pH依存的抗IL-31レセプター抗体の作製
 H鎖(WT)(アミノ酸配列 配列番号:67)とL鎖(WT)(アミノ酸配列 配列番号:68)からなる抗IL-31レセプター抗体(anti-IL31R wild type)に対して、CDRのアミノ酸に対してヒスチジンへの置換を導入することで、抗体とIL-31レセプターの結合にpH依存性を付与する検討を行った。CDRのアミノ酸に対してヒスチジンへの置換を検討し、スクリーニングを行った結果、pH7.4における結合と比較して、pH5.5における結合が大幅に低下し、pH依存的な結合を示すクローンがいくつか得られた。pH依存的クローンにおけるヒスチジン置換箇所を表15に示した。そのうちの一つとして、H鎖(c1)(アミノ酸配列 配列番号:69)とL鎖(WT)からなるanti-IL31R clone1が挙げられた。Anti-IL31R clone1の発現と精製は実施例1に記載した方法で行った。
[表15] pH依存的クローンにおけるヒスチジン置換箇所 
H33
pH依存的結合クローンの可溶型IL-31レセプターへの結合解析
 上記で作製したanti-IL31R wild type、anti-IL31R clone1の2種類について、Biacore T100 (GE Healthcare) を用いてpH5.5とpH7.4における抗原抗体反応の速度論的解析を実施した(バッファーはDPBS(-) pH7.4あるいはpH5.5, 150 mM NaCl, 0.01% Tween20, 0.02% NaN3)。アミンカップリング法によりrecomb-proteinA/G (Pierce) を固定化したセンサーチップ上に種々の抗体を結合させ、そこにアナライトとして適切な濃度に調製した可溶型マウスIL-31レセプター(WO2007/142325に記載の方法で調製)を注入した。測定は全て25℃で実施した。Biacore T100 Evaluation Software (GE Healthcare)を用い、結合速度定数 ka (1/Ms) 、および解離速度定数 kd (1/s) を算出し、その値をもとに解離定数 KD (M) を算出した(表16)。さらにそれぞれについてpH5.5とpH7.4のaffinity比を算出し、pH依存性結合を評価した。
[表16] マウスIL-31レセプターに対するpH依存的結合クローンのマウスIL-31レセプターへの結合比較
Figure JPOXMLDOC01-appb-I000011
 それぞれについてpH5.5とpH7.4のaffinity比(KD(pH5.5)/KD(pH7.4))を算出した結果、マウスIL-31レセプターに対するanti-IL31R wild type、anti-IL31R clone1のpH依存性結合はそれぞれ3.2倍、1000倍であり、clone1はWTと比較して300倍程度の高いpH依存的結合を示した。Anti-IL31R cloneのpH7.4とpH5.5でセンサーグラムを図27に示した。
 これより、抗IL-6レセプター抗体と抗IL-6抗体のみならず、抗IL-31レセプター抗体においても、CDR配列を中心にヒスチジン等のアミノ酸への置換を導入することによって、血漿中の中性条件下では抗原に強く結合し、エンドソーム中の酸性条件下では抗原との結合が低下するpH依存的な結合を有する抗体を作製することが可能であることが示された。実施例1~15に示したとおり、pH依存的な結合を有する抗IL-6レセプター抗体がIL-6レセプターに繰り返し結合しPK/PDが大きく改善したことから、pH依存的な結合を有するanti-IL31R clone1は、anti-IL31R wild typeと比較して、より多くの抗原に繰り返し結合しPK/PDが大きく改善すると考えられた。
〔実施例18〕pH依存的結合抗体による抗原への繰り返し結合
マウス投与抗体の発現と精製
 ヒト化IL-6レセプター抗体として、以下の4種類を作製した。IL-6レセプターに対してpH依存的な結合を示さない通常の抗体としてH(WT)(アミノ酸配列 配列番号:9)とL(WT)(アミノ酸配列 配列番号:10)からなるWT-IgG1、H54(アミノ酸配列 配列番号:70)とL28(アミノ酸配列 配列番号:12)からなるH54/L28-IgG1を、IL-6レセプターに対してpH依存的な結合を示す抗体として実施例3で作製したH170(アミノ酸配列 配列番号:4)とL82(アミノ酸配列 配列番号:7)からなるH170/L82-IgG1、および、実施例10で作製したVH3-IgG1(配列番号:23)とVL3-CK(配列番号:27)からなるFv4-IgG1を実施例1に示した方法で発現と精製を行った。
各種抗体の可溶型IL-6レセプターへの結合解析
 調製したWT-IgG1、H54/L28-IgG1、H170/L82-IgG1、および、Fv4-IgG1の4種類について、Biacore T100 (GE Healthcare) を用いてpH7.4およびpH5.8における抗原抗体反応の速度論的解析を実施した(バッファーは10 mM MES pH7.4、またはpH5.8, 150 mM NaCl, 0.05% Surfactant-P20)。アミンカップリング法によりrecomb-proteinA/G (Pierce) を固定化したセンサーチップ上に種々の抗体を結合させ、そこにアナライトとして適切な濃度に調製したSR344を注入した。各種抗体のSR344への結合および解離をリアルタイムに観測した。測定は全て37℃で実施した。Biacore T100 Evaluation Software (GE Healthcare)を用い、結合速度定数 ka (1/Ms) 、および解離速度定数 kd (1/s) を算出し、その値をもとに 解離定数 KD (M) を算出した(表17)。
[表17] SR344に対する各種抗体の可溶型IL-6レセプターからの結合速度(ka)・解離速度(kd)、解離定数(KD)比較
Figure JPOXMLDOC01-appb-I000012
 それぞれについてpH5.8とpH7.4のアフィニティー(KD値)比を算出した結果、SR344に対するWT-IgG1、H54/L28-IgG1、H170/L82-IgG1、および、Fv4-IgG1のpH依存性結合(KD値の比)はそれぞれ1.6倍、0.7倍、61.9倍および27.3倍であった。また、それぞれについてpH5.8とpH7.4の解離速度(kd値)比を算出した結果、SR344に対するWT-IgG1、H54/L28-IgG1、H170/L82-IgG1、および、Fv4-IgG1のpH依存性解離速度(kd値の比)はそれぞれ2.9倍、2.0倍、11.4倍および38.8倍であった。これより、通常の抗体であるWT-IgG1とH54/L28-IgG1はpH依存的な結合をほとんど示さず、H170/L82-IgG1とFv4-IgG1はpH依存的な結合を示すことが確認された。また、これらの抗体のpH7.4におけるアフィニティー(KD値)はほぼ同等であったから、血漿中におけるSR344への結合は同程度であると考えられた。
マウスを用いた体内動態試験
 ヒトIl-6レセプターを発現していないマウス(C57BL/6J;これらの抗ヒトIL-6レセプター抗体はマウスのIL-6レセプターに結合しない)にSR344(ヒトIL-6レセプター:実施例1で作製)を単独投与、もしくはSR344および抗ヒトIL-6レセプター抗体を同時投与した後のSR344および抗ヒトIL-6レセプター抗体の体内動態を評価した。SR344溶液(5μg/mL)もしくはSR344および抗ヒトIL-6レセプター抗体の混合溶液(それぞれ5μg/mL、0.1 mg/mL)を尾静脈に10 mL/kgで単回投与した。このとき、SR344に対して抗ヒトIL-6レセプター抗体は十分量過剰に存在することから、SR344はほぼ全て抗体に結合していると考えられる。投与後15分間、2時間、8時間、1日間、2日間、3日間、4日間、7日間、14日間、21日間、28日間で採血を行った。採取した血液は直ちに4℃、15,000 rpmで15分間遠心分離し、血漿を得た。分離した血漿は、測定を実施するまで-20℃以下に設定された冷凍庫に保存した。抗ヒトIL-6レセプター抗体としては、上述のWT-IgG1、H54/L28-IgG1、H170/L82-IgG1、および、Fv4-IgG1を使用した。
ELISA法による血漿中抗ヒトIL-6レセプター抗体濃度測定
 マウス血漿中の抗ヒトIL-6レセプター抗体濃度はELISA法にて測定した。まずAnti-Human IgG(γ-chain specific) F(ab')2 Fragment of Antibody (SIGMA) をNunc-Immuno Plate, MaxiSoup (Nalge nunc International)に分注し、4℃で1晩静置しAnti-Human IgG固相化プレートを作成した。血漿中濃度として0.8、0.4、0.2、0.1、0.05、0.025、0.0125μg/mLの検量線試料と100倍以上希釈したマウス血漿測定試料を調製し、これら検量線試料および血漿測定試料100μLに20 ng/mLのSR344を200μL加え、室温で1時間静置した。その後Anti-Human IgG固相化プレートに分注しさらに室温で1時間静置した。その後Biotinylated Anti-human IL-6 R Antibody(R&D)を室温で1時間反応させ、さらにStreptavidin-PolyHRP80 (Stereospecific Detection Technologies)を室温で1時間反応させ、TMB One Component HRP Microwell Substrate (BioFX Laboratories)を基質として用い発色反応を行い、1N-Sulfuric acid(Showa Chemical)で反応停止後、マイクロプレートリーダーにて450 nmの吸光度を測定した。マウス血漿中濃度は検量線の吸光度から解析ソフトウェアSOFTmax PRO(Molecular Devices)を用いて算出した。この方法で測定した静脈内投与後の血漿中抗体濃度推移を図28に示した。
電気化学発光法による血漿中SR344濃度測定
 マウスの血漿中SR344濃度は電気化学発光法にて測定した。2000、1000、500、250、125、62.5、31.25 pg/mLに調整したSR344検量線試料および50倍以上希釈したマウス血漿測定試料を調製し、SULFO-TAG NHS Ester(Meso Scale Discovery)でルテニウム化したMonoclonal Anti-human IL-6R Antibody(R&D)およびBiotinylated Anti-human IL-6 R Antibody (R&D)およびWT-IgG1溶液を混合し37℃で1晩反応させた。その際のWT-IgG1の終濃度はサンプルに含まれる抗ヒトIL-6レセプター抗体濃度より過剰の333μg/mLであり、サンプル中のほぼ全てのSR344をWT-IgG1と結合した状態にすることを目的とした。その後、MA400 PR Streptavidin Plate(Meso Scale Discovery)に分注した。さらに室温で1時間反応させ洗浄後、Read Buffer T(×4)(Meso Scale Discovery)を分注し、ただちにSECTOR PR 400 reader(Meso Scale Discovery)で測定を行った。SR344濃度は検量線のレスポンスから解析ソフトウェアSOFTmax PRO(Molecular Devices)を用いて算出した。この方法で測定した静脈内投与後の血漿中SR344濃度推移を図29に示した。
pH依存的結合による効果
 pH依存的な結合を示さない抗体であるWT-IgG1とH54/L28-IgG1、および、pH依存的な結合を示す抗体であるH170/L82-IgG1とFv4-IgG1の抗体濃度推移に関しては、WT-IgG1、H54/L28-IgG1、および、Fv4-IgG1はほぼ同等であり、H170/L82-IgG1は若干早い消失を示した。血漿中濃度推移のデータを薬物動態解析ソフトWinNonlin(Pharsight)で解析した結果、WT-IgG1、H54/L28-IgG1、Fv4-IgG1、H170/L82-IgG1の血漿中半減期はそれぞれ21.0、28.8、26.2、7.5 dayであった。
 実施例2に記したとおり、抗原が可溶型抗原の場合、投与した抗体は血漿中で抗原に結合し、抗原と抗体の複合体の形で血漿中を滞留する。通常、抗体の血漿中滞留性はFcRnの機能により非常に長い(消失速度が非常に遅い)のに対して、抗原の血漿中滞留性は短い(消失速度が速い)ため、抗体に結合した抗原は抗体と同程度の長い血漿中滞留性を有する(消失が非常に遅い)ことになる。ヒト化IL-6レセプター抗体の抗原であるSR344(可溶型ヒトIL-6レセプター)を単独で投与した場合も同様にSR344は極めて早い消失を示した(血漿中半減期0.2 day)。SR344とpH依存的な結合を示さない通常の抗体であるWT-IgG1あるいはH54/L28-IgG1を同時に投与した場合、SR344の消失速度は著しく低下し、長い血漿中滞留性を示した(血漿中半減期:WT-IgG1 5.3 day、H54/L28-IgG1 6.3 day)。これはSR344が同時に投与した抗体にほぼ全て結合していため、上述のとおり抗体に結合したSR344はFcRnの機能により抗体と同程度の長い血漿中滞留性を有するためである。
 SR344とpH依存的な結合を示す抗体であるH170/L82-IgG1あるいはFv4-IgG1を同時に投与した場合、SR344の消失はWT-IgG1あるいはH54/L28-IgG1を同時に投与した場合と比較して著しく速くなった(血漿中半減期:H170/L82-IgG1 1.3 day、Fv4-IgG1 0.6 day)。その傾向は特にFv4-IgG1で顕著であった。Fv4-IgG1のpH7.4におけるアフィニティーはWT-IgG1およびH54/L28-IgG1と同等以上であることから、SR344はほぼ全てFv4-IgG1に結合していると考えられる。Fv4-IgG1は、WT-IgG1とH54/L28-IgG1と比較して、同等あるいはやや長い血漿中滞留性を示し消失が遅いにもかかわらず、Fv4-IgG1に結合したSR344の消失は著しく速くなった。これは図4に示した本技術のコンセプトにより説明可能である。pH依存的な結合を示さない通常の抗体は、抗体-可溶型抗原複合体が血漿中においてピノサイトーシスによってエンドソームに取り込まれ、エンドソーム内の酸性条件下においてエンドソーム内に発現しているFcRnに結合し、FcRnへ結合した抗体-可溶型抗原複合体はそのまま細胞表面へ移行し再び血漿中に戻るため、抗体に結合した抗原は抗体と同程度の長い血漿中滞留性を有する(消失が非常に遅い)。一方、pH依存的な結合を示す抗体は、エンドソーム内の酸性条件下において抗原を解離するため、抗体のみFcRnに結合し再び血漿中に戻り、抗体から解離した抗原は血漿中に戻ることなくライソソームで分解されるため、抗原の消失は、pH依存的な結合を示さない抗体の場合と比較して消失が著しく速くなる。すなわち、SR344をpH依存的な結合を示さない抗体であるWT-IgG1あるいはH54/L28-IgG1と同時に投与した場合は、血漿中とエンドソーム内においてSR344はWT-IgG1あるいはH54/L28-IgG1と結合しているためSR344の消失は抗体と同程度に遅くなるが、SR344をpH依存的な結合を示す抗体であるH170/L82-IgG1あるいはFv4-IgG1と同時に投与した場合は、エンドソーム内の低pH環境下においてSR344が抗体から解離するためSR344の消失は極めて早くなる。すなわち、pH依存的な結合を示す抗体であるH170/L82-IgG1あるいはFv4-IgG1は、エンドソーム内の低pH環境下においてSR344が解離することから、FcRnによって再び血漿中に戻ったH170/L82-IgG1あるいはFv4-IgG1の多くはSR344が結合していないと考えられる。これよりpH依存的な結合を示す抗体は、図4に示すとおり、エンドソーム内の低pH環境下において抗原を解離し、抗原に結合していない状態でFcRnによって血漿中に戻ることで、血漿中で再度新しい抗原に結合することが可能となり、これを繰り返すことでpH依存的な結合を示す抗体は複数回抗原に繰り返し結合することが可能であることが示された。これは実施例7で示したようにBiacoreにおいて、pH依存的結合クローンが抗原へ繰り返し結合できることを反映しており、抗体の抗原へのpH依存的な結合を増強することで抗原へ繰り返し結合する回数を増大させることが可能である。
 抗原が可溶型抗原の場合、血漿中の中性条件下で抗体に結合した抗原がエンドソーム内で解離し抗体がFcRnにより血漿中に戻れば、抗体は再び血漿中の中性条件下で抗原に結合できるため、エンドソーム内の酸性条件下で抗原を解離する性質を有する抗体は抗原に複数回結合可能である。抗体に結合した抗原がエンドソーム内で解離しない場合(抗原は抗体に結合したまま血漿中に戻る)と比較して、抗体に結合した抗原がエンドソーム内で解離する場合は、抗原はライソソームに運ばれ分解されるため抗原の血漿中からの消失速度は増加する。すなわち、血漿中から抗原が消失する速度を指標として抗体が抗原に複数回結合可能であるか否かを判断することも可能である。抗原の血漿中からの消失速度の測定は、例えば、本実施例に示したように抗原と抗体を生体内に投与し、投与後の血漿中の抗原濃度を測定することにより行うことも可能である。
 pH依存的な結合を示さない通常の抗体と比較して、pH依存的な結合を示す抗体は、一つの抗体が複数回抗原に繰り返し結合することが可能であるため、抗体の投与量の大幅な低減と投与間隔の大幅な延長が可能になると考えられる。
 本メカニズムによる複数回の抗原への繰り返し結合は、pH依存的な抗原抗体反応に立脚していることから、如何なる抗原であっても血漿中のpH7.4で結合し、エンドソーム内の酸性pHで抗原から解離するpH依存的な結合を示す抗体を作製することができれば、一つの抗体が複数回抗原に繰り返し結合することが可能である。すなわち、本技術はIL-6レセプター、IL-6、IL-31レセプターのみならず、抗原の種類に依らず、如何なる抗原に対する抗体に対しても一般に適応可能な技術として有用である。

Claims (50)

  1. 抗原に対するpH5.8でのKDとpH7.4でのKDの比であるKD(pH5.8)/KD(pH7.4)の値が2以上である抗原結合分子。
  2. KD(pH5.8)/KD(pH7.4)の値が10以上である請求項1に記載の抗原結合分子。
  3. KD(pH5.8)/KD(pH7.4)の値が40以上である請求項1に記載の抗原結合分子。
  4. 少なくとも1つのアミノ酸がヒスチジンで置換され又は少なくとも1つのヒスチジンが挿入されていることを特徴とする請求項1~3いずれかに記載の抗原結合分子。
  5. アンタゴニスト活性を有することを特徴とする請求項1~4いずれかに記載の抗原結合分子。
  6. 膜抗原又は可溶型抗原に結合することを特徴とする請求項1~5いずれかに記載の抗原結合分子。
  7. 抗原結合分子が抗体であることを特徴とする請求項1~6いずれかに記載の抗原結合分子。
  8. 請求項1~7いずれかに記載の抗原結合分子を含む医薬組成物。
  9. 抗原結合分子のpH5.8における抗原結合活性をpH7.4における抗原結合活性より弱くすることにより抗原結合分子の薬物動態を向上させる方法。
  10. 抗原結合分子のpH5.8における抗原結合活性をpH7.4における抗原結合活性より弱くすることにより、抗原結合分子の抗原への結合回数を増やす方法。
  11. 抗原結合分子のpH5.8における抗原結合活性をpH7.4における抗原結合活性より弱くすることにより、抗原結合分子が結合可能な抗原の数を増やす方法。
  12. 抗原結合分子のpH5.8における抗原結合活性をpH7.4における抗原結合活性より弱くすることにより、細胞外で抗原結合分子に結合した抗原を細胞内で抗原結合分子から解離させる方法。
  13. 抗原結合分子のpH5.8における抗原結合活性をpH7.4における抗原結合活性より弱くすることにより、抗原と結合した状態で細胞内に取り込まれた抗原結合分子を、抗原と結合していない状態で細胞外に放出させる方法。
  14. 抗原結合分子のpH5.8における抗原結合活性をpH7.4における抗原結合活性より弱くすることにより、抗原結合分子の血漿中抗原消失能を増加させる方法。
  15. 抗原に対するpH5.8でのKDとpH7.4でのKDの比であるKD(pH5.8)/KD(pH7.4)の値を2以上とすることを特徴とする請求項9~14いずれかに記載の方法。
  16. KD(pH5.8)/KD(pH7.4)の値を10以上とすることを特徴とする請求項9~14いずれかに記載の方法。
  17. KD(pH5.8)/KD(pH7.4)の値を40以上とすることを特徴とする請求項9~14いずれかに記載の方法。
  18. 抗原結合分子の少なくとも1つのアミノ酸をヒスチジンで置換する又は少なくとも1つのヒスチジンを挿入することにより薬物動態を向上させる方法。
  19. 抗原結合分子の少なくとも1つのアミノ酸をヒスチジンで置換する又は少なくとも1つのヒスチジンを挿入することにより、抗原結合分子の抗原への結合回数を増やす方法。
  20. 抗原結合分子の少なくとも1つのアミノ酸をヒスチジンで置換する又は少なくとも1つのヒスチジンを挿入することにより、抗原結合分子が結合可能な抗原の数を増やす方法。
  21. 抗原結合分子の少なくとも1つのアミノ酸をヒスチジンで置換する又は少なくとも1つのヒスチジンを挿入することにより、細胞外で抗原結合分子に結合した抗原を細胞内で抗原結合分子から解離させる方法。
  22. 抗原結合分子の少なくとも1つのアミノ酸をヒスチジンで置換する又は少なくとも1つのヒスチジンを挿入することにより、抗原と結合した状態で細胞内に取り込まれた抗原結合分子を、抗原と結合していない状態で細胞外に放出させる方法。
  23. 抗原結合分子の少なくとも1つのアミノ酸をヒスチジンで置換する又は少なくとも1つのヒスチジンを挿入することにより、抗原結合分子の血漿中抗原消失能を増加させる方法。
  24. ヒスチジンへの置換又はヒスチジンの挿入により、pH5.8での抗原結合活性とpH7.4での抗原結合活性の比であるKD(pH5.8)/KD(pH7.4)の値がヒスチジン置換又は挿入前と比較して大きくなることを特徴とする請求項18~23いずれかに記載の方法。
  25. 抗原結合分子がアンタゴニスト活性を有することを特徴とする請求項9~24いずれかに記載の方法。
  26. 抗原結合分子が膜抗原又は可溶型抗原に結合することを特徴とする請求項9~25いずれかに記載の方法。
  27. 抗原結合分子が抗体であることを特徴とする請求項9~26いずれかに記載の方法。
  28. 以下の工程を含む抗原結合分子のスクリーニング方法、
    (a)pH6.7~pH10.0における抗原結合分子の抗原結合活性を得る工程、
    (b)pH4.0~pH6.5における抗原結合分子の抗原結合活性を得る工程、
    (c)pH6.7~pH10.0での抗原結合活性がpH4.0~pH6.5での抗原結合活性より高い抗原結合分子を選択する工程。
  29. pH6.7~pH10.0における抗原結合活性がpH4.0~pH6.5での抗原結合活性の2倍以上である抗体を選択することを特徴とする請求項28に記載のスクリーニング方法。
  30. 以下の工程を含む抗原結合分子のスクリーニング方法、
    (a) pH6.7~pH10.0の条件下で抗原結合分子を抗原に結合させる工程、
    (b) (a)の抗原に結合した抗原結合分子をpH4.0~pH6.5の条件下に置く工程、
    (c) pH4.0~pH6.5の条件下で解離した抗原結合分子を取得する工程。
  31. 以下の工程を含む第一のpHでの結合活性が第二のpHでの結合活性よりも高い抗原結合分子のスクリーニング方法、
    (a) 抗原を固定したカラムに第一のpH条件下で抗原結合分子を結合させる工程、
    (b) 第一のpH条件下でカラムに結合した抗原結合分子を、第二のpH条件下でカラムから溶出する工程、
    (c) 溶出された抗原結合分子を取得する工程。
  32. 以下の工程を含む第一のpHでの結合活性が第二のpHでの結合活性よりも高い抗原結合分子のスクリーニング方法、
    (a) 抗原結合分子ライブラリーを、抗原を固定したカラムに第一のpH条件下で結合させる工程、
    (b) カラムから第二のpH条件下で抗原結合分子を溶出する工程、
    (c) 溶出された抗原結合分子をコードする遺伝子を増幅する工程、
    (d) 溶出された抗原結合分子を取得する工程。
  33. 第一のpHがpH6.7.~pH10.0、第二のpHが4.0~pH6.5であることを特徴とする請求項31または32に記載のスクリーニング方法。
  34. 抗原結合分子が、抗原結合分子中の少なくとも1つ以上のアミノ酸がヒスチジンで置換された又は少なくとも1つのヒスチジンが挿入された抗原結合分子である請求項28~33いずれかに記載のスクリーニング方法。
  35. 血漿中滞留性が優れた抗原結合分子を得ることを目的とする請求項28~33いずれかに記載のスクリーニング方法。
  36. 抗原に2回以上結合することができる抗原結合分子を得ることを目的とする請求項28~33いずれかに記載のスクリーニング方法。
  37. 結合可能な抗原の数が抗原結合部位より多い抗原結合分子を得ることを目的とする請求項28~33いずれかに記載のスクリーニング方法。
  38. 細胞外で結合した抗原を細胞内で解離する抗原結合分子を得ることを目的とする請求項28~33いずれかに記載のスクリーニング方法。
  39. 抗原と結合した状態で細胞内に取り込まれ、抗原と結合していない状態で細胞外に放出される抗原結合分子を得ることを目的とする請求項28~33いずれかに記載のスクリーニング方法。
  40. 血漿中抗原消失能が増加した抗原結合分子を得ることを目的とする請求項28~33いずれかに記載のスクリーニング方法。
  41. 抗原結合分子が医薬組成物として用いられる抗原結合分子である請求項28~40いずれかに記載のスクリーニング方法。
  42. 抗原結合分子が抗体であることを特徴とする請求項28~41いずれかに記載のスクリーニング方法。
  43. 以下の工程を含む抗原結合分子の製造方法、
    (a) pH6.7~pH10.0における抗原結合分子の抗原結合活性を得る工程、
    (b) pH4.0~pH6.5における抗原結合分子の抗原結合活性を得る工程、
    (c) pH6.7~pH10.0での抗原結合活性がpH4.0~pH6.5での抗原結合活性より高い抗原結合分子を選択する工程、
    (d) (c)で選択された抗原結合分子をコードする遺伝子を得る工程、
    (e) (d)で得られた遺伝子を用いて抗原結合分子を製造する工程。
  44. 以下の工程を含む抗原結合分子の製造方法、
    (a) pH6.7~pH10.0の条件下で抗原結合分子を抗原に結合させる工程、
    (b) (a)の抗原に結合した抗原結合分子をpH4.0~pH6.5の条件下に置く工程、
    (c) pH4.0~pH6.5の条件下で解離した抗原結合分子を取得する工程、
    (d) (c)で取得された抗原結合分子をコードする遺伝子を得る工程、
    (e) (d)で得られた遺伝子を用いて抗原結合分子を製造する工程。
  45. 以下の工程を含む第一のpHでの結合活性が第二のpHでの結合活性よりも高い抗原結合分子の製造方法、
    (a) 抗原を固定したカラムに第一のpH条件下で抗原結合分子を結合させる工程、
    (b) 第一のpH条件下でカラムに結合した抗原結合分子を、第二のpH条件下でカラムから溶出する工程、
    (c) 溶出された抗原結合分子を取得する工程、
    (d) (c)で取得された抗原結合分子をコードする遺伝子を得る工程、
    (e) (d)で得られた遺伝子を用いて抗原結合分子を製造する工程。
  46. 以下の工程を含む第一のpHでの結合活性が第二のpHでの結合活性よりも高い抗原結合分子の製造方法、
    (a) 抗原結合分子ライブラリーを、抗原を固定したカラムに第一のpH条件下で結合させる工程、
    (b) カラムから第二のpH条件下で抗原結合分子を溶出する工程、
    (c) 溶出された抗原結合分子をコードする遺伝子を増幅する工程、
    (d) 溶出された抗原結合分子を取得する工程、
    (e) (d)で取得された抗原結合分子をコードする遺伝子を得る工程、
    (f) (e)で得られた遺伝子を用いて抗原結合分子を製造する工程。
  47. 第一のpHがpH6.7.~pH10.0、第二のpHが4.0~pH6.5であることを特徴とする請求項45または46に記載の製造方法。
  48. 抗原結合分子中の少なくとも1つ以上のアミノ酸をヒスチジンで置換する又は少なくとも1つのヒスチジンを挿入する工程をさらに含む請求項43~47いずれかに記載の製造方法。
  49. 抗原結合分子が抗体であることを特徴とする請求項43~48いずれかに記載の製造方法。
  50. 請求項43~49いずれかに記載の製造方法により製造された抗原結合分子を含む医薬組成物。
PCT/JP2009/057309 2008-04-11 2009-04-10 複数分子の抗原に繰り返し結合する抗原結合分子 WO2009125825A1 (ja)

Priority Applications (44)

