JP2006149168A - Non-contact power feeder apparatus - Google Patents

Non-contact power feeder apparatus Download PDF

Info

Publication number
JP2006149168A
JP2006149168A JP2004339412A JP2004339412A JP2006149168A JP 2006149168 A JP2006149168 A JP 2006149168A JP 2004339412 A JP2004339412 A JP 2004339412A JP 2004339412 A JP2004339412 A JP 2004339412A JP 2006149168 A JP2006149168 A JP 2006149168A
Authority
JP
Japan
Prior art keywords
power
coil
power supply
supplied
supplied device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004339412A
Other languages
Japanese (ja)
Other versions
JP4639773B2 (en
Inventor
Koji Maruyama
宏二 丸山
Takashi Hayashi
崇 林
Yasushi Kaiume
靖 貝梅
Shinichi Higuchi
新一 樋口
Tatsuyuki Shikura
達之 四蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2004339412A priority Critical patent/JP4639773B2/en
Publication of JP2006149168A publication Critical patent/JP2006149168A/en
Application granted granted Critical
Publication of JP4639773B2 publication Critical patent/JP4639773B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the degree of freedom to the placing manner of a device to be powered, to simultaneously supply electric power to a plurality of electronic equipment and to reduce power consumption, in a non-contact power feeder apparatus utilizing electromagnetic induction. <P>SOLUTION: The power feeder apparatus 100 is provided with a plurality of power feeding coils L1a to L1c and a position detection circuit 103 of a device 200 to be powered to selectively drive only an specific coil via any one of switches SW1a to SW1c, corresponding to the position where the device 200 to be powered is placed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、例えば二次電池を使用した電子機器の充電回路に用いて好適な、電磁誘導利用の非接触給電装置に関する。   The present invention relates to a non-contact power feeding apparatus using electromagnetic induction, which is suitable for use in, for example, a charging circuit of an electronic device using a secondary battery.

従来、二次電池を使用する電子機器に対し商用電源から電力供給を行なう場合、1)コネクタを使用し直接電源線を電子機器に接続する方法、2)給電装置と被給電装置である電子機器に給電コイル,受電コイルを設け、電磁誘導作用により非接触(無接点)で電力供給を行なうものなどがある。
1)の場合は、コネクタ接点の磨耗や汚れにより接触不良が発生し、信頼性に問題がある。一方、2)の場合は接触不良の問題は解消されるが、被給電装置を給電装置に対して厳密に位置合わせをして装填する必要があるだけでなく、被給電装置と給電装置は1対1の関係であるため機器毎に給電装置が必要となり、ユーザにとって利便性が良いとは言い難い。
Conventionally, when power is supplied from a commercial power source to an electronic device using a secondary battery, 1) a method of directly connecting a power line to the electronic device using a connector, 2) an electronic device that is a power feeding device and a power-supplied device Are provided with a power feeding coil and a power receiving coil to supply power in a non-contact (non-contact) manner by electromagnetic induction.
In the case of 1), contact failure occurs due to wear and dirt of the connector contacts, and there is a problem in reliability. On the other hand, in the case of 2), the problem of poor contact is solved, but it is not only necessary to align the power-supplied device with respect to the power-supply device and load it, but the power-supplied device and the power-supply device are 1 Because of the one-to-one relationship, a power supply device is required for each device, and it is difficult to say that the convenience is good for the user.

そこで、例えば特許文献1では複数の給電コイルを設け、被給電装置の置き方に自由度を持たせるものが開示されており、図7にその一例を示す。図示のように、給電装置としてのドッキングベイ11に複数の給電コイル12を並列接続し、被給電装置としてのコンピュータ31の受電コイル32に対し、電磁誘導にて電力供給するものである。
また、図8は特許文献2に開示されている例を示し、給電装置となる充電装置1に駆動回路2および誘導コイル3,4等を設け、充電装置1から被給電装置となるポータブル電子機器5,6に電力を供給するものである。
Therefore, for example, Patent Document 1 discloses a configuration in which a plurality of power supply coils are provided to give a degree of freedom in placing the power-supplied device, and an example is shown in FIG. As shown in the figure, a plurality of power supply coils 12 are connected in parallel to a docking bay 11 as a power supply device, and power is supplied by electromagnetic induction to a power reception coil 32 of a computer 31 as a power supply device.
FIG. 8 shows an example disclosed in Patent Document 2, in which a charging device 1 serving as a power feeding device is provided with a drive circuit 2 and induction coils 3, 4, etc., and the portable electronic device serving as a power fed device from the charging device 1. 5 and 6 are supplied with electric power.

特開平11−143600号公報(第4−5頁、図1,2)Japanese Patent Laid-Open No. 11-143600 (page 4-5, FIGS. 1 and 2) 特開平10−225020号公報(第4−6頁、図1)Japanese Patent Laid-Open No. 10-2225020 (page 4-6, FIG. 1)

ところで、電子機器に対して電力供給を行なう場合、上記図7の例では複数のコイルを常に駆動しておく必要があり、給電回路の消費電力が増大するという問題がある。また、上記図8の例では、予め定められた場所に被給電装置を装填する必要があり、置き方の自由度について考慮されていないという問題がある。
したがって、この発明の課題は、被給電装置の置き方に対する自由度を高めるとともに、複数台の電子機器に対して同時に電力供給が可能で、しかも消費電力の少ない非接触給電装置を提供することにある。
By the way, when supplying electric power to an electronic device, in the example of FIG. 7 described above, it is necessary to always drive a plurality of coils, and there is a problem that power consumption of the power feeding circuit increases. Further, in the example of FIG. 8 described above, there is a problem that it is necessary to load the power-supplied device in a predetermined place, and the degree of freedom of placement is not taken into consideration.
Accordingly, an object of the present invention is to provide a non-contact power feeding device that increases the degree of freedom with respect to how to place a power-supplied device, can simultaneously supply power to a plurality of electronic devices, and consumes less power. is there.

