WO2007139135A1 - Robot and controller - Google Patents

Robot and controller Download PDF

Info

Publication number
WO2007139135A1
WO2007139135A1 PCT/JP2007/060963 JP2007060963W WO2007139135A1 WO 2007139135 A1 WO2007139135 A1 WO 2007139135A1 JP 2007060963 W JP2007060963 W JP 2007060963W WO 2007139135 A1 WO2007139135 A1 WO 2007139135A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
robot
target
torque value
actuator
Prior art date
Application number
PCT/JP2007/060963
Other languages
French (fr)
Japanese (ja)
Inventor
Sang-Ho HYON
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to JP2008517955A priority Critical patent/JPWO2007139135A1/en
Publication of WO2007139135A1 publication Critical patent/WO2007139135A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control

Definitions

  • the present invention relates to a robot having a plurality of drivable connecting portions and a control device that controls the operation of the robot, and more particularly to a robot and a control device that realize stable motion.
  • Patent Document 1 when a robot joint is driven so as to follow a dynamic model and the difference between the dynamic model and the actual robot posture occurs, the floor reaction force of the dynamic model is adjusted. By driving the ankle joint and hip joint as much as possible, the posture is stabilized by absorbing the difference between the dynamic model and the actual robot.
  • the floor reaction force that the robot receives also the floor force is detected by the floor reaction force sensor, and the target value of the angular velocity or angle of the leg joint is determined based on the detected floor reaction force.
  • Various motion control is performed by controlling the actuator that drives the joint based on the calculated target value.
  • the angular velocity of the joint and the target value of the angle are calculated based on the principle of the inverted pendulum, with the robot's ZMP (zero moment point) following the target ZMP. Do to derive.
  • the target trajectories for each joint i.e., the target values for angular velocity and angle, should be calculated by inverse kinematics calculation. become.
  • Non-Patent Document 1 As a technology related to robots.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-337849
  • Non-Patent Document 1 Jae Hoon Park, Osama Katie, “A Whole Body Control Flamework for Humanoid Operating in Human Jenno “Iromen” Proceeding of iTriple International Conference on Robotics Automation, United States, Eye Triplex International Conference on Robotics Automation (Jaeheung Park, Ous sama Khatio, “A wnole-body control framework for humanoids operating in human e nvironments , Proceedings of IEEE International Conference on Robotics and Automation, United States of America ⁇ IEEE International Conference on Robotics and Automation, May 15, 2006, p. 1963-1969)
  • the joint is used to feed back the floor reaction force detected by the floor reaction force sensor and adjust the floor reaction force. Therefore, the floor reaction force is controlled by the angular velocity that is the first-order integral of the force or the angle that is the second-order integral, and the position of the angular velocity or angle is controlled. And there is a problem that a delay occurs because the causality related to force is not satisfied. These delays occur, for example, in the response time for an external force that is generated as a disturbance, and the time required for the conversion from force to angle.
  • the present invention has been made in view of such circumstances, and does not necessarily require a floor reaction force sensor, and by calculating a torque value as a control target value of an actuator used for each joint, The delay can be suppressed, stable posture control can be realized, the increase in cost caused by the sensor can be suppressed, and the target value is uniquely determined because the force does not require inverse kinematics calculation.
  • An object of the present invention is to provide a robot capable of realizing stable posture control and a control device for controlling the operation of the robot. Means for solving the problem
  • a robot is a robot including a plurality of drivable connecting portions, and a plurality of actuators that drive the connecting portions based on a torque value received as a control target value.
  • Calculation means for calculating the torque values of the respective actuators that drive the respective connecting portions based on the set target acting force to be applied to the external contact portion, and the calculated torque values as control target values.
  • a sensor for measuring external force is not necessarily required, and inverse kinematics calculation is not required at all. Therefore, it is necessary to use an inverse matrix. It is possible to calculate a unique target value by preventing the divergence of the solution, and by controlling the actuator based on the torque value indicated by the force dimension, the external force can be obtained without breaking the causality. It is possible to respond promptly. However, the increase in cost caused by the sensor can also be suppressed.
  • a robot according to a second invention is characterized in that, in the first invention, the actuator is a direct acting type actuator for extending and contracting the connecting portion and a rotating type actuator for rotating the Z or the connecting portion.
  • the present invention can be developed in various forms using various actuators such as a direct acting type actuator such as a hydraulic cylinder and a rotation type motor.
  • the robot according to a third invention further comprises means for receiving the setting of the target acting force in the first invention or the second invention, wherein the calculating means is configured to use each actuator based on the received target acting force. It is configured to calculate the torque value.
  • an external force can also accept an operation as the setting of the target acting force.
  • a robot according to a fourth invention is the first invention or the second invention, wherein in the first invention or the second invention, a means for receiving target motion information indicating a target motion and a target acting force to be set are derived based on the received target motion information. Derivation means, and the calculation means is configured to calculate the torque value of each of the actuators based on the derived target working force.
  • target exercise information indicating exercise such as balance, walking, and stopping.
  • a robot according to a fifth invention is the robot according to the fourth invention, wherein the calculating means is configured to calculate a torque value of each actuator from a target acting force based on a forward kinematic model.
  • a robot according to a sixth invention is the robot according to the fifth invention, wherein the calculating means calculates the torque value of each actuator by taking into account at least one of inertia force, Coriolis force and centrifugal force. It is configured to do so.
  • the robot according to a seventh aspect of the present invention further comprises a detection means for detecting a force received from the outside in any one of the first to sixth aspects, wherein the calculation means takes into account the force detected by the detection means. Thus, the torque value of each actuator is calculated.
  • a detection means such as a floor reaction force sensor for detecting a floor reaction force.
  • the contact portion is a set of a plurality of contact points
  • the calculation means sets the target acting force to a norm minimum norm. Based on the force distributed to each contact point calculated based on! /, The torque value of each actuator is calculated.
  • the force applied to a plurality of contact points of the legs such as the toes and the heel is appropriately distributed based on the norm minimum norm, particularly the weighted norm minimum norm, and generation of a large force that cancels out is generated. It is possible to prevent.
  • a robot according to a ninth invention is the robot according to any one of the first to eighth inventions, wherein the calculating means performs each action based on a target acting force that compensates for gravity applied to the center of gravity. The eta torque value is calculated.
  • a robot according to a tenth aspect of the present invention is the robot according to any one of the first aspect to the ninth aspect, wherein each actuator is based on a restraining force that suppresses internal motion caused by redundant degrees of freedom related to a plurality of connecting portions. It is configured to calculate the torque value.
  • a robot according to an eleventh invention is characterized in that, in any one of the first invention to the tenth invention, the robot includes a plurality of legs that operate by driving the connecting portion.
  • the present invention can be applied to legged robots such as biped robots.
  • a robot is configured so that the organism can be mounted in the first or second aspect of the invention, and is set based on the means for detecting the force received by the organism force and the detected force.
  • Means for deriving a target acting force, and the calculating means is configured to record so as to calculate the torque value of each actuator based on the derived target acting force. .
  • the present invention can be applied to an exercise aid that is worn by a living organism such as a person or an animal other than a person and supports operations such as carrying heavy objects and exercising a handicapped person.
  • a control device is a control device that controls the operation of a robot having a plurality of connecting portions that can be driven by an actuator. Based on the set target acting force, means for calculating the torque value of each actuator that drives each connecting portion, and means for outputting the calculated torque value to each of the actuators as a control target value. It is characterized by providing.
  • a sensor for measuring an external force is not necessarily required by controlling each actuator using the torque value as a target value when applied to the control of the robot operation, and the inverse kinematic calculation is not necessarily performed. Since it is not necessary, it is possible to calculate a unique target value by preventing the divergence of the solution without having to use an inverse matrix, and the force is also converted to the torque value indicated by the force dimension. By controlling the actuator based on this, it is possible to respond quickly to external forces without breaking causality. It is possible to suppress the increase in cost caused by the sensor force.
  • the robot and the control device include a direct acting type actuator that expands and contracts the connecting portion based on a set target acting force that is supposed to act on the assumed contact portion with the outside, and the connecting portion.
  • the torque value of an actuator that drives a connecting portion such as a rotating type actuator to be rotated is calculated, and the calculated torque value is output to each actuator as a control target value to control the actuator.
  • the robot or the like according to the present invention can be operated from the outside by setting a target acting force that also accepts an external force, and target motion information that indicates a motion such as balance, walking, and stopping from the outside.
  • target action force set based on the received target exercise information, it is possible to perform an external force operation, and so on.
  • the robot or the like according to the present invention calculates a torque value to be distributed to each actuator from a target acting force based on a forward kinematic model using, for example, a Jacobian matrix.
  • the torque value is calculated using a forward kinematic model that is easy to calculate. Therefore, the calculation load required for calculating the torque value is reduced, the processing speed is increased, and the processing speed is increased. There are excellent effects such as being able to suppress the elongation.
  • the robot and the like according to the present invention can perform control with higher accuracy by using an external force sensor that detects a force received from the outside, for example, a detection means such as a floor reaction force sensor that detects a floor reaction force.
  • a detection means such as a floor reaction force sensor that detects a floor reaction force.
  • the detection means is used as an auxiliary, it can be used even if it has relatively low accuracy. Therefore, it is possible to perform high-precision control with an inexpensive detection means. Has an effect.
  • the robot and the like according to the present invention cancel each other by optimally allocating the floor acting force to the contact points of interest such as toes and heels based on the norm minimum norm, particularly the weighted norm minimum norm.
  • An excellent effect can be obtained, for example, generation of force can be prevented.
  • the leg part of the toe, the heel, etc., the arm part such as the elbow, the hand, the palm, etc. are regarded as the contact points, so that it can It has excellent effects such as being applicable to various similar operations.
  • a robot or the like according to the present invention realizes an operation simulating a weightless condition on the condition of grounding by providing a target acting force that guarantees the gravity applied to itself in a mathematical expression for calculating a torque value.
  • the external force is relaxed by following the external force in accordance with the external force rather than repelling the external force.
  • there are excellent effects such as that it is possible to guide the direction of movement by applying an external force to the robot.
  • the configuration that compensates for gravity tries to maintain a state where a force is applied to the ground from the floor contact point that is the contact portion of the robot with the ground. It has excellent effects such as being able to maintain a good grounding state without changing. For example, it is easy to control the force applied to the contact portion so as to be in a stable state even on an unknown uneven road surface.
  • the robot or the like according to the present invention suppresses internal motion caused by redundant degrees of freedom based on a plurality of joints with a suppression force such as damping of the joints.
  • a suppression force such as damping of the joints.
  • the robot of the present invention is a legged robot having a plurality of legs, such as a humanoid biped walking mouth bot, which is attached to a living body such as a person or an animal other than a person, and is heavy. It can also be deployed in exercise aids that support movements, movements of people with disabilities, etc., and can also be used as a suspension system for drive wheels of vehicles running on uneven road surfaces. Can be applied to robots of various shapes that operate in various fields such as disaster sites, volcanoes, deep seas, etc. that cannot be easily entered by humans, and explorers that explore other celestial bodies. It has excellent effects such as being possible. In addition to exploration, it can also be applied to complex mobile robots that have wheels and legs that function as support and drive mechanisms, and can be used for building work that works stably on rough terrain.
  • a humanoid biped walking mouth bot which is attached to a living body such as a person or an animal other than a person, and is heavy. It can also be deployed in exercise aids that
  • FIG. 1 is an external view showing a robot according to Embodiment 1 of the present invention.
  • ⁇ 2 An explanatory diagram schematically showing the skeleton and joints of the robot according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram showing a configuration of the robot according to the first embodiment of the present invention.
  • FIG. 4 is an explanatory diagram schematically showing a robot according to Embodiment 1 of the present invention and a coordinate system related to control of the robot.
  • FIG. 5 is an explanatory diagram schematically showing the robot according to Embodiment 1 of the present invention and the floor acting force related to the robot.
  • FIG. 6 is an explanatory view schematically showing the robot according to Embodiment 1 of the present invention and the virtual contact force related to the robot.
  • FIG. 7 is a flowchart showing processing of a drive control device provided in the robot of the present invention.
  • ⁇ 8] is an external view schematically showing the bending and stretching motion of the robot according to the first embodiment of the present invention.
  • ⁇ 9] The value indicating the motion of the bending and stretching motion in the simulation experiment of the robot according to the first embodiment of the present invention. It is a graph which shows a time-dependent change.
  • FIG. 10 is a graph showing temporal changes in the center of gravity and ZMP during bending and stretching in the simulation experiment of the robot according to Embodiment 1 of the present invention.
  • FIG. 11 is an external view schematically showing a leg raising motion of the robot according to the first embodiment of the present invention.
  • ⁇ 17 It is an external view showing a robot according to Embodiment 4 of the present invention.
  • FIG. 1 is an external view showing a robot according to Embodiment 1 of the present invention
  • FIG. 2 is a block diagram schematically showing a skeleton and joints of the robot according to Embodiment 1 of the present invention.
  • Embodiment 1 exemplifies a form in which the present invention is applied to a legged robot that includes at least a pair of legs and performs various operations such as walking, bending and stretching, and leg raising.
  • Fig. 1 and Fig. 2 1 is a robot, and the left and right leg portions 10, 10 of the robot 1 are provided with connecting portions 2, 2, ... such as joints on the waist, knees, and ankles. 2, 2, ... are driven by actuators 20, 20, ... such as rotary motors. By being driven by the actuators 20, 20,..., Each connecting portion 2, 2,... Can be bent in a plurality of directions such as front and rear, left and right.
  • the robot 1 has actuators 20, 20,... For driving joints 2, 2,... At various locations such as the neck, chest, shoulders, elbows, wrists, and the like that are only legs 10, 10. Yes.
  • the actuator 20 has a function of receiving a torque value as a control target value as a drive signal and performing control based on the received torque value
  • the servo motor hydraulic pressure
  • Various actuators such as a motor can be used.
  • the torque value input as the control target value is multiplied by the torque constant determined by the gear ratio, and the drive circuit is commanded.
  • torque control for generating the input torque is realized.
  • highly accurate torque control becomes possible.
  • a rotary type but also a direct acting type actuator 20 such as a hydraulic cylinder can be used. That is, the number and arrangement of the connecting portions 2, 2,... Of the robot 1 shown in FIG. 2 are merely examples, and the connecting portions including various types of actuators 20, 20,. It is possible to place parts 2, 2, ... in various places.
  • FIG. 3 is a block diagram showing a configuration of the robot 1 according to Embodiment 1 of the present invention.
  • Robot 1 outputs a signal to each of the actuators 20, 20,... That drive the connecting portions 2, 2,..., And the actual torque based on the signal output from the drive control device 3.
  • the drive mechanisms 4, 4,... May be mounted as a drive means provided in the drive control device 3, or an intelligent motor integrated with the actuator 20 may be mounted.
  • the angle sensor is a sensor for detecting the angle of each joint provided as the connecting portions 2, 2,...,
  • a sensor such as an analog potentiometer or a digital rotary encoder is used.
  • the attitude sensor is a sensor that detects the absolute attitude of the robot 1 in the inertial coordinate system.
  • a gyro sensor attached to the body of the robot 1 is used.
  • the external force sensor for example, a floor reaction force sensor attached to the sole of the robot 1 is used. Note that the robot 1 of the present invention does not necessarily require an external force sensor, but by using the external force sensor together, it is possible to control the force applied to the outside according to the actual contact state.
  • the drive control device 3 includes a control means 30 such as a CPU that performs various calculations such as calculation of a control target value, and a ROM, EPROM, hard disk, and the like that records information such as programs and data required for control.
  • the signal output from the drive control device 3 to each of the actuators 20, 20,... Via the drive mechanism 4 is a control signal indicating a torque value as a control target value, for example.
  • the input means 35 is a mechanism for receiving target motion information indicating a target motion such as balance, walking, or stopping of the robot 1 or a target acting force for performing the target motion.
  • the controller power of the system receives a command including information such as target exercise information to be transmitted.
  • an operation unit such as a keyboard, various buttons, or a switch that accepts a direct command from the operator may be used as the input means 35.
  • the target action force to be set and the target zero moment point (hereinafter referred to as ZMP: Zero Moment Point) are derived from the target motion, and the derived target Based on the applied force and the target ZMP, the robot 1 is controlled as described later. Further, when the drive control device 3 receives the target acting force, the drive control device 3 controls the robot 1 based on the received target acting force and the target ZMP derived from the target acting force.
  • the object to be contacted by a contact portion such as a grounding point described in the present application is not limited to the ground, but generally refers to an external environment in which the robot 1 applies its own weight to support itself. Specifically, it includes external environments other than planes, such as sloped floors and steps with steps, in addition to the ground and floor, such as knees, hands, arms, etc. In the case of taking a posture to support itself using a part other than the sole, it includes external environments such as handrails and walls. Therefore, when taking a posture such as a four-sided heel that supports itself using the upper body, the hand portion (front leg portion) such as a palm can also be a contact portion.
  • the floor reaction force described in the present application is not necessarily the reaction received from the floor. It is not limited to force. External environmental force that the contact part is in contact with Indicates the reaction force received
  • FIG. 4 is an explanatory diagram schematically showing the robot 1 according to the first embodiment of the present invention and the coordinate system related to the control of the robot 1.
  • CoM is the center of mass of the robot
  • CoM is a position vector defined by Equation 1 below in a three-dimensional coordinate system ⁇ using x, y, and z coordinates. Define with r.
  • ⁇ ⁇ shown in Fig. 4 a point outside the robot 1 is used as a reference point.
  • R 3 3D number vector space
  • the robot 1 will be described in a situation where an arbitrary point on the sole of the foot is in contact with the external environment.
  • the position vector from the center of gravity CoM of this contact point is shown as r, and the following equation using a three-dimensional coordinate system based on the X, y, and z coordinates:
  • the force applied to the center of gravity CoM can be expressed by the following Equation 3 using other external forces such as gravity, a floor reaction force received from the contact point, and a disturbance. If the robot 1 is in contact with the outside only at this contact point, here the floor, the contact point matches ZMP.
  • the position vectors of the points such as CoM and ZMP shown in Equation 2 can be derived based on the detection values detected by the angle sensor and attitude sensor that are the detection mechanism 5.
  • the drive controller 3 has a floor applied force (GAF: Ground Applied Force) that has the same magnitude and opposite direction to the floor reaction force from the robot 1 to the contact point. ) Is set to a desired value according to the task target of the movement of mouth bot 1, and robot 1 is controlled so that the determined floor action force is captured from robot 1 to the contact point. By this control, the robot 1 can perform various follow-up operations such as balancing itself and performing stable posture control.
  • the floor force is defined by Equation 4 below using a three-dimensional coordinate system based on the X, y, and z coordinates.
  • the drive control device 3 drives each joint 2, 2, ... based on a forward kinematic model defined by the Jacobian matrix with the target floor action force. Are converted into respective torque values of the respective actuators 20, 20,..., And the converted torque values are output as control target values to the respective actuators 20, 20,. Each of the actuators 20, 20,... Operates based on the received torque value.
  • torque values that are control target values of the respective actuators 20, 20,... Of each joint can be calculated using a transposed matrix.
  • the solution does not diverge because the inverse matrix is not used in the calculation process.
  • the robot 1 according to the present invention can achieve a desired motion with a very simple calculation when it corresponds to the force in the opposite direction of the target floor acting force.
  • the robot 1 can balance itself or be stable.
  • Various follow-up operations such as performing posture control can be performed.
  • the inventors of the present application have already examined and published a discussion about whether or not the floor reaction force actually matches the force in the opposite direction of the floor action force.
  • FIG. 5 is an explanatory diagram schematically showing the robot 1 according to Embodiment 1 of the present invention and the floor acting force related to the robot 1.
  • the contact part of the leg part 10 is regarded as a set of a plurality of contact points that contact the floor surface, and a particular a contact point in the contact part of the leg part 10 is noticed. This is defined by Equation 6 below using a three-dimensional coordinate system based on the X, y, and z coordinates.
  • Equation 7 Equation 7
  • a portion corresponding to the sole of the toe that forms a rectangular parallelepiped from the heel to the toe is used as the contact portion of the leg portion.
  • Right tip S, left tip S, right rear end S and left rear end S, and right tip of the foot part of the left leg Edge S, left tip S, right rear end S, and left rear end S are considered contact points.
  • the number of contact points of the robot 1 that performs a movement such as walking is not always constant. For example, when mouth bot 1 performs a walking motion, since the free leg is not in contact with the floor surface, the floor acting force is distributed only to the contact point on the support leg side. Furthermore, for a free leg that does not touch the floor, a virtual contact point is defined as shown in Equation 8, as with the support leg.
  • Equation 7 Equation 9, Equation 10 described above can be summarized as Equation 11 below as a force relationship equation in the Z direction.
  • the following formulas 12 and 13 are assumed as the force relationship in the X and Y directions. This is a measure for assigning a correspondingly large horizontal contact force, that is, a frictional force, to a contact point with a larger force in the Z direction.
  • the target force to be distributed to each contact point is the norm minimum norm using Equation 14, Equation 15, and Equation 16 below.
  • the optimal allocation is determined based on this. This prevents the generation of large forces that cancel each other.
  • mouth bot 1 takes a posture such as standing or standing on its toe, standing upside down, or crawling on all fours
  • the floor reaction force is distributed to each contact point according to the contact state based on the posture.
  • the target action force to be applied to each contact point is calculated based on the target ZMP and the target floor action force by the calculation using the following expressions 14, 15, and 16.
  • Equation 17 Equation 17