Application Number Priority Date Filing Date Title
BR122020017346-7A BR122020017346B1 (pt) 2008-04-11 2009-04-10 Método de avaliação e de produção de uma molécula de ligação ao antígeno cuja atividade de ligação em um primeiro ph é maior do que aquela em um segundo ph
MYPI2010004751A MY195714A (en) 2008-04-11 2009-04-10 Antigen-Binding Molecule Capable of Binding to Two or More Antigen Molecules Repeatedly
KR1020177021142A KR102057826B1 (ko) 2008-04-11 2009-04-10 복수 분자의 항원에 반복 결합하는 항원 결합 분자
EP19154335.4A EP3521311A1 (en) 2008-04-11 2009-04-10 Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
ES09729337.7T ES2563483T3 (es) 2008-04-11 2009-04-10 Molécula de unión a antígeno capaz de unirse repetidamente a dos o más moléculas de antígeno
PL09729337T PL2275443T3 (pl) 2008-04-11 2009-04-10 Cząsteczka wiążąca antygen zdolna do wiązania dwóch lub więcej cząsteczek antygenu w sposób powtarzalny
MX2010011184A MX2010011184A (es) 2008-04-11 2009-04-10 Molecula de union de antigeno capaz de unir repetidamente a dos o mas moleculas de antigeno.
KR1020107025124A KR102051275B1 (ko) 2008-04-11 2009-04-10 복수 분자의 항원에 반복 결합하는 항원 결합 분자
AU2009234675A AU2009234675B2 (en) 2008-04-11 2009-04-10 Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
SI200931376T SI2275443T1 (sl) 2008-04-11 2009-04-10 Antigen-vezavna molekula, ki se je sposobna ponovljivo vezati na dve ali več antigenskih molekul
CN2009801224666A CN102056946A (zh) 2008-04-11 2009-04-10 与多个分子的抗原反复结合的抗原结合分子
US12/936,587 US20110111406A1 (en) 2008-04-11 2009-04-10 Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
EP09729337.7A EP2275443B1 (en) 2008-04-11 2009-04-10 Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
NZ588507A NZ588507A (en) 2008-04-11 2009-04-10 Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
KR1020227040226A KR20220162801A (ko) 2008-04-11 2009-04-10 복수 분자의 항원에 반복 결합하는 항원 결합 분자
EP22212441.4A EP4238993A3 (en) 2008-04-11 2009-04-10 Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
CA2721052A CA2721052C (en) 2008-04-11 2009-04-10 Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
KR1020197036522A KR102084925B1 (ko) 2008-04-11 2009-04-10 복수 분자의 항원에 반복 결합하는 항원 결합 분자
DK09729337.7T DK2275443T3 (en) 2008-04-11 2009-04-10 Antigen-binding molecule capable of repetitively binding to two or more antigen molecules
BRPI0911431A BRPI0911431B8 (pt) 2008-04-11 2009-04-10 composição farmacêutica compreendendo um antígeno e método para aumentar o número de antígenos que podem ser ligados por um anticorpo
RU2010145939/10A RU2571225C2 (ru) 2008-04-11 2009-04-10 Антигенсвязывающая молекула, способная к многократному связыванию двух или более молекул антигена
EP19154342.0A EP3514180B1 (en) 2008-04-11 2009-04-10 Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
KR1020217019078A KR102469853B1 (ko) 2008-04-11 2009-04-10 복수 분자의 항원에 반복 결합하는 항원 결합 분자
KR1020207005619A KR102269708B1 (ko) 2008-04-11 2009-04-10 복수 분자의 항원에 반복 결합하는 항원 결합 분자
JP2010507273A JP4954326B2 (ja) 2008-04-11 2009-04-10 複数分子の抗原に繰り返し結合する抗原結合分子
UAA201012805A UA108060C2 (uk) 2008-04-11 2009-10-04 Антиген-зв'язувальна молекула, здатна неодноразово зв'язуватися з двома або більше молекулами антигенів
IL208516A IL208516A (en) 2008-04-11 2010-10-06 An antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
MA33312A MA32754B1 (fr) 2008-04-11 2010-11-02 Molécule de liaison à l'antigène capable de se lier à deux molécules d'antigène ou plus de manière répétée
US13/595,139 US20130011866A1 (en) 2008-04-11 2012-08-27 Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
US13/889,484 US9868948B2 (en) 2008-04-11 2013-05-08 Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
US13/889,512 US9890377B2 (en) 2008-04-11 2013-05-08 Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
PH12014502054A PH12014502054A1 (en) 2008-04-11 2014-09-15 Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
IL237599A IL237599B (en) 2008-04-11 2015-03-08 An antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
CR20150655A CR20150655A (es) 2008-04-11 2015-12-10 Molécula de unión al antígeno capaz de unirse repetidamente a dos o más moléculas de antígeno
CR20150656A CR20150656A (es) 2008-04-11 2015-12-10 Molécula de unión al antígeno capaz de unirse repetidamente a dos o más moléculas de antígeno
HRP20160209T HRP20160209T1 (hr) 2008-04-11 2016-02-29 Antigenski vežuća molekula koja se može višekratno vezati na dva ili više antigena
US15/952,951 US20180282719A1 (en) 2008-04-11 2018-04-13 Antigen-binding molecule capable of binding two or more antigen molecules repeatedly
US15/952,945 US10472623B2 (en) 2008-04-11 2018-04-13 Antigen-binding molecule capable of binding two or more antigen molecules repeatedly
IL259956A IL259956B (en) 2008-04-11 2018-06-12 An antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
PH12018501850A PH12018501850A1 (en) 2008-04-11 2018-08-30 Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
US16/361,498 US20200048627A1 (en) 2008-04-11 2019-03-22 Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
US17/020,543 US11371039B2 (en) 2008-04-11 2020-09-14 Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
US17/020,497 US11359194B2 (en) 2008-04-11 2020-09-14 Antigen-binding molecule capable of binding two or more antigen molecules repeatedly
US18/156,138 US20240002836A1 (en) 2008-04-11 2023-01-18 Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008104147 2008-04-11
JP2008-104147 2008-04-11
JP2008247713 2008-09-26
JP2008-247713 2008-09-26
JP2009068744 2009-03-19
JP2009-068744 2009-03-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/936,587 A-371-Of-International US20110111406A1 (en) 2008-04-11 2009-04-10 Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
US13/595,139 Continuation US20130011866A1 (en) 2008-04-11 2012-08-27 Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly

Publications (1)

Publication Number Publication Date
WO2009125825A1 true WO2009125825A1 (ja) 2009-10-15

Family

ID=41161956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057309 WO2009125825A1 (ja) 2008-04-11 2009-04-10 複数分子の抗原に繰り返し結合する抗原結合分子

Country Status (33)

Country Link
US (10) US20110111406A1 (ja)
EP (7) EP2275443B1 (ja)
JP (14) JP4954326B2 (ja)
KR (6) KR20220162801A (ja)
CN (6) CN102993304A (ja)
AR (1) AR071656A1 (ja)
BR (2) BRPI0911431B8 (ja)
CA (1) CA2721052C (ja)
CO (1) CO6311005A2 (ja)
CR (3) CR11783A (ja)
DK (3) DK2708559T3 (ja)
EC (1) ECSP10010600A (ja)
ES (3) ES2563483T3 (ja)
HK (3) HK1246158A1 (ja)
HR (2) HRP20160209T1 (ja)
HU (2) HUE028718T2 (ja)
IL (3) IL208516A (ja)
LT (1) LT2708559T (ja)
MA (1) MA32754B1 (ja)
MX (2) MX2010011184A (ja)
MY (1) MY195714A (ja)
NO (1) NO2708559T3 (ja)
NZ (4) NZ717429A (ja)
PH (2) PH12014502054A1 (ja)
PL (3) PL2708559T3 (ja)
PT (2) PT2275443E (ja)
RU (2) RU2571225C2 (ja)
SG (3) SG10201608379YA (ja)
SI (2) SI2275443T1 (ja)
TR (2) TR201808535T4 (ja)
TW (6) TW201447062A (ja)
UA (1) UA121453C2 (ja)
WO (1) WO2009125825A1 (ja)

Cited By (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010106812A1 (en) * 2009-03-19 2010-09-23 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical formulation containing improved antibody molecules
WO2010107108A1 (ja) * 2009-03-19 2010-09-23 中外製薬株式会社 関節リウマチ治療剤
WO2011108714A1 (ja) 2010-03-04 2011-09-09 中外製薬株式会社 抗体定常領域改変体
WO2011122011A2 (en) 2010-03-30 2011-10-06 Chugai Seiyaku Kabushiki Kaisha Antibodies with modified affinity to fcrn that promote antigen clearance
US8062635B2 (en) 2003-10-10 2011-11-22 Chugai Seiyaku Kabushiki Kaisha Bispecific antibody substituting for functional proteins
WO2011111007A3 (en) * 2010-03-11 2011-12-01 Rinat Neuroscience Corporation ANTIBODIES WITH pH DEPENDENT ANTIGEN BINDING
WO2012073992A1 (ja) 2010-11-30 2012-06-07 中外製薬株式会社 複数分子の抗原に繰り返し結合する抗原結合分子
WO2012115241A1 (ja) 2011-02-25 2012-08-30 中外製薬株式会社 FcγRIIb特異的Fc抗体
JP2012519499A (ja) * 2009-03-09 2012-08-30 バイオアトラ、エルエルシー Miracタンパク質
WO2012132067A1 (ja) * 2011-03-30 2012-10-04 中外製薬株式会社 抗原結合分子の血漿中滞留性と免疫原性を改変する方法
WO2012133782A1 (ja) 2011-03-30 2012-10-04 中外製薬株式会社 抗原結合分子の血漿中滞留性と免疫原性を改変する方法
WO2013002362A1 (ja) 2011-06-30 2013-01-03 中外製薬株式会社 ヘテロ二量化ポリペプチド
WO2013046704A2 (en) 2011-09-30 2013-04-04 Chugai Seiyaku Kabushiki Kaisha THERAPEUTIC ANTIGEN-BINDING MOLECULE WITH A FcRn-BINDING DOMAIN THAT PROMOTES ANTIGEN CLEARANCE
WO2013047748A1 (ja) 2011-09-30 2013-04-04 中外製薬株式会社 複数の生理活性を有する抗原の消失を促進する抗原結合分子
WO2013046722A1 (ja) 2011-09-30 2013-04-04 中外製薬株式会社 イオン濃度依存性結合分子ライブラリ
WO2013047752A1 (ja) 2011-09-30 2013-04-04 中外製薬株式会社 抗原の消失を促進する抗原結合分子
WO2013047729A1 (ja) 2011-09-30 2013-04-04 中外製薬株式会社 標的抗原に対する免疫応答を誘導する抗原結合分子
WO2013051294A1 (ja) 2011-10-05 2013-04-11 中外製薬株式会社 糖鎖受容体結合ドメインを含む抗原の血漿中からの消失を促進する抗原結合分子
WO2013081143A1 (ja) 2011-11-30 2013-06-06 中外製薬株式会社 免疫複合体を形成する細胞内への運搬体(キャリア)を含む医薬
JP2013525746A (ja) * 2010-03-12 2013-06-20 ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティ 磁気センサに基づく結合反応速度の定量的な分析
WO2013118858A1 (ja) 2012-02-09 2013-08-15 中外製薬株式会社 抗体のFc領域改変体
WO2013125667A1 (ja) 2012-02-24 2013-08-29 中外製薬株式会社 FcγRIIBを介して抗原の消失を促進する抗原結合分子
US20130247236A1 (en) * 2012-03-16 2013-09-19 Regeneron Pharmaceuticals, Inc. Non-Human Animals Expressing pH-Sensitive Immunoglobulin Sequences
US20130247235A1 (en) * 2012-03-16 2013-09-19 Regeneron Pharmaceuticals, Inc. Mice That Produce Antigen-Binding Proteins With pH-Dependent Binding Characteristics
JP2013541940A (ja) * 2010-09-08 2013-11-21 ハロザイム インコーポレイテッド 条件的活性治療用タンパク質を評価および同定する、または発展させる方法
WO2013180201A1 (ja) 2012-05-30 2013-12-05 中外製薬株式会社 会合化した抗原を消失させる抗原結合分子
WO2013180200A1 (ja) 2012-05-30 2013-12-05 中外製薬株式会社 標的組織特異的抗原結合分子
WO2013187495A1 (ja) 2012-06-14 2013-12-19 中外製薬株式会社 改変されたFc領域を含む抗原結合分子
WO2014030750A1 (ja) 2012-08-24 2014-02-27 中外製薬株式会社 マウスFcγRII特異的Fc抗体
WO2014030728A1 (ja) 2012-08-24 2014-02-27 中外製薬株式会社 FcγRIIb特異的Fc領域改変体
WO2014104165A1 (ja) 2012-12-27 2014-07-03 中外製薬株式会社 ヘテロ二量化ポリペプチド
WO2014163101A1 (ja) 2013-04-02 2014-10-09 中外製薬株式会社 Fc領域改変体
KR20140135193A (ko) * 2012-03-16 2014-11-25 리제너론 파마슈티칼스 인코포레이티드 히스티딘 공학처리된 경쇄 항체 및 그것을 생성하기 위한 유전자 변형된 비-사람 동물
US8945558B2 (en) 2005-10-21 2015-02-03 Chugai Seiyaku Kabushiki Kaisha Methods for treating myocardial infarction comprising administering an IL-6 inhibitor
WO2015046467A1 (ja) 2013-09-27 2015-04-02 中外製薬株式会社 ポリペプチド異種多量体の製造方法
WO2015068847A1 (ja) 2013-11-11 2015-05-14 中外製薬株式会社 改変された抗体可変領域を含む抗原結合分子
WO2015083764A1 (ja) 2013-12-04 2015-06-11 中外製薬株式会社 化合物の濃度に応じて抗原結合能の変化する抗原結合分子及びそのライブラリ
US9056915B2 (en) 2007-08-23 2015-06-16 Amgen Inc. Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (PCSK9)
US9096651B2 (en) 2007-09-26 2015-08-04 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
JP2015526440A (ja) * 2012-08-13 2015-09-10 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. pH依存性結合特性を有する抗PCSK9抗体
KR20150119409A (ko) * 2013-02-20 2015-10-23 리제너론 파아마슈티컬스, 인크. 사람화된 t-세포 보조-수용체를 발현하는 마우스
KR20150122710A (ko) * 2013-02-22 2015-11-02 리제너론 파아마슈티컬스, 인크. 사람화된 주요 조직적합성 복합체를 발현하는 마우스
US9173880B2 (en) 2010-01-08 2015-11-03 Regeneron Pharmaceuticals, Inc. Stabilized formulations containing anti-interleukin-6 receptor (IL-6R) antibodies
KR20150126410A (ko) * 2013-03-11 2015-11-11 리제너론 파아마슈티컬스, 인크. 키메라 주요 조직적합성 복합체 (mhc) 제ii부류 분자를 발현하는 유전자전이 마우스
US9228017B2 (en) 2009-03-19 2016-01-05 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
US9260516B2 (en) 2006-04-07 2016-02-16 Osaka University Method for promoting muscle regeneration by administering an antibody to the IL-6 receptor
US9332742B2 (en) 2012-03-16 2016-05-10 Regeneron Pharmaceuticals, Inc. Histidine engineered light chain antibodies and genetically modified non-human animals for generating the same
US9334331B2 (en) 2010-11-17 2016-05-10 Chugai Seiyaku Kabushiki Kaisha Bispecific antibodies
US9340615B2 (en) 2009-05-15 2016-05-17 Chugai Seiyaku Kabushiki Kaisha Anti-AXL antibody
WO2016098356A1 (en) 2014-12-19 2016-06-23 Chugai Seiyaku Kabushiki Kaisha Anti-c5 antibodies and methods of use
US9399680B2 (en) 2007-12-05 2016-07-26 Chugai Seiyaku Kabushiki Kaisha Nucleic acids encoding anti-NR10 antibodies
WO2016117346A1 (en) 2015-01-22 2016-07-28 Chugai Seiyaku Kabushiki Kaisha A combination of two or more anti-c5 antibodies and methods of use
WO2016125495A1 (en) 2015-02-05 2016-08-11 Chugai Seiyaku Kabushiki Kaisha Antibodies comprising an ion concentration dependent antigen-binding domain, fc region variants, il-8-binding antibodies, and uses therof
US9506919B2 (en) 2009-04-13 2016-11-29 The Board Of Trustees Of The Leland Stanford Junior University Methods and devices for detecting the presence of an analyte in a sample
US9539322B2 (en) 2010-05-28 2017-01-10 National University Corporation Hokkaido University Method of enhancing an antitumor T cell response by administering an anti-IL-6 receptor antibody
WO2017046994A1 (en) 2015-09-18 2017-03-23 Chugai Seiyaku Kabushiki Kaisha Il-8-binding antibodies and uses thereof
US9663574B2 (en) 2014-03-07 2017-05-30 Alexion Pharmaceuticals, Inc. Anti-C5 antibodies having improved pharmacokinetics
US9670269B2 (en) 2006-03-31 2017-06-06 Chugai Seiyaku Kabushiki Kaisha Methods of modifying antibodies for purification of bispecific antibodies
JP6142069B1 (ja) * 2015-12-18 2017-06-07 中外製薬株式会社 抗ミオスタチン抗体、変異Fc領域を含むポリペプチド、および使用方法
WO2017104779A1 (en) 2015-12-18 2017-06-22 Chugai Seiyaku Kabushiki Kaisha Anti-c5 antibodies and methods of use
US9688762B2 (en) 2007-09-26 2017-06-27 Chugai Sciyaku Kabushiki Kaisha Modified antibody constant region
JP2017521404A (ja) * 2014-06-30 2017-08-03 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung pH依存性抗原結合を示す抗TNFa抗体
US9725514B2 (en) 2007-01-23 2017-08-08 Shinshu University Chronic rejection inhibitor
JP6196411B1 (ja) * 2016-06-17 2017-09-13 中外製薬株式会社 抗ミオスタチン抗体および使用方法
JP6202774B1 (ja) * 2016-06-17 2017-09-27 中外製薬株式会社 抗c5抗体および使用方法
US9868948B2 (en) 2008-04-11 2018-01-16 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
US9902948B2 (en) 2010-09-30 2018-02-27 Board Of Trustees Of Northern Illinois University Library-based methods and compositions for introducing molecular switch functionality into protein affinity reagents
KR101860280B1 (ko) 2014-12-19 2018-05-21 추가이 세이야쿠 가부시키가이샤 항-마이오스타틴 항체, 변이체 Fc 영역을 함유하는 폴리펩타이드, 및 사용 방법
WO2018097307A1 (ja) 2016-11-28 2018-05-31 中外製薬株式会社 抗原結合ドメインおよび運搬部分を含むポリペプチド
US10011858B2 (en) 2005-03-31 2018-07-03 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
US10022319B2 (en) 2010-01-20 2018-07-17 Chugai Seiyaku Kabushiki Kaisha Stabilized antibody-containing liquid formulations
WO2018143266A1 (en) 2017-01-31 2018-08-09 Chugai Seiyaku Kabushiki Kaisha A pharmaceutical composition for use in the treatment or prevention of a c5-related disease and a method for treating or preventing a c5-related disease
WO2018155611A1 (ja) 2017-02-24 2018-08-30 中外製薬株式会社 薬学的組成物、抗原結合分子、治療方法、およびスクリーニング方法
US20180282430A1 (en) * 2013-03-15 2018-10-04 Bayer Healthcare Llc Anti-tfpi antibody variants with differential binding across ph range for improved pharmacokinetics
US10150808B2 (en) 2009-09-24 2018-12-11 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant regions
JP2019507584A (ja) * 2015-12-25 2019-03-22 中外製薬株式会社 抗ミオスタチン抗体および使用方法
US10253091B2 (en) 2009-03-19 2019-04-09 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
WO2019107380A1 (ja) 2017-11-28 2019-06-06 中外製薬株式会社 抗原結合ドメインおよび運搬部分を含むポリペプチド
RU2694728C2 (ru) * 2013-09-18 2019-07-16 Регенерон Фармасьютикалз, Инк. Антитела со встроенным в легкие цепи гистидином и генетически модифицированные отличные от человека животные для их получения
CN110291108A (zh) * 2016-12-19 2019-09-27 格兰马克药品股份有限公司 新型tnfr激动剂及其用途
JP2019528323A (ja) * 2016-08-31 2019-10-10 バイオアトラ、エルエルシー 条件的活性型ポリペプチド及びそれを生成する方法
WO2019230868A1 (ja) 2018-05-30 2019-12-05 中外製薬株式会社 単ドメイン抗体含有リガンド結合分子
WO2020004490A1 (ja) 2018-06-26 2020-01-02 協和キリン株式会社 コンドロイチン硫酸プロテオグリカン-5に結合する抗体
WO2020004492A1 (ja) 2018-06-26 2020-01-02 協和キリン株式会社 Cell Adhesion Molecule3に結合する抗体
WO2020027279A1 (en) 2018-08-01 2020-02-06 Chugai Seiyaku Kabushiki Kaisha A pharmaceutical composition for use in the treatment or prevention of a c5-related disease and a method for treating or preventing a c5-related disease
WO2020032230A1 (ja) 2018-08-10 2020-02-13 中外製薬株式会社 抗cd137抗原結合分子およびその使用
WO2020045545A1 (ja) 2018-08-29 2020-03-05 中外製薬株式会社 抗体半分子、および抗体半分子のホモ二量体形成を抑制する方法
US10604561B2 (en) 2016-09-16 2020-03-31 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies, polypeptides containing variant Fc regions, and methods of use
US10633434B2 (en) 2016-06-14 2020-04-28 Regeneron Pharmaceuticals, Inc. Anti-C5 antibodies
US10662245B2 (en) 2008-09-26 2020-05-26 Chugai Seiyaku Kabushiki Kaisha Methods of reducing IL-6 activity for disease treatment
US10697883B2 (en) 2015-05-19 2020-06-30 National Center Of Neurology And Psychiatry Method for determining application of therapy to multiple sclerosis (MS) patient
US10717781B2 (en) 2008-06-05 2020-07-21 National Cancer Center Neuroinvasion inhibitor
US10774148B2 (en) 2015-02-27 2020-09-15 Chugai Seiyaku Kabushiki Kaisha Composition for treating IL-6-related diseases
US10782290B2 (en) 2013-06-11 2020-09-22 National Center Of Neurology And Psychiatry Method for predicting post-therapy prognosis of relapsing-remitting multiple sclerosis (RRMS) patient, and method for determining applicability of novel therapy
WO2020189748A1 (ja) 2019-03-19 2020-09-24 中外製薬株式会社 Mta依存的に抗原に対する結合活性が変化する抗原結合ドメインを含む抗原結合分子及び当該抗原結合ドメイン取得用ライブラリ
WO2020209318A1 (ja) 2019-04-10 2020-10-15 中外製薬株式会社 Fc領域改変抗体の精製方法
KR20200121900A (ko) 2011-03-30 2020-10-26 추가이 세이야쿠 가부시키가이샤 항원 결합 분자의 혈장 체류성과 면역원성을 개변하는 방법
WO2020230834A1 (en) * 2019-05-15 2020-11-19 Chugai Seiyaku Kabushiki Kaisha An antigen-binding molecule, a pharmaceutical composition, and a method
WO2020246563A1 (ja) 2019-06-05 2020-12-10 中外製薬株式会社 抗体切断部位結合分子
WO2020246567A1 (ja) 2019-06-05 2020-12-10 中外製薬株式会社 プロテアーゼ基質、及びプロテアーゼ切断配列を含むポリペプチド
KR20200143459A (ko) 2018-04-13 2020-12-23 추가이 세이야쿠 가부시키가이샤 항-보체 성분 항체 및 사용 방법
AU2018256476B2 (en) * 2009-03-09 2021-01-21 Bioatla, Llc Mirac Proteins
US10927435B2 (en) 2011-10-11 2021-02-23 Sanofi Biotechnology Compositions for the treatment of rheumatoid arthritis and methods of using same
US11001643B2 (en) 2014-09-26 2021-05-11 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
WO2021122733A1 (en) 2019-12-18 2021-06-24 F. Hoffmann-La Roche Ag Bispecific anti-ccl2 antibodies
US11046784B2 (en) 2006-03-31 2021-06-29 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
WO2021131021A1 (ja) 2019-12-27 2021-07-01 中外製薬株式会社 抗ctla-4抗体およびその使用
US11053308B2 (en) 2016-08-05 2021-07-06 Chugai Seiyaku Kabushiki Kaisha Method for treating IL-8-related diseases
US11072666B2 (en) 2016-03-14 2021-07-27 Chugai Seiyaku Kabushiki Kaisha Cell injury inducing therapeutic drug for use in cancer therapy
WO2021162020A1 (ja) 2020-02-12 2021-08-19 中外製薬株式会社 癌の治療に用いるための抗cd137抗原結合分子
US11142587B2 (en) 2015-04-01 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide hetero-oligomer
US11154615B2 (en) 2014-11-11 2021-10-26 Chugai Seiyaku Kabushiki Kaisha Library of antigen-binding molecules including modified antibody variable region
JP2021532135A (ja) * 2018-07-23 2021-11-25 中外製薬株式会社 標的細胞特異的な細胞質侵入抗原結合分子
WO2022025030A1 (ja) 2020-07-28 2022-02-03 中外製薬株式会社 新規改変型抗体を含む、針シールドを備えた針付プレフィルドシリンジ製剤
WO2022025220A1 (ja) 2020-07-31 2022-02-03 中外製薬株式会社 キメラ受容体を発現する細胞を含む医薬組成物
WO2022045276A1 (ja) 2020-08-28 2022-03-03 中外製薬株式会社 ヘテロ二量体Fcポリペプチド
KR20220082698A (ko) 2019-10-16 2022-06-17 추가이 세이야쿠 가부시키가이샤 항체, 약학 조성물, 및 방법
US11365265B2 (en) 2017-12-13 2022-06-21 Regeneron Pharmaceuticals, Inc. Anti-C5 antibody combinations and uses thereof
US11365241B2 (en) 2017-07-27 2022-06-21 Alexion Pharmaceuticals, Inc. High concentration anti-C5 antibody formulations
JP2022542743A (ja) * 2019-05-23 2022-10-07 シァメン・ユニヴァーシティ 抗b型肝炎ウイルス抗体及びその使用
WO2022220275A1 (ja) 2021-04-15 2022-10-20 中外製薬株式会社 抗C1s抗体
JP2022544986A (ja) * 2019-08-19 2022-10-24 ザ ロックフェラー ユニヴァーシティ pH依存的抗原結合活性の操作による薬物動態の改善された抗HIV抗体
US11498969B2 (en) 2019-01-31 2022-11-15 Sanofi Biotechnology Compositions and methods for treating juvenile idiopathic arthritis
WO2022244838A1 (ja) 2021-05-19 2022-11-24 中外製薬株式会社 分子のin vivo薬物動態を予測する方法
WO2022263501A1 (en) 2021-06-18 2022-12-22 F. Hoffmann-La Roche Ag Bispecific anti-ccl2 antibodies
WO2022270612A1 (ja) 2021-06-25 2022-12-29 中外製薬株式会社 抗ctla-4抗体の使用
WO2022270611A1 (ja) 2021-06-25 2022-12-29 中外製薬株式会社 抗ctla-4抗体
US11608374B2 (en) 2017-01-30 2023-03-21 Chugai Seiyaku Kabushiki Kaisha Anti-sclerostin antibodies and methods of use
US11649262B2 (en) 2015-12-28 2023-05-16 Chugai Seiyaku Kabushiki Kaisha Method for promoting efficiency of purification of Fc region-containing polypeptide
US11673967B2 (en) 2011-07-28 2023-06-13 Regeneron Pharmaceuticals, Inc. Stabilized formulations containing anti-PCSK9 antibodies
US11692037B2 (en) 2017-10-20 2023-07-04 Hyogo College Of Medicine Anti-IL-6 receptor antibody-containing medicinal composition for preventing post-surgical adhesion
RU2799423C1 (ru) * 2011-03-30 2023-07-05 Чугаи Сейяку Кабусики Кайся Способ изменения удержания в плазме и иммуногенности антигенсвязывающей молекулы
EP3980465A4 (en) * 2019-06-07 2023-11-01 Adimab, LLC MODIFIED PH-DEPENDENT ANTI-CD3 ANTIBODIES, AND METHODS OF GENERATION AND USE THEREOF
US11851476B2 (en) 2011-10-31 2023-12-26 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule having regulated conjugation between heavy-chain and light-chain
US11851486B2 (en) 2017-05-02 2023-12-26 National Center Of Neurology And Psychiatry Method for predicting and evaluating therapeutic effect in diseases related to IL-6 and neutrophils
US11891432B2 (en) 2018-03-15 2024-02-06 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies having cross-reactivity to Zika virus and methods of use
US11904017B2 (en) 2015-08-18 2024-02-20 Regeneron Pharmaceuticals, Inc. Methods for reducing or eliminating the need for lipoprotein apheresis in patients with hyperlipidemia by administering alirocumab
US11952422B2 (en) 2017-12-05 2024-04-09 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule comprising altered antibody variable region binding CD3 and CD137
KR20240054896A (ko) 2022-10-18 2024-04-26 추가이 세이야쿠 가부시키가이샤 항C1s 항체의 사용