このような課題を解決するため、請求項1の発明では、被給電装置に対して電磁誘導により電力の供給を行なう非接触給電装置において、
少なくとも2つ以上の給電コイルと、前記被給電装置の位置検出回路とを設け、被給電装置の置かれた位置に応じて特定の給電コイルのみを選択的に駆動することを特徴とする。
この請求項1の発明においては、前記給電コイルをマトリックス状配線の各交点に配置するとともに、行列の各配線ごとにスイッチ素子を接続してなるドライブ回路を設け、前記被給電装置の置かれた位置に応じて前記スイッチ素子を選択的にオン,オフ駆動することができる(請求項2の発明)。
In order to solve such a problem, in the invention of claim 1, in a non-contact power feeding device that supplies power to the power-supplied device by electromagnetic induction,
At least two or more power supply coils and a position detection circuit of the power-supplied device are provided, and only a specific power supply coil is selectively driven according to the position where the power-supplied device is placed.
In the first aspect of the invention, the feeding coil is arranged at each intersection of the matrix-like wiring, and a drive circuit is provided in which a switching element is connected to each wiring of the matrix, and the power-supplied device is placed. The switch element can be selectively turned on and off according to the position (invention of claim 2).

上記請求項1または2の発明においては、前記被給電装置に発信回路を設け、前記給電装置の共振コイルにより被給電装置の発信回路出力信号を検知することで、被給電装置の位置検出を行なうことができ(請求項3の発明)、または、前記給電装置に被給電装置の位置検出を行なう共振コイルを設け、この共振コイルのインピーダンス変化または共振周波数変化を検出することで被給電装置の位置検出を行なうことができ(請求項4の発明)、もしくは、前記給電コイルの回路インピーダンスの変化による電流変化を検出する検出手段を設け、電流変化を検出したときは被給電装置以外の金属物が置かれたものと判断して、給電コイルの駆動を停止することができる(請求項5の発明)。   In the first or second aspect of the invention, the position of the power-supplied device is detected by providing a power-supply circuit in the power-supplied device and detecting the output signal of the power-supply device by the resonance coil of the power-feed device. (Invention of Claim 3) Or, a resonance coil for detecting the position of the power-supplied device is provided in the power supply device, and the position of the power-supplied device is detected by detecting the impedance change or the resonance frequency change of the resonance coil. Detection can be performed (invention of claim 4), or a detection means for detecting a current change due to a change in circuit impedance of the feeding coil is provided, and when a current change is detected, a metal object other than the power-supplied device is detected. The drive of the power feeding coil can be stopped by determining that it has been placed (invention of claim 5).

この発明によれば、被給電装置の給電装置に対する置き方の自由度が高まるだけでなく、複数台の被給電装置に対しても同時に電力供給が可能となり、加えて消費電力の低減が可能となる。さらに、電磁誘導作用による被給電装置以外の金属物の、発熱を防止することができる。   According to the present invention, not only the degree of freedom of placing the power-supplied device with respect to the power supply device is increased, but also power can be supplied to a plurality of power-supplied devices at the same time, and in addition, power consumption can be reduced. Become. Furthermore, heat generation of a metal object other than the power-supplied device due to electromagnetic induction can be prevented.

図1はこの発明の第1の実施の形態を示す構成図である。
ここで、給電装置100は交流電源ACVを直流に変換する整流回路101、給電コイルLIa,L1b,L1cの駆動を行なう共振回路102等から構成されており、給電コイルが3個の例である。すなわち、図7,8の従来例に対し、給電コイルLIa,L1b,L1cにそれぞれスイッチSW1a,SW1b,SW1cを直列に接続するとともに、被給電装置200がどの位置に置かれたかを検出する検出手段として、位置検出回路103を付加した点が特徴である。
FIG. 1 is a block diagram showing a first embodiment of the present invention.
Here, the power supply apparatus 100 includes a rectifier circuit 101 that converts the AC power source ACV into direct current, a resonance circuit 102 that drives the power supply coils LIa, L1b, and L1c, and the like, and there are three examples of the power supply coils. That is, with respect to the conventional example of FIGS. 7 and 8, switches SW1a, SW1b, and SW1c are connected in series to the power supply coils LIa, L1b, and L1c, respectively, and detection means for detecting where the power-supplied device 200 is placed The point is that a position detection circuit 103 is added.

動作について説明する。
いま、共振コイルL2,コンデンサC2,整流回路201,蓄電池BTおよび負荷202等からなる被給電装置200が給電装置100上に置かれたとすると、給電装置100ではまず位置検出回路103により、被給電装置200がどの位置に置かれたかを検出する。位置検出回路103は上記検出結果に基き、被給電装置200の共振コイルL2に対して最も効率よく磁気結合可能な給電コイルを選択し、給電コイルに対するスイッチをオンする。
The operation will be described.
Now, assuming that the power-supplied device 200 including the resonance coil L2, the capacitor C2, the rectifier circuit 201, the storage battery BT, the load 202, and the like is placed on the power supply device 100, the position detection circuit 103 first starts the power-supplied device 100. It is detected in which position 200 is placed. Based on the detection result, the position detection circuit 103 selects a power supply coil that can be most effectively magnetically coupled to the resonance coil L2 of the power supplied device 200, and turns on the switch for the power supply coil.