  • a # (A T W _1 A) _1 A T W _1 ... (Formula 17)
  • the value of the optimal evaluation function indicated as the product of the transposed matrix of the target contact force applied to the contact point S, the weight coefficient matrix, and the matrix indicating the target contact force is minimized.
  • the target contact force is defined as follows. Since the target contact force is a row matrix and the transposed matrix is a column matrix, the value of the optimal evaluation function is a scalar quantity.
  • the drive control device 3 makes contact with each other so that the floor action force is optimally distributed based on the norm minimum norm based on the above-described Equation 7, Equation 9, Equation 10, and Equation 14, Equation 15, and Equation 16.
  • the force acting on the point is derived, and the floor acting force distributed to the force applied to each contact point is expressed in the Jacobian matrix.
  • the respective torque values of the respective actuators 20, 20,... That drive each joint are converted to the respective torque values as shown in the following equation 18, and the converted torque values are converted into the drive mechanisms. 4 is output as a control target value to each actuator 2, 2,.
  • Each of the actuators 20, 20,... Operates based on the torque value received.
  • the robot 1 of the present invention performs a stable operation during exercise such as walking.
  • the drive control device 3 of the present invention calculates the torque values of the respective actuators 20, 20,... Using the following equation 19 provided with a suppression force term that suppresses internal motion.
  • Equation 19 is an equation in which the suppression force term is added to the above-mentioned Equation 18, and the first term on the right side is Equation 18. Yes, the second term is the restraining force term.
  • the simplest suppression term is damping for each joint.
  • the following equation 20 shows the damping coefficient for each joint as a matrix.
  • Equation 20 by setting an arbitrary friction coefficient as a damping coefficient for each of the actuators 20, 20, ..., an internal motion based on the free movement of the actuators 20, 20, ... not intended to operate Suppress movement. ⁇
  • a is a value that can be set to an arbitrary value as necessary to correct the target value of the torque value. For example, a is used when a local posture and an angle are desired to be specified.
  • the drive control device 3 controls based on the torque values of the respective actuators 20, 20,... Calculated by the mathematical formula with the restraining force term. Suppressed and performed according to the operator's intention. Note that an expression in which the suppression force term is provided in the above expression 5 may be used.
  • the drive control device 3 of the present invention controls the robot 1 by providing a term that takes gravity into account for the target value of the floor acting force that compensates for the gravity applied to the center of gravity of the robot 1, as shown in Equation 21 below. .
  • the robot 1 realizes an operation that simulates the state of zero gravity on the condition that it is in contact with the floor. That is, the robot 1 of the present invention performs an operation of following the direction of the external force according to the external force that does not repel the external force.
  • the arbitrarily set force is a target acting force that can be arbitrarily set to control the operation of the robot 1. For example, as the target motion information, an operation to lower the center of gravity on the robot 1 is performed. When the information to be performed is accepted, an arbitrary setting force is set as the downward force.
  • Equation 22 Based on Equation 21 and Equation 3 described above, the following Equation 22 can be derived.
  • Equation 19 f is the restraining force term based on the second term on the right side of Equation 19
  • Equation 21 As shown in Equation 22, it is possible to eliminate the effect of apparent gravity.
  • the drive control device 3 controls the robot 1 based on the target torque value of the actuators 20, 20,... Calculated using the floor acting force that compensates for gravity as shown in Equation 21. Since the robot 1 operates according to an external force that does not repel the external force, the external force is relaxed and safety at the time of a collision with the person and the object is increased. Can be induced.
  • the arbitrarily set force shown in Equation 22 is a target acting force that is derived as an information force received by the robot 1 as the target motion information as described above.
  • the target acting force is calculated from the target position and the target velocity of the center of gravity of the robot 1 in the three-dimensional space indicated by the target motion information using the following equation (23). Can be derived.
  • Equation 23 is a derivation method using a simple linear feedback law.
  • the controller 3 can derive the target working force that is treated as an arbitrarily set force by various derivation methods other than Equation 23.
  • the drive control device 3 of the present invention can derive the target ZMP based on the following equation 24 from the target acting force that is an arbitrarily set force.
  • the target ZMP derived from Equation 24 is grounded, that is, not in contact with the external environment, the closest contact point in the set of countless contact points in contact with the external environment is set as the target ZMP.
  • the target acting force is derived.
  • the horizontal force of the target acting force is zero, that is, when only gravity compensation or vertical movement of the center of gravity is performed, the deviation of the X and y coordinates viewed from the center of gravity CoM of the target ZMP is zero.
  • Equation 25 shows the nonlinear term for robot 1 in the barycentric coordinate system.
  • Equation 26 the floor acting force
  • the drive control device 3 calculates the torque values of the respective actuators 20, 20,... Of each joint as well as the target value force of the floor action force by solving Equation 26 for (the self sign above u). Can do. However, since it is difficult to accurately calculate all nonlinear terms, particularly terms including the square of a noisy speed, an estimated value calculated using an appropriate filter may be used. Since gravity compensation is performed as described above, high follow-up can be expected even if errors are included in dynamic calculations other than gravity compensation.
  • FIG. 6 is an explanatory diagram schematically showing the robot 1 according to Embodiment 1 of the present invention and the virtual contact force related to the robot 1.
  • the drive control device 3 uses, for example, the arm or leg 10 as a desired motion in the space as the target motion such as the motion indicated by the target motion information that has received the input.
  • a virtual contact point of the robot 1 is assumed, and a target virtual contact force to be applied to each virtual contact point is derived.
  • Figure 6 shows the virtual contact point r and the target virtual contact force f based on the target motion.
  • the drive control device 3 calculates, for example, the following from the obtained target virtual contact force f
  • Equation 27 Rather than calculating using the Jacobian matrix shown in Equation 27, assuming that the contact point r described above is in contact, it may be possible to calculate using the equation related to the contact point r. The calculation using the Jacobian matrix shown in Equation 27 is not necessary.
  • the contact force of the support leg is useful not only for generating a floor action force corresponding to a translational force but also for generating a floor action moment corresponding to a rotational force. Can be used. Because there are multiple contact forces, these can be combined to generate moments. For example, the orientation of the robot 1 can be controlled by appropriately generating a moment with respect to the contact portion.
  • FIG. 7 is a flowchart showing the processing of the drive control device 3 provided in the robot 1 according to Embodiment 1 of the present invention.
  • An operator who operates the robot 1 reaches the target object with a balance motion, bending / extending motion, hand or foot to maintain the posture so as not to fall down.
  • the target motion information indicating the motion such as the reaching task motion to be reached is input to the drive control device 3 of the robot 1.
  • the input of the target motion information is performed, for example, when the operator operates the controller for the robot 1 and transmits the target motion information to the drive control device 3 through wired or wireless communication.
  • the drive control device 3 included in the robot 1 of the present invention receives input of target motion information by the input means 35 under the control of the control means 30 (step Sl).
  • the input means 35 receives input of the target motion information that is also transmitted by wireless communication with the controller force, thereby accepting the input.
  • the drive control device 3 converts the bending / extension movement information indicated by the received target movement information into information indicating the movement of each part of the robot 1 based on the setting indicating the correspondence relation of the movement recorded in advance. By recognizing, the movement related movement is recognized.
  • the target acting force and the target ZMP other than the target motion information may be input to the robot 1, and in step S1, the input means 35 may accept the inputted target acting force and target ZMP.
  • the drive control device 3 included in the robot 1 derives the target acting force and the target ZMP according to the target motion indicated by the received target motion information under the control of the control means 30 (step S2). .
  • the target acting force in this case, the floor acting force is derived based on the above-described Equation 23, and the target ZMP is derived based on Equation 24.
  • a virtual contact point may be assumed and the target ZMP and the target acting force may be derived.
  • a method other than Equation 23 may be used as the method of deriving the target acting force.
  • a method other than Equation 24 may be used as the method of deriving the target ZMP.
  • the target acting force When calculating the target acting force, if necessary, gravity compensation based on Equation 21 above, arbitrarily set force based on Equation 22, and nonlinear terms such as inertial force, Coriolis, centrifugal force, etc. based on Equation 25 and Equation 26. Is taken into account.
  • the derived target acting force and target ZMP are stored in the storage means 32 as set values.
  • the process in step S2 performs the processing in the format that can be handled in the subsequent processes from the received target applied force and target ZMP. Derived processing. It is also possible to accept only the target acting force and derive the target ZMP from the target acting force using Equation 24.
  • the drive control device 3 provided in the robot 1 of the present invention is controlled by the control means 30, Based on Equation 5, Equation 9, Equation 9, Equation 10, Equation 14, Equation 15, and Equation 16, the applied force is applied to each contact so that it is optimally distributed based on the norm minimum criterion.
  • the force is derived (step S3), and the actuators 20, 20, 20 that drive the connecting portions 2, 2,. Torque values are calculated as the control target values of (Step S4).
  • the drive control device 3 provided in the robot 1 of the present invention controls the control means 30 to use the calculated torque value as a control target value from the output means 34 via the drive mechanisms 4, 4,.
  • Each of the actuators 20, 20,... Receives a torque value as a control target value and operates based on the received torque value.
  • FIG. 8 is an external view schematically showing the bending and stretching motion of the robot according to the first embodiment of the present invention.
  • Fig. 8 shows the bending and stretching motion assumed as a simulation experiment of the present invention.
  • the robot is shown in Fig. 8 (a), Fig. 8 (b), Fig. 8 (c), Fig. 8 (d), and Fig. 8 Operates repeatedly in the order of (e).
  • FIG. 9 is a graph showing a change with time of the value indicating the bending / extending motion in the simulation experiment of the robot according to Embodiment 1 of the present invention.
  • Fig. 9 (a) is a graph showing the change over time in the height Z of the center of gravity of the robot during the bending and stretching movements shown in Fig. 8, and
  • Fig. 9 (b) is based on the upright position.
  • FIG. 10 is a graph showing the time-dependent changes in the center of gravity and ZMP during bending and stretching in the simulation experiment of the robot according to Embodiment 1 of the present invention.
  • Figure 10 (a) shows the time-dependent change in the X-coordinate X of the center of gravity of the robot with the origin at the center of both legs and the ZMP
  • Fig. 10 (b) is a graph showing the change with time of the X coordinate X.
  • Fig. 6 is a graph showing the time-dependent change of y-coordinate y and the time-dependent change of ZMP y-coordinate y.
  • x coordinate Is a coordinate indicating the front-rear direction of the robot
  • y-coordinate is a coordinate indicating the left-right direction of the robot.
  • Fig. 10 shows the changes in the center of gravity and ZMP when the bending and stretching movements shown in Fig. 9 are performed. 9 and 10, it can be seen that while the robot is bending and stretching, the ZMP swings back and forth and left and right, but the center of gravity is almost constant. This is because the robot of the present invention is controlled so that the center of gravity is stabilized by applying a load to the front, rear, left and right during bending and stretching movements.
  • FIG. 11 is an external view schematically showing the leg-raising motion of the robot according to Embodiment 1 of the present invention.
  • Fig. 11 shows the leg-lifting motion assumed as a simulation experiment of the present invention.
  • the robot lifts one leg to its right front as shown in 011 (a), and then Fig. 11 (b) Fig. 11 (c) and Fig. 11 (d) are repeated in the order of lowering the legs.
  • the target value of each joint related to control is arbitrarily set within the movable range of each joint.
  • FIG. 12 is a graph showing a change with time of the position of the leg during the leg raising exercise in the simulation experiment of the robot according to Embodiment 1 of the present invention.
  • Fig. 12 shows the X-coordinate X of the toe on the free leg side, with the sole of the support leg as the origin in the leg raising movement shown in Fig. 11.
  • FIG. 13 is a graph showing a change with time of a value indicating the leg raising motion in the simulation experiment of the robot according to Embodiment 1 of the present invention.
  • Fig. 13 (a) shows the X coordinate X of the center of gravity of the robot with the sole of the support leg as the origin in the leg raising motion shown in Fig. 11.
  • Fig. 13 (b) is a graph showing changes over time in the z-coordinate z of the center of gravity.
  • Fig. 13 (c) shows the trunk's front-rear angle ⁇ , left-right angle ⁇ ,
  • Fig. 13 shows the result of the leg raising exercise shown in Fig. 12.
  • the robot of the present invention can perform stable control even during the leg raising motion.
  • FIG. 14 is a graph showing a change with time of a value indicating walking motion in the simulation experiment of the robot according to Embodiment 1 of the present invention.
  • Fig. 14 (a) shows the robot center of gravity speed in the X coordinate direction dx Zdt, the speed in the y coordinate direction dy Zdt, and the speed in the z coordinate direction dz Zdt over time.
  • Fig. 14 (b) shows the angle ⁇ in the longitudinal direction of the trunk of the robot and the angle in the horizontal direction. It is a graph which shows a time-dependent change of degree (phi) and a shaft attitude angle (phi). Graph ry shown in Figure 14
  • the robot receives an external force of 1500 N backward for 0.1 second 2 seconds after the start of the experiment, receives an external force of 1500 N forward for 0.1 second after 4 seconds, and receives an external force of 500 N rightward for 0.1 second after 5 seconds 6 seconds later and receiving 500N external force for 0.1 second.
  • the robot continues its walking motion without falling down according to the external force rather than repelling it.
  • the robot of the present invention is not limited to the above-described example, and can be developed into various forms for controlling the actuators of each joint included in the robot based on the torque value calculated from the floor acting force.
  • a robot having a pair that is, two legs has been described.
  • the present invention is not limited to this, and there are a large number of robots such as four, six, and the like that walk upside down with their arms. It can be deployed in various forms, such as being applied to a robot having multiple legs.
  • the second embodiment is an embodiment in which the robot of the present invention is applied to a motion assisting device.
  • FIG. 15 is an external view showing a robot according to Embodiment 2 of the present invention.
  • 1 is a robot according to Embodiment 2 of the present invention, and the robot 1 is configured to be worn by a person.
  • a person wearing the robot 1 that is an exercise assisting device is shown. This shows the situation where heavy objects are being transported.
  • the robot 1 is composed of a rod-shaped auxiliary exoskeleton having telescopic connecting parts 2, 2,... Driven by direct acting actuators 20, 20,. Is helping to exercise.
  • a drive control device 3 including a power source of the robot 1 is worn on the back of the person.
  • the configuration of the robot 1 is substantially the same as the configuration of the first embodiment shown in the block diagram of Fig. 3, and the connecting parts 2, 2, ..., the actuators 20, 20, ... , And a drive control device 3, and a drive mechanism and a detection mechanism.
  • the drive control device 3 includes control means, recording means, storage means, measurement means, output means, and input means.
  • the process by the drive control device 3 of the robot 1 according to the second embodiment is substantially the same as that of the first embodiment described with reference to FIG. 7, and is a process corresponding to step S1 in FIG. , Enter
  • the force means detects the force in the person's arm, torso and leg, and accepts the detected force as input of the target movement information.
  • the drive control device 3 of the robot 1 uses the target motion information based on the detected force to perform the target ZMP and the target action using the various calculation methods described in the first embodiment.
  • a force applied to each contact portion is derived so that the derived action force is optimally distributed based on the norm minimum criterion.
  • the robot 1 of the present invention has a position vector r 1, r 2, r 3, r from the center of gravity CoM.
  • step S4 the drive control device 3 of the robot 1 calculates a torque value as a control target value of each of the actuators 20, 20, ..., and calculates as a process corresponding to step S5.
  • Each control target value is output to each of the actuators 20, 20,.
  • step S2 the target ZMP to be calculated is set to be the center of gravity projection point obtained by projecting the center of gravity CoM onto the ground, and by performing the gravity compensation described in Embodiment 1, the person wearing the robot 1 If it is a simple motion such as movement, the robot 1 can be easily operated without being aware of the operation method.
  • the drive control device 3 of the robot 1 can be controlled in various modes according to the purpose. First, the balance mode that automatically maintains the horizontal balance will be described. In the noise mode, the target ZMP is set so that the center of gravity projection of robot 1 comes to the center of gravity of the contact surface that is the contact part that contacts the ground. By controlling based on such settings, a person wearing the robot 1 as an exercise assisting device can perform a transport operation without being particularly aware of balance even when transporting heavy objects. Also drive system As the setting of the control device 3, when using the weighting coefficient matrix, Equation 23, the constant K indicating the feedback gain, the constant K, the PID value for the actuators 20, 20,.
  • the movement assist mode for assisting acceleration / deceleration of the center of gravity of the person in the three-dimensional space.
  • the actual floor reaction force and ZMP are detected or calculated based on the detection result of the detection mechanism, and the center of gravity projection point and ZMP distance calculated based on the floor reaction force are used as acceleration / deceleration parameters to be assisted. Use.
  • a person wearing the robot 1 as an exercise assisting device can easily perform a work of moving a heavy object to the right force left in an upright state, for example.
  • the strength of the movement assist can be controlled by multiplying the acceleration / deceleration parameter by the control target related to the followability.
  • an autonomous mode in which a person's force is not used for control will be described.
  • the autonomous mode operates based on the target motion information received by the input means and the set values such as Z or target acting force.
  • the person wearing the robot 1 can completely remove his / her power and only sets the target movement information such as the target moving speed and moving point.
  • the balance mode, the mobility assistance mode, and the autonomous mode described above are not only capable of functioning independently, but the operator uses the parameters related to the strength of the mode as weights, and the torque values calculated in each mode are weighted. It is also possible to function at the same time by superimposing those multiplied by.
  • a force showing a form in which a robot is used as an exercise assisting tool that can be worn by a person is not limited to this, and it may be worn by a living organism other than a person. It is also possible to suppress the force related to the exercise and assist the work that requires fine and powerful control of the force.
  • Embodiment 3 is an embodiment in which the robot of the present invention is applied to a vehicle.
  • FIG. 16 is an external view showing a robot according to Embodiment 3 of the present invention.
  • 1 is a robot according to Embodiment 3 of the present invention
  • Robot 1 is a three-wheel buggy type with two front wheels and one rear wheel. It is configured as a vehicle.
  • the front and rear wheels are all drive wheels, and a rod-like body with extendable connecting parts 2, 2, ... driven by direct acting actuators 20, 20, ... as a suspension system to support the drive wheels Is used.
  • Other components such as a drive control device are incorporated in the vehicle body.
  • the configuration of the robot 1 is substantially the same as the configuration of the first embodiment shown in the block diagram of Fig. 3, and includes the connecting sections 2, 2, ..., the actuators 20, 20, ..., and the drive control. It is equipped with a device, a drive mechanism, and a detection mechanism.
  • the drive control device includes a control unit, a recording unit, a storage unit, a measuring unit, an output unit, and an input unit.
  • the processing by the drive control device of the robot 1 according to the third embodiment is substantially the same as that of the first embodiment described with reference to Fig. 7, and input is performed as processing corresponding to step S1 in Fig. 7.
  • the means accepts a passenger's operation as an input of target motion information from a steering mechanism such as a steering wheel of a vehicle, an acceleration mechanism such as an accelerator, and a control mechanism such as a brake.
  • the drive control device of robot 1 derives the target ZMP and the target acting force from the received target motion information by the various calculation methods described in the first embodiment, As a process corresponding to step S3, a force applied to each contact portion is derived so that the derived applied force is optimally distributed based on the norm minimum criterion.
  • the robot 1 of the present invention has a center of gravity CoM force and position vectors r 1, r 2, r 3.
  • the floor acting force distributed in the direction of the contact point is derived.
  • the drive control device of robot 1 calculates the torque value as the control target value of each actuator 20, 20, ... as the process corresponding to step S4, and calculates the process as the process corresponding to step S5.
  • Each control target value is output to each of the actuators 20, 20,.
  • the robot 1 configured as a vehicle such as a three-wheel buggy determines the posture corresponding to the vertical movement and steering during traveling, disperses the weight, and elastically absorbs the impact and vibration of the road surface force. Suspend the vehicle body and passengers stably.
  • a robot is used as a three-wheel buggy.
  • the present invention is not limited to this, and the number of wheels is changed.
  • the support of the leg-like body and the drive mechanism may be substituted.
  • Embodiment 4 is an embodiment in which the robot of the present invention is applied to a variable polyhedron type moving device.
  • reference numeral 1 denotes a robot according to the fourth embodiment of the present invention, and the robot 1 is configured by an exoskeleton having an octahedral shape combining eight triangles!
  • Each side of the octahedron is composed of a rod-shaped body with extendable connecting parts 2, 2, ... driven by direct acting actuators 20, 20, ... It is configured as a possible spherical joint. It is also possible to incorporate a rotary type actuator into the spherical joint.
  • Other components such as the drive control device are incorporated in the spherical joint and Z or inside the connecting parts 2, 2,.
  • Robot 1 has an octahedral shape as shown in Fig. 17 (a), and one end of an arbitrary rod-like body having connecting portion 2 as shown in Fig. 17 (b) is detached from the spherical joint. By making contact with the ground, the detached rod-shaped body becomes a support shaft and comes into contact with the ground together with an arbitrary apex of the octahedron. It can be moved by attaching and detaching.
  • the configuration of the robot 1 is substantially the same as the configuration of the first embodiment shown in the block diagram of Fig. 3, and includes the connecting portions 2, 2, ..., the actuators 20, 20, ..., and the drive control. It is equipped with a device, a drive mechanism, and a detection mechanism.
  • the drive control device includes a control unit, a recording unit, a storage unit, a measuring unit, an output unit, and an input unit.
  • the process by the drive control device for robot 1 according to the fourth embodiment is substantially the same as that of the first embodiment described with reference to FIG. 7, and the control corresponds to step S1 in FIG.
  • the target exercise information transmitted from the roller by wireless communication is received by the input means.
  • step S2 the drive control device of the robot 1 derives the target ZMP and the target acting force from the received target motion information by the various calculation methods described in the first embodiment, As a process corresponding to step S3, a force applied to each contact portion is derived so that the derived applied force is optimally distributed based on the norm minimum criterion.
  • the robot 1 of the present invention is represented by the center-of-gravity CoM force position vector r 1, r 2, r 1, r 2.
  • step S4 the drive control device of robot 1 calculates a torque value as a control target value for each of the actuators 20, 20, ..., and corresponds to step S5.
  • the calculated control target values are output to the respective actuators 20, 20,.
  • the robot 1 configured as a variable polyhedron device performs various operations.
  • Embodiments 1 to 4 show only a part of the infinite number of realizations of the robot according to the present invention, and the robot according to the present invention is not limited to the above-described forms, and can be developed in various forms. Is possible.