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1941907B1 (en) * 2005-10-14 2016-03-23 Fukuoka University Inhibitor of transplanted islet dysfunction in islet transplantation
AR057582A1 (es) * 2005-11-15 2007-12-05 Nat Hospital Organization Agentes para suprimir la induccion de linfocitos t citotoxicos
EP3135298B1 (en) * 2006-01-27 2018-06-06 Keio University Therapeutic agents for diseases involving choroidal neovascularization
AR073770A1 (es) * 2008-10-20 2010-12-01 Imclone Llc Anticuerpo aislado que se enlaza especificamente con, e induce la degradacion del receptor-3 del factor de crecimiento del fibroblasto humano (fgfr-3), fragmento de enlace fgfr-3 humano del mismo, composicion farmaceutica y producto que lo comprenden
US20130064834A1 (en) 2008-12-15 2013-03-14 Regeneron Pharmaceuticals, Inc. Methods for treating hypercholesterolemia using antibodies to pcsk9
JO3672B1 (ar) 2008-12-15 2020-08-27 Regeneron Pharma أجسام مضادة بشرية عالية التفاعل الكيماوي بالنسبة لإنزيم سبتيليسين كنفرتيز بروبروتين / كيكسين نوع 9 (pcsk9).
AU2012210481B2 (en) 2011-01-28 2017-05-18 Sanofi Biotechnology Pharmaceutical compositions comprising human antibodies to PCSK9
SG2014010524A (en) 2011-09-16 2014-06-27 Regeneron Pharma METHODS FOR REDUCING LIPOPROTEIN(a) LEVELS BY ADMINISTERING AN INHIBITOR OF PROPROTEIN CONVERTASE SUBTILISIN KEXIN-9 (PCSK9)
PL2627773T3 (pl) 2011-10-17 2017-11-30 Regeneron Pharmaceuticals, Inc. Ograniczony łańcuch ciężki immonoglobuliny pochodzącej od myszy
RU2624128C2 (ru) 2012-02-15 2017-06-30 Ф. Хоффманн-Ля Рош Аг Аффинная хроматография с применением fc-рецепторов
EP3605090A1 (en) * 2012-05-23 2020-02-05 F. Hoffmann-La Roche AG Selection method for therapeutic agents
JP2013253842A (ja) * 2012-06-06 2013-12-19 Univ Of Tokyo pH依存的に標的分子に結合するペプチドのスクリーニング方法
US10238093B2 (en) 2012-06-12 2019-03-26 Regeneron Pharmaceuticals, Inc. Humanized non-human animals with restricted immunoglobulin heavy chain loci
MY178882A (en) 2013-02-20 2020-10-21 Regeneron Pharma Non-human animals with modified immunoglobulin heavy chain sequences
EP2976362B1 (en) 2013-03-19 2019-10-23 Beijing Shenogen Pharma Group Ltd. Antibodies and methods for treating estrogen receptor-associated diseases
EP3473272A1 (en) 2013-03-29 2019-04-24 Alexion Pharmaceuticals, Inc. Compositions and methods for increasing the serum half-life of a therapeutic agent targeting complement c5
US10111953B2 (en) 2013-05-30 2018-10-30 Regeneron Pharmaceuticals, Inc. Methods for reducing remnant cholesterol and other lipoprotein fractions by administering an inhibitor of proprotein convertase subtilisin kexin-9 (PCSK9)
US10494442B2 (en) 2013-06-07 2019-12-03 Sanofi Biotechnology Methods for inhibiting atherosclerosis by administering an inhibitor of PCSK9
EA201690889A1 (ru) 2013-11-12 2016-11-30 Санофи Байотекнолоджи Режимы дозирования для применения ингибиторов pcsk9
DK3143138T3 (da) 2014-05-13 2022-04-25 Bioatla Inc Betinget aktive biologiske proteiner
WO2016011256A1 (en) 2014-07-16 2016-01-21 Sanofi Biotechnology METHODS FOR TREATING PATIENTS WITH HETEROZYGOUS FAMILIAL HYPERCHOLESTEROLEMIA (heFH)
ES2749383T3 (es) 2014-11-06 2020-03-20 Hoffmann La Roche Variantes de la región Fc con unión al FcRn modificada y procedimientos de uso
CA2976005A1 (en) 2015-02-06 2016-08-11 Cell Idx, Inc. Antigen-coupled immunoreagents
US10294306B2 (en) * 2015-05-28 2019-05-21 Bio-Rad Laboratories, Inc. Affinity ligands and methods relating thereto
CA3016563A1 (en) 2016-03-21 2017-09-28 Elstar Therapeutics, Inc. Multispecific and multifunctional molecules and uses thereof
CN109716130B (zh) * 2016-07-18 2023-05-23 赛尔伊迪克斯公司 抗原偶联的杂交试剂
EP3491135A1 (en) * 2016-07-28 2019-06-05 Laboratoire Français du Fractionnement et des Biotechnologies Method for obtaining aptamers
US11129906B1 (en) 2016-12-07 2021-09-28 David Gordon Bermudes Chimeric protein toxins for expression by therapeutic bacteria
US20200291089A1 (en) 2017-02-16 2020-09-17 Elstar Therapeutics, Inc. Multifunctional molecules comprising a trimeric ligand and uses thereof
US10093731B2 (en) 2017-02-24 2018-10-09 Kindred Biosciences, Inc. Anti-IL31 antibodies for veterinary use
MX2019010802A (es) 2017-03-16 2019-10-30 Medimmune Ltd Anticuerpos anti-par2 y usos de los mismos.
JP2020517242A (ja) * 2017-04-21 2020-06-18 スターテン・バイオテクノロジー・ベー・フェー 抗ApoC3抗体およびその使用方法
GB201707484D0 (en) * 2017-05-10 2017-06-21 Argenx Bvba Method of preparing ph-dependent antibodies
JP2020522254A (ja) 2017-05-31 2020-07-30 エルスター セラピューティクス, インコーポレイテッド 骨髄増殖性白血病(mpl)タンパク質に結合する多特異性分子およびその使用
AU2018302647A1 (en) 2017-07-18 2020-02-06 Kyoto University Anti-human CCR1 monoclonal antibody
WO2019035938A1 (en) 2017-08-16 2019-02-21 Elstar Therapeutics, Inc. MULTISPECIFIC MOLECULES BINDING TO BCMA AND USES THEREOF
JP7039694B2 (ja) 2017-10-31 2022-03-22 スターテン・バイオテクノロジー・ベー・フェー 抗apoc3抗体およびその使用方法
US10538583B2 (en) 2017-10-31 2020-01-21 Staten Biotechnology B.V. Anti-APOC3 antibodies and compositions thereof
EP3710589A4 (en) * 2017-11-14 2021-11-10 Chugai Seiyaku Kabushiki Kaisha ANTI-C1S ANTIBODIES AND METHODS OF USE
GB201802487D0 (en) 2018-02-15 2018-04-04 Argenx Bvba Cytokine combination therapy
JP7049569B2 (ja) * 2018-03-06 2022-04-07 国立大学法人 東京大学 pH依存的に標的分子に結合するペプチドのスクリーニング方法
US20210009711A1 (en) 2018-03-14 2021-01-14 Elstar Therapeutics, Inc. Multifunctional molecules and uses thereof
US20210238280A1 (en) 2018-03-14 2021-08-05 Elstar Therapeutics, Inc. Multifunctional molecules that bind to calreticulin and uses thereof
CN112955465A (zh) 2018-07-03 2021-06-11 马伦戈治疗公司 抗tcr抗体分子及其用途
WO2020141117A1 (en) 2018-12-30 2020-07-09 F. Hoffmann-La Roche Ag Ph-gradient spr-based binding assay
JP2022521751A (ja) 2019-02-21 2022-04-12 マレンゴ・セラピューティクス,インコーポレーテッド 抗tcr抗体分子およびその使用
AU2020224681A1 (en) 2019-02-21 2021-09-16 Marengo Therapeutics, Inc. Antibody molecules that bind to NKp30 and uses thereof
EP3927746A1 (en) 2019-02-21 2021-12-29 Marengo Therapeutics, Inc. Multifunctional molecules that bind to calreticulin and uses thereof
JP2022523197A (ja) 2019-02-21 2022-04-21 マレンゴ・セラピューティクス,インコーポレーテッド T細胞関連のがん細胞に結合する多機能性分子およびその使用
AU2020224680A1 (en) 2019-02-21 2021-09-16 Marengo Therapeutics, Inc. Multifunctional molecules that bind to T cells and uses thereof to treat autoimmune disorders
GB2589049C (en) 2019-04-11 2024-02-21 argenx BV Anti-IgE antibodies
CN114466864A (zh) 2019-06-21 2022-05-10 索瑞索制药公司 多肽
US20220242945A1 (en) 2019-06-21 2022-08-04 Sorriso Pharmaceuticals, Inc. Polypeptides
WO2021138407A2 (en) 2020-01-03 2021-07-08 Marengo Therapeutics, Inc. Multifunctional molecules that bind to cd33 and uses thereof
EP4138914A4 (en) * 2020-04-22 2024-05-22 Elanco Us Inc LONG-ACTING ANTI-IL31 ANTIBODIES FOR VETERINARY USE
EP4139363A1 (en) 2020-04-24 2023-03-01 Marengo Therapeutics, Inc. Multifunctional molecules that bind to t cell related cancer cells and uses thereof
CA3190755A1 (en) 2020-08-26 2022-03-03 Andreas Loew Multifunctional molecules that bind to calreticulin and uses thereof
JP2023540248A (ja) 2020-08-26 2023-09-22 マレンゴ・セラピューティクス,インコーポレーテッド Trbc1またはtrbc2を検出する方法
EP4204096A2 (en) 2020-08-26 2023-07-05 Marengo Therapeutics, Inc. Antibody molecules that bind to nkp30 and uses thereof
AU2022218165B2 (en) * 2021-02-03 2024-02-29 Mythic Therapeutics, Inc. Anti-met antibodies and uses thereof
AU2022255506A1 (en) 2021-04-08 2023-11-09 Marengo Therapeutics, Inc. Multifunctional molecules binding to tcr and uses thereof
WO2022266660A1 (en) 2021-06-17 2022-12-22 Amberstone Biosciences, Inc. Anti-cd3 constructs and uses thereof
CA3236108A1 (en) 2022-01-18 2023-07-27 Paul Sebastian VAN DER WONING Galectin-10 antibodies
GB202211100D0 (en) 2022-07-29 2022-09-14 Stam Jord Cornelis Lysosomal degradation

Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0125023A1 (en) 1983-04-08 1984-11-14 Genentech, Inc. Recombinant immunoglobulin preparations, methods for their preparation, DNA sequences, expression vectors and recombinant host cells therefor
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
JPH0159878B2 (ja) 1982-05-21 1989-12-20 Yunibaashitei Obu Karifuorunia
WO1992001047A1 (en) 1990-07-10 1992-01-23 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992003918A1 (en) 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1992020791A1 (en) 1990-07-10 1992-11-26 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1993006213A1 (en) 1991-09-23 1993-04-01 Medical Research Council Production of chimeric antibodies - a combinatorial approach
WO1993011236A1 (en) 1991-12-02 1993-06-10 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993019172A1 (en) 1992-03-24 1993-09-30 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1995001438A1 (en) 1993-06-30 1995-01-12 Medical Research Council Sbp members with a chemical moiety covalently bound within the binding site; production and selection thereof
WO1995001937A1 (fr) 1993-07-09 1995-01-19 Association Gradient Procede de traitement de residus de combustion et installation de mise en ×uvre dudit procede
WO1995015388A1 (en) 1993-12-03 1995-06-08 Medical Research Council Recombinant binding proteins and peptides
WO1995015393A1 (fr) 1993-12-03 1995-06-08 Asahi Kasei Kogyo Kabushiki Kaisha Nouveau vecteur de detection d'expression
WO1996002576A1 (fr) 1994-07-13 1996-02-01 Chugai Seiyaku Kabushiki Kaisha Anticorps humain reconstitue contre l'interleukine-8 humaine
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996033735A1 (en) 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1998013388A1 (fr) 1996-09-26 1998-04-02 Chugai Seiyaku Kabushiki Kaisha Anticorps contre les peptides lies a la parathormone humaine
WO1998046777A1 (fr) 1997-04-11 1998-10-22 Centre National De La Recherche Scientifique (Cnrs) Preparation de recepteurs membranaires a partir de baculovirus extracellulaires
WO1999054342A1 (en) 1998-04-20 1999-10-28 Pablo Umana Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity
WO2000061739A1 (en) 1999-04-09 2000-10-19 Kyowa Hakko Kogyo Co., Ltd. Method for controlling the activity of immunologically functional molecule
WO2002020565A2 (en) 2000-09-08 2002-03-14 Universität Zürich Collections of repeat proteins comprising repeat modules
WO2002031140A1 (fr) 2000-10-06 2002-04-18 Kyowa Hakko Kogyo Co., Ltd. Cellules produisant des compositions d'anticorps
WO2002032925A2 (en) 2000-10-16 2002-04-25 Phylos, Inc. Protein scaffolds for antibody mimics and other binding proteins
WO2002079255A1 (en) 2001-04-02 2002-10-10 Idec Pharmaceuticals Corporation RECOMBINANT ANTIBODIES COEXPRESSED WITH GnTIII
WO2003002609A2 (en) 2001-06-28 2003-01-09 Domantis Limited Dual-specific ligand and its use
WO2003105757A2 (en) 2002-06-12 2003-12-24 Genencor International, Inc. Methods and compositions for milieu-dependent binding of a targeted agent to a target
WO2004039826A1 (en) 2001-11-14 2004-05-13 Centocor, Inc. Anti-il-6 antibodies, compositions, methods and uses
WO2004044011A2 (en) 2002-11-06 2004-05-27 Avidia Research Institute Combinatorial libraries of monomer domains
WO2004058821A2 (en) 2002-12-27 2004-07-15 Domantis Limited Dual specific single domain antibodies specific for a ligand and for the receptor of the ligand
WO2005037989A2 (en) 2001-01-17 2005-04-28 Trubion Pharmaceuticals, Inc. Binding domain-immunoglobulin fusion proteins
WO2005040229A2 (en) 2003-10-24 2005-05-06 Avidia, Inc. Ldl receptor class a and egf domain monomers and multimers
WO2006067913A1 (ja) 2004-12-22 2006-06-29 Chugai Seiyaku Kabushiki Kaisha フコーストランスポーターの機能が阻害された細胞を用いた抗体の作製方法
WO2007014278A2 (en) 2005-07-25 2007-02-01 Trubion Pharmaceuticals, Inc. B-cell reduction using cd37-specific and cd20-specific binding molecules
WO2007059782A1 (en) 2005-11-28 2007-05-31 Genmab A/S Recombinant monovalent antibodies and methods for production thereof
US20070280945A1 (en) 2006-06-02 2007-12-06 Sean Stevens High affinity antibodies to human IL-6 receptor
WO2007142325A1 (ja) 2006-06-08 2007-12-13 Chugai Seiyaku Kabushiki Kaisha 炎症性疾患の予防または治療剤

