WO2008032746A1 - Power supply sheet and electrically connecting circuit - Google Patents

Power supply sheet and electrically connecting circuit Download PDF

Info

Publication number
WO2008032746A1
WO2008032746A1 PCT/JP2007/067755 JP2007067755W WO2008032746A1 WO 2008032746 A1 WO2008032746 A1 WO 2008032746A1 JP 2007067755 W JP2007067755 W JP 2007067755W WO 2008032746 A1 WO2008032746 A1 WO 2008032746A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
sheet
coil
power
circuit
Prior art date
Application number
PCT/JP2007/067755
Other languages
French (fr)
Japanese (ja)
Inventor
Takao Someya
Takayasu Sakurai
Makoto Takamiya
Tsuyoshi Sekiya
Original Assignee
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Tokyo filed Critical The University Of Tokyo
Priority to JP2008534367A priority Critical patent/JPWO2008032746A1/en
Publication of WO2008032746A1 publication Critical patent/WO2008032746A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/003Printed circuit coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply

Definitions

  • the present invention relates to a power supply sheet and a power supply circuit.
  • the present invention relates to an energization circuit having a coil sheet arranged on a sheet in a matrix form.
  • Patent Document 1 a device that feeds power to a device mounted on a flat plate by energizing a coil provided on the flat plate.
  • power is supplied to the device by electromagnetic action between the coil of the device and the coil provided on the flat plate.
  • Patent Document 1 JP 2005-525705 gazette
  • the above-described power supply apparatus does not contribute to the power supply to the device by uniformly energizing the coil attached to the flat plate! /, And generates an electromagnetic field up to the range, so the power supply efficiency is lowered. If a flat plate with a small mounting area is used, the power supply efficiency will be high, but the device mounting range will be narrowed.
  • An object of the power supply sheet of the present invention is to improve the efficiency of power supply to devices.
  • Another object of the power supply sheet of the present invention is to increase the degree of freedom of equipment placement. Furthermore, the power supply sheet of the present invention is one of the purposes for improving transportability and operability. Alternatively, the power supply sheet of the present invention has an object to supply power corresponding to each device.
  • the energization circuit of the present invention has an object to energize a plurality of coils independently.
  • Another object of the circuit for energization of the present invention is to suppress a coil that is not energized from being affected by the coil that is energized.
  • the power supply sheet and the energization circuit of the present invention achieve at least a part of the above-described object. In order to do so, the following measures were taken.
  • a first power supply sheet of the present invention is a sheet-like power supply sheet used in a power supply device capable of supplying power to a device having a power receiving coil in a non-contact manner, and a plurality of coils are formed into a matrix in a sheet.
  • energization is performed by energizing at least one coil corresponding to the position on the sheet of the device among the plurality of coils arranged in the coil sheet in a matrix! Power is supplied to the equipment based on the electromagnetic action between the coil and the power receiving coil of the equipment.
  • the coil not corresponding to the position of the device is not energized, and the coil corresponding to the position on the sheet of the device is energized to supply power to the device.
  • loss associated with energization of the coil that does not contribute to power supply can be suppressed, and power S can be improved.
  • the power supply to the equipment is based on the fact that a current can be generated in the power receiving coil of the equipment by an electromagnetic field generated in the coil by energization.
  • the first power supply sheet of the present invention may include a position detection unit that detects the position of the device on the coil sheet. By doing this, it is possible to detect the position of the device on the coil sheet and to supply power to the device by energizing only the coil corresponding to the detected position.
  • the position detecting means is based on an electrical signal obtained in accordance with the positional relationship between the energized coil and the coiler of the device by sequentially energizing at least some of the plurality of coils. It is also possible to use a position detection circuit for detecting the position of the device on the sheet.
  • the detection of the position of the device on the sheet is based on the fact that the electrical signal detected when the coil is energized differs depending on whether the coil of the device is present or not. You can be fi based.
  • the coil sheet is connected to a plurality of position detection coils connected to the position detection circuit and the power supply circuit. It can also consist of a plurality of power feeding coils.
  • the coil sheet is a position where the plurality of position detection coils are arranged.
  • Two sheets of a detection coil sheet and a power supply coil sheet in which the plurality of power supply coils are arranged may be used.
  • a position detection circuit sheet in which the position detection circuit is formed on a sheet, and a power supply circuit sheet in which the power supply circuit is formed on the sheet, the front of the device is provided.
  • the power feeding coil sheet, the power feeding circuit sheet, the position detecting coil sheet, and the position detecting circuit sheet may be arranged in this order. In this way, sheets can be formed according to function.
  • the feeding coil sheet and the position detecting coil sheet are arranged so that the feeding coil and the position detecting coil are arranged so that the coils do not overlap at the center of both coils. You can also This makes it possible to efficiently detect the position of the device on the sheet and to supply power to the device.
  • the position detecting circuit is connected in series to the position detecting coil.
  • ON / OFF of the resistor connected to the resonant frequency voltage applying wiring for applying an AC voltage of the resonance frequency to the position detection coil and the oscillation circuit including the resistor, and the application of the AC voltage of the resonance frequency A circuit comprising a position detection unit having a position detection switching element and a voltage detection wiring for detecting a voltage between terminals of the resistor so as to correspond to the plurality of position detection coils. It can also be assumed.
  • the oscillation circuit has a parasitic capacitance that varies depending on whether or not the power reception coil of the device is close to the position detection coil.
  • the position of the device on the sheet can be detected based on the change in the voltage across the resistor due to the change in the resonance frequency.
  • the position detecting switching element is an organic transistor.
  • a power supply unit having a power supply switching element and a power supply voltage application wiring for applying an AC voltage having a predetermined frequency for power supply to the power supply coil via the switching element corresponds to the plurality of power supply coils. It can also be a circuit that is arranged in such a way. In this way, the power supply switching element is turned on and an AC voltage of a predetermined frequency is applied to the power supply coil, thereby generating a current in the power reception coil of the device based on the change in the magnetic field generated by the power supply coil. can do.
  • the power supply switching element may be a mechanical switch that is turned on and off using an attractive force or a reaction force due to charges of two electrodes.
  • the power supply voltage application wiring may be configured such that power supply coils other than the power supply coil connected to the wiring are not included in the loop. By so doing, it is possible to suppress the effects of including other power supply coils in the loop, for example, the generation of voltage.
  • the power supply voltage applying wiring may be formed by arranging two wirings in parallel.
  • the position detecting coil and the power feeding coil are the same coil.
  • the dual-purpose coil can also be used. In this way, the same coil can be used as a position detecting coil and a power feeding coil, and the number of coils can be reduced.
  • the position detection circuit and the power supply circuit include a resistor connected in series to the dual-purpose coil, the dual-purpose coil, and the resistance.
  • Resonance frequency voltage application wiring for applying an AC voltage having a resonance frequency to an oscillation circuit including the position detecting switching element for turning on / off the application of the AC voltage having the resonance frequency, and a voltage across the resistor.
  • a position detection unit having a voltage detection wiring, a power supply switching element that controls whether the dual-purpose coil is energized, and a predetermined power supply to the dual-purpose coil via the switching element.
  • a power supply unit having a power supply voltage application wiring for applying an alternating voltage of a frequency may be a circuit in which the power supply unit is arranged so as to correspond to the plurality of combined coils. In this way, when the position detection switching element is turned on and an AC voltage having a resonance frequency is applied, the resonance frequency of the vibration circuit is affected by the parasitic capacitance that varies depending on whether the power receiving coil is close to the dual-purpose coil.
  • the position of the device on the sheet can be detected based on the change in the voltage between the terminals of the resistor due to the change in the resistance, and by turning on the power switching element and applying an AC voltage of a predetermined frequency to the power supply coil Based on the change in the magnetic field generated by the power supply coil, it is possible to supply power by generating a current in the power reception coil of the device.
  • the position detecting switching element may be an organic transistor
  • the power feeding switching element may be a mechanical switch that is turned on / off using an attractive force or a reaction force due to charges of two electrodes.
  • a circuit sheet in which the position detection circuit and the power feeding circuit are formed on a sheet may be provided, and the coil sheet may be arranged in the order of the circuit sheet.
  • the power supply circuit in which the power supply circuit includes a power supply unit having a power supply switching element and a power supply voltage application wiring, the power supply circuit is connected to the power supply voltage application wiring.
  • An adjustment circuit that adjusts the power supply efficiency based on the positions of the power supply coil and the device coil may be provided. In this way, it is possible to adjust the power supply efficiency S and to increase the power supply efficiency.
  • the adjustment circuit is connected to the first variable capacitor having a variable capacitance arranged in series with the power supply coil and the power supply coil of the first variable capacitor.
  • the circuit may include a second variable capacitor that is connected to a terminal different from the terminal and the ground and has a variable capacitance. In this way, the feeding efficiency can be adjusted by adjusting the capacity of the two variable capacitors.
  • the first power supply sheet of the present invention may be flexible. In this way, the transportability and operability of the power supply sheet can be improved.
  • the second power supply sheet of the present invention can supply power to a device having a power receiving coil, a communication circuit that communicates based on a current flowing through the coil, and a storage circuit that stores individual information in a contactless manner.
  • Individual information of the device by communicating with the device by energizing at least one coil corresponding to the position on the sheet of the device among the plurality of coils and a coil sheet arranged in a sheet shape
  • An individual information acquiring means for acquiring a current, and a coil that is energized by energizing at least one coil corresponding to a position on the sheet of the device among the plurality of coils based on the acquired individual information;
  • a power supply means for supplying power to the device based on electromagnetic action with the coil of the device.
  • the second power feeding sheet of the present invention by energizing at least one coil corresponding to the position on the sheet of the device among a plurality of coils arranged on the coil sheet in a matrix, by communication with the device Acquire individual device information and energize by energizing at least one coil corresponding to the position on the device sheet among the multiple coils based on the acquired individual information! / Based on the electromagnetic action between the coil and the power receiving coil of the device, power is supplied to the device. Thereby, a device can be charged according to an individual device.
  • the power supply means includes a plurality of switching elements that control whether or not the plurality of coils are energized, and the plurality of coils via the plurality of switching elements.
  • a voltage application wiring for applying an alternating voltage to each of the plurality of individual elements, and the individual information acquisition unit has a predetermined frequency in which a communication signal is placed on each of the plurality of coils via the plurality of switching elements. It is also possible to obtain the individual information by communicating with the device by applying the AC voltage.
  • the individual information includes the identification information of the device
  • the power supply means includes the identification information included in the acquired individual information. It can also be a means for supplying power at the time of information. In this way, it is possible to supply power only to a device having predetermined identification information as identification information as individual information.
  • the individual information includes information on an allowable power when supplying power to the device
  • the power supply unit includes a range of allowable power included in the acquired individual information. It can also be a means for supplying power to the device. In this way, the device can be fed within the allowable power range.
  • the power supply means is means having a voltage changing circuit that changes the voltage of the AC voltage applied to the energized coil based on the allowable power included in the acquired individual information. Let's go out.
  • the energization circuit of the present invention is an energization circuit for energizing the plurality of coils of a coil device in which a plurality of coils are arranged in a matrix, and is a power supply that controls whether or not the coils are energized.
  • a circuit unit comprising: a switching element for power supply; and a wiring for energizing the coil via the switching element, wherein the coil is wired so that a coil other than the coil connected to the wiring is not included in the loop.
  • the gist is that they are arranged so as to correspond to the plurality of coils.
  • the energization wiring for energizing the coil is wired so that no coil other than the coil connected to this wiring is included in the loop. It is possible to suppress the influence of including other coils, such as voltage generation. As a result, it is not necessary to provide a switch for each coil in order to suppress the generation of voltage in a coil that is not energized. Of course, each of the plurality of coils can be energized independently.
  • the energization wiring may be formed by arranging two wirings in parallel.
  • the energization circuit of the present invention when a device having a power receiving coil is placed, the energization is performed by energizing at least one coil corresponding to the position on the sheet of the device. Based on the electromagnetic action between the coil and the coil of the device, the power is supplied to the device.
  • FIG. 1 is an exploded configuration diagram schematically showing an outline of a configuration of a power feeding device 20 including a power feeding sheet 22 as one embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing a positional relationship between a power feeding coil 52 and a position detection coil 32.
  • FIG. 3 is a circuit diagram showing an example of a position detection circuit 40a.
  • FIG. 4 is an explanatory diagram showing an example of the connection relationship between the position detection coil 32 and the organic transistor 42 together with the material of the organic transistor 42.
  • FIG. 5 is a circuit diagram showing an example of a power feeding circuit 60a.
  • FIG. 6 is a block diagram schematically showing the outline of the configuration of the MEMS switch 62.
  • FIG. 7 is an explanatory view showing an example of the connection relationship between the power feeding coil 52 and the MEMS switch 62 together with the material of the MEMS switch 62.
  • FIG. 8 is an explanatory diagram showing an example of a change in voltage of the electrostatic attraction electrodes 62a and 62b of the MEMS switch 62 and a change in resistance value between the feeding electrodes 63a and 63b.
  • FIG. 9 An explanatory diagram schematically showing the position detecting unit 41 and the power receiving coil 12 when the power receiving coil 12 of the electronic device 10 is brought close to the power feeding sheet 22.
  • FIG. 10 is an explanatory diagram showing a change in the voltage between terminals of the resistor 44 when the electronic device 10 is not brought close to the power supply sheet 22.
  • FIG. 11 is an explanatory diagram showing changes in the voltage across the terminals of the resistor 44 when the electronic device 10 is not brought close to the power supply sheet 22 and when the electronic device 10 is placed on the power supply sheet 22.
  • FIG. 12 is an explanatory diagram showing an example of the relationship between the distance d between the position detecting coil 32 and the power receiving coil 12 and the voltage across the terminals of the resistor 44.
  • FIG. 14 is an explanatory diagram showing the frequency of power (power) output from the corresponding power feeding coil 52 when the MEMS switch 62 is turned on / off.
  • FIG. 15 is an explanatory diagram showing the power supply coil 52 force, the power (power), the power received by the power receiving coil 12 and the efficiency when the MEMS switch 62 is turned on.
  • FIG. 16 An explanatory diagram showing the relationship between the vertical distance z between the feeding coil 52 and the receiving coil 12 and the feeding efficiency.
  • FIG. 17 An explanatory diagram showing the relationship between the horizontal distance X between the power feeding coil 52 and the power receiving coil 12 and the charging efficiency.
  • FIG. 18 is a circuit diagram showing an example of a power feeding circuit including the adjustment circuit 70.
  • FIG. 19 is an explanatory diagram showing an example of the configuration of the adjustment circuit 70.
  • FIG. 20 is a circuit diagram showing an example of a dual-purpose circuit.
  • FIG. 21 A configuration diagram showing an outline of a configuration of a power feeding device 120 and an electronic device 10 according to a modification.
  • FIG. 22 shows a processing routine at the time of power supply executed by the controller 138 of the power supply apparatus 120 of the modified example It is a flowchart which shows an example of a chin.
  • FIG. 1 is an exploded configuration diagram schematically showing an outline of a configuration of a power feeding device 20 including a power feeding sheet 22 as an embodiment of the present invention.
  • the power feeding device 20 of the embodiment includes a plurality of power feeding coils 52 for feeding power by electromagnetic action with the power receiving coil 12 of the electronic device 10 that is not shown in FIG.
  • a feeding coil sheet 50 arranged on a flexible sheet so that the shaft is in a matrix form, and a feeding circuit 60a for energizing the plurality of feeding coils 52 are formed on the flexible sheet.
  • the coil axis is made up of a plurality of position detection coils 32 for detecting the position of the electronic device 10 on the sheet by electromagnetic action between the power supply circuit sheet 60 and the power receiving coil 12 of the electronic device 10.
  • a position detection coil sheet 30 arranged on a flexible sheet so as to form a shape and a position detection circuit 40a for energizing a plurality of position detection coils 32 are formed on the flexible sheet.
  • a power supply sheet 22 configured by stacking the position detection circuit sheets 40 in this order, a power supply switch power supply 69 as a DC power source for turning on and off a switching element (described later) of the power supply circuit 60a, Power supply 68 as an AC power supply for supplying power to device 10, position detection switch power supply 49 as a DC power supply for turning on / off a switching element (described later) of position detection circuit 40a, and a position detection coil And a position detection power supply 48 as an AC power supply for energizing 32.
  • the power supply coil sheet 50 and the position detection coil sheet 30 overlap the coil center of the position detection coil 32 when the power supply sheet 22 is configured.
  • the feeding coil 52 and the position detecting coil 32 are arranged so that the centers of both coils are arranged in a staggered manner. By doing so, the influence of the position detection coils 32 and the power supply coils 52 on the magnetic flux is suppressed, and the performance of the position detection coils 32 and the power supply coils 52 can be fully exhibited.
  • the position detection coil sheet 30 is obtained by applying an etching resist in a coil shape to a polyimide film on which a copper foil of 6,1 m is pasted by using screen printing, and then etching with ferric chloride. Thus, a plurality of position detection coils 32 are formed.
  • the force for forming the position detection coil 32 with 38 windings, an inner diameter of 10 mm, an inductance of 20 mm H, and a resistance of 17 ⁇ is not limited to this specification. For example, lmm, 5mm, or 20mm can be used as the inner diameter.
  • FIG. 3 is a circuit diagram showing an example of the position detection circuit 40a.
  • the position detection circuit 40a includes a 10 ⁇ resistor 44 connected in series to the position detection coil 32, a variable capacitance capacitor 45 for adjusting the capacitance of the circuit, a position detection coil 32, and a resistor 44.
  • the voltage detection wiring 46 for detecting the voltage between the terminals of the resistor 44, the voltage sensor 47 connected to the voltage detection wiring 46, and the position detection unit 41 that also has a force 41 Is formed in a matrix of N rows and N columns so as to correspond to NXN position detection coils 3 2, and the source and drain of each organic transistor 42 are for position detection by bit lines BP;!
  • a power source 48 is connected, and a position detection switch power source 49 is connected to the gate of each organic transistor 42 by a word line WP ;! to WPN.
  • the position detection power supply 48 is 2.95 MHz, which is the resonant frequency of the circuit
  • the position detection switch power supply 49 is a 40 V power supply. The resonant frequency of the circuit is controlled by adjusting the variable capacitor 45.