Abstract

A robot and controller for optimally distributing an acting force necessary for movement to given contact points in a space and generating the torques at the respective coupling parts. A drive controller (3) which a robot has receives an input of target movement information (step S1), derives a ZMP to be targeted and an acting force to be targeted according to the movement to be targeted and represented by the received target movement information (step S2), derives forces acting on the respective contact parts so that the derived acting force can be optimally distributed according to a norm minimum standard (step S3), computes torque values as the control target values of the actuators for driving the respective coupling parts (step S4), and outputs the computed torque values as the control target values to the actuators (step 5). The actuators receive the torque values as the control target values and operate according to the received torque values.

Description

明 細 書  Specification
ロボット及び制御装置  Robot and control device
技術分野  Technical field
[0001] 本発明は、駆動可能な複数の連結部を備えるロボット、及び該ロボットの動作を制 御する制御装置に関し、特に安定した運動を実現するロボット及び制御装置に関す る。  TECHNICAL FIELD [0001] The present invention relates to a robot having a plurality of drivable connecting portions and a control device that controls the operation of the robot, and more particularly to a robot and a control device that realize stable motion.
背景技術  Background art
[0002] 人間の歩行形態を模すことが可能な二足歩行ロボット等のロボットの研究及び開発 が様々な企業及び研究機関にて進められており、運動中に安定した姿勢を保っため の様々な制御方法が提案されて!ヽる。  [0002] Research and development of robots such as biped robots that can imitate human walking forms are being promoted by various companies and research institutes, and various techniques for maintaining a stable posture during exercise A new control method has been proposed! Speak.
[0003] 例えば特許文献 1では、力学モデルを追従する様にロボットの関節を駆動し、力学 モデルと実際のロボットの姿勢との間に差異が生じた場合、力学モデルの床反力を 調整すべく足首関節及び股関節を駆動することにより、力学モデルと実際のロボット との差異を吸収して姿勢を安定させる。  [0003] For example, in Patent Document 1, when a robot joint is driven so as to follow a dynamic model and the difference between the dynamic model and the actual robot posture occurs, the floor reaction force of the dynamic model is adjusted. By driving the ankle joint and hip joint as much as possible, the posture is stabilized by absorbing the difference between the dynamic model and the actual robot.
[0004] この様な二足歩行ロボットでは、ロボットが床力も受ける床反力を、床反力センサに て検出し、検出した床反力に基づいて脚部の関節の角速度又は角度の目標値を算 出し、算出した目標値に基づいて関節を駆動するァクチユエータを制御することによ り、様々な運動制御を行う。なお関節の角速度及び角度の目標値の算出は、倒立振 子の原理に基づいて、ロボットの ZMP (ゼロモーメントポイント)を、目標とする ZMP に追従させるベぐロボットの腰部及び胴体部の目標軌道を導出するために行う。口 ボットの腰部及び胴体部の目標軌道を導出するためには、腰部及び胴体部の目標 軌道から、各関節の目標軌道、即ち角速度及び角度の目標値を逆運動学計算によ り計算することになる。  [0004] In such a biped robot, the floor reaction force that the robot receives also the floor force is detected by the floor reaction force sensor, and the target value of the angular velocity or angle of the leg joint is determined based on the detected floor reaction force. Various motion control is performed by controlling the actuator that drives the joint based on the calculated target value. The angular velocity of the joint and the target value of the angle are calculated based on the principle of the inverted pendulum, with the robot's ZMP (zero moment point) following the target ZMP. Do to derive. In order to derive the target trajectories for the bot's waist and torso, the target trajectories for each joint, i.e., the target values for angular velocity and angle, should be calculated by inverse kinematics calculation. become.
[0005] またロボットに関する技術として下記の非特許文献 1がある。  [0005] Further, there is the following Non-Patent Document 1 as a technology related to robots.
特許文献 1:特開平 5— 337849号公報  Patent Document 1: Japanese Patent Laid-Open No. 5-337849
非特許文献 1 :ジェフン パク、ォサマ カティーブ、「ァ ホール ボディ コントロール フレイムワーク フォー ヒューマノイド オペレイティング イン ヒューマン ェンノ イロメンッ」プロシーデイング ォブ アイトリプルィー インターナショナノレ カンファレ ンス オン ロボテイクス オートメイシヨン、アメリカ合衆国、アイトリプルィー インター ナショナノレ カンファレンス オン ロボテイクス オートメイシヨン (Jaeheung Park,Ous sama Khatio、「A wnole- body control framework for humanoids operating in human e nvironmentsj、 Proceedings of IEEE International Conference on Robotics and Auto mation、 United States of America ^ IEEE International Conference on Robotics and A utomation、 2006年 5月 15日、 p. 1963 - 1969) Non-Patent Document 1: Jae Hoon Park, Osama Katie, “A Whole Body Control Flamework for Humanoid Operating in Human Jenno “Iromen” Proceeding of iTriple International Conference on Robotics Automation, United States, Eye Triplex International Conference on Robotics Automation (Jaeheung Park, Ous sama Khatio, “A wnole-body control framework for humanoids operating in human e nvironments , Proceedings of IEEE International Conference on Robotics and Automation, United States of America ^ IEEE International Conference on Robotics and Automation, May 15, 2006, p. 1963-1969)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] し力しながら前述した様に角速度又は角度を目標値としてァクチユエータを制御す る従来のロボットでは、床反力センサが検出した床反力をフィードバックし、床反力を 調整すべく関節の角速度又は角度を目標値としてァクチユエータを制御する構成と なっているため、床反力を、力の一階積分である角速度又は二階積分である角度で 制御することになり、角速度又は角度の位置と、力とに関する因果律が満たされない ことに起因する遅延が生じるという問題がある。これらの遅延は、例えば外乱としてカロ わる外力に対する対応時間に、力から角度への変換に要する時間が遅延となって生 じる。さらに床反力センサを用いたフィードバック制御を行うため、センサフィードバッ クによる遅延が生じるという問題がある。これらの遅延は、制御の遅れに繋がるため、 安全な動作を行う上で様々な制限が加えられるという弊害に繋がる可能性がある。ま た高精度の床反力センサを要するため、コスト高になるという問題がある。さらに逆運 動学計算は、逆行列を用いるため、解が発散する可能性があり、一意の目標値を算 出することができな 、場合があると 、う問題がある。  [0006] In the conventional robot that controls the actuator using the angular velocity or angle as a target value as described above while applying force, the joint is used to feed back the floor reaction force detected by the floor reaction force sensor and adjust the floor reaction force. Therefore, the floor reaction force is controlled by the angular velocity that is the first-order integral of the force or the angle that is the second-order integral, and the position of the angular velocity or angle is controlled. And there is a problem that a delay occurs because the causality related to force is not satisfied. These delays occur, for example, in the response time for an external force that is generated as a disturbance, and the time required for the conversion from force to angle. Furthermore, since feedback control is performed using a floor reaction force sensor, there is a problem that a delay due to sensor feedback occurs. Since these delays lead to delays in control, there is a possibility that various restrictions are imposed on the safe operation. In addition, since a highly accurate floor reaction force sensor is required, there is a problem that the cost is increased. Furthermore, since inverse kinematic calculations use an inverse matrix, there is a possibility that the solution may diverge, and a unique target value cannot be calculated.
[0007] 本発明は斯力る事情に鑑みてなされたものであり、必ずしも床反力センサを必要と せず、各関節に用いるァクチユエータの制御目標値としてトルク値を算出することによ り、遅延を抑制し、安定した姿勢制御を実現することが可能で、またセンサに起因す るコスト上昇を抑制することが可能で、し力も逆運動学計算を必要としないため目標 値を一意に決定して安定した姿勢制御を実現することが可能なロボット、該ロボットの 動作を制御する制御装置の提供を目的とする。 課題を解決するための手段 The present invention has been made in view of such circumstances, and does not necessarily require a floor reaction force sensor, and by calculating a torque value as a control target value of an actuator used for each joint, The delay can be suppressed, stable posture control can be realized, the increase in cost caused by the sensor can be suppressed, and the target value is uniquely determined because the force does not require inverse kinematics calculation. An object of the present invention is to provide a robot capable of realizing stable posture control and a control device for controlling the operation of the robot. Means for solving the problem
[0008] 第 1発明に係るロボットは、駆動可能な複数の連結部を備えるロボットにおいて、制 御目標値として受け付けたトルク値に基づ 、て連結部を駆動する複数のァクチユエ ータと、想定された外部との接触部に作用させるベく設定された目標作用力に基づ いて、各連結部を駆動する夫々のァクチユエータのトルク値を算出する算出手段と、 算出したトルク値を制御目標値として各ァクチユエータに出力する手段とを備えること を特徴とする。  [0008] A robot according to a first aspect of the present invention is a robot including a plurality of drivable connecting portions, and a plurality of actuators that drive the connecting portions based on a torque value received as a control target value. Calculation means for calculating the torque values of the respective actuators that drive the respective connecting portions based on the set target acting force to be applied to the external contact portion, and the calculated torque values as control target values. And a means for outputting to each of the actuators.
[0009] 本発明では、トルク値を目標値として各ァクチユエータを制御することにより、外力を 測定するセンサを必ずしも必要とせず、また逆運動学計算を全く必要としないため、 逆行列を用いる必要が無ぐ解の発散を防止して一意の目標値を算出することが可 能であり、し力も力の次元で示されるトルク値に基づいてァクチユエータを制御するこ とにより、因果律を破ることなく外力に対して速やかに対応することが可能である。し 力もセンサに起因するコスト上昇を抑制することが可能である。  In the present invention, by controlling each actuator using the torque value as a target value, a sensor for measuring external force is not necessarily required, and inverse kinematics calculation is not required at all. Therefore, it is necessary to use an inverse matrix. It is possible to calculate a unique target value by preventing the divergence of the solution, and by controlling the actuator based on the torque value indicated by the force dimension, the external force can be obtained without breaking the causality. It is possible to respond promptly. However, the increase in cost caused by the sensor can also be suppressed.
[0010] 第 2発明に係るロボットは、第 1発明において、前記ァクチユエータは、連結部を伸 縮させる直動型ァクチユエータ及び Z又は連結部を回動させる回動型ァクチユエ一 タであることを特徴とする。  [0010] A robot according to a second invention is characterized in that, in the first invention, the actuator is a direct acting type actuator for extending and contracting the connecting portion and a rotating type actuator for rotating the Z or the connecting portion. And
[0011] 本発明では、油圧シリンダ等の直動型ァクチユエータ、回動型モータ等の様々なァ クチユエータを用いて様々な形態に展開することが可能である。  The present invention can be developed in various forms using various actuators such as a direct acting type actuator such as a hydraulic cylinder and a rotation type motor.
[0012] 第 3発明に係るロボットは、第 1発明又は第 2発明において、前記目標作用力の設定 を受け付ける手段を更に備え、前記算出手段は、受け付けた目標作用力に基づい て、夫々のァクチユエータのトルク値を算出する様に構成してあることを特徴とする。  [0012] The robot according to a third invention further comprises means for receiving the setting of the target acting force in the first invention or the second invention, wherein the calculating means is configured to use each actuator based on the received target acting force. It is configured to calculate the torque value.
[0013] 本発明では、目標作用力の設定として、外部力も操作を受け付けることが可能であ る。  [0013] In the present invention, an external force can also accept an operation as the setting of the target acting force.
[0014] 第 4発明に係るロボットは、第 1発明又は第 2発明において、目標となる運動を示す 目標運動情報を受け付ける手段と、受け付けた目標運動情報に基づいて、設定する 目標作用力を導出する導出手段とを更に備え、前記算出手段は、導出した目標作 用力に基づ 、て、夫々のァクチユエータのトルク値を算出する様に構成してあること を特徴とする。 [0015] 本発明では、バランス、歩行、停止等の運動を示す目標運動情報として、外部から 操作を受け付けることが可能である。 [0014] A robot according to a fourth invention is the first invention or the second invention, wherein in the first invention or the second invention, a means for receiving target motion information indicating a target motion and a target acting force to be set are derived based on the received target motion information. Derivation means, and the calculation means is configured to calculate the torque value of each of the actuators based on the derived target working force. In the present invention, it is possible to accept an operation from the outside as target exercise information indicating exercise such as balance, walking, and stopping.
[0016] 第 5発明に係るロボットは、第 4発明において、前記算出手段は、順運動学モデル に基づいて、目標作用力から夫々のァクチユエータのトルク値を算出する様に構成し てあることを特徴とする。 [0016] A robot according to a fifth invention is the robot according to the fourth invention, wherein the calculating means is configured to calculate a torque value of each actuator from a target acting force based on a forward kinematic model. Features.
[0017] 本発明では、計算が容易な順運動学モデルに基づいて、目標作用力をトルク値に 変換することにより、トルク値の算出に要する計算負荷を軽減し、処理速度を高速ィ匕 して、遅延を抑制することが可能である。 [0017] In the present invention, by converting the target acting force into a torque value based on a forward kinematic model that is easy to calculate, the calculation load required to calculate the torque value is reduced, and the processing speed is increased. Thus, the delay can be suppressed.
[0018] 第 6発明に係るロボットは、第 5発明において、前記算出手段は、慣性力、コリオリ 力及び遠心力の中の少なくとも一の力をカ卩味して夫々のァクチユエータのトルク値を 算出する様に構成してあることを特徴とする。 [0018] A robot according to a sixth invention is the robot according to the fifth invention, wherein the calculating means calculates the torque value of each actuator by taking into account at least one of inertia force, Coriolis force and centrifugal force. It is configured to do so.
[0019] 本発明では、順運動学モデルに加えて、動力学モデルを用いることにより、高精度 な制御を行うことが可能である。 In the present invention, it is possible to perform highly accurate control by using a dynamic model in addition to a forward kinematic model.
[0020] 第 7発明に係るロボットは、第 1発明乃至第 6発明のいずれかにおいて、外部から受 ける力を検出する検出手段を更に備え、前記算出手段は、検出手段が検出した力を 加味して夫々のァクチユエータのトルク値を算出する様に構成してあることを特徴と する。 [0020] The robot according to a seventh aspect of the present invention further comprises a detection means for detecting a force received from the outside in any one of the first to sixth aspects, wherein the calculation means takes into account the force detected by the detection means. Thus, the torque value of each actuator is calculated.
[0021] 本発明では、床反力を検出する床反力センサ等の検出手段を併用することにより、 更に高精度に制御を行うことが可能である。  In the present invention, it is possible to perform control with higher accuracy by using a detection means such as a floor reaction force sensor for detecting a floor reaction force.
[0022] 第 8発明に係るロボットは、第 1発明乃至第 7発明のいずれかにおいて、前記接触 部は、複数の接触点の集合であり、前記算出手段は、目標作用力をノルム最小規範 に基づ!/、て算出した各接触点に配分する力に基づ!/、て、夫々のァクチユエ一タのト ルク値を算出する様に構成してあることを特徴とする。 [0022] In a robot according to an eighth invention based on any one of the first to seventh inventions, the contact portion is a set of a plurality of contact points, and the calculation means sets the target acting force to a norm minimum norm. Based on the force distributed to each contact point calculated based on! /, The torque value of each actuator is calculated.
[0023] 本発明では、爪先、踵等の脚部の複数の接触点に掛ける力を、ノルム最小規範、 特に重み付きノルム最小規範に基づいて適正に配分し、相殺し合う大きな力の発生 を防止することが可能である。 [0023] In the present invention, the force applied to a plurality of contact points of the legs such as the toes and the heel is appropriately distributed based on the norm minimum norm, particularly the weighted norm minimum norm, and generation of a large force that cancels out is generated. It is possible to prevent.
[0024] 第 9発明に係るロボットは、第 1発明乃至第 8発明のいずれかにおいて、前記算出 手段は、重心に掛かる重力を補償すベぐ目標作用力に基づいて、夫々のァクチュ エータのトルク値を算出する様に構成してあることを特徴とする。 [0024] A robot according to a ninth invention is the robot according to any one of the first to eighth inventions, wherein the calculating means performs each action based on a target acting force that compensates for gravity applied to the center of gravity. The eta torque value is calculated.
[0025] 本発明では、自身に掛カる重力を補償するトルク値を算出することにより、接地を条 件として無重力の状態を実現するので、外力に対して反発するのではなぐ外力方 向に追従して外力を緩和することが可能である。 [0025] In the present invention, by calculating a torque value that compensates for gravity applied to itself, a zero-gravity state is realized under the condition of ground contact. Therefore, in an external force direction that does not repel external force. It is possible to relieve external force by following.
[0026] 第 10発明に係るロボットは、第 1発明乃至第 9発明のいずれかにおいて、複数の連 結部に係る冗長自由度に起因する内部運動を抑制する抑制力に基づいて、夫々の ァクチユエータのトルク値を算出する様に構成してあることを特徴とする。  [0026] A robot according to a tenth aspect of the present invention is the robot according to any one of the first aspect to the ninth aspect, wherein each actuator is based on a restraining force that suppresses internal motion caused by redundant degrees of freedom related to a plurality of connecting portions. It is configured to calculate the torque value.
[0027] 本発明では、内部運動を抑制力にて抑制することにより、意に反した関節の動作を 防止し、関節の可動角限界への到達等の弊害を防止することが可能である。  [0027] In the present invention, by suppressing the internal motion with the suppression force, it is possible to prevent an unexpected movement of the joint and to prevent adverse effects such as reaching the limit of the movable angle of the joint.
[0028] 第 11発明に係るロボットは、第 1発明乃至第 10発明のいずれかにおいて、前記連 結部を駆動することで動作する複数の脚部を備えることを特徴とする。  [0028] A robot according to an eleventh invention is characterized in that, in any one of the first invention to the tenth invention, the robot includes a plurality of legs that operate by driving the connecting portion.
[0029] 本発明では、二足歩行ロボット等の脚式ロボットに適用することが可能である。  The present invention can be applied to legged robots such as biped robots.
[0030] 第 12発明に係るロボットは、第 1発明又は第 2発明において、生物体が装着可能に 構成してあり、生物体力 受ける力を検出する手段と、検出した力に基づいて、設定 する目標作用力を導出する手段とを更に備え、前記算出手段は、導出した目標作用 力に基づいて、夫々のァクチユエータのトルク値を算出する様に記録する様に構成し てあることを特徴とする。  [0030] A robot according to a twelfth aspect of the present invention is configured so that the organism can be mounted in the first or second aspect of the invention, and is set based on the means for detecting the force received by the organism force and the detected force. Means for deriving a target acting force, and the calculating means is configured to record so as to calculate the torque value of each actuator based on the derived target acting force. .
[0031] 本発明では、人物、人物以外の動物等の生物体が装着し、重量物の運搬、障害者 の運動等の動作を支援する運動補助具に適用することが可能である。  [0031] The present invention can be applied to an exercise aid that is worn by a living organism such as a person or an animal other than a person and supports operations such as carrying heavy objects and exercising a handicapped person.
[0032] 第 13発明に係る制御装置は、ァクチユエータにより駆動可能な複数の連結部を備 えるロボットの動作を制御する制御装置にお 、て、想定された外部との接触部に作 用させるべく設定された目標作用力に基づ!、て、各連結部を駆動する夫々のァクチ ユエータのトルク値を算出する手段と、算出したトルク値を制御目標値として各ァクチ ユエータに出力する手段とを備えることを特徴とする。  [0032] A control device according to a thirteenth aspect of the invention is a control device that controls the operation of a robot having a plurality of connecting portions that can be driven by an actuator. Based on the set target acting force, means for calculating the torque value of each actuator that drives each connecting portion, and means for outputting the calculated torque value to each of the actuators as a control target value. It is characterized by providing.
[0033] 本発明では、ロボットの動作の制御に適用し、トルク値を目標値として各ァクチユエ ータを制御することにより、外力を測定するセンサを必ずしも必要とせず、また逆運動 学計算を必ずしも必要としないため、逆行列を用いる必要が無ぐ解の発散を防止し て一意の目標値を算出することが可能であり、し力も力の次元で示されるトルク値に 基づいてァクチユエータを制御することにより、因果律を破ることなく外力に対して速 やかに対応することが可能である。し力もセンサに起因するコスト上昇を抑制すること が可能である。 [0033] In the present invention, a sensor for measuring an external force is not necessarily required by controlling each actuator using the torque value as a target value when applied to the control of the robot operation, and the inverse kinematic calculation is not necessarily performed. Since it is not necessary, it is possible to calculate a unique target value by preventing the divergence of the solution without having to use an inverse matrix, and the force is also converted to the torque value indicated by the force dimension. By controlling the actuator based on this, it is possible to respond quickly to external forces without breaking causality. It is possible to suppress the increase in cost caused by the sensor force.
発明の効果  The invention's effect
[0034] 本発明に係るロボット及び制御装置は、想定された外部との接触部に作用させるベ く設定された目標作用力に基づいて、連結部を伸縮させる直動型ァクチユエータ、連 結部を回動させる回動型ァクチユエータ等の連結部を駆動するァクチユエータのトル ク値を算出し、算出したトルク値を制御目標値として各ァクチユエータに出力し、ァク チユエータを制御する。  [0034] The robot and the control device according to the present invention include a direct acting type actuator that expands and contracts the connecting portion based on a set target acting force that is supposed to act on the assumed contact portion with the outside, and the connecting portion. The torque value of an actuator that drives a connecting portion such as a rotating type actuator to be rotated is calculated, and the calculated torque value is output to each actuator as a control target value to control the actuator.
[0035] この構成により、本発明では、制御の目標値となるトルク値の計算に逆行列を用い る必要がないので、計算の条件に関わらず、目標値となる解が発散することが無ぐ 一意の目標値を算出することが可能であり、安定した姿勢制御を実現することが可能 である等、優れた効果を奏する。し力も外力と同じく力の次元で示されるトルク値に基 づいてァクチユエータを制御することにより、角速度又は角度の位置と、力とに関する 因果律を破ることがなぐ外力に対して速やかに対応することができるので、外乱に 強く安定した姿勢制御を行うことが可能である等、優れた効果を奏する。そして速や かな制御は、対人及び対物に対する衝突の回避等の安全な制御を行う上でも有利 になる。し力も外力を検出するセンサを必ずしも必要としないため、センサに起因する コスト上昇を抑制することが可能である等、優れた効果を奏する。  [0035] With this configuration, in the present invention, it is not necessary to use an inverse matrix for calculating the torque value that is the control target value, so that the solution that becomes the target value does not diverge regardless of the calculation conditions. It is possible to calculate a unique target value and achieve excellent effects such as stable posture control. In the same way as external force, by controlling the actuator based on the torque value shown in the force dimension, it is possible to respond quickly to external force that does not break the causality of angular velocity or angular position and force. As a result, excellent effects such as being able to perform stable posture control that is resistant to disturbances and the like are obtained. Fast control is also advantageous for safe control such as avoiding collisions with people and objects. In addition, since the sensor for detecting the external force is not necessarily required, it is possible to suppress an increase in cost caused by the sensor, and the excellent effect is obtained.
[0036] 本発明に係るロボット等は、外部力も受け付けた目標作用力を設定することにより、 外部から操作することが可能であり、また外部からバランス、歩行、停止等の運動を 示す目標運動情報を受け付け、受け付けた目標運動情報に基づ 、て設定する目標 作用力を導出することにより、外部力 操作することが可能である等、優れた効果を 奏する。  [0036] The robot or the like according to the present invention can be operated from the outside by setting a target acting force that also accepts an external force, and target motion information that indicates a motion such as balance, walking, and stopping from the outside. By obtaining the target action force set based on the received target exercise information, it is possible to perform an external force operation, and so on.