Family Cites Families (460)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229888B2 (ja) 1972-02-01 1977-08-04
US4769320A (en) 1982-07-27 1988-09-06 New England Medical Center Hospitals, Inc. Immunoassay means and methods useful in human native prothrombin and human abnormal prothorombin determinations
CA1209907A (en) * 1982-04-12 1986-08-19 Richard M. Bartholomew Method of affinity purification employing monoclonal antibodies
US4689299A (en) * 1982-09-30 1987-08-25 University Of Rochester Human monoclonal antibodies against bacterial toxins
JPS6088703A (ja) 1983-10-18 1985-05-18 新日本製鐵株式会社 耐重荷重性舗装体
JPH06104071B2 (ja) 1986-08-24 1994-12-21 財団法人化学及血清療法研究所 第▲ix▼因子コンホメ−シヨン特異性モノクロ−ナル抗体
US4801687A (en) * 1986-10-27 1989-01-31 Bioprobe International, Inc. Monoclonal antibody purification process using protein A
JPS63149900A (ja) 1986-12-15 1988-06-22 Toshiba Corp 半導体メモリ
US4851341A (en) 1986-12-19 1989-07-25 Immunex Corporation Immunoaffinity purification system
JPH01144991A (ja) 1987-12-02 1989-06-07 Kagaku Oyobi Ketsusei Riyouhou Kenkyusho 血液凝固第8因子の精製方法
US5670373A (en) * 1988-01-22 1997-09-23 Kishimoto; Tadamitsu Antibody to human interleukin-6 receptor
US5322678A (en) * 1988-02-17 1994-06-21 Neorx Corporation Alteration of pharmacokinetics of proteins by charge modification
BG60017A3 (en) 1988-09-28 1993-06-15 Lilly Co Eli Method for reducing the heterogeneity of monoclonal antibodies
US5126250A (en) * 1988-09-28 1992-06-30 Eli Lilly And Company Method for the reduction of heterogeneity of monoclonal antibodies
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5202253A (en) 1988-12-30 1993-04-13 Oklahoma Medical Research Foundation Monoclonal antibody specific for protein C and antibody purification method
CA2006684C (en) 1988-12-30 1996-12-17 Charles T. Esmon Monoclonal antibody against protein c
JPH0636741B2 (ja) 1989-11-08 1994-05-18 帝人株式会社 ヒト・プロテインcの分離方法
WO1991012023A2 (en) 1990-02-16 1991-08-22 Boston Biomedical Research Institute Hybrid reagents capable of selectively releasing molecules into cells
US5130129A (en) 1990-03-06 1992-07-14 The Regents Of The University Of California Method for enhancing antibody transport through capillary barriers
GB9022547D0 (en) 1990-10-17 1990-11-28 Wellcome Found Purified immunoglobulin
DE69229482T2 (de) * 1991-04-25 1999-11-18 Chugai Pharmaceutical Co Ltd Rekombinierte humane antikörper gegen den humanen interleukin 6-rezeptor
US5468634A (en) * 1991-06-24 1995-11-21 The University Of North Carolina At Chapel Hill Axl oncogene
JP3087857B2 (ja) 1991-07-04 2000-09-11 東洋紡績株式会社 交編編地の染色処理方法
US5667988A (en) 1992-01-27 1997-09-16 The Scripps Research Institute Methods for producing antibody libraries using universal or randomized immunoglobulin light chains
GB9203459D0 (en) 1992-02-19 1992-04-08 Scotgen Ltd Antibodies with germ-line variable regions
WO1993022332A2 (en) 1992-04-24 1993-11-11 Board Of Regents, The University Of Texas System Recombinant production of immunoglobulin-like domains in prokaryotic cells
BR9204244A (pt) 1992-10-26 1994-05-03 Cofap Ferro fundido cinzento
JPH08503617A (ja) 1992-12-01 1996-04-23 プロテイン デザイン ラブズ、インコーポレーテッド L−セレクチンに反応性のヒト化抗体
ES2201076T3 (es) 1993-03-19 2004-03-16 The Johns Hopkins University School Of Medicine Factor-8 de diferenciacion del crecimiento.
US7393682B1 (en) 1993-03-19 2008-07-01 The Johns Hopkins University School Of Medicine Polynucleotides encoding promyostatin polypeptides
WO1994029471A1 (en) * 1993-06-10 1994-12-22 Genetic Therapy, Inc. Adenoviral vectors for treatment of hemophilia
GB9314271D0 (en) 1993-07-09 1993-08-18 Inst Of Cancer The Research Cell growth factor receptors
IL107742A0 (en) 1993-11-24 1994-02-27 Yeda Res & Dev Chemically-modified binding proteins
JPH07177572A (ja) 1993-12-20 1995-07-14 Matsushita Electric Ind Co Ltd コードレス電話の留守番方法
US6074642A (en) 1994-05-02 2000-06-13 Alexion Pharmaceuticals, Inc. Use of antibodies specific to human complement component C5 for the treatment of glomerulonephritis
US5945311A (en) * 1994-06-03 1999-08-31 GSF--Forschungszentrumfur Umweltund Gesundheit Method for producing heterologous bi-specific antibodies
DE122009000068I2 (de) 1994-06-03 2011-06-16 Ascenion Gmbh Verfahren zur Herstellung von heterologen bispezifischen Antikörpern
US8017121B2 (en) * 1994-06-30 2011-09-13 Chugai Seiyaku Kabushika Kaisha Chronic rheumatoid arthritis therapy containing IL-6 antagonist as effective component
AU702250B2 (en) 1994-07-11 1999-02-18 Board Of Regents, The University Of Texas System Methods and compositions for the specific coagulation of vasculature
CN1156460A (zh) 1994-07-13 1997-08-06 中外制药株式会社 抗人白细胞介素-8的重构人抗体
TW416960B (en) 1994-07-13 2001-01-01 Chugai Pharmaceutical Co Ltd Reshaped human antibody to human interleukin-8
US6048972A (en) 1994-07-13 2000-04-11 Chugai Pharmaceutical Co., Ltd. Recombinant materials for producing humanized anti-IL-8 antibodies
JP3865418B2 (ja) 1994-07-13 2007-01-10 中外製薬株式会社 ヒトインターロイキン−8に対する再構成ヒト抗体
US6309636B1 (en) 1995-09-14 2001-10-30 Cancer Research Institute Of Contra Costa Recombinant peptides derived from the Mc3 anti-BA46 antibody, methods of use thereof, and methods of humanizing antibody peptides
CZ296919B6 (cs) 1994-10-07 2006-07-12 Chugai Seiyaku Kabushiki Kaisha Farmaceutický prípravek pro lécení chronické revmatické artritidy
PL182089B1 (en) 1994-10-21 2001-11-30 Chugai Pharmaceutical Co Ltd Pharmaceutic compositions for treating diseases caused by production of il-6
US5876950A (en) 1995-01-26 1999-03-02 Bristol-Myers Squibb Company Monoclonal antibodies specific for different epitopes of human GP39 and methods for their use in diagnosis and therapy
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US5830478A (en) 1995-06-07 1998-11-03 Boston Biomedical Research Institute Method for delivering functional domains of diphtheria toxin to a cellular target
CA2205007C (en) * 1995-09-11 2010-12-14 Masamichi Koike Antibody against human interleukin-5 receptor .alpha. chain
US5783186A (en) 1995-12-05 1998-07-21 Amgen Inc. Antibody-induced apoptosis
ATE279947T1 (de) 1996-03-18 2004-11-15 Univ Texas Immunglobulinähnliche domäne mit erhöhten halbwertszeiten
CZ399A3 (cs) 1996-07-19 1999-06-16 Amgen Inc. Polypeptidová analoga kationaktivních polypeptidů
US7247302B1 (en) 1996-08-02 2007-07-24 Bristol-Myers Squibb Company Method for inhibiting immunoglobulin-induced toxicity resulting from the use of immunoglobulins in therapy and in vivo diagnosis
ATE386809T1 (de) 1996-08-02 2008-03-15 Bristol Myers Squibb Co Ein verfahren zur inhibierung immunglobulininduzierter toxizität aufgrund von der verwendung von immunoglobinen in therapie und in vivo diagnostik
US6025158A (en) 1997-02-21 2000-02-15 Genentech, Inc. Nucleic acids encoding humanized anti-IL-8 monoclonal antibodies
US6277375B1 (en) 1997-03-03 2001-08-21 Board Of Regents, The University Of Texas System Immunoglobulin-like domains with increased half-lives
CA2284271C (en) 1997-03-21 2012-05-08 Chugai Seiyaku Kabushiki Kaisha A preventive or therapeutic agent for sensitized t cell-mediated diseases comprising il-6 antagonist as an active ingredient
US6884879B1 (en) 1997-04-07 2005-04-26 Genentech, Inc. Anti-VEGF antibodies
DE69807679T2 (de) 1997-04-17 2003-07-31 Amgen Inc Zusammensetzungen aus konjugaten des stabilen, aktiven, menschlichen ob proteins mit der fc kette von immunoglobulinen und damit zusammenhängende verfahren
WO1998050431A2 (en) 1997-05-02 1998-11-12 Genentech, Inc. A method for making multispecific antibodies having heteromultimeric and common components
US5980893A (en) 1997-07-17 1999-11-09 Beth Israel Deaconess Medical Center, Inc. Agonist murine monoclonal antibody as a stimulant for megakaryocytopoiesis
US20020187150A1 (en) * 1997-08-15 2002-12-12 Chugai Seiyaku Kabushiki Kaisha Preventive and/or therapeutic agent for systemic lupus erythematosus comprising anti-IL-6 receptor antibody as an active ingredient
KR20080027967A (ko) 1997-08-15 2008-03-28 츄가이 세이야꾸 가부시키가이샤 항 인터루킨-6 수용체 항체를 유효성분으로서 함유하는전신성 홍반성 낭창의 예방 및/또는 치료제
DE69838454T2 (de) 1997-10-03 2008-02-07 Chugai Seiyaku K.K. Natürlicher menschlicher antikörper
US6458355B1 (en) 1998-01-22 2002-10-01 Genentech, Inc. Methods of treating inflammatory disease with anti-IL-8 antibody fragment-polymer conjugates
CZ297083B6 (cs) 1998-03-17 2006-09-13 Chugai Seiyaku Kabushiki Kaisha Cinidlo pro prevenci a lécbu zánetlivého onemocnení streva obsahující aktivní slozku antagonistu IL-6
ATE375365T1 (de) 1998-04-02 2007-10-15 Genentech Inc Antikörper varianten und fragmente davon
GB9809951D0 (en) 1998-05-08 1998-07-08 Univ Cambridge Tech Binding molecules
JP2002522063A (ja) * 1998-08-17 2002-07-23 アブジェニックス インコーポレイテッド 増加した血清半減期を有する改変された分子の生成
US6475718B2 (en) 1998-09-08 2002-11-05 Schering Aktiengesellschaft Methods and compositions for modulating the interaction between the APJ receptor and the HIV virus
DE69942671D1 (de) * 1998-12-01 2010-09-23 Facet Biotech Corp Humanisierte antikoerper gegen gamma-interferon
CN1202128C (zh) 1998-12-08 2005-05-18 拜奥威神有限公司 修饰蛋白的免疫原性
BR0008758A (pt) 1999-01-15 2001-12-04 Genentech Inc Variantes de polipeptìdeos parentais com funçãoefetora alterada, polipeptìdeos, composição ácidonucleico isolado, vetor, célula hospedeira,método para produzir uma variante depolipeptìdeo, método para o tratamento de umadesordem em mamìferos e método para produziruma região fc variante
US7183387B1 (en) 1999-01-15 2007-02-27 Genentech, Inc. Polypeptide variants with altered effector function
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
AU2006225302B2 (en) 1999-03-25 2010-08-12 AbbVie Deutschland GmbH & Co. KG Human antibodies that bind human IL-12 and methods for producing
EP1188830B1 (en) 1999-06-02 2010-01-20 Chugai Seiyaku Kabushiki Kaisha Novel hemopoietin receptor protein ,nr10
US6331642B1 (en) 1999-07-12 2001-12-18 Hoffmann-La Roche Inc. Vitamin D3 analogs
SK782002A3 (en) * 1999-07-21 2003-08-05 Lexigen Pharm Corp FC fusion proteins for enhancing the immunogenicity of protein and peptide antigens
US20040058393A1 (en) 2000-04-17 2004-03-25 Naoshi Fukishima Agonist antibodies
AU6627201A (en) 2000-05-03 2001-11-12 Mbt Munich Biotechnology Gmbh Cationic diagnostic, imaging and therapeutic agents associated with activated vascular sites
EP2281843B1 (en) * 2000-06-16 2016-10-12 Human Genome Sciences, Inc. Antibodies that immunospecifically bind to BLyS
AU2011244851A1 (en) 2000-07-27 2011-11-24 The John Hopkins University School Of Medicine Promyostatin peptides and methods of using same
ES2483991T3 (es) 2000-10-10 2014-08-08 Genentech, Inc. Anticuerpos contra C5 que inhibe la activación de las células endoteliales de tipo II
WO2002034292A1 (fr) 2000-10-25 2002-05-02 Chugai Seiyaku Kabushiki Kaisha Agents preventifs ou therapeutiques contre le psoriasis renfermant l'antagoniste de l'il-6 comme substance active
AU2000279625A1 (en) * 2000-10-27 2002-05-15 Chugai Seiyaku Kabushiki Kaisha Blood mmp-3 level-lowering agent containing il-6 antgonist as the active ingredient
PT1355919E (pt) 2000-12-12 2011-03-02 Medimmune Llc Moléculas com semivida longa, composições que as contêm e suas utilizações
UA80091C2 (en) 2001-04-02 2007-08-27 Chugai Pharmaceutical Co Ltd Remedies for infant chronic arthritis-relating diseases and still's disease which contain an interleukin-6 (il-6) antagonist
CZ303450B6 (cs) * 2001-04-13 2012-09-19 Biogen Idec Ma Inc. Protilátky k VLA-1, kompozice je obsahující a nukleové kyseliny, které je kódují, zpusob stanovení hladiny VLA-1 a použití pri lécení imunologického onemocnení
US7667004B2 (en) * 2001-04-17 2010-02-23 Abmaxis, Inc. Humanized antibodies against vascular endothelial growth factor
PT2208784E (pt) * 2001-06-22 2013-04-03 Chugai Pharmaceutical Co Ltd Inibidores da proliferação celular contendo um anticorpo anti-glipicano 3
US20040161741A1 (en) 2001-06-30 2004-08-19 Elazar Rabani Novel compositions and processes for analyte detection, quantification and amplification
ATE360441T1 (de) 2001-08-17 2007-05-15 Tanox Inc Komplement-inhibitoren die an c5 und c5a binden ohne die bildung von c5b zu hemmen
US7320789B2 (en) 2001-09-26 2008-01-22 Wyeth Antibody inhibitors of GDF-8 and uses thereof
US20030190705A1 (en) 2001-10-29 2003-10-09 Sunol Molecular Corporation Method of humanizing immune system molecules
ATE395413T1 (de) 2001-12-03 2008-05-15 Amgen Fremont Inc Antikörperkategorisierung auf der grundlage von bindungseigenschaften
US20050171339A1 (en) 2001-12-28 2005-08-04 Izumi Sugo Method of stabilizing protein
US7494804B2 (en) * 2002-01-18 2009-02-24 Zymogenetics, Inc. Polynucleotide encoding cytokine receptor zcytor17 multimer
US7064186B2 (en) * 2002-01-18 2006-06-20 Zymogenetics, Inc. Cytokine zcytor17 ligand
WO2003068801A2 (en) 2002-02-11 2003-08-21 Genentech, Inc. Antibody variants with faster antigen association rates
AR038568A1 (es) 2002-02-20 2005-01-19 Hoffmann La Roche Anticuerpos anti-a beta y su uso
US20040110226A1 (en) 2002-03-01 2004-06-10 Xencor Antibody optimization
US8093357B2 (en) 2002-03-01 2012-01-10 Xencor, Inc. Optimized Fc variants and methods for their generation
US7317091B2 (en) 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
US8188231B2 (en) 2002-09-27 2012-05-29 Xencor, Inc. Optimized FC variants
US20040132101A1 (en) 2002-09-27 2004-07-08 Xencor Optimized Fc variants and methods for their generation
US7657380B2 (en) 2003-12-04 2010-02-02 Xencor, Inc. Methods of generating variant antibodies with increased host string content
JP4468803B2 (ja) 2002-05-31 2010-05-26 ジーイー・ヘルスケア・バイオ−サイエンシーズ・アーベー 結合剤を基板表面にカップリングさせる方法
US20050130224A1 (en) * 2002-05-31 2005-06-16 Celestar Lexico- Sciences, Inc. Interaction predicting device
WO2003107009A2 (en) * 2002-06-12 2003-12-24 Genencor International, Inc. Methods for improving a binding characteristic of a molecule
ITMI20021527A1 (it) 2002-07-11 2004-01-12 Consiglio Nazionale Ricerche Anticorpi anti componente c5 del complemento e loro uso
EP1382969A1 (en) 2002-07-17 2004-01-21 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Diagnosis and prevention of cancer cell invasion
AU2003267246A1 (en) 2002-09-16 2004-04-30 The Johns Hopkins University Metalloprotease activation of myostatin, and methods of modulating myostatin activity
EP2042517B1 (en) 2002-09-27 2012-11-14 Xencor, Inc. Optimized FC variants and methods for their generation
US7361740B2 (en) 2002-10-15 2008-04-22 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
CA2502904C (en) 2002-10-15 2013-05-28 Protein Design Labs, Inc. Alteration of fcrn binding affinities or serum half-lives of antibodies by mutagenesis
US7217797B2 (en) 2002-10-15 2007-05-15 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
WO2004034988A2 (en) * 2002-10-16 2004-04-29 Amgen Inc. Human anti-ifn-ϝ neutralizing antibodies as selective ifn-ϝ pathway inhibitors
AR047392A1 (es) 2002-10-22 2006-01-18 Wyeth Corp Neutralizacion de anticuerpos contra gdf 8 y su uso para tales fines
ES2373947T3 (es) 2002-12-16 2012-02-10 Genmab A/S Anticuerpos monoclonales humanos contra interleucina 8 (il-8).
KR20060026004A (ko) 2003-02-28 2006-03-22 안티제닉스 아이엔씨 당단백질 및 항원성 분자의 올리고머화를 조장하는 렉틴의용도
US20040223970A1 (en) * 2003-02-28 2004-11-11 Daniel Afar Antibodies against SLC15A2 and uses thereof
PT1601697E (pt) 2003-02-28 2007-09-04 Lonza Biologics Plc Purificação de anticorpos através de proteína a e cromatografia de troca iónica.
US8388955B2 (en) 2003-03-03 2013-03-05 Xencor, Inc. Fc variants
JP2006521387A (ja) 2003-03-04 2006-09-21 アレクシオン ファーマシューティカルズ, インコーポレイテッド 寛容誘導抗原提示細胞による抗原提示の誘導によって自己免疫疾患を治療する方法
AU2004223837C1 (en) 2003-03-24 2012-03-15 Zymogenetics, Inc. Anti-IL-22RA antibodies and binding partners and methods of using in inflammation
GB2401040A (en) 2003-04-28 2004-11-03 Chugai Pharmaceutical Co Ltd Method for treating interleukin-6 related diseases
US9051373B2 (en) 2003-05-02 2015-06-09 Xencor, Inc. Optimized Fc variants
JP5110877B2 (ja) 2003-06-02 2012-12-26 ワイス・エルエルシー 神経筋障害を処置するための、コルチコステロイドと組み合わせたミオスタチン(gdf8)インヒビターの使用
JP2005004970A (ja) 2003-06-09 2005-01-06 Hitachi Cable Ltd 複合ケーブルおよびこれを用いた先行配線システム
WO2004113387A2 (en) 2003-06-24 2004-12-29 Merck Patent Gmbh Tumour necrosis factor receptor molecules with reduced immunogenicity
US7011924B2 (en) 2003-07-30 2006-03-14 Hynix Semiconductor Inc. Photoresist polymers and photoresist compositions comprising the same
WO2005023193A2 (en) 2003-09-04 2005-03-17 Interleukin Genetics, Inc. Methods of treating endometriosis
US20050152894A1 (en) * 2003-09-05 2005-07-14 Genentech, Inc. Antibodies with altered effector functions
US8101720B2 (en) 2004-10-21 2012-01-24 Xencor, Inc. Immunoglobulin insertions, deletions and substitutions
WO2005035753A1 (ja) * 2003-10-10 2005-04-21 Chugai Seiyaku Kabushiki Kaisha 機能蛋白質を代替する二重特異性抗体
AU2003271186A1 (en) 2003-10-14 2005-04-27 Chugai Seiyaku Kabushiki Kaisha Double specific antibodies substituting for functional protein
CA2545539A1 (en) 2003-10-15 2005-04-28 Pdl Biopharma, Inc. Alteration of fc-fusion protein serum half-lives by mutagenesis of positions 250, 314 and/or 428 of the heavy chain constant region of ig
US20070134242A1 (en) 2003-10-17 2007-06-14 Chugai Seiyaku Kabushiki Kaisha Mesothelioma therapeutic agent
ATE360647T1 (de) * 2003-11-05 2007-05-15 Ares Trading Sa Verfahren zur aufreinigung von il-18-bindendem protein
WO2005047327A2 (en) 2003-11-12 2005-05-26 Biogen Idec Ma Inc. NEONATAL Fc RECEPTOR (FcRn)-BINDING POLYPEPTIDE VARIANTS, DIMERIC Fc BINDING PROTEINS AND METHODS RELATED THERETO
US20050100965A1 (en) 2003-11-12 2005-05-12 Tariq Ghayur IL-18 binding proteins
US20050142133A1 (en) 2003-12-03 2005-06-30 Xencor, Inc. Optimized proteins that target the epidermal growth factor receptor
SI2383295T1 (sl) * 2003-12-10 2015-07-31 E.R. Squibb & Sons, L.L.C. Protitelesa IP-10 in njihova uporaba
AR048210A1 (es) 2003-12-19 2006-04-12 Chugai Pharmaceutical Co Ltd Un agente preventivo para la vasculitis.
US20050249723A1 (en) 2003-12-22 2005-11-10 Xencor, Inc. Fc polypeptides with novel Fc ligand binding sites
US7371726B2 (en) 2003-12-31 2008-05-13 Schering-Plough Animal Health Corporation Neutralizing GDF8 epitope-based growth enhancing vaccine
DE602005015542D1 (de) 2004-01-12 2009-09-03 Applied Molecular Evolution Varianten der fc-region
US20050169921A1 (en) 2004-02-03 2005-08-04 Leonard Bell Method of treating hemolytic disease
US20070116710A1 (en) 2004-02-03 2007-05-24 Leonard Bell Methods of treating hemolytic anemia
DE602005020743D1 (de) 2004-02-11 2010-06-02 Warner Lambert Co Verfahren zur behandlung von osteoarthritis mit anti-il-6 antikörpern
WO2005094446A2 (en) 2004-03-23 2005-10-13 Eli Lilly And Company Anti-myostatin antibodies
EP3736295A1 (en) 2004-03-24 2020-11-11 Chugai Seiyaku Kabushiki Kaisha Subtypes of humanized antibody against interleukin-6 receptor
AR048335A1 (es) 2004-03-24 2006-04-19 Chugai Pharmaceutical Co Ltd Agentes terapeuticos para trastornos del oido interno que contienen un antagonista de il- 6 como un ingrediente activo
AU2005227326B2 (en) * 2004-03-24 2009-12-03 Xencor, Inc. Immunoglobulin variants outside the Fc region
KR20070035482A (ko) 2004-03-24 2007-03-30 추가이 세이야쿠 가부시키가이샤 인터로킨-6 안타고니스트를 활성성분으로 함유하는내이장해 치료제
US20050260711A1 (en) 2004-03-30 2005-11-24 Deepshikha Datta Modulating pH-sensitive binding using non-natural amino acids
WO2005123780A2 (en) 2004-04-09 2005-12-29 Protein Design Labs, Inc. Alteration of fcrn binding affinities or serum half-lives of antibodies by mutagenesis
WO2005115452A2 (en) 2004-04-16 2005-12-08 Macrogenics, Inc. Fcϝriib-specific antibodies and methods of use thereof
CN102532321B (zh) * 2004-06-18 2018-10-12 Ambrx公司 新颖抗原结合多肽和其用途
AU2005259992A1 (en) * 2004-06-25 2006-01-12 Medimmune, Llc Increasing the production of recombinant antibodies in mammalian cells by site-directed mutagenesis
CA2572917C (en) 2004-07-06 2012-04-03 Bioren Inc. Look-through mutagenesis for developing altered polypeptides with enhanced properties
DE102004032634A1 (de) 2004-07-06 2006-02-16 Sms Demag Ag Verfahren und Einrichtung zum Messen und Regeln der Planheit und/oder der Bandspannungen eines Edelstahlbandes oder einer Edelstahlfolie beim Kaltwalzen in einem Vielwalzengerüst, insbesondere in einem 20-Walzen-Sendizimir-Walzwerk
WO2006085967A2 (en) 2004-07-09 2006-08-17 Xencor, Inc. OPTIMIZED ANTI-CD20 MONOCONAL ANTIBODIES HAVING Fc VARIANTS
CN103351434B (zh) 2004-07-15 2015-09-30 赞科股份有限公司 优化的Fc变体
EP1771483A1 (en) * 2004-07-20 2007-04-11 Symphogen A/S Anti-rhesus d recombinant polyclonal antibody and methods of manufacture
PL1776384T3 (pl) 2004-08-04 2013-10-31 Mentrik Biotech Llc WARIANTY REGIONÓW Fc
AU2005277567A1 (en) 2004-08-16 2006-03-02 Medimmune, Llc Integrin antagonists with enhanced antibody dependent cell-mediated cytotoxicity activity
JP2008510466A (ja) 2004-08-19 2008-04-10 ジェネンテック・インコーポレーテッド エフェクター機能が変更しているポリペプチド変異体
WO2006047350A2 (en) 2004-10-21 2006-05-04 Xencor, Inc. IgG IMMUNOGLOBULIN VARIANTS WITH OPTIMIZED EFFECTOR FUNCTION
CA2585043A1 (en) 2004-10-22 2007-01-04 Medimmune, Inc. High affinity antibodies against hmgb1 and methods of use thereof
US7928205B2 (en) * 2004-10-22 2011-04-19 Amgen Inc. Methods for refolding of recombinant antibodies
US20060115485A1 (en) 2004-10-29 2006-06-01 Medimmune, Inc. Methods of preventing and treating RSV infections and related conditions
US7632497B2 (en) 2004-11-10 2009-12-15 Macrogenics, Inc. Engineering Fc Antibody regions to confer effector function
RU2412200C2 (ru) 2004-11-12 2011-02-20 Ксенкор, Инк. Fc-ВАРИАНТЫ С ИЗМЕНЕННЫМ СВЯЗЫВАНИЕМ С FcRn
US8367805B2 (en) 2004-11-12 2013-02-05 Xencor, Inc. Fc variants with altered binding to FcRn
US8802820B2 (en) 2004-11-12 2014-08-12 Xencor, Inc. Fc variants with altered binding to FcRn
EP2845865A1 (en) 2004-11-12 2015-03-11 Xencor Inc. Fc variants with altered binding to FcRn
US20070135620A1 (en) 2004-11-12 2007-06-14 Xencor, Inc. Fc variants with altered binding to FcRn
US8329186B2 (en) 2004-12-20 2012-12-11 Isu Abxis Co., Ltd Treatment of inflammation using BST2 inhibitor
KR20070115871A (ko) 2004-12-23 2007-12-06 노보 노르디스크 에이/에스 항체 결합 친화 리간드
WO2006071877A2 (en) 2004-12-27 2006-07-06 Progenics Pharmaceuticals (Nevada), Inc. Orally deliverable and anti-toxin antibodies and methods for making and using them
KR101564713B1 (ko) 2004-12-28 2015-11-06 이나뜨 파르마 Nkg2a에 대한 단클론 항체
AU2006204791A1 (en) 2005-01-12 2006-07-20 Xencor, Inc Antibodies and Fc fusion proteins with altered immunogenicity
GB0502358D0 (en) 2005-02-04 2005-03-16 Novartis Ag Organic compounds
NZ538097A (en) 2005-02-07 2006-07-28 Ovita Ltd Method and compositions for improving wound healing
MX2007009718A (es) 2005-02-14 2007-09-26 Zymogenetics Inc Metodos para tratar trastornos cutaneos utilizando un antagonista il-31ra.
JP5153613B2 (ja) 2005-03-18 2013-02-27 メディミューン,エルエルシー 抗体のフレームワーク・シャッフル
ES2592271T3 (es) 2005-03-31 2016-11-29 Chugai Seiyaku Kabushiki Kaisha Métodos de producción de polipéptidos mediante la regulación de la asociación de los polipéptidos
US9493569B2 (en) 2005-03-31 2016-11-15 Chugai Seiyaku Kabushiki Kaisha Structural isomers of sc(Fv)2
EP1871808A2 (en) 2005-03-31 2008-01-02 Xencor, Inc. Fc VARIANTS WITH OPTIMIZED PROPERTIES
EP1876236B9 (en) 2005-04-08 2015-02-25 Chugai Seiyaku Kabushiki Kaisha Antibody substituting for function of blood coagulation factor viii
ME02191B (me) * 2005-04-18 2016-02-20 Amgen Res Munich Gmbh Protutijela koja neutraliziraju ljudski čimbenik stimuliranja kolonija makrofaga
JP4909988B2 (ja) 2005-04-20 2012-04-04 アムジエン・フレモント・インコーポレイテツド インターロイキン‐8に対する高親和性の完全ヒトモノクローナル抗体、およびそのような抗体のエピトープ
EP2295466A3 (en) 2005-04-25 2011-08-17 Pfizer Inc. Antibodies to myostatin
WO2006116260A2 (en) 2005-04-26 2006-11-02 Medimmune, Inc. Modulation of antibody effector function by hinge domain engineering
UY29504A1 (es) 2005-04-29 2006-10-31 Rinat Neuroscience Corp Anticuerpos dirigidos contra el péptido amiloide beta y métodos que utilizan los mismos.
JO3058B1 (ar) 2005-04-29 2017-03-15 Applied Molecular Evolution Inc الاجسام المضادة لمضادات -اي ال-6,تركيباتها طرقها واستعمالاتها
US7592429B2 (en) 2005-05-03 2009-09-22 Ucb Sa Sclerostin-binding antibody
US8003108B2 (en) 2005-05-03 2011-08-23 Amgen Inc. Sclerostin epitopes
EP1896503B1 (en) 2005-05-31 2014-10-29 Board of Regents, The University of Texas System IgG1 ANTIBODIES WITH MUTATED Fc PORTION FOR INCREASED BINDING TO FcRn RECEPTOR AND USES TEHEREOF
AU2006256041B2 (en) * 2005-06-10 2012-03-29 Chugai Seiyaku Kabushiki Kaisha Stabilizer for protein preparation comprising meglumine and use thereof
AU2006268227A1 (en) 2005-07-08 2007-01-18 Xencor, Inc Optimized anti-Ep-CAM antibodies
SI2573114T1 (sl) 2005-08-10 2016-08-31 Macrogenics, Inc. Identifikacija in inženiring protiteles z variantnimi fc regijami in postopki za njih uporabo
PT2407486T (pt) 2005-08-19 2018-02-21 Univ Pennsylvania Anticorpos antagonistas contra gdf-8 e utilizações no tratamento de ela e outros distúrbios associados a gdf-8
WO2007041635A2 (en) 2005-10-03 2007-04-12 Xencor, Inc. Fc variants with optimized fc receptor binding properties
BRPI0616923A2 (pt) 2005-10-06 2011-07-05 Lilly Co Eli anticorpos monoclonais, seus usos e composição farmacêutica
WO2007044616A2 (en) 2005-10-06 2007-04-19 Xencor, Inc. Optimized anti-cd30 antibodies
UA92504C2 (en) 2005-10-12 2010-11-10 Эли Лилли Энд Компани Anti-myostatin monoclonal antibody
EP1941907B1 (en) 2005-10-14 2016-03-23 Fukuoka University Inhibitor of transplanted islet dysfunction in islet transplantation
BRPI0617664B8 (pt) 2005-10-21 2021-05-25 Chugai Pharmaceutical Co Ltd uso de um anticorpo que reconhece a il-6 para a produção de uma composição farmacêutica para tratar o enfarte do miocárdio ou suprimir a remodelagem ventricular esquerda depois do enfarte do miocárdio
US8679490B2 (en) * 2005-11-07 2014-03-25 Genentech, Inc. Binding polypeptides with diversified and consensus VH/VL hypervariable sequences
AR057582A1 (es) 2005-11-15 2007-12-05 Nat Hospital Organization Agentes para suprimir la induccion de linfocitos t citotoxicos
AR057579A1 (es) 2005-11-23 2007-12-05 Merck & Co Inc Compuestos espirociclicos como inhibidores de histona de acetilasa (hdac)
WO2007060411A1 (en) 2005-11-24 2007-05-31 Ucb Pharma S.A. Anti-tnf alpha antibodies which selectively inhibit tnf alpha signalling through the p55r
AR057941A1 (es) 2005-11-25 2007-12-26 Univ Keio Agentes terapeuticos para el cancer de prostata
JP2009517404A (ja) 2005-11-28 2009-04-30 メディミューン,エルエルシー Hmgb1および/またはrageのアンタゴニストならびにその使用方法
ES2551604T3 (es) 2005-12-12 2015-11-20 Ac Immune S.A. Vacuna terapéutica
EP1977763A4 (en) * 2005-12-28 2010-06-02 Chugai Pharmaceutical Co Ltd STABILIZER PREPARATION CONTAINING ANTIBODIES
BRPI0620946B8 (pt) 2005-12-29 2021-05-25 Centocor Inc anticorpo il-23p19 isolado, composição, método in vitro, artigo de fabricação, molécula e vetor de ácido nucleico, célula hospedeira procariótica
AU2007249713A1 (en) 2006-01-10 2007-11-22 Zymogenetics, Inc. Methods of treating pain and inflammation in neuronal tissue using IL-31Ra and OSMRb antagonists
EP3135298B1 (en) 2006-01-27 2018-06-06 Keio University Therapeutic agents for diseases involving choroidal neovascularization
AU2007212147A1 (en) 2006-02-03 2007-08-16 Medimmune, Llc Protein formulations
US20070190056A1 (en) 2006-02-07 2007-08-16 Ravi Kambadur Muscle regeneration compositions and uses therefor
JP4179517B2 (ja) 2006-02-21 2008-11-12 プロテノバ株式会社 イムノグロブリン親和性リガンド
WO2007097361A1 (ja) 2006-02-21 2007-08-30 Protenova Co., Ltd. イムノグロブリン親和性リガンド
PL1988882T3 (pl) 2006-03-02 2015-04-30 Alexion Pharma Inc Wydłużanie przeżycia alloprzeszczepu poprzez inhibowanie aktywności dopełniacza
DK2596807T3 (en) 2006-03-08 2016-03-07 Archemix Llc Complement aptamer AND ANTI-C5 FUNDS FOR USE IN THE TREATMENT OF EYE DISEASES
SI2359834T1 (sl) 2006-03-15 2017-02-28 Alexion Pharmaceuticals, Inc. Zdravljenje pacientov,ki imajo paroksizmalno nočno hemoglobinurijo, z zaviralcem komplementa
NZ591252A (en) 2006-03-17 2012-06-29 Biogen Idec Inc Methods of designing antibody or antigen binding fragments thereof with substituted non-covarying amino acids
TW200808347A (en) * 2006-03-23 2008-02-16 Kirin Brewery Agonistic antibody directed against human thrombopoietin receptor
JP2009532027A (ja) 2006-03-28 2009-09-10 バイオジェン・アイデック・エムエイ・インコーポレイテッド 抗igf−1r抗体およびその使用
CN105177091A (zh) * 2006-03-31 2015-12-23 中外制药株式会社 用于纯化双特异性抗体的抗体修饰方法
JP5624276B2 (ja) 2006-03-31 2014-11-12 中外製薬株式会社 抗体の血中動態を制御する方法
EP2738179A1 (en) 2006-04-05 2014-06-04 AbbVie Biotechnology Ltd Antibody purification
EP2025346B1 (en) 2006-04-07 2016-08-10 Osaka University Muscle regeneration promoter
TWI395754B (zh) 2006-04-24 2013-05-11 Amgen Inc 人類化之c-kit抗體
JP5420399B2 (ja) 2006-05-25 2014-02-19 グラクソ グループ リミテッド 改変型ヒト化抗インターロイキン−18抗体
US8080248B2 (en) 2006-06-02 2011-12-20 Regeneron Pharmaceuticals, Inc. Method of treating rheumatoid arthritis with an IL-6R antibody
US7858756B2 (en) * 2006-06-15 2010-12-28 The Board Of Trustees Of The University Of Arkansas Monoclonal antibodies that selectively recognize methamphetamine and methamphetamine like compounds
AR061571A1 (es) 2006-06-23 2008-09-03 Smithkline Beecham Corp Compuesto sal del acido toluenosulfonico de 4-{[6-cloro-3-({[(2- cloro-3-fluorofenil) amino]carbonil} amino)- 2- hidroxifenil]sulfonil] -1- piperazinacarbxilato de 1.1-dimetiletilo, composicion farmaceutica que lo comprende su uso para la fabricacion de un medicamento combinacion farmaceutica con un
AR062223A1 (es) 2006-08-09 2008-10-22 Glycart Biotechnology Ag Moleculas de adhesion al antigeno que se adhieren a egfr, vectores que los codifican, y sus usos de estas
PT2383297E (pt) 2006-08-14 2013-04-15 Xencor Inc Anticorpos otimizados que visam cd
DE102006038844B4 (de) 2006-08-18 2018-03-22 Robert Bosch Gmbh Vorrichtung und Verfahren zur Ansteuerung von Personenschutzmittel
CA2661836A1 (en) 2006-09-05 2008-03-13 Eli Lilly And Company Anti-myostatin antibodies
PT2066349E (pt) 2006-09-08 2012-07-02 Medimmune Llc Anticorpos anti-cd19 humanizados e respectiva utilização no tratamento de tumores, transplantação e doenças auto-imunes
EP2064240A2 (en) 2006-09-18 2009-06-03 Xencor, Inc. Optimized antibodies that target hm1.24
JP2008104147A (ja) 2006-09-19 2008-05-01 Ricoh Co Ltd 撮像装置、撮像システム、画像データ処理方法およびプログラム
EP2695896B1 (en) * 2006-10-06 2018-08-22 The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services Prevention of tissue ischemia, related methods and compositions
US20100034194A1 (en) * 2006-10-11 2010-02-11 Siemens Communications Inc. Eliminating unreachable subscribers in voice-over-ip networks
WO2008121160A2 (en) 2006-11-21 2008-10-09 Xencor, Inc. Optimized antibodies that target cd5
CN100455598C (zh) 2006-11-29 2009-01-28 中国抗体制药有限公司 功能人源化抗人cd20抗体及其应用
WO2008091798A2 (en) 2007-01-22 2008-07-31 Xencor, Inc. Optimized ca9 antibodies and methods of using the same
CA2669412A1 (en) 2007-01-23 2008-07-31 Xencor, Inc. Optimized cd40 antibodies and methods of using the same
ES2564392T3 (es) 2007-01-23 2016-03-22 Shinshu University Inhibidores de IL-6 para el tratamiento de rechazo crónico
JPWO2008090960A1 (ja) 2007-01-24 2010-05-20 協和発酵キリン株式会社 ガングリオシドgm2に特異的に結合する遺伝子組換え抗体組成物
WO2008092117A2 (en) 2007-01-25 2008-07-31 Xencor, Inc. Immunoglobulins with modifications in the fcr binding region
WO2008098115A2 (en) 2007-02-07 2008-08-14 Xencor, Inc. Optimized igf-1r antibodies and methods of using the same
US7919594B2 (en) * 2007-02-14 2011-04-05 Vaccinex, Inc. Human anti-CD100 antibodies
EP2059534B1 (en) 2007-02-23 2012-04-25 Schering Corporation Engineered anti-il-23p19 antibodies
EP2664346A1 (en) 2007-03-20 2013-11-20 Eli Lilly And Co. Anti-sclerostin antibodies
EP2129681A2 (en) 2007-03-22 2009-12-09 Novartis Ag C5 antigens and uses thereof
CL2008001071A1 (es) 2007-04-17 2009-05-22 Smithkline Beecham Corp Metodo para obtener anticuerpo penta-especifico contra il-8/cxcl8, gro-alfa/cxcl1, gro-beta/cxcl2), gro-gama/cxcl3 y ena-78/cxcl5 humanas; anticuerpo penta-especifico; proceso de produccion del mismo; vector, hbridoma o celela que lo comprende; composicion farmceutica; uso para tratar copd, otras enfermedades.
GB0708002D0 (en) 2007-04-25 2007-06-06 Univ Sheffield Antibodies
NZ581395A (en) 2007-05-14 2012-08-31 Biogen Idec Inc Single-chain fc (scfc) regions, binding polypeptides comprising same, and methods related thereto
WO2008150494A1 (en) 2007-05-30 2008-12-11 Xencor, Inc. Methods and compositions for inhibiting cd32b expressing cells
EP2155790A1 (en) 2007-05-31 2010-02-24 Genmab A/S Method for extending the half-life of exogenous or endogenous soluble molecules
CA2689941C (en) 2007-06-25 2019-10-29 Esbatech Ag Methods of modifying antibodies, and modified antibodies with improved functional properties
JP5506670B2 (ja) 2007-06-25 2014-05-28 エスバテック − ア ノバルティス カンパニー エルエルシー 単鎖抗体の配列に基づくエンジニアリング及び最適化
EP3067692B1 (en) 2007-06-29 2019-04-17 Quest Diagnostics Investments Incorporated Analysis of amino acids in body fluid by liquid chromatography-mass spectrometry (lc-ms)
WO2009014263A1 (ja) 2007-07-26 2009-01-29 Osaka University インターロイキン6受容体阻害剤を有効成分とする眼炎症疾患治療剤
US20110105724A1 (en) 2007-08-16 2011-05-05 Stephanie Jane Clegg Novel compounds
CA2697612A1 (en) 2007-08-28 2009-03-12 Biogen Idec Ma Inc. Anti-igf-1r antibodies and uses thereof
WO2009032782A2 (en) 2007-08-28 2009-03-12 Biogen Idec Ma Inc. Compositions that bind multiple epitopes of igf-1r
EP2031064A1 (de) 2007-08-29 2009-03-04 Boehringer Ingelheim Pharma GmbH & Co. KG Verfahren zur Steigerung von Proteintitern
CL2008002775A1 (es) 2007-09-17 2008-11-07 Amgen Inc Uso de un agente de unión a esclerostina para inhibir la resorción ósea.
AU2008304756B8 (en) 2007-09-26 2015-02-12 Chugai Seiyaku Kabushiki Kaisha Anti-IL-6 receptor antibody
WO2009041734A1 (ja) 2007-09-26 2009-04-02 Kyowa Hakko Kirin Co., Ltd. ヒトトロンボポエチン受容体に対するアゴニスト抗体
AR068563A1 (es) * 2007-09-26 2009-11-18 Chugai Pharmaceutical Co Ltd Region constante de anticuerpo mutante
EP4368721A2 (en) 2007-09-26 2024-05-15 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in cdr
EP2196541B1 (en) 2007-09-28 2012-11-07 Chugai Seiyaku Kabushiki Kaisha Anti-glypican-3 antibody having improved kinetics in plasma
US8529895B2 (en) 2007-10-02 2013-09-10 Chugai Seiyaku Kabushiki Kaisha Method for suppressing the development of graft-versus-host-disease by administering interleukin 6 receptor antibodies
KR100888133B1 (ko) 2007-10-02 2009-03-13 에스케이에너지 주식회사 4종의 금속성분으로 구성된 다성분계 비스무스몰리브데이트 촉매 제조방법 및 상기촉매를 이용하여1,3-부타디엔을 제조하는 방법
AR068767A1 (es) 2007-10-12 2009-12-02 Novartis Ag Anticuerpos contra esclerostina, composiciones y metodos de uso de estos anticuerpos para tratar un trastorno patologico mediado por esclerostina
AU2008314687A1 (en) 2007-10-22 2009-04-30 Merck Serono S.A. Method for purifying Fc-fusion proteins
WO2009086320A1 (en) 2007-12-26 2009-07-09 Xencor, Inc Fc variants with altered binding to fcrn
PE20091163A1 (es) 2007-11-01 2009-08-09 Wyeth Corp Anticuerpos para gdf8
WO2009063965A1 (ja) 2007-11-15 2009-05-22 Chugai Seiyaku Kabushiki Kaisha Anexelektoに結合するモノクローナル抗体、およびその利用
DK2236604T3 (en) 2007-12-05 2016-10-03 Chugai Pharmaceutical Co Ltd The anti-NR10 antibody and use thereof
EP2241332A4 (en) 2007-12-05 2011-01-26 Chugai Pharmaceutical Co Ltd THERAPEUTIC AGENT AGAINST PRITURE
AU2008343855B2 (en) 2007-12-21 2013-08-15 Amgen Inc. Anti-amyloid antibodies and uses thereof
WO2009089846A1 (en) 2008-01-18 2009-07-23 Stichting Sanquin Bloedvoorziening Methods for increasing the therapeutic efficacy of immunoglobulin g class 3 (igg3) antibodies
CA2712432C (en) 2008-01-29 2018-09-25 Ablynx N.V. Methods to stabilize single variable domains
MY195714A (en) 2008-04-11 2023-02-07 Chugai Pharmaceutical Co Ltd Antigen-Binding Molecule Capable of Binding to Two or More Antigen Molecules Repeatedly
AU2015227424A1 (en) 2008-04-11 2015-10-01 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
JP2011519279A (ja) * 2008-05-01 2011-07-07 アムジエン・インコーポレーテツド 抗ヘプシジン抗体及び使用の方法
AU2009246053B2 (en) 2008-05-14 2014-07-24 Agriculture Victoria Services Pty Ltd. Use of angiogenin or angiogenin agonists for treating diseases and disorders
CN102256623A (zh) 2008-06-05 2011-11-23 独立行政法人国立癌症研究中心 神经浸润抑制剂
PE20110225A1 (es) 2008-08-05 2011-04-05 Novartis Ag Composiciones y metodos para anticuerpos que se dirigen a la proteina de complemento c5
SI2853545T1 (sl) 2008-09-17 2016-10-28 Xencor Inc., Protitelesa, specifična za IgE
TWI440469B (zh) 2008-09-26 2014-06-11 Chugai Pharmaceutical Co Ltd Improved antibody molecules
JP5229888B2 (ja) 2008-09-30 2013-07-03 独立行政法人産業技術総合研究所 弱酸性域での易解離性を向上したプロテインa変異型タンパク質及び抗体捕捉剤
EP3524620A1 (en) 2008-10-14 2019-08-14 Genentech, Inc. Immunoglobulin variants and uses thereof
LT2894165T (lt) 2008-11-10 2023-03-10 Alexion Pharmaceuticals, Inc. Būdai ir kompozicijos, skirti su komplementu susijusių sutrikimų gydymui
WO2010058860A1 (ja) 2008-11-18 2010-05-27 株式会社シノテスト 試料中のc反応性蛋白質の測定方法及び測定試薬
AU2009323009B2 (en) 2008-11-25 2016-01-28 Vitaeris Inc. Antibodies to IL-6 and use thereof
UY32341A (es) 2008-12-19 2010-07-30 Glaxo Group Ltd Proteínas de unión antígeno novedosas
CN106995495A (zh) 2009-01-12 2017-08-01 希托马克斯医疗有限责任公司 修饰抗体组合物及其制备和使用方法
CN102369291A (zh) 2009-01-23 2012-03-07 比奥根艾迪克Ma公司 效应子功能降低的稳定Fc多肽及使用方法
US20100292443A1 (en) * 2009-02-26 2010-11-18 Sabbadini Roger A Humanized platelet activating factor antibody design using anti-lipid antibody templates
TWI544077B (zh) * 2009-03-19 2016-08-01 Chugai Pharmaceutical Co Ltd Antibody constant region change body
SG10201703707YA (en) 2009-03-19 2017-06-29 Chugai Pharmaceutical Co Ltd Pharmaceutical formulation containing improved antibody molecules
EP2409991B1 (en) * 2009-03-19 2017-05-03 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
EP2233500A1 (en) 2009-03-20 2010-09-29 LFB Biotechnologies Optimized Fc variants
SG176074A1 (en) * 2009-05-15 2011-12-29 Chugai Pharmaceutical Co Ltd Anti-axl antibody
WO2010138610A2 (en) 2009-05-26 2010-12-02 The Johns Hopkins University Novel desmin phosphorylation sites useful in diagnosis and intervention of cardiac disease
US8609097B2 (en) 2009-06-10 2013-12-17 Hoffmann-La Roche Inc. Use of an anti-Tau pS422 antibody for the treatment of brain diseases
WO2010151526A1 (en) 2009-06-23 2010-12-29 Alexion Pharmaceuticals, Inc. Bispecific antibodies that bind to complement proteins
US8945511B2 (en) 2009-06-25 2015-02-03 Paul Weinberger Sensitive methods for detecting the presence of cancer associated with the over-expression of galectin-3 using biomarkers derived from galectin-3
CA2766220C (en) 2009-06-26 2021-02-09 Regeneron Pharmaceuticals, Inc. Readily isolated bispecific antibodies with native immunoglobulin format
GB0914691D0 (en) 2009-08-21 2009-09-30 Lonza Biologics Plc Immunoglobulin variants
BR112012004823B1 (pt) 2009-09-03 2021-11-30 Merck Sharp & Dohme Corp Anticorpo ou fragmento de ligação de antígeno do mesmo, uso de um anticorpo ou um fragmento de ligação de antígeno do mesmo, e composição farmacêutica
EP2481752B1 (en) * 2009-09-24 2016-11-09 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant regions
ES2621458T3 (es) 2009-10-06 2017-07-04 Medimmune Limited Molécula de unión específica al RSV
US8568726B2 (en) 2009-10-06 2013-10-29 Medimmune Limited RSV specific binding molecule
ES2672121T3 (es) 2009-10-07 2018-06-12 Macrogenics, Inc. Polipéptidos que contienen región Fc que presentan una función efectora mejorada debido a alteraciones del grado de fucosilación, y métodos para su uso
CN102781963B (zh) 2009-10-27 2018-02-16 Ucb医药有限公司 功能修饰性NAv1.7抗体
CN101875696B (zh) 2009-11-11 2012-02-08 中国人民解放军军事医学科学院生物工程研究所 一种抗体及其制备方法与应用
EP2327725A1 (en) 2009-11-26 2011-06-01 InflaRx GmbH Anti-C5a binding moieties with high blocking activity
AU329016S (en) 2009-12-03 2009-12-22 Non Entity 49398 Induction system with integral air filter
ES2777901T3 (es) 2009-12-25 2020-08-06 Chugai Pharmaceutical Co Ltd Método de modificación de polipéptidos para purificar multímeros polipeptídicos
WO2011094593A2 (en) 2010-01-28 2011-08-04 Ab Biosciences, Inc. Novel lowered affinity antibodies and methods of marking the same
WO2011100271A2 (en) 2010-02-09 2011-08-18 Glaxosmithkline Llc Novel uses
TW201127310A (en) * 2010-02-11 2011-08-16 jin-zhu Chen Step-less finetuning buckle
PL2536745T3 (pl) 2010-02-19 2017-01-31 Xencor, Inc. Nowe immunoadhezyny CTLA4-IG
NZ602219A (en) 2010-03-01 2014-10-31 Alexion Pharma Inc Methods and compositions for treating degos’ disease
JP5889181B2 (ja) 2010-03-04 2016-03-22 中外製薬株式会社 抗体定常領域改変体
TW201206466A (en) 2010-03-11 2012-02-16 Rinat Neuroscience Corp Antibodies with pH dependent antigen binding
SG10201507722QA (en) 2010-03-11 2015-10-29 Rinat Neuroscience Corp ANTIBODIES WITH pH DEPENDENT ANTIGEN BINDING
JP2011184418A (ja) 2010-03-11 2011-09-22 Tokyo Institute Of Technology 親和性可変抗体
TWI667257B (zh) 2010-03-30 2019-08-01 中外製藥股份有限公司 促進抗原消失之具有經修飾的FcRn親和力之抗體
WO2011137362A1 (en) 2010-04-30 2011-11-03 Rother Russell P Antibodies having reduced immunogenicity in a human
JO3340B1 (ar) 2010-05-26 2019-03-13 Regeneron Pharma مضادات حيوية لـعامل تمايز النمو 8 البشري
WO2011149046A1 (ja) 2010-05-28 2011-12-01 独立行政法人国立がん研究センター 膵癌治療剤
TW201210612A (en) 2010-06-03 2012-03-16 Glaxo Group Ltd Humanised antigen binding proteins
DK3029066T3 (da) 2010-07-29 2019-05-20 Xencor Inc Antistoffer med modificerede isoelektriske punkter
CN105440134A (zh) 2010-08-16 2016-03-30 安姆根公司 结合肌肉生长抑制素的抗体、组合物和方法
MX349622B (es) 2010-09-08 2017-08-07 Halozyme Inc Metodos para evaluar e identificar o evolucionar proteinas terapeuticas condicionalmente activas.
WO2012032181A2 (en) 2010-09-10 2012-03-15 Allozyne, Inc Novel antibody derivatives
EP2638067A2 (en) 2010-11-08 2013-09-18 Genentech, Inc. Subcutaneously administered anti-il-6 receptor antibody
KR102385507B1 (ko) 2010-11-30 2022-04-12 추가이 세이야쿠 가부시키가이샤 복수 분자의 항원에 반복해서 결합하는 항원 결합 분자
WO2012088247A2 (en) 2010-12-22 2012-06-28 Medimmune, Llc Anti-c5/c5a/c5adesr antibodies and fragments
EP2662385A4 (en) 2011-01-07 2015-11-11 Chugai Pharmaceutical Co Ltd METHOD FOR IMPROVING THE PHYSICAL PROPERTIES OF ANTIBODIES
WO2012132067A1 (ja) 2011-03-30 2012-10-04 中外製薬株式会社 抗原結合分子の血漿中滞留性と免疫原性を改変する方法
CA2827923C (en) 2011-02-25 2021-11-23 Chugai Seiyaku Kabushiki Kaisha Fc.gamma.riib-specific fc antibody
MX2013010011A (es) 2011-03-01 2014-10-24 Amgen Inc Agentes de unión biespecífica.
EP2686345B1 (en) 2011-03-16 2018-04-25 Amgen Inc. Fc variants
DK2698431T3 (da) 2011-03-30 2020-11-30 Chugai Pharmaceutical Co Ltd Opretholdelse af antigen-bindende molekyler i blodplasma og fremgangsmåde til modifikation af immunogenicitet
ES2685479T3 (es) 2011-04-19 2018-10-09 Amgen Inc. Método para el tratamiento de la osteoporosis
WO2012149356A2 (en) 2011-04-29 2012-11-01 Apexigen, Inc. Anti-cd40 antibodies and methods of use
CA3131223C (en) 2011-05-04 2024-01-30 Omeros Corporation Compositions for inhibiting masp-2 dependent complement activation
MY173899A (en) 2011-05-21 2020-02-26 Macrogenics Inc Cd3-binding molecules capable of binding to human and non-human cd3
KR20140028013A (ko) 2011-05-25 2014-03-07 머크 샤프 앤드 돔 코포레이션 개선된 특성을 갖는 Fc-함유 폴리펩티드를 제조하는 방법
US8961981B2 (en) 2011-06-20 2015-02-24 Saint Louis University Targeting the neuromuscular junction for treatment
UA117901C2 (uk) 2011-07-06 2018-10-25 Ґенмаб Б.В. Спосіб посилення ефекторної функції вихідного поліпептиду, його варіанти та їх застосування
US9738707B2 (en) 2011-07-15 2017-08-22 Biogen Ma Inc. Heterodimeric Fc regions, binding molecules comprising same, and methods relating thereto
CN107287660A (zh) 2011-09-30 2017-10-24 中外制药株式会社 离子浓度依赖性结合分子文库
TWI812924B (zh) 2011-09-30 2023-08-21 日商中外製藥股份有限公司 促進抗原消失的抗原結合分子
WO2013047748A1 (ja) 2011-09-30 2013-04-04 中外製薬株式会社 複数の生理活性を有する抗原の消失を促進する抗原結合分子
CN104093424A (zh) 2011-09-30 2014-10-08 中外制药株式会社 诱导针对靶抗原的免疫应答的抗原结合分子
TW201326209A (zh) 2011-09-30 2013-07-01 Chugai Pharmaceutical Co Ltd 具有促進抗原清除之FcRn結合域的治療性抗原結合分子
US20150299313A1 (en) 2011-10-05 2015-10-22 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule for promoting clearance from plasma of antigen comprising suger chain receptor-binding domain
RU2739792C1 (ru) 2011-11-30 2020-12-28 Чугаи Сейяку Кабусики Кайся Содержащий лекарственное средство переносчик в клетку для формирования иммунного комплекса
SG11201405137QA (en) 2012-02-24 2014-12-30 Chugai Pharmaceutical Co Ltd ANTIGEN-BINDING MOLECULE FOR PROMOTING DISAPPEARANCE OF ANTIGEN VIA FcγRIIB
EP2825553B1 (en) 2012-03-14 2018-07-25 Regeneron Pharmaceuticals, Inc. Multispecific antigen-binding molecules and uses thereof
HUE053310T2 (hu) 2012-03-16 2021-06-28 Regeneron Pharma Hisztidinmódosított könnyûlánc antitestek és genetikailag módosított rágcsálók ugyanennek az elõállítására
PL2825037T4 (pl) 2012-03-16 2020-03-31 Regeneron Pharmaceuticals, Inc. Gryzonie eksprymujące sekwencje immunoglobuliny wrażliwej na pH
CN104540851B (zh) 2012-03-29 2017-09-15 诺夫免疫股份有限公司 抗tlr4抗体及其用途
TWI619729B (zh) 2012-04-02 2018-04-01 再生元醫藥公司 抗-hla-b*27抗體及其用途
JP5988659B2 (ja) 2012-04-09 2016-09-07 シャープ株式会社 送風機
US9605058B2 (en) 2012-05-01 2017-03-28 Glaxosmithkline Llc Antibodies against the CXC-ELR family of chemokines
US9255154B2 (en) 2012-05-08 2016-02-09 Alderbio Holdings, Llc Anti-PCSK9 antibodies and use thereof
TWI766939B (zh) 2012-05-30 2022-06-11 日商中外製藥股份有限公司 標的組織專一的抗原結合分子
ES2856272T3 (es) 2012-05-30 2021-09-27 Chugai Pharmaceutical Co Ltd Molécula de unión a antígenos para eliminar antígenos agregados
CN104487453B (zh) 2012-06-15 2018-09-28 辉瑞公司 经改良的抗gdf-8的拮抗剂抗体及其用途
US11180572B2 (en) 2012-07-06 2021-11-23 Genmab B.V. Dimeric protein with triple mutations
WO2014028354A1 (en) 2012-08-13 2014-02-20 Regeneron Pharmaceuticals, Inc. Anti-pcsk9 antibodies with ph-dependent binding characteristics
US9133269B2 (en) 2012-08-24 2015-09-15 Anaptysbio, Inc. Humanized antibodies directed against complement protein C5
WO2014030750A1 (ja) 2012-08-24 2014-02-27 中外製薬株式会社 マウスFcγRII特異的Fc抗体
KR102273985B1 (ko) 2012-08-24 2021-07-06 추가이 세이야쿠 가부시키가이샤 FcγRIIb 특이적 Fc영역 개변체
TW201922795A (zh) 2012-09-10 2019-06-16 愛爾蘭商尼歐托普生物科學公司 抗mcam抗體及相關使用方法
CN108409856B (zh) 2012-09-13 2022-03-04 百时美施贵宝公司 结合至肌生成抑制素的基于纤连蛋白的支架结构域蛋白
TW201418707A (zh) 2012-09-21 2014-05-16 Alexion Pharma Inc 補體組分c5拮抗劑之篩選分析
US20150284455A1 (en) 2012-11-06 2015-10-08 Scholar Rock, Inc. Compositions and methods for modulating cell signaling
EP2934584B1 (en) 2012-12-21 2020-02-19 Aveo Pharmaceuticals, Inc. Anti-gdf15 antibodies
US9701759B2 (en) 2013-01-14 2017-07-11 Xencor, Inc. Heterodimeric proteins
EP2948473A1 (en) 2013-01-24 2015-12-02 GlaxoSmithKline Intellectual Property Development Limited Tnf-alpha antigen-binding proteins
EP2975055A4 (en) 2013-01-31 2016-11-02 Univ Seoul Nat R & Db Found C5 ANTIBODIES AND METHOD FOR PREVENTING AND TREATING COMPLEMENT-MEDIATED ILLNESSES
US9481725B2 (en) 2013-03-14 2016-11-01 Alderbio Holdings, Llc Antibodies to HGF and compositions containing
AU2014232501C1 (en) 2013-03-15 2021-04-22 Xencor, Inc. Heterodimeric proteins
WO2014144080A2 (en) 2013-03-15 2014-09-18 Amgen Inc. Human antigen binding proteins that bind to proprotein convertase subtilisin kexin type 9
US9321686B2 (en) 2013-03-15 2016-04-26 Forta Corporation Reinforcement fiber coating compositions, methods of making and treating, and uses for improved adhesion to asphalt and portland cement concrete
EP2970508A4 (en) 2013-03-15 2016-12-14 Permeon Biologics Inc GENETICALLY MODIFIED LOADING ANTIBODIES OR ENHANCED ENHANCEMENT ENHANCEMENT TARGETING PROTEIN COMPOSITIONS AND METHODS OF USE
CA2906835A1 (en) 2013-03-15 2014-09-18 Amgen Inc. Myostatin antagonism in human subjects
US10858417B2 (en) 2013-03-15 2020-12-08 Xencor, Inc. Heterodimeric proteins
EP3473272A1 (en) 2013-03-29 2019-04-24 Alexion Pharmaceuticals, Inc. Compositions and methods for increasing the serum half-life of a therapeutic agent targeting complement c5
CN113621057A (zh) 2013-04-02 2021-11-09 中外制药株式会社 Fc区变体
SG10201800800YA (en) 2013-05-06 2018-03-28 Scholar Rock Inc Compositions and methods for growth factor modulation
SG11201509284VA (en) 2013-05-17 2015-12-30 Centre Nat Rech Scient Anti-cxcl1, cxcl7 and cxcl8 antibodies and their applications
WO2014190441A1 (en) 2013-05-31 2014-12-04 Zymeworks Inc. Heteromultimers with reduced or silenced effector function
ES2683268T3 (es) 2013-07-25 2018-09-25 Cytomx Therapeutics, Inc. Anticuerpos multiespecíficos, anticuerpos activables multiespecíficos y métodos para usar los mismos
AU2014307589A1 (en) 2013-08-14 2016-02-11 Novartis Ag Methods of treating sporadic inclusion body myositis
US20160184391A1 (en) 2013-08-16 2016-06-30 Alexion Pharmaceuticals, Inc. Treatment of graft rejection by administering a complement inhibitor to an organ prior to transplant
WO2015034000A1 (ja) 2013-09-04 2015-03-12 プロテノバ株式会社 イムノグロブリン結合ドメイン多量体
EP2853898B1 (en) 2013-09-27 2017-01-04 Medizinische Hochschule Hannover Analysis of myostatin in serum
RU2016129517A (ru) 2013-12-20 2018-01-25 Ф. Хоффманн-Ля Рош Аг Биспецифические антитела к her2 и способы применения
US20170248609A1 (en) 2014-01-27 2017-08-31 Novartis Ag Biomarkers predictive of muscle atrophy, method and use
EP4008726A1 (en) 2014-02-20 2022-06-08 Allergan, Inc. Complement component c5 antibodies
NZ631007A (en) 2014-03-07 2015-10-30 Alexion Pharma Inc Anti-c5 antibodies having improved pharmacokinetics
TW201622746A (zh) 2014-04-24 2016-07-01 諾華公司 改善或加速髖部骨折術後身體復原之方法
ES2926376T3 (es) 2014-06-30 2022-10-25 Merck Patent Gmbh Anticuerpos anti-TNFa con unión al antígeno dependiente del pH
WO2016073879A2 (en) 2014-11-06 2016-05-12 Scholar Rock, Inc. Transforming growth factor-related antibodies and uses thereof
AU2015342936B2 (en) 2014-11-06 2020-10-08 Scholar Rock, Inc. Anti-pro/latent-Myostatin antibodies and uses thereof
MX2017007519A (es) 2014-12-08 2017-08-22 Novartis Ag Antagonistas de miostatina o activina para el tratamiento de sarcopenia.
HUE056489T2 (hu) 2014-12-19 2022-02-28 Chugai Pharmaceutical Co Ltd Anti-C5 antitestek és alkalmazási eljárások
MA41294A (fr) 2014-12-19 2017-11-08 Chugai Pharmaceutical Co Ltd Anticorps anti-myostatine, polypeptides contenant des variants de régions fc, et procédés d'utilisation
CN107428823B (zh) 2015-01-22 2021-10-26 中外制药株式会社 两种以上抗-c5抗体的组合与使用方法
EP3253778A1 (en) 2015-02-05 2017-12-13 Chugai Seiyaku Kabushiki Kaisha Antibodies comprising an ion concentration dependent antigen-binding domain, fc region variants, il-8-binding antibodies, and uses therof
KR101892883B1 (ko) 2015-02-27 2018-10-05 추가이 세이야쿠 가부시키가이샤 Il-6 관련 질환 치료용 조성물
WO2016160756A2 (en) 2015-03-31 2016-10-06 Alexion Pharmaceuticlas, Inc. Identifying and treating subpopulations of paroxysmal nocturnal hemoglobinuria (pnh) patents
EA201792298A1 (ru) 2015-04-15 2018-04-30 Регенерон Фармасьютикалз, Инк. Способы увеличения силы и функциональности с помощью ингибиторов gdf8
WO2016178980A1 (en) 2015-05-01 2016-11-10 Alexion Pharmaceuticals, Inc. Efficacy of an anti-c5 antibody in the prevention of antibody mediated rejection in sensitized recipients of kindney thansplant
EP3313437A1 (en) 2015-06-26 2018-05-02 Alexion Pharmaceuticals, Inc. A method for treating a patient in compliance with vaccination with eculizumab or an eculizumab variant
US10940126B2 (en) 2015-07-03 2021-03-09 Camilla Svensson Inhibition of IL-8 in the treatment of pain and/or bone loss
SI3350220T1 (sl) 2015-09-15 2021-12-31 Scholar Rock, Inc. Protitelesa proti pro/latentnemu miostatinu in uporabe le-teh
CR20180217A (es) 2015-09-18 2018-05-03 Chugai Pharmaceutical Co Ltd Anticuerpos que se unen a interleucina 8 (il-8) y sus usos
TW201718014A (zh) 2015-10-12 2017-06-01 諾華公司 C5抑制劑於移植相關微血管病之用途
EP3390442B1 (en) 2015-12-18 2023-11-08 Chugai Seiyaku Kabushiki Kaisha Anti-c5 antibodies and methods of use
EA201891420A1 (ru) 2015-12-18 2019-02-28 Чугаи Сейяку Кабусики Кайся Антитела к миостатину, полипептиды, содержащие варианты fc-областей, и способы их применения
US10233252B2 (en) 2015-12-21 2019-03-19 Wisconsin Alumni Research Foundation pH-dependent antibodies targeting the transferrin receptor and methods of use thereof to deliver a therapeutic agent
WO2017110981A1 (en) 2015-12-25 2017-06-29 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies and methods of use
JP2019504064A (ja) 2016-01-08 2019-02-14 スカラー ロック インコーポレイテッドScholar Rock,Inc. 抗プロ/潜在型ミオスタチン抗体およびその使用方法
EP3402816A1 (en) 2016-01-11 2018-11-21 Alexion Pharmaceuticals, Inc. Dosage and administration of anti-c5 antibodies for treatment
MA53248A (fr) 2016-01-25 2022-02-16 Takeda Pharmaceuticals Co Anticorps anti-c5 à commutation ph améliorée
RS61090B1 (sr) 2016-06-13 2020-12-31 Scholar Rock Inc Upotreba inhibitora miostatina i kombinovane terapije
MA45235A (fr) 2016-06-14 2019-04-17 Regeneron Pharma Anticorps anti-c5 et leurs utilisations
KR102226975B1 (ko) 2016-06-17 2021-03-11 추가이 세이야쿠 가부시키가이샤 항-c5 항체 및 사용 방법
KR20220143961A (ko) 2016-06-17 2022-10-25 추가이 세이야쿠 가부시키가이샤 항-마이오스타틴 항체 및 사용 방법
AU2017305073B2 (en) 2016-08-05 2024-02-01 Chugai Seiyaku Kabushiki Kaisha Composition for prevention or treatment of IL-8 related diseases
US11608374B2 (en) 2017-01-30 2023-03-21 Chugai Seiyaku Kabushiki Kaisha Anti-sclerostin antibodies and methods of use
IL307593A (en) 2017-01-31 2023-12-01 Chugai Pharmaceutical Co Ltd Pharmaceutical preparation for use in the treatment and prevention of C5-related diseases and methods for the treatment and prevention of C5-related diseases
JP7211961B2 (ja) 2017-03-14 2023-01-24 ファイヴ プライム セラピューティクス インク 酸性pHでVISTAに結合する抗体
MX2019010802A (es) 2017-03-16 2019-10-30 Medimmune Ltd Anticuerpos anti-par2 y usos de los mismos.
IL261809B2 (en) 2017-04-03 2024-04-01 Inflarx Gmbh Treatment of inflammatory diseases with inhibitors of C5A activity
US20200254092A1 (en) 2017-10-26 2020-08-13 Alexion Pharmaceuticals, Inc. Dosage and administration of anti-c5 antibodies for treatment of paroxysmal nocturnal hemoglobinuria (pnh) and atypical hemolytic uremic syndrome (ahus)
WO2019112984A1 (en) 2017-12-04 2019-06-13 Ra Pharmaceuticals, Inc. Modulators of complement activity
JP6672516B2 (ja) 2018-08-01 2020-03-25 中外製薬株式会社 C5関連疾患の治療または予防用の医薬組成物およびc5関連疾患を治療または予防するための方法
CA3136398A1 (en) 2019-04-10 2020-10-15 Chugai Seiyaku Kabushiki Kaisha Method for purifying fc region-modified antibody