  • the organic transistor 42 was fabricated as follows. First, silver nanoparticles are coated on a plastic film with an ink jet printer, and silver nanoparticles are baked in the atmosphere at 220 ° C. for 1 hour to form a gate electrode (in the example, the thickness is 300 nm and the resistivity is 4 Q cm). Next, an epoxy resin is applied by a screen printer to form a partition (in the example, 5 inches) around each gate electrode. Subsequently, a polyimide precursor diluted to 8 mPas is applied onto the gate electrode in the partition wall by ink jet and cured at 180 ° C. in a nitrogen atmosphere to form a polyimide gate insulating film (thickness 1 ⁇ m).
  • an organic semiconductor pentacene having a thickness of 50 nm is formed using a vacuum evaporation method, and finally, the source and drain electrodes are formed using a vacuum evaporation apparatus to complete the organic transistor 42.
  • the organic transistor 42 has a channel length of 13 mm and a channel width of 48 mm.
  • Figure 4 An example of the connection relationship between the position detection coil 32 and the organic transistor 42 is shown together with the material of the organic transistor 42. As shown in the figure, the drain of the position detection coil 32 and the organic transistor 42 is connected by a silver paste 38. The silver paste 38 is also used for bonding the position detecting coil sheet 30 and the position detecting circuit sheet 40 together.
  • the power feeding coil sheet 50 is obtained by applying an etching resist in a coil shape to a polyimide film in which a 6 ⁇ m copper foil is occupied by a screen using screen printing.
  • a plurality of power supply coils 52 are formed by etching with ferric chloride.
  • the force for forming the power feeding coil 52 with 13 windings, an inner diameter of 10 mm, an inductance of 3 H, and a resistance of 1 ⁇ is not limited to this specification.
  • lmm, 5mm, and 20mm can be used as the inner diameter.
  • FIG. 5 is a circuit diagram showing an example of the power feeding circuit 60a.
  • the power feeding circuit 60a includes a MEMS (Micro Electro Mechanical System) switch 62 as a switching element for turning on and off the power feeding coil 52, and a power feeding power source 68 via the MEMS switch 62.
  • the power supply voltage application wiring 64 for applying the AC voltage to the power supply coil 52 and the power supply unit 61, which is also powerful, are formed in a matrix of N rows and N columns so as to correspond to the NXN power supply coils 52.
  • the MEMS switch 62 is connected to the power supply switch power supply 69 by the bit line BT1 ⁇ : BTN, word line WT;!
  • the power supply power supply 68 is connected in series with the MEMS switch 62 and the power supply coil 52. Connected and configured.
  • the power supply 68 in the embodiment, a power supply of 13.65 MHz which is a frequency band in which high power transmission is permitted in the Japanese Radio Law is used, and a 70 V power supply is used as the power supply switch power supply 69.
  • the power supply voltage application wiring 64 is arranged in parallel with two wirings, and any power supply coil 52 is not included in the loop. As a result, it is possible to suppress the influence caused by the inclusion of another power supply coil 52 in the loop formed by the power supply voltage application wiring 64, for example, the occurrence of unexpected voltage (noise).
  • FIG. 6 is a configuration diagram schematically showing an outline of the configuration of the MEMS switch 62.
  • the MEMS switch 62 has an electrostatic attraction electrode 62a, 62b and a voltage across the electrostatic attraction electrode 62a, 62b.
  • the power supply electrodes 63a and 63b are in contact with each other by the attractive force generated by the action of the.
  • the MEMS switch 62 is formed as an upper electrode sheet by applying an electrostatic attractive electrode 62a and a feeding electrode 63a to a polyimide film (thickness 25 m) by inkjet, and a polyimide film (thickness 75 m).
  • Electrostatic attraction electrode 62b and feeding electrode 63b are applied by inkjet to form a lower electrode sheet, and the upper electrode sheet and the lower electrode sheet are polyimide film (thickness 25 Hm) insulating spacer sheet And sandwiched by a thermocompression bonding adhesive sheet.
  • FIG. 7 shows an example of the connection relationship between the feeding coil 52 and the MEMS switch 62 together with the material of the MEMS switch 62. As shown in the figure, the feeding coil 52 and the feeding electrode 63a are connected by a silver paste 58. The silver paste 58 is also used for bonding the power feeding coil sheet 50 and the power feeding circuit sheet 60 together.
  • FIG. 7 shows an example of the connection relationship between the feeding coil 52 and the MEMS switch 62 together with the material of the MEMS switch 62. As shown in the figure, the feeding coil 52 and the feeding electrode 63a are connected by a silver paste 58. The silver paste 58 is also used for bonding the power feeding coil sheet 50 and the power feeding circuit sheet 60 together.
  • FIG. 8 shows an example of a change in voltage of the electrostatic attractive electrodes 62a and 62b of the MEMS switch 62 and a change in resistance value between the feeding electrodes 63a and 63b. As shown in the figure, the resistance value between the feeding electrodes 63a and 63b follows the change in the voltage of the electrostatic attractive electrodes 62a and 62b.
  • Fig. 9 schematically shows the position detection unit 41 and the power receiving coil 12 when the power receiving coil 12 of the electronic device 10 is brought close to the power feeding sheet 22, and Fig. 10 shows the electronic device 10 close to the power feeding sheet 22. This shows the change in the voltage Vs between the terminals of the resistor 44 when not in operation. As shown in Fig. 10, the voltage across resistor 44 varies greatly depending on the applied frequency.
  • FIG. 11 shows changes in the voltage Vs between the terminals of the resistor 44 when the electronic device 10 is not brought close to the power supply sheet 22 and when the electronic device 10 is placed on the power supply sheet 22. As shown in the figure, the voltage Vs between the terminals of the resistor 44 is reduced by 91% due to the generation of parasitic capacitance.
  • FIG. 12 shows an example of the relationship between the distance d between the position detecting coil 32 and the power receiving coil 12 and the terminal voltage Vs of the resistor 44.
  • the voltage Vs between the terminals of the resistor 44 changes when the distance d between the position detecting coil 32 and the power receiving coil 12 is from Omm to 23 mm.
  • the NXN organic transistors 42 formed on the position detection circuit sheet 40 are sequentially turned on so as to scan, and the voltage of the voltage sensor 47 is detected, so that the organic transistor 42 among the NXN organic transistors 42 is detected.
  • the position detection coil 32 on which the electronic device 10 is positioned can be detected by the degree of the voltage drop of the corresponding resistor 44 when turned on.
  • FIG. 13 shows that the MEMS switch 62 corresponding to the power feeding coil 52 at a position substantially aligned with the power receiving coil 12 of the electronic device 10 is turned on, and an AC voltage of 13.56 MHz from the power source 68 to the power feeding coil 52 is applied. It is explanatory drawing which shows a mode when it applies. As shown in the figure, the magnetic flux generated by applying an AC voltage to the power feeding coil 52 passes through the power receiving coil 12 of the electronic device 10 due to the magnetic flux changing at 56 MHz. 10 can be powered.
  • Figure 14 shows the frequency of the power output from the power supply coil 52 when the MEMS switch 62 is turned on and off
  • Figure 15 shows the power from the power supply coil 52 when the MEMS switch 62 is turned on.
  • Power the power received by the power receiving coil 12
  • the efficiency As shown in Fig. 14, the output from the feeding coil 52 is 116 mW at the frequency of 13.5 6 MHz when the MEMS switch 62 is turned on, so the output in the 13.56 MHz band is not performed.
  • the power receiving coil 12 receives power linearly with an efficiency of about 62.3% with respect to the power output from the power feeding coil 52.
  • FIG. 16 is an explanatory diagram showing the relationship between the vertical distance z between the feeding coil 52 and the receiving coil 12 and the efficiency of feeding
  • FIG. 17 is the horizontal distance X between the feeding coil 52 and the receiving coil 12 and charging. It is explanatory drawing which shows the relationship with efficiency. As shown in Fig. 16, when the vertical distance z is lmm, the efficiency decreases about 40% compared to Omm, and as shown in Fig. 17, when the horizontal distance x is 2 mm, it is less than Omm. About 20%.
  • the power feeding device 20 first detects whether or not the electronic device 10 exists at any position on the power feeding sheet 22 by sequentially turning on / off the organic transistors 42 in the position detection circuit sheet 40 so as to scan.
  • the MEMS switch 62 connected to the power supply coil 52 corresponding to the position where the electronic device 10 is detected is turned on, and the power supply power source 68 supplies the AC voltage to the power supply coil 52. Apply. As a result, power is supplied to the electronic device 10.
  • the use of the power supply apparatus 20 detects whether or not the electronic device 10 is present on the power supply sheet 22, and the electronic apparatus.
  • the MEMS switch 62 connected to the power supply coil 52 corresponding to the position of the electronic device 10 is turned on to apply power to the power supply coil 52 by applying an AC voltage from the power supply 68.
  • the degree of freedom of placing the electronic device 10 on the power supply sheet 22 can be increased. Therefore, even if the electronic device 10 is placed on any position on the power supply sheet 22 and the electronic device 10 is moved on the power supply sheet 22, power can be supplied to the electronic device 10.
  • the position detection coil sheet 30, the position detection circuit sheet 40, the power supply coil sheet 50, and the power supply circuit sheet 60 are all flexible films. Therefore, the power supply sheet 22 itself can also have flexibility. As a result, even if the power supply sheet 22 has a large area, it can be rolled into a cylindrical shape and transported, so that good transportability and operability can be obtained.
  • the position detection coil 32 and the power supply coil are arranged.
  • the influence on the magnetic flux of 52 can be suppressed, and the efficiency of position detection and power feeding can be increased.
  • the power corresponding to the horizontal distance X between the power feeding coil 52 and the power receiving coil 12 is not provided.
  • An adjustment circuit 70 that adjusts the efficiency of power feeding with respect to the horizontal distance x between the power coil 52 and the power receiving coil 12 may be interposed in the power source 68 for power feeding.
  • the adjustment circuit 70 includes a variable capacitor 72 connected in series to the power supply 68, and a variable capacitor 74 disposed between the power supply 68 and the ground. This is composed of two variable capacitors. By adjusting the capacitances of these two variable capacitors 72 and 74, the power supply efficiency can be improved by adjusting the capacitance of the two variable capacitors 72 and 74.
  • the position detection coil 32 and the power supply coil 52 are formed on separate sheets, but may be formed on a single sheet. In this case, the position detection coil 32 and the power feeding coil 52 may be used as the same coil.
  • the shared coil (hereinafter referred to as a dual-purpose coil) 52B is a dual-purpose coil sheet that is arranged in a matrix on the sheet.
  • the power sheet can be configured by stacking two sheets in this order, the dual-purpose circuit sheet in which the dual-purpose circuit having the functions of the position detection circuit 40a and the power supply circuit 60a is formed in a sheet shape.
  • An example of a shared circuit is shown in Figure 20. In this way, the power feeding sheet can be constituted by two sheets, and the power feeding sheet can be formed thinner.
  • the force S is assumed to use the organic transistor 42 as the switching element of the position detection circuit 40a, and the switching element used in the position detection circuit 40a is limited to the organic transistor 42. It does not matter if any switching element is used.
  • the vibration circuit including the position detection coil 32, the resistor 44, and the variable capacitor 45 is configured so that the resonance frequency is 2.95 MHz, and the frequency of 2.95 MHz is set.
  • the resonance frequency of the force S and the vibration circuit using the position detection power supply 48 for applying the AC voltage is not limited to 2.95 MHz, but may be any frequency. If the frequency of the AC voltage applied to the vibration circuit is the resonance frequency of the vibration circuit based on the position detection mechanism, the position on the power supply sheet 22 of the electronic device 10 can be detected at any frequency.
  • electrostatic attractive force is used as a switching element of the power supply circuit 60a.
  • Power supply using MEMS switch 62 that is turned on when power supply electrodes 63a and 63b come into contact with each other due to the attractive force generated by applying a voltage to electrodes 62a and 62b It is also possible to use a switch that is turned on when the working electrode contacts. Can be turned on / off instead of MEMS switch 62
  • the force S is assumed to apply an AC voltage of 13.56 MHz to the power supply coil 52, and the frequency of the AC voltage applied to the power supply coil 52 is 13.56 MHz. There is no power at any frequency that is not limited.
  • the power supply voltage application wiring 64 is formed of two parallel wirings, and the power supply circuit 60a is formed so that the other power supply coil 52 is not included in the loop. Since the power feeding circuit 60a is formed so that the power feeding coil 52 is not included in the loop, the power feeding voltage applying wiring 64 does not have to be two parallel wirings. Also, the power supply voltage application wiring may be arranged so that the other power supply coil 52 is included in the loop.
  • the position detection coil sheet 30, the position detection circuit sheet 40, the power supply coil sheet 50, and the power supply circuit sheet 60 are all formed to have flexibility.
  • the position of the electronic device 10 on the power supply sheet 22 is detected using the position detection coil sheet 30 and the position detection circuit sheet 40.
  • the detection of the position of the electronic device 10 on 22 is not limited to the position detection coil sheet 30 and the position detection circuit sheet 40, but a plurality of touch sensors and load sensors are arranged on a plane.
  • the sheet is replaced with the coil sheet 30 for position detection or the circuit sheet 40 for position detection, and the power sheet is configured by using the coil sheet 50 for power supply or the circuit sheet 60 for power supply. It detects the electronic device 10 on the power supply sheet 22, such as detecting the position on the power supply sheet 22 of the electronic device 10 based on the position of the sensor or load sensor on the sheet. Lever may be any thing.
  • an image from a photographing device that captures the placement surface of the power feeding sheet 22 The electronic device 10 on the power supply sheet 22 may be detected by image processing the data.
  • FIG. 21 shows a schematic configuration of the power feeding device 120 and the electronic device 10 according to the modification.
  • the electronic device 10 includes a power receiving coil 12 for receiving power from the power feeding device 120, a rectifier 13 for rectifying the AC power received by the power receiving coil 12, and the rectified power.
  • a transmission / reception coil 16a that functions as a transmission / reception antenna simply by providing the battery 14 to be charged, a rectifier 16b that rectifies the received electrical signal and supplies it as power, and a signal analysis unit RF (Radio Frequency) that analyzes the received signal ) 16c, memory cell 16e for storing information, and information received by transmission / reception coil 16a based on the signal received by transmission / reception coil 16a and analyzed by signal analysis unit RF16c (information analyzed by signal analysis unit RF16c ( Data) is stored in the memory cell 16e, and information (data) is read from the memory cell 16e and transmitted from the transmission / reception coil 16a via the signal analysis unit RF16c. That.
  • product identification information of the electronic device 10 allowable power at the time of power
  • the power supply device 120 of the modification is similar to the power supply sheet 22 provided in the power supply device 20 of the embodiment, and includes a position detection coil sheet 30, a position detection circuit sheet 40, and a power supply device.
  • the modulation circuit 132 that modulates the transmission signal from the transmission / reception signal adjustment circuit 130 with respect to the AC voltage from the signal 130 and the demodulation that demodulates the signal from the transmission / reception coil 16a of the electronic device 10 from the signal detected by the position detection coil 32 AC supplied from the power supply 68 between the power supply 68 and the circuit sheet 60 for supplying power to the circuit 134 and the power supply coil 52 via the MEMS switch 62
  • a voltage adjustment circuit 136 for adjusting the voltage of the voltage and a controller 138 for controlling the entire power feeding device 120 are
  • FIG. 22 is a flowchart illustrating an example of a processing routine during power supply executed by the controller 138 of the power supply apparatus 120 according to the modification.
  • this processing routine is executed, first, the organic transistors 42 of the position detection circuit sheet 40 are sequentially turned on, the position detection coil 32 is energized in order, and the position of the electronic device 10 on the power supply sheet 22 is detected ( Step S100).
  • the individual transistor information stored in the memory cell 16e of the electronic device 10 is acquired by turning on the organic transistor 42 of the position detection coil 32 corresponding to the position of the electronic device 10.
  • the process is executed (step S110).
  • a control signal for transmitting individual information from the electronic device 10 is output from the transmission / reception signal adjustment circuit 130 to the modulation circuit 132, and the modulation circuit 132 outputs the control signal to the AC voltage from the position detection power supply 48.
  • the position detection coil 32 is energized with the modulated AC voltage via the organic transistor 42, and the signal transmitted from the electronic device 10 is received by the position detection coil 32 and demodulated.
  • the signal is demodulated by the circuit 134 and input to the transmission / reception signal adjustment circuit 130, which is output by the transmission / reception signal adjustment circuit 130 to the controller 138.
  • the control signal is analyzed by the signal analysis unit RF16c, and the control unit 16d performs the measurement based on the analyzed signal.
  • Individual information such as product identification information of the electronic device 10 stored in the Moricell 16e and allowable power at the time of power supply is transmitted from the transmission / reception coil 16a via the signal analysis unit RF16c.
  • the electric power received from the transmission / reception coil 16a is rectified and supplied to the power supply device 120 using the electric power from the rectifier 16, and thus the battery 14 is completely discharged. Even at times, individual information can be transmitted and received.
  • the power is determined by determining whether or not the electronic device 10 may be supplied based on the product identification information of the electronic device 10 included in the acquired individual information.
  • Sorting electronic devices includes, for example, information indicating whether the device can supply power to the upper 2 digits or 3 digits of the product identification information. This can be done by determining this.
  • a voltage as an execution value of the AC voltage applied to the power supply coil 52 is determined as the power supply voltage based on the allowable power at the time of power supply of the acquired individual information.
  • step S130 the voltage adjustment circuit 136 adjusts the AC voltage from the power supply 68 to the determined power supply voltage, and turns on the MEMS switch 62 for the power supply coil 52 corresponding to the position of the electronic device 10 to turn it on. Power supply to the device 10 is started (step S140), and the processing routine is ended.
  • the individual information of the electronic device 10 is acquired by communication with the electronic device 10 on the power supply sheet 22, and based on the product identification information included in the individual information! It is possible to perform power feeding by determining whether or not power can be fed! /. As a result, it is possible to select whether or not to supply power only by storing in the device whether or not the device supplies power as product identification information.
  • the power supply voltage is set based on the allowable power at the time of power supply of the individual information and power is supplied to the electronic device 10, the electronic device 10 can be supplied with appropriate power.
  • the product identification information and the allowable power at the time of power supply are stored in the electronic device 10 as individual information of the electronic device 10, and whether or not the power supply is performed based on the product identification information.
  • the power S is used to supply power to the electronic device 10 by setting the voltage for power supply based on the allowable power at the time of power supply, and only one of the product identification information and the allowable power at the time of power supply is the electronic device 10
  • information other than product identification information and allowable power at the time of power feeding may be stored in the electronic device 10 as individual information, and the electronic device 10 may be powered based on the stored individual information.
  • the power supply device 120 of the modified example it has been described that one electronic device 10 is mounted on the power supply sheet 22 and is V, but there are a plurality of electronic devices on the power supply sheet 22.
  • power is supplied by setting each power supply voltage to each electronic device based on the allowable power at the time of power supply included in each individual information acquired from each electronic device. It may be a thing. In this case, it is necessary to provide a voltage adjustment circuit 136 for each power supply coil 52. What is necessary is just to comprise a path. In addition, it is also possible to set the power supply voltage based on the lowest allowable power among the allowable power included in each individual information acquired from each electronic device and to supply each electronic device. .
  • the electronic device 10 includes the power receiving coil 12 and the transmission / reception coil 16a.
  • the power reception coil 12 may also serve as the transmission / reception coil 16a.
  • the position detection coil 32 may be used to communicate with the electronic device 10
  • the force power supply coil 52 may be used to communicate with the electronic device 10; It is good for communicating with the electronic device 10 using an antenna different from the detection coil 32 and the feeding coil 52.
  • the present invention can be used in manufacturing industries such as a power feeding sheet and a power feeding device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