図1の状態では、給電コイルL1bが被給電装置の共振コイルに対して物理的な位置が最も近いので、スイッチSW1bだけをオンさせる。共振回路の給電コイルL1bだけを駆動し、被給電装置に電力供給をすることができる。以上述べた給電コイルはその形状を例えば平面とし、これを多数個隣り合わせてシート形状やパッド形状の給電装置を構成すれば、被給電装置の給電装置に対する置き方の自由度が高まるだけでなく、特定の給電コイルのみを駆動すればよいので、回路消費電力を低減することができる。また、被給電装置が2台以上の場合には給電コイルを台数に合わせて駆動させることにより、複数台の被給電装置に対して同時に電力供給を行なうことができる。   In the state of FIG. 1, since the feeding coil L1b is closest to the resonance coil of the power-supplied device, only the switch SW1b is turned on. Only the power supply coil L1b of the resonance circuit can be driven to supply power to the power supplied device. If the shape of the power supply coil described above is, for example, a flat surface and a sheet-shaped or pad-shaped power supply device is configured by adjoining a plurality of the coils, not only the degree of freedom of placing the power-supplied device with respect to the power supply device is increased, Since only a specific power supply coil needs to be driven, circuit power consumption can be reduced. In addition, when there are two or more power-supplied devices, it is possible to simultaneously supply power to a plurality of power-supplied devices by driving the power supply coils in accordance with the number of power-supplied coils.

図2は図1に示す給電コイルの接続例を示す回路構成図である。
給電コイルが多数個の場合、各給電コイルに接続するスイッチの数は給電コイルと同数必要となる。そこで、図2では電源(+V)とグランド(GND)間で網目状に接続した「行」配線と、「列」配線の各交点部分に給電コイルL1を1個ずつ接続してコイル・マトリックスを組み、「行」配線に接続したスイッチング素子SW1(図2ではNPNトランジスタ)と、「列」配線に接続したスイッチング素子SW2(図2ではPNPトランジスタ)とを接続して、ドライブ回路を形成している。このように、スイッチング素子SW1,SW2を組み合わせてオン,オフすることで、少ない数のスイッチにより特定のコイルを選択的に駆動することができる。
FIG. 2 is a circuit configuration diagram showing a connection example of the feeding coil shown in FIG.
When there are a large number of feeding coils, the number of switches connected to each feeding coil is the same as the number of feeding coils. Therefore, in FIG. 2, one feeding coil L1 is connected to each intersection of the “row” wiring and the “column” wiring connected in a mesh between the power supply (+ V) and the ground (GND), and the coil matrix is formed. The switching element SW1 (NPN transistor in FIG. 2) connected to the “row” wiring and the switching element SW2 (PNP transistor in FIG. 2) connected to the “column” wiring are connected to form a drive circuit. Yes. Thus, by turning on / off the switching elements SW1 and SW2 in combination, a specific coil can be selectively driven by a small number of switches.

図3は給電コイルの別の接続例を示す回路構成図で、図2の改良例を示す。
図2の場合、実際に選択した給電コイル以外のコイルを迂回する不要な電流ループが形成されることがある。そこで、図3のように各給電コイルL1にダイオードD1を直列に接続することで、不要な電流ループを形成しないようにする。
FIG. 3 is a circuit configuration diagram showing another connection example of the feeding coil, and shows an improved example of FIG.
In the case of FIG. 2, an unnecessary current loop that bypasses a coil other than the actually selected feeding coil may be formed. Therefore, an unnecessary current loop is not formed by connecting a diode D1 in series to each feeding coil L1 as shown in FIG.

図4にこの発明の第2の実施の形態を示す。
ここでは、被給電装置200にはコイルL3と発信回路203を付加し、給電装置100にはコイルL0a,L0b,L0cおよびコンデンサC0a,C0b,C0cからなる共振コイルを付加した点が特徴である。
FIG. 4 shows a second embodiment of the present invention.
Here, a feature is that a coil L3 and a transmission circuit 203 are added to the power-supplied device 200, and a resonance coil including coils L0a, L0b, and L0c and capacitors C0a, C0b, and C0c is added to the power-feeding device 100.

図4の動作を説明する。
被給電装置200の発信回路203は、予め定められた周波数で定期的にコイルL3を駆動する。いま、給電装置の或る場所に被給電装置が置かれた場合、物理的に最も近い共振コイル(図4ではL0b)がこの被給電装置からの信号を検知する。各共振コイルは給電コイルと1対1の関係で配置されているので、これにより被給電装置の位置が検出され、対応するスイッチSW1bをオンする。以下の動作は前述の通り、共振回路が選択された給電コイルだけを駆動し、被給電装置に電力供給を行なうことができる。なお、被給電装置からの発信信号を検知する共振コイル(L0a,L0b,L0c)は、給電コイルL1a,L1b,L1cの巻線の一部または全部を使用するなどの方法で単一部品として使用することも可能である。
The operation of FIG. 4 will be described.
The transmission circuit 203 of the power supplied apparatus 200 periodically drives the coil L3 at a predetermined frequency. Now, when a power-supplied device is placed at a certain place of the power-supply device, the physically closest resonance coil (L0b in FIG. 4) detects a signal from this power-supplied device. Since each resonance coil is arranged in a one-to-one relationship with the feeding coil, the position of the power-supplied device is detected by this, and the corresponding switch SW1b is turned on. As described above, the following operation can drive only the power supply coil for which the resonance circuit is selected and supply power to the power-supplied device. Note that the resonance coils (L0a, L0b, L0c) for detecting the transmission signal from the power-supplied device are used as a single component by using a part or all of the windings of the power supply coils L1a, L1b, L1c. It is also possible to do.