[0037] 特に本発明に係るロボット等は、例えばヤコビ行列を用いた順運動学モデルに基 づいて、目標作用力から夫々のァクチユエータに配分するトルク値を算出する。  [0037] In particular, the robot or the like according to the present invention calculates a torque value to be distributed to each actuator from a target acting force based on a forward kinematic model using, for example, a Jacobian matrix.
[0038] この構成により、本発明では、計算が容易な順運動学モデルを用いてトルク値を算 出するので、トルク値の算出に要する計算負荷を軽減し、処理速度を高速化して、遅 延を抑制することが可能である等、優れた効果を奏する。更に順運動学モデルにカロ え、慣性力、コリオリカ、遠心力等の動力学モデルをカ卩味してァクチユエータのトルク 値を算出することにより、高精度な制御を行うことが可能である等、優れた効果を奏す る。 With this configuration, in the present invention, the torque value is calculated using a forward kinematic model that is easy to calculate. Therefore, the calculation load required for calculating the torque value is reduced, the processing speed is increased, and the processing speed is increased. There are excellent effects such as being able to suppress the elongation. In addition, it is possible to perform highly accurate control by calculating the torque value of the actuator by taking into account the dynamics model such as inertial force, Coriolica, centrifugal force, etc. Excellent effect.
[0039] 本発明に係るロボット等は、外部から受ける力を検出する外力センサ、例えば床反 力を検出する床反力センサ等の検出手段を併用することにより、更に高精度に制御 を行うことが可能であり、しかも検出手段は、補助的に用いるため比較的低精度であ つても使用可能であるので、安価な検出手段で、高精度の制御を行うことが可能であ る等、優れた効果を奏する。  [0039] The robot and the like according to the present invention can perform control with higher accuracy by using an external force sensor that detects a force received from the outside, for example, a detection means such as a floor reaction force sensor that detects a floor reaction force. In addition, since the detection means is used as an auxiliary, it can be used even if it has relatively low accuracy. Therefore, it is possible to perform high-precision control with an inexpensive detection means. Has an effect.
[0040] 本発明に係るロボット等は、床作用力を、ノルム最小規範、特に重み付きノルム最 小規範に基づいて、爪先、踵等の注目接触点に最適配分することにより、相殺し合う 大きな力の発生を防止することが可能である等、優れた効果を奏する。また例えば人 間型ロボットに適用する場合、爪先、踵等の脚部、肘、手先、掌等の腕部を接触点と して見なすことにより、腕部を用 、たバランス制御等の人間と同様の様々な動作に適 用することが可能である等、優れた効果を奏する。  [0040] The robot and the like according to the present invention cancel each other by optimally allocating the floor acting force to the contact points of interest such as toes and heels based on the norm minimum norm, particularly the weighted norm minimum norm. An excellent effect can be obtained, for example, generation of force can be prevented. In addition, for example, when applied to a humanoid robot, it is assumed that the leg part of the toe, the heel, etc., the arm part such as the elbow, the hand, the palm, etc. are regarded as the contact points, so that it can It has excellent effects such as being applicable to various similar operations.
[0041] 本発明に係るロボット等は、自身に掛カる重力を保証する目標作用力を、トルク値 を算出する数式に設けることにより、接地を条件として無重力の状態を模した動作を 実現する。また重力を補償する構成とすることにより、外力に対して反発するのでは なぐ外力に従い外力方向に追従する動作を行うことで外力を緩和するため、対人及 び対物に対する衝突時の安全性を高めることが可能であり、またロボットに対して人 が外力を加えることにより、動作方向を誘導することが可能である等、優れた効果を 奏する。そして重力を補償する構成とすることにより、ロボットの地面に対する接触部 である床接触点から地面に対して力を掛ける状態を維持しょうとするため、想定外の 接触部に対してもプログラムを何等変更することなく良好な接地状態を保つことが可 能である等、優れた効果を奏する。例えば未知の凹凸路面に対しても、安定した状 態となる様に接触部に掛ける力を制御することが容易である。  [0041] A robot or the like according to the present invention realizes an operation simulating a weightless condition on the condition of grounding by providing a target acting force that guarantees the gravity applied to itself in a mathematical expression for calculating a torque value. . In addition, by adopting a structure that compensates for gravity, the external force is relaxed by following the external force in accordance with the external force rather than repelling the external force. In addition, there are excellent effects such as that it is possible to guide the direction of movement by applying an external force to the robot. In addition, the configuration that compensates for gravity tries to maintain a state where a force is applied to the ground from the floor contact point that is the contact portion of the robot with the ground. It has excellent effects such as being able to maintain a good grounding state without changing. For example, it is easy to control the force applied to the contact portion so as to be in a stable state even on an unknown uneven road surface.
[0042] なお床反力センサが検出した床反力をフィードバックし、床反力を調整すべく関節 の角速度又は角度を目標値としてァクチユエータを制御する従来のロボットにて本発 明の重力補償を実現する場合、床反力以外にも、外部から加えられるあらゆる外力 を検出しなければならない。無数の検出手段をロボットのあらゆる部位に配置するこ とで外力を検出することは、技術的及び経済的の両面力も現実的ではない。 [0042] It is noted that a conventional robot that feeds back the floor reaction force detected by the floor reaction force sensor and controls the actuator using the angular velocity or angle of the joint as a target value to adjust the floor reaction force. In order to realize bright gravity compensation, all external forces applied from outside must be detected in addition to the floor reaction force. Detecting an external force by arranging an infinite number of detection means in every part of the robot is not practical both in terms of both technical and economic forces.
[0043] また床反力を正確に実現するためにロボット及び外部環境の正確なモデルに基づ Vヽて運動方程式を導出し、その非線形ダイナミクスを全て制御入力で補償する試み は前述の非特許文献 1で一部示されている。し力しモデルィ匕誤差、センサノイズ、計 算コスト等の様々な面で実用的ではない。これに対し、本発明では、モデル化誤差 及びノイズの影響が少な 、重力成分のみを補償することが可能である。即ち本発明 のロボットは、従来の方法では容易に成し得な力つた重力補償をも含む動力学補償 を実用的な動作範囲で簡単に実現することが可能である等、優れた効果を奏する。  [0043] Furthermore, in order to accurately realize the floor reaction force, an attempt is made to derive the equation of motion based on an accurate model of the robot and the external environment, and to compensate for all the nonlinear dynamics with the control input. Some are shown in reference 1. However, it is not practical in various aspects such as model error, sensor noise, and calculation cost. On the other hand, in the present invention, it is possible to compensate for only the gravitational component with little influence of modeling error and noise. In other words, the robot according to the present invention has excellent effects such as that it is possible to easily realize dynamic compensation including gravitational compensation that cannot be easily achieved by the conventional method within a practical operating range. .
[0044] 本発明に係るロボット等は、複数の関節に基づく冗長自由度に起因する内部運動 を、関節のダンピング等の抑制力にて抑制する。冗長自由度が存在する場合、制御 目標に寄与しない関節のトルク値がゼロ又はゼロに近い値となる利点がある力 外乱 によって意に反して関節が動作する内部運動が発生し、例えば関節が可動角の限 界に到達するという様な異常に繋がる虞がある。本発明では、抑制力項を設けること により、内部運動を抑制し、意に反した関節の動作及び該動作に基づく異常の発生 を防止することが可能である等、優れた効果を奏する。  [0044] The robot or the like according to the present invention suppresses internal motion caused by redundant degrees of freedom based on a plurality of joints with a suppression force such as damping of the joints. When there is a redundant degree of freedom, there is an advantage that the torque value of the joint that does not contribute to the control target is zero or close to zero. There is a risk of anomalies such as reaching the corner limit. In the present invention, by providing the suppression force term, it is possible to suppress the internal movement, and it is possible to prevent the unexpected movement of the joint and the occurrence of an abnormality based on the movement.
[0045] 本発明のロボットは、複数の脚部を備える脚式ロボット、例えば人型の二足歩行口 ボットに適用するだけでなぐ人物、人物以外の動物等の生物体が装着し、重量物の 運搬、障害者の運動等の動作を支援する運動補助具に展開することも可能であり、 また凹凸の激しい路面を走行する車両の駆動輪の懸架システムとして用いることも可 能であり、更には人が容易に進入することができない災害現場、火山、深海等の地 域、更には他の天体等を探査する探査機等の様々な分野で稼動する様々な形状の ロボットに適用することも可能である等、優れた効果を奏する。また探査だけではなく 、車輪と、支持及び駆動機構として機能する脚状体とを備える複合型の移動ロボット に適用し、不整地において安定して作業を行う建築作業に用いることも可能である。 図面の簡単な説明  [0045] The robot of the present invention is a legged robot having a plurality of legs, such as a humanoid biped walking mouth bot, which is attached to a living body such as a person or an animal other than a person, and is heavy. It can also be deployed in exercise aids that support movements, movements of people with disabilities, etc., and can also be used as a suspension system for drive wheels of vehicles running on uneven road surfaces. Can be applied to robots of various shapes that operate in various fields such as disaster sites, volcanoes, deep seas, etc. that cannot be easily entered by humans, and explorers that explore other celestial bodies. It has excellent effects such as being possible. In addition to exploration, it can also be applied to complex mobile robots that have wheels and legs that function as support and drive mechanisms, and can be used for building work that works stably on rough terrain. Brief Description of Drawings
[0046] [図 1]本発明の実施の形態 1に係るロボットを示す外観図である。 圆 2]本発明の実施の形態 1に係るロボットの骨格及び関節を模式的に示す説明図 である。 FIG. 1 is an external view showing a robot according to Embodiment 1 of the present invention. 圆 2] An explanatory diagram schematically showing the skeleton and joints of the robot according to the first embodiment of the present invention.
[図 3]本発明の実施の形態 1に係るロボットの構成を示すブロック図である。  FIG. 3 is a block diagram showing a configuration of the robot according to the first embodiment of the present invention.
[図 4]本発明の実施の形態 1に係るロボット及びロボットの制御に係る座標系を模式 的に示す説明図である。  FIG. 4 is an explanatory diagram schematically showing a robot according to Embodiment 1 of the present invention and a coordinate system related to control of the robot.
[図 5]本発明の実施の形態 1に係るロボット及びロボットに係る床作用力を模式的に 示す説明図である。  FIG. 5 is an explanatory diagram schematically showing the robot according to Embodiment 1 of the present invention and the floor acting force related to the robot.
圆 6]本発明の実施の形態 1に係るロボット及びロボットに係る仮想的な接触カを模 式的に示す説明図である。 6] FIG. 6 is an explanatory view schematically showing the robot according to Embodiment 1 of the present invention and the virtual contact force related to the robot.
[図 7]本発明のロボットが備える駆動制御装置の処理を示すフローチャートである。 圆 8]本発明の実施の形態 1に係るロボットの屈伸運動を模式的に示す外観図である 圆 9]本発明の実施の形態 1に係るロボットの模擬実験において屈伸運動の動作を 示す値の経時変化を示すグラフである。  FIG. 7 is a flowchart showing processing of a drive control device provided in the robot of the present invention.圆 8] is an external view schematically showing the bending and stretching motion of the robot according to the first embodiment of the present invention. 圆 9] The value indicating the motion of the bending and stretching motion in the simulation experiment of the robot according to the first embodiment of the present invention. It is a graph which shows a time-dependent change.
圆 10]本発明の実施の形態 1に係るロボットの模擬実験において屈伸運動中の重心 及び ZMPの経時変化を示すグラフである。 [10] FIG. 10 is a graph showing temporal changes in the center of gravity and ZMP during bending and stretching in the simulation experiment of the robot according to Embodiment 1 of the present invention.
圆 11]本発明の実施の形態 1に係るロボットの脚上げ運動を模式的に示す外観図で ある。 [11] FIG. 11 is an external view schematically showing a leg raising motion of the robot according to the first embodiment of the present invention.
圆 12]本発明の実施の形態 1に係るロボットの模擬実験において脚上げ運動中の脚 の位置の経時変化を示すグラフである。 12] A graph showing changes over time in the position of the legs during the leg raising exercise in the simulation experiment of the robot according to Embodiment 1 of the present invention.
圆 13]本発明の実施の形態 1に係るロボットの模擬実験において脚上げ運動を示す 値の経時変化を示すグラフである。 13] A graph showing a change with time of a value indicating a leg raising motion in the simulation experiment of the robot according to the first embodiment of the present invention.
圆 14]本発明の実施の形態 1に係るロボットの模擬実験において歩行運動を示す値 の経時変化を示すグラフである。 14] A graph showing a change with time of a value indicating walking motion in the simulation experiment of the robot according to Embodiment 1 of the present invention.
圆 15]本発明の実施の形態 2に係るロボットを示す外観図である。 15] An external view showing a robot according to the second embodiment of the present invention.
圆 16]本発明の実施の形態 3に係るロボットを示す外観図である。 16] An external view showing the robot according to the third embodiment of the present invention.
圆 17]本発明の実施の形態 4に係るロボットを示す外観図である。 圆 17] It is an external view showing a robot according to Embodiment 4 of the present invention.
符号の説明 1 nボッ卜 Explanation of symbols 1 n
10 脚部  10 legs
2 連結部  2 Connecting part
20 了クチユエ一  20 Ryo Kuchiyue
3 駆動制御装置  3 Drive controller
30 制御手段  30 Control means
31 記録手段  31 Recording means
32 記憶手段  32 Storage means
33 計測手段  33 Measuring means
34 出力手段  34 Output means
35 入力手段  35 Input means
4 駆動機構  4 Drive mechanism
5 検出機構  5 Detection mechanism
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0048] 実施の形態 1.  Embodiment 1.
以下、本発明をその実施の形態を示す図面に基づいて詳述する。図 1は、本発明 の実施の形態 1に係るロボットを示す外観図であり、図 2は、本発明の実施の形態 1 に係るロボットの骨格及び関節を模式的に示すブロック図である。実施の形態 1では 、少なくとも一対の脚部を備え、歩行、屈伸、脚上げ等の様々な動作を行う脚式ロボ ットに本発明を適用した形態について例示する。  Hereinafter, the present invention will be described in detail with reference to the drawings illustrating embodiments thereof. FIG. 1 is an external view showing a robot according to Embodiment 1 of the present invention, and FIG. 2 is a block diagram schematically showing a skeleton and joints of the robot according to Embodiment 1 of the present invention. Embodiment 1 exemplifies a form in which the present invention is applied to a legged robot that includes at least a pair of legs and performs various operations such as walking, bending and stretching, and leg raising.
[0049] 図 1及び図 2中 1は、ロボットであり、ロボット 1の左右の脚部 10, 10は、腰、膝及び 足首に関節等の連結部 2, 2,…を備え、各連結部 2, 2,…は、回動型モータ等のァ クチユエータ 20, 20,…にて駆動される。ァクチユエータ 20, 20,…にて駆動するこ とにより、各連結部 2, 2,…は、前後、左右等の複数の方向に対して屈曲可能である 。またロボット 1は、脚部 10, 10だけでなぐ首、胸、肩、肘、手首等の様々な箇所に 関節等の連結部 2, 2,…を駆動するァクチユエータ 20, 20,…を備えている。  [0049] In Fig. 1 and Fig. 2, 1 is a robot, and the left and right leg portions 10, 10 of the robot 1 are provided with connecting portions 2, 2, ... such as joints on the waist, knees, and ankles. 2, 2, ... are driven by actuators 20, 20, ... such as rotary motors. By being driven by the actuators 20, 20,..., Each connecting portion 2, 2,... Can be bent in a plurality of directions such as front and rear, left and right. In addition, the robot 1 has actuators 20, 20,... For driving joints 2, 2,... At various locations such as the neck, chest, shoulders, elbows, wrists, and the like that are only legs 10, 10. Yes.
[0050] ァクチユエータ 20としては、制御目標値となるトルク値を駆動信号として受け付け、 受け付けたトルク値に基づいて制御する機能を有していれば、サーボモータ、油圧 モータ等の様々なァクチユエータを用いることが可能である。例えば電流制御が可能 な駆動回路を有し、電流に比例したトルクを発生させるサーボモータでは、制御目標 値として入力されたトルク値に、ギヤ比により決定されるトルク定数を乗じて駆動回路 に指令することで入力されたトルクを発生させるトルク制御を実現する。特に連結部 2 にトルクセンサを配設し、トルクセンサにより検出した値を駆動回路にフィードバックす ることにより、高精度のトルク制御が可能となる。また回動型に限らず、油圧シリンダ等 の直動型のァクチユエータ 20を用いることも可能である。即ち図 2に示したロボット 1 の連結部 2, 2,…の個数及び配置は、あくまでも一例であり、回動型、直動型等の様 々な種類のァクチユエータ 20, 20,…を備える連結部 2, 2,…を様々な箇所に配置 することが可能である。 [0050] As long as the actuator 20 has a function of receiving a torque value as a control target value as a drive signal and performing control based on the received torque value, the servo motor, hydraulic pressure Various actuators such as a motor can be used. For example, in a servo motor that has a drive circuit capable of current control and generates torque proportional to the current, the torque value input as the control target value is multiplied by the torque constant determined by the gear ratio, and the drive circuit is commanded. Thus, torque control for generating the input torque is realized. In particular, by providing a torque sensor at the connecting portion 2 and feeding back the value detected by the torque sensor to the drive circuit, highly accurate torque control becomes possible. Further, not only a rotary type but also a direct acting type actuator 20 such as a hydraulic cylinder can be used. That is, the number and arrangement of the connecting portions 2, 2,... Of the robot 1 shown in FIG. 2 are merely examples, and the connecting portions including various types of actuators 20, 20,. It is possible to place parts 2, 2, ... in various places.
[0051] 図 3は、本発明の実施の形態 1に係るロボット 1の構成を示すブロック図である。ロボ ット 1は、連結部 2, 2,…を駆動する各ァクチユエータ 20, 20,…に信号を出力する 駆動制御装置 3と、駆動制御装置 3から出力された信号に基づいて、実際のトルクが 制御目標値に一致する様に各ァクチユエータ 20, 20,…を駆動するサーボアンプ等 の駆動機構 4, 4,…と、角度センサ、姿勢センサ、外力センサ等の様々な検出機構 5 , 5,…とを備えている。なお駆動機構 4, 4,…は、駆動制御装置 3が備える駆動手 段として実装する様にしても良ぐまたァクチユエータ 20と一体ィ匕したインテリジェント モータを実装する様にしても良い。  FIG. 3 is a block diagram showing a configuration of the robot 1 according to Embodiment 1 of the present invention. Robot 1 outputs a signal to each of the actuators 20, 20,... That drive the connecting portions 2, 2,..., And the actual torque based on the signal output from the drive control device 3. , And various detection mechanisms 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 … And. The drive mechanisms 4, 4,... May be mounted as a drive means provided in the drive control device 3, or an intelligent motor integrated with the actuator 20 may be mounted.
[0052] 角度センサとは、連結部 2, 2,…として備える各関節の角度を検出するセンサであ り、例えばアナログ式のポテンションメータ、デジタル式のロータリエンコーダ等のセン サが用いられる。姿勢センサとは、慣性座標系におけるロボット 1の絶対姿勢を検出 するセンサであり、例えばロボット 1の胴体部に取り付けられたジャイロセンサが用い られる。外力センサとしては、例えばロボット 1の足裏に取り付けられる床反力センサ が用いられる。なお本発明のロボット 1では、必ずしも外力センサを必要としないが、 外力センサを併用することにより、実際の接触状態に応じて外部に作用させる力の制 御を行うことが可能となる。即ち実際の接触状況に応じて夫々の接触点に作用させる 作用力を配分するか否かを決定する際に有効である。さらに外部との摩擦状況に応 じて重みを設定する場合にも、外力センサによる外力の検出は有効である。 [0053] 駆動制御装置 3は、制御目標値の算出等の様々な演算を行う CPU等の制御手段 30と、制御に要するプログラム及びデータ等の情報を記録する ROM、 EPROM、ハ ードディスク等の記録手段 31と、プログラムの実行により発生するデータを一時的に 記憶する RAM等の記憶手段 32と、検出機構 5, 5,…から検出結果を示す様々な信 号の入力を受け付ける計測手段 33と、ァクチユエータ 20へ出力する信号を駆動機 構 4に対応した形式に変換して出力する出力手段 34と、外部からの入力を受け付け る入力手段 35とを備えて 、る。 [0052] The angle sensor is a sensor for detecting the angle of each joint provided as the connecting portions 2, 2,..., For example, a sensor such as an analog potentiometer or a digital rotary encoder is used. The attitude sensor is a sensor that detects the absolute attitude of the robot 1 in the inertial coordinate system. For example, a gyro sensor attached to the body of the robot 1 is used. As the external force sensor, for example, a floor reaction force sensor attached to the sole of the robot 1 is used. Note that the robot 1 of the present invention does not necessarily require an external force sensor, but by using the external force sensor together, it is possible to control the force applied to the outside according to the actual contact state. That is, it is effective in determining whether or not to distribute the acting force that acts on each contact point according to the actual contact situation. Furthermore, the detection of external force by an external force sensor is also effective when setting the weight according to the external friction condition. [0053] The drive control device 3 includes a control means 30 such as a CPU that performs various calculations such as calculation of a control target value, and a ROM, EPROM, hard disk, and the like that records information such as programs and data required for control. Means 31, storage means 32 such as RAM for temporarily storing data generated by program execution, measurement means 33 for receiving input of various signals indicating detection results from detection mechanisms 5, 5,. It comprises output means 34 for converting the signal to be output to the actuator 20 into a format corresponding to the drive mechanism 4 and outputting it, and input means 35 for receiving external input.
[0054] 駆動制御装置 3が、駆動機構 4を介して各ァクチユエータ 20, 20, …へ出力する信 号とは、例えば制御目標値としてトルク値を示す制御信号である。各連結部 2, 2, 〜 を駆動するァクチユエータ 20, 20,…は、駆動制御装置 3から入力されたトルク値等 の制御信号に基づいて作動する。入力手段 35とは、ロボット 1のバランス、歩行、停 止等の目標となる運動を示す目標運動情報、又は目標となる運動を行うための目標 作用力を受け付ける機構であり、有線又は無線により外部のコントローラ力 送信さ れる目標運動情報等の情報が含まれる命令を受け付ける。また操作者力 直接命令 を受け付けるキーボード、各種釦、スィッチ等の操作部を入力手段 35として用いる様 にしても良い。なお駆動制御装置 3が、目標運動情報を受け付けた場合、目標となる 運動から設定すべき目標作用力及び目標とするゼロモーメントポイント (以降、 ZMP: Zero Moment Pointという)を導出し、導出した目標作用力及び目標 ZMPに基づい て後述する様にロボット 1を制御する。また駆動制御装置 3が、目標作用力を受け付 けた場合、受け付けた目標作用力及び目標作用力から導出した目標 ZMPに基づ 、 てロボット 1を制御する。  The signal output from the drive control device 3 to each of the actuators 20, 20,... Via the drive mechanism 4 is a control signal indicating a torque value as a control target value, for example. Actuators 20, 20,... That drive the connecting portions 2, 2,... Operate based on a control signal such as a torque value input from the drive control device 3. The input means 35 is a mechanism for receiving target motion information indicating a target motion such as balance, walking, or stopping of the robot 1 or a target acting force for performing the target motion. The controller power of the system receives a command including information such as target exercise information to be transmitted. Further, an operation unit such as a keyboard, various buttons, or a switch that accepts a direct command from the operator may be used as the input means 35. When the drive control device 3 receives the target motion information, the target action force to be set and the target zero moment point (hereinafter referred to as ZMP: Zero Moment Point) are derived from the target motion, and the derived target Based on the applied force and the target ZMP, the robot 1 is controlled as described later. Further, when the drive control device 3 receives the target acting force, the drive control device 3 controls the robot 1 based on the received target acting force and the target ZMP derived from the target acting force.
[0055] なお本願で説明する接地点等の接触部が接触する対象とは、地面に限るものでは なぐロボット 1が自らを支持するために自重を掛ける外部の環境一般を指す。具体 的には、地面及び床にカ卩えて、スロープのある床、段差の有る階段等の平面以外の 外部環境をも含み、また脚部の足裏だけでなぐ膝、手、腕部等の足裏以外の箇所 を用いて自らを支持する姿勢をとる場合、手摺、壁等の外部環境をも含む。従って上 半身を用いて自らを支持する四つん這 、等の姿勢をとる場合、掌等の手部 (前脚部) も接触部となりうる。同様にして本願で説明する床反力とは、必ずしも床から受ける反 力に限定されるものではなぐ接触部が接触している外部環境力 受ける反力を示す It should be noted that the object to be contacted by a contact portion such as a grounding point described in the present application is not limited to the ground, but generally refers to an external environment in which the robot 1 applies its own weight to support itself. Specifically, it includes external environments other than planes, such as sloped floors and steps with steps, in addition to the ground and floor, such as knees, hands, arms, etc. In the case of taking a posture to support itself using a part other than the sole, it includes external environments such as handrails and walls. Therefore, when taking a posture such as a four-sided heel that supports itself using the upper body, the hand portion (front leg portion) such as a palm can also be a contact portion. Similarly, the floor reaction force described in the present application is not necessarily the reaction received from the floor. It is not limited to force. External environmental force that the contact part is in contact with Indicates the reaction force received