A power supply sheet (22) is formed by: a power supply coil sheet (50) having a plurality of power supply coils (52) arranged in a matrix; a power supply circuit sheet (60) having a power supply circuit (60a) formed for applying power for power supply to the respective power supply coils (52); a position detecting coil sheet (30) having position detecting coils (32) arranged in a matrix; and a position detecting circuit sheet (40) having a position detecting circuit (40a) for electrical connection to scan the respective position detecting coils (32). The power supply sheet (22) detects whether an electronic device having a power receiving coil exists on the power supply sheet (22) and applies power for power supply only to the power supply coils (52) corresponding to the position of the electronic device upon detection of one. This improves the efficiency of power supply to an electronic device and increases the freedom of placement of an electronic device on the power supply sheet (22).

Description

明 細 書  Specification
給電シートおよび通電用回路  Power supply sheet and power supply circuit
技術分野  Technical field
[0001] 本発明は、給電シートおよび通電用回路に関し、詳しくは、受電用のコイルを有す る機器に非接触で給電可能な給電装置に用いられるシート状の給電シートおよび複 数のコイルをマトリックス状にシートに配置してなるコイルシートを有する通電用回路 に関する。  TECHNICAL FIELD [0001] The present invention relates to a power supply sheet and a power supply circuit. The present invention relates to an energization circuit having a coil sheet arranged on a sheet in a matrix form.
背景技術  Background art
[0002] 従来、この種の給電装置としては、平板に設けられたコイルに通電することにより平 板に載置された機器に非接触で給電するものが提案されている(例えば、特許文献 1参照)。この装置では、機器の有するコイルと平板に設けられたコイルとの電磁作用 により機器に給電している。  Conventionally, as this type of power feeding device, a device that feeds power to a device mounted on a flat plate by energizing a coil provided on the flat plate has been proposed (for example, Patent Document 1). reference). In this device, power is supplied to the device by electromagnetic action between the coil of the device and the coil provided on the flat plate.
特許文献 1 :特表 2005— 525705号公報  Patent Document 1: JP 2005-525705 gazette
発明の開示  Disclosure of the invention
[0003] しかしながら、上述の給電装置では、平板に取り付けられたコイルに一律に通電し て機器への給電に寄与しな!/、範囲まで電磁場を発生させるから、給電の効率が低く なる。載置面積の小さな平板とすれば給電の効率は高くなるものの、機器の載置範 囲が狭くなる。  [0003] However, the above-described power supply apparatus does not contribute to the power supply to the device by uniformly energizing the coil attached to the flat plate! /, And generates an electromagnetic field up to the range, so the power supply efficiency is lowered. If a flat plate with a small mounting area is used, the power supply efficiency will be high, but the device mounting range will be narrowed.
[0004] 本発明の給電シートは、機器への給電効率の向上を図ることを目的の一つとする。  [0004] An object of the power supply sheet of the present invention is to improve the efficiency of power supply to devices.
また、本発明の給電シートは、機器の載置の自由度を高くすることを目的の一つとす る。さらに、本発明の給電シートは、運搬性や操作性の向上を図ることを目的の一つ とする。あるいは、本発明の給電シートは、個々の機器に対応して給電することを目 的の一つとする。  Another object of the power supply sheet of the present invention is to increase the degree of freedom of equipment placement. Furthermore, the power supply sheet of the present invention is one of the purposes for improving transportability and operability. Alternatively, the power supply sheet of the present invention has an object to supply power corresponding to each device.
[0005] 本発明の通電用回路は、複数のコイルを独立に通電することを目的の一つとする。  [0005] The energization circuit of the present invention has an object to energize a plurality of coils independently.
また、本発明の通電用回路は、通電していないコイルが通電しているコイルの影響を 受けるのを抑制することを目的の一つとする。  Another object of the circuit for energization of the present invention is to suppress a coil that is not energized from being affected by the coil that is energized.
[0006] 本発明の給電シートおよび通電用回路は、上述の目的の少なくとも一部を達成す るために以下の手段を採った。 [0006] The power supply sheet and the energization circuit of the present invention achieve at least a part of the above-described object. In order to do so, the following measures were taken.
[0007] 本発明の第 1の給電シートは、受電用のコイルを有する機器に非接触で給電可能 な給電装置に用いられるシート状の給電シートであって、複数のコイルをマトリックス 状にシートに配置してなるコイルシートと、前記複数のコイルのうち前記機器のシート 上の位置に対応する少なくとも一つのコイルに通電することにより該通電しているコィ ルと前記機器のコイルとの電磁作用に基づいて該機器に給電するための給電用回 路と、を備えることを要旨とする。  [0007] A first power supply sheet of the present invention is a sheet-like power supply sheet used in a power supply device capable of supplying power to a device having a power receiving coil in a non-contact manner, and a plurality of coils are formed into a matrix in a sheet. By energizing at least one coil corresponding to a position on the sheet of the device among the plurality of coils and the coil of the device, the electromagnetic action between the coil that is energized and the coil of the device And a power supply circuit for supplying power to the device.
[0008] この本発明の第 1の給電シートでは、マトリックス状にコイルシートに配置された複数 のコイルのうち機器のシート上の位置に対応する少なくとも一つのコイルに通電する ことにより通電して!/、るコイルと機器の受電用のコイルとの電磁作用に基づ!/、て機器 に給電する。即ち、機器の位置に対応しないコイルへの通電は行なわずに機器のシ ート上の位置に対応するコイルに通電して機器に給電するのである。この結果、給電 に寄与しないコイルへの通電に伴うロスを抑制することができ、給電の効率を向上さ せること力 Sできる。また、給電の効率を低下させることなぐ機器の載置の自由度を高 くすること力 Sできる。もとより、本発明の第 1の給電シートが用いられた給電装置に機 器を載置するだけで機器に給電することができる。ここで、機器への給電は、通電に よってコイルに生じる電磁場により機器の受電用のコイルに電流を生じさせることがで きることに基づく。  [0008] In the first power supply sheet of the present invention, energization is performed by energizing at least one coil corresponding to the position on the sheet of the device among the plurality of coils arranged in the coil sheet in a matrix! Power is supplied to the equipment based on the electromagnetic action between the coil and the power receiving coil of the equipment. In other words, the coil not corresponding to the position of the device is not energized, and the coil corresponding to the position on the sheet of the device is energized to supply power to the device. As a result, loss associated with energization of the coil that does not contribute to power supply can be suppressed, and power S can be improved. In addition, it is possible to increase the degree of freedom of equipment installation without reducing the efficiency of power supply. Of course, it is possible to supply power to the device simply by mounting the device on the power supply device using the first power supply sheet of the present invention. Here, the power supply to the equipment is based on the fact that a current can be generated in the power receiving coil of the equipment by an electromagnetic field generated in the coil by energization.
[0009] こうした本発明の第 1の給電シートにおいて、前記機器の前記コイルシート上の位 置を検出する位置検出手段を備えるものとすることもできる。こうすれば、機器のコィ ルシート上の位置を検出し、検出した位置に対応するコイルだけに通電して機器を 給電すること力できる。この場合、前記位置検出手段は、前記複数のコイルの少なく とも一部のコイルに順次通電することにより該通電しているコイルと前記機器のコィノレ との位置関係に応じて得られる電気信号に基づいて該機器のシート上の位置を検出 するための位置検出用回路である、ものとすることもできる。ここで、機器のシート上 の位置の検出は、通電したコイルの近傍に機器のコイルが存在する場合と存在しな い場合とではコイルへの通電に伴って検出される電気信号が異なることに基づいて fiなうことができる。 [0010] 位置検出用回路を備える態様の本発明の第 1の給電シートにおいて、前記コイル シートは、前記位置検出用回路に接続された複数の位置検出用コイルと前記給電用 回路に接続された複数の給電用コイルとから構成されてなるものとすることもできる。 [0009] The first power supply sheet of the present invention may include a position detection unit that detects the position of the device on the coil sheet. By doing this, it is possible to detect the position of the device on the coil sheet and to supply power to the device by energizing only the coil corresponding to the detected position. In this case, the position detecting means is based on an electrical signal obtained in accordance with the positional relationship between the energized coil and the coiler of the device by sequentially energizing at least some of the plurality of coils. It is also possible to use a position detection circuit for detecting the position of the device on the sheet. Here, the detection of the position of the device on the sheet is based on the fact that the electrical signal detected when the coil is energized differs depending on whether the coil of the device is present or not. You can be fi based. [0010] In the first power supply sheet of the present invention having a position detection circuit, the coil sheet is connected to a plurality of position detection coils connected to the position detection circuit and the power supply circuit. It can also consist of a plurality of power feeding coils.
[0011] こうしたコイルシートが位置検出用コイルと給電用コイルとから構成されてなる態様 の本発明の第 1の給電シートにおいて、前記コイルシートは、前記複数の位置検出 用コイルが配置された位置検出用コイルシートと、前記複数の給電用コイルが配置さ れた給電用コイルシートと、の二つのシートであるものとすることもできる。この場合、 前記位置検出用回路をシート上に形成してなる位置検出用回路シートと、前記給電 用回路をシート上に形成してなる給電用回路シートと、を備え、前記機器に対して前 記給電用コイルシート,前記給電用回路シート,前記位置検出用コイルシート,前記 位置検出用回路シートの順に配置されてなるものとすることもできる。こうすれば、機 能別にシートを形成することができる。また、前記給電用コイルと前記位置検出用コィ ルとが両コイルの中心にコイルが重ならないよう配置されるよう前記給電用コイルシー トと前記位置検出用コイルシートとが配置されてなるものとすることもできる。こうすれ ば、機器のシート上の位置の検出や機器への給電を効率よく行なうことができる。  [0011] In the first power supply sheet of the present invention in which such a coil sheet is composed of a position detection coil and a power supply coil, the coil sheet is a position where the plurality of position detection coils are arranged. Two sheets of a detection coil sheet and a power supply coil sheet in which the plurality of power supply coils are arranged may be used. In this case, a position detection circuit sheet in which the position detection circuit is formed on a sheet, and a power supply circuit sheet in which the power supply circuit is formed on the sheet, the front of the device is provided. The power feeding coil sheet, the power feeding circuit sheet, the position detecting coil sheet, and the position detecting circuit sheet may be arranged in this order. In this way, sheets can be formed according to function. Further, the feeding coil sheet and the position detecting coil sheet are arranged so that the feeding coil and the position detecting coil are arranged so that the coils do not overlap at the center of both coils. You can also This makes it possible to efficiently detect the position of the device on the sheet and to supply power to the device.
[0012] さらに、コイルシートが位置検出用コイルと給電用コイルとから構成されてなる態様 の本発明の第 1の給電シートにおいて、前記位置検出用回路は、前記位置検出用コ ィルに直列に接続された抵抗と、前記位置検出用コイルと前記抵抗を含む振動回路 に共振周波数の交流電圧を印加するための共振周波数電圧印加用配線と、前記共 振周波数の交流電圧の印加をオンオフする位置検出用スイッチング素子と、前記抵 抗の端子間電圧を検出するための電圧検出用配線と、を有する位置検出用ユニット を前記複数の位置検出用コイルに対応するよう配置してなる回路であるものとするこ ともできる。こうすれば、位置検出用スイッチング素子をオンとして共振周波数の交流 電圧を印加したときに位置検出用コイルに機器の受電用のコイルが近づいているか 否かにより変動する寄生容量のために振動回路の共振周波数が変化することによる 抵抗の端子間電圧の変化に基づいてシート上の機器の位置を検出することができる 。この場合、前記位置検出用スイッチング素子は、有機トランジスタであるものとする ことあでさる。 [0013] 或いは、コイルシートが位置検出用コイルと給電用コイルとから構成されてなる態様 の本発明の第 1の給電シートにおいて、前記給電用回路は、前記給電用コイルへの 通電の有無を司る給電用スイッチング素子と該スイッチング素子を介して前記給電用 コイルに給電用の所定周波数の交流電圧を印加するための給電電圧印加用配線と を有する給電用ユニットを前記複数の給電用コイルに対応するよう配置してなる回路 であるものとすることもできる。こうすれば、給電用スイッチング素子をオンとして給電 用コイルに所定周波数の交流電圧を印加することにより、給電用コイルが生じる磁場 の変化に基づいて機器の受電用のコイルに電流を生じさせて給電することができる。 この場合、前記給電用スイッチング素子は、二つの電極の電荷による引力または反 力を用いてオンオフする機械的なスィッチであるものとすることもできる。こうすれば、 半導体スイッチング素子に比して加熱を抑止することができ、より大きな電力を機器 に給電すること力できる。また、前記給電電圧印加用配線は、該配線に接続された給 電用コイル以外の給電用コイルがループ内に含まれないよう配線されてなるものとす ることもできる。こすうれば、ループ内に他の給電用コイルを含むことによる影響、例 えば、電圧の発生などを抑止することができる。更にこの場合、前記給電電圧印加用 配線は、 2本の配線が平行に配置されてなるものとすることもできる。 [0012] Furthermore, in the first power feeding sheet of the present invention in which the coil sheet includes a position detecting coil and a power feeding coil, the position detecting circuit is connected in series to the position detecting coil. ON / OFF of the resistor connected to the resonant frequency voltage applying wiring for applying an AC voltage of the resonance frequency to the position detection coil and the oscillation circuit including the resistor, and the application of the AC voltage of the resonance frequency A circuit comprising a position detection unit having a position detection switching element and a voltage detection wiring for detecting a voltage between terminals of the resistor so as to correspond to the plurality of position detection coils. It can also be assumed. In this way, when the position detection switching element is turned on and an AC voltage having a resonance frequency is applied, the oscillation circuit has a parasitic capacitance that varies depending on whether or not the power reception coil of the device is close to the position detection coil. The position of the device on the sheet can be detected based on the change in the voltage across the resistor due to the change in the resonance frequency. In this case, the position detecting switching element is an organic transistor. [0013] Alternatively, in the first power supply sheet of the present invention in which the coil sheet includes a position detection coil and a power supply coil, the power supply circuit determines whether the power supply coil is energized or not. A power supply unit having a power supply switching element and a power supply voltage application wiring for applying an AC voltage having a predetermined frequency for power supply to the power supply coil via the switching element corresponds to the plurality of power supply coils. It can also be a circuit that is arranged in such a way. In this way, the power supply switching element is turned on and an AC voltage of a predetermined frequency is applied to the power supply coil, thereby generating a current in the power reception coil of the device based on the change in the magnetic field generated by the power supply coil. can do. In this case, the power supply switching element may be a mechanical switch that is turned on and off using an attractive force or a reaction force due to charges of two electrodes. In this way, heating can be suppressed compared to semiconductor switching elements, and more power can be supplied to the device. Further, the power supply voltage application wiring may be configured such that power supply coils other than the power supply coil connected to the wiring are not included in the loop. By so doing, it is possible to suppress the effects of including other power supply coils in the loop, for example, the generation of voltage. Furthermore, in this case, the power supply voltage applying wiring may be formed by arranging two wirings in parallel.
[0014] また、コイルシートが位置検出用コイルと給電用コイルとから構成されてなる態様の 本発明の第 1の給電シートにおいて、前記位置検出用コイルおよび前記給電用コィ ノレは、同一のコイルである兼用コイルを兼用してなるものとすることもできる。こうすれ ば、同一のコイルを位置検出用コイルとしても給電用コイルとしても使用することがで き、コイル数を少なくすることができる。  [0014] Further, in the first power feeding sheet of the present invention in which the coil sheet is configured by a position detecting coil and a power feeding coil, the position detecting coil and the power feeding coil are the same coil. The dual-purpose coil can also be used. In this way, the same coil can be used as a position detecting coil and a power feeding coil, and the number of coils can be reduced.
[0015] こうした兼用コイルを用いる態様の本発明の第 1の給電シートにおいて、前記位置 検出用回路および前記給電用回路は、前記兼用コイルに直列に接続された抵抗と 前記兼用コイルと前記抵抗を含む振動回路に共振周波数の交流電圧を印加するた めの共振周波数電圧印加用配線と前記共振周波数の交流電圧の印加をオンオフす る位置検出用スイッチング素子と前記抵抗の端子間電圧を検出するための電圧検出 用配線とを有する位置検出用ユニットと、前記兼用コイルへの通電の有無を司る給 電用スイッチング素子と該スイッチング素子を介して前記兼用コイルに給電用の所定 周波数の交流電圧を印加するための給電電圧印加用配線とを有する給電用ユニット を前記複数の兼用コイルに対応するよう配置してなる回路であるものとすることもでき る。こうすれば、位置検出用スイッチング素子をオンとして共振周波数の交流電圧を 印加したときに兼用コイルに機器の受電用のコイルが近づいているか否かにより変動 する寄生容量のために振動回路の共振周波数が変化することによる抵抗の端子間 電圧の変化に基づいてシート上の機器の位置を検出することができ、給電用スィッチ ング素子をオンとして給電用コイルに所定周波数の交流電圧を印加することにより、 給電用コイルが生じる磁場の変化に基づいて機器の受電用のコイルに電流を生じさ せて給電することができる。この場合、前記位置検出用スイッチング素子は有機トラン ジスタであり、前記給電用スイッチング素子は二つの電極の電荷による引力または反 力を用いてオンオフする機械的なスィッチである、ものとすることもできる。また、前記 位置検出用回路および前記給電用回路をシート上に形成してなる回路シートを備え 、前記コイルシート前記回路シートの順に配置されてなる、ものとすることもできる。 [0015] In the first power supply sheet of the present invention using the dual-purpose coil, the position detection circuit and the power supply circuit include a resistor connected in series to the dual-purpose coil, the dual-purpose coil, and the resistance. Resonance frequency voltage application wiring for applying an AC voltage having a resonance frequency to an oscillation circuit including the position detecting switching element for turning on / off the application of the AC voltage having the resonance frequency, and a voltage across the resistor. A position detection unit having a voltage detection wiring, a power supply switching element that controls whether the dual-purpose coil is energized, and a predetermined power supply to the dual-purpose coil via the switching element. A power supply unit having a power supply voltage application wiring for applying an alternating voltage of a frequency may be a circuit in which the power supply unit is arranged so as to correspond to the plurality of combined coils. In this way, when the position detection switching element is turned on and an AC voltage having a resonance frequency is applied, the resonance frequency of the vibration circuit is affected by the parasitic capacitance that varies depending on whether the power receiving coil is close to the dual-purpose coil. The position of the device on the sheet can be detected based on the change in the voltage between the terminals of the resistor due to the change in the resistance, and by turning on the power switching element and applying an AC voltage of a predetermined frequency to the power supply coil Based on the change in the magnetic field generated by the power supply coil, it is possible to supply power by generating a current in the power reception coil of the device. In this case, the position detecting switching element may be an organic transistor, and the power feeding switching element may be a mechanical switch that is turned on / off using an attractive force or a reaction force due to charges of two electrodes. . In addition, a circuit sheet in which the position detection circuit and the power feeding circuit are formed on a sheet may be provided, and the coil sheet may be arranged in the order of the circuit sheet.
[0016] 給電用回路が給電用スィッチング素子と給電電圧印加用配線とを有する給電用ュ ニットにより構成される態様の本発明の第 1の給電シートにおいて、前記給電電圧印 加用配線に接続され前記給電用コイルと前記機器のコイルとの位置に基づく給電効 率を調整する調整回路を備えるものとすることもできる。こうすれば、給電効率を調整 すること力 Sでき、給電効率をより高いものとすることができる。この場合、前記調整回 路は、前記給電用コイルに対して直列に配置された容量が可変の第 1の可変容量コ ンデンサと、前記第 1の可変容量コンデンサの前記給電用コイルに接続された端子と は異なる端子とグラウンドとに接続され容量が可変の第 2の可変容量コンデンサと、を 備える回路であるものとすることもできる。こうすれば、二つの可変容量コンデンサの 容量を調整することにより、給電効率を調整することができる。  [0016] In the first power supply sheet of the present invention in which the power supply circuit includes a power supply unit having a power supply switching element and a power supply voltage application wiring, the power supply circuit is connected to the power supply voltage application wiring. An adjustment circuit that adjusts the power supply efficiency based on the positions of the power supply coil and the device coil may be provided. In this way, it is possible to adjust the power supply efficiency S and to increase the power supply efficiency. In this case, the adjustment circuit is connected to the first variable capacitor having a variable capacitance arranged in series with the power supply coil and the power supply coil of the first variable capacitor. The circuit may include a second variable capacitor that is connected to a terminal different from the terminal and the ground and has a variable capacitance. In this way, the feeding efficiency can be adjusted by adjusting the capacity of the two variable capacitors.
[0017] また、本発明の第 1の給電シートにおいて、可撓性を有してなるものとすることもでき る。こうすれば、給電シートの運搬性や操作性を向上させることができる。  [0017] Further, the first power supply sheet of the present invention may be flexible. In this way, the transportability and operability of the power supply sheet can be improved.