Patent Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0159878B2 (ja) 1982-05-21 1989-12-20 Yunibaashitei Obu Karifuorunia
EP0125023A1 (en) 1983-04-08 1984-11-14 Genentech, Inc. Recombinant immunoglobulin preparations, methods for their preparation, DNA sequences, expression vectors and recombinant host cells therefor
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
WO1992001047A1 (en) 1990-07-10 1992-01-23 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992020791A1 (en) 1990-07-10 1992-11-26 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992003918A1 (en) 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993006213A1 (en) 1991-09-23 1993-04-01 Medical Research Council Production of chimeric antibodies - a combinatorial approach
WO1993011236A1 (en) 1991-12-02 1993-06-10 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993019172A1 (en) 1992-03-24 1993-09-30 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1995001438A1 (en) 1993-06-30 1995-01-12 Medical Research Council Sbp members with a chemical moiety covalently bound within the binding site; production and selection thereof
WO1995001937A1 (fr) 1993-07-09 1995-01-19 Association Gradient Procede de traitement de residus de combustion et installation de mise en ×uvre dudit procede
WO1995015388A1 (en) 1993-12-03 1995-06-08 Medical Research Council Recombinant binding proteins and peptides
WO1995015393A1 (fr) 1993-12-03 1995-06-08 Asahi Kasei Kogyo Kabushiki Kaisha Nouveau vecteur de detection d'expression
WO1996002576A1 (fr) 1994-07-13 1996-02-01 Chugai Seiyaku Kabushiki Kaisha Anticorps humain reconstitue contre l'interleukine-8 humaine
WO1996033735A1 (en) 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1998013388A1 (fr) 1996-09-26 1998-04-02 Chugai Seiyaku Kabushiki Kaisha Anticorps contre les peptides lies a la parathormone humaine
WO1998046777A1 (fr) 1997-04-11 1998-10-22 Centre National De La Recherche Scientifique (Cnrs) Preparation de recepteurs membranaires a partir de baculovirus extracellulaires
WO1999054342A1 (en) 1998-04-20 1999-10-28 Pablo Umana Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity
WO2000061739A1 (en) 1999-04-09 2000-10-19 Kyowa Hakko Kogyo Co., Ltd. Method for controlling the activity of immunologically functional molecule
WO2002020565A2 (en) 2000-09-08 2002-03-14 Universität Zürich Collections of repeat proteins comprising repeat modules
WO2002031140A1 (fr) 2000-10-06 2002-04-18 Kyowa Hakko Kogyo Co., Ltd. Cellules produisant des compositions d'anticorps
WO2002032925A2 (en) 2000-10-16 2002-04-25 Phylos, Inc. Protein scaffolds for antibody mimics and other binding proteins
WO2005037989A2 (en) 2001-01-17 2005-04-28 Trubion Pharmaceuticals, Inc. Binding domain-immunoglobulin fusion proteins
WO2002079255A1 (en) 2001-04-02 2002-10-10 Idec Pharmaceuticals Corporation RECOMBINANT ANTIBODIES COEXPRESSED WITH GnTIII
WO2003002609A2 (en) 2001-06-28 2003-01-09 Domantis Limited Dual-specific ligand and its use
WO2004039826A1 (en) 2001-11-14 2004-05-13 Centocor, Inc. Anti-il-6 antibodies, compositions, methods and uses
WO2003105757A2 (en) 2002-06-12 2003-12-24 Genencor International, Inc. Methods and compositions for milieu-dependent binding of a targeted agent to a target
WO2004044011A2 (en) 2002-11-06 2004-05-27 Avidia Research Institute Combinatorial libraries of monomer domains
WO2004058821A2 (en) 2002-12-27 2004-07-15 Domantis Limited Dual specific single domain antibodies specific for a ligand and for the receptor of the ligand
WO2005040229A2 (en) 2003-10-24 2005-05-06 Avidia, Inc. Ldl receptor class a and egf domain monomers and multimers
WO2006067913A1 (ja) 2004-12-22 2006-06-29 Chugai Seiyaku Kabushiki Kaisha フコーストランスポーターの機能が阻害された細胞を用いた抗体の作製方法
WO2006067847A1 (ja) 2004-12-22 2006-06-29 Chugai Seiyaku Kabushiki Kaisha フコーストランスポーターの機能が阻害された細胞を用いた抗体の作製方法
WO2007014278A2 (en) 2005-07-25 2007-02-01 Trubion Pharmaceuticals, Inc. B-cell reduction using cd37-specific and cd20-specific binding molecules
WO2007059782A1 (en) 2005-11-28 2007-05-31 Genmab A/S Recombinant monovalent antibodies and methods for production thereof
US20070280945A1 (en) 2006-06-02 2007-12-06 Sean Stevens High affinity antibodies to human IL-6 receptor
WO2007142325A1 (ja) 2006-06-08 2007-12-13 Chugai Seiyaku Kabushiki Kaisha 炎症性疾患の予防または治療剤