[0056] 次に本発明のロボット 1の制御について説明する。図 4は、本発明の実施の形態 1 に係るロボット 1及びロボット 1の制御に係る座標系を模式的に示す説明図である。図 4中 CoMは、ロボットの重心 (Center of Mass)であり、重心 CoMを、 x座標、 y座標及 び z座標を用いた三次元の座標系∑において下記の式 1で定義される位置ベクトル r で定義する。なお図 4に示す座標系∑では、ロボット 1の外部の点を基準点とするNext, control of the robot 1 of the present invention will be described. FIG. 4 is an explanatory diagram schematically showing the robot 1 according to the first embodiment of the present invention and the coordinate system related to the control of the robot 1. In Fig. 4, CoM is the center of mass of the robot, and the center of gravity CoM is a position vector defined by Equation 1 below in a three-dimensional coordinate system ∑ using x, y, and z coordinates. Define with r. In the coordinate system 示 す shown in Fig. 4, a point outside the robot 1 is used as a reference point.
C C
位置ベクトル r にて重心 CoMを示している力 ロボット 1内に基準点をとる座標系を  A force that shows the center of gravity CoM at the position vector r.
c  c
定義する様にしても良い。  You may make it define.
[0057] r = [x , y , z ]T≡RS …(式 1) [0057] r = [x, y, z] T ≡ R S … (Formula 1)
c c c c  c c c c
但し、 r :重心 CoMの位置ベクトル  Where r is the center of gravity CoM position vector
c  c
T:ベクトル又は行列に対する転置演算子 T : Transpose operator for vector or matrix
R3 : 3次元の数ベクトル空間 R 3 : 3D number vector space
[0058] 説明を簡単にするために、先ずはロボット 1が、足裏の任意の一点が外部の環境と 接触して ヽる状況にっ 、て説明する。この接触点の重心 CoMからの位置ベクトルを r として示し、 X座標、 y座標及び z座標による三次元の座標系を用いた下記の式 2〖こ[0058] In order to simplify the explanation, first, the robot 1 will be described in a situation where an arbitrary point on the sole of the foot is in contact with the external environment. The position vector from the center of gravity CoM of this contact point is shown as r, and the following equation using a three-dimensional coordinate system based on the X, y, and z coordinates:
P P
て定義する。  Define.
[0059] r = [x , y , z ]T≡RS …(式 2) [0059] r = [x, y, z] T ≡R S … (Formula 2)
P P P P  P P P P
但し、 r :接触点の位置ベクトル  Where r is the position vector of the contact point
P  P
[0060] また重心 CoMに掛かる力は、重力、接触点から受ける床反力、及び外乱等の他の 外力を用いた下記の式 3にて示すことができる。なおロボット 1がこの接触点でのみ外 部、ここでは床に接触している場合、接触点は ZMPに一致する。  [0060] The force applied to the center of gravity CoM can be expressed by the following Equation 3 using other external forces such as gravity, a floor reaction force received from the contact point, and a disturbance. If the robot 1 is in contact with the outside only at this contact point, here the floor, the contact point matches ZMP.
[0061] Md2 r /dt2 =Mg+f +f …(式 3) [0061] Md 2 r / dt 2 = Mg + f + f (Formula 3)
C R E  C R E
但し、 M :ロボット 1の質量  Where M is the mass of robot 1.
d2 r Zdt2:重心に掛かる加速度 d 2 r Zdt 2 : acceleration applied to the center of gravity
C  C
g : [0, 0, 9. 81]τと示される重力加速度 g: [0, 0, 9. 81] Gravitational acceleration expressed as τ
f : f ER3である床反力 f: Floor reaction force which is f ER 3
R R  R R
f : f ER3である重力及び床反力以外の外力 [0062] 式 2に示した CoM、 ZMP等の点の位置ベクトルは、検出機構 5である角度センサ 及び姿勢センサが検出した検出値に基づいて導出することができる。駆動制御装置 3は、ロボット 1が接触点力 受ける床反力に対し、ロボット 1から接触点に対して床反 力と大きさが同じで方向が正反対となる床作用力(GAF: Ground Applied Force)を口 ボット 1の動作のタスク目標に応じた所望の値となるように決定し、決定した床作用力 をロボット 1から接触点に対してカ卩える様にロボット 1を制御する。この制御により、ロボ ット 1は、例えば自身のバランスをとつたり、安定した姿勢制御を行ったりという様々な 追従動作を行うことができる。なお床作用力は、 X座標、 y座標及び z座標による三次 元の座標系を用いた下記の式 4にて定義される。 f: External force other than gravity and floor reaction force that is f ER 3 [0062] The position vectors of the points such as CoM and ZMP shown in Equation 2 can be derived based on the detection values detected by the angle sensor and attitude sensor that are the detection mechanism 5. The drive controller 3 has a floor applied force (GAF: Ground Applied Force) that has the same magnitude and opposite direction to the floor reaction force from the robot 1 to the contact point. ) Is set to a desired value according to the task target of the movement of mouth bot 1, and robot 1 is controlled so that the determined floor action force is captured from robot 1 to the contact point. By this control, the robot 1 can perform various follow-up operations such as balancing itself and performing stable posture control. The floor force is defined by Equation 4 below using a three-dimensional coordinate system based on the X, y, and z coordinates.
[0063] f = [f , f , f ]τ = -f ≡R3 …(式 4) [0063] f = [f, f, f] τ = -f ≡ R 3 (Equation 4)
P xP yP zp R  P xP yP zp R
但し、 fP:床作用力  Where fP: floor force
[0064] 駆動制御装置 3は、下記の式 5に示す様に、 目標とする床作用力を、ヤコビ行列に て規定される順運動学モデルに基づいて、各関節 2, 2,…を駆動する夫々のァクチ ユエータ 20, 20,…の夫々のトルク値に変換し、変換した夫々のトルク値を各ァクチ ユエータ 20, 20,…に制御目標値として出力する。そして各ァクチユエータ 20, 20, …は、入力を受け付けたトルク値に基づ 、て作動する。  [0064] As shown in Equation 5 below, the drive control device 3 drives each joint 2, 2, ... based on a forward kinematic model defined by the Jacobian matrix with the target floor action force. Are converted into respective torque values of the respective actuators 20, 20,..., And the converted torque values are output as control target values to the respective actuators 20, 20,. Each of the actuators 20, 20,... Operates based on the received torque value.
[0065] [数 1]  [0065] [Equation 1]
T - (q)Tfp · · · (式 5 ) T-(q) T f p (5)
但し、 て :夫々のァクチユエータ 2 , 2 , …に対するトルク値  Where: Torque value for each actuator 2, 2, ...
q : q & R"である関節角度及び胴体部の姿勢  q: q & R "joint angle and body posture
( nは関節及び胴体部の姿勢の数)  (n is the number of postures of joints and torso)
J{q): J{q) e R3x"である重心から接触点までのヤコビ行列 J (q): J {q) e R 3x "Jacobi matrix from the center of gravity to the contact point
fp : 目標とする床作用力 f p : Target floor force
[0066] 式 5に示す様に各関節の夫々のァクチユエータ 20, 20,…の制御目標値となるトル ク値は、転置行列を用いて算出することができる。また算出の過程で逆行列の計算を 用いていないため、解が発散することがない。実際の床反力が式 5にて算出される目 標とする床作用力の逆方向の力に一致する場合、本発明のロボット 1は、非常に簡 単な計算で所望の運動を達成することができ、また例えば自身のバランスを取ったり 、安定した姿勢制御を行ったりという様々な追従動作を行うことができる。なお実際に 床反力が床作用力の逆方向の力に一致する力否かの議論は、本願発明者らが既に 検討し、公開している。 [0066] As shown in Equation 5, torque values that are control target values of the respective actuators 20, 20,... Of each joint can be calculated using a transposed matrix. In addition, the solution does not diverge because the inverse matrix is not used in the calculation process. The eyes where the actual floor reaction force is calculated using Equation 5. The robot 1 according to the present invention can achieve a desired motion with a very simple calculation when it corresponds to the force in the opposite direction of the target floor acting force. For example, the robot 1 can balance itself or be stable. Various follow-up operations such as performing posture control can be performed. In addition, the inventors of the present application have already examined and published a discussion about whether or not the floor reaction force actually matches the force in the opposite direction of the floor action force.
[0067] ロボット 1は、歩行等の様々な動作を行うので、常に ZMPの一点で床と接触してい る訳ではな 、。そこで次に複数の接触点で床と接触して 、る状況下での本発明の口 ボット 1の制御について説明する。図 5は、本発明の実施の形態 1に係るロボット 1及 びロボット 1に係る床作用力を模式的に示す説明図である。図 5に例示したロボット 1 において、床作用力 f は、重心 CoMから ZMPの方向へのベクトルとして示されてい  [0067] Since the robot 1 performs various actions such as walking, it is not always in contact with the floor at one point of the ZMP. Then, the control of the mouth bot 1 of the present invention under the situation where the floor is contacted at a plurality of contact points will be described. FIG. 5 is an explanatory diagram schematically showing the robot 1 according to Embodiment 1 of the present invention and the floor acting force related to the robot 1. FIG. In the robot 1 illustrated in Fig. 5, the floor force f is shown as a vector from the center of gravity CoM to the direction of ZMP.
p  p
る。図 5において床等の外部環境に接触する点の集合を考える。脚部 10の接触部を 、床面に接触する複数の接触点の集合とみなし、脚部 10の接触部の中の特定の a個 の接触点に注目し、各接触点の位置ベクトルを、 X座標、 y座標及び z座標による三次 元の座標系を用いた下記の式 6にて定義する。  The Consider the set of points in contact with the external environment such as the floor in Fig. 5. The contact part of the leg part 10 is regarded as a set of a plurality of contact points that contact the floor surface, and a particular a contact point in the contact part of the leg part 10 is noticed. This is defined by Equation 6 below using a three-dimensional coordinate system based on the X, y, and z coordinates.
[0068] r = [r , r , · ··, r ]T≡RSa …(式 6) [0068] r = [r 1, r 2,..., R] T ≡R Sa (Formula 6)
S SI S2 Sa  S SI S2 Sa
但し、 r:各接触点 Sj (j = l, 2, · ··, a)の位置ベクトル  Where r is the position vector of each contact point Sj (j = l, 2, ..., a)
Sj  Sj
[0069] そして接触点の集合の中の特定の接触点に注目し、床作用力を注目した接触点に 掛カる力の合力と見なすことにより、床作用力 f  [0069] Then, by paying attention to a specific contact point in the set of contact points, and considering the floor action force as a resultant force applied to the contact point, the floor action force f
Pは、下記の式 7にて定義することが できる。  P can be defined by Equation 7 below.
[0070] [数 2] [0070] [Equation 2]
fp -∑fSj . · · (式 7 ) fp -∑f Sj . (Equation 7)
ゾ =1  Z = 1
但し、 fSj :接触点 (ゾ · = 1,2,…めに掛かる力 Where f Sj : contact point (zo · 1, 2, ... force applied to the first
[0071] 例えば図 5に示すロボット 1は、踵から爪先までが直方体状をなす足先部の足裏に 相当する部位を脚部の接触部としており、脚部の接触部の中で、右脚部の足先部の 右先端 S 、左先端 S 、右後端 S 及び左後端 S 、並びに左脚部の足先部の右先 端 S 、左先端 S 、右後端 S 及び左後端 S を注目した接触点としている。 [0071] For example, in the robot 1 shown in Fig. 5, a portion corresponding to the sole of the toe that forms a rectangular parallelepiped from the heel to the toe is used as the contact portion of the leg portion. Right tip S, left tip S, right rear end S and left rear end S, and right tip of the foot part of the left leg Edge S, left tip S, right rear end S, and left rear end S are considered contact points.
5 6 7 8  5 6 7 8
[0072] なお歩行等の運動を行うロボット 1の接触点の個数は常に一定ではない。例えば口 ボット 1が歩行運動を行う場合、遊脚は、床面に接触していないので、支持脚側の接 触点のみに床作用力が分配される。さらに床面に接触して 、ない遊脚についても、 支持脚と同様に仮想的な接触点を式 8に示す様に定義する。  [0072] Note that the number of contact points of the robot 1 that performs a movement such as walking is not always constant. For example, when mouth bot 1 performs a walking motion, since the free leg is not in contact with the floor surface, the floor acting force is distributed only to the contact point on the support leg side. Furthermore, for a free leg that does not touch the floor, a virtual contact point is defined as shown in Equation 8, as with the support leg.
[0073] r = [r , r , · ··, r ]τ RSh …(式 8) [0073] r = [r, r, ···, r] τ R Sh (Equation 8)
F Fl F2 Fb  F Fl F2 Fb
但し、 r:各接触点 F (j = l, 2, · ··, b)の位置ベクトル  Where r: position vector of each contact point F (j = l, 2, ..., b)
Fj j  Fj j
[0074] これらの仮想的な接触点は、実際に外部環境に接触する点又は外部環境に接触 しないが空間上を運動する点の座標を用いる。例えば図 5に示す様に両方の脚部 1 0, 10で床に接触しているロボット 1では、 a = 8, b = 0である力 一方の脚部 10が遊 脚となると、 a=4, b=4となる。また爪先、踵等の脚部 10の一部のみが外部環境と 接触している場合は、更に変化する。また掌にも足裏と同様に仮想的な接触点を想 定すると、 b = 8となる。また ZMPの位置ベクトルの X座標及び y座標は、下記の式 9 及び式 10にて示すことができる。なおロボット 1が平坦な床面上で外部環境と接触し て 、る場合、 ZMPの位置ベクトルの z座標はゼロである。  [0074] For these virtual contact points, the coordinates of points that actually contact the external environment or points that do not contact the external environment but move in space are used. For example, as shown in Fig. 5, in the robot 1 that is in contact with the floor with both legs 1 0 and 10, a force of a = 8, b = 0. When one leg 10 becomes a free leg, a = 4 , b = 4. Further, when only a part of the leg 10 such as the toe and the heel is in contact with the external environment, the change further occurs. Assuming a virtual contact point on the palm as well as the sole, b = 8. Also, the X and y coordinates of the ZMP position vector can be expressed by Equation 9 and Equation 10 below. If the robot 1 is in contact with the external environment on a flat floor, the z coordinate of the ZMP position vector is zero.
[0075] [数 3] [0075] [Equation 3]
X X
p (式 9)  p (Equation 9)
yp
Figure imgf000019_0001
(式 10)
yp
Figure imgf000019_0001
(Formula 10)
S S
xp: ZMゾPの x座標 x p: x-coordinate of the ZM zone P
XSj :接触点 'の X座標 f∑Si :接触点 'に掛かる z方向の力 yp: ZMPの y座標 ySj :接触点 'の y座標 X Sj : X coordinate of contact point 'f ∑ Si : Force in z direction applied to contact point' y p : Y coordinate of ZMP y Sj : Y coordinate of contact point '
[0076] なお上述した式 7、式 9及び式 10は、 Z方向の力関係式として下記の式 11に纏める ことが可能である。また X方向及び Y方向の力関係として下記の式 12及び式 13を仮 定する。これは Z方向の力が大きい接触点ほど相応に大きい水平接触力、即ち摩擦 力が割り当てられるにするための処置である。 [0076] It should be noted that Equation 7, Equation 9, and Equation 10 described above can be summarized as Equation 11 below as a force relationship equation in the Z direction. The following formulas 12 and 13 are assumed as the force relationship in the X and Y directions. This is a measure for assigning a correspondingly large horizontal contact force, that is, a frictional force, to a contact point with a larger force in the Z direction.
[0077] [数 4] [0077] [Equation 4]
fZP (式 1 1 ) f Z P (Equation 1 1)
xP (式 1 2 )
Figure imgf000020_0002
xP (Equation 1 2)
Figure imgf000020_0002
Figure imgf000020_0001
f yS\
Figure imgf000020_0001
f yS \
ysa  ysa
ム yP (式 1 3 )  YP (Equation 1 3)
1 1 i 1 1 i
Figure imgf000020_0003
Figure imgf000020_0003
2xa  2xa
AyeR A y eR
[0078] また床反力に対する床作用力を各接触点に配分する際、各接触点に配分する目 標となる力は、下記の式 14、式 15及び式 16を用いてノルム最小規範に基づき最適 配分される様に決定する。これにより相殺し合う大きな力の発生を防止する。なお口 ボット 1が、踵又は爪先立ち、逆立ち、四つん這い等の姿勢をとる場合、姿勢に基づ く接触状態に応じて各接触点に床反力が配分される。即ち下記の式 14、式 15及び 式 16を用いた演算により、目標となる ZMP及び目標となる床作用力に基づいて、各 接触点に作用させる目標作用力を算出する。 [0078] Further, when the floor acting force with respect to the floor reaction force is distributed to each contact point, the target force to be distributed to each contact point is the norm minimum norm using Equation 14, Equation 15, and Equation 16 below. The optimal allocation is determined based on this. This prevents the generation of large forces that cancel each other. When mouth bot 1 takes a posture such as standing or standing on its toe, standing upside down, or crawling on all fours, the floor reaction force is distributed to each contact point according to the contact state based on the posture. In other words, the target action force to be applied to each contact point is calculated based on the target ZMP and the target floor action force by the calculation using the following expressions 14, 15, and 16.
[0079] [数 5] (式 1 4 ) [0079] [Equation 5] (Formula 14)
(式 1 5 ) (Formula 15)
(式 1 6 )(Formula 1 6)
Figure imgf000021_0001
Figure imgf000021_0001
ί旦し、 Af = A (Af Aty ( = χ,γ,ζ) Af = A (Af A t y (= χ, γ, ζ)
[0080] なお各接触点に作用させる目標作用力に対し、例えば右脚の爪先に 80%及び左 足の踵に 20%という様に任意の重みを設定することも可能である。具体的には、式 1 4、式 15及び式 16にて用いられている行列 A #を、下記の式 17にて示す様に任意 の重み係数行列の逆行列を用いて定義し、式 14、式 15及び式 16を変形することに より、重み付きノルム最小規範に基づく目標作用力の配分を行うことが可能である。 [0080] It is also possible to set an arbitrary weight for the target acting force acting on each contact point, for example, 80% for the toe of the right leg and 20% for the heel of the left foot. Specifically, the matrix A # used in Equations 14, 4, and 16 is defined using an inverse matrix of an arbitrary weight coefficient matrix as shown in Equation 17 below. By modifying Equations 15 and 16, it is possible to distribute the target acting force based on the weighted norm minimum criterion.
[0081] A #= (A T W_1A )_1A T W_1 …(式 17) [0081] A # = (A T W _1 A) _1 A T W _1 … (Formula 17)
但し、 W:重み係数行列  Where W: Weight coefficient matrix
[0082] なお重み係数行列を使用する場合、接触点 Sに掛かる目標接触力の転置行列、重 み係数行列及び目標接触力を示す行列の積として示される最適評価関数の値が、 最小となる様に目標接触力が定義される。目標接触力は行行列であり、その転置行 列は列行列であるため、最適評価関数の値はスカラー量である。  [0082] When the weight coefficient matrix is used, the value of the optimal evaluation function indicated as the product of the transposed matrix of the target contact force applied to the contact point S, the weight coefficient matrix, and the matrix indicating the target contact force is minimized. The target contact force is defined as follows. Since the target contact force is a row matrix and the transposed matrix is a column matrix, the value of the optimal evaluation function is a scalar quantity.
[0083] そして駆動制御装置 3は、上述した式 7、式 9及び式 10並びに式 14、式 15及び式 16に基づいて、床作用力がノルム最小規範に基づき最適配分される様に各接触点 に掛力る力を導出し、各接触点に掛かる力に配分した床作用力を、ヤコビ行列にて 規定される順運動学モデルに基づいて、下記の式 18に示す様に各関節を駆動する 各ァクチユエータ 20, 20,…の夫々のトルク値に変換し、変換した夫々のトルク値を 、駆動機構 4を介して各ァクチユエータ 2, 2,…に制御目標値として出力する。そして 各ァクチユエータ 20, 20,…は、入力を受け付けたトルク値に基づいて作動する。 [0083] Then, the drive control device 3 makes contact with each other so that the floor action force is optimally distributed based on the norm minimum norm based on the above-described Equation 7, Equation 9, Equation 10, and Equation 14, Equation 15, and Equation 16. The force acting on the point is derived, and the floor acting force distributed to the force applied to each contact point is expressed in the Jacobian matrix. Based on the specified forward kinematics model, the respective torque values of the respective actuators 20, 20,... That drive each joint are converted to the respective torque values as shown in the following equation 18, and the converted torque values are converted into the drive mechanisms. 4 is output as a control target value to each actuator 2, 2,. Each of the actuators 20, 20,... Operates based on the torque value received.
[0084] [数 6] て: q、T fs · . ' (式 1 8 ) 但し、 ( e R :重心から複数の接触点までの位置べクトル に関する ヤコビ行列 [0084] [Equation 6]: q, T f s ·. '(Equation 1 8) where (e R: Jacobian matrix for the position vector from the center of gravity to multiple contact points
fs : 目標接触力 f s : Target contact force
[0085] 各ァクチユエータ 20, 20,…が入力を受け付けたトルク値に基づいて作動すること により、本発明のロボット 1は、歩行等の運動時に安定した動作を行う。 [0085] As each of the actuators 20, 20, ... operates based on the torque value received as input, the robot 1 of the present invention performs a stable operation during exercise such as walking.
[0086] 次に本発明のロボット 1において、内部運動を抑制する制御方法について説明する 。関節等の連結部 2, 2,…の数が多いロボット 1に対して式 5又は式 18を用いて各ァ クチユエータ 20, 20,…のトルク値を算出する場合、関節の冗長自由度が高くなるた め、幾つかの関節の目標トルクがゼロ又はゼロの近似値をとり、意に反して関節が稼 動する内部運動が発生する可能性がある。そこで本発明の駆動制御装置 3は、内部 運動を抑制する抑制力項を設けた下記の式 19を用いて各ァクチユエータ 20, 20, …のトルク値を算出する。  Next, a control method for suppressing internal motion in the robot 1 of the present invention will be described. When calculating the torque value of each actuator 20, 20, ... using Equation 5 or Equation 18 for the robot 1 with many joints 2, 2,…, etc., the degree of freedom of joint redundancy is high. As a result, the target torque of some joints may be zero or an approximate value of zero, and there is a possibility that an internal motion will occur where the joints operate unexpectedly. Therefore, the drive control device 3 of the present invention calculates the torque values of the respective actuators 20, 20,... Using the following equation 19 provided with a suppression force term that suppresses internal motion.
[0087] [数 7]
Figure imgf000022_0001
- (q, q) + ra · · · (式 1 9 )
[0087] [Equation 7]
Figure imgf000022_0001
-(q, q) + r a (Equation 1 9)
但し、 C(q,q) :抑制力項 q :関節角速度 τη :任意設定トルク 式 19は、上述の式 18に抑制力項を設けた式であり、右辺の第 1項が式 18であり、 第 2項が抑制力項となる。なお抑制力項として最も単純なものは関節毎にダンピング を設けたものであり、関節毎のダンピング係数を行列として示した下記の式 20にて示 される。 However, C (q, q): Suppression force term q: Joint angular velocity τ η : Arbitrary set torque Equation 19 is an equation in which the suppression force term is added to the above-mentioned Equation 18, and the first term on the right side is Equation 18. Yes, the second term is the restraining force term. The simplest suppression term is damping for each joint. The following equation 20 shows the damping coefficient for each joint as a matrix.
[0089] [数 8] [0089] [Equation 8]
^ ^ Jsiqf fs - Dq + Ta · · · (式 2 0 ) ^ ^ Jsiqf f s -Dq + T a (Equation 2 0)
伹し、 D : D = diag{dx, … ί„ ) > 0であるダンピング係数行列 And D: D = diag {d x ,… ί „)> 0 Damping coefficient matrix
[0090] 式 20に示す様に、ダンピング係数として各ァクチユエータ 20, 20,…に対して任意 の摩擦係数を設定することにより、動作を意図しないァクチユエータ 20, 20,…の自 由運動に基づく内部運動を抑制する。 τ [0090] As shown in Equation 20, by setting an arbitrary friction coefficient as a damping coefficient for each of the actuators 20, 20, ..., an internal motion based on the free movement of the actuators 20, 20, ... not intended to operate Suppress movement. τ
aは、トルク値の目標値を補正すべく必要に 応じて任意の値を設定することが可能な値であり、例えば局所的な姿勢及び角度を 指定したい場合に用いられる。この様にして抑制力項を設けた数式にて算出した各 ァクチユエータ 20, 20, …のトルク値に基づいて駆動制御装置 3が制御することによ り、本発明のロボット 1は、内部運動が抑制され、操作者の意図に従った動作を行う。 なお上述の式 5に抑制力項を設けた式を用いる様にしても良い。  “a” is a value that can be set to an arbitrary value as necessary to correct the target value of the torque value. For example, a is used when a local posture and an angle are desired to be specified. In this way, the drive control device 3 controls based on the torque values of the respective actuators 20, 20,... Calculated by the mathematical formula with the restraining force term. Suppressed and performed according to the operator's intention. Note that an expression in which the suppression force term is provided in the above expression 5 may be used.
[0091] 次に本発明のロボット 1において、外力に対して柔軟に動作する制御方法について 説明する。本発明の駆動制御装置 3は、下記の式 21に示す様に、ロボット 1の重心に 掛かる重力を補償すベぐ床作用力の目標値に重力を加味する項を設けてロボット 1 を制御する。重力を補償する制御を行うことにより、ロボット 1は、床に接触しているこ とを条件として無重力の状態を模した動作を実現する。即ち本発明のロボット 1は、外 力に対して反発するのではなぐ外力に従 、外力方向に追従する動作を行う。  Next, a control method that operates flexibly with respect to an external force in the robot 1 of the present invention will be described. The drive control device 3 of the present invention controls the robot 1 by providing a term that takes gravity into account for the target value of the floor acting force that compensates for the gravity applied to the center of gravity of the robot 1, as shown in Equation 21 below. . By performing control to compensate for gravity, the robot 1 realizes an operation that simulates the state of zero gravity on the condition that it is in contact with the floor. That is, the robot 1 of the present invention performs an operation of following the direction of the external force according to the external force that does not repel the external force.
[0092] [数 9] fP = Mg + fu · · · (式 2 1 ) 但し、 fP :重力補償制御時の床作用力 [0092] [Equation 9] f P = Mg + f u ··· (Equation 2 1) where f P : floor acting force during gravity compensation control