図5にこの発明の第3の実施の形態を示す。
ここでは、コイルL0a,L0b,L0cおよびコンデンサC0a,C0b,C0cからなる共振コイルを、各給電コイルL1a,L1b,L1cに対応させて設けた点が特徴である。位置検出回路はこの共振コイルのインピーダンスまたは共振周波数を監視し、被給電装置が給電装置上に置かれた場合、被給電装置のコイルL2に近い共振コイルのインピーダンスまたは共振周波数値変化が最も高くなることを利用することで、位置検出が可能となる。そして、位置検出をしたら対応するスイッチをオンして電力供給を行なうことができる。
FIG. 5 shows a third embodiment of the present invention.
Here, a feature is that a resonance coil including coils L0a, L0b, and L0c and capacitors C0a, C0b, and C0c is provided in correspondence with each of the power feeding coils L1a, L1b, and L1c. The position detection circuit monitors the impedance or resonance frequency of the resonance coil, and when the power-supplied device is placed on the power supply device, the impedance or resonance frequency value change of the resonance coil close to the coil L2 of the power-supplied device becomes the highest. By utilizing this, position detection becomes possible. When the position is detected, the corresponding switch can be turned on to supply power.

図6にこの発明の第4の実施の形態を示す。
電磁誘導作用を用いた非接触給電装置では、被給電装置以外の金属物が載せられた場合、給電コイルから発生する磁束が金属物に鎖交し、過電流により金属物が発熱するという問題がある。図6はこれに対処するもので、各給電コイルに対して電流検出器CT1a,CT1b,CT1cを設けて構成される。給電装置の共振回路では、給電コイル(L1a,L1b,L1c)とコンデンサ(C1a,C1b,C1c)との共振現象を利用し、予め定めた周波数でスイッチングを行なっている。被給電装置に対し通常の電力供給を行なっている場合に比べ、金属物が置かれた場合には回路インピーダンスが変化するため、給電コイルの電流にも変化が生じる。この電流値の変化を電流検出器CT1a,CT1b,CT1cにて検出し、対応するスイッチをオフすることで、給電コイルの駆動を停止することができる。
FIG. 6 shows a fourth embodiment of the present invention.
In a non-contact power feeding device using electromagnetic induction, when a metal object other than the power-supplied device is placed, the magnetic flux generated from the feeding coil is linked to the metal object, and the metal object generates heat due to overcurrent. is there. FIG. 6 copes with this, and is configured by providing current detectors CT1a, CT1b, and CT1c for each feeding coil. In the resonance circuit of the power supply device, switching is performed at a predetermined frequency by using a resonance phenomenon between the power supply coils (L1a, L1b, L1c) and the capacitors (C1a, C1b, C1c). Compared to the case where normal power is supplied to the power-supplied device, the circuit impedance changes when a metal object is placed, so that the current of the power supply coil also changes. The change of the current value is detected by the current detectors CT1a, CT1b, CT1c, and the corresponding switch is turned off, so that the driving of the feeding coil can be stopped.

この発明の第1の実施の形態を示す構成図The block diagram which shows 1st Embodiment of this invention 給電コイルの第1の接続例を示す構成図Configuration diagram showing a first connection example of the feeding coil 給電コイルの第2の接続例を示す構成図Configuration diagram showing a second connection example of the feeding coil この発明の第2の実施の形態を示す構成図The block diagram which shows 2nd Embodiment of this invention この発明の第3の実施の形態を示す構成図The block diagram which shows 3rd Embodiment of this invention この発明の第4の実施の形態を示す構成図The block diagram which shows 4th Embodiment of this invention 第1の従来例を示す構成図Configuration diagram showing a first conventional example 第2の従来例を示す構成図Configuration diagram showing a second conventional example

符号の説明Explanation of symbols

100…給電装置、101,201…整流回路、102…共振回路、103,103a〜103c…位置検出回路、200…被給電装置、202…負荷、203…発信回路、ACV…交流電源、SW1,SW2,SW1a〜SW1c…スイッチ、L1a〜L1c…給電コイル、L1〜L3,L0a〜L0c…コイル、C2,C1a〜C1c…コンデンサ、BT…蓄電池、D1…ダイオード、CT1a〜CTc…検出回路。

DESCRIPTION OF SYMBOLS 100 ... Power feeding apparatus, 101, 201 ... Rectifier circuit, 102 ... Resonance circuit, 103, 103a-103c ... Position detection circuit, 200 ... Power supplied apparatus, 202 ... Load, 203 ... Transmission circuit, ACV ... AC power supply, SW1, SW2 SW1a to SW1c ... switch, L1a to L1c ... feeding coil, L1 to L3, L0a to L0c ... coil, C2, C1a to C1c ... capacitor, BT ... storage battery, D1 ... diode, CT1a-CTc ... detection circuit.