[0018] 本発明の第 2の給電シートは、受電用のコイルと該コイルに流れる電流に基づいて 通信する通信回路と個別情報を記憶する記憶回路とを有する機器に非接触で給電 可能な給電装置に用いられるシート状の給電シートであって、複数のコイルをマトリツ タス状にシートに配置してなるコイルシートと、前記複数のコイルのうち前記機器のシ ート上の位置に対応する少なくとも一つのコイルに通電して前記機器との通信により 該機器の個別情報を取得する個別情報取得手段と、前記取得した個別情報に基づ いて前記複数のコイルのうち前記機器のシート上の位置に対応する少なくとも一つの コイルに通電することにより該通電しているコイルと前記機器のコイルとの電磁作用に 基づ!/、て該機器を給電する給電手段と、を備えることを要旨とする。 [0018] The second power supply sheet of the present invention can supply power to a device having a power receiving coil, a communication circuit that communicates based on a current flowing through the coil, and a storage circuit that stores individual information in a contactless manner. A sheet-like power supply sheet used in an apparatus, wherein a plurality of coils are connected to a matrix. Individual information of the device by communicating with the device by energizing at least one coil corresponding to the position on the sheet of the device among the plurality of coils and a coil sheet arranged in a sheet shape An individual information acquiring means for acquiring a current, and a coil that is energized by energizing at least one coil corresponding to a position on the sheet of the device among the plurality of coils based on the acquired individual information; And a power supply means for supplying power to the device based on electromagnetic action with the coil of the device.
[0019] この本発明の第 2の給電シートでは、マトリックス状にコイルシートに配置された複数 のコイルのうち機器のシート上の位置に対応する少なくとも一つのコイルに通電して 機器との通信により機器の個別情報を取得し、この取得した個別情報に基づ!/、て複 数のコイルのうち機器のシート上の位置に対応する少なくとも一つのコイルに通電す ることにより通電して!/、るコイルと機器の受電用のコイルとの電磁作用に基づ!/、て機 器を給電する。これにより、個別の機器に応じて機器を充電することができる。 [0019] In the second power feeding sheet of the present invention, by energizing at least one coil corresponding to the position on the sheet of the device among a plurality of coils arranged on the coil sheet in a matrix, by communication with the device Acquire individual device information and energize by energizing at least one coil corresponding to the position on the device sheet among the multiple coils based on the acquired individual information! / Based on the electromagnetic action between the coil and the power receiving coil of the device, power is supplied to the device. Thereby, a device can be charged according to an individual device.
[0020] こうした本発明の第 2の給電シートにおいて、前記給電手段は、前記複数のコイル への通電の有無を司る複数のスイッチング素子と、前記複数のスイッチング素子を介 して前記複数のコイルの各々に交流電圧を印加するための電圧印加用配線と、を備 え、前記個別情報取得手段は、前記複数のスイッチング素子を介して前記複数のコ ィルの各々に通信信号を乗せた所定周波数の交流電圧を印加することにより前記機 器と通信して前記個別情報を取得する手段である、ものとすることもできる。  [0020] In the second power supply sheet of the present invention, the power supply means includes a plurality of switching elements that control whether or not the plurality of coils are energized, and the plurality of coils via the plurality of switching elements. A voltage application wiring for applying an alternating voltage to each of the plurality of individual elements, and the individual information acquisition unit has a predetermined frequency in which a communication signal is placed on each of the plurality of coils via the plurality of switching elements. It is also possible to obtain the individual information by communicating with the device by applying the AC voltage.
[0021] また、本発明の第 2の給電シートにお!/、て、前記個別情報は前記機器の識別情報 を含み、前記給電手段は前記取得した個別情報に含まれる識別情報が所定の識別 情報のときに給電する手段である、ものとすることもできる。こうすれば、所定の識別 情報を識別情報として個別情報に持つ機器にだけ給電することができる。  [0021] Further, in the second power supply sheet of the present invention, the individual information includes the identification information of the device, and the power supply means includes the identification information included in the acquired individual information. It can also be a means for supplying power at the time of information. In this way, it is possible to supply power only to a device having predetermined identification information as identification information as individual information.
[0022] さらに、本発明の第 2の給電シートにおいて、前記個別情報は前記機器を給電する 際の許容電力を情報として含み、前記給電手段は前記取得した個別情報に含まれ る許容電力の範囲内で前記機器を給電する手段である、ものとすることもできる。こう すれば、許容電力の範囲内で機器を給電することができる。この場合、前記給電手 段は、前記通電するコイルに印加する交流電圧の電圧を前記取得した個別情報に 含まれる許容電力に基づいて変更する電圧変更回路を有する手段である、ものとす ることあでさる。 [0022] Further, in the second power supply sheet of the present invention, the individual information includes information on an allowable power when supplying power to the device, and the power supply unit includes a range of allowable power included in the acquired individual information. It can also be a means for supplying power to the device. In this way, the device can be fed within the allowable power range. In this case, the power supply means is means having a voltage changing circuit that changes the voltage of the AC voltage applied to the energized coil based on the allowable power included in the acquired individual information. Let's go out.
[0023] 本発明の通電用回路は、複数のコイルがマトリックス状に配置されてなるコイル装置 の前記複数のコイルに通電するための通電用回路であって、コイルへの通電の有無 を司る給電用スイッチング素子と該スイッチング素子を介して前記コイルに通電する ための配線が該配線に接続されたコイル以外のコイルがループ内に含まれないよう 配線されてなる通電用配線とを有する回路ユニットを前記複数のコイルに対応するよ う配置してなる、ことを要旨とする。  [0023] The energization circuit of the present invention is an energization circuit for energizing the plurality of coils of a coil device in which a plurality of coils are arranged in a matrix, and is a power supply that controls whether or not the coils are energized. A circuit unit comprising: a switching element for power supply; and a wiring for energizing the coil via the switching element, wherein the coil is wired so that a coil other than the coil connected to the wiring is not included in the loop. The gist is that they are arranged so as to correspond to the plurality of coils.
[0024] この本発明の通電用回路では、コイルに通電するための通電用配線がこの配線に 接続されたコイル以外のコイルがループ内に含まれないよう配線されているから、ル ープ内に他のコイルを含むことによる影響、例えば、電圧の発生などを抑止すること ができる。この結果、通電していないコイルに電圧の発生を抑制するために各コイル にスィッチを設ける必要がない。もとより、複数のコイルの各々に独立に通電すること ができる。  In the energization circuit of the present invention, the energization wiring for energizing the coil is wired so that no coil other than the coil connected to this wiring is included in the loop. It is possible to suppress the influence of including other coils, such as voltage generation. As a result, it is not necessary to provide a switch for each coil in order to suppress the generation of voltage in a coil that is not energized. Of course, each of the plurality of coils can be energized independently.
[0025] こうした本発明の通電用回路において、前記通電用配線は 2本の配線が平行に配 置されてなる、ものとすることもできる。  In the energization circuit of the present invention, the energization wiring may be formed by arranging two wirings in parallel.
[0026] また、本発明の通電用回路において、受電用のコイルを有する機器が載置されたと きに、該機器のシート上の位置に対応する少なくとも一つのコイルに通電することに より該通電して!/、るコイルと前記機器のコイルとの電磁作用に基づ!/、て該機器に給 電する、あのとすることあでさる。 [0026] Further, in the energization circuit of the present invention, when a device having a power receiving coil is placed, the energization is performed by energizing at least one coil corresponding to the position on the sheet of the device. Based on the electromagnetic action between the coil and the coil of the device, the power is supplied to the device.
図面の簡単な説明  Brief Description of Drawings
[0027] [図 1]本発明の一実施例としての給電シート 22を備える給電装置 20の構成の概略を 模式的に示す分解構成図である。  FIG. 1 is an exploded configuration diagram schematically showing an outline of a configuration of a power feeding device 20 including a power feeding sheet 22 as one embodiment of the present invention.
[図 2]給電用コイル 52と位置検出用コイル 32との位置関係を示す説明図である。  FIG. 2 is an explanatory diagram showing a positional relationship between a power feeding coil 52 and a position detection coil 32.
[図 3]位置検出用回路 40aの一例を示す回路図である。  FIG. 3 is a circuit diagram showing an example of a position detection circuit 40a.
[図 4]位置検出用コイル 32と有機トランジスタ 42との接続関係の一例を有機トランジ スタ 42の材料と共に示す説明図である。  FIG. 4 is an explanatory diagram showing an example of the connection relationship between the position detection coil 32 and the organic transistor 42 together with the material of the organic transistor 42.
[図 5]給電用回路 60aの一例を示す回路図である。  FIG. 5 is a circuit diagram showing an example of a power feeding circuit 60a.
[図 6]MEMSスィッチ 62の構成の概略を模式的に示す構成図である。 [図 7]給電用コイル 52と MEMSスィッチ 62との接続関係の一例を MEMSスィッチ 6 2の材料と共に示す説明図である。 FIG. 6 is a block diagram schematically showing the outline of the configuration of the MEMS switch 62. FIG. 7 is an explanatory view showing an example of the connection relationship between the power feeding coil 52 and the MEMS switch 62 together with the material of the MEMS switch 62.
[図 8]MEMSスィッチ 62の静電引力用電極 62a, 62bの電圧の変化と給電用電極 6 3a , 63b間の抵抗値の変化の一例を示す説明図である。  FIG. 8 is an explanatory diagram showing an example of a change in voltage of the electrostatic attraction electrodes 62a and 62b of the MEMS switch 62 and a change in resistance value between the feeding electrodes 63a and 63b.
園 9]電子機器 10の受電用コイル 12を給電シート 22に近づけたときの位置検出用ュ ニット 41と受電用コイル 12とを模式的に示す説明図である。 FIG. 9] An explanatory diagram schematically showing the position detecting unit 41 and the power receiving coil 12 when the power receiving coil 12 of the electronic device 10 is brought close to the power feeding sheet 22.
[図 10]電子機器 10を給電シート 22に近づけていないときの抵抗 44の端子間電圧の 変化を示す説明図である。  FIG. 10 is an explanatory diagram showing a change in the voltage between terminals of the resistor 44 when the electronic device 10 is not brought close to the power supply sheet 22.
園 11]電子機器 10を給電シート 22に近づけていないときと電子機器 10を給電シート 22に載置したときの抵抗 44の端子間電圧の変化を示す説明図である。 11] FIG. 11 is an explanatory diagram showing changes in the voltage across the terminals of the resistor 44 when the electronic device 10 is not brought close to the power supply sheet 22 and when the electronic device 10 is placed on the power supply sheet 22.
園 12]位置検出用コイル 32と受電用コイル 12との距離 dと抵抗 44の端子間電圧との 関係の一例を示す説明図である。 FIG. 12 is an explanatory diagram showing an example of the relationship between the distance d between the position detecting coil 32 and the power receiving coil 12 and the voltage across the terminals of the resistor 44.
園 13]電子機器 10の受電用コイル 12に略整合する位置の給電用コイル 52に対応 する MEMSスィッチ 62をオンとして給電用電源 68から 13. 56MHzの交流電圧をそ の給電用コイル 52に印加したときの様子を模式的に示す説明図である。 13] Apply the 56 MHz AC voltage from the power supply 68 to the power supply coil 52 by turning on the MEMS switch 62 corresponding to the power supply coil 52 at a position that approximately matches the power receiving coil 12 of the electronic device 10. It is explanatory drawing which shows typically a mode when doing.
[図 14]MEMSスィッチ 62をオンオフしたときに対応する給電用コイル 52から出力し ている電力(パワー)の周波数を示す説明図である。 FIG. 14 is an explanatory diagram showing the frequency of power (power) output from the corresponding power feeding coil 52 when the MEMS switch 62 is turned on / off.
[図 15]MEMSスィッチ 62をオンしたときの給電用コイル 52力、らの電力(パワー)と受 電用コイル 12で受電した電力(パワー)と効率とを示す説明図である。  FIG. 15 is an explanatory diagram showing the power supply coil 52 force, the power (power), the power received by the power receiving coil 12 and the efficiency when the MEMS switch 62 is turned on.
園 16]給電用コイル 52と受電用コイル 12との鉛直距離 zと給電の効率との関係を示 す説明図である。 FIG. 16] An explanatory diagram showing the relationship between the vertical distance z between the feeding coil 52 and the receiving coil 12 and the feeding efficiency.
園 17]給電用コイル 52と受電用コイル 12との水平距離 Xと充電の効率との関係を示 す説明図である。 FIG. 17] An explanatory diagram showing the relationship between the horizontal distance X between the power feeding coil 52 and the power receiving coil 12 and the charging efficiency.
園 18]調整回路 70を備える給電用回路の一例を示す回路図である。 FIG. 18 is a circuit diagram showing an example of a power feeding circuit including the adjustment circuit 70.
園 19]調整回路 70の構成の一例を示す説明図である。 FIG. 19 is an explanatory diagram showing an example of the configuration of the adjustment circuit 70.
園 20]兼用回路の一例を示す回路図である。 FIG. 20] is a circuit diagram showing an example of a dual-purpose circuit.
園 21]変形例の給電装置 120と電子機器 10との構成の概略を示す構成図である。 FIG. 21] A configuration diagram showing an outline of a configuration of a power feeding device 120 and an electronic device 10 according to a modification.
[図 22]変形例の給電装置 120のコントローラ 138により実行される給電時の処理ルー チンの一例を示すフローチャートである。 FIG. 22 shows a processing routine at the time of power supply executed by the controller 138 of the power supply apparatus 120 of the modified example It is a flowchart which shows an example of a chin.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 次に、本発明を実施するための最良の形態を実施例を用いて説明する。 Next, the best mode for carrying out the present invention will be described using examples.
[0029] 図 1は、本発明の一実施例としての給電シート 22を備える給電装置 20の構成の概 略を模式的に示す分解構成図である。実施例の給電装置 20は、図示するように、図 1には図示しない給電を受ける電子機器 10の受電用コイル 12との電磁的な作用に より給電するための複数の給電用コイル 52をコイル軸がマトリックス状となるよう可撓 性を有するシートに配置してなる給電用コイルシート 50と、複数の給電用コイル 52に 通電するための給電用回路 60aを可撓性を有するシートに形成してなる給電用回路 シート 60と、電子機器 10の受電用コイル 12との電磁的な作用により電子機器 10の シート上における位置を検出するための複数の位置検出用コイル 32をコイル軸がマ トリックス状となるよう可撓性を有するシートに配置してなる位置検出用コイルシート 3 0と、複数の位置検出用コイル 32に通電するための位置検出用回路 40aを可撓性を 有するシートに形成してなる位置検出用回路シート 40と、をこの順に重ねて構成され る給電シート 22と、給電用回路 60aのスイッチング素子(後述する)をオンオフするた めの直流電源としての給電用スィッチ電源 69と、電子機器 10に給電するための交流 電源としての給電用電源 68と、位置検出用回路 40aのスイッチング素子(後述する) をオンオフするための直流電源としての位置検出用スィッチ電源 49と、位置検出用 コイル 32に通電するための交流電源としての位置検出用電源 48と、を備える。なお 、給電用コイルシート 50と位置検出用コイルシート 30は、図 2に例示するように、給電 シート 22を構成したときには、給電用コイル 52のコイル中心が位置検出用コイル 32 のコイル中心に重ならないように、即ち、両コイル中心が千鳥状に配置されるよう給電 用コイル 52と位置検出用コイル 32とが配置されている。こうすることにより、各位置検 出用コイル 32や各給電用コイル 52の磁束に対する影響を抑制し、位置検出用コィ ル 32や給電用コイル 52の性能を十分に発揮できるようにしている。 FIG. 1 is an exploded configuration diagram schematically showing an outline of a configuration of a power feeding device 20 including a power feeding sheet 22 as an embodiment of the present invention. As shown in the figure, the power feeding device 20 of the embodiment includes a plurality of power feeding coils 52 for feeding power by electromagnetic action with the power receiving coil 12 of the electronic device 10 that is not shown in FIG. A feeding coil sheet 50 arranged on a flexible sheet so that the shaft is in a matrix form, and a feeding circuit 60a for energizing the plurality of feeding coils 52 are formed on the flexible sheet. The coil axis is made up of a plurality of position detection coils 32 for detecting the position of the electronic device 10 on the sheet by electromagnetic action between the power supply circuit sheet 60 and the power receiving coil 12 of the electronic device 10. A position detection coil sheet 30 arranged on a flexible sheet so as to form a shape and a position detection circuit 40a for energizing a plurality of position detection coils 32 are formed on the flexible sheet. Become A power supply sheet 22 configured by stacking the position detection circuit sheets 40 in this order, a power supply switch power supply 69 as a DC power source for turning on and off a switching element (described later) of the power supply circuit 60a, Power supply 68 as an AC power supply for supplying power to device 10, position detection switch power supply 49 as a DC power supply for turning on / off a switching element (described later) of position detection circuit 40a, and a position detection coil And a position detection power supply 48 as an AC power supply for energizing 32. As illustrated in FIG. 2, the power supply coil sheet 50 and the position detection coil sheet 30 overlap the coil center of the position detection coil 32 when the power supply sheet 22 is configured. In other words, the feeding coil 52 and the position detecting coil 32 are arranged so that the centers of both coils are arranged in a staggered manner. By doing so, the influence of the position detection coils 32 and the power supply coils 52 on the magnetic flux is suppressed, and the performance of the position detection coils 32 and the power supply coils 52 can be fully exhibited.
[0030] 位置検出用コイルシート 30は、 6 ,1 mの銅箔が貼られたポリイミドフィルムにスクリー ン印刷を用いてエッチングレジストをコイル状に塗布した後に、塩化第二鉄によりエツ チングを行なうことにより、複数の位置検出用コイル 32を形成して構成される。実施 例では、位置検出用コイル 32として、 38巻で内径が 10mm、インダクタンス 20〃 H、 抵抗 17 Ωのものを形成した力 こうした緒元に限定されるものではない。例えば、内 径としては lmmや 5mm, 20mmなどを用いることもできる。 [0030] The position detection coil sheet 30 is obtained by applying an etching resist in a coil shape to a polyimide film on which a copper foil of 6,1 m is pasted by using screen printing, and then etching with ferric chloride. Thus, a plurality of position detection coils 32 are formed. Implementation In the example, the force for forming the position detection coil 32 with 38 windings, an inner diameter of 10 mm, an inductance of 20 mm H, and a resistance of 17 Ω is not limited to this specification. For example, lmm, 5mm, or 20mm can be used as the inner diameter.
[0031] 図 3は、位置検出用回路 40aの一例を示す回路図である。位置検出用回路 40aは 、図示するように、位置検出用コイル 32に直列に接続された 10 Ωの抵抗 44と、回路 の容量調節用の可変容量コンデンサ 45と、位置検出用コイル 32と抵抗 44と可変容 量コンデンサ 45とからなる振動回路にその共振周波数の交流電圧を印加するため に位置検出用電源 48に接続される共振周波数電圧印加用配線としてのビット線 BP と、位置検出用電源 48の印加をオンオフする有機トランジスタ 42と、抵抗 44の端子 間電圧を検出するための電圧検出用配線 46と、この電圧検出用配線 46に接続され た電圧センサ 47と、力もなる位置検出用ユニット 41が N X N個の位置検出用コイル 3 2に対応するよう N行 N列のマトリックス状に形成されており、各有機トランジスタ 42の ソースおよびドレインはビット線 BP;!〜 BPNにより位置検出用電源 48が接続され、各 有機トランジスタ 42のゲートにはワード線 WP;!〜 WPNにより位置検出用スィッチ電 源 49が接続されることにより構成されている。位置検出用電源 48は、実施例では回 路の共振周波数である 2. 95MHzのものを用い、位置検出用スィッチ電源 49として は 40V電源を用いた。なお、回路の共振周波数は、可変容量コンデンサ 45を調整 するすることにより制卸する。  FIG. 3 is a circuit diagram showing an example of the position detection circuit 40a. As shown in the figure, the position detection circuit 40a includes a 10 Ω resistor 44 connected in series to the position detection coil 32, a variable capacitance capacitor 45 for adjusting the capacitance of the circuit, a position detection coil 32, and a resistor 44. And a position detection power supply 48 and a bit line BP as a resonance frequency voltage application wiring connected to the position detection power supply 48 in order to apply an AC voltage of the resonance frequency to the vibration circuit composed of the variable capacitor 45 The voltage detection wiring 46 for detecting the voltage between the terminals of the resistor 44, the voltage sensor 47 connected to the voltage detection wiring 46, and the position detection unit 41 that also has a force 41 Is formed in a matrix of N rows and N columns so as to correspond to NXN position detection coils 3 2, and the source and drain of each organic transistor 42 are for position detection by bit lines BP;! A power source 48 is connected, and a position detection switch power source 49 is connected to the gate of each organic transistor 42 by a word line WP ;! to WPN. In the embodiment, the position detection power supply 48 is 2.95 MHz, which is the resonant frequency of the circuit, and the position detection switch power supply 49 is a 40 V power supply. The resonant frequency of the circuit is controlled by adjusting the variable capacitor 45.
[0032] 有機トランジスタ 42は、以下のように作製した。まず、プラスチックフィルム上に銀ナ ノ粒子をインクジェットプリンタにより塗布し、銀ナノ粒子を 220°Cで 1時間大気中で焼 成することにより、ゲート電極(実施例では、厚みが 300nm、抵抗率が 4 Q cm)を 作製する。次に、エポキシ系樹脂をスクリーン印刷機により塗布して各ゲート電極の 周辺に隔壁(実施例では 5 in)を作製する。続いて、 8mPasまで希釈したポリイミド 前駆体を隔壁内のゲート電極上にインクジェットで塗布し、窒素雰囲気で 180°C硬化 させることによりポリイミドゲート絶縁膜 (厚み 1 μ m)を作製する。そして、真空蒸着法 を用いて厚み 50nmの有機半導体ペンタセンを製膜し、最後に、ソースおよびドレイ ン電極を真空蒸着装置で製膜して有機トランジスタ 42を完成する。実施例では、有 機トランジスタ 42のチャネル長は 13〃 mでチャネル幅は 48mmであった。図 4に位 置検出用コイル 32と有機トランジスタ 42との接続関係の一例を有機トランジスタ 42の 材料と共に示す。図示するように、位置検出用コイル 32と有機トランジスタ 42のドレイ ンは、銀ペースト 38によって接続されている。なお、この銀ペースト 38は位置検出用 コイルシート 30と位置検出用回路シート 40とを貼り合わせるためにも用いられている[0032] The organic transistor 42 was fabricated as follows. First, silver nanoparticles are coated on a plastic film with an ink jet printer, and silver nanoparticles are baked in the atmosphere at 220 ° C. for 1 hour to form a gate electrode (in the example, the thickness is 300 nm and the resistivity is 4 Q cm). Next, an epoxy resin is applied by a screen printer to form a partition (in the example, 5 inches) around each gate electrode. Subsequently, a polyimide precursor diluted to 8 mPas is applied onto the gate electrode in the partition wall by ink jet and cured at 180 ° C. in a nitrogen atmosphere to form a polyimide gate insulating film (thickness 1 μm). Then, an organic semiconductor pentacene having a thickness of 50 nm is formed using a vacuum evaporation method, and finally, the source and drain electrodes are formed using a vacuum evaporation apparatus to complete the organic transistor 42. In the embodiment, the organic transistor 42 has a channel length of 13 mm and a channel width of 48 mm. Figure 4 An example of the connection relationship between the position detection coil 32 and the organic transistor 42 is shown together with the material of the organic transistor 42. As shown in the figure, the drain of the position detection coil 32 and the organic transistor 42 is connected by a silver paste 38. The silver paste 38 is also used for bonding the position detecting coil sheet 30 and the position detecting circuit sheet 40 together.
