WO2006093334A1 - Method of melting alloy containing high-vapor-pressure metal - Google Patents

Method of melting alloy containing high-vapor-pressure metal Download PDF

Info

Publication number
WO2006093334A1
WO2006093334A1 PCT/JP2006/304525 JP2006304525W WO2006093334A1 WO 2006093334 A1 WO2006093334 A1 WO 2006093334A1 JP 2006304525 W JP2006304525 W JP 2006304525W WO 2006093334 A1 WO2006093334 A1 WO 2006093334A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
alloy
melting
helium
metal
Prior art date
Application number
PCT/JP2006/304525
Other languages
French (fr)
Japanese (ja)
Inventor
Etsuo Akiba
Hirotoshi Enoki
Naoyoshi Terashita
Shigeru Tsunokake
Original Assignee
Japan Metals And Chemicals Co., Ltd.
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals And Chemicals Co., Ltd., National Institute Of Advanced Industrial Science And Technology filed Critical Japan Metals And Chemicals Co., Ltd.
Priority to CN2006800067151A priority Critical patent/CN101132871B/en
Priority to JP2007506056A priority patent/JP4956826B2/en
Priority to EP06728794.6A priority patent/EP1875978B1/en
Priority to US11/817,459 priority patent/US20090007728A1/en
Publication of WO2006093334A1 publication Critical patent/WO2006093334A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/06Melting-down metal, e.g. metal particles, in the mould
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C22/00Alloys based on manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium

Definitions

  • the present invention has a low melting point and boiling point such as Mg, C a, Li, Zn, Mn and Sr.
  • Metals such as Mg, Ca, Zn and Li, and alloys containing these metals are lighter in weight and higher in specific strength than other transition metals such as iron and their alloys. Applications as structural materials and functional materials are widely expected.
  • Mg and Ca are abundant in the earth's crust and seawater, are low in cost, and do not adversely affect the human body.
  • metals such as Mg, Ca, Zn and Li, and their alloys have low melting points and boiling points, and high vapor pressures.
  • metal dust generated by evaporation contaminates the melting furnace.
  • Mg in particular is very active, and if it adheres to the inner wall of the melting furnace, there is a high risk of ignition or explosion when it comes into contact with the atmosphere.
  • the smoke of the evaporated metal fine powder contaminates the visual observation window of the melting furnace, or the view is blocked, and it is judged whether or not the alloy is completely dissolved, the power that the stirring is sufficient, There are also problems such as being unable to visually confirm and judge whether or not. In addition, positive Since it is difficult to accurately estimate the amount of evaporation, there is also the problem that it is not possible to produce an alloy with the target chemical composition.
  • the alloy containing Mg, C a, Zn, Li and the like can be manufactured by a mechanical alloying method such as Bono remilling in addition to the melting method.
  • This alloy manufacturing method is a method that does not dissolve the metal of the raw material, so the above problems due to the generation of metal fines do not occur, but contamination due to mixing of iron etc. from the mill pot and the homogeneity of the alloy There are problems such as a decrease in In addition, since it takes a long time to manufacture, there is a problem that the manufacturing cost is high, and it is not suitable for mass production.
  • a main object of the present invention is to propose a melting method that is advantageous for producing an alloy containing a metal having a low melting point, a low boiling point, and a high vapor pressure by a melting method.
  • Another object of the present invention is to reduce the risk and contamination of the target chemical component alloy by ignition and vaporization of active metal fine powder, while accurately controlling the target chemical component alloy.
  • the purpose is to propose a method for manufacturing a large amount and safely.
  • the inventors have intensively studied to realize the above object. As a result, the inventors have obtained the knowledge that it is effective to optimize the gas components constituting the dissolved atmosphere, and particularly to use helium gas, and have developed the present invention.
  • the present invention relates to a method for melting and producing an alloy containing any one or more of Mg, Ca, Li, Zn, Mn, and Sr.
  • a melting method of a high vapor pressure metal-containing alloy characterized in that helium-containing gas is used.
  • the helium concentration in the atmospheric gas is 10 V o 1%.
  • the atmospheric gas is preferably a mixed gas of helium and a gas that does not react with a source metal such as nitrogen or argon.
  • the pressure of the atmosphere gas is preferably 0.0 IMP a to IMP a.
  • an alloy containing a low melting point, low boiling point, high vapor pressure metal such as Mg, Ca, Li, and Zn, for example, the metal and A 1 or N Alloys with the target chemical composition can be produced in large quantities with high accuracy and safety at low cost without incurring dangers such as ignition and contamination due to evaporated active metal fines. .
  • the melting method of the present invention using a helium-containing gas as the atmospheric gas can solve the above-described problems caused by the active metal fine powder, and the solid metal has a high solidification rate due to the high thermal conductivity of the helium gas. It also has the feature of increasing the effect of rapid solidification. Therefore, according to the method of the present invention, it is possible to produce a special alloy that has been conventionally produced using a melting apparatus dedicated to rapid solidification, even with an ordinary melting apparatus.
  • Figure 1 is Heriumugasu concentration in the atmosphere gas at the time of dissolving the C a M g 2 alloy is a graph showing the effect on dissolution yield of M g.
  • Figure 3 shows the pressure composition of the La-Ni hydrogen storage alloy dissolved in a helium gas atmosphere and the same alloy dissolved in an argon gas atmosphere. It is the figure which compared and showed the temperature diagram. The best form for inventing
  • the melting method of the present invention is used when melting an alloy containing one or more of low melting point, low boiling point and high vapor pressure metals such as Mg, Ca, Li and Zn. It is characterized in that helium-containing gas is used as the melting atmosphere. When this helium-containing gas is used as a melting atmosphere, it becomes possible to prevent the agglomeration of fine metal powder generated by evaporation during melting, greatly reducing the risk of ignition and contamination by the fine metal agglomerates. In addition, it is possible to manufacture a large amount of an alloy having a target chemical composition with high accuracy and safely.
  • this helium-containing gas has a higher thermal conductivity (approximately 3 times that of argon) and lower density (0.1 times that of argon) than other inert gases. It is presumed that it can be obtained by a long process (about 3 times that of argon).
  • hydrogen has the same characteristics, but hydrogen reacts with the source metal to form a metal hydride, so it is not suitable as a dissolved atmosphere gas. However, if a metal with a low melting point, low boiling point, and high vapor pressure that does not react with hydrogen is dissolved, the same effect as helium should be expected when a hydrogen-containing gas is used as the atmospheric gas. Can do.
  • helium gas is very expensive. Therefore, from the viewpoint of cost reduction, it is preferable that this helium gas is partially replaced with an inexpensive gas that does not react with the raw material metal. Therefore, the inventors conducted experiments to replace helium with various other gases, and as a result, if a gas in which a part of the helium gas is replaced with a gas that does not react with the source metal such as nitrogen or argon is evaporated, It was proved that the risk of ignition and contamination caused by agglomeration of generated metal fines can be considerably reduced.
  • Argon gas is the most preferable gas for replacing helium gas. The reason is that argon gas is inexpensive and does not react with Mg, C a, Li and Zn even at high temperatures.
  • the substitution of helium with other inert gases was found to be limited.
  • the helium content in the powerful mixed gas needs to be at least 10 V o 1%, preferably 25 V o 1% or more, more preferably 50 V o 1% or more. More preferably, it is 95 V o 1% or more, but of course, it may be 90-100 V o 1%.
  • the lower limit of the proportion of helium as the atmospheric gas is set to 10 v o l% because the above-described effects of helium cannot be obtained if it is less than 1%.
  • the pressure of the melting atmosphere made of helium-containing gas is preferably 0.0 IMP a to IMP a.
  • the reason is that if the pressure is less than 0.0 IMP a, the evaporation temperature is remarkably lowered, so that evaporation is promoted and the amount of metal fines generated cannot be reduced. On the other hand, if it exceeds IMP a, the amount of evaporation decreases, but the melting point rises and dissolution becomes difficult.
  • the pressure range of the helium-containing gas is the pressure at room temperature before melting, and may exceed the above range when the temperature of the furnace becomes high during the melting process.
  • the helium-containing gas supplied as the atmospheric gas may contain an impurity gas such as oxygen, carbon dioxide, and water vapor within a range that does not impair the function of the present invention.
  • the content is preferably lma ss% or less. The reason for this is that if it exceeds lma ss%, these gases react with Mg, Ca, Li, Zn, etc. during dissolution, producing oxides, hydroxides, carbides, etc. This is because it becomes impossible to produce chemical composition alloys and compounds.
  • a Mg 2 As a raw material for the hydrogen storage alloy C a Mg 2 , prepare a total of 1 kg of Mg and Ca metals so that the molar ratio of them is 2: 1, and charge all of these into the induction melting melting furnace. and, the furnace was evacuated to 8 X 10_ 3 T orr, was then introduced until Heriumugasu (concentration 1 OO vol%) to 600To rr as the atmospheric gas. Then, while filling the furnace with this atmospheric gas, the melting furnace temperature is heated to 1 100 ° C to melt the raw material, and further, the molten metal temperature of the alloy is maintained at 1050 ° C for 30 minutes. did.
  • the molten alloy was poured onto a water-cooled surface plate, and cooled and solidified at a cooling rate of 1000 ° CZ seconds to produce a C a Mg 2 alloy.
  • the dissolution yield and chemical composition were measured by the following methods (1) and (2).
  • Example 1 of the present invention using helium gas as the melting atmosphere gas, the dissolution yield is as high as 98.2% or more, and an alloy can be manufactured with high accuracy within ⁇ 1% of the target alloy composition. I can see that ⁇ table 1 ⁇
  • a CaMg 2 alloy was produced in the same manner as Invention Example 1 except that argon gas (concentration: 100 V o 1%) was used as the atmospheric gas.
  • argon gas concentration: 100 V o 1%) was used as the atmospheric gas.
  • the dissolution yield and chemical composition were measured by the methods (1) and (2) above, and the results are also shown in Table 1.
  • a Ca Mg 2 alloy was produced in the same manner as in Invention Example 1 except that the concentration of helium gas introduced as the atmospheric gas was changed to 75, 50, 25 V o 1% (remaining argon gas).
  • the dissolution yield and chemical composition were measured by the methods (1) and (2) above, and the results are also shown in Table 1. These results show that when the helium gas concentration exceeds 50 V o 1% (Invention Examples 2 and 3), the dissolution yield is as high as about 98%, and the target alloy composition can be obtained with high accuracy. . On the other hand, when the helium gas concentration is 25 V o 1% (Invention Example 4), the dissolution yield and the alloy composition are inferior to Invention Examples 1 to 3.
  • FIG. 1 shows the relationship between the helium gas concentration obtained from the results of Invention Examples 1 to 4 and Comparative Example 1 and the dissolution yield.
  • Figure 1 shows that the dissolution yield improves with increasing helium gas concentration.
  • Example 5 of the present invention Except for using the C a and A 1 as an alloy raw material, to produce a C a A l 2 alloy in the same manner as in Invention Example 1, the C AMG 2 alloy obtained above (1) and (2) The dissolution yield and chemical composition were measured by this method, and the results are also shown in Table 1. From this result, it can be seen that in Example 5 of the present invention, the dissolution yield was as high as about 98%, and the target alloy was obtained with high accuracy within ⁇ 1% of the target A] composition.
  • Example 6 of the present invention the dissolution yield was as high as about 98%, and the target alloy was obtained with high accuracy within ⁇ 2% of the target Ni composition ratio.
  • Example 7 of the present invention Except for using the C a and N i as an alloy raw material, to produce a C a N i 2 alloy in the same manner as in Experimental Example 1, the C a N i 2 alloy obtained above (1) and ( The dissolution yield and chemical composition were measured by the method 2), and the results are also shown in Table 1. From this result, it can be seen that in