Claims (5)

被給電装置に対して電磁誘導により電力の供給を行なう非接触給電装置において、
少なくとも2つ以上の給電コイルと、前記被給電装置の位置検出回路とを設け、被給電装置の置かれた位置に応じて特定の給電コイルのみを選択的に駆動することを特徴とする非接触給電装置。
In a non-contact power supply device that supplies power to a power-supplied device by electromagnetic induction,
At least two or more power supply coils and a position detection circuit of the power-supplied device are provided, and only a specific power supply coil is selectively driven according to a position where the power-supplied device is placed. Power supply device.
前記給電コイルをマトリックス状配線の各交点に配置するとともに、行列の各配線ごとにスイッチ素子を接続してなるドライブ回路を設け、前記被給電装置の置かれた位置に応じて前記スイッチ素子を選択的にオン,オフ駆動することを特徴とする請求項1に記載の非接触給電装置。   The feeding coil is arranged at each intersection of the matrix wiring, and a drive circuit is provided by connecting a switching element for each wiring of the matrix, and the switching element is selected according to the position where the power-supplied device is placed. 2. The non-contact power feeding device according to claim 1, wherein the non-contact power feeding device is turned on and off. 前記被給電装置に発信回路を設け、前記給電装置の共振コイルにより被給電装置の発信回路出力信号を検知することで、被給電装置の位置検出を行なうことを特徴とする請求項1または2に記載の非接触給電装置。   The position of the power-supplied device is detected by providing a power supply circuit in the power-supplied device, and detecting a power output signal of the power-supplied device by a resonance coil of the power supply device. The non-contact electric power feeder of description. 前記給電装置に被給電装置の位置検出を行なう共振コイルを設け、この共振コイルのインピーダンス変化または共振周波数変化を検出することで被給電装置の位置検出を行なうことを特徴とする請求項1または2に記載の非接触給電装置。   3. The position of the power-supplied device is detected by providing a resonance coil for detecting the position of the power-supplied device in the power supply device, and detecting an impedance change or a resonance frequency change of the resonance coil. The non-contact electric power feeder as described in. 前記給電コイルの回路インピーダンスの変化による電流変化を検出する検出手段を設け、電流変化を検出したときは被給電装置以外の金属物が置かれたものと判断して、給電コイルの駆動を停止することを特徴とする請求項1または2に記載の非接触給電装置。

Detection means for detecting a current change due to a change in circuit impedance of the power supply coil is provided, and when a current change is detected, it is determined that a metal object other than the power supplied device is placed, and the drive of the power supply coil is stopped. The non-contact electric power feeder according to claim 1 or 2 characterized by things.

JP2004339412A 2004-11-24 2004-11-24 Non-contact power feeding device Expired - Fee Related JP4639773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004339412A JP4639773B2 (en) 2004-11-24 2004-11-24 Non-contact power feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004339412A JP4639773B2 (en) 2004-11-24 2004-11-24 Non-contact power feeding device

Publications (2)

Publication Number Publication Date
JP2006149168A true JP2006149168A (en) 2006-06-08
JP4639773B2 JP4639773B2 (en) 2011-02-23

Family

ID=36628198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004339412A Expired - Fee Related JP4639773B2 (en) 2004-11-24 2004-11-24 Non-contact power feeding device

Country Status (1)