Yes
[0033] 給電用コイルシート 50は、位置検出用コイルシート 30と同様に、 6 μ mの銅箔が貝占 られたポリイミドフィルムにスクリーン印刷を用いてエッチングレジストをコイル状に塗 布した後に、塩化第二鉄によりエッチングを行なうことにより、複数の給電用コイル 52 を形成して構成される。実施例では、給電用コイル 52として、 13巻で内径が 10mm、 インダクタンス 3 H、抵抗 1 Ωのものを形成した力 こうした緒元に限定されるもので はない。例えば、内径としては lmmや 5mm, 20mmなどを用いることもできる。  [0033] In the same manner as the position detection coil sheet 30, the power feeding coil sheet 50 is obtained by applying an etching resist in a coil shape to a polyimide film in which a 6 μm copper foil is occupied by a screen using screen printing. A plurality of power supply coils 52 are formed by etching with ferric chloride. In the embodiment, the force for forming the power feeding coil 52 with 13 windings, an inner diameter of 10 mm, an inductance of 3 H, and a resistance of 1 Ω is not limited to this specification. For example, lmm, 5mm, and 20mm can be used as the inner diameter.
[0034] 図 5は、給電用回路 60aの一例を示す回路図である。給電用回路 60aは、図示す るように、給電用コイル 52への通電をオンオフするためのスイッチング素子としての MEMS (Micro Electro Mechanical System)スィッチ 62と、 MEMSスィッチ 62を介し て給電用電源 68からの交流電圧を給電用コイル 52に印加するための給電電圧印 加用配線 64と、力もなる給電用ユニット 61が N X N個の給電用コイル 52に対応する よう N行 N列のマトリックス状に形成されており、 MEMSスィッチ 62にはビット線 BT1 〜: BTN,ワード線 WT;!〜 WTNにより給電用スィッチ電源 69が接続され、 MEMSス イッチ 62と給電用コイル 52とに直列に給電用電源 68が接続されて構成されている。 給電用電源 68としては、実施例では、 日本国の電波法において高出力の送電が許 される周波数帯である 13. 65MHzのものを用い、給電用スィッチ電源 69としては 70 V電源を用いた。ここで、実施例の給電用回路 60aでは、給電電圧印加用配線 64を 平行な 2本の配線とすると共にいずれの給電用コイル 52もそのループに含まないよう に配置している。これにより、給電電圧印加用配線 64により形成されるループに他の 給電用コイル 52が含まれることによる影響、例えば、予期しない電圧(ノイズ)の発生 などを ί卬止すること力 Sできる。  FIG. 5 is a circuit diagram showing an example of the power feeding circuit 60a. As shown in the figure, the power feeding circuit 60a includes a MEMS (Micro Electro Mechanical System) switch 62 as a switching element for turning on and off the power feeding coil 52, and a power feeding power source 68 via the MEMS switch 62. The power supply voltage application wiring 64 for applying the AC voltage to the power supply coil 52 and the power supply unit 61, which is also powerful, are formed in a matrix of N rows and N columns so as to correspond to the NXN power supply coils 52. The MEMS switch 62 is connected to the power supply switch power supply 69 by the bit line BT1˜: BTN, word line WT;! ˜WTN, and the power supply power supply 68 is connected in series with the MEMS switch 62 and the power supply coil 52. Connected and configured. As the power supply 68, in the embodiment, a power supply of 13.65 MHz which is a frequency band in which high power transmission is permitted in the Japanese Radio Law is used, and a 70 V power supply is used as the power supply switch power supply 69. . Here, in the power supply circuit 60a of the embodiment, the power supply voltage application wiring 64 is arranged in parallel with two wirings, and any power supply coil 52 is not included in the loop. As a result, it is possible to suppress the influence caused by the inclusion of another power supply coil 52 in the loop formed by the power supply voltage application wiring 64, for example, the occurrence of unexpected voltage (noise).
[0035] 図 6は、 MEMSスィッチ 62の構成の概略を模式的に示す構成図である。 MEMS スィッチ 62は、静電引力用電極 62a, 62bと、この静電引力用電極 62a, 62bに電圧 を作用させることによって生じる引力により当接する給電用電極 63a, 63bとから構成 されている。 MEMSスィッチ 62は、実施例では、ポリイミドフィルム(厚さ 25 m)に 静電引力用電極 62aと給電用電極 63aとをインクジェットで塗布することにより上部電 極シートとし、ポリイミドフィルム(厚さ 75 m)に静電引力用電極 62bと給電用電極 6 3bとをインクジェットで塗布することにより下部電極シートとし、上部電極シートと下部 電極シートとでポリイミドフィルム(厚さ 25 H m)の絶縁スぺーサシートを挟持するよう 熱圧着型接着シートにより貼り合わせて形成した。図 7に給電用コイル 52と MEMS スィッチ 62との接続関係の一例を MEMSスィッチ 62の材料と共に示す。図示するよ うに、給電用コイル 52と給電用電極 63aは、銀ペースト 58によって接続されている。 なお、この銀ペースト 58は給電用コイルシート 50と給電用回路シート 60とを貼り合わ せるためにも用いられている。図 8に MEMSスィッチ 62の静電引力用電極 62a, 62 bの電圧の変化と給電用電極 63a, 63b間の抵抗値の変化の一例を示す。図示する ように、静電引力用電極 62a, 62bの電圧の変化に対して給電用電極 63a, 63b間 の抵抗値が追従している。 FIG. 6 is a configuration diagram schematically showing an outline of the configuration of the MEMS switch 62. The MEMS switch 62 has an electrostatic attraction electrode 62a, 62b and a voltage across the electrostatic attraction electrode 62a, 62b. The power supply electrodes 63a and 63b are in contact with each other by the attractive force generated by the action of the. In the embodiment, the MEMS switch 62 is formed as an upper electrode sheet by applying an electrostatic attractive electrode 62a and a feeding electrode 63a to a polyimide film (thickness 25 m) by inkjet, and a polyimide film (thickness 75 m). ) Electrostatic attraction electrode 62b and feeding electrode 63b are applied by inkjet to form a lower electrode sheet, and the upper electrode sheet and the lower electrode sheet are polyimide film (thickness 25 Hm) insulating spacer sheet And sandwiched by a thermocompression bonding adhesive sheet. FIG. 7 shows an example of the connection relationship between the feeding coil 52 and the MEMS switch 62 together with the material of the MEMS switch 62. As shown in the figure, the feeding coil 52 and the feeding electrode 63a are connected by a silver paste 58. The silver paste 58 is also used for bonding the power feeding coil sheet 50 and the power feeding circuit sheet 60 together. FIG. 8 shows an example of a change in voltage of the electrostatic attractive electrodes 62a and 62b of the MEMS switch 62 and a change in resistance value between the feeding electrodes 63a and 63b. As shown in the figure, the resistance value between the feeding electrodes 63a and 63b follows the change in the voltage of the electrostatic attractive electrodes 62a and 62b.
次に、位置検出用コイルシート 30および位置検出用回路シート 40による位置検出 の仕組みについて説明する。位置検出用ユニット 41の共振周波数が 2. 95MHzで あるから、その周波数を位置検出用ユニット 41に印加したときに 10 Ωの抵抗 44の端 子間には最も大きな電圧が生じる。図 9に電子機器 10の受電用コイル 12を給電シー ト 22に近づけたときの位置検出用ユニット 41と受電用コイル 12とを模式的に示し、図 10に電子機器 10を給電シート 22に近づけていないときの抵抗 44の端子間電圧 Vs の変化を示す。図 10に示すように、印加した周波数に応じて抵抗 44の両端の電圧 は大きく変動する。こうした共振周波数の電圧が印加されている位置検出用コイル 3 2に電子機器 10の受電用コイル 12が近づくと、寄生容量が発生し、共振周波数は 2 . 95MHzより小さくなり、抵抗 44の端子間電圧 Vsは小さくなる。図 11に電子機器 10 を給電シート 22に近づけていないときと電子機器 10を給電シート 22に載置したとき の抵抗 44の端子間電圧 Vsの変化を示す。図示するように、寄生容量の発生により、 抵抗 44の端子間電圧 Vsは 91 %小さくなつている。寄生容量の発生による共振周波 数のズレは、位置検出用コイル 32と電子機器 10の受電用コイル 12の距離 dによって 変化する。図 12に位置検出用コイル 32と受電用コイル 12との距離 dと抵抗 44の端 子間電圧 Vsとの関係の一例を示す。図示するように、位置検出用コイル 32と受電用 コイル 12との距離 dが Ommから 23mmまでの間で抵抗 44の端子間電圧 Vsは変化 する。したがって、位置検出用回路シート 40に形成された N X N個の有機トランジス タ 42を走査するように順次オンとして電圧センサ 47の電圧を検出することにより、 N X N個の有機トランジスタ 42のうち有機トランジスタ 42をオンしたときに対応する抵抗 44の電圧降下の程度によって、どの位置検出用コイル 32の上に電子機器 10が位 置するかを検出することができる。 Next, the position detection mechanism using the position detection coil sheet 30 and the position detection circuit sheet 40 will be described. Since the resonance frequency of the position detection unit 41 is 2.95 MHz, when the frequency is applied to the position detection unit 41, the largest voltage is generated between the terminals of the 10Ω resistor 44. Fig. 9 schematically shows the position detection unit 41 and the power receiving coil 12 when the power receiving coil 12 of the electronic device 10 is brought close to the power feeding sheet 22, and Fig. 10 shows the electronic device 10 close to the power feeding sheet 22. This shows the change in the voltage Vs between the terminals of the resistor 44 when not in operation. As shown in Fig. 10, the voltage across resistor 44 varies greatly depending on the applied frequency. When the power receiving coil 12 of the electronic device 10 approaches the position detection coil 3 2 to which a voltage of such a resonance frequency is applied, parasitic capacitance is generated, and the resonance frequency becomes lower than 2.95 MHz, and the resistance 44 is connected between the terminals of the resistor 44. The voltage Vs becomes smaller. FIG. 11 shows changes in the voltage Vs between the terminals of the resistor 44 when the electronic device 10 is not brought close to the power supply sheet 22 and when the electronic device 10 is placed on the power supply sheet 22. As shown in the figure, the voltage Vs between the terminals of the resistor 44 is reduced by 91% due to the generation of parasitic capacitance. The deviation of the resonance frequency due to the generation of parasitic capacitance depends on the distance d between the position detection coil 32 and the power receiving coil 12 of the electronic device 10. Change. FIG. 12 shows an example of the relationship between the distance d between the position detecting coil 32 and the power receiving coil 12 and the terminal voltage Vs of the resistor 44. As shown in the figure, the voltage Vs between the terminals of the resistor 44 changes when the distance d between the position detecting coil 32 and the power receiving coil 12 is from Omm to 23 mm. Accordingly, the NXN organic transistors 42 formed on the position detection circuit sheet 40 are sequentially turned on so as to scan, and the voltage of the voltage sensor 47 is detected, so that the organic transistor 42 among the NXN organic transistors 42 is detected. The position detection coil 32 on which the electronic device 10 is positioned can be detected by the degree of the voltage drop of the corresponding resistor 44 when turned on.
[0037] 続いて、給電用コイルシート 50および給電用回路シート 60による給電の仕組みに ついて説明する。図 13は、電子機器 10の受電用コイル 12に略整合する位置の給電 用コイル 52に対応する MEMSスィッチ 62をオンとして給電用電源 68から 13. 56M Hzの交流電圧をその給電用コイル 52に印加したときの様子を模式的に示す説明図 である。図示するように、給電用コイル 52に交流電圧を印加することにより生じる 13. 56MHzで変化する磁束が電子機器 10の受電用コイル 12を貫くことにより、受電用 コイル 12に電流が生じ、電子機器 10に給電することができる。図 14に MEMSスイツ チ 62をオンオフしたときに対応する給電用コイル 52から出力している電力(パワー) の周波数を示し、図 15に MEMSスィッチ 62をオンしたときの給電用コイル 52からの 電力(パワー)と受電用コイル 12で受電した電力(パワー)と効率とを示す。図 14に示 すように、給電用コイル 52からの出力は、 MEMSスィッチ 62をオンしたときの 13. 5 6MHzの周波数では 116mWとなっていることから、 13. 56MHz帯での出力が行な われているのが解る。また、図 15に示すように、給電用コイル 52から出力したパワー に対して受電用コイル 12は約 62. 3%の効率をもってリニアに受電している。図 16は 給電用コイル 52と受電用コイル 12との鉛直距離 zと給電の効率との関係を示す説明 図であり、図 17は給電用コイル 52と受電用コイル 12との水平距離 Xと充電の効率と の関係を示す説明図である。給電の効率は、図 16に示すように、鉛直距離 zが lmm となると Ommに比して効率は 40%程度低下し、図 17に示すように、水平距離 xが 2 mmとなると Ommに比して 20%程度低下する。  [0037] Next, a power feeding mechanism using the power feeding coil sheet 50 and the power feeding circuit sheet 60 will be described. FIG. 13 shows that the MEMS switch 62 corresponding to the power feeding coil 52 at a position substantially aligned with the power receiving coil 12 of the electronic device 10 is turned on, and an AC voltage of 13.56 MHz from the power source 68 to the power feeding coil 52 is applied. It is explanatory drawing which shows a mode when it applies. As shown in the figure, the magnetic flux generated by applying an AC voltage to the power feeding coil 52 passes through the power receiving coil 12 of the electronic device 10 due to the magnetic flux changing at 56 MHz. 10 can be powered. Figure 14 shows the frequency of the power output from the power supply coil 52 when the MEMS switch 62 is turned on and off, and Figure 15 shows the power from the power supply coil 52 when the MEMS switch 62 is turned on. (Power), the power received by the power receiving coil 12 and the efficiency. As shown in Fig. 14, the output from the feeding coil 52 is 116 mW at the frequency of 13.5 6 MHz when the MEMS switch 62 is turned on, so the output in the 13.56 MHz band is not performed. I understand that Further, as shown in FIG. 15, the power receiving coil 12 receives power linearly with an efficiency of about 62.3% with respect to the power output from the power feeding coil 52. 16 is an explanatory diagram showing the relationship between the vertical distance z between the feeding coil 52 and the receiving coil 12 and the efficiency of feeding, and FIG. 17 is the horizontal distance X between the feeding coil 52 and the receiving coil 12 and charging. It is explanatory drawing which shows the relationship with efficiency. As shown in Fig. 16, when the vertical distance z is lmm, the efficiency decreases about 40% compared to Omm, and as shown in Fig. 17, when the horizontal distance x is 2 mm, it is less than Omm. About 20%.
[0038] 次に、こうして構成された給電シート 22を備える給電装置 20の動作について説明 する。給電装置 20は、まず、位置検出用回路シート 40における各有機トランジスタ 4 2を走査するよう順にオンオフして給電シート 22上のいずれかの位置に電子機器 10 が存在するか否かを検出する。電子機器 10が検出されると、電子機器 10が検出され た位置に対応する給電用コイル 52に接続された MEMSスィッチ 62をオンして給電 用コイル 52に給電用電源 68から給電用の交流電圧を印加する。これにより、電子機 器 10への給電が行なわれる。ここで、電子機器 10が検出された位置に対応する給 電用コイル 52に接続された MEMSスィッチ 62だけをオンとして他の給電用コイル 5 2に接続された MEMSスィッチ 62についてはオフの状態のままであるから、電子機 器 10の受電用コイル 12に効率よく給電することができる。 [0038] Next, the operation of the power feeding device 20 including the power feeding sheet 22 thus configured will be described. To do. The power feeding device 20 first detects whether or not the electronic device 10 exists at any position on the power feeding sheet 22 by sequentially turning on / off the organic transistors 42 in the position detection circuit sheet 40 so as to scan. When the electronic device 10 is detected, the MEMS switch 62 connected to the power supply coil 52 corresponding to the position where the electronic device 10 is detected is turned on, and the power supply power source 68 supplies the AC voltage to the power supply coil 52. Apply. As a result, power is supplied to the electronic device 10. Here, only the MEMS switch 62 connected to the power supply coil 52 corresponding to the position where the electronic device 10 is detected is turned on, and the MEMS switch 62 connected to the other power supply coil 52 is turned off. Therefore, power can be efficiently supplied to the power receiving coil 12 of the electronic device 10.
[0039] 以上説明した実施例の給電装置 20の給電シート 22によれば、給電装置 20に用い ることにより、給電シート 22上に電子機器 10が存在するか否かを検出すると共に電 子機器 10を検出したときには電子機器 10の位置に対応する給電用コイル 52に接続 された MEMSスィッチ 62だけをオンとして給電用コイル 52に給電用電源 68からの 交流電圧を印加して給電するから、電子機器 10に効率よく給電することができると共 に電子機器 10の給電シート 22への載置の自由度を高くすることができる。したがつ て、給電シート 22上であれば如何なる位置に電子機器 10を載置しても、電子機器 1 0を給電シート 22上で移動させても、電子機器 10に給電することができる。  [0039] According to the power supply sheet 22 of the power supply apparatus 20 of the embodiment described above, the use of the power supply apparatus 20 detects whether or not the electronic device 10 is present on the power supply sheet 22, and the electronic apparatus. When 10 is detected, only the MEMS switch 62 connected to the power supply coil 52 corresponding to the position of the electronic device 10 is turned on to apply power to the power supply coil 52 by applying an AC voltage from the power supply 68. In addition to efficiently supplying power to the device 10, the degree of freedom of placing the electronic device 10 on the power supply sheet 22 can be increased. Therefore, even if the electronic device 10 is placed on any position on the power supply sheet 22 and the electronic device 10 is moved on the power supply sheet 22, power can be supplied to the electronic device 10.
[0040] また、実施例の給電シート 22によれば、位置検出用コイルシート 30や位置検出用 回路シート 40,給電用コイルシート 50,給電用回路シート 60をいずれも可撓性を有 するフィルムを用いて形成するから、給電シート 22自体も可撓性を有することができ る。この結果、給電シート 22を大面積のものとしても円筒状に丸めて運ぶことができる など、良好な運搬性や操作性を得ることができる。  [0040] Further, according to the power supply sheet 22 of the embodiment, the position detection coil sheet 30, the position detection circuit sheet 40, the power supply coil sheet 50, and the power supply circuit sheet 60 are all flexible films. Therefore, the power supply sheet 22 itself can also have flexibility. As a result, even if the power supply sheet 22 has a large area, it can be rolled into a cylindrical shape and transported, so that good transportability and operability can be obtained.
[0041] さらに、実施例の給電シート 22によれば、給電用コイル 52のコイル中心が位置検 出用コイル 32のコイル中心に重ならないように配置するから、位置検出用コイル 32 や給電用コイル 52の磁束に対する影響を抑制することができ、位置の検出や給電の 効率を高くすることができる。  [0041] Furthermore, according to the power supply sheet 22 of the embodiment, since the coil center of the power supply coil 52 is arranged so as not to overlap the coil center of the position detection coil 32, the position detection coil 32 and the power supply coil are arranged. The influence on the magnetic flux of 52 can be suppressed, and the efficiency of position detection and power feeding can be increased.
[0042] 実施例の給電シート 22の給電用回路 60aでは、給電用コイル 52と受電用コイル 12 との水平距離 Xに対応する回路は備えないものとした力 図 18に例示するように、給 電用コイル 52と受電用コイル 12との水平距離 xに対して給電の効率を調整する調整 回路 70を給電用電源 68に介在させるものとしてもよい。この調整回路 70は、図 19に 示すように、給電用電源 68に対して直列に接続された可変容量コンデンサ 72と、給 電用電源 68とグランドとの間に配置された可変容量コンデンサ 74と、の二つの可変 容量コンデンサによって構成されている。この二つの可変容量コンデンサ 72, 74の 容量を調整することにより、給電効率が最もよい容量とすることにより、給電効率を向 上させること力 Sでさる。 [0042] In the power feeding circuit 60a of the power feeding sheet 22 of the embodiment, the power corresponding to the horizontal distance X between the power feeding coil 52 and the power receiving coil 12 is not provided. As illustrated in FIG. An adjustment circuit 70 that adjusts the efficiency of power feeding with respect to the horizontal distance x between the power coil 52 and the power receiving coil 12 may be interposed in the power source 68 for power feeding. As shown in FIG. 19, the adjustment circuit 70 includes a variable capacitor 72 connected in series to the power supply 68, and a variable capacitor 74 disposed between the power supply 68 and the ground. This is composed of two variable capacitors. By adjusting the capacitances of these two variable capacitors 72 and 74, the power supply efficiency can be improved by adjusting the capacitance of the two variable capacitors 72 and 74.
[0043] 実施例の給電シート 22では、位置検出用コイル 32と給電用コイル 52とを別のシー トに形成するものとしたが、単一のシートに形成してもよい。この場合、位置検出用コ ィル 32と給電用コイル 52とが同一のコイルを兼用するものとしてもよい。このように位 置検出用コイル 32と給電用コイル 52とが同一のコイルを兼用する場合、兼用するコ ィル (以下、兼用コイルという。) 52Bをマトリックス状にシートに配置した兼用コイルシ ートと、位置検出用回路 40aおよび給電用回路 60aの機能を有する兼用回路をシー ト状に形成した兼用回路シートと、の二つのシートをこの順に重ねて給電シートを構 成すること力 Sできる。兼用回路の一例を図 20に示す。こうすれば、 2枚のシートにより 給電シートを構成することができ、給電シートをより薄く形成することができる。  In the power supply sheet 22 of the embodiment, the position detection coil 32 and the power supply coil 52 are formed on separate sheets, but may be formed on a single sheet. In this case, the position detection coil 32 and the power feeding coil 52 may be used as the same coil. In this way, when the position detection coil 32 and the power feeding coil 52 are also used as the same coil, the shared coil (hereinafter referred to as a dual-purpose coil) 52B is a dual-purpose coil sheet that is arranged in a matrix on the sheet. The power sheet can be configured by stacking two sheets in this order, the dual-purpose circuit sheet in which the dual-purpose circuit having the functions of the position detection circuit 40a and the power supply circuit 60a is formed in a sheet shape. An example of a shared circuit is shown in Figure 20. In this way, the power feeding sheet can be constituted by two sheets, and the power feeding sheet can be formed thinner.
[0044] 実施例の給電シート 22では、位置検出用回路 40aのスイッチング素子に有機トラン ジスタ 42を用いるものとした力 S、位置検出用回路 40aに用いるスイッチング素子として は有機トランジスタ 42に限定されるものではなぐ如何なるスイッチング素子を用いる ものとしてもかまわない。  [0044] In the power supply sheet 22 of the embodiment, the force S is assumed to use the organic transistor 42 as the switching element of the position detection circuit 40a, and the switching element used in the position detection circuit 40a is limited to the organic transistor 42. It does not matter if any switching element is used.