Non-Patent Citations (94)

* Cited by examiner, † Cited by third party
Title
"binding to a target molecule", CURRENT OPINION IN BIOTECHNOLOGY, vol. 17, 2006, pages 653 - 658
"Current protocols in Molecular Biology", 1987, JOHN WILEY & SONS
"fusion protein, VEGFR-Fc fusion protein, and CTLA4-Fc fusion protein", NAT MED., vol. 9, no. 1, January 2003 (2003-01-01), pages 47 - 52
"Strategies for Protein Purification and Characterization: A Laboratory Course Manual.", 1996, COLD SPRING HARBOR LABORATORY PRESS
AMINO ACIDS., vol. 16, no. 3-4, 1999, pages 345 - 79
AMIT ET AL., SCIENCE, vol. 233, 1986, pages 747 - 53
ANGEW. CHEM. INT. ED., vol. 44, no. 34, 2005
BETTER, M.; HORWITZ, A. H., METHODS IN ENZYMOLOGY, vol. 178, 1989, pages 476 - 496
BIOCHEM. BIOPHYS. RES. COMMUN, vol. 334, no. 4, 9 September 2005 (2005-09-09), pages 1004 - 13
BIODRUGS, vol. 20, no. 3, 2006, pages 151 - 60
BIOTECHNOL. PROG., vol. 18, no. 2, March 2002 (2002-03-01), pages 212 - 20
BIRD, R. E. ET AL., TIBTECH, vol. 9, 1991, pages 132 - 137
BIRNEY ET AL.: "Ensemble", NUCLEIC ACIDS RES., vol. 34, 1 January 2006 (2006-01-01)
CANCER RES., vol. 53, no. 4, 15 February 1993 (1993-02-15), pages 851 - 6
CHEM SOC REV., vol. 33, no. 7, 10 September 2004 (2004-09-10), pages 422 - 30
CHOTHIA ET AL., J. MOL. BIOL., vol. 196, 1987, pages 901 - 17
CHOTHIA ET AL., NATURE, vol. 342, 1989, pages 877
CLACKSON ET AL., NATURE, vol. 352, 1991, pages 624 - 8
CO, M.S. ET AL., J. IMMUNOL., vol. 152, 1994, pages 2968 - 2976
COX KM ET AL., NAT. BIOTECHNOL., vol. 24, no. 12, December 2006 (2006-12-01), pages 1591 - 1597
CURRENT OPINION IN BIOTECHNOLOGY, vol. 18, 2007, pages 1 - 10
CURRENT OPINION IN STRUCTURAL BIOLOGY, vol. 7, 1997, pages 463 - 469
DRUG DISCOV TODAY, vol. 11, no. 1-2, January 2006 (2006-01-01), pages 81 - 8
DRUG DISCOV. TODAY, vol. 11, no. 1-2, January 2006 (2006-01-01), pages 81 - 8
EBERT ET AL., BIO/TECHNOLOGY, vol. 12, 1994, pages 699 - 702
EMBO J., vol. 13, no. 24, 15 December 1994 (1994-12-15), pages 5863 - 70
EUR. J. IMMUNOL., vol. 23, 1993, pages 2026 - 2029
FAB: "fragments, F(ab')2 fragments, scFv", NAT BIOTECHNOL., vol. 23, no. 9, September 2005 (2005-09-01), pages 1126 - 36
FEBS LETTER, vol. 309, no. 1, 1992, pages 85 - 88
G. KOHLER; C. MILSTEIN, METHODS ENZYMOL., vol. 73, 1981, pages 3 - 46
GHETIE V; POPOV S; BORVAK J; RADU C; MATESOI D; MEDESAN C; OBER RJ; WARD ES.: "Increasing the serum persistence of an IgG fragment by random mutagenesis", NAT BIOTECHNOL., vol. 15, no. 7, July 1997 (1997-07-01), pages 637 - 40
GODING: "Monoclonal Antibodies: Principles and Practice", 1986, ACADEMIC PRESS, pages: 59 - 103
GRIFFITHS ET AL., EMBO J., vol. 13, 1994, pages 3240 - 60
HANSON CV; NISHIYAMA Y; PAUL S.: "Catalytic antibodies and their applications", CURR OPIN BIOTECHNOL., vol. 16, no. 6, December 2005 (2005-12-01), pages 631 - 6
HIBI ET AL., CELL, vol. 63, 1990, pages 1149 - 1157
HINTON PR; XIONG JM; JOHLFS MG; TANG MT; KELLER S; TSURUSHITA N.: "An engineered human IgGl antibody with longer serum half-life", J IMMUNOL., vol. 176, no. 1, 1 January 2006 (2006-01-01), pages 346 - 56
HIRATA ET AL., FEBS LETTER, vol. 356, 1994, pages 244 - 248
HUSTON, J. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 10.0, 1988, pages 5879 - 5883
ITO, W. ET AL.: "The His-probe method: effects of histidine residues introduced into the complementarity-determining regions of antibodies on antigen-antibody interactions at different pH values.", FEBS LETT., vol. 309, no. 1, 1992, pages 85 - 88, XP008123385 *
J BIOL CHEM., vol. 276, no. 9, 2 March 2001 (2001-03-02), pages 6591 - 604
J MOL BIOL., vol. 376, no. 4, 29 February 2008 (2008-02-29), pages 1182 - 200
J. ALLERGY AND CLINICAL IMMUNOLOGY, vol. 100, no. 1, 1997, pages 1 10 - 121
J. BIOCHEM., vol. 108, 1990, pages 673 - 676
J. EXP. MED., vol. 108, 1995, pages 94.0
J. IMMUNOL. METHODS, vol. 205, no. 1, 23 June 1997 (1997-06-23), pages 67 - 72
J. IMMUNOL. METHODS, vol. 247, no. 1-2, 1 January 2001 (2001-01-01), pages 191 - 203
J. IMMUNOL. METHODS, vol. 332, no. 1-2, 20 March 2008 (2008-03-20), pages 2 - 9
J. IMMUNOLOGICAL METHODS, vol. 231, 1999, pages 119 - 135
J. MOL. BIOL., vol. 227, 1992, pages 381 - 388
J. MOL. BIOL., vol. 256, 1996, pages 77 - 88
J. NATIONAL CANCER INSTITUTE, vol. 94, no. 19, 2002, pages 1484 - 1493
JANICE M; REICHERT; CLARK J ROSENSWEIG; LAURA B FADEN; MATTHEW C DEWITZ: "Monoclonal antibody successes in the clinic", NATURE BIOTECHNOLOGY, vol. 23, 2005, pages 1073 - 1078
K. SATO ET AL., CANCER RES., vol. 53, 1993, pages 10.01 - 10.06
KABAT EA ET AL., SEQUENCES OF PROTEINS OF IMMUNOLOGICAL INTEREST, 1991
KABAT ET AL., SEQUENCE OF PROTEINS OF IMMUNOLOGICAL INTEREST, 1987
KABAT ET AL., SEQUENCE OF PROTEINS OFLMMUNOLOGICAL INTEREST, 1987
KABAT ET AL., SEQUENCES OF PROTEINS OF IMMUNOLOGICAL INTEREST, 1991
KABAT, E.A. ET AL., SEQUENCES OF PROTEINS OF IMMUNOLOGICAL INTEREST, 1991
KIDNEY INT., vol. 64, 2003, pages 697 - 703
KIM SJ; PARK Y; HONG HJ.: "Antibody engineering for the development of therapeutic antibodies", MOL CELLS., vol. 20, no. 1, 31 August 2005 (2005-08-31), pages 17 - 29
KUNKEL, PROC. NATL. ACAD. SCI. USA, vol. 82, pages 488
LAMOYI, E., METHODS IN ENZYMOLOGY, vol. 121, 1989, pages 652 - 663
MA, EUR. J. IMMUNOL, vol. 24, 1994, pages 131 - 138
MARKS ET AL., J. MOL. BIOL., vol. 222, 1991, pages 581 - 97
MARTIN, W.L. ET AL.: "Crystal Structure at 2.8A of an FcRn/Heterodimeric Fc Complex: Mechanism of pH-Dependent Binding.", MOL.CELL., vol. 7, 2001, pages 867 - 877, XP003027710 *
MENDEZ ET AL., NAT. GENET., vol. 15, 1997, pages 146 - 56
MOL CELL BIOI., vol. 8, 1988, pages 466 - 472
MOL. CELL., vol. 7, no. 4, April 2001 (2001-04-01), pages 867 - 77
NAT REV MOL CELL BIOL., vol. 5, no. 2, February 2004 (2004-02-01), pages 121 - 32
NAT. BIOTECHNOL., vol. 23, no. 9, September 2005 (2005-09-01), pages 1126 - 36
NAT. CLIN. PRACT. RHEUMATOL., vol. 2, no. 11, November 2006 (2006-11-01), pages 619 - 26
NAT. REV. IMMUNOL., vol. 7, no. 9, September 2007 (2007-09-01), pages 715 - 25
NAT. REV. MOL. CELL. BIOL., vol. 5, no. 2, February 2004 (2004-02-01), pages 121 - 32
NATURE BIOTECHNOLOGY, vol. 18, December 2000 (2000-12-01), pages 1287 - 1292
PAVLOU AK; BELSEY MJ.: "The therapeutic antibodies market to", EUR J PHARM BIOPHARM., vol. 59, no. 3, April 2005 (2005-04-01), pages 389 - 96
PHARM RES., no. 23, January 2006 (2006-01-01), pages 95 - 103
PHARMACOL., vol. 48, no. 4, April 2008 (2008-04-01), pages 406 - 17
PLUECKTHUN, A.; SKERRA, A., METHODS IN ENZYMOLOGY, vol. 178, 1989, pages 497 - 515
PROC NATL ACAD SCI U S A., vol. 103, no. 11, 14 March 2006 (2006-03-14), pages 4005 - 10
PROC. NATL. ACAD. SCI. USA, vol. 92, no. 11, 23 May 1995 (1995-05-23), pages 4862 - 6
PROTEIN SCIENCE, vol. 15, 2006, pages 14 - 27
PROTEIN SCIENCE, vol. 4, 1995, pages 2411 - 2423
RAJPAL A; BEYAZ N; HABER L; CAPPUCCILLI G; YEE H; BHATT RR; TAKEUCHI T; LERNER RA; CREA R.: "A general method for greatly improving the affinity of antibodies by using combinatorial libraries", PROC NATL ACAD SCI U S A., vol. 102, no. 24, 14 June 2005 (2005-06-14), pages 8466 - 71
RATHANASWAMI P; ROALSTAD S; ROSKOS L; SU QJ; LACKIE S; BABCOOK J.: "Demonstration of an in vivo generated sub-picomolar affinity fully human monoclonal antibody to interleukin-8", BIOCHEM BIOPHYS RES COMMUN., vol. 334, no. 4, 9 September 2005 (2005-09-09), pages 1004 - 13
ROUSSEAUX ET AL., METHODS IN ENZYMOLOGY, vol. 121, 1989, pages 663 - 66
SATO, K. ET AL., CANCER RES., vol. 53, 1993, pages 10.01 - 6
THE ANTIBODY (FEBS LETTER, vol. 309, no. 1, 1992, pages 8588
THE JOURNAL OF RHEUMATOLOGY, vol. 30, 2003, pages 71426 - 1435
VALLE ET AL., NATURE, vol. 291, 1981, pages 338 - 340
VAUGHAN ET AL., NATURE BIOTECHNOLOGY, vol. 14, 1996, pages 309 - 14
VICKI GLASER, SPECTRUM BIOTECHNOLOGY APPLICATIONS, 1993
WATERHOUSES ET AL., NUCLEIC ACIDS RES., vol. 21, 1993, pages 2265 - 6
WU H; PFARR DS; JOHNSON S; BREWAH YA; WOODS RM; PATEL NK; WHITE WI; YOUNG JF; KIENER PA.: "Development of Motavizumab, an Ultra-potent Antibody for the Prevention of Respiratory Syncytial Virus Infection in the Upper and Lower Respiratory Tract", J MOL BIOL., vol. 368, 2007, pages 652 - 665
YAMASAKI ET AL., SCIENCE, vol. 241, 1988, pages 825 - 828