Country Link
JP (1) JP4639773B2 (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008005573A (en) * 2006-06-20 2008-01-10 Sharp Corp Portable non-contact type charger
WO2008032746A1 (en) * 2006-09-12 2008-03-20 The University Of Tokyo Power supply sheet and electrically connecting circuit
JP2009022102A (en) * 2007-07-11 2009-01-29 Ricoh Elemex Corp Charging system
JP2009095072A (en) * 2007-10-04 2009-04-30 Oki Electric Ind Co Ltd Efficient non-contact power supply system, power supply device, power receiving device, electronic apparatus
JP2009159685A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Noncontact power feed system
JP2009159683A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Building with noncontact power feed function, and noncontact power feed outlet
JP2010504074A (en) * 2006-09-18 2010-02-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus, system and method for electromagnetic energy transfer
JP2010508008A (en) * 2006-10-26 2010-03-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Floor covering and inductive power system
KR100971737B1 (en) 2007-11-30 2010-07-21 정춘길 Multiple non-contact charging system of wireless power transmision and control method thereof
JP2010525785A (en) * 2007-04-23 2010-07-22 イーストマン コダック カンパニー Charging display system
JP2010200497A (en) * 2009-02-25 2010-09-09 Toshiba Corp Charger and charging system
JP2010220284A (en) * 2009-03-13 2010-09-30 Mitsubishi Electric Corp Non-contact power receiving and supplying apparatus, power receiver, and power supply device
JP2010252498A (en) * 2009-04-14 2010-11-04 Fujitsu Ten Ltd Wireless power transmission device and wireless power transmission method
KR20100128395A (en) * 2009-05-28 2010-12-08 장지환 Devices and methods for non-contact power transmission
JP2010284006A (en) * 2009-06-05 2010-12-16 Nec Tokin Corp Non-contact power transmission apparatus
JP2010288429A (en) * 2009-06-15 2010-12-24 Sanyo Electric Co Ltd Charging cradle
JP2011010546A (en) * 2007-09-25 2011-01-13 Powermat Ltd Centrally controlled inductive power transmission platform
JP2011517926A (en) * 2008-03-13 2011-06-16 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー Inductive charging system having a plurality of primary coils
JP2011130569A (en) * 2009-12-17 2011-06-30 Toko Inc Noncontact power transfer device
JP2011523532A (en) * 2008-05-13 2011-08-11 クゥアルコム・インコーポレイテッド Method and apparatus for extended wireless charging area
JP2012523814A (en) * 2009-04-08 2012-10-04 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー Selectable coil array
KR101201824B1 (en) 2009-05-13 2012-11-15 캐논 가부시끼가이샤 Power-supplying device, control method for the same, and power-supplying system
JP2012533277A (en) * 2009-07-14 2012-12-20 コンダクティクス−バンプフラー ゲーエムベーハー Equipment for inductive transmission of electrical energy
JP2012533280A (en) * 2009-07-14 2012-12-20 コンダクティクス−バンプフラー ゲーエムベーハー Inductive transmission device for electrical energy
CN102870315A (en) * 2010-04-30 2013-01-09 富士通株式会社 Power receiving device and power receiving method
JP2013048527A (en) * 2011-08-29 2013-03-07 Toyota Industries Corp Non-contact feeding system and non-contact feeding stand
WO2013048132A1 (en) * 2011-09-30 2013-04-04 Samsung Electronics Co., Ltd. Apparatus and method for wireless charging
KR101253670B1 (en) * 2011-09-05 2013-04-11 엘에스전선 주식회사 Apparatus for wireless power transmission using multi antenna and Method for controlling thereof
JP2013158227A (en) * 2012-01-03 2013-08-15 Hideo Kikuchi Inductive power transmission system
WO2013171943A1 (en) 2012-05-18 2013-11-21 パナソニック株式会社 Non-contact power supply system, non-contact power supply device, and power supply target device
JP2013240277A (en) * 2007-12-18 2013-11-28 Sanyo Electric Co Ltd Battery charger cradle
KR101338690B1 (en) * 2012-07-06 2013-12-09 홍익대학교 산학협력단 Method and apparatus for adaptive impedance matching of wireless power transfer
JP2014155251A (en) * 2013-02-05 2014-08-25 Toyota Motor Corp Power transmission device and power reception device
JP2014176125A (en) * 2013-03-06 2014-09-22 Funai Electric Co Ltd Charging device and charging method executed by the charging device
US8854224B2 (en) 2009-02-10 2014-10-07 Qualcomm Incorporated Conveying device information relating to wireless charging
US8878393B2 (en) 2008-05-13 2014-11-04 Qualcomm Incorporated Wireless power transfer for vehicles
JP2015089253A (en) * 2013-10-31 2015-05-07 東光株式会社 Power transmitter
US9124106B2 (en) 2007-12-18 2015-09-01 Panasonic Corporation Battery charger cradle
JP2016039735A (en) * 2014-08-08 2016-03-22 キヤノン株式会社 Charger and control method of the same
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
US9325386B2 (en) 2011-01-28 2016-04-26 Panasonic Intellectual Property Management Co., Ltd. Power supplying module for contactless power supplying device, method for using power supplying module of contactless power supplying device, and method for manufacturing power supplying module of contactless power supplying device
DE102014226348A1 (en) * 2014-12-18 2016-06-23 Robert Bosch Gmbh Charging device for charging an electrical energy store
WO2017017959A1 (en) * 2015-07-29 2017-02-02 パナソニックIpマネジメント株式会社 Wireless charging device
US9583953B2 (en) 2009-02-10 2017-02-28 Qualcomm Incorporated Wireless power transfer for portable enclosures
KR101875974B1 (en) * 2013-08-14 2018-07-06 엘지이노텍 주식회사 A wireless power transmission apparatus and method thereof
US10033224B2 (en) 2011-11-02 2018-07-24 Lg Innotek Co., Ltd. Wireless power transmitter and power transmission method thereof
CN111600398A (en) * 2019-02-19 2020-08-28 Lg电子株式会社 Wireless power transmission apparatus and control method thereof
US10819154B2 (en) 2016-09-06 2020-10-27 Apple Inc. Inductive power transmitter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9293251B2 (en) 2012-10-11 2016-03-22 Panasonic Intellectual Property Management Co., Ltd. Method of exciting primary coils in contactless power supplying device and contactless power supplying device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06139001A (en) * 1992-09-10 1994-05-20 Graphtec Corp Cordless digitizer
JP2001275281A (en) * 2000-03-29 2001-10-05 Olympus Optical Co Ltd Power supply system
JP2001309578A (en) * 2000-04-24 2001-11-02 Sharp Corp Electric device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06139001A (en) * 1992-09-10 1994-05-20 Graphtec Corp Cordless digitizer
JP2001275281A (en) * 2000-03-29 2001-10-05 Olympus Optical Co Ltd Power supply system
JP2001309578A (en) * 2000-04-24 2001-11-02 Sharp Corp Electric device