fu :任意設定力 [0093] 式 21において、任意設定力とは、ロボット 1の動作を制御すべく任意に設定するこ とが可能な目標作用力であり、例えば目標運動情報として、ロボット 1に重心を下げる 動作を行わせる情報を受け付けた場合、下向きの力として任意設定力を設定する。 f u : Arbitrary setting force [0093] In Equation 21, the arbitrarily set force is a target acting force that can be arbitrarily set to control the operation of the robot 1. For example, as the target motion information, an operation to lower the center of gravity on the robot 1 is performed. When the information to be performed is accepted, an arbitrary setting force is set as the downward force.
[0094] 式 21及び前述の式 3に基づいて、下記の式 22を導出することができる。  [0094] Based on Equation 21 and Equation 3 described above, the following Equation 22 can be derived.
[0095] Md2 r /dt2 =f +f +f …(式 22) [0095] Md 2 r / dt 2 = f + f + f (Formula 22)
C D E u  C D E u
但し、 f :式 19右辺第 2項に基づく抑制力項  Where f is the restraining force term based on the second term on the right side of Equation 19
D  D
[0096] 式 22に示す様に式 21を考慮すると、見かけ上の重力の影響を排除することができ る。駆動制御装置 3は、式 21に示した様に重力を補償する床作用力を用いて算出し たァクチユエータ 20, 20,…の目標となるトルク値に基づいてロボット 1の制御を行う ことにより、ロボット 1は、外力に反発するのではなぐ外力に従って動作するので、外 力を緩和し、対人及び対物に対する衝突時の安全性を高め、例えばロボット 1に対し て人が外力を加えることにより動作方向を誘導することが可能となる。  [0096] Considering Equation 21 as shown in Equation 22, it is possible to eliminate the effect of apparent gravity. The drive control device 3 controls the robot 1 based on the target torque value of the actuators 20, 20,... Calculated using the floor acting force that compensates for gravity as shown in Equation 21. Since the robot 1 operates according to an external force that does not repel the external force, the external force is relaxed and safety at the time of a collision with the person and the object is increased. Can be induced.
[0097] 式 22に示した任意設定力は、上述した様にロボット 1が目標運動情報として受け付 けた情報力 導出される目標作用力である。 目標作用力の導出方法は、様々な方法 が提案されている力 例えば目標運動情報にて示される三次元空間におけるロボット 1の重心の目標位置及び目標速度から下記の式 23を用いて目標作用力を導出する ことができる。  [0097] The arbitrarily set force shown in Equation 22 is a target acting force that is derived as an information force received by the robot 1 as the target motion information as described above. There are various methods for deriving the target acting force. For example, the target acting force is calculated from the target position and the target velocity of the center of gravity of the robot 1 in the three-dimensional space indicated by the target motion information using the following equation (23). Can be derived.
[0098] [数 10] fu = KPC (rC ~ rc ) + KDC \rc - rc ) . . . (式2 3 ) [0098] [Expression 10] fu = K PC (r C ~ rc) + K DC \ r c -... R c) ( Equation 2 3)
但し、 KPC,KDC :正の定数 K PC , K DC : Positive constant
rc :重心 C o Mの位置べクトル r c : Center of gravity C o M position vector
fc :重心 C o Mの目標位置べクトル (目標位置) f c : Center of gravity C o M target position vector (target position)
rc :重心。 o Mの速度r c : Center of gravity. o M speed
c :重心 C o Mの目標速度  c: Target speed of center of gravity C o M
[0099] 式 23は、簡単な線形フィードバック則を用いた導出方法であるが、本発明の駆動 制御装置 3は、式 23以外の様々な導出方法にて任意設定力として扱われる目標作 用力を導出することが可能である。更に本発明の駆動制御装置 3は、任意設定力と なる目標作用力から下記の式 24に基づいて目標 ZMPを導出することができる。 [0099] Equation 23 is a derivation method using a simple linear feedback law. The controller 3 can derive the target working force that is treated as an arbitrarily set force by various derivation methods other than Equation 23. Furthermore, the drive control device 3 of the present invention can derive the target ZMP based on the following equation 24 from the target acting force that is an arbitrarily set force.
[0100] [数 11] 一 [0100] [Equation 11] One
Mg + f,  Mg + f,
(式 2 4 )  (Formula 2 4)
Mg +  Mg +
XP : 目標 Z M Pの x座標 X P : x coordinate of target ZMP
yP : 目標 Z M Pの y座標 y P : y coordinate of target ZMP
fm :任意設定力の X座標 f m : X coordinate of arbitrary setting force
fuy :任意設定力の y座標  fuy: y-coordinate of arbitrarily set force
[0101] なお式 24にて導出される目標 ZMPが接地、即ち外部環境に接触していない場合 、外部環境に接触する無数の接触点の集合の中で最も近 ヽ接触点を目標 ZMPとし て再導出し、再導出した目標 ZMPに基づいて、目標作用力を導出する。但し、目標 作用力の水平方向の力がゼロの場合、即ち単なる重力補償又は重心の垂直運動の みの場合、目標 ZMPの重心 CoMから見た X座標及び y座標は 、ずれもゼロとなる。 [0101] If the target ZMP derived from Equation 24 is grounded, that is, not in contact with the external environment, the closest contact point in the set of countless contact points in contact with the external environment is set as the target ZMP. Based on the derived ZMP again, the target acting force is derived. However, when the horizontal force of the target acting force is zero, that is, when only gravity compensation or vertical movement of the center of gravity is performed, the deviation of the X and y coordinates viewed from the center of gravity CoM of the target ZMP is zero.
[0102] 次に本発明のロボット 1において、床反力を更に高精度に制御する方法として、口 ボット 1に対する慣性力項、コリオリカ項、遠心力項等の非線形項を考慮した逆動力 学計算を行う方法がある。ロボット 1に対する非線形項を重心座標系で示したものが 下記の式 25である。  [0102] Next, in the robot 1 of the present invention, as a method of controlling the floor reaction force with higher accuracy, inverse dynamics calculation considering nonlinear terms such as inertial force term, Coriolis term, and centrifugal force term for the mouth bot 1. There is a way to do. Equation 25 below shows the nonlinear term for robot 1 in the barycentric coordinate system.
[0103] [数 12] (式 2 5 )
Figure imgf000026_0001
[0103] [Equation 12] (Formula 25)
Figure imgf000026_0001
E{q)qc = 但し、 I{q) :慣性行列 E (q) q c = where I (q) is the inertia matrix
C(q,q) :遠心力項及び転向力項 C (q, q): centrifugal force term and turning force term
id: 3 x 3の単位行列 id: 3 x 3 identity matrix
p iqf :重心から ZMPまでのヤコビ行列  p iqf: Jacobian matrix from the center of gravity to ZMP
[0104] 上記の式 25から床作用力は、下記の式 26を用いて計算することが可能である。 [0104] From Equation 25 above, the floor acting force can be calculated using Equation 26 below.
[0105] [数 13]
Figure imgf000026_0002
[0105] [Equation 13]
Figure imgf000026_0002
(式 2 6 )  (Formula 2 6)
d  d
1C  1C
[0106] 駆動制御装置 3は、式 26を (uの上方に 己号)について解くことにより、床作用 力の目標値力も各関節の夫々のァクチユエータ 20, 20,…のトルク値を算出すること ができる。但し、全ての非線形項、特にノイズの多い速度の二乗を含む項を正確に計 算することは困難であるため、適当なフィルタを用いて算出した推定値を用いる様に しても良い。なお前述した様に重力補償がなされているため、重力補償以外の動力 学計算に誤差が含まれている場合でも、高い追従性を期待することができる。 [0106] The drive control device 3 calculates the torque values of the respective actuators 20, 20,... Of each joint as well as the target value force of the floor action force by solving Equation 26 for (the self sign above u). Can do. However, since it is difficult to accurately calculate all nonlinear terms, particularly terms including the square of a noisy speed, an estimated value calculated using an appropriate filter may be used. Since gravity compensation is performed as described above, high follow-up can be expected even if errors are included in dynamic calculations other than gravity compensation.
[0107] 次に本発明のロボット 1において、外部環境に接触していない手部、脚部 10等の 四肢を使って様々な動作を行う場合における全身運動の制御方法について説明す る。図 6は、本発明の実施の形態 1に係るロボット 1及びロボット 1に係る仮想的な接触 力を模式的に示す説明図である。駆動制御装置 3は、入力を受け付けた目標運動情 報が示す運動等の目標とする運動として、例えば腕部又は脚部 10を空間上の所望 の位置に動かす到達運動を行う場合、例えば PD制御を施すことによって、ロボット 1 の仮想接触点を想定し、各仮想接触点に対して作用させる目標仮想接触力を導出 する。図 6では、目標とする運動に基づく仮想接触点 r及び目標仮想接触力 f を示 [0107] Next, a method for controlling the whole body movement when performing various motions using the extremities such as the hand portion and the leg portion 10 that are not in contact with the external environment in the robot 1 of the present invention will be described. FIG. 6 is an explanatory diagram schematically showing the robot 1 according to Embodiment 1 of the present invention and the virtual contact force related to the robot 1. FIG. The drive control device 3 uses, for example, the arm or leg 10 as a desired motion in the space as the target motion such as the motion indicated by the target motion information that has received the input. When performing a reaching movement to move to the position, for example, by performing PD control, a virtual contact point of the robot 1 is assumed, and a target virtual contact force to be applied to each virtual contact point is derived. Figure 6 shows the virtual contact point r and the target virtual contact force f based on the target motion.
Fj Fj している。そして駆動制御装置 3は、求められた目標仮想接触力 f から、例えば下記  Fj Fj. Then, the drive control device 3 calculates, for example, the following from the obtained target virtual contact force f
Fj  Fj
の式 27に基づいて各ァクチユエータ 20, 20,…のトルク値を算出することができる。  Based on Equation 27, the torque values of the respective actuators 20, 20,... Can be calculated.
[0108] [数 14] て f Aq††F · · · (式 2 7 ) [0108] [Equation 14] f Aq †† F · · · (Equation 2 7)
但し、 JF(g) :仮想接触点に関するヤコビ行列 fF : 目標仮想接触力 Where J F (g): Jacobian matrix related to virtual contact point f F : Target virtual contact force
[0109] 但し、このように定めた仮想接触力の総和は重心に対して反作用力となるため、バ ランスに対して悪影響をもたらす可能性がある。そこでこの力を補償しなくてはならな い。そのためには、式 21の目標床作用力からこの仮想作用力の総和を引き算したも のを改めて目標作用力とする。なお図 6に示した仮想接触点!:という概念を導入し、 [0109] However, since the sum of the virtual contact forces determined in this way becomes a reaction force with respect to the center of gravity, there is a possibility of adversely affecting the balance. So this force must be compensated. For this purpose, the target acting force is again obtained by subtracting the sum of the virtual acting forces from the target floor acting force in Equation 21. The virtual contact point shown in Figure 6:
Fj  Fj
式 27に示したヤコビ行列を用いて計算するのではなぐ前述した接触点 rが接触し ていると仮定して、接触点 rに係る数式を用いて計算する様にしても良ぐその場合 、式 27に示したヤコビ行列を用いた計算は不要となる。  Rather than calculating using the Jacobian matrix shown in Equation 27, assuming that the contact point r described above is in contact, it may be possible to calculate using the equation related to the contact point r. The calculation using the Jacobian matrix shown in Equation 27 is not necessary.
[0110] またロボット 1が歩行運動等の運動を行う場合、支持脚の接触力は並進力に相当す る床作用力のみならず、回転力に相当する床作用モーメントを発生させる際にも利 用できる。なぜなら接触力は複数あるのでこれらを対に組合せてモーメントを発生さ せることができる力らである。接触部に対してモーメントを適切に発生させることによつ て、例えばロボット 1の方位を制御することができる。 [0110] Further, when the robot 1 performs a movement such as a walking movement, the contact force of the support leg is useful not only for generating a floor action force corresponding to a translational force but also for generating a floor action moment corresponding to a rotational force. Can be used. Because there are multiple contact forces, these can be combined to generate moments. For example, the orientation of the robot 1 can be controlled by appropriately generating a moment with respect to the contact portion.
[0111] 次に本発明の実施の形態 1に係る駆動制御装置 3を用いたロボット 1の制御処理に ついて説明する。図 7は、本発明の実施の形態 1に係るロボット 1が備える駆動制御 装置 3の処理を示すフローチャートである。ロボット 1に対する操作を行う操作者は、 倒れない様に姿勢を維持するバランス運動、屈伸動作、手先又は足先を目標物に到 達させるリーチングタスク運動等の運動を示す目標運動情報をロボット 1の駆動制御 装置 3に入力する。目標運動情報の入力は、例えば操作者がロボット 1用のコント口 ーラを操作し、コントローラ力も有線又は無線の通信にて、目標運動情報を駆動制御 装置 3へ送信することにより行われる。本発明のロボット 1が備える駆動制御装置 3は 、制御手段 30の制御により、入力手段 35にて目標運動情報の入力を受け付ける (ス テツプ Sl)。ステップ SIでは、例えばコントローラ力も無線通信にて送信される目標 運動情報を、入力手段 35にて受信することにより、入力の受付が行われる。駆動制 御装置 3は、受け付けた目標運動情報が示す屈伸運動等の情報から、予め記録され ている運動の対応関係を示す設定に基づいて、ロボット 1の各部位の動きを示す情 報に変換することで、運動に係る動作を認識する。なお目標運動情報ではなぐ目標 作用力及び目標 ZMPをロボット 1に入力し、ステップ S1において、入力手段 35は、 入力された目標作用力及び目標 ZMPを受け付ける様にしても良 、。 Next, control processing of the robot 1 using the drive control device 3 according to Embodiment 1 of the present invention will be described. FIG. 7 is a flowchart showing the processing of the drive control device 3 provided in the robot 1 according to Embodiment 1 of the present invention. An operator who operates the robot 1 reaches the target object with a balance motion, bending / extending motion, hand or foot to maintain the posture so as not to fall down. The target motion information indicating the motion such as the reaching task motion to be reached is input to the drive control device 3 of the robot 1. The input of the target motion information is performed, for example, when the operator operates the controller for the robot 1 and transmits the target motion information to the drive control device 3 through wired or wireless communication. The drive control device 3 included in the robot 1 of the present invention receives input of target motion information by the input means 35 under the control of the control means 30 (step Sl). In step SI, for example, the input means 35 receives input of the target motion information that is also transmitted by wireless communication with the controller force, thereby accepting the input. The drive control device 3 converts the bending / extension movement information indicated by the received target movement information into information indicating the movement of each part of the robot 1 based on the setting indicating the correspondence relation of the movement recorded in advance. By recognizing, the movement related movement is recognized. The target acting force and the target ZMP other than the target motion information may be input to the robot 1, and in step S1, the input means 35 may accept the inputted target acting force and target ZMP.
[0112] ロボット 1が備える駆動制御装置 3は、制御手段 30の制御により、受け付けた目標 運動情報が示す目標とする運動に従って、目標とする作用力及び目標とする ZMP を導出する (ステップ S2)。ステップ S2では、例えば前述の式 23に基づいて目標とす る作用力、ここでは床作用力を導出し、また式 24に基づいて目標とする ZMPを導出 する。なお式 8或いは図 6を用いた説明に示す様に仮想的な接触点を想定し、目標 ZMP及び目標作用力を導出する様にしても良い。なお前述した様に目標作用力の 導出方法は、式 23以外の方法を用いても良ぐ目標 ZMPの導出方法は、式 24以外 の方法を用いても良い。また目標作用力の算出に際しては、必要に応じて前述の式 21に基づく重力補償、式 22に基づく任意設定力、更には式 25及び式 26に基づく 慣性力、コリオリカ、遠心力等の非線形項に係る力が加味される。なお導出した目標 作用力及び目標 ZMPは、記憶手段 32に設定値として記憶される。ステップ S1で入 力手段 35が、目標作用力及び目標 ZMPを受け付けている場合、ステップ S2の処理 は、受け付けた目標作用力及び目標 ZMPから、以降の処理で取扱可能な形式のデ ータを導出する処理となる。また目標作用力のみを受け付け、目標作用力から式 24 を用いて目標 ZMPを導出する様にしても良 、。  [0112] The drive control device 3 included in the robot 1 derives the target acting force and the target ZMP according to the target motion indicated by the received target motion information under the control of the control means 30 (step S2). . In step S2, for example, the target acting force, in this case, the floor acting force is derived based on the above-described Equation 23, and the target ZMP is derived based on Equation 24. Note that, as shown in the explanation using Expression 8 or FIG. 6, a virtual contact point may be assumed and the target ZMP and the target acting force may be derived. As described above, a method other than Equation 23 may be used as the method of deriving the target acting force. A method other than Equation 24 may be used as the method of deriving the target ZMP. When calculating the target acting force, if necessary, gravity compensation based on Equation 21 above, arbitrarily set force based on Equation 22, and nonlinear terms such as inertial force, Coriolis, centrifugal force, etc. based on Equation 25 and Equation 26. Is taken into account. The derived target acting force and target ZMP are stored in the storage means 32 as set values. When the input means 35 accepts the target applied force and target ZMP in step S1, the process in step S2 performs the processing in the format that can be handled in the subsequent processes from the received target applied force and target ZMP. Derived processing. It is also possible to accept only the target acting force and derive the target ZMP from the target acting force using Equation 24.
[0113] そして本発明のロボット 1が備える駆動制御装置 3は、制御手段 30の制御により、 前述の式 5、更には、式 7、式 9及び式 10並びに式 14、式 15及び式 16に基づいて、 設定した作用力がノルム最小規範に基づき最適配分される様に各接触部に掛かる 力を導出し (ステップ S3)、前述の式 18に基づいて、各接触部に掛カる力に配分し た作用力から、各連結部 2, 2,…を駆動する各ァクチユエータ 20, 20,…の夫々の 制御目標値としてトルク値を算出する (ステップ S4)。 [0113] Then, the drive control device 3 provided in the robot 1 of the present invention is controlled by the control means 30, Based on Equation 5, Equation 9, Equation 9, Equation 10, Equation 14, Equation 15, and Equation 16, the applied force is applied to each contact so that it is optimally distributed based on the norm minimum criterion. The force is derived (step S3), and the actuators 20, 20, 20 that drive the connecting portions 2, 2,. Torque values are calculated as the control target values of (Step S4).
[0114] そして本発明のロボット 1が備える駆動制御装置 3は、制御手段 30の制御により、 算出したトルク値を制御目標値として、出力手段 34から駆動機構 4, 4,…を介して夫 々のァクチユエータ 20, 20,…へ出力する(ステップ S5)。そして各ァクチユエータ 2 0, 20,…は、制御目標値としてトルク値を受け付け、受け付けたトルク値に基づいて 作動する。 Then, the drive control device 3 provided in the robot 1 of the present invention controls the control means 30 to use the calculated torque value as a control target value from the output means 34 via the drive mechanisms 4, 4,. Are output to 20, 20, 20, ... (step S5). Each of the actuators 20, 20,... Receives a torque value as a control target value and operates based on the received torque value.
[0115] 次に本発明のロボットに関する模擬実験結果について説明する。図 8は、本発明の 実施の形態 1に係るロボットの屈伸運動を模式的に示す外観図である。図 8は、本発 明の模擬実験として想定した屈伸運動を示しており、ロボットは、図 8 (a)、図 8 (b)、 図 8 (c)、図 8 (d)、そして図 8 (e)の順で繰り返し動作する。  [0115] Next, simulation experiment results regarding the robot of the present invention will be described. FIG. 8 is an external view schematically showing the bending and stretching motion of the robot according to the first embodiment of the present invention. Fig. 8 shows the bending and stretching motion assumed as a simulation experiment of the present invention. The robot is shown in Fig. 8 (a), Fig. 8 (b), Fig. 8 (c), Fig. 8 (d), and Fig. 8 Operates repeatedly in the order of (e).
[0116] 図 9は、本発明の実施の形態 1に係るロボットの模擬実験において屈伸運動の動作 を示す値の経時変化を示すグラフである。図 9 (a)は、図 8に示す屈伸運動において 、ロボットの重心の高さ Z の経時変化を示すグラフであり、図 9 (b)は、直立時を基準  [0116] FIG. 9 is a graph showing a change with time of the value indicating the bending / extending motion in the simulation experiment of the robot according to Embodiment 1 of the present invention. Fig. 9 (a) is a graph showing the change over time in the height Z of the center of gravity of the robot during the bending and stretching movements shown in Fig. 8, and Fig. 9 (b) is based on the upright position.
C  C
としたロボットの体幹の前後方向の角度 Φ 及び左右方向の角度 Φ の経時変化を  The time-dependent changes in the longitudinal angle Φ and the horizontal angle Φ of the trunk of the robot
P r  P r
示すグラフである。図 9 (a)に示す様に、ロボットは、重心の高さが正弦曲線に基づい て変化する屈伸運動を行う様に制御されており、また図 9 (b)に示す様に、ロボットは 、体幹の前後及び左右の角度が正弦曲線に基づいて変化する屈伸運動を行う様に 制御されている。なお図 9に示した模擬実験において制御に係る各関節の目標値は 、夫々の関節の可動範囲内で任意に設定される。  It is a graph to show. As shown in Fig. 9 (a), the robot is controlled to perform bending and stretching movements in which the height of the center of gravity changes based on a sine curve, and as shown in Fig. 9 (b), the robot It is controlled to perform bending and stretching movements in which the angle of the trunk is changed based on the sine curve. In the simulation experiment shown in FIG. 9, the target value of each joint related to control is arbitrarily set within the movable range of each joint.
[0117] 図 10は、本発明の実施の形態 1に係るロボットの模擬実験において屈伸運動中の 重心及び ZMPの経時変化を示すグラフである。図 10 (a)は、図 8に示す屈伸運動に おいて、両脚の中心を原点としたロボットの重心の X座標 X の経時変化及び ZMPの [0117] FIG. 10 is a graph showing the time-dependent changes in the center of gravity and ZMP during bending and stretching in the simulation experiment of the robot according to Embodiment 1 of the present invention. Figure 10 (a) shows the time-dependent change in the X-coordinate X of the center of gravity of the robot with the origin at the center of both legs and the ZMP
c  c
X座標 X の経時変化を示すグラフであり、図 10 (b)は、両脚の中心を原点とした重心 Fig. 10 (b) is a graph showing the change with time of the X coordinate X.
P P
の y座標 y の経時変化及び ZMPの y座標 y の経時変化を示すグラフである。 x座標 は、ロボットの前後方向を示す座標であり、 y座標は、ロボットの左右方向を示す座標 である。図 10は、図 9に示す屈伸運動を行った場合の重心及び ZMPの変化を示し ている。図 9及び図 10からロボットが屈伸運動中、 ZMPは前後左右に揺れ動くが、 重心はほぼ一定していることが読み取れる。これは本発明のロボットが、屈伸運動中 に前後左右に荷重を掛けることで重心が安定する様に制御されているためである。 6 is a graph showing the time-dependent change of y-coordinate y and the time-dependent change of ZMP y-coordinate y. x coordinate Is a coordinate indicating the front-rear direction of the robot, and y-coordinate is a coordinate indicating the left-right direction of the robot. Fig. 10 shows the changes in the center of gravity and ZMP when the bending and stretching movements shown in Fig. 9 are performed. 9 and 10, it can be seen that while the robot is bending and stretching, the ZMP swings back and forth and left and right, but the center of gravity is almost constant. This is because the robot of the present invention is controlled so that the center of gravity is stabilized by applying a load to the front, rear, left and right during bending and stretching movements.
[0118] 図 11は、本発明の実施の形態 1に係るロボットの脚上げ運動を模式的に示す外観 図である。図 11は、本発明の模擬実験として想定した脚上げ運動を示しており、ロボ ットは、 011 (a)に示す様に自らの右前方に片脚を上げた後、図 11 (b)、図 11 (c)、 そして図 11 (d)の順で上げた脚を降ろす動作を繰り返し行う。なお図 11に示した模 擬実験において制御に係る各関節の目標値は、夫々の関節の可動範囲内で任意に 設定される。 [0118] FIG. 11 is an external view schematically showing the leg-raising motion of the robot according to Embodiment 1 of the present invention. Fig. 11 shows the leg-lifting motion assumed as a simulation experiment of the present invention. The robot lifts one leg to its right front as shown in 011 (a), and then Fig. 11 (b) Fig. 11 (c) and Fig. 11 (d) are repeated in the order of lowering the legs. In the simulation experiment shown in FIG. 11, the target value of each joint related to control is arbitrarily set within the movable range of each joint.
[0119] 図 12は、本発明の実施の形態 1に係るロボットの模擬実験において脚上げ運動中 の脚の位置の経時変化を示すグラフである。図 12は、図 11に示す脚上げ運動にお いて、支持脚の足裏を原点として遊脚側の足先の X座標 X 、  [0119] FIG. 12 is a graph showing a change with time of the position of the leg during the leg raising exercise in the simulation experiment of the robot according to Embodiment 1 of the present invention. Fig. 12 shows the X-coordinate X of the toe on the free leg side, with the sole of the support leg as the origin in the leg raising movement shown in Fig. 11.
F y座標 y F及び z座標 z F の経時変化を示すグラフである。図 12に示す様に、ロボットは、足先の位置が滑らか な曲線に基づいて移動する様に脚上げ運動を行う。  It is a graph which shows a time-dependent change of Fy coordinate yF and z coordinate zF. As shown in Fig. 12, the robot performs a leg-lifting motion so that the position of the toes moves based on a smooth curve.
[0120] 図 13は、本発明の実施の形態 1に係るロボットの模擬実験において脚上げ運動を 示す値の経時変化を示すグラフである。図 13 (a)は、図 11に示す脚上げ運動にお いて、支持脚の足裏を原点としたロボットの重心の X座標 X [0120] FIG. 13 is a graph showing a change with time of a value indicating the leg raising motion in the simulation experiment of the robot according to Embodiment 1 of the present invention. Fig. 13 (a) shows the X coordinate X of the center of gravity of the robot with the sole of the support leg as the origin in the leg raising motion shown in Fig. 11.