[0045] 実施例の給電シート 22では、位置検出用コイル 32と抵抗 44と可変容量コンデンサ 45とからなる振動回路をその共振周波数が 2. 95MHzとなるよう構成し、 2. 95MH zの周波数の交流電圧を印加する位置検出用電源 48を用いた力 S、振動回路の共振 周波数は 2. 95MHzに限定されるものではなぐ如何なる周波数でもよい。位置検出 のメカニズムから振動回路に印加する交流電圧の周波数が振動回路の共振周波数 であれば、如何なる周波数でも電子機器 10の給電シート 22上の位置を検出すること ができる。  [0045] In the power supply sheet 22 of the example, the vibration circuit including the position detection coil 32, the resistor 44, and the variable capacitor 45 is configured so that the resonance frequency is 2.95 MHz, and the frequency of 2.95 MHz is set. The resonance frequency of the force S and the vibration circuit using the position detection power supply 48 for applying the AC voltage is not limited to 2.95 MHz, but may be any frequency. If the frequency of the AC voltage applied to the vibration circuit is the resonance frequency of the vibration circuit based on the position detection mechanism, the position on the power supply sheet 22 of the electronic device 10 can be detected at any frequency.
[0046] 実施例の給電シート 22では、給電用回路 60aのスイッチング素子として静電引力 用電極 62a, 62bに電圧を作用させることによって生じる引力により給電用電極 63a, 63bが当接することによりオンとなる MEMSスィッチ 62を用いた力 電極に電圧を作 用させることによって生じる反発力により給電用電極が当接することによりオンとなる スィッチを用いるものとしてもよい。また、 MEMSスィッチ 62に代えて、オンオフ可能
Figure imgf000018_0001
[0046] In the power supply sheet 22 of the example, electrostatic attractive force is used as a switching element of the power supply circuit 60a. Power supply using MEMS switch 62 that is turned on when power supply electrodes 63a and 63b come into contact with each other due to the attractive force generated by applying a voltage to electrodes 62a and 62b It is also possible to use a switch that is turned on when the working electrode contacts. Can be turned on / off instead of MEMS switch 62
Figure imgf000018_0001
[0047] 実施例の給電シート 22では、給電用コイル 52に 13. 56MHzの周波数の交流電 圧を印加するものとした力 S、給電用コイル 52に印加する交流電圧の周波数は 13. 56 MHzに限定されるものではなぐ如何なる周波数としても力、まわない。  [0047] In the power supply sheet 22 of the example, the force S is assumed to apply an AC voltage of 13.56 MHz to the power supply coil 52, and the frequency of the AC voltage applied to the power supply coil 52 is 13.56 MHz. There is no power at any frequency that is not limited.
[0048] 実施例の給電シート 22では、給電電圧印加用配線 64を平行な 2本の配線とすると 共に他の給電用コイル 52をそのループに含まないように給電用回路 60aを形成した 力 他の給電用コイル 52をループに含まないように給電用回路 60aを形成すればよ いから、給電電圧印加用配線 64は平行な 2本の配線でなくても力、まわない。また、他 の給電用コイル 52をループに含むよう給電電圧印加用配線を配置するものとしても 差し支えない。  In the power supply sheet 22 of the embodiment, the power supply voltage application wiring 64 is formed of two parallel wirings, and the power supply circuit 60a is formed so that the other power supply coil 52 is not included in the loop. Since the power feeding circuit 60a is formed so that the power feeding coil 52 is not included in the loop, the power feeding voltage applying wiring 64 does not have to be two parallel wirings. Also, the power supply voltage application wiring may be arranged so that the other power supply coil 52 is included in the loop.
[0049] 実施例の給電シート 22では、位置検出用コイルシート 30,位置検出用回路シート 40,給電用コイルシート 50,給電用回路シート 60のいずれをも可撓性を有するよう 形成したが、シートの!/、ずれかにつ!/、ては可撓性を有しな!/、ものとしても差し支えな い。この場合、給電シートも可撓性を有しないものとなる。  [0049] In the power supply sheet 22 of the example, the position detection coil sheet 30, the position detection circuit sheet 40, the power supply coil sheet 50, and the power supply circuit sheet 60 are all formed to have flexibility. The sheet! /, The slippage! /, And it is not flexible! In this case, the power supply sheet does not have flexibility.
[0050] 実施例の給電シート 22では、給電シート 22上の電子機器 10の位置を位置検出用 コイルシート 30と位置検出用回路シート 40とを用いて位置を検出するものとしたが、 給電シート 22上の電子機器 10の位置の検出は、こうした位置検出用コイルシート 30 と位置検出用回路シート 40とを用いて行なうものに限定されるものではなぐ複数の タツチセンサや荷重センサを平面に配置したシートを位置検出用コイルシート 30や 位置検出用回路シート 40に代えて給電用コイルシート 50や給電用回路シート 60と 用いて給電シートを構成し、電子機器 10の接触や荷重によりアクティブとなるタツチ センサや荷重センサのシート上の位置により電子機器 10の給電シート 22上の位置 を検出するものとするなど、給電シート 22上の電子機器 10を検出するものであれば 如何なるものとしてもよい。また、給電シート 22の載置面を写す撮影装置からの画像 データを画像処理することにより給電シート 22上の電子機器 10を検出するものとして も構わない。 In the power supply sheet 22 of the embodiment, the position of the electronic device 10 on the power supply sheet 22 is detected using the position detection coil sheet 30 and the position detection circuit sheet 40. The detection of the position of the electronic device 10 on 22 is not limited to the position detection coil sheet 30 and the position detection circuit sheet 40, but a plurality of touch sensors and load sensors are arranged on a plane. The sheet is replaced with the coil sheet 30 for position detection or the circuit sheet 40 for position detection, and the power sheet is configured by using the coil sheet 50 for power supply or the circuit sheet 60 for power supply. It detects the electronic device 10 on the power supply sheet 22, such as detecting the position on the power supply sheet 22 of the electronic device 10 based on the position of the sensor or load sensor on the sheet. Lever may be any thing. In addition, an image from a photographing device that captures the placement surface of the power feeding sheet 22 The electronic device 10 on the power supply sheet 22 may be detected by image processing the data.
[0051] 実施例の給電シート 22では、給電シート 22上に電子機器 10が存在するか否かを 検出すると共に電子機器 10を検出したときには電子機器 10の位置に対応する給電 用コイル 52を用いて電子機器 10に給電するものとした力 給電シート 22上の電子機 器 10との通信により電子機器 10の個別情報を取得し、個別情報に基づいて電子機 器 10に給電するものとしてもよい。以下、この変形例の給電装置 120について説明 する。変形例の給電装置 120と電子機器 10の構成の概略を図 21に示す。  In the power supply sheet 22 of the embodiment, whether or not the electronic device 10 is present on the power supply sheet 22 is detected, and when the electronic device 10 is detected, the power supply coil 52 corresponding to the position of the electronic device 10 is used. Power to supply power to the electronic device 10 It is also possible to acquire individual information of the electronic device 10 through communication with the electronic device 10 on the power supply sheet 22 and supply power to the electronic device 10 based on the individual information. . Hereinafter, the power feeding device 120 of this modification will be described. FIG. 21 shows a schematic configuration of the power feeding device 120 and the electronic device 10 according to the modification.
[0052] 電子機器 10は、図 21に示すように、給電装置 120から給電を受けるための受電用 コイル 12やこの受電用コイル 12により受電した交流電力を整流する整流器 13,整流 された電力を充電するバッテリ 14を備えるだけでなぐ送受信用アンテナとして機能 する送受信用コイル 16aと、受信した電気信号を整流して電力として供給する整流器 16bと、受信した信号を解析する信号解析部 RF (Radio Frequency) 16cと、情報 を記憶するメモリセル 16eと、送受信用コイル 16aで受信し信号解析部 RF16cで解 析された信号に基づいて送受信用コイル 16aで受信し信号解析部 RF16cで解析さ れる情報(データ)をメモリセル 16eに記憶させたりメモリセル 16eから情報(データ)を 読み出して信号解析部 RF16cを介して送受信用コイル 16aから送信したりする制御 部 16dと、を備える。メモリセル 16eには、電子機器 10の製品識別情報や給電時の 許容電力などが個別情報として記憶されている。  [0052] As shown in FIG. 21, the electronic device 10 includes a power receiving coil 12 for receiving power from the power feeding device 120, a rectifier 13 for rectifying the AC power received by the power receiving coil 12, and the rectified power. A transmission / reception coil 16a that functions as a transmission / reception antenna simply by providing the battery 14 to be charged, a rectifier 16b that rectifies the received electrical signal and supplies it as power, and a signal analysis unit RF (Radio Frequency) that analyzes the received signal ) 16c, memory cell 16e for storing information, and information received by transmission / reception coil 16a based on the signal received by transmission / reception coil 16a and analyzed by signal analysis unit RF16c (information analyzed by signal analysis unit RF16c ( Data) is stored in the memory cell 16e, and information (data) is read from the memory cell 16e and transmitted from the transmission / reception coil 16a via the signal analysis unit RF16c. That. In the memory cell 16e, product identification information of the electronic device 10, allowable power at the time of power feeding, and the like are stored as individual information.
[0053] 変形例の給電装置 120は、図 21に示すように、実施例の給電装置 20が備える給 電シート 22と同様に、位置検出用コイルシート 30,位置検出用回路シート 40,給電 用コイルシート 50,給電用回路シート 60を備えると共に、送受信用の信号を調整す る送受信信号調整回路 130と、有機トランジスタ 42を介して位置検出用コイル 32に 交流電圧を供給する位置検出用電源 48からの交流電圧に対して送受信信号調整 回路 130からの送信信号を変調する変調回路 132と、位置検出用コイル 32によって 検出された信号から電子機器 10の送受信用コイル 16aからの信号を復調する復調 回路 134と、 MEMSスィッチ 62を介して給電用コイル 52に給電用の電力を供給す る給電用電源 68と給電用回路シート 60との間に給電用電源 68から供給される交流 電圧の電圧を調整するための電圧調整回路 136と、給電装置 120全体を制御するコ ントローラ 138と、を備える。 [0053] As shown in FIG. 21, the power supply device 120 of the modification is similar to the power supply sheet 22 provided in the power supply device 20 of the embodiment, and includes a position detection coil sheet 30, a position detection circuit sheet 40, and a power supply device. A coil sheet 50 and a power feeding circuit sheet 60, a transmission / reception signal adjustment circuit 130 for adjusting transmission / reception signals, and a position detection power supply 48 for supplying an AC voltage to the position detection coil 32 via the organic transistor 42 The modulation circuit 132 that modulates the transmission signal from the transmission / reception signal adjustment circuit 130 with respect to the AC voltage from the signal 130 and the demodulation that demodulates the signal from the transmission / reception coil 16a of the electronic device 10 from the signal detected by the position detection coil 32 AC supplied from the power supply 68 between the power supply 68 and the circuit sheet 60 for supplying power to the circuit 134 and the power supply coil 52 via the MEMS switch 62 A voltage adjustment circuit 136 for adjusting the voltage of the voltage and a controller 138 for controlling the entire power feeding device 120 are provided.
[0054] 次に、こうして構成された変形例の給電装置 120の動作、特に通信を行なって給電 する動作について説明する。図 22は、変形例の給電装置 120のコントローラ 138に より実行される給電時の処理ルーチンの一例を示すフローチャートである。この処理 ルーチンが実行されると、まず、位置検出用回路シート 40の有機トランジスタ 42を順 にオンとして順に位置検出用コイル 32に通電し、給電シート 22上の電子機器 10の 位置を検出する(ステップ S100)。電子機器 10の位置を検出すると、電子機器 10の 位置に対応する位置検出用コイル 32の有機トランジスタ 42をオンとして電子機器 10 のメモリセル 16eに記憶されている電子機器 10の個別情報を取得する処理を実行す る(ステップ S110)。この処理は、電子機器 10から個別情報を送信させるための制御 信号を送受信信号調整回路 130から変調回路 132に向けて出力し、変調回路 132 によりその制御信号を位置検出用電源 48からの交流電圧に対して変調し、変調した 交流電圧を有機トランジスタ 42を介して位置検出用コイル 32に通電し、これに対して 電子機器 10から送信されてくる信号を位置検出用コイル 32により受信し、復調回路 134により復調して送受信信号調整回路 130に入力し、これを送受信信号調整回路 130がコントローラ 138に出力することにより行なう。電子機器 10から個別情報を送 信させるための制御信号を送受信用コイル 16aで受信した電子機器 10では、信号 解析部 RF16cで制御信号を解析し、この解析した信号に基づいて制御部 16dがメ モリセル 16eに記憶されている電子機器 10の製品識別情報や給電時の許容電力な どの個別情報を信号解析部 RF16cを介して送受信用コイル 16aから送信する。この とき、電子機器 10では、送受信用コイル 16aにより受信した電気信号を整流して電力 として供給する整流器 16からの電力を用いて給電装置 120と送受信するから、バッ テリ 14が完全放電しているときでも個別情報の送受信を行なうことができる。  Next, the operation of the power supply apparatus 120 of the modified example configured as described above, particularly the operation of performing power supply through communication will be described. FIG. 22 is a flowchart illustrating an example of a processing routine during power supply executed by the controller 138 of the power supply apparatus 120 according to the modification. When this processing routine is executed, first, the organic transistors 42 of the position detection circuit sheet 40 are sequentially turned on, the position detection coil 32 is energized in order, and the position of the electronic device 10 on the power supply sheet 22 is detected ( Step S100). When the position of the electronic device 10 is detected, the individual transistor information stored in the memory cell 16e of the electronic device 10 is acquired by turning on the organic transistor 42 of the position detection coil 32 corresponding to the position of the electronic device 10. The process is executed (step S110). In this process, a control signal for transmitting individual information from the electronic device 10 is output from the transmission / reception signal adjustment circuit 130 to the modulation circuit 132, and the modulation circuit 132 outputs the control signal to the AC voltage from the position detection power supply 48. The position detection coil 32 is energized with the modulated AC voltage via the organic transistor 42, and the signal transmitted from the electronic device 10 is received by the position detection coil 32 and demodulated. The signal is demodulated by the circuit 134 and input to the transmission / reception signal adjustment circuit 130, which is output by the transmission / reception signal adjustment circuit 130 to the controller 138. In the electronic device 10 that has received the control signal for transmitting the individual information from the electronic device 10 by the transmission / reception coil 16a, the control signal is analyzed by the signal analysis unit RF16c, and the control unit 16d performs the measurement based on the analyzed signal. Individual information such as product identification information of the electronic device 10 stored in the Moricell 16e and allowable power at the time of power supply is transmitted from the transmission / reception coil 16a via the signal analysis unit RF16c. At this time, in the electronic device 10, the electric power received from the transmission / reception coil 16a is rectified and supplied to the power supply device 120 using the electric power from the rectifier 16, and thus the battery 14 is completely discharged. Even at times, individual information can be transmitted and received.
[0055] こうして電子機器 10の個別情報を取得すると、取得した個別情報に含まれる電子 機器 10の製品識別情報に基づいて給電してもよい電子機器であるか否力、を判定し て給電する電子機器を選別する (ステップ S 120)。この選別は、例えば、製品識別情 報のうち上位 2桁や 3桁の記号に給電可能な機器であるか否かの情報を持たせ、こ れを判別することによって行なうことができる。そして、給電してもよい電子機器である 場合、取得した個別情報の給電時の許容電力に基づいて給電用コイル 52に印加す る交流電圧の実行値としての電圧を給電用電圧として決定し (ステップ S130)、決定 した給電用電圧となるよう電圧調整回路 136により給電用電源 68からの交流電圧を 調整して電子機器 10の位置に対応する給電用コイル 52に対する MEMSスィッチ 6 2をオンとして電子機器 10への給電を開始して (ステップ S140)、処理ルーチンを終 了する。 [0055] When the individual information of the electronic device 10 is acquired in this way, the power is determined by determining whether or not the electronic device 10 may be supplied based on the product identification information of the electronic device 10 included in the acquired individual information. Sorting electronic devices (step S 120). This selection includes, for example, information indicating whether the device can supply power to the upper 2 digits or 3 digits of the product identification information. This can be done by determining this. In the case of an electronic device that can supply power, a voltage as an execution value of the AC voltage applied to the power supply coil 52 is determined as the power supply voltage based on the allowable power at the time of power supply of the acquired individual information. In step S130), the voltage adjustment circuit 136 adjusts the AC voltage from the power supply 68 to the determined power supply voltage, and turns on the MEMS switch 62 for the power supply coil 52 corresponding to the position of the electronic device 10 to turn it on. Power supply to the device 10 is started (step S140), and the processing routine is ended.
[0056] 以上説明した変形例の給電装置 120によれば、給電シート 22上の電子機器 10と の通信により電子機器 10の個別情報を取得し、個別情報に含まれる製品識別情報 に基づ!/、て給電を行なってもよ!/、か否かを判定して給電を行なうことができる。この結 果、給電を行なう機器であるか否かを製品識別情報として機器に記憶させておくだけ で給電するか否かを選別することができる。しかも、個別情報の給電時の許容電力に 基づいて給電用電圧を設定して電子機器 10への給電を行なうから、電子機器 10を 適正な電力により給電することができる。  [0056] According to the power supply device 120 of the modified example described above, the individual information of the electronic device 10 is acquired by communication with the electronic device 10 on the power supply sheet 22, and based on the product identification information included in the individual information! It is possible to perform power feeding by determining whether or not power can be fed! /. As a result, it is possible to select whether or not to supply power only by storing in the device whether or not the device supplies power as product identification information. In addition, since the power supply voltage is set based on the allowable power at the time of power supply of the individual information and power is supplied to the electronic device 10, the electronic device 10 can be supplied with appropriate power.
[0057] 変形例の給電装置 120では、製品識別情報と給電時の許容電力とを電子機器 10 の個別情報として電子機器 10に記憶させておき、製品識別情報に基づいて給電を 行なうか否かを選別し、給電時の許容電力に基づいて給電用電圧を設定して電子 機器 10を給電するものとした力 S、製品識別情報と給電時の許容電力とのうちの一方 だけを電子機器 10の個別情報として電子機器 10に記憶させておき、製品識別情報 に基づく給電の選別と給電時の許容電力に基づく給電用電圧による電子機器 10の 給電とのうちの一方だけを実行するものとしてもよい。また、製品識別情報や給電時 の許容電力以外の情報を個別情報として電子機器 10に記憶させておき、記憶させ た個別情報に基づいて電子機器 10の給電を行なうものとしても構わない。  [0057] In the power supply device 120 of the modification, the product identification information and the allowable power at the time of power supply are stored in the electronic device 10 as individual information of the electronic device 10, and whether or not the power supply is performed based on the product identification information. The power S is used to supply power to the electronic device 10 by setting the voltage for power supply based on the allowable power at the time of power supply, and only one of the product identification information and the allowable power at the time of power supply is the electronic device 10 It is also possible to store the electronic device 10 as individual information and execute only one of power supply selection based on product identification information and power supply of the electronic device 10 using power supply voltage based on allowable power at the time of power supply. Good. Further, information other than product identification information and allowable power at the time of power feeding may be stored in the electronic device 10 as individual information, and the electronic device 10 may be powered based on the stored individual information.
[0058] 変形例の給電装置 120では、給電シート 22上に一つの電子機器 10が載置されて V、る場合につ!/、て説明したが、給電シート 22上の複数の電子機器が載置されてレ、る ときには、各々の電子機器から取得した各々の個別情報に含まれる給電時の許容電 力に基づいて各々の電子機器に対して各々の給電用電圧を設定して給電するもの としてもよい。この場合、各給電用コイル 52毎に電圧調整回路 136を備えるように回 路を構成すればよい。また、各々の電子機器から取得した各々の個別情報に含まれ る給電時の許容電力のうち最も低い許容電力に基づく給電用電圧を設定して各々 の電子機器を給電するものとしてもよレ、。 [0058] In the power supply device 120 of the modified example, it has been described that one electronic device 10 is mounted on the power supply sheet 22 and is V, but there are a plurality of electronic devices on the power supply sheet 22. When it is mounted, power is supplied by setting each power supply voltage to each electronic device based on the allowable power at the time of power supply included in each individual information acquired from each electronic device. It may be a thing. In this case, it is necessary to provide a voltage adjustment circuit 136 for each power supply coil 52. What is necessary is just to comprise a path. In addition, it is also possible to set the power supply voltage based on the lowest allowable power among the allowable power included in each individual information acquired from each electronic device and to supply each electronic device. .
[0059] 変形例の給電装置 120では、電子機器 10が受電用コイル 12と送受信用コイル 16 aとを備えるものとしたが、受電用コイル 12が送受信用コイル 16aを兼ねるものとして も構わない。 In the power supply device 120 of the modified example, the electronic device 10 includes the power receiving coil 12 and the transmission / reception coil 16a. However, the power reception coil 12 may also serve as the transmission / reception coil 16a.
[0060] 変形例の給電装置 120では、位置検出用コイル 32を用いて電子機器 10と通信す るものとした力 給電用コイル 52を用いて電子機器 10と通信するものとしてもよいし、 位置検出用コイル 32や給電用コイル 52とは別のアンテナを用いて電子機器 10と通 信するあのとしてあよい。  [0060] In the power supply device 120 of the modification, the position detection coil 32 may be used to communicate with the electronic device 10, and the force power supply coil 52 may be used to communicate with the electronic device 10; It is good for communicating with the electronic device 10 using an antenna different from the detection coil 32 and the feeding coil 52.
[0061] 以上、本発明を実施するための最良の形態について実施例を用いて説明したが、 本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しな!/ヽ 範囲内において、種々なる形態で実施し得ることは勿論である。  [0061] As described above, the best mode for carrying out the present invention has been described using examples. However, the present invention is not limited to these examples, and does not depart from the gist of the present invention! Of course, various forms can be implemented within the range.
産業上の利用可能性  Industrial applicability
[0062] 本発明は、給電シートや給電装置などの製造産業に利用可能である。 [0062] The present invention can be used in manufacturing industries such as a power feeding sheet and a power feeding device.