Cited By (414)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8062635B2 (en) 2003-10-10 2011-11-22 Chugai Seiyaku Kabushiki Kaisha Bispecific antibody substituting for functional proteins
US11168344B2 (en) 2005-03-31 2021-11-09 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
US10011858B2 (en) 2005-03-31 2018-07-03 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
US8945558B2 (en) 2005-10-21 2015-02-03 Chugai Seiyaku Kabushiki Kaisha Methods for treating myocardial infarction comprising administering an IL-6 inhibitor
US9670269B2 (en) 2006-03-31 2017-06-06 Chugai Seiyaku Kabushiki Kaisha Methods of modifying antibodies for purification of bispecific antibodies
US11046784B2 (en) 2006-03-31 2021-06-29 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
US10934344B2 (en) 2006-03-31 2021-03-02 Chugai Seiyaku Kabushiki Kaisha Methods of modifying antibodies for purification of bispecific antibodies
US9260516B2 (en) 2006-04-07 2016-02-16 Osaka University Method for promoting muscle regeneration by administering an antibody to the IL-6 receptor
US9725514B2 (en) 2007-01-23 2017-08-08 Shinshu University Chronic rejection inhibitor
US9056915B2 (en) 2007-08-23 2015-06-16 Amgen Inc. Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (PCSK9)
US9493576B2 (en) 2007-08-23 2016-11-15 Amgen Inc. Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (PCSK9)
US9920134B2 (en) 2007-08-23 2018-03-20 Amgen Inc. Monoclonal antibodies to proprotein convertase subtilisin kexin type 9 (PCSK9)
US11332533B2 (en) 2007-09-26 2022-05-17 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant region
US11248053B2 (en) 2007-09-26 2022-02-15 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US9828429B2 (en) 2007-09-26 2017-11-28 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US9688762B2 (en) 2007-09-26 2017-06-27 Chugai Sciyaku Kabushiki Kaisha Modified antibody constant region
US9096651B2 (en) 2007-09-26 2015-08-04 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US9399680B2 (en) 2007-12-05 2016-07-26 Chugai Seiyaku Kabushiki Kaisha Nucleic acids encoding anti-NR10 antibodies
US11359194B2 (en) 2008-04-11 2022-06-14 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding two or more antigen molecules repeatedly
US9868948B2 (en) 2008-04-11 2018-01-16 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
US11371039B2 (en) 2008-04-11 2022-06-28 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
US10472623B2 (en) 2008-04-11 2019-11-12 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding two or more antigen molecules repeatedly
US9890377B2 (en) 2008-04-11 2018-02-13 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
US10717781B2 (en) 2008-06-05 2020-07-21 National Cancer Center Neuroinvasion inhibitor
US10662245B2 (en) 2008-09-26 2020-05-26 Chugai Seiyaku Kabushiki Kaisha Methods of reducing IL-6 activity for disease treatment
US9637734B2 (en) 2009-03-09 2017-05-02 Bioatla, Llc Mirac proteins
EP2406399B1 (en) 2009-03-09 2018-02-14 Bioatla, LLC Mirac proteins
US9637735B2 (en) 2009-03-09 2017-05-02 Bioatla, Llc Mirac proteins
US11718844B2 (en) 2009-03-09 2023-08-08 Bioatla, Inc. Mirac proteins
US9994841B2 (en) 2009-03-09 2018-06-12 Bioatla, Llc Mirac proteins
JP2012519499A (ja) * 2009-03-09 2012-08-30 バイオアトラ、エルエルシー Miracタンパク質
US9982252B2 (en) 2009-03-09 2018-05-29 Bioatla, Llc Mirac proteins
JP2018108085A (ja) * 2009-03-09 2018-07-12 バイオアトラ、エルエルシー Miracタンパク質
US9464284B2 (en) 2009-03-09 2016-10-11 Bioatla, Llc Mirac proteins
AU2018256476B2 (en) * 2009-03-09 2021-01-21 Bioatla, Llc Mirac Proteins
US9228017B2 (en) 2009-03-19 2016-01-05 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
US10253091B2 (en) 2009-03-19 2019-04-09 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
WO2010106812A1 (en) * 2009-03-19 2010-09-23 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical formulation containing improved antibody molecules
WO2010107108A1 (ja) * 2009-03-19 2010-09-23 中外製薬株式会社 関節リウマチ治療剤
US10066018B2 (en) 2009-03-19 2018-09-04 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
US9506919B2 (en) 2009-04-13 2016-11-29 The Board Of Trustees Of The Leland Stanford Junior University Methods and devices for detecting the presence of an analyte in a sample
US9340615B2 (en) 2009-05-15 2016-05-17 Chugai Seiyaku Kabushiki Kaisha Anti-AXL antibody
US10150808B2 (en) 2009-09-24 2018-12-11 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant regions
US10072086B2 (en) 2010-01-08 2018-09-11 Regeneron Pharmaceuticals, Inc. Stabilized formulations containing anti-interleukin-6 receptor (IL-6R) antibodies
US9173880B2 (en) 2010-01-08 2015-11-03 Regeneron Pharmaceuticals, Inc. Stabilized formulations containing anti-interleukin-6 receptor (IL-6R) antibodies
US11098127B2 (en) 2010-01-08 2021-08-24 Regeneron Pharmaceuticals, Inc. Stabilized formulations containing anti-interleukin-6 receptor (IL-6R) antibodies
US10022319B2 (en) 2010-01-20 2018-07-17 Chugai Seiyaku Kabushiki Kaisha Stabilized antibody-containing liquid formulations
US11612562B2 (en) 2010-01-20 2023-03-28 Chugai Seiyaku Kabushiki Kaisha Solution preparation containing stabilized antibody
WO2011108714A1 (ja) 2010-03-04 2011-09-09 中外製薬株式会社 抗体定常領域改変体
CN102844332A (zh) * 2010-03-11 2012-12-26 瑞纳神经科学公司 呈pH依赖性抗原结合的抗体
RU2570729C2 (ru) * 2010-03-11 2015-12-10 Ринат Ньюросайенс Корпорейшн Антитела с рн-зависимым связыванием антигена
CN105218674A (zh) * 2010-03-11 2016-01-06 瑞纳神经科学公司 呈pH依赖性抗原结合的抗体
JP2013521772A (ja) * 2010-03-11 2013-06-13 ライナット ニューロサイエンス コーポレイション pH依存性の抗原結合を有する抗体
WO2011111007A3 (en) * 2010-03-11 2011-12-01 Rinat Neuroscience Corporation ANTIBODIES WITH pH DEPENDENT ANTIGEN BINDING
US10101299B2 (en) 2010-03-12 2018-10-16 The Board Of Trustees Of The Leland Standford Junior University Magnetic sensor based quantitative binding kinetics analysis
JP2013525746A (ja) * 2010-03-12 2013-06-20 ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティ 磁気センサに基づく結合反応速度の定量的な分析
KR101974794B1 (ko) * 2010-03-30 2019-05-02 추가이 세이야쿠 가부시키가이샤 항원 제거를 촉진하는 FcRn에 대해 변경된 친화성을 갖는 항체
US20170002066A1 (en) * 2010-03-30 2017-01-05 Chugai Seiyaku Kabushiki Kaisha Antibodies With Modified Affinity To FcRn That Promote Antigen Clearance
WO2011122011A2 (en) 2010-03-30 2011-10-06 Chugai Seiyaku Kabushiki Kaisha Antibodies with modified affinity to fcrn that promote antigen clearance
KR101831464B1 (ko) * 2010-03-30 2018-02-22 추가이 세이야쿠 가부시키가이샤 항원 제거를 촉진하는 FcRn에 대해 변경된 친화성을 갖는 항체
KR20180019764A (ko) * 2010-03-30 2018-02-26 추가이 세이야쿠 가부시키가이샤 항원 제거를 촉진하는 FcRn에 대해 변경된 친화성을 갖는 항체
KR102269707B1 (ko) * 2010-03-30 2021-06-25 추가이 세이야쿠 가부시키가이샤 항원 제거를 촉진하는 FcRn에 대해 변경된 친화성을 갖는 항체
KR20210079407A (ko) * 2010-03-30 2021-06-29 추가이 세이야쿠 가부시키가이샤 항원 제거를 촉진하는 FcRn에 대해 변경된 친화성을 갖는 항체
JP2019178134A (ja) * 2010-03-30 2019-10-17 中外製薬株式会社 抗原の消失を促進する、FcRnに対するアフィニティーが変更された抗体
KR102468436B1 (ko) * 2010-03-30 2022-11-17 추가이 세이야쿠 가부시키가이샤 항원 제거를 촉진하는 FcRn에 대해 변경된 친화성을 갖는 항체
EP2552955A2 (en) * 2010-03-30 2013-02-06 Chugai Seiyaku Kabushiki Kaisha Antibodies with modified affinity to fcrn that promote antigen clearance
CN102918057A (zh) * 2010-03-30 2013-02-06 中外制药株式会社 促进抗原清除的与FcRn的亲和力得到改进的抗体
US20130131319A1 (en) * 2010-03-30 2013-05-23 Chugai Seiyaku Kabushiki Kaisha Antibodies with modified affinity to fcrn that promote antigen clearance
EP3181581A1 (en) 2010-03-30 2017-06-21 Chugai Seiyaku Kabushiki Kaisha Antibodies with modified affinity to fcrn that promote antigen clearance
KR20190047111A (ko) * 2010-03-30 2019-05-07 추가이 세이야쿠 가부시키가이샤 항원 제거를 촉진하는 FcRn에 대해 변경된 친화성을 갖는 항체
JP2013528354A (ja) * 2010-03-30 2013-07-11 中外製薬株式会社 抗原の消失を促進する、FcRnに対するアフィニティーが変更された抗体
EP3702368A1 (en) 2010-03-30 2020-09-02 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecules that promote antigen clearance
EP2552955B1 (en) * 2010-03-30 2017-05-03 Chugai Seiyaku Kabushiki Kaisha Antibodies with modified affinity to fcrn that promote antigen clearance
JP2017036318A (ja) * 2010-03-30 2017-02-16 中外製薬株式会社 抗原の消失を促進する、FcRnに対するアフィニティーが変更された抗体
US20160244526A1 (en) * 2010-03-30 2016-08-25 Chugai Seiyaku Kabushiki Kaisha Antibodies with modified affinity to fcrn that promote antigen clearance
JP2021091725A (ja) * 2010-03-30 2021-06-17 中外製薬株式会社 抗原の消失を促進する、FcRnに対するアフィニティーが変更された抗体
JP2014065708A (ja) * 2010-03-30 2014-04-17 Chugai Pharmaceut Co Ltd 抗原の消失を促進する、FcRnに対するアフィニティーが変更された抗体
US20170002080A1 (en) * 2010-03-30 2017-01-05 Chugai Seiyaku Kabushiki Kaisha Antibodies With Modified Affinity To FcRn That Promote Antigen Clearance
JP2016145222A (ja) * 2010-03-30 2016-08-12 中外製薬株式会社 抗原の消失を促進する、FcRnに対するアフィニティーが変更された抗体
JP7186813B2 (ja) 2010-03-30 2022-12-09 中外製薬株式会社 抗原の消失を促進する、FcRnに対するアフィニティーが変更された抗体
US9539322B2 (en) 2010-05-28 2017-01-10 National University Corporation Hokkaido University Method of enhancing an antitumor T cell response by administering an anti-IL-6 receptor antibody
JP2013541940A (ja) * 2010-09-08 2013-11-21 ハロザイム インコーポレイテッド 条件的活性治療用タンパク質を評価および同定する、または発展させる方法
US9683985B2 (en) 2010-09-08 2017-06-20 Halozyme, Inc. Methods for assessing and identifying or evolving conditionally active therapeutic proteins
US9902948B2 (en) 2010-09-30 2018-02-27 Board Of Trustees Of Northern Illinois University Library-based methods and compositions for introducing molecular switch functionality into protein affinity reagents
US10927368B2 (en) 2010-09-30 2021-02-23 Northern Illinois Research Foundation Library-based methods and compositions for introducing molecular switch functionality into protein affinity reagents
US9334331B2 (en) 2010-11-17 2016-05-10 Chugai Seiyaku Kabushiki Kaisha Bispecific antibodies
US10450381B2 (en) 2010-11-17 2019-10-22 Chugai Seiyaku Kabushiki Kaisha Methods of treatment that include the administration of bispecific antibodies
JPWO2012073992A1 (ja) * 2010-11-30 2014-05-19 中外製薬株式会社 複数分子の抗原に繰り返し結合する抗原結合分子
CN108715614A (zh) * 2010-11-30 2018-10-30 中外制药株式会社 与多分子的抗原重复结合的抗原结合分子
JP7096863B2 (ja) 2010-11-30 2022-07-06 中外製薬株式会社 複数分子の抗原に繰り返し結合する抗原結合分子
WO2012073992A1 (ja) 2010-11-30 2012-06-07 中外製薬株式会社 複数分子の抗原に繰り返し結合する抗原結合分子
EP2647706A4 (en) * 2010-11-30 2015-04-22 Chugai Pharmaceutical Co Ltd ANTIGEN-BINDING MOLECULE FOR REPEATED BINDING TO SEVERAL ANTIGENMOLEKÜLE
CN107973851A (zh) * 2010-11-30 2018-05-01 中外制药株式会社 与多分子的抗原重复结合的抗原结合分子
JP6030452B2 (ja) * 2010-11-30 2016-11-24 中外製薬株式会社 複数分子の抗原に繰り返し結合する抗原結合分子
EP2647706A1 (en) * 2010-11-30 2013-10-09 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to plurality of antigen molecules repeatedly
RU2757786C2 (ru) * 2010-11-30 2021-10-21 Чугаи Сейяку Кабусики Кайся Антигенсвязывающая молекула, способная многократно связываться с множеством антигенных молекул
RU2658504C1 (ru) * 2010-11-30 2018-06-21 Чугаи Сейяку Кабусики Кайся Антигенсвязывающая молекула, способная многократно связываться с множеством антигенных молекул
JP2020189850A (ja) * 2010-11-30 2020-11-26 中外製薬株式会社 複数分子の抗原に繰り返し結合する抗原結合分子
JP2017019773A (ja) * 2010-11-30 2017-01-26 中外製薬株式会社 複数分子の抗原に繰り返し結合する抗原結合分子
EP4231014A3 (en) * 2010-11-30 2024-03-20 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to plurality of antigen molecules repeatedly
RU2642318C2 (ru) * 2010-11-30 2018-01-24 Чугаи Сейяку Кабусики Кайся Антигенсвязывающая молекула, способная многократно связываться с множеством антигенных молекул
CN103328632A (zh) * 2010-11-30 2013-09-25 中外制药株式会社 与多分子的抗原重复结合的抗原结合分子
RU2658504C9 (ru) * 2010-11-30 2018-08-21 Чугаи Сейяку Кабусики Кайся Антигенсвязывающая молекула, способная многократно связываться с множеством антигенных молекул
US11891434B2 (en) 2010-11-30 2024-02-06 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to plurality of antigen molecules repeatedly
EP4231014A2 (en) 2010-11-30 2023-08-23 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to plurality of antigen molecules repeatedly
JP2019048842A (ja) * 2010-11-30 2019-03-28 中外製薬株式会社 複数分子の抗原に繰り返し結合する抗原結合分子
US11718678B2 (en) 2011-02-25 2023-08-08 Chugai Seiyaku Kabushiki Kaisha Method for altering plasma retention and immunogenicity of antigen-binding molecule
US10618965B2 (en) 2011-02-25 2020-04-14 Chugai Seiyaku Kabushiki Kaisha Method for altering plasma retention and immunogenicity of antigen-binding molecule
WO2012115241A1 (ja) 2011-02-25 2012-08-30 中外製薬株式会社 FcγRIIb特異的Fc抗体
EP3604330A1 (en) 2011-02-25 2020-02-05 Chugai Seiyaku Kabushiki Kaisha Fcgammariib-specific fc antibody
JP2019123725A (ja) * 2011-02-25 2019-07-25 中外製薬株式会社 抗原結合分子の血漿中滞留性と免疫原性を改変する方法
KR102403848B1 (ko) 2011-03-30 2022-05-30 추가이 세이야쿠 가부시키가이샤 항원 결합 분자의 혈장 체류성과 면역원성을 개변하는 방법
JP2021074002A (ja) * 2011-03-30 2021-05-20 中外製薬株式会社 抗原結合分子の血漿中滞留性と免疫原性を改変する方法
KR20200121900A (ko) 2011-03-30 2020-10-26 추가이 세이야쿠 가부시키가이샤 항원 결합 분자의 혈장 체류성과 면역원성을 개변하는 방법
EP2698431A4 (en) * 2011-03-30 2014-10-01 Chugai Pharmaceutical Co Ltd MAINTAINING ANTIGEN-BINDING MOLECULES IN BLOOD PLASMA AND METHOD FOR MODIFYING AN IMMUNOGENITY
EP3825325A2 (en) 2011-03-30 2021-05-26 Chugai Seiyaku Kabushiki Kaisha Retention of antigen-binding molecules in blood plasma and method for modifying immunogenicity
JP7288466B2 (ja) 2011-03-30 2023-06-07 中外製薬株式会社 抗原結合分子の血漿中滞留性と免疫原性を改変する方法
KR102639563B1 (ko) 2011-03-30 2024-02-21 추가이 세이야쿠 가부시키가이샤 항원 결합 분자의 혈장 체류성과 면역원성을 개변하는 방법
KR20240027154A (ko) 2011-03-30 2024-02-29 추가이 세이야쿠 가부시키가이샤 항원 결합 분자의 혈장 체류성과 면역원성을 개변하는 방법
RU2799423C1 (ru) * 2011-03-30 2023-07-05 Чугаи Сейяку Кабусики Кайся Способ изменения удержания в плазме и иммуногенности антигенсвязывающей молекулы
KR20220075441A (ko) 2011-03-30 2022-06-08 추가이 세이야쿠 가부시키가이샤 항원 결합 분자의 혈장 체류성과 면역원성을 개변하는 방법
CN113980952A (zh) * 2011-03-30 2022-01-28 中外制药株式会社 改变抗原结合分子的血浆中滞留性和免疫原性的方法
KR20140015501A (ko) 2011-03-30 2014-02-06 추가이 세이야쿠 가부시키가이샤 항원 결합 분자의 혈장 체류성과 면역원성을 개변하는 방법
EP2698431B1 (en) 2011-03-30 2020-09-09 Chugai Seiyaku Kabushiki Kaisha Retention of antigen-binding molecules in blood plasma and method for modifying immunogenicity
EP2698431A1 (en) * 2011-03-30 2014-02-19 Chugai Seiyaku Kabushiki Kaisha Retention of antigen-binding molecules in blood plasma and method for modifying immunogenicity
WO2012133782A1 (ja) 2011-03-30 2012-10-04 中外製薬株式会社 抗原結合分子の血漿中滞留性と免疫原性を改変する方法
EP3825325A3 (en) * 2011-03-30 2021-10-13 Chugai Seiyaku Kabushiki Kaisha Retention of antigen-binding molecules in blood plasma and method for modifying immunogenicity
KR102168731B1 (ko) 2011-03-30 2020-10-23 추가이 세이야쿠 가부시키가이샤 항원 결합 분자의 혈장 체류성과 면역원성을 개변하는 방법
JP2017079740A (ja) * 2011-03-30 2017-05-18 中外製薬株式会社 抗原結合分子の血漿中滞留性と免疫原性を改変する方法
WO2012132067A1 (ja) * 2011-03-30 2012-10-04 中外製薬株式会社 抗原結合分子の血漿中滞留性と免疫原性を改変する方法
WO2013002362A1 (ja) 2011-06-30 2013-01-03 中外製薬株式会社 ヘテロ二量化ポリペプチド
US9890218B2 (en) 2011-06-30 2018-02-13 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
EP4011913A1 (en) 2011-06-30 2022-06-15 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
US11673967B2 (en) 2011-07-28 2023-06-13 Regeneron Pharmaceuticals, Inc. Stabilized formulations containing anti-PCSK9 antibodies
US10556949B2 (en) 2011-09-30 2020-02-11 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule inducing immune response to target antigen
JP7029355B2 (ja) 2011-09-30 2022-03-03 中外製薬株式会社 標的抗原に対する免疫応答を誘導する抗原結合分子
EP2762166A4 (en) * 2011-09-30 2015-08-26 Chugai Pharmaceutical Co Ltd ANTIGEN-BINDING MOLECULES TO PROMOTE ANTIGEN LOSS
WO2013046704A2 (en) 2011-09-30 2013-04-04 Chugai Seiyaku Kabushiki Kaisha THERAPEUTIC ANTIGEN-BINDING MOLECULE WITH A FcRn-BINDING DOMAIN THAT PROMOTES ANTIGEN CLEARANCE
WO2013047748A1 (ja) 2011-09-30 2013-04-04 中外製薬株式会社 複数の生理活性を有する抗原の消失を促進する抗原結合分子
JPWO2013047752A1 (ja) * 2011-09-30 2015-03-30 中外製薬株式会社 抗原の消失を促進する抗原結合分子
JPWO2013046722A1 (ja) * 2011-09-30 2015-03-26 中外製薬株式会社 イオン濃度依存性結合分子ライブラリ
WO2013046722A1 (ja) 2011-09-30 2013-04-04 中外製薬株式会社 イオン濃度依存性結合分子ライブラリ
EP4324850A2 (en) 2011-09-30 2024-02-21 Chugai Seiyaku Kabushiki Kaisha Therapeutic antigen-binding molecule with a fcrn-binding domain that promotes antigen clearance
AU2012317418B2 (en) * 2011-09-30 2017-09-28 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule for promoting elimination of antigens
JP2018058891A (ja) * 2011-09-30 2018-04-12 中外製薬株式会社 抗原の消失を促進する抗原結合分子
WO2013047752A1 (ja) 2011-09-30 2013-04-04 中外製薬株式会社 抗原の消失を促進する抗原結合分子
RU2812861C1 (ru) * 2011-09-30 2024-02-05 Чугаи Сейяку Кабусики Кайся Библиотека зависимых от концентрации ионов связывающих молекул
JP2018070589A (ja) * 2011-09-30 2018-05-10 中外製薬株式会社 イオン濃度依存性結合分子ライブラリ
AU2012313594C1 (en) * 2011-09-30 2018-05-10 Chugai Seiyaku Kabushiki Kaisha Ion concentration-dependent binding molecule library
KR102276528B1 (ko) 2011-09-30 2021-07-12 추가이 세이야쿠 가부시키가이샤 이온 농도 의존성 결합 분자 라이브러리
KR20210091341A (ko) 2011-09-30 2021-07-21 추가이 세이야쿠 가부시키가이샤 이온 농도 의존성 결합 분자 라이브러리
JPWO2013047748A1 (ja) * 2011-09-30 2015-03-26 中外製薬株式会社 複数の生理活性を有する抗原の消失を促進する抗原結合分子
RU2732151C2 (ru) * 2011-09-30 2020-09-11 Чугаи Сейяку Кабусики Кайся Библиотека зависимых от концентрации ионов связывающих молекул
JPWO2013047729A1 (ja) * 2011-09-30 2015-03-26 中外製薬株式会社 標的抗原に対する免疫応答を誘導する抗原結合分子
US11827699B2 (en) 2011-09-30 2023-11-28 Chugai Seiyaku Kabushiki Kaisha Methods for producing antibodies promoting disappearance of antigens having plurality of biological activities
US20140363428A1 (en) * 2011-09-30 2014-12-11 Chugai Seiyaku Kabushiki Kaisha THERAPEUTIC ANTIGEN-BINDING MOLECULE WITH A FcRn-BINDING DOMAIN THAT PROMOTES ANTIGEN CLEARANCE
KR20200096692A (ko) 2011-09-30 2020-08-12 추가이 세이야쿠 가부시키가이샤 항원의 소실을 촉진시키는 항원 결합 분자
KR102143331B1 (ko) 2011-09-30 2020-08-11 추가이 세이야쿠 가부시키가이샤 항원의 소실을 촉진시키는 항원 결합 분자
WO2013047729A1 (ja) 2011-09-30 2013-04-04 中外製薬株式会社 標的抗原に対する免疫応答を誘導する抗原結合分子
JP2020109118A (ja) * 2011-09-30 2020-07-16 中外製薬株式会社 複数の生理活性を有する抗原の消失を促進する抗原結合分子
US10024867B2 (en) 2011-09-30 2018-07-17 Chugai Seiyaku Kabushiki Kaisha Ion concentration-dependent binding molecule library
EP3680251A1 (en) 2011-09-30 2020-07-15 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecules for promoting elimination of antigens
AU2012317395B2 (en) * 2011-09-30 2017-06-29 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule inducing immune response to target antigen
JP2018115148A (ja) * 2011-09-30 2018-07-26 中外製薬株式会社 複数の生理活性を有する抗原の消失を促進する抗原結合分子
JP2020079296A (ja) * 2011-09-30 2020-05-28 中外製薬株式会社 抗原の消失を促進する抗原結合分子
JP2017114882A (ja) * 2011-09-30 2017-06-29 中外製薬株式会社 抗原の消失を促進する抗原結合分子
JP7313410B2 (ja) 2011-09-30 2023-07-24 中外製薬株式会社 イオン濃度依存性結合分子ライブラリ
KR20200051048A (ko) 2011-09-30 2020-05-12 추가이 세이야쿠 가부시키가이샤 항원의 소실을 촉진시키는 항원 결합 분자
US20200115447A1 (en) * 2011-09-30 2020-04-16 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule inducing immune response to target antigen
JP2022000472A (ja) * 2011-09-30 2022-01-04 中外製薬株式会社 標的抗原に対する免疫応答を誘導する抗原結合分子
JP2018150378A (ja) * 2011-09-30 2018-09-27 中外製薬株式会社 標的抗原に対する免疫応答を誘導する抗原結合分子
JP6998748B2 (ja) 2011-09-30 2022-01-18 中外製薬株式会社 抗原の消失を促進する抗原結合分子
EP3939996A1 (en) 2011-09-30 2022-01-19 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule promoting disappearance of antigens having plurality of biological activities
US11243210B2 (en) 2011-09-30 2022-02-08 Chugai Seiyaku Kabushiki Kaisha Ion concentration-dependent binding molecule library
JP7012044B2 (ja) 2011-09-30 2022-02-10 中外製薬株式会社 イオン濃度依存性結合分子ライブラリ
CN110627902A (zh) * 2011-09-30 2019-12-31 中外制药株式会社 诱导针对靶抗原的免疫应答的抗原结合分子
JP2022028652A (ja) * 2011-09-30 2022-02-16 中外製薬株式会社 イオン濃度依存性結合分子ライブラリ
KR20230066646A (ko) 2011-09-30 2023-05-16 추가이 세이야쿠 가부시키가이샤 항원의 소실을 촉진시키는 항원 결합 분자
JP2019193629A (ja) * 2011-09-30 2019-11-07 中外製薬株式会社 イオン濃度依存性結合分子ライブラリ
KR20140069074A (ko) 2011-09-30 2014-06-09 추가이 세이야쿠 가부시키가이샤 이온 농도 의존성 결합 분자 라이브러리
EP3549956A2 (en) 2011-09-30 2019-10-09 Chugai Seiyaku Kabushiki Kaisha Therapeutic antigen-binding molecule with a fcrn-binding domain that promotes antigen clearance
AU2012313594B2 (en) * 2011-09-30 2018-02-01 Chugai Seiyaku Kabushiki Kaisha Ion concentration-dependent binding molecule library
US10253100B2 (en) 2011-09-30 2019-04-09 Chugai Seiyaku Kabushiki Kaisha Therapeutic antigen-binding molecule with a FcRn-binding domain that promotes antigen clearance
JP7149306B2 (ja) 2011-09-30 2022-10-06 中外製薬株式会社 複数の生理活性を有する抗原の消失を促進する抗原結合分子
JPWO2013051294A1 (ja) * 2011-10-05 2015-03-30 中外製薬株式会社 糖鎖受容体結合ドメインを含む抗原の血漿中からの消失を促進する抗原結合分子
JP2018099118A (ja) * 2011-10-05 2018-06-28 中外製薬株式会社 糖鎖受容体結合ドメインを含む抗原の血漿中からの消失を促進する抗原結合分子
EP3617313A1 (en) 2011-10-05 2020-03-04 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule for promoting clearance from plasma of antigen comprising saccharide chain receptor-binding domain
JP2020105199A (ja) * 2011-10-05 2020-07-09 中外製薬株式会社 糖鎖受容体結合ドメインを含む抗原の血漿中からの消失を促進する抗原結合分子
JP7250718B2 (ja) 2011-10-05 2023-04-03 中外製薬株式会社 糖鎖受容体結合ドメインを含む抗原の血漿中からの消失を促進する抗原結合分子
WO2013051294A1 (ja) 2011-10-05 2013-04-11 中外製薬株式会社 糖鎖受容体結合ドメインを含む抗原の血漿中からの消失を促進する抗原結合分子
US10927435B2 (en) 2011-10-11 2021-02-23 Sanofi Biotechnology Compositions for the treatment of rheumatoid arthritis and methods of using same
US11851476B2 (en) 2011-10-31 2023-12-26 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule having regulated conjugation between heavy-chain and light-chain
EP3517550A1 (en) 2011-11-30 2019-07-31 Chugai Seiyaku Kabushiki Kaisha Drug containing carrier into cell for forming immune complex
US11820793B2 (en) 2011-11-30 2023-11-21 Chugai Seiyaku Kabushiki Kaisha Drug containing carrier into cell for forming immune complex
WO2013081143A1 (ja) 2011-11-30 2013-06-06 中外製薬株式会社 免疫複合体を形成する細胞内への運搬体(キャリア)を含む医薬
KR20230143201A (ko) 2011-11-30 2023-10-11 추가이 세이야쿠 가부시키가이샤 면역 복합체를 형성하는 세포내로의 운반체(캐리어)를 포함하는 의약
KR20210074395A (ko) 2011-11-30 2021-06-21 추가이 세이야쿠 가부시키가이샤 면역 복합체를 형성하는 세포내로의 운반체(캐리어)를 포함하는 의약
WO2013118858A1 (ja) 2012-02-09 2013-08-15 中外製薬株式会社 抗体のFc領域改変体
EP3738980A1 (en) 2012-02-24 2020-11-18 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule for promoting disappearance of antigen via fc gamma riib
JP7411698B2 (ja) 2012-02-24 2024-01-11 中外製薬株式会社 FcγRIIBを介して抗原の消失を促進する抗原結合分子
KR20140130707A (ko) 2012-02-24 2014-11-11 추가이 세이야쿠 가부시키가이샤 FcγRIIB를 매개로 항원의 소실을 촉진하는 항원 결합 분자
RU2812226C1 (ru) * 2012-02-24 2024-01-25 Чугаи Сейяку Кабусики Кайся АНТИГЕНСВЯЗЫВАЮЩАЯ МОЛЕКУЛА ДЛЯ УСКОРЕНИЯ ИСЧЕЗНОВЕНИЯ АНТИГЕНА ЧЕРЕЗ FcγRIIB
JP2017197536A (ja) * 2012-02-24 2017-11-02 中外製薬株式会社 FcγRIIBを介して抗原の消失を促進する抗原結合分子
JP7012104B2 (ja) 2012-02-24 2022-02-10 中外製薬株式会社 FcγRIIBを介して抗原の消失を促進する抗原結合分子
RU2736349C2 (ru) * 2012-02-24 2020-11-16 Чугаи Сейяку Кабусики Кайся АНТИГЕНСВЯЗЫВАЮЩАЯ МОЛЕКУЛА ДЛЯ УСКОРЕНИЯ ИСЧЕЗНОВЕНИЯ АНТИГЕНА ЧЕРЕЗ FcγRIIB
WO2013125667A1 (ja) 2012-02-24 2013-08-29 中外製薬株式会社 FcγRIIBを介して抗原の消失を促進する抗原結合分子
JP2020073557A (ja) * 2012-02-24 2020-05-14 中外製薬株式会社 FcγRIIBを介して抗原の消失を促進する抗原結合分子
KR20210022764A (ko) 2012-02-24 2021-03-03 추가이 세이야쿠 가부시키가이샤 FcγRIIB를 매개로 항원의 소실을 촉진하는 항원 결합 분자
JPWO2013125667A1 (ja) * 2012-02-24 2015-07-30 中外製薬株式会社 FcγRIIBを介して抗原の消失を促進する抗原結合分子
KR20220136441A (ko) 2012-02-24 2022-10-07 추가이 세이야쿠 가부시키가이샤 FcγRIIB를 매개로 항원의 소실을 촉진하는 항원 결합 분자
JP7304169B2 (ja) 2012-03-16 2023-07-06 リジェネロン・ファーマシューティカルズ・インコーポレイテッド ヒスチジン操作された軽鎖抗体およびこれを作製するための遺伝子改変された非ヒト動物
US20140082760A1 (en) * 2012-03-16 2014-03-20 Regeneron Pharmaceuticals, Inc. Non-Human Animals Expressing pH-Sensitive Immunoglobulin Sequences
KR102213535B1 (ko) * 2012-03-16 2021-02-08 리제너론 파마슈티칼스 인코포레이티드 pH-민감성 면역글로불린 서열을 발현하는 비-사람 동물
US9422370B2 (en) 2012-03-16 2016-08-23 Regeneron Pharmaceuticals, Inc. Histidine engineered light chain antibodies and genetically modified non-human animals for generating the same
US11224207B2 (en) 2012-03-16 2022-01-18 Regeneran Pharmaceuticals, Inc. Non-human animals expressing pH-sensitive immunoglobulin sequences
KR20220002718A (ko) * 2012-03-16 2022-01-06 리제너론 파마슈티칼스 인코포레이티드 pH-민감성 면역글로불린 서열을 발현하는 비-사람 동물
JP2019071910A (ja) * 2012-03-16 2019-05-16 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. ヒスチジン操作された軽鎖抗体およびこれを作製するための遺伝子改変された非ヒト動物
JP2017104139A (ja) * 2012-03-16 2017-06-15 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. ヒスチジン操作された軽鎖抗体およびこれを作製するための遺伝子改変された非ヒト動物
KR20140135193A (ko) * 2012-03-16 2014-11-25 리제너론 파마슈티칼스 인코포레이티드 히스티딘 공학처리된 경쇄 항체 및 그것을 생성하기 위한 유전자 변형된 비-사람 동물
KR102345232B1 (ko) * 2012-03-16 2021-12-30 리제너론 파마슈티칼스 인코포레이티드 pH-민감성 면역글로불린 서열을 발현하는 비-사람 동물
KR102459666B1 (ko) * 2012-03-16 2022-10-27 리제너론 파마슈티칼스 인코포레이티드 pH-민감성 면역글로불린 서열을 발현하는 비-사람 동물
US9301510B2 (en) * 2012-03-16 2016-04-05 Regeneron Pharmaceuticals, Inc. Mice that produce antigen-binding proteins with pH-dependent binding characteristics
KR102228296B1 (ko) 2012-03-16 2021-03-17 리제너론 파마슈티칼스 인코포레이티드 히스티딘 공학처리된 경쇄 항체 및 그것을 생성하기 위한 유전자 변형된 비-사람 동물
JP2018164462A (ja) * 2012-03-16 2018-10-25 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. pH感受性免疫グロブリン配列を発現する非ヒト動物
US11192947B2 (en) 2012-03-16 2021-12-07 Regeneran Pharmaceuticals, Inc. Histidine engineered light chain antibodies and genetically modified non-human animals for generating same
US9332742B2 (en) 2012-03-16 2016-05-10 Regeneron Pharmaceuticals, Inc. Histidine engineered light chain antibodies and genetically modified non-human animals for generating the same
JP7011549B2 (ja) 2012-03-16 2022-02-10 リジェネロン・ファーマシューティカルズ・インコーポレイテッド pH感受性免疫グロブリン配列を発現する非ヒト動物
JP2017131251A (ja) * 2012-03-16 2017-08-03 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. pH感受性免疫グロブリン配列を発現する非ヒト動物
JP2020108404A (ja) * 2012-03-16 2020-07-16 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. ヒスチジン操作された軽鎖抗体およびこれを作製するための遺伝子改変された非ヒト動物
JP2015510769A (ja) * 2012-03-16 2015-04-13 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. pH感受性免疫グロブリン配列を発現する非ヒト動物
US20130247236A1 (en) * 2012-03-16 2013-09-19 Regeneron Pharmaceuticals, Inc. Non-Human Animals Expressing pH-Sensitive Immunoglobulin Sequences
JP7199398B2 (ja) 2012-03-16 2023-01-05 リジェネロン・ファーマシューティカルズ・インコーポレイテッド ヒスチジン操作された軽鎖抗体およびこれを作製するための遺伝子改変された非ヒト動物
US9648856B2 (en) * 2012-03-16 2017-05-16 Regeneron Pharmaceuticals, Inc. Non-human animals expressing pH-sensitive immunoglobulin sequences
KR20140135737A (ko) * 2012-03-16 2014-11-26 리제너론 파마슈티칼스 인코포레이티드 pH-민감성 면역글로불린 서열을 발현하는 비-사람 동물
US20130247235A1 (en) * 2012-03-16 2013-09-19 Regeneron Pharmaceuticals, Inc. Mice That Produce Antigen-Binding Proteins With pH-Dependent Binding Characteristics
US9801362B2 (en) * 2012-03-16 2017-10-31 Regeneron Pharmaceuticals, Inc. Non-human animals expressing pH-sensitive immunoglobulin sequences
US9334334B2 (en) 2012-03-16 2016-05-10 Regeneron Pharmaceuticals, Inc. Histidine engineered light chain antibodies and genetically modified non-human animals for generating the same
KR20210018510A (ko) * 2012-03-16 2021-02-17 리제너론 파마슈티칼스 인코포레이티드 pH-민감성 면역글로불린 서열을 발현하는 비-사람 동물
US20150353630A1 (en) * 2012-05-30 2015-12-10 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule for eliminating aggregated antigens
JPWO2013180200A1 (ja) * 2012-05-30 2016-01-21 中外製薬株式会社 標的組織特異的抗原結合分子
JP2018076374A (ja) * 2012-05-30 2018-05-17 中外製薬株式会社 標的組織特異的抗原結合分子
EP3892638A1 (en) 2012-05-30 2021-10-13 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule for eliminating aggregated antigens
WO2013180201A1 (ja) 2012-05-30 2013-12-05 中外製薬株式会社 会合化した抗原を消失させる抗原結合分子
JP7285891B2 (ja) 2012-05-30 2023-06-02 中外製薬株式会社 標的組織特異的抗原結合分子
AU2018201358B2 (en) * 2012-05-30 2020-03-19 Chugai Seiyaku Kabushiki Kaisha Target-tissue-specific antigen-binding molecule
JP2018172384A (ja) * 2012-05-30 2018-11-08 中外製薬株式会社 会合化した抗原を消失させる抗原結合分子
JP2020040975A (ja) * 2012-05-30 2020-03-19 中外製薬株式会社 標的組織特異的抗原結合分子
US11673947B2 (en) 2012-05-30 2023-06-13 Chugai Seiyaku Kabushiki Kaisha Target tissue-specific antigen-binding molecule
WO2013180200A1 (ja) 2012-05-30 2013-12-05 中外製薬株式会社 標的組織特異的抗原結合分子
JP2021181480A (ja) * 2012-05-30 2021-11-25 中外製薬株式会社 標的組織特異的抗原結合分子
EP3795215A1 (en) 2012-05-30 2021-03-24 Chugai Seiyaku Kabushiki Kaisha Target tissue-specific antigen-binding molecule
JP2021042225A (ja) * 2012-05-30 2021-03-18 中外製薬株式会社 会合化した抗原を消失させる抗原結合分子
JPWO2013180201A1 (ja) * 2012-05-30 2016-01-21 中外製薬株式会社 会合化した抗原を消失させる抗原結合分子
JP7016769B2 (ja) 2012-05-30 2022-02-07 中外製薬株式会社 会合化した抗原を消失させる抗原結合分子
JP7481236B2 (ja) 2012-05-30 2024-05-10 中外製薬株式会社 会合化した抗原を消失させる抗原結合分子
EP4310191A2 (en) 2012-06-14 2024-01-24 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing modified fc region
WO2013187495A1 (ja) 2012-06-14 2013-12-19 中外製薬株式会社 改変されたFc領域を含む抗原結合分子
JP2015526440A (ja) * 2012-08-13 2015-09-10 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. pH依存性結合特性を有する抗PCSK9抗体
WO2014030750A1 (ja) 2012-08-24 2014-02-27 中外製薬株式会社 マウスFcγRII特異的Fc抗体
US10919953B2 (en) 2012-08-24 2021-02-16 Chugai Seiyaku Kabushiki Kaisha FcgammaRIIB-specific Fc region variant
US11236168B2 (en) 2012-08-24 2022-02-01 Chugai Seiyaku Kabushiki Kaisha Mouse FcγammaRII-specific Fc antibody
EP3597747A1 (en) 2012-08-24 2020-01-22 Chugai Seiyaku Kabushiki Kaisha Mouse fcgammarii-specific fc antibody
WO2014030728A1 (ja) 2012-08-24 2014-02-27 中外製薬株式会社 FcγRIIb特異的Fc領域改変体
EP3721900A1 (en) 2012-08-24 2020-10-14 Chugai Seiyaku Kabushiki Kaisha Fcgammariib-specific fc region variant
WO2014104165A1 (ja) 2012-12-27 2014-07-03 中外製薬株式会社 ヘテロ二量化ポリペプチド
US10766960B2 (en) 2012-12-27 2020-09-08 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
KR102579405B1 (ko) 2013-02-20 2023-09-18 리제너론 파아마슈티컬스, 인크. 사람화된 t-세포 보조-수용체를 발현하는 마우스
KR102369454B1 (ko) 2013-02-20 2022-03-04 리제너론 파아마슈티컬스, 인크. 사람화된 t-세포 보조-수용체를 발현하는 마우스
KR20220028187A (ko) * 2013-02-20 2022-03-08 리제너론 파아마슈티컬스, 인크. 사람화된 t-세포 보조-수용체를 발현하는 마우스
KR20210124541A (ko) * 2013-02-20 2021-10-14 리제너론 파아마슈티컬스, 인크. 사람화된 t-세포 보조-수용체를 발현하는 마우스
KR102313047B1 (ko) 2013-02-20 2021-10-19 리제너론 파아마슈티컬스, 인크. 사람화된 t-세포 보조-수용체를 발현하는 마우스
KR20150119409A (ko) * 2013-02-20 2015-10-23 리제너론 파아마슈티컬스, 인크. 사람화된 t-세포 보조-수용체를 발현하는 마우스
KR102211267B1 (ko) * 2013-02-22 2021-02-04 리제너론 파아마슈티컬스, 인크. 사람화된 주요 조직적합성 복합체를 발현하는 마우스
KR20150122710A (ko) * 2013-02-22 2015-11-02 리제너론 파아마슈티컬스, 인크. 사람화된 주요 조직적합성 복합체를 발현하는 마우스
KR102309653B1 (ko) 2013-03-11 2021-10-08 리제너론 파아마슈티컬스, 인크. 키메라 주요 조직적합성 복합체 (mhc) 제ii부류 분자를 발현하는 유전자전이 마우스
KR20150126410A (ko) * 2013-03-11 2015-11-11 리제너론 파아마슈티컬스, 인크. 키메라 주요 조직적합성 복합체 (mhc) 제ii부류 분자를 발현하는 유전자전이 마우스
US20180282430A1 (en) * 2013-03-15 2018-10-04 Bayer Healthcare Llc Anti-tfpi antibody variants with differential binding across ph range for improved pharmacokinetics
WO2014163101A1 (ja) 2013-04-02 2014-10-09 中外製薬株式会社 Fc領域改変体
KR20210130260A (ko) 2013-04-02 2021-10-29 추가이 세이야쿠 가부시키가이샤 Fc영역 개변체
KR20150136514A (ko) 2013-04-02 2015-12-07 추가이 세이야쿠 가부시키가이샤 Fc영역 개변체
JP2020059700A (ja) * 2013-04-02 2020-04-16 中外製薬株式会社 Fc領域改変体
JPWO2014163101A1 (ja) * 2013-04-02 2017-02-16 中外製薬株式会社 Fc領域改変体
JP7157031B2 (ja) 2013-04-02 2022-10-19 中外製薬株式会社 Fc領域改変体
US11267868B2 (en) 2013-04-02 2022-03-08 Chugai Seiyaku Kabushiki Kaisha Fc region variant
EP3783017A1 (en) 2013-04-02 2021-02-24 Chugai Seiyaku Kabushiki Kaisha Fc region variant
US10782290B2 (en) 2013-06-11 2020-09-22 National Center Of Neurology And Psychiatry Method for predicting post-therapy prognosis of relapsing-remitting multiple sclerosis (RRMS) patient, and method for determining applicability of novel therapy
RU2694728C2 (ru) * 2013-09-18 2019-07-16 Регенерон Фармасьютикалз, Инк. Антитела со встроенным в легкие цепи гистидином и генетически модифицированные отличные от человека животные для их получения
WO2015046467A1 (ja) 2013-09-27 2015-04-02 中外製薬株式会社 ポリペプチド異種多量体の製造方法
US11124576B2 (en) 2013-09-27 2021-09-21 Chungai Seiyaku Kabushiki Kaisha Method for producing polypeptide heteromultimer
US11739149B2 (en) 2013-11-11 2023-08-29 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing modified antibody variable region
WO2015068847A1 (ja) 2013-11-11 2015-05-14 中外製薬株式会社 改変された抗体可変領域を含む抗原結合分子
WO2015083764A1 (ja) 2013-12-04 2015-06-11 中外製薬株式会社 化合物の濃度に応じて抗原結合能の変化する抗原結合分子及びそのライブラリ
EP3763813A1 (en) 2013-12-04 2021-01-13 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecules, the antigen-binding activity of which varies according to the concentration of compounds, and libraries of said molecules
US11912989B2 (en) 2013-12-04 2024-02-27 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecules, the antigen-binding activity of which varies according to the concentration of compounds, and libraries of said molecules
US10961530B2 (en) 2013-12-04 2021-03-30 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecules, the antigen-binding activity of which varies according to the concentration of compounds, and libraries of said molecules
US10227400B2 (en) 2014-03-07 2019-03-12 Alexion Pharmaceuticals, Inc. Methods of treating atypical hemolytic uremic syndrome with anti-C5 antibodies
US9663574B2 (en) 2014-03-07 2017-05-30 Alexion Pharmaceuticals, Inc. Anti-C5 antibodies having improved pharmacokinetics
US11434280B2 (en) 2014-03-07 2022-09-06 Alexion Pharmaceuticals, Inc. Anti-C5 antibodies having improved pharmacokinetics
US10584164B2 (en) 2014-03-07 2020-03-10 Alexion Pharmaceuticals, Inc. Methods of treating atypical hemolytic uremic syndrome and paroxysmal nocturnal hemoglobinuria with anti-C5 antibodies
US9803007B1 (en) 2014-03-07 2017-10-31 Alexion Pharmaceuticals, Inc. Anti-C5 antibodies having improved pharmacokinetics
JP7037885B2 (ja) 2014-06-30 2022-03-17 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング pH依存性抗原結合を示す抗TNFa抗体
JP2017521404A (ja) * 2014-06-30 2017-08-03 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung pH依存性抗原結合を示す抗TNFa抗体
US11001643B2 (en) 2014-09-26 2021-05-11 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
US11154615B2 (en) 2014-11-11 2021-10-26 Chugai Seiyaku Kabushiki Kaisha Library of antigen-binding molecules including modified antibody variable region
WO2016098356A1 (en) 2014-12-19 2016-06-23 Chugai Seiyaku Kabushiki Kaisha Anti-c5 antibodies and methods of use
KR102650420B1 (ko) 2014-12-19 2024-03-21 추가이 세이야쿠 가부시키가이샤 항-마이오스타틴 항체, 변이체 Fc 영역을 함유하는 폴리펩타이드, 및 사용 방법
US11454633B2 (en) 2014-12-19 2022-09-27 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies, polypeptides containing variant Fc regions, and methods of use
US10738111B2 (en) 2014-12-19 2020-08-11 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies, polypeptides containing variant Fc regions, and methods of use
US11597760B2 (en) 2014-12-19 2023-03-07 Chugai Seiyaku Kabushiki Kaisha Method of detecting the presence of complement C5
US9765135B2 (en) 2014-12-19 2017-09-19 Chugai Seiyaku Kabushiki Kaisha Anti-C5 antibodies
KR101860280B1 (ko) 2014-12-19 2018-05-21 추가이 세이야쿠 가부시키가이샤 항-마이오스타틴 항체, 변이체 Fc 영역을 함유하는 폴리펩타이드, 및 사용 방법
KR20220034918A (ko) * 2014-12-19 2022-03-18 추가이 세이야쿠 가부시키가이샤 항-마이오스타틴 항체, 변이체 Fc 영역을 함유하는 폴리펩타이드, 및 사용 방법
US10023630B2 (en) 2014-12-19 2018-07-17 Chugai Seiyaku Kabushiki Kaisha Methods of neutralizing C5 with anti-C5 antibodies
KR101838645B1 (ko) 2014-12-19 2018-03-14 추가이 세이야쿠 가부시키가이샤 항-c5 항체 및 그의 사용 방법
US10000560B2 (en) 2014-12-19 2018-06-19 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies, polypeptides containing variant Fc regions, and methods of use
US10385122B2 (en) 2014-12-19 2019-08-20 Chugai Seiyaku Kabushiki Kaisha Nucleic acids encoding anti-C5 antibodies
WO2016117346A1 (en) 2015-01-22 2016-07-28 Chugai Seiyaku Kabushiki Kaisha A combination of two or more anti-c5 antibodies and methods of use
WO2016125495A1 (en) 2015-02-05 2016-08-11 Chugai Seiyaku Kabushiki Kaisha Antibodies comprising an ion concentration dependent antigen-binding domain, fc region variants, il-8-binding antibodies, and uses therof
EP3816179A2 (en) 2015-02-05 2021-05-05 Chugai Seiyaku Kabushiki Kaisha Fc region variant comprising a modified fcrn-binding domain
US10519229B2 (en) 2015-02-05 2019-12-31 Chugai Seiyaku Kabushiki Kaisha Nucleic acids encoding IL-8 antibodies
CN107108729A (zh) * 2015-02-05 2017-08-29 中外制药株式会社 包含离子浓度依赖性的抗原结合结构域的抗体,fc区变体,il‑8‑结合抗体,及其应用
JP2018510842A (ja) * 2015-02-05 2018-04-19 中外製薬株式会社 イオン濃度依存的抗原結合ドメインを含む抗体、Fc領域改変体、IL−8に結合する抗体、およびその使用
US11180548B2 (en) 2015-02-05 2021-11-23 Chugai Seiyaku Kabushiki Kaisha Methods of neutralizing IL-8 biological activity
US9969800B2 (en) 2015-02-05 2018-05-15 Chugai Seiyaku Kabushiki Kaisha IL-8 antibodies
KR20210009435A (ko) 2015-02-05 2021-01-26 추가이 세이야쿠 가부시키가이샤 이온 농도 의존적 항원 결합 도메인을 포함하는 항체, Fc 영역 개변체, IL-8에 결합하는 항체, 및 그들의 사용
US10774148B2 (en) 2015-02-27 2020-09-15 Chugai Seiyaku Kabushiki Kaisha Composition for treating IL-6-related diseases
US11142587B2 (en) 2015-04-01 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide hetero-oligomer
US10697883B2 (en) 2015-05-19 2020-06-30 National Center Of Neurology And Psychiatry Method for determining application of therapy to multiple sclerosis (MS) patient
US11904017B2 (en) 2015-08-18 2024-02-20 Regeneron Pharmaceuticals, Inc. Methods for reducing or eliminating the need for lipoprotein apheresis in patients with hyperlipidemia by administering alirocumab
KR20230079500A (ko) 2015-09-18 2023-06-07 추가이 세이야쿠 가부시키가이샤 Il-8에 결합하는 항체 및 그의 사용
KR20180125036A (ko) 2015-09-18 2018-11-21 추가이 세이야쿠 가부시키가이샤 Il-8에 결합하는 항체 및 그의 사용
WO2017046994A1 (en) 2015-09-18 2017-03-23 Chugai Seiyaku Kabushiki Kaisha Il-8-binding antibodies and uses thereof
JP2021168658A (ja) * 2015-09-18 2021-10-28 中外製薬株式会社 Il−8に結合する抗体およびその使用
TWI751300B (zh) * 2015-09-18 2022-01-01 日商中外製藥股份有限公司 Il-8 結合抗體及其用途
EP4342529A2 (en) 2015-12-18 2024-03-27 Chugai Seiyaku Kabushiki Kaisha Anti-c5 antibodies and methods of use
KR101820637B1 (ko) 2015-12-18 2018-01-19 추가이 세이야쿠 가부시키가이샤 항-마이오스타틴 항체, 변이체 Fc 영역을 함유하는 폴리펩타이드, 및 사용 방법
JP2017112997A (ja) * 2015-12-18 2017-06-29 中外製薬株式会社 抗ミオスタチン抗体、変異Fc領域を含むポリペプチド、および使用方法
WO2017104779A1 (en) 2015-12-18 2017-06-22 Chugai Seiyaku Kabushiki Kaisha Anti-c5 antibodies and methods of use
JP6142069B1 (ja) * 2015-12-18 2017-06-07 中外製薬株式会社 抗ミオスタチン抗体、変異Fc領域を含むポリペプチド、および使用方法
US11359009B2 (en) 2015-12-25 2022-06-14 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies and methods of use
JP7141336B2 (ja) 2015-12-25 2022-09-22 中外製薬株式会社 抗ミオスタチン抗体および使用方法
JP2019507584A (ja) * 2015-12-25 2019-03-22 中外製薬株式会社 抗ミオスタチン抗体および使用方法
US11649262B2 (en) 2015-12-28 2023-05-16 Chugai Seiyaku Kabushiki Kaisha Method for promoting efficiency of purification of Fc region-containing polypeptide
US11072666B2 (en) 2016-03-14 2021-07-27 Chugai Seiyaku Kabushiki Kaisha Cell injury inducing therapeutic drug for use in cancer therapy
US11479602B2 (en) 2016-06-14 2022-10-25 Regeneren Pharmaceuticals, Inc. Methods of treating C5-associated diseases comprising administering anti-C5 antibodies
US10633434B2 (en) 2016-06-14 2020-04-28 Regeneron Pharmaceuticals, Inc. Anti-C5 antibodies
US11492392B2 (en) 2016-06-14 2022-11-08 Regeneran Pharmaceuticals, Inc. Polynucleotides encoding anti-C5 antibodies
JP6202774B1 (ja) * 2016-06-17 2017-09-27 中外製薬株式会社 抗c5抗体および使用方法
JP6196411B1 (ja) * 2016-06-17 2017-09-13 中外製薬株式会社 抗ミオスタチン抗体および使用方法
JP2017226656A (ja) * 2016-06-17 2017-12-28 中外製薬株式会社 抗ミオスタチン抗体および使用方法
JP2017226655A (ja) * 2016-06-17 2017-12-28 中外製薬株式会社 抗c5抗体および使用方法
US11780912B2 (en) 2016-08-05 2023-10-10 Chugai Seiyaku Kabushiki Kaisha Composition for prophylaxis or treatment of IL-8 related diseases
US11053308B2 (en) 2016-08-05 2021-07-06 Chugai Seiyaku Kabushiki Kaisha Method for treating IL-8-related diseases
JP2019528323A (ja) * 2016-08-31 2019-10-10 バイオアトラ、エルエルシー 条件的活性型ポリペプチド及びそれを生成する方法
US11279924B2 (en) 2016-08-31 2022-03-22 Bioatla, Inc. Conditionally active polypeptides and methods of generating them
US11773509B2 (en) 2016-08-31 2023-10-03 Bioatla, Inc. Conditionally active polypeptides and methods of generating them
US10604561B2 (en) 2016-09-16 2020-03-31 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies, polypeptides containing variant Fc regions, and methods of use
US10844113B2 (en) 2016-09-16 2020-11-24 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies, polypeptides containing variant Fc regions, and methods of use
US11780908B2 (en) 2016-09-16 2023-10-10 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies, polypeptides containing variant FC regions, and methods of use
WO2018097307A1 (ja) 2016-11-28 2018-05-31 中外製薬株式会社 抗原結合ドメインおよび運搬部分を含むポリペプチド
CN110291108A (zh) * 2016-12-19 2019-09-27 格兰马克药品股份有限公司 新型tnfr激动剂及其用途
US11608374B2 (en) 2017-01-30 2023-03-21 Chugai Seiyaku Kabushiki Kaisha Anti-sclerostin antibodies and methods of use
KR20190104982A (ko) 2017-01-31 2019-09-11 추가이 세이야쿠 가부시키가이샤 C5-관련 질환의 치료 또는 예방용 의약 조성물 및 c5-관련 질환을 치료 또는 예방하기 위한 방법
WO2018143266A1 (en) 2017-01-31 2018-08-09 Chugai Seiyaku Kabushiki Kaisha A pharmaceutical composition for use in the treatment or prevention of a c5-related disease and a method for treating or preventing a c5-related disease
KR20230043247A (ko) 2017-01-31 2023-03-30 추가이 세이야쿠 가부시키가이샤 C5-관련 질환의 치료 또는 예방용 의약 조성물 및 c5-관련 질환을 치료 또는 예방하기 위한 방법
KR20220027265A (ko) 2017-01-31 2022-03-07 추가이 세이야쿠 가부시키가이샤 C5-관련 질환의 치료 또는 예방용 의약 조성물 및 c5-관련 질환을 치료 또는 예방하기 위한 방법
KR20180099625A (ko) 2017-01-31 2018-09-05 추가이 세이야쿠 가부시키가이샤 C5-관련 질환의 치료 또는 예방용 의약 조성물 및 c5-관련 질환을 치료 또는 예방하기 위한 방법
WO2018155611A1 (ja) 2017-02-24 2018-08-30 中外製薬株式会社 薬学的組成物、抗原結合分子、治療方法、およびスクリーニング方法
US11851486B2 (en) 2017-05-02 2023-12-26 National Center Of Neurology And Psychiatry Method for predicting and evaluating therapeutic effect in diseases related to IL-6 and neutrophils
US11365241B2 (en) 2017-07-27 2022-06-21 Alexion Pharmaceuticals, Inc. High concentration anti-C5 antibody formulations
US11692037B2 (en) 2017-10-20 2023-07-04 Hyogo College Of Medicine Anti-IL-6 receptor antibody-containing medicinal composition for preventing post-surgical adhesion
WO2019107380A1 (ja) 2017-11-28 2019-06-06 中外製薬株式会社 抗原結合ドメインおよび運搬部分を含むポリペプチド
US11952422B2 (en) 2017-12-05 2024-04-09 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule comprising altered antibody variable region binding CD3 and CD137
US11365265B2 (en) 2017-12-13 2022-06-21 Regeneron Pharmaceuticals, Inc. Anti-C5 antibody combinations and uses thereof
US11891432B2 (en) 2018-03-15 2024-02-06 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies having cross-reactivity to Zika virus and methods of use
KR20200143459A (ko) 2018-04-13 2020-12-23 추가이 세이야쿠 가부시키가이샤 항-보체 성분 항체 및 사용 방법
WO2019230868A1 (ja) 2018-05-30 2019-12-05 中外製薬株式会社 単ドメイン抗体含有リガンド結合分子
WO2020004492A1 (ja) 2018-06-26 2020-01-02 協和キリン株式会社 Cell Adhesion Molecule3に結合する抗体
WO2020004490A1 (ja) 2018-06-26 2020-01-02 協和キリン株式会社 コンドロイチン硫酸プロテオグリカン-5に結合する抗体
JP2021532135A (ja) * 2018-07-23 2021-11-25 中外製薬株式会社 標的細胞特異的な細胞質侵入抗原結合分子
WO2020027279A1 (en) 2018-08-01 2020-02-06 Chugai Seiyaku Kabushiki Kaisha A pharmaceutical composition for use in the treatment or prevention of a c5-related disease and a method for treating or preventing a c5-related disease
KR20200033348A (ko) 2018-08-01 2020-03-27 추가이 세이야쿠 가부시키가이샤 C5-관련 질환의 치료 또는 예방용 의약 조성물 및 c5-관련 질환을 치료 또는 예방하기 위한 방법
KR20210037743A (ko) 2018-08-01 2021-04-06 추가이 세이야쿠 가부시키가이샤 C5-관련 질환의 치료 또는 예방용 의약 조성물 및 c5-관련 질환을 치료 또는 예방하기 위한 방법
KR20210038697A (ko) 2018-08-01 2021-04-07 추가이 세이야쿠 가부시키가이샤 C5-관련 질환의 치료 또는 예방용 의약 조성물 및 c5-관련 질환을 치료 또는 예방하기 위한 방법
KR20200033225A (ko) 2018-08-01 2020-03-27 추가이 세이야쿠 가부시키가이샤 C5-관련 질환의 치료 또는 예방용 의약 조성물 및 c5-관련 질환을 치료 또는 예방하기 위한 방법
WO2020032230A1 (ja) 2018-08-10 2020-02-13 中外製薬株式会社 抗cd137抗原結合分子およびその使用
WO2020045545A1 (ja) 2018-08-29 2020-03-05 中外製薬株式会社 抗体半分子、および抗体半分子のホモ二量体形成を抑制する方法
US11498969B2 (en) 2019-01-31 2022-11-15 Sanofi Biotechnology Compositions and methods for treating juvenile idiopathic arthritis
WO2020189748A1 (ja) 2019-03-19 2020-09-24 中外製薬株式会社 Mta依存的に抗原に対する結合活性が変化する抗原結合ドメインを含む抗原結合分子及び当該抗原結合ドメイン取得用ライブラリ
WO2020209318A1 (ja) 2019-04-10 2020-10-15 中外製薬株式会社 Fc領域改変抗体の精製方法
KR20220016865A (ko) 2019-05-15 2022-02-10 추가이 세이야쿠 가부시키가이샤 항원 결합 분자, 약학 조성물, 및 방법
WO2020230834A1 (en) * 2019-05-15 2020-11-19 Chugai Seiyaku Kabushiki Kaisha An antigen-binding molecule, a pharmaceutical composition, and a method
JP7372638B2 (ja) 2019-05-23 2023-11-01 シァメン・ユニヴァーシティ 抗b型肝炎ウイルス抗体及びその使用
JP2022542743A (ja) * 2019-05-23 2022-10-07 シァメン・ユニヴァーシティ 抗b型肝炎ウイルス抗体及びその使用
WO2020246563A1 (ja) 2019-06-05 2020-12-10 中外製薬株式会社 抗体切断部位結合分子
WO2020246567A1 (ja) 2019-06-05 2020-12-10 中外製薬株式会社 プロテアーゼ基質、及びプロテアーゼ切断配列を含むポリペプチド
EP3980465A4 (en) * 2019-06-07 2023-11-01 Adimab, LLC MODIFIED PH-DEPENDENT ANTI-CD3 ANTIBODIES, AND METHODS OF GENERATION AND USE THEREOF
JP2022544986A (ja) * 2019-08-19 2022-10-24 ザ ロックフェラー ユニヴァーシティ pH依存的抗原結合活性の操作による薬物動態の改善された抗HIV抗体
JP7397528B2 (ja) 2019-08-19 2023-12-13 ザ ロックフェラー ユニヴァーシティ pH依存的抗原結合活性の操作による薬物動態の改善された抗HIV抗体
KR20220082698A (ko) 2019-10-16 2022-06-17 추가이 세이야쿠 가부시키가이샤 항체, 약학 조성물, 및 방법
US11739142B2 (en) 2019-12-18 2023-08-29 Hoffmann-La Roche Inc. Bispecific anti-CCL2 antibodies
WO2021122733A1 (en) 2019-12-18 2021-06-24 F. Hoffmann-La Roche Ag Bispecific anti-ccl2 antibodies
WO2021131021A1 (ja) 2019-12-27 2021-07-01 中外製薬株式会社 抗ctla-4抗体およびその使用
WO2021162020A1 (ja) 2020-02-12 2021-08-19 中外製薬株式会社 癌の治療に用いるための抗cd137抗原結合分子
WO2022025030A1 (ja) 2020-07-28 2022-02-03 中外製薬株式会社 新規改変型抗体を含む、針シールドを備えた針付プレフィルドシリンジ製剤
WO2022025220A1 (ja) 2020-07-31 2022-02-03 中外製薬株式会社 キメラ受容体を発現する細胞を含む医薬組成物
WO2022045276A1 (ja) 2020-08-28 2022-03-03 中外製薬株式会社 ヘテロ二量体Fcポリペプチド
WO2022220275A1 (ja) 2021-04-15 2022-10-20 中外製薬株式会社 抗C1s抗体
KR20230170017A (ko) 2021-04-15 2023-12-18 추가이 세이야쿠 가부시키가이샤 항C1s 항체
WO2022244838A1 (ja) 2021-05-19 2022-11-24 中外製薬株式会社 分子のin vivo薬物動態を予測する方法
WO2022263501A1 (en) 2021-06-18 2022-12-22 F. Hoffmann-La Roche Ag Bispecific anti-ccl2 antibodies
WO2022270612A1 (ja) 2021-06-25 2022-12-29 中外製薬株式会社 抗ctla-4抗体の使用
WO2022270611A1 (ja) 2021-06-25 2022-12-29 中外製薬株式会社 抗ctla-4抗体
KR20240054896A (ko) 2022-10-18 2024-04-26 추가이 세이야쿠 가부시키가이샤 항C1s 항체의 사용