C及び y座標 y Cの経時変 化を示すグラフであり、図 13 (b)は、重心の z座標 z の経時変化を示すグラフであり  Fig. 13 (b) is a graph showing changes over time in the z-coordinate z of the center of gravity.
C  C
、図 13 (c)は、体幹の前後方向の角度 φ 、左右方向の角度 φ 及びョー軸姿勢角  Fig. 13 (c) shows the trunk's front-rear angle φ, left-right angle φ,
P r  P r
度 φ の経時変化を示すグラフである。図 13は、図 12に示す脚上げ運動を行った場 y  It is a graph which shows a time-dependent change of degree (phi). Fig. 13 shows the result of the leg raising exercise shown in Fig. 12.
合の各種値の変化を示しており、本発明のロボットは、脚上げ運動中においても安定 した制御を行うことが可能である。  The robot of the present invention can perform stable control even during the leg raising motion.
[0121] 図 14は、本発明の実施の形態 1に係るロボットの模擬実験において歩行運動を示 す値の経時変化を示すグラフである。図 14 (a)は、ロボットの重心の X座標方向の速 度 dx Zdt、 y座標方向の速度 dy Zdt及び z座標方向の速度 dz Zdtの経時変 FIG. 14 is a graph showing a change with time of a value indicating walking motion in the simulation experiment of the robot according to Embodiment 1 of the present invention. Fig. 14 (a) shows the robot center of gravity speed in the X coordinate direction dx Zdt, the speed in the y coordinate direction dy Zdt, and the speed in the z coordinate direction dz Zdt over time.
C C C C C C
化を示しており、図 14 (b)は、ロボットの体幹の前後方向の角度 φ 、左右方向の角 度 φ 及びョー軸姿勢角度 φ の経時変化を示すグラフである。図 14に示すグラフ r y Fig. 14 (b) shows the angle φ in the longitudinal direction of the trunk of the robot and the angle in the horizontal direction. It is a graph which shows a time-dependent change of degree (phi) and a shaft attitude angle (phi). Graph ry shown in Figure 14
は、重力補償制御を行っている本発明のロボットが歩行中に外力を受けた場合の動 作を重心の速度及び体幹の傾きとして示している。ロボットは、実験開始から 2秒後に 後方へ 1500Nの外力を 0. 1秒間受け、 4秒後に前方へ 1500Nの外力を 0. 1秒間 受け、 5秒後に右方向へ 500Nの外力を 0. 1秒間受け、そして 6秒後に 500Nの外力 を 0. 1秒間受けている。図 14に示す様にロボットは、外力に対して反発するのでは なぐ外力に従い転倒することなく歩行運動を継続する。  Shows the operation when the robot of the present invention performing gravity compensation control receives an external force during walking as the speed of the center of gravity and the inclination of the trunk. The robot receives an external force of 1500 N backward for 0.1 second 2 seconds after the start of the experiment, receives an external force of 1500 N forward for 0.1 second after 4 seconds, and receives an external force of 500 N rightward for 0.1 second after 5 seconds 6 seconds later and receiving 500N external force for 0.1 second. As shown in Fig. 14, the robot continues its walking motion without falling down according to the external force rather than repelling it.
[0122] 本発明のロボットは、上述した例に限らず、床作用力から算出されるトルク値に基づ いてロボットが備える各関節のァクチユエータを制御する様々な形態に展開すること が可能である。例えば前記実施の形態 1では、 1対、即ち 2本の脚部を有するロボット について説明したが、本発明はこれに限らず、腕部により逆立ち歩行をするロボット、 4本、 6本等の多数の脚部を有するロボットに適用する等、様々な形態に展開するこ とが可能である。  [0122] The robot of the present invention is not limited to the above-described example, and can be developed into various forms for controlling the actuators of each joint included in the robot based on the torque value calculated from the floor acting force. . For example, in the first embodiment, a robot having a pair, that is, two legs has been described. However, the present invention is not limited to this, and there are a large number of robots such as four, six, and the like that walk upside down with their arms. It can be deployed in various forms, such as being applied to a robot having multiple legs.
[0123] 実施の形態 2.  [0123] Embodiment 2.
実施の形態 2は、本発明のロボットを運動補助装置に適用した形態である。図 15は 、本発明の実施の形態 2に係るロボットを示す外観図である。図 15中 1は、本発明の 実施の形態 2に係るロボットであり、ロボット 1は、人物が装着できる様に構成してあり 、図 15では、運動補助装置であるロボット 1を装着した人物が、重量物を運搬してい る状況を示している。ロボット 1は、直動型のァクチユエータ 20, 20,…にて駆動され る伸縮可能な連結部 2, 2,…を夫々備える棒状の補助用外骨格により、人物の腕部 、胴体部及び脚部の運動を補助している。また人物の背中にはロボット 1の電源を含 む駆動制御装置 3が装着されて ヽる。  The second embodiment is an embodiment in which the robot of the present invention is applied to a motion assisting device. FIG. 15 is an external view showing a robot according to Embodiment 2 of the present invention. In FIG. 15, 1 is a robot according to Embodiment 2 of the present invention, and the robot 1 is configured to be worn by a person. In FIG. 15, a person wearing the robot 1 that is an exercise assisting device is shown. This shows the situation where heavy objects are being transported. The robot 1 is composed of a rod-shaped auxiliary exoskeleton having telescopic connecting parts 2, 2,... Driven by direct acting actuators 20, 20,. Is helping to exercise. In addition, a drive control device 3 including a power source of the robot 1 is worn on the back of the person.
[0124] ロボット 1の構成は、図 3のブロック図に示される実施の形態 1の構成と実質的に同 様であり、連結部 2, 2, ···、ァクチユエータ 20, 20, ···、及び駆動制御装置 3、並び に駆動機構及び検出機構を備えている。また駆動制御装置 3は、制御手段、記録手 段、記憶手段、計測手段、出力手段及び入力手段を備えている。  [0124] The configuration of the robot 1 is substantially the same as the configuration of the first embodiment shown in the block diagram of Fig. 3, and the connecting parts 2, 2, ..., the actuators 20, 20, ... , And a drive control device 3, and a drive mechanism and a detection mechanism. The drive control device 3 includes control means, recording means, storage means, measurement means, output means, and input means.
[0125] 実施の形態 2に係るロボット 1の駆動制御装置 3による処理は、図 7を用いて説明し た実施の形態 1と実質的に同様であり、図 7のステップ S1に対応する処理として、入 力手段は、人物の腕部、胴体部及び脚部における力を検出し、検出した力を目標運 動情報の入力として受け付ける。 [0125] The process by the drive control device 3 of the robot 1 according to the second embodiment is substantially the same as that of the first embodiment described with reference to FIG. 7, and is a process corresponding to step S1 in FIG. , Enter The force means detects the force in the person's arm, torso and leg, and accepts the detected force as input of the target movement information.
[0126] そしてロボット 1の駆動制御装置 3は、ステップ S2に対応する処理として、検出した 力に基づく目標運動情報から、実施の形態 1にて説明した各種算出方法により、目 標 ZMP及び目標作用力を導出し、ステップ S3に対応する処理として、導出した作用 力がノルム最小規範に基づき最適配分される様に各接触部に掛かる力を導出する。 図 15に示す例では、本発明のロボット 1は、重心 CoMから位置ベクトル r , r , r , r  [0126] Then, as a process corresponding to step S2, the drive control device 3 of the robot 1 uses the target motion information based on the detected force to perform the target ZMP and the target action using the various calculation methods described in the first embodiment. As a process corresponding to step S3, a force applied to each contact portion is derived so that the derived action force is optimally distributed based on the norm minimum criterion. In the example shown in FIG. 15, the robot 1 of the present invention has a position vector r 1, r 2, r 3, r from the center of gravity CoM.
SI S2 S3 SI S2 S3
S4で示される各接触点の方向に配分する床作用力を導出すると共に、重量物を持ち 上げるべく位置ベクトル r , r , r で示される各仮想接触点の方向に配分する作用 Deriving the floor action force distributed in the direction of each contact point indicated by S4, and distributing it in the direction of each virtual contact point indicated by the position vector r, r, r to lift the heavy object
Fl F2 F3  Fl F2 F3
力を導出する。  Deriving force.
[0127] さらにロボット 1の駆動制御装置 3は、ステップ S4に対応する処理として、各ァクチュ エータ 20, 20,…の制御目標値としてトルク値を夫々算出し、ステップ S5に対応する 処理として、算出した各制御目標値を、夫々のァクチユエータ 20, 20,…へ出力する 。この様な処理により、運動補助装置として構成されたロボット 1を装着した人物は、 図 15に示す様に少ない力で重量物を運搬することが可能となる。なお入力手段は、 人物の力を検出する機能を有することから、検出機構及び入力手段の機能の一部を 共用することも可能である。  [0127] Further, as a process corresponding to step S4, the drive control device 3 of the robot 1 calculates a torque value as a control target value of each of the actuators 20, 20, ..., and calculates as a process corresponding to step S5. Each control target value is output to each of the actuators 20, 20,. By such processing, a person wearing the robot 1 configured as an exercise assisting device can carry a heavy object with a small force as shown in FIG. Since the input means has a function of detecting the force of a person, it is possible to share part of the functions of the detection mechanism and the input means.
[0128] ロボット 1の駆動制御装置 3の制御について更に詳述する。ステップ S2において、 算出する目標 ZMPを、重心 CoMを地面に投影した重心投影点となる様に設定し、 実施の形態 1にて説明した重力補償を行うことにより、ロボット 1を装着した人物は、移 動等の簡単な運動であれば、特に操作方法を意識することなく容易にロボット 1を操 作することが可能となる。  [0128] Control of the drive control device 3 of the robot 1 will be further described in detail. In step S2, the target ZMP to be calculated is set to be the center of gravity projection point obtained by projecting the center of gravity CoM onto the ground, and by performing the gravity compensation described in Embodiment 1, the person wearing the robot 1 If it is a simple motion such as movement, the robot 1 can be easily operated without being aware of the operation method.
[0129] そしてロボット 1の駆動制御装置 3は、目的に応じて様々なモードで制御することが 可能である。先ず自動的に水平方向のバランスを維持するバランスモードについて 説明する。ノ ランスモードでは、地面と接触する接触部である接触面の重心に、ロボ ット 1の重心投影点がくる様に目標 ZMPを設定する。この様な設定に基づいて制御 することにより、運動補助装置としてロボット 1を装着した人物は、重量物を運搬する 場合でもバランスを特に意識することなぐ運搬作業を行うことができる。また駆動制 御装置 3の設定として、重み係数行列、式 23を用いる場合においてフィードバックゲ インを示す定数 K 及び定数 K 、ァクチユエータ 20, 20,…に対する PID値等の加 [0129] The drive control device 3 of the robot 1 can be controlled in various modes according to the purpose. First, the balance mode that automatically maintains the horizontal balance will be described. In the noise mode, the target ZMP is set so that the center of gravity projection of robot 1 comes to the center of gravity of the contact surface that is the contact part that contacts the ground. By controlling based on such settings, a person wearing the robot 1 as an exercise assisting device can perform a transport operation without being particularly aware of balance even when transporting heavy objects. Also drive system As the setting of the control device 3, when using the weighting coefficient matrix, Equation 23, the constant K indicating the feedback gain, the constant K, the PID value for the actuators 20, 20,.
PC DC  PC DC
減速に係るパラメータを適宜調整することにより、目標 ZMPに対する追従性を制御し 、ノ ランスの強弱を制御することが可能となる。  By appropriately adjusting the parameters related to deceleration, it is possible to control the followability to the target ZMP and to control the strength of the noise.
[0130] 次に三次元空間内での人物の重心の加減速を補助する移動補助モードについて 説明する。移動補助モードでは、検出機構による検出結果に基づいて実際の床反力 及び ZMPを検出又は算出し、床反力に基づき算出される重心投影点及び ZMPの 距離を補助すべき加減速のパラメータとして用いる。この様なパラメータを用いた制 御を行うことにより、運動補助装置としてロボット 1を装着した人物は、例えば直立した 状態で、重量物を右力 左へ移動させる作業を容易に行うことができる。また駆動制 御装置 3の設定として、加減速のパラメータを追従性に係る制御目標に乗じることに より、移動補助の強弱を制御することができる。  Next, a movement assistance mode for assisting acceleration / deceleration of the center of gravity of the person in the three-dimensional space will be described. In the movement assist mode, the actual floor reaction force and ZMP are detected or calculated based on the detection result of the detection mechanism, and the center of gravity projection point and ZMP distance calculated based on the floor reaction force are used as acceleration / deceleration parameters to be assisted. Use. By performing control using such parameters, a person wearing the robot 1 as an exercise assisting device can easily perform a work of moving a heavy object to the right force left in an upright state, for example. Further, as the setting of the drive control device 3, the strength of the movement assist can be controlled by multiplying the acceleration / deceleration parameter by the control target related to the followability.
[0131] 次に人物の力を制御に用いない自律モードについて説明する。自律モードでは、 入力手段が受け付けた目標運動情報及び Z又は目標作用力等の設定値に基づ 、 て作動する。自律モードでは、ロボット 1を装着した人物は、完全に力を抜くことがで き、目標移動速度、移動地点等の目標運動情報の設定のみを行う。以上のバランス モード、移動補助モード及び自律モードは、夫々独立して機能させることができるだ けでなぐ操作者がモードの強弱に係るパラメータを重みとして、各モードで算出され るトルク値にその重みを掛けたものを重ね合わせることにより、同時に機能させること も可能である。  [0131] Next, an autonomous mode in which a person's force is not used for control will be described. In the autonomous mode, it operates based on the target motion information received by the input means and the set values such as Z or target acting force. In the autonomous mode, the person wearing the robot 1 can completely remove his / her power and only sets the target movement information such as the target moving speed and moving point. The balance mode, the mobility assistance mode, and the autonomous mode described above are not only capable of functioning independently, but the operator uses the parameters related to the strength of the mode as weights, and the torque values calculated in each mode are weighted. It is also possible to function at the same time by superimposing those multiplied by.
[0132] 前記実施の形態 2では、人物が装着可能な運動補助具としてロボットを用いる形態 を示した力 本発明はこれに限らず、人物以外の生物に装着させる様にしても良い。 また運動に係る力を抑制し、細や力な力の制御が必要な作業を補助する様にするこ とも可能である。  [0132] In the second embodiment, a force showing a form in which a robot is used as an exercise assisting tool that can be worn by a person. The present invention is not limited to this, and it may be worn by a living organism other than a person. It is also possible to suppress the force related to the exercise and assist the work that requires fine and powerful control of the force.
[0133] 実施の形態 3.  [0133] Embodiment 3.
実施の形態 3は、本発明のロボットを車両に適用した形態である。図 16は、本発明 の実施の形態 3に係るロボットを示す外観図である。図 16中 1は、本発明の実施の形 態 3に係るロボットであり、ロボット 1は、前輪が二輪で後輪が一輪の三輪バギー型の 車両として構成されている。前輪及び後輪は全て駆動輪となっており、駆動輪を支持 する懸架システムとして直動型のァクチユエータ 20, 20,…にて駆動される伸縮可能 な連結部 2, 2,…を備える棒状体が用いられている。なお駆動制御装置等の他の構 成要素は、車体内部に組み込まれている。 Embodiment 3 is an embodiment in which the robot of the present invention is applied to a vehicle. FIG. 16 is an external view showing a robot according to Embodiment 3 of the present invention. In FIG. 16, 1 is a robot according to Embodiment 3 of the present invention, and Robot 1 is a three-wheel buggy type with two front wheels and one rear wheel. It is configured as a vehicle. The front and rear wheels are all drive wheels, and a rod-like body with extendable connecting parts 2, 2, ... driven by direct acting actuators 20, 20, ... as a suspension system to support the drive wheels Is used. Other components such as a drive control device are incorporated in the vehicle body.
[0134] ロボット 1の構成は、図 3のブロック図に示される実施の形態 1の構成と実質的に同 様であり、連結部 2, 2,…及びァクチユエータ 20, 20,…、並びに駆動制御装置、駆 動機構及び検出機構を備えている。また駆動制御装置は、制御手段、記録手段、記 憶手段、計測手段、出力手段及び入力手段を備えている。  [0134] The configuration of the robot 1 is substantially the same as the configuration of the first embodiment shown in the block diagram of Fig. 3, and includes the connecting sections 2, 2, ..., the actuators 20, 20, ..., and the drive control. It is equipped with a device, a drive mechanism, and a detection mechanism. The drive control device includes a control unit, a recording unit, a storage unit, a measuring unit, an output unit, and an input unit.
[0135] 実施の形態 3に係るロボット 1の駆動制御装置による処理は、図 7を用いて説明した 実施の形態 1と実質的に同様であり、図 7のステップ S1に対応する処理として、入力 手段は、車両のハンドル等の操舵機構、アクセル等の加速機構及びブレーキ等の制 動機構から搭乗者の操作を目標運動情報の入力として受け付ける。  [0135] The processing by the drive control device of the robot 1 according to the third embodiment is substantially the same as that of the first embodiment described with reference to Fig. 7, and input is performed as processing corresponding to step S1 in Fig. 7. The means accepts a passenger's operation as an input of target motion information from a steering mechanism such as a steering wheel of a vehicle, an acceleration mechanism such as an accelerator, and a control mechanism such as a brake.
[0136] そしてロボット 1の駆動制御装置は、ステップ S2に対応する処理として、受け付けた 目標運動情報から、実施の形態 1にて説明した各種算出方法により、 目標 ZMP及び 目標作用力を導出し、ステップ S3に対応する処理として、導出した作用力がノルム 最小規範に基づき最適配分される様に各接触部に掛かる力を導出する。図 16に示 す例では、本発明のロボット 1は、重心 CoM力 位置ベクトル r , r , r で示される各  [0136] Then, as a process corresponding to step S2, the drive control device of robot 1 derives the target ZMP and the target acting force from the received target motion information by the various calculation methods described in the first embodiment, As a process corresponding to step S3, a force applied to each contact portion is derived so that the derived applied force is optimally distributed based on the norm minimum criterion. In the example shown in FIG. 16, the robot 1 of the present invention has a center of gravity CoM force and position vectors r 1, r 2, r 3.
SI S2 S3  SI S2 S3
接触点の方向に配分する床作用力を導出する。  The floor acting force distributed in the direction of the contact point is derived.
[0137] さらにロボット 1の駆動制御装置は、ステップ S4に対応する処理として、各ァクチュ エータ 20, 20,…の制御目標値としてトルク値を夫々算出し、ステップ S5に対応する 処理として、算出した各制御目標値を、夫々のァクチユエータ 20, 20, …へ出力する 。この様な処理により、三輪バギー等の車両として構成されたロボット 1は、走行時の 上下動及び操舵に対応する姿勢を定め、加重を分散して路面力 の衝撃及び振動 を弾力的に吸収し、車体及び搭乗者を安定的に懸架する。  [0137] Further, the drive control device of robot 1 calculates the torque value as the control target value of each actuator 20, 20, ... as the process corresponding to step S4, and calculates the process as the process corresponding to step S5. Each control target value is output to each of the actuators 20, 20,. By such processing, the robot 1 configured as a vehicle such as a three-wheel buggy determines the posture corresponding to the vertical movement and steering during traveling, disperses the weight, and elastically absorbs the impact and vibration of the road surface force. Suspend the vehicle body and passengers stably.
[0138] 前記実施の形態 3では、三輪バギーとしてロボットを用いる形態を示したが、本発明 はこれに限らず、車輪の数を変更し、更には一部の車輪又は全部の車輪を、車輪以 外の無限軌道、脚状体等の支持及び駆動機構に代替する様に構成しても良い。  [0138] In the third embodiment, a robot is used as a three-wheel buggy. However, the present invention is not limited to this, and the number of wheels is changed. Other than the endless track, the support of the leg-like body and the drive mechanism may be substituted.
[0139] 実施の形態 4. 実施の形態 4は、本発明のロボットを可変多面体型の移動装置に適用した形態で ある。図 17中 1は、本発明の実施の形態 4に係るロボットであり、ロボット 1は、八個の 三角形を組み合わせた八面体状をなす外骨格にて構成されて!、る。八面体の各辺 は、直動型のァクチユエータ 20, 20,…にて駆動される伸縮可能な連結部 2, 2, · ·· を備える棒状体にて構成されており、各頂点は、着脱可能な球状関節として構成さ れている。なお球状関節に回動型のァクチユエータを組み込むことも可能である。駆 動制御装置等の他の構成要素は、球状関節及び Z又は連結部 2, 2,…の内部に 組み込まれている。 [0139] Embodiment 4. Embodiment 4 is an embodiment in which the robot of the present invention is applied to a variable polyhedron type moving device. In FIG. 17, reference numeral 1 denotes a robot according to the fourth embodiment of the present invention, and the robot 1 is configured by an exoskeleton having an octahedral shape combining eight triangles! Each side of the octahedron is composed of a rod-shaped body with extendable connecting parts 2, 2, ... driven by direct acting actuators 20, 20, ... It is configured as a possible spherical joint. It is also possible to incorporate a rotary type actuator into the spherical joint. Other components such as the drive control device are incorporated in the spherical joint and Z or inside the connecting parts 2, 2,.
[0140] ロボット 1は、図 17 (a)の様に八面体状をなす形態から、図 17 (b)に示す様に連結 部 2を備える任意の棒状体の一端を、球状関節から離脱させて接地することにより、 離脱した棒状体が支軸となり、八面体の任意の頂点と共に地面に接触することで、様 々な凹凸の地面上での静止を可能とし、更には棒状体の伸縮及び着脱により、移動 が可能となる。  [0140] Robot 1 has an octahedral shape as shown in Fig. 17 (a), and one end of an arbitrary rod-like body having connecting portion 2 as shown in Fig. 17 (b) is detached from the spherical joint. By making contact with the ground, the detached rod-shaped body becomes a support shaft and comes into contact with the ground together with an arbitrary apex of the octahedron. It can be moved by attaching and detaching.
[0141] ロボット 1の構成は、図 3のブロック図に示される実施の形態 1の構成と実質的に同 様であり、連結部 2, 2,…及びァクチユエータ 20, 20,…、並びに駆動制御装置、駆 動機構及び検出機構を備えている。また駆動制御装置は、制御手段、記録手段、記 憶手段、計測手段、出力手段及び入力手段を備えている。  [0141] The configuration of the robot 1 is substantially the same as the configuration of the first embodiment shown in the block diagram of Fig. 3, and includes the connecting portions 2, 2, ..., the actuators 20, 20, ..., and the drive control. It is equipped with a device, a drive mechanism, and a detection mechanism. The drive control device includes a control unit, a recording unit, a storage unit, a measuring unit, an output unit, and an input unit.
[0142] 実施の形態 4に係るロボット 1の駆動制御装置による処理は、図 7を用いて説明した 実施の形態 1と実質的に同様であり、図 7のステップ S1に対応する処理として、コント ローラから無線通信にて送信された目標運動情報を、入力手段にて受け付ける。  [0142] The process by the drive control device for robot 1 according to the fourth embodiment is substantially the same as that of the first embodiment described with reference to FIG. 7, and the control corresponds to step S1 in FIG. The target exercise information transmitted from the roller by wireless communication is received by the input means.
[0143] そしてロボット 1の駆動制御装置は、ステップ S2に対応する処理として、受け付けた 目標運動情報から、実施の形態 1にて説明した各種算出方法により、目標 ZMP及び 目標作用力を導出し、ステップ S3に対応する処理として、導出した作用力がノルム 最小規範に基づき最適配分される様に各接触部に掛かる力を導出する。図 17に示 す例では、本発明のロボット 1は、重心 CoM力 位置ベクトル r , r , r , r で示され  [0143] Then, as a process corresponding to step S2, the drive control device of the robot 1 derives the target ZMP and the target acting force from the received target motion information by the various calculation methods described in the first embodiment, As a process corresponding to step S3, a force applied to each contact portion is derived so that the derived applied force is optimally distributed based on the norm minimum criterion. In the example shown in FIG. 17, the robot 1 of the present invention is represented by the center-of-gravity CoM force position vector r 1, r 2, r 1, r 2.
SI S2 S3 S4 る各接触点の方向に配分する床作用力を導出する。  SI S2 S3 S4 The floor acting force distributed in the direction of each contact point is derived.
[0144] さらにロボット 1の駆動制御装置は、ステップ S4に対応する処理として、各ァクチュ エータ 20, 20,…の制御目標値としてトルク値を夫々算出し、ステップ S5に対応する 処理として、算出した各制御目標値を、夫々のァクチユエータ 20, 20, …へ出力する 。この様な処理により、可変多面体型の装置として構成されたロボット 1は、様々な運 動を行う。 [0144] Further, as a process corresponding to step S4, the drive control device of robot 1 calculates a torque value as a control target value for each of the actuators 20, 20, ..., and corresponds to step S5. As processing, the calculated control target values are output to the respective actuators 20, 20,. By such processing, the robot 1 configured as a variable polyhedron device performs various operations.
前記実施の形態 1乃至 4は、本発明のロボットの無数に存在する実現形態の中の 一部を示したに過ぎず、本発明のロボットは、上述した形態に限らず、様々な形態に 展開することが可能である。  Embodiments 1 to 4 show only a part of the infinite number of realizations of the robot according to the present invention, and the robot according to the present invention is not limited to the above-described forms, and can be developed in various forms. Is possible.