Claims

請求の範囲 The scope of the claims
[1] 受電用のコイルを有する機器に非接触で給電可能な給電装置に用いられるシート 状の給電シートであって、  [1] A sheet-like power supply sheet used for a power supply device capable of supplying power to a device having a power receiving coil in a contactless manner,
複数のコイルをマトリックス状にシートに配置してなるコイルシートと、  A coil sheet comprising a plurality of coils arranged in a matrix on the sheet;
前記複数のコイルのうち前記機器のシート上の位置に対応する少なくとも一つのコ ィルに通電することにより該通電しているコイルと前記機器のコイルとの電磁作用に 基づいて該機器に給電するための給電用回路と、  By supplying current to at least one coil corresponding to a position on the sheet of the device among the plurality of coils, power is supplied to the device based on an electromagnetic action between the coil that is energized and the coil of the device. A power supply circuit for
を備える給電シート。  A power supply sheet.
[2] 請求項 1記載の給電シートであって、  [2] The power feeding sheet according to claim 1,
前記機器の前記コイルシート上の位置を検出する位置検出手段、  Position detecting means for detecting the position of the device on the coil sheet;
を備える給電シート。  A power supply sheet.
[3] 請求項 2記載の給電シートであって、 [3] The power supply sheet according to claim 2,
前記位置検出手段は、前記複数のコイルの少なくとも一部のコイルに順次通電す ることにより該通電しているコイルと前記機器のコイルとの位置関係に応じて得られる 電気信号に基づいて該機器のシート上の位置を検出するための位置検出用回路で める、  The position detecting means sequentially energizes at least some of the plurality of coils, and the device based on the electrical signal obtained according to the positional relationship between the energized coil and the coil of the device. A position detection circuit for detecting the position on the sheet
給電シート。  Power supply sheet.
[4] 請求項 3記載の給電シートであって、  [4] The power feeding sheet according to claim 3,
前記コイルシートは、前記位置検出用回路に接続された複数の位置検出用コイル と前記給電用回路に接続された複数の給電用コイルとから構成されてなる、 給電シート。  The coil sheet includes a plurality of position detection coils connected to the position detection circuit and a plurality of power supply coils connected to the power supply circuit.
[5] 請求項 4記載の給電シートであって、  [5] The power feeding sheet according to claim 4,
前記コイルシートは、前記複数の位置検出用コイルが配置された位置検出用コィ ルシートと、前記複数の給電用コイルが配置された給電用コイルシートと、の二つの シートである、  The coil sheet is two sheets of a position detection coil sheet in which the plurality of position detection coils are arranged and a power supply coil sheet in which the plurality of power supply coils are arranged.
給電シート。  Power supply sheet.
[6] 請求項 5記載の給電シートであって、  [6] The power supply sheet according to claim 5,
前記位置検出用回路をシート上に形成してなる位置検出用回路シートと、 前記給電用回路をシート上に形成してなる給電用回路シートと、 A circuit sheet for position detection formed by forming the circuit for position detection on a sheet; A power supply circuit sheet formed by forming the power supply circuit on a sheet;
を備え、  With
前記機器に対して前記給電用コイルシート,前記給電用回路シート,前記位置検 出用コイルシート,前記位置検出用回路シートの順に配置されてなる  The power supply coil sheet, the power supply circuit sheet, the position detection coil sheet, and the position detection circuit sheet are arranged in this order with respect to the device.
給電シート。  Power supply sheet.
[7] 請求項 5または 6記載の給電シートであって、  [7] The power supply sheet according to claim 5 or 6,
前記給電用コイルと前記位置検出用コイルとが両コイルの中心にコイルが重ならな いよう配置されるよう前記給電用コイルシートと前記位置検出用コイルシートとが配置 されてなる、  The feeding coil sheet and the position detecting coil sheet are arranged so that the feeding coil and the position detecting coil are arranged so that the coils do not overlap at the center of both coils.
給電シート。  Power supply sheet.
[8] 請求項 4なレ、し 7レ、ずれか記載の給電シートであって、  [8] A power supply sheet according to claim 4 or 7 or shift,
前記位置検出用回路は、前記位置検出用コイルに直列に接続された抵抗と、前記 位置検出用コイルと前記抵抗を含む振動回路に共振周波数の交流電圧を印加する ための共振周波数電圧印加用配線と、前記共振周波数の交流電圧の印加をオンォ フする位置検出用スイッチング素子と、前記抵抗の端子間電圧を検出するための電 圧検出用配線と、を有する位置検出用ユニットを前記複数の位置検出用コイルに対 応するよう配置してなる回路である、  The position detection circuit includes a resistor connected in series to the position detection coil, and a resonance frequency voltage application wiring for applying an AC voltage having a resonance frequency to the vibration circuit including the position detection coil and the resistor. A position detection unit comprising: a position detection switching element that turns off application of an alternating voltage of the resonance frequency; and a voltage detection wiring for detecting a voltage between terminals of the resistor. It is a circuit that is arranged to correspond to the detection coil.
給電シート。  Power supply sheet.
[9] 請求項 8記載の給電シートであって、  [9] The power supply sheet according to claim 8,
前記位置検出用スイッチング素子は、有機トランジスタである、  The position detecting switching element is an organic transistor.
給電シート。  Power supply sheet.
[10] 請求項 4なレ、し 9レ、ずれか記載の給電シートであって、  [10] A power feeding sheet according to claim 4 or 9 or shift,
前記給電用回路は、前記給電用コイルへの通電の有無を司る給電用スイッチング 素子と該スイッチング素子を介して前記給電用コイルに給電用の所定周波数の交流 電圧を印加するための給電電圧印加用配線とを有する給電用ユニットを前記複数の 給電用コイルに対応するよう配置してなる回路である、  The power supply circuit includes a power supply switching element that controls whether the power supply coil is energized and a power supply voltage application for applying an AC voltage having a predetermined frequency for power supply to the power supply coil via the switching element. A circuit in which a power supply unit having wiring is arranged to correspond to the plurality of power supply coils,
給電シート。  Power supply sheet.
[11] 請求項 10記載の給電シートであって、 前記給電用スイッチング素子は、二つの電極の電荷による引力または反力を用い てオンオフする機械的なスィッチである、 [11] The power supply sheet according to claim 10, The power supply switching element is a mechanical switch that is turned on and off using an attractive force or a reaction force due to charges of two electrodes.
給電シート。  Power supply sheet.
[12] 請求項 10または 11記載の記載の給電シートであって、  [12] The power supply sheet according to claim 10 or 11,
前記給電電圧印加用配線は、該配線に接続された給電用コイル以外の給電用コィ ルがループ内に含まれないよう配線されてなる、  The power supply voltage application wiring is wired so that a power supply coil other than the power supply coil connected to the wiring is not included in the loop.
給電シート。  Power supply sheet.
[13] 請求項 12記載の給電シートであって、  [13] The power feeding sheet according to claim 12,
前記給電電圧印加用配線は、 2本の配線が平行に配置されてなる、  The power supply voltage application wiring is composed of two wirings arranged in parallel.
給電シート。  Power supply sheet.
[14] 請求項 4記載の給電シートであって、  [14] The power supply sheet according to claim 4,
前記位置検出用コイルおよび前記給電用コイルは、同一のコイルである兼用コイル を兼用してなる、  The position detection coil and the power feeding coil are also used as a common coil which is the same coil.
給電シート。  Power supply sheet.
[15] 請求項 14記載の給電シートであって、  [15] The power feeding sheet according to claim 14,
前記位置検出用回路および前記給電用回路は、前記兼用コイルに直列に接続さ れた抵抗と前記兼用コイルと前記抵抗を含む振動回路に共振周波数の交流電圧を 印加するための共振周波数電圧印加用配線と前記共振周波数の交流電圧の印加 をオンオフする位置検出用スイッチング素子と前記抵抗の端子間電圧を検出するた めの電圧検出用配線とを有する位置検出用ユニットと、前記兼用コイルへの通電の 有無を司る給電用スイッチング素子と該スイッチング素子を介して前記兼用コイルに 給電用の所定周波数の交流電圧を印加するための給電電圧印加用配線とを有する 給電用ユニットを前記複数の兼用コイルに対応するよう配置してなる回路である、 給電シート。  The position detecting circuit and the power feeding circuit are for applying a resonance frequency voltage for applying an AC voltage having a resonance frequency to a resistor connected in series to the dual-purpose coil, and the vibration circuit including the dual-purpose coil and the resistor. A position detecting unit having a wiring, a position detecting switching element for turning on and off the application of an AC voltage of the resonance frequency, and a voltage detecting wiring for detecting a voltage across the terminals of the resistor, and energizing the dual-purpose coil A plurality of dual-purpose coils including a single-feed power supply unit that includes a power-feeding switching element that controls the presence or absence of power supply and a power supply voltage application wiring for applying an AC voltage having a predetermined frequency for power supply to the dual-purpose coil via the switching element. A power supply sheet, which is a circuit that is arranged to correspond.
[16] 請求項 15記載の給電シートであって、  [16] The power feeding sheet according to claim 15,
前記位置検出用スイッチング素子は、有機トランジスタであり、  The position detecting switching element is an organic transistor,
前記給電用スイッチング素子は、二つの電極の電荷による引力または反力を用い てオンオフする機械的なスィッチである、 給電シート。 The power supply switching element is a mechanical switch that is turned on and off using an attractive force or a reaction force due to charges of two electrodes. Power supply sheet.
[17] 請求項 15または 16記載の給電シートであって、  [17] The power supply sheet according to claim 15 or 16,
前記位置検出用回路および前記給電用回路をシート上に形成してなる回路シート を備え、  A circuit sheet comprising the position detection circuit and the power feeding circuit formed on a sheet,
前記コイルシート、前記回路シートの順に配置されてなる  The coil sheet and the circuit sheet are arranged in this order.
給電シート。  Power supply sheet.
[18] 請求項 10ないし 12, 15ないし 17のいずれか記載の給電シートであって、  [18] The power feeding sheet according to any one of claims 10 to 12, 15 to 17,
前記給電電圧印加用配線に接続され前記給電用コイルと前記機器のコイルとの位 置に基づく給電効率を調整する調整回路、  An adjustment circuit that is connected to the power supply voltage application wiring and adjusts the power supply efficiency based on the position of the power supply coil and the coil of the device;
を備える給電シート。  A power supply sheet.
[19] 請求項 18記載の給電シートであって、 [19] The power feeding sheet according to claim 18,
前記調整回路は、前記給電用コイルに対して直列に配置された容量が可変の第 1 の可変容量コンデンサと、前記第 1の可変容量コンデンサの前記給電用コイルに接 続された端子とは異なる端子とグラウンドとに接続され容量が可変の第 2の可変容量 コンデンサと、を備える回路である、  The adjustment circuit is different from a first variable capacitor having a variable capacitance arranged in series with the power supply coil and a terminal connected to the power supply coil of the first variable capacitor. A second variable capacitor having a variable capacitance connected to the terminal and the ground,
給電シート。  Power supply sheet.
[20] 請求項 1な!/、し 191/、ずれか記載の給電シートであって、  [20] A power supply sheet according to claim 1! /, 191 /
可燒生を有してなる、  Having a pretty life,
給電シート。  Power supply sheet.
[21] 受電用のコイルと該コイルに流れる電流に基づいて通信する通信回路と個別情報 を記憶する記憶回路とを有する機器に非接触で給電可能な給電装置に用いられる シート状の給電シートであって、  [21] A sheet-shaped power supply sheet used in a power supply device that can supply power to a device having a power receiving coil, a communication circuit that communicates based on a current flowing through the coil, and a storage circuit that stores individual information in a non-contact manner There,
複数のコイルをマトリックス状にシートに配置してなるコイルシートと、  A coil sheet comprising a plurality of coils arranged in a matrix on the sheet;
前記複数のコイルのうち前記機器のシート上の位置に対応する少なくとも一つのコ ィルに通電して前記機器との通信により該機器の個別情報を取得する個別情報取 得手段と、  Individual information acquisition means for energizing at least one coil corresponding to a position on the sheet of the device among the plurality of coils and acquiring individual information of the device by communication with the device;
前記取得した個別情報に基づいて前記複数のコイルのうち前記機器のシート上の 位置に対応する少なくとも一つのコイルに通電することにより該通電しているコイルと 前記機器のコイルとの電磁作用に基づ!/、て該機器を給電する給電手段と、 を備える給電シート。 The energized coil by energizing at least one coil corresponding to a position on the sheet of the device among the plurality of coils based on the acquired individual information; A power supply sheet comprising: a power supply means for supplying power to the device based on electromagnetic action with a coil of the device.
[22] 請求項 21記載の給電シートであって、 [22] The power feeding sheet according to claim 21,
前記給電手段は、前記複数のコイルへの通電の有無を司る複数のスイッチング素 子と、前記複数のスイッチング素子を介して前記複数のコイルの各々に交流電圧を 印加するための電圧印加用配線と、を備え、  The power supply means includes a plurality of switching elements that control whether the plurality of coils are energized, and a voltage application wiring for applying an AC voltage to each of the plurality of coils via the plurality of switching elements. With
前記個別情報取得手段は、前記複数のスイッチング素子を介して前記複数のコィ ルの各々に通信信号を乗せた所定周波数の交流電圧を印加することにより前記機 器と通信して前記個別情報を取得する手段である、  The individual information acquisition means communicates with the device to acquire the individual information by applying an AC voltage having a predetermined frequency with a communication signal on each of the plurality of coils via the plurality of switching elements. Is a means to
給電シート。  Power supply sheet.
[23] 請求項 21または 22記載の給電シートであって、  [23] The power supply sheet according to claim 21 or 22,
前記個別情報は、前記機器の識別情報を含み、  The individual information includes identification information of the device,
前記給電手段は、前記取得した個別情報に含まれる識別情報が所定の識別情報 のときに給電する手段である、  The power supply means is means for supplying power when the identification information included in the acquired individual information is predetermined identification information.
給電シート。  Power supply sheet.
[24] 請求項 21ないし 23いずれか記載の給電シートであって、  [24] The power feeding sheet according to any one of claims 21 to 23,
前記個別情報は、前記機器を給電する際の許容電力を情報として含み、 前記給電手段は、前記取得した個別情報に含まれる許容電力の範囲内で前記機 器を給電する手段である、  The individual information includes, as information, allowable power when supplying power to the device, and the power supply unit is a unit that supplies power to the device within a range of allowable power included in the acquired individual information.
給電シート。  Power supply sheet.
[25] 請求項 24記載の給電シートであって、  [25] The power supply sheet according to claim 24,
前記給電手段は、前記通電するコイルに印加する交流電圧の電圧を前記取得した 個別情報に含まれる許容電力に基づいて変更する電圧変更回路を有する手段であ る、  The power supply means is a means having a voltage changing circuit for changing the voltage of the AC voltage applied to the energized coil based on the allowable power included in the acquired individual information.
給電シート。  Power supply sheet.
[26] 複数のコイルがマトリックス状に配置されてなるコイル装置の前記複数のコイルに通 電するための通電用回路であって、  [26] An energization circuit for energizing the plurality of coils of a coil device in which a plurality of coils are arranged in a matrix,
コイルへの通電の有無を司る給電用スイッチング素子と該スイッチング素子を介し て前記コイルに通電するための配線が該配線に接続されたコイル以外のコイルがノレ ープ内に含まれないよう配線されてなる通電用配線とを有する回路ユニットを前記複 数のコイルに対応するよう配置してなる、 A switching element for power supply that controls whether or not the coil is energized, and the switching element A circuit unit having a wiring for energizing the coil so that a coil other than the coil connected to the wiring is not included in the norpe corresponds to the plurality of coils. Arranged to do,
通電用回路。  Circuit for energization.
[27] 請求項 26記載の通電用回路であって、 [27] The energization circuit according to claim 26,
前記通電用配線は、 2本の配線が平行に配置されてなる、  The energization wiring is composed of two wirings arranged in parallel.
通電用回路。  Circuit for energization.
[28] 請求項 26または 27記載の通電用回路であって、  [28] The energization circuit according to claim 26 or 27,
受電用のコイルを有する機器が載置されたときに、該機器のシート上の位置に対応 する少なくとも一つのコイルに通電することにより該通電しているコイルと前記機器の コイルとの電磁作用に基づ!/、て該機器に給電する、  When a device having a coil for receiving power is placed, by energizing at least one coil corresponding to the position on the sheet of the device, the electromagnetic action between the energized coil and the coil of the device is affected. Power!
通電用回路。  Circuit for energization.
PCT/JP2007/067755 2006-09-12 2007-09-12 Power supply sheet and electrically connecting circuit WO2008032746A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008534367A JPWO2008032746A1 (en) 2006-09-12 2007-09-12 Power supply sheet and power supply circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-247404 2006-09-12
JP2006247404 2006-09-12