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4723424B2 (en) * 2006-06-20 2011-07-13 シャープ株式会社 Non-contact charging device for mobile phone
JP2008005573A (en) * 2006-06-20 2008-01-10 Sharp Corp Portable non-contact type charger
WO2008032746A1 (en) * 2006-09-12 2008-03-20 The University Of Tokyo Power supply sheet and electrically connecting circuit
JPWO2008032746A1 (en) * 2006-09-12 2010-01-28 国立大学法人 東京大学 Power supply sheet and power supply circuit
JP2010504074A (en) * 2006-09-18 2010-02-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus, system and method for electromagnetic energy transfer
US9520225B2 (en) 2006-09-18 2016-12-13 Koninklijke Philips N.V. Apparatus, a system and a method for enabling electromagnetic energy transfer
JP2010508008A (en) * 2006-10-26 2010-03-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Floor covering and inductive power system
JP2010525785A (en) * 2007-04-23 2010-07-22 イーストマン コダック カンパニー Charging display system
JP2009022102A (en) * 2007-07-11 2009-01-29 Ricoh Elemex Corp Charging system
JP2011010546A (en) * 2007-09-25 2011-01-13 Powermat Ltd Centrally controlled inductive power transmission platform
JP2009095072A (en) * 2007-10-04 2009-04-30 Oki Electric Ind Co Ltd Efficient non-contact power supply system, power supply device, power receiving device, electronic apparatus
KR100971737B1 (en) 2007-11-30 2010-07-21 정춘길 Multiple non-contact charging system of wireless power transmision and control method thereof
JP2013240277A (en) * 2007-12-18 2013-11-28 Sanyo Electric Co Ltd Battery charger cradle
US9312711B2 (en) 2007-12-18 2016-04-12 Panasonic Corporation Battery charger cradle
US9124106B2 (en) 2007-12-18 2015-09-01 Panasonic Corporation Battery charger cradle
JP2009159683A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Building with noncontact power feed function, and noncontact power feed outlet
JP2009159685A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Noncontact power feed system
JP2011517926A (en) * 2008-03-13 2011-06-16 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー Inductive charging system having a plurality of primary coils
US8487478B2 (en) 2008-05-13 2013-07-16 Qualcomm Incorporated Wireless power transfer for appliances and equipments
JP2011525098A (en) * 2008-05-13 2011-09-08 クゥアルコム・インコーポレイテッド Wireless power transfer for appliances and equipment
US9184632B2 (en) 2008-05-13 2015-11-10 Qualcomm Incorporated Wireless power transfer for furnishings and building elements
KR101398367B1 (en) * 2008-05-13 2014-05-22 퀄컴 인코포레이티드 Method and apparatus for an enlarged wireless charging area
US9190875B2 (en) 2008-05-13 2015-11-17 Qualcomm Incorporated Method and apparatus with negative resistance in wireless power transfers
US8611815B2 (en) 2008-05-13 2013-12-17 Qualcomm Incorporated Repeaters for enhancement of wireless power transfer
US8965461B2 (en) 2008-05-13 2015-02-24 Qualcomm Incorporated Reverse link signaling via receive antenna impedance modulation
US8892035B2 (en) 2008-05-13 2014-11-18 Qualcomm Incorporated Repeaters for enhancement of wireless power transfer
US8878393B2 (en) 2008-05-13 2014-11-04 Qualcomm Incorporated Wireless power transfer for vehicles
US9236771B2 (en) 2008-05-13 2016-01-12 Qualcomm Incorporated Method and apparatus for adaptive tuning of wireless power transfer
US9178387B2 (en) 2008-05-13 2015-11-03 Qualcomm Incorporated Receive antenna for wireless power transfer
US9130407B2 (en) 2008-05-13 2015-09-08 Qualcomm Incorporated Signaling charging in wireless power environment
JP2011523532A (en) * 2008-05-13 2011-08-11 クゥアルコム・インコーポレイテッド Method and apparatus for extended wireless charging area
JP2014075800A (en) * 2008-05-13 2014-04-24 Qualcomm Incorporated Method and apparatus for enlarged wireless charging area
US9991747B2 (en) 2008-05-13 2018-06-05 Qualcomm Incorporated Signaling charging in wireless power environment
US8629650B2 (en) 2008-05-13 2014-01-14 Qualcomm Incorporated Wireless power transfer using multiple transmit antennas
US9954399B2 (en) 2008-05-13 2018-04-24 Qualcomm Incorporated Reverse link signaling via receive antenna impedance modulation
US9583953B2 (en) 2009-02-10 2017-02-28 Qualcomm Incorporated Wireless power transfer for portable enclosures
US8854224B2 (en) 2009-02-10 2014-10-07 Qualcomm Incorporated Conveying device information relating to wireless charging
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
JP2010200497A (en) * 2009-02-25 2010-09-09 Toshiba Corp Charger and charging system
JP2013013318A (en) * 2009-03-13 2013-01-17 Mitsubishi Electric Corp Non-contact power receiving/feeding apparatus
JP2010220284A (en) * 2009-03-13 2010-09-30 Mitsubishi Electric Corp Non-contact power receiving and supplying apparatus, power receiver, and power supply device
JP2013009591A (en) * 2009-03-13 2013-01-10 Mitsubishi Electric Corp Non-contact power receiving and supplying system
US10868443B2 (en) 2009-04-08 2020-12-15 Philips I.P. Ventures B.V. Selectable coil array
US9231411B2 (en) 2009-04-08 2016-01-05 Access Business Group International Llc Selectable coil array
JP2012523814A (en) * 2009-04-08 2012-10-04 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー Selectable coil array
JP2010252498A (en) * 2009-04-14 2010-11-04 Fujitsu Ten Ltd Wireless power transmission device and wireless power transmission method
KR101201824B1 (en) 2009-05-13 2012-11-15 캐논 가부시끼가이샤 Power-supplying device, control method for the same, and power-supplying system
KR20100128395A (en) * 2009-05-28 2010-12-08 장지환 Devices and methods for non-contact power transmission
KR101653759B1 (en) * 2009-05-28 2016-09-05 주식회사 한림포스텍 Devices and Methods for Non-contact Power Transmission
JP2010284006A (en) * 2009-06-05 2010-12-16 Nec Tokin Corp Non-contact power transmission apparatus
JP2010288429A (en) * 2009-06-15 2010-12-24 Sanyo Electric Co Ltd Charging cradle
JP2012533277A (en) * 2009-07-14 2012-12-20 コンダクティクス−バンプフラー ゲーエムベーハー Equipment for inductive transmission of electrical energy
JP2012533280A (en) * 2009-07-14 2012-12-20 コンダクティクス−バンプフラー ゲーエムベーハー Inductive transmission device for electrical energy
KR101523573B1 (en) * 2009-07-14 2015-05-28 컨덕틱스-웜프러 게엠베하 Device for the inductive transfer of electric energy
US9281708B2 (en) 2009-07-14 2016-03-08 Conductix-Wampfler Gmbh Device for inductive transmission of electrical energy
US9203258B2 (en) 2009-07-14 2015-12-01 Conductix-Wampfler Gmbh Device for the inductive transfer of electrical energy
DE102009033239C5 (en) 2009-07-14 2023-05-17 Conductix-Wampfler Gmbh Device for the inductive transmission of electrical energy
JP2011130569A (en) * 2009-12-17 2011-06-30 Toko Inc Noncontact power transfer device
CN102870315A (en) * 2010-04-30 2013-01-09 富士通株式会社 Power receiving device and power receiving method
US9325386B2 (en) 2011-01-28 2016-04-26 Panasonic Intellectual Property Management Co., Ltd. Power supplying module for contactless power supplying device, method for using power supplying module of contactless power supplying device, and method for manufacturing power supplying module of contactless power supplying device
JP2013048527A (en) * 2011-08-29 2013-03-07 Toyota Industries Corp Non-contact feeding system and non-contact feeding stand
KR101253670B1 (en) * 2011-09-05 2013-04-11 엘에스전선 주식회사 Apparatus for wireless power transmission using multi antenna and Method for controlling thereof
WO2013048132A1 (en) * 2011-09-30 2013-04-04 Samsung Electronics Co., Ltd. Apparatus and method for wireless charging
CN103843221A (en) * 2011-09-30 2014-06-04 三星电子株式会社 Apparatus and method for wireless charging
US10181756B2 (en) 2011-11-02 2019-01-15 Lg Innotek Co., Ltd. Wireless power transmitter and power transmission method thereof
US10033224B2 (en) 2011-11-02 2018-07-24 Lg Innotek Co., Ltd. Wireless power transmitter and power transmission method thereof
JP2013158227A (en) * 2012-01-03 2013-08-15 Hideo Kikuchi Inductive power transmission system
US9735626B2 (en) 2012-05-18 2017-08-15 Panasonic Intellectual Property Management Co., Ltd. Non-contact power supply system, non-contact power supply device, and power supply target device
WO2013171943A1 (en) 2012-05-18 2013-11-21 パナソニック株式会社 Non-contact power supply system, non-contact power supply device, and power supply target device
KR101338690B1 (en) * 2012-07-06 2013-12-09 홍익대학교 산학협력단 Method and apparatus for adaptive impedance matching of wireless power transfer
JP2014155251A (en) * 2013-02-05 2014-08-25 Toyota Motor Corp Power transmission device and power reception device
JP2014176125A (en) * 2013-03-06 2014-09-22 Funai Electric Co Ltd Charging device and charging method executed by the charging device
KR101875974B1 (en) * 2013-08-14 2018-07-06 엘지이노텍 주식회사 A wireless power transmission apparatus and method thereof
JP2015089253A (en) * 2013-10-31 2015-05-07 東光株式会社 Power transmitter
JP2016039735A (en) * 2014-08-08 2016-03-22 キヤノン株式会社 Charger and control method of the same
DE102014226348A1 (en) * 2014-12-18 2016-06-23 Robert Bosch Gmbh Charging device for charging an electrical energy store
WO2017017959A1 (en) * 2015-07-29 2017-02-02 パナソニックIpマネジメント株式会社 Wireless charging device
JPWO2017017959A1 (en) * 2015-07-29 2018-05-17 パナソニックIpマネジメント株式会社 Wireless charger
US10819154B2 (en) 2016-09-06 2020-10-27 Apple Inc. Inductive power transmitter
CN111600398A (en) * 2019-02-19 2020-08-28 Lg电子株式会社 Wireless power transmission apparatus and control method thereof
JP2020137411A (en) * 2019-02-19 2020-08-31 エルジー エレクトロニクス インコーポレイティド Radio power transfer device and control method therefor
US11258313B2 (en) 2019-02-19 2022-02-22 Lg Electronics Inc. Wireless power transfer apparatus and method of controlling the same
JP7129438B2 (en) 2019-02-19 2022-09-01 エルジー エレクトロニクス インコーポレイティド WIRELESS POWER TRANSMISSION DEVICE AND CONTROL METHOD THEREOF
CN111600398B (en) * 2019-02-19 2023-11-14 Lg电子株式会社 Wireless power transmission apparatus and control method thereof