Claims

請求の範囲 The scope of the claims
[1] 駆動可能な複数の連結部を備えるロボットにおいて、  [1] In a robot having a plurality of drivable connecting parts,
制御目標値として受け付けたトルク値に基づ 、て連結部を駆動する複数のァクチュ エータと、  Based on the torque value received as the control target value, a plurality of actuators that drive the connecting portion,
想定された外部との接触部に作用させるベく設定された目標作用力に基づいて、 各連結部を駆動する夫々のァクチユエータのトルク値を算出する算出手段と、 算出したトルク値を制御目標値として各ァクチユエータに出力する手段と を備えることを特徴とするロボット。  Calculation means for calculating the torque value of each actuator that drives each connecting portion based on the set target acting force that is supposed to act on the assumed external contact portion, and the calculated torque value as a control target value And a means for outputting to each of the actuators.
[2] 前記ァクチユエータは、連結部を伸縮させる直動型ァクチユエータ及び Z又は連結 部を回動させる回動型ァクチユエータであることを特徴とする請求項 1に記載のロボッ  [2] The robot according to claim 1, wherein the actuator is a direct acting type actuator that expands and contracts a connecting portion and a rotation type actuator that rotates Z or the connecting portion.
[3] 前記目標作用力の設定を受け付ける手段を更に備え、 [3] The apparatus further comprises means for receiving the setting of the target acting force,
前記算出手段は、受け付けた目標作用力に基づいて、夫々のァクチユエ一タのト ルク値を算出する様に構成してある  The calculation means is configured to calculate a torque value of each actuator based on the received target acting force.
ことを特徴とする請求項 1又は請求項 2に記載のロボット。  The robot according to claim 1 or claim 2, wherein
[4] 目標となる運動を示す目標運動情報を受け付ける手段と、 [4] means for receiving target exercise information indicating the target exercise;
受け付けた目標運動情報に基づいて、設定する目標作用力を導出する導出手段 と  Deriving means for deriving the target acting force to be set based on the received target motion information;
を更に備え、  Further comprising
前記算出手段は、導出した目標作用力に基づいて、夫々のァクチユエータのトルク 値を算出する様に構成してある  The calculation means is configured to calculate the torque value of each actuator based on the derived target acting force.
ことを特徴とする請求項 1又は請求項 2に記載のロボット。  The robot according to claim 1 or claim 2, wherein
[5] 前記算出手段は、順運動学モデルに基づいて、目標作用力から夫々のァクチユエ ータのトルク値を算出する様に構成してあることを特徴とする請求項 4に記載のロボッ 5. The robot according to claim 4, wherein the calculating means is configured to calculate a torque value of each of the actuators from a target acting force based on a forward kinematic model.
[6] 前記算出手段は、慣性力、コリオリカ及び遠心力の中の少なくとも一の力を加味し て夫々のァクチユエータのトルク値を算出する様に構成してあることを特徴とする請 求項 5に記載のロボット。 [6] The claim, wherein the calculation means is configured to calculate a torque value of each of the actuators in consideration of at least one of inertia force, coriolica and centrifugal force. The robot described in 1.
[7] 外部力 受ける力を検出する検出手段を更に備え、 [7] It further comprises a detecting means for detecting the force received by the external force,
前記算出手段は、検出手段が検出した力を加味して夫々のァクチユエータのトルク 値を算出する様に構成してある  The calculation means is configured to calculate the torque value of each actuator in consideration of the force detected by the detection means.
ことを特徴とする請求項 1乃至請求項 6のいずれかに記載のロボット。  The robot according to any one of claims 1 to 6, characterized in that:
[8] 前記接触部は、複数の接触点の集合であり、 [8] The contact portion is a set of a plurality of contact points,
前記算出手段は、目標作用力をノルム最小規範に基づいて算出した各接触点に 配分する力に基づいて、夫々のァクチユエータのトルク値を算出する様に構成してあ る  The calculation means is configured to calculate a torque value of each actuator based on a force distributed to each contact point calculated based on the norm minimum norm.
ことを特徴とする請求項 1乃至請求項 7のいずれかに記載のロボット。  The robot according to any one of claims 1 to 7, characterized by:
[9] 前記算出手段は、重心に掛かる重力を補償すベぐ目標作用力に基づいて、夫々 のァクチユエータのトルク値を算出する様に構成してあることを特徴とする請求項 1乃 至請求項 8の!、ずれかに記載のロボット。 [9] The calculation means is configured to calculate a torque value of each actuator based on a target action force that compensates for gravity applied to the center of gravity. Item 8 !, the robot described in any of the above.
[10] 複数の連結部に係る冗長自由度に起因する内部運動を抑制する抑制力に基づい て、夫々のァクチユエータのトルク値を算出する様に構成してあることを特徴とする請 求項 1乃至請求項 9のいずれかに記載のロボット。 [10] Claim 1 characterized in that the torque values of the respective actuators are calculated based on the restraining force that suppresses the internal motion caused by the redundancy degree of freedom related to the plurality of connecting portions. The robot according to claim 9.
[11] 前記連結部を駆動することで動作する複数の脚部を備えることを特徴とする請求項11. A plurality of legs that operate by driving the connecting portion.
1乃至請求項 10のいずれかに記載のロボット。 The robot according to any one of claims 1 to 10.
[12] 生物体が装着可能に構成してあり、 [12] The organism is configured to be wearable,
生物体力 受ける力を検出する手段と、  A means to detect the force of the organism,
検出した力に基づいて、設定する目標作用力を導出する手段と  Means for deriving a target acting force to be set based on the detected force;
を更に備え、  Further comprising
前記算出手段は、導出した目標作用力に基づいて、夫々のァクチユエータのトルク 値を算出する様に記録する様に構成してある  The calculation means is configured to record so as to calculate the torque value of each actuator based on the derived target acting force.
ことを特徴とする請求項 1又は請求項 2に記載のロボット。  The robot according to claim 1 or claim 2, wherein
[13] ァクチユエータにより駆動可能な複数の連結部を備えるロボットの動作を制御する 制御装置において、 [13] In a control device for controlling the operation of a robot having a plurality of connecting portions that can be driven by an actuator,
想定された外部との接触部に作用させるベく設定された目標作用力に基づいて、 各連結部を駆動する夫々のァクチユエータのトルク値を算出する手段と、 算出したトルク値を制御目標値として各ァクチユエータに出力する手段と を備えることを特徴とする制御装置。 Means for calculating a torque value of each actuator for driving each connecting portion based on a set target acting force to be applied to the assumed external contact portion; And a means for outputting the calculated torque value as a control target value to each of the actuators.
PCT/JP2007/060963 2006-05-30 2007-05-30 Robot and controller WO2007139135A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008517955A JPWO2007139135A1 (en) 2006-05-30 2007-05-30 Robot and control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006150466 2006-05-30
JP2006-150466 2006-05-30

Publications (1)

Publication Number Publication Date
WO2007139135A1 true WO2007139135A1 (en) 2007-12-06

Family

ID=38778653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060963 WO2007139135A1 (en) 2006-05-30 2007-05-30 Robot and controller

Country Status (2)

Country Link
JP (1) JPWO2007139135A1 (en)
WO (1) WO2007139135A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166213A (en) * 2008-01-18 2009-07-30 Toyota Motor Corp Robot and robot control method
JP2010221395A (en) * 2009-03-24 2010-10-07 Disney Enterprises Inc System and method for tracking and balancing robots for imitating motion capture data
EP2422935A3 (en) * 2010-08-31 2012-09-05 Kabushiki Kaisha Yaskawa Denki Robot, robot system, robot control device, and state determining method
JP2014522741A (en) * 2011-08-04 2014-09-08 アルデバラン ロボティクス Robot with variable stiffness joint and calculation method of optimized stiffness
JP2015098066A (en) * 2013-11-18 2015-05-28 学校法人早稲田大学 Movement control system for bipedal running robot
WO2015182634A1 (en) * 2014-05-27 2015-12-03 株式会社国際電気通信基礎技術研究所 Actuator device, humanoid robot, and power assist device
JP2016093853A (en) * 2014-11-12 2016-05-26 本田技研工業株式会社 Control system of mobile robot
JP2016191467A (en) * 2014-05-27 2016-11-10 株式会社国際電気通信基礎技術研究所 Actuator device, humanoid type robot, and power assist device
US10881536B2 (en) 2014-09-12 2021-01-05 Advanced Telecommunications Research Institute International Actuator device, power assist robot and humanoid robot

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017144512A (en) * 2016-02-17 2017-08-24 国立大学法人 東京大学 Zmp calculation method and device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3917432B2 (en) * 2002-01-29 2007-05-23 株式会社日立製作所 Operation support device
JP3569767B2 (en) * 2002-06-12 2004-09-29 独立行政法人 科学技術振興機構 Walking robot

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ASADA M. ET AL: "New Edition Robot Kogaku Handbook", 23 June 2005 (2005-06-23), pages 289 - 295, XP003019628 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166213A (en) * 2008-01-18 2009-07-30 Toyota Motor Corp Robot and robot control method
JP2010221395A (en) * 2009-03-24 2010-10-07 Disney Enterprises Inc System and method for tracking and balancing robots for imitating motion capture data
EP2422935A3 (en) * 2010-08-31 2012-09-05 Kabushiki Kaisha Yaskawa Denki Robot, robot system, robot control device, and state determining method
EP2572837A1 (en) * 2010-08-31 2013-03-27 Kabushiki Kaisha Yaskawa Denki Robot, robot system, robot control device, and state determining method
US8650965B2 (en) 2010-08-31 2014-02-18 Kabushiki Kaisha Yaskawa Denki Robot, robot system, robot control device, and state determining method
US9346162B2 (en) 2010-08-31 2016-05-24 Kabushiki Kaisha Yaskawa Denki Robot system, control device of robot, and robot control device
JP2014522741A (en) * 2011-08-04 2014-09-08 アルデバラン ロボティクス Robot with variable stiffness joint and calculation method of optimized stiffness
JP2015098066A (en) * 2013-11-18 2015-05-28 学校法人早稲田大学 Movement control system for bipedal running robot
JP2016006345A (en) * 2014-05-27 2016-01-14 株式会社国際電気通信基礎技術研究所 Actuator device, humanoid type robot, and power assist device
WO2015182634A1 (en) * 2014-05-27 2015-12-03 株式会社国際電気通信基礎技術研究所 Actuator device, humanoid robot, and power assist device
JP2016191467A (en) * 2014-05-27 2016-11-10 株式会社国際電気通信基礎技術研究所 Actuator device, humanoid type robot, and power assist device
CN106416026A (en) * 2014-05-27 2017-02-15 株式会社国际电气通信基础技术研究所 Actuator device, humanoid robot, and power assist device
EP3783781A1 (en) 2014-05-27 2021-02-24 Advanced Telecommunications Research Institute International Actuator device, humanoid robot and power assist device
US11225984B2 (en) 2014-05-27 2022-01-18 Advanced Telecommunications Research Institute International Actuator device, humanoid robot and power assist device
US11635096B2 (en) 2014-05-27 2023-04-25 Advanced Telecommunications Research Institute International Actuator device, humanoid robot and power assist device
US10881536B2 (en) 2014-09-12 2021-01-05 Advanced Telecommunications Research Institute International Actuator device, power assist robot and humanoid robot
JP2016093853A (en) * 2014-11-12 2016-05-26 本田技研工業株式会社 Control system of mobile robot

Also Published As

Publication number Publication date
JPWO2007139135A1 (en) 2009-10-08

Similar Documents

Publication Publication Date Title
WO2007139135A1 (en) Robot and controller
KR101633362B1 (en) Humanoid robot and walking control method thereof
US10246152B2 (en) Control device for mobile robot
JP4181113B2 (en) Self-pose estimation device for legged mobile robot
KR101687631B1 (en) Walking control apparatus of robot and method for controlling the same
Hyon et al. Full-body compliant human–humanoid interaction: balancing in the presence of unknown external forces
KR101985790B1 (en) Walking robot and control method thereof
US6505096B2 (en) Posture control system of legged mobile robot
KR101004820B1 (en) Locomotion device, control method of locomotion device, robot device and operation control method of robot device
KR101687629B1 (en) Humanoid robot and walking control method thereof
JP4595727B2 (en) External force estimation system, external force estimation method, and computer program
US7734377B2 (en) Gait generator of legged mobile robot
JP3667914B2 (en) Remote control system for legged mobile robot
US10040197B2 (en) Control device for mobile robot
KR101549817B1 (en) robot walking control apparatus and method thereof
WO2003092968A1 (en) Attitude control device of mobile robot
JP2009512563A (en) Walking control method for humanoid robot
WO2007069401A1 (en) Gait creation device of leg-type mobile robot
Low et al. Locomotive control of a wearable lower exoskeleton for walking enhancement
JP2004223712A (en) Walking type robot and its position movement method
WO2004033160A1 (en) Robot device operation control device and operation control method
Flynn et al. Active synthetic-wheel biped with torso
Li et al. Dynamic torso compliance control for standing and walking balance of position-controlled humanoid robots
JP3528171B2 (en) Mobile robot apparatus and overturn control method for mobile robot apparatus
Low et al. Design and implementation of NTU wearable exoskeleton as an enhancement and assistive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744377

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008517955

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07744377

Country of ref document: EP

Kind code of ref document: A1