Also Published As

Publication number Publication date
NZ623716A (en) 2016-04-29
CR20150656A (es) 2016-01-27
PT2275443E (pt) 2016-03-15
BR122020017346B1 (pt) 2022-03-29
NZ602884A (en) 2014-08-29
JP5824095B2 (ja) 2015-11-25
SI2275443T1 (sl) 2016-03-31
TW201920257A (zh) 2019-06-01
JP2023138972A (ja) 2023-10-03
JP4961501B2 (ja) 2012-06-27
US20200048627A1 (en) 2020-02-13
JP2017081995A (ja) 2017-05-18
EP2708559A2 (en) 2014-03-19
ECSP10010600A (es) 2011-03-31
JP7397823B2 (ja) 2023-12-13
EP2708558A2 (en) 2014-03-19
CA2721052A1 (en) 2009-10-15
KR102057826B1 (ko) 2019-12-20
CR11783A (es) 2010-12-09
CN102056946A (zh) 2011-05-11
MX354670B (es) 2018-03-15
HK1246158A1 (zh) 2018-09-07
EP3514180B1 (en) 2024-05-01
US20130303396A1 (en) 2013-11-14
JP2014133746A (ja) 2014-07-24
CN102993304A (zh) 2013-03-27
EP2708559B1 (en) 2018-03-28
TWI563134B (ja) 2016-12-21
CN107488228A (zh) 2017-12-19
KR20210079408A (ko) 2021-06-29
PH12014502054B1 (en) 2015-12-07
SG2013027206A (en) 2014-11-27
JP6082447B2 (ja) 2017-02-15
IL237599A0 (en) 2015-04-30
TW201641514A (zh) 2016-12-01
CN107551270A (zh) 2018-01-09
DK2708559T3 (en) 2018-06-14
SG10201608379YA (en) 2016-11-29
TW202043265A (zh) 2020-12-01
EP2708558A3 (en) 2014-07-16
BRPI0911431A2 (pt) 2015-10-06
US11371039B2 (en) 2022-06-28
EP2708558B1 (en) 2018-03-21
BRPI0911431B1 (pt) 2021-05-11
AU2009234675A1 (en) 2009-10-15
RU2756029C2 (ru) 2021-09-24
KR102269708B1 (ko) 2021-06-25
EP2275443A1 (en) 2011-01-19
CA2721052C (en) 2023-02-21
HK1246311A1 (zh) 2018-09-07
JP6417431B2 (ja) 2018-11-07
JP2021141897A (ja) 2021-09-24
TWI787643B (zh) 2022-12-21
US20130336963A1 (en) 2013-12-19
HRP20160209T1 (hr) 2016-03-25
DK2275443T3 (en) 2016-02-08
JP2016026190A (ja) 2016-02-12
EP4238993A3 (en) 2023-11-29
TWI818604B (zh) 2023-10-11
TWI700293B (zh) 2020-08-01
JP2012116837A (ja) 2012-06-21
ES2671403T3 (es) 2018-06-06
JP2012224633A (ja) 2012-11-15
KR20200023536A (ko) 2020-03-04
US20210079379A1 (en) 2021-03-18
PH12014502054A1 (en) 2015-12-07
BRPI0911431B8 (pt) 2021-05-25
PL2708558T3 (pl) 2018-09-28
KR102051275B1 (ko) 2019-12-04
UA121453C2 (uk) 2020-06-10
HK1246157A1 (zh) 2018-09-07
NO2708559T3 (ja) 2018-08-25
EP2708559A3 (en) 2014-07-16
MA32754B1 (fr) 2011-11-01
JP2021011490A (ja) 2021-02-04
US20130011866A1 (en) 2013-01-10
EP3514180A1 (en) 2019-07-24
TWI564021B (zh) 2017-01-01
JP5048866B2 (ja) 2012-10-17
US9890377B2 (en) 2018-02-13
TR201808535T4 (tr) 2018-07-23
JP2012021004A (ja) 2012-02-02
CN103251948A (zh) 2013-08-21
MX2010011184A (es) 2011-01-20
TW202241961A (zh) 2022-11-01
JP7366312B2 (ja) 2023-10-20
EP2275443A4 (en) 2011-12-14
KR20220162801A (ko) 2022-12-08
KR20170091758A (ko) 2017-08-09
RU2014128324A (ru) 2016-02-10
KR20110004435A (ko) 2011-01-13
IL208516A (en) 2017-11-30
PL2275443T3 (pl) 2016-05-31
JP7033176B2 (ja) 2022-03-09
US10472623B2 (en) 2019-11-12
JP5503698B2 (ja) 2014-05-28
JP2022081533A (ja) 2022-05-31
PL2708559T3 (pl) 2018-08-31
HRP20180708T1 (hr) 2018-06-29
JP2021011491A (ja) 2021-02-04
ES2563483T3 (es) 2016-03-15
SI2708559T1 (en) 2018-07-31
US20180282719A1 (en) 2018-10-04
NZ717429A (en) 2018-07-27
ES2671010T3 (es) 2018-06-04
US11359194B2 (en) 2022-06-14
US20180282718A1 (en) 2018-10-04
JP2021035945A (ja) 2021-03-04
US20110111406A1 (en) 2011-05-12
EP3521311A1 (en) 2019-08-07
HUE028718T2 (en) 2016-12-28
IL237599B (en) 2018-10-31
TW201447062A (zh) 2014-12-16
EP4238993A2 (en) 2023-09-06
AR071656A1 (es) 2010-07-07
PH12018501850A1 (en) 2020-11-16
KR20190140100A (ko) 2019-12-18
JP2019048810A (ja) 2019-03-28
JP7177808B2 (ja) 2022-11-24
IL208516A0 (en) 2010-12-30
KR102469853B1 (ko) 2022-11-22
CR20150655A (es) 2016-02-08
RU2010145939A (ru) 2012-05-20
HUE037386T2 (hu) 2018-08-28
SG189775A1 (en) 2013-05-31
PT2708559T (pt) 2018-05-16
RU2571225C2 (ru) 2015-12-20
TW201000127A (en) 2010-01-01
NZ588507A (en) 2012-11-30
JP4954326B2 (ja) 2012-06-13
LT2708559T (lt) 2018-06-11
MY195714A (en) 2023-02-07
US20240002836A1 (en) 2024-01-04
TR201808046T4 (tr) 2018-06-21
KR102084925B1 (ko) 2020-03-05
DK2708558T3 (en) 2018-06-14
CO6311005A2 (es) 2011-08-22
IL259956A (en) 2018-07-31
US20210079378A1 (en) 2021-03-18
JPWO2009125825A1 (ja) 2011-08-04
CN107469077A (zh) 2017-12-15
EP2275443B1 (en) 2015-12-02
US9868948B2 (en) 2018-01-16
EP3056513A1 (en) 2016-08-17
IL259956B (en) 2020-11-30

Similar Documents

Publication Publication Date Title
JP7177808B2 (ja) 複数分子の抗原に繰り返し結合する抗原結合分子
AU2017279662B2 (en) Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980122466.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09729337

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010507273

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 14169333

Country of ref document: CO

Ref document number: 10123949

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 2721052

Country of ref document: CA

Ref document number: 12010502285

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 588507

Country of ref document: NZ

Ref document number: 7178/DELNP/2010

Country of ref document: IN

Ref document number: MX/A/2010/011184

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009234675

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 201011783

Country of ref document: CR

Ref document number: CR2010-011783

Country of ref document: CR

ENP Entry into the national phase

Ref document number: 20107025124

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009729337

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010145939

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2009234675

Country of ref document: AU

Date of ref document: 20090410

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12936587

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 237599

Country of ref document: IL

ENP Entry into the national phase

Ref document number: PI0911431

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101008

WWE Wipo information: entry into national phase

Ref document number: CR2015-000656

Country of ref document: CR

Ref document number: CR2015-000655

Country of ref document: CR