Publications (1)

Publication Number Publication Date
WO2008032746A1 true WO2008032746A1 (en) 2008-03-20

Family

ID=39183802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067755 WO2008032746A1 (en) 2006-09-12 2007-09-12 Power supply sheet and electrically connecting circuit

Country Status (2)

Country Link
JP (1) JPWO2008032746A1 (en)
WO (1) WO2008032746A1 (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054221A1 (en) * 2007-10-25 2009-04-30 Toyota Jidosha Kabushiki Kaisha Electric vehicle and power feeding apparatus for the vehicle
JP2010288430A (en) * 2009-06-15 2010-12-24 Sanyo Electric Co Ltd Charging cradle
JP2010288429A (en) * 2009-06-15 2010-12-24 Sanyo Electric Co Ltd Charging cradle
JP2011125137A (en) * 2009-12-10 2011-06-23 Canon Inc Charger
WO2011122514A1 (en) * 2010-03-31 2011-10-06 Semiconductor Energy Laboratory Co., Ltd. Power supply device and driving method thereof
WO2011125632A1 (en) * 2010-03-31 2011-10-13 本田技研工業株式会社 Contactless charging system
WO2012027531A1 (en) * 2010-08-25 2012-03-01 Access Business Group International Llc Wireless power supply system and multi-layer shim assembly
WO2012150293A1 (en) * 2011-05-03 2012-11-08 Scholz Peter-Dominik Arrangement and method for contactless energy transmission with a coupling-minimized matrix of planar transmission coils
CN102791513A (en) * 2010-03-04 2012-11-21 本田技研工业株式会社 Electric vehicle
JP2012531176A (en) * 2009-05-25 2012-12-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for detecting a device in a wireless power transfer system
JP2012533277A (en) * 2009-07-14 2012-12-20 コンダクティクス−バンプフラー ゲーエムベーハー Equipment for inductive transmission of electrical energy
WO2013108325A1 (en) * 2012-01-17 2013-07-25 日本電気株式会社 Power supply system
WO2013108324A1 (en) * 2012-01-17 2013-07-25 日本電気株式会社 Power supply system
JP2013240277A (en) * 2007-12-18 2013-11-28 Sanyo Electric Co Ltd Battery charger cradle
JP2013255381A (en) * 2012-06-08 2013-12-19 Panasonic Corp Array coil system
KR101440627B1 (en) * 2008-11-06 2014-09-15 한국과학기술원 System and method for recharging remote control mobile unit automatically using magnetic material
KR101440626B1 (en) 2008-11-06 2014-09-15 한국과학기술원 Extensible system and method for recharging remote control mobile unit automatically
KR101460996B1 (en) * 2012-10-22 2014-11-13 파나소닉 주식회사 Method of exciting primary coils in contactless power supplying device and contactless power supplying device
JP2014236540A (en) * 2013-05-31 2014-12-15 小島プレス工業株式会社 Power transmission device for non-contact charging
CN104578447A (en) * 2013-10-28 2015-04-29 松下电器产业株式会社 Power transmission apparatus and wireless power transmission system
WO2015059351A1 (en) * 2013-10-22 2015-04-30 Elcoflex Oy Wireless charging arrangement
WO2015083202A1 (en) * 2013-12-05 2015-06-11 パナソニックIpマネジメント株式会社 Array coil system
US9197093B2 (en) 2010-12-24 2015-11-24 Toyota Jidosha Kabushiki Kaisha Non-contact charging system, non-contact charging method, non-contact charging type vehicle, and non-contact charging management apparatus
JP2015533472A (en) * 2012-11-05 2015-11-24 パワーバイプロキシ リミテッド Inductively coupled power transmission method and system
JP2016053842A (en) * 2014-09-03 2016-04-14 東芝テック株式会社 Checkout counter
JP2016111812A (en) * 2014-12-05 2016-06-20 本田技研工業株式会社 Non-contact charger
US9387331B2 (en) 2013-10-08 2016-07-12 Medtronic, Inc. Implantable medical devices having hollow cap cofire ceramic structures and methods of fabricating the same
US9502754B2 (en) 2014-01-24 2016-11-22 Medtronic, Inc. Implantable medical devices having cofire ceramic modules and methods of fabricating the same
WO2017017959A1 (en) * 2015-07-29 2017-02-02 パナソニックIpマネジメント株式会社 Wireless charging device
JPWO2014208683A1 (en) * 2013-06-27 2017-02-23 昭和電工株式会社 Power transmission body, power supply device, power consumption device, power supply system, and method of manufacturing power transmission body
WO2017053861A1 (en) * 2015-09-24 2017-03-30 Apple Inc. Configurable wireless transmitter device
JP2017112834A (en) * 2012-02-29 2017-06-22 パナソニックIpマネジメント株式会社 Charger
KR101875974B1 (en) * 2013-08-14 2018-07-06 엘지이노텍 주식회사 A wireless power transmission apparatus and method thereof
US10044232B2 (en) 2014-04-04 2018-08-07 Apple Inc. Inductive power transfer using acoustic or haptic devices
US10135303B2 (en) 2014-05-19 2018-11-20 Apple Inc. Operating a wireless power transfer system at multiple frequencies
JP2018198532A (en) * 2010-02-12 2018-12-13 株式会社半導体エネルギー研究所 Wireless power feeding system
JP2019515629A (en) * 2016-05-10 2019-06-06 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Foreign object detection in wireless power transfer system
US10477741B1 (en) 2015-09-29 2019-11-12 Apple Inc. Communication enabled EMF shield enclosures
US10594160B2 (en) 2017-01-11 2020-03-17 Apple Inc. Noise mitigation in wireless power systems
US10651685B1 (en) 2015-09-30 2020-05-12 Apple Inc. Selective activation of a wireless transmitter device
US10734840B2 (en) 2016-08-26 2020-08-04 Apple Inc. Shared power converter for a wireless transmitter device
US10790699B2 (en) 2015-09-24 2020-09-29 Apple Inc. Configurable wireless transmitter device
JP2021150442A (en) * 2020-03-18 2021-09-27 島田理化工業株式会社 Coil unit, non-contact power feeding device, non-contact power receiving and feeding system, induction heating device, and electromagnetic cooker
KR20220106075A (en) * 2021-01-21 2022-07-28 후아웨이 디지털 파워 테크놀러지스 컴퍼니 리미티드 Wireless charging device, automatic alignment method, and charging dock
DE102009033239C5 (en) 2009-07-14 2023-05-17 Conductix-Wampfler Gmbh Device for the inductive transmission of electrical energy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176677A (en) * 1997-12-09 1999-07-02 Tokin Corp Cordless power station
JPH11188113A (en) * 1997-12-26 1999-07-13 Nec Corp Power transmission system, power transmission method and electric stimulation device provided with the power transmission system
JP2003224937A (en) * 2002-01-25 2003-08-08 Sony Corp Method and apparatus for power supply, method and apparatus for receiving power supply, power supply system, recording medium, and program
JP2005110412A (en) * 2003-09-30 2005-04-21 Sharp Corp Power supply system
JP2006149168A (en) * 2004-11-24 2006-06-08 Fuji Electric Holdings Co Ltd Non-contact power feeder apparatus
JP2006246633A (en) * 2005-03-03 2006-09-14 Sony Corp System, device and method for supplying power, power-receiving device/method, recording medium and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176677A (en) * 1997-12-09 1999-07-02 Tokin Corp Cordless power station
JPH11188113A (en) * 1997-12-26 1999-07-13 Nec Corp Power transmission system, power transmission method and electric stimulation device provided with the power transmission system
JP2003224937A (en) * 2002-01-25 2003-08-08 Sony Corp Method and apparatus for power supply, method and apparatus for receiving power supply, power supply system, recording medium, and program
JP2005110412A (en) * 2003-09-30 2005-04-21 Sharp Corp Power supply system
JP2006149168A (en) * 2004-11-24 2006-06-08 Fuji Electric Holdings Co Ltd Non-contact power feeder apparatus
JP2006246633A (en) * 2005-03-03 2006-09-14 Sony Corp System, device and method for supplying power, power-receiving device/method, recording medium and program

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9421868B2 (en) 2007-10-25 2016-08-23 Toyota Jidosha Kabushiki Kaisha Electrical powered vehicle and power feeding device for vehicle
WO2009054221A1 (en) * 2007-10-25 2009-04-30 Toyota Jidosha Kabushiki Kaisha Electric vehicle and power feeding apparatus for the vehicle
US9024575B2 (en) 2007-10-25 2015-05-05 Toyota Jidosha Kabushiki Kaisha Electrical powered vehicle and power feeding device for vehicle
US9180779B2 (en) 2007-10-25 2015-11-10 Toyota Jidosha Kabushiki Kaisha Electrical powered vehicle and power feeding device for vehicle
JP2013240277A (en) * 2007-12-18 2013-11-28 Sanyo Electric Co Ltd Battery charger cradle
KR101440626B1 (en) 2008-11-06 2014-09-15 한국과학기술원 Extensible system and method for recharging remote control mobile unit automatically
KR101440627B1 (en) * 2008-11-06 2014-09-15 한국과학기술원 System and method for recharging remote control mobile unit automatically using magnetic material
JP2012531176A (en) * 2009-05-25 2012-12-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for detecting a device in a wireless power transfer system
JP2010288430A (en) * 2009-06-15 2010-12-24 Sanyo Electric Co Ltd Charging cradle
JP2010288429A (en) * 2009-06-15 2010-12-24 Sanyo Electric Co Ltd Charging cradle
EP2454797B1 (en) 2009-07-14 2017-05-10 Conductix-Wampfler GmbH Device for the inductive transfer of electric energy
JP2012533277A (en) * 2009-07-14 2012-12-20 コンダクティクス−バンプフラー ゲーエムベーハー Equipment for inductive transmission of electrical energy
EP2454797B2 (en) 2009-07-14 2022-01-05 Conductix-Wampfler GmbH Device for the inductive transfer of electric energy
US9281708B2 (en) 2009-07-14 2016-03-08 Conductix-Wampfler Gmbh Device for inductive transmission of electrical energy
DE102009033239C5 (en) 2009-07-14 2023-05-17 Conductix-Wampfler Gmbh Device for the inductive transmission of electrical energy
JP2011125137A (en) * 2009-12-10 2011-06-23 Canon Inc Charger
JP2018198532A (en) * 2010-02-12 2018-12-13 株式会社半導体エネルギー研究所 Wireless power feeding system
CN102791513A (en) * 2010-03-04 2012-11-21 本田技研工业株式会社 Electric vehicle
US9203478B2 (en) 2010-03-31 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Power supply device and driving method thereof
CN102782985A (en) * 2010-03-31 2012-11-14 本田技研工业株式会社 Contactless charging system
WO2011122514A1 (en) * 2010-03-31 2011-10-06 Semiconductor Energy Laboratory Co., Ltd. Power supply device and driving method thereof
JP5603930B2 (en) * 2010-03-31 2014-10-08 本田技研工業株式会社 Contactless charging system
WO2011125632A1 (en) * 2010-03-31 2011-10-13 本田技研工業株式会社 Contactless charging system
JP2011229369A (en) * 2010-03-31 2011-11-10 Semiconductor Energy Lab Co Ltd Power supply device and method for driving the same
JP2015080408A (en) * 2010-03-31 2015-04-23 株式会社半導体エネルギー研究所 Semiconductor device
US9287720B2 (en) 2010-03-31 2016-03-15 Honda Motor Co., Ltd. Non-contact charging system
JPWO2011125632A1 (en) * 2010-03-31 2013-07-08 本田技研工業株式会社 Contactless charging system
WO2012027531A1 (en) * 2010-08-25 2012-03-01 Access Business Group International Llc Wireless power supply system and multi-layer shim assembly
US9209627B2 (en) 2010-08-25 2015-12-08 Access Business Group International Llc Wireless power supply system and multi-layer shim assembly
US9197093B2 (en) 2010-12-24 2015-11-24 Toyota Jidosha Kabushiki Kaisha Non-contact charging system, non-contact charging method, non-contact charging type vehicle, and non-contact charging management apparatus
USRE48659E1 (en) 2010-12-24 2021-07-27 Toyota Jidosha Kabushiki Kaisha Non-contact charging system, non-contact charging method, non-contact charging type vehicle, and non-contact charging management apparatus
CN103890875A (en) * 2011-05-03 2014-06-25 菲尼克斯电气公司 Arrangement and method for contactless energy transmission with a coupling-minimized matrix of planar transmission coils
WO2012150293A1 (en) * 2011-05-03 2012-11-08 Scholz Peter-Dominik Arrangement and method for contactless energy transmission with a coupling-minimized matrix of planar transmission coils
US9953761B2 (en) 2011-05-03 2018-04-24 Phoenix Contact Gmbh & Co. Kg Arrangement and method for contactless energy transmission with a coupling-minimized matrix of planar transmission coils
WO2013108325A1 (en) * 2012-01-17 2013-07-25 日本電気株式会社 Power supply system
WO2013108324A1 (en) * 2012-01-17 2013-07-25 日本電気株式会社 Power supply system
JP2017112834A (en) * 2012-02-29 2017-06-22 パナソニックIpマネジメント株式会社 Charger
JP2013255381A (en) * 2012-06-08 2013-12-19 Panasonic Corp Array coil system
KR101460996B1 (en) * 2012-10-22 2014-11-13 파나소닉 주식회사 Method of exciting primary coils in contactless power supplying device and contactless power supplying device
JP2015533472A (en) * 2012-11-05 2015-11-24 パワーバイプロキシ リミテッド Inductively coupled power transmission method and system
JP2014236540A (en) * 2013-05-31 2014-12-15 小島プレス工業株式会社 Power transmission device for non-contact charging
JPWO2014208683A1 (en) * 2013-06-27 2017-02-23 昭和電工株式会社 Power transmission body, power supply device, power consumption device, power supply system, and method of manufacturing power transmission body
KR101875974B1 (en) * 2013-08-14 2018-07-06 엘지이노텍 주식회사 A wireless power transmission apparatus and method thereof
US9387331B2 (en) 2013-10-08 2016-07-12 Medtronic, Inc. Implantable medical devices having hollow cap cofire ceramic structures and methods of fabricating the same
US9387332B2 (en) 2013-10-08 2016-07-12 Medtronic, Inc. Implantable medical devices having hollow sleeve cofire ceramic structures and methods of fabricating the same
WO2015059351A1 (en) * 2013-10-22 2015-04-30 Elcoflex Oy Wireless charging arrangement
US10277038B2 (en) 2013-10-28 2019-04-30 Panasonic Corporation Power transmission apparatus and wireless power transmission system
CN104578447A (en) * 2013-10-28 2015-04-29 松下电器产业株式会社 Power transmission apparatus and wireless power transmission system
US9866033B2 (en) 2013-10-28 2018-01-09 Panasonic Corporation Power transmission apparatus and wireless power transmission system
EP2876772A1 (en) * 2013-10-28 2015-05-27 Panasonic Corporation Power transmission apparatus and wireless power transmission system
CN104578447B (en) * 2013-10-28 2017-06-13 松下电器产业株式会社 power transmission device and wireless power transmission system
WO2015083202A1 (en) * 2013-12-05 2015-06-11 パナソニックIpマネジメント株式会社 Array coil system
US9502754B2 (en) 2014-01-24 2016-11-22 Medtronic, Inc. Implantable medical devices having cofire ceramic modules and methods of fabricating the same
US10044232B2 (en) 2014-04-04 2018-08-07 Apple Inc. Inductive power transfer using acoustic or haptic devices
US10135303B2 (en) 2014-05-19 2018-11-20 Apple Inc. Operating a wireless power transfer system at multiple frequencies
JP2016053842A (en) * 2014-09-03 2016-04-14 東芝テック株式会社 Checkout counter
JP2016111812A (en) * 2014-12-05 2016-06-20 本田技研工業株式会社 Non-contact charger
WO2017017959A1 (en) * 2015-07-29 2017-02-02 パナソニックIpマネジメント株式会社 Wireless charging device
JPWO2017017959A1 (en) * 2015-07-29 2018-05-17 パナソニックIpマネジメント株式会社 Wireless charger
US10790699B2 (en) 2015-09-24 2020-09-29 Apple Inc. Configurable wireless transmitter device
US10158244B2 (en) 2015-09-24 2018-12-18 Apple Inc. Configurable wireless transmitter device
WO2017053861A1 (en) * 2015-09-24 2017-03-30 Apple Inc. Configurable wireless transmitter device
CN108141062A (en) * 2015-09-24 2018-06-08 苹果公司 Configurable wireless transmitter equipment
CN108141062B (en) * 2015-09-24 2021-09-24 苹果公司 Configurable wireless transmitter device
US10477741B1 (en) 2015-09-29 2019-11-12 Apple Inc. Communication enabled EMF shield enclosures
US10651685B1 (en) 2015-09-30 2020-05-12 Apple Inc. Selective activation of a wireless transmitter device
JP2019515629A (en) * 2016-05-10 2019-06-06 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Foreign object detection in wireless power transfer system
JP7010845B2 (en) 2016-05-10 2022-01-26 コーニンクレッカ フィリップス エヌ ヴェ Foreign matter detection in wireless power transmission system
US10734840B2 (en) 2016-08-26 2020-08-04 Apple Inc. Shared power converter for a wireless transmitter device
US11979030B2 (en) 2016-08-26 2024-05-07 Apple Inc. Shared power converter for a wireless transmitter device
US10594160B2 (en) 2017-01-11 2020-03-17 Apple Inc. Noise mitigation in wireless power systems
JP2021150442A (en) * 2020-03-18 2021-09-27 島田理化工業株式会社 Coil unit, non-contact power feeding device, non-contact power receiving and feeding system, induction heating device, and electromagnetic cooker
JP7084956B2 (en) 2020-03-18 2022-06-15 島田理化工業株式会社 Coil unit, non-contact power supply device, non-contact power supply system, induction heating device and electromagnetic cooker
KR20220106075A (en) * 2021-01-21 2022-07-28 후아웨이 디지털 파워 테크놀러지스 컴퍼니 리미티드 Wireless charging device, automatic alignment method, and charging dock
JP7308310B2 (en) 2021-01-21 2023-07-13 ファーウェイ デジタル パワー テクノロジーズ カンパニー リミテッド Wireless charging device, automatic matching method and charging dock
US11764624B2 (en) 2021-01-21 2023-09-19 Huawei Digital Power Technologies Co., Ltd. Wireless charging device, automatic alignment method, and charging dock
KR102657710B1 (en) * 2021-01-21 2024-04-15 후아웨이 디지털 파워 테크놀러지스 컴퍼니 리미티드 Wireless charging device, automatic alignment method, and charging dock
JP2022112506A (en) * 2021-01-21 2022-08-02 ファーウェイ デジタル パワー テクノロジーズ カンパニー リミテッド Wireless charging device, automatic alignment method, and charging dock

Also Published As

Publication number Publication date
JPWO2008032746A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
WO2008032746A1 (en) Power supply sheet and electrically connecting circuit
US11550410B2 (en) Position detection device and control method for position detection sensor
JP5527407B2 (en) Wireless power receiving apparatus and power receiving method
JP5515659B2 (en) Non-contact power transmission device
US10756559B2 (en) Non-contact power feeding system
JP6230999B2 (en) Capacitive non-contact power supply system
US20100328044A1 (en) Inductive power system and method of operation
JP5587165B2 (en) Non-contact power transmission system and power receiving antenna
CN218547512U (en) Wireless communication device manufacturing system
CN111384789A (en) Wireless power transfer using capacitive sensors
EP3291407B1 (en) Wireless power reception apparatus
JP6639204B2 (en) Power transmission equipment
JP2006264921A (en) Sheet conveying device and image forming device
US9259949B2 (en) Liquid discharging apparatus and control method thereof
US10291083B2 (en) Electronic apparatus and orientation determination method
JP5272561B2 (en) Authentication device
JP2016054596A (en) Foreign matter detection device
JPWO2019236600A5 (en)
US20220231544A1 (en) Electronic device wirelessly transmitting power, wireless power reception device wirelessly receiving power, and method for operating the same
JP5804303B2 (en) Power transmission equipment
KR20220104592A (en) Electronic device for wirelessly transmitting power and wireless power receiving device and method for operating thereof
JP2020092514A (en) Power supply device
KR20220003309A (en) Method for detecting a proximity of objects and electronic device supporting the same
JP2006186545A (en) Remote control transmitter and power supply method for remote control transmitter
US11338570B2 (en) Sheet detection circuit using electrical elements contacting conductive vacuum belt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807162

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008534367

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07807162

Country of ref document: EP

Kind code of ref document: A1