Also Published As

Publication number Publication date
JP4639773B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP4639773B2 (en) Non-contact power feeding device
US10903695B2 (en) Power reception device and power reception method for non-contact power transmission
US8026694B2 (en) Power transmission control device, power transmission device, non-contact power transmission system, and electronic instrument
US8803364B2 (en) Power transmission control device, power transmitting device, non-contact power transmission system, electronic instrument, and power transmission control method
US8054036B2 (en) Power transmission control device, power reception control device, non-contact power transmission system, power transmission device, power reception device, and electronic instrument
US8160654B2 (en) Power reception control device, power reception device, and electronic instrument
US10833538B2 (en) Electronic unit and power feeding system
JP6750456B2 (en) Control device, power transmission device, non-contact power transmission system and electronic device
US9306400B2 (en) Power transmission device and waveform monitor circuit for use in power transmission device
EP3080825B1 (en) Transmitter for inductive power transfer systems
KR100928439B1 (en) Non-contact charging station of wireless power transmision with pt-pcb core having planar spiral core structure
WO2013058177A1 (en) Power-feed device and power-feed system
JP2010104088A (en) Rectification control device, full-wave rectification circuit, power receiving device, electronic apparatus, contactless power transmission system, and rectification control method
JP2013102666A (en) Power-feed device and power-feed system
US7602216B2 (en) Integrated circuit device and electronic instrument
US10749380B2 (en) Apparatuses and related methods for generating wireless status indications for a wireless power transfer system
JP2010252517A (en) Power receiving apparatus, electronic apparatus and non-contact power transmission system
JP2013102665A (en) Power-feed device and power-feed system
JP2013009469A (en) Non-contact power transmission system and electronic apparatus
US10840741B2 (en) Wireless power multiple receive coil self-startup circuit for low battery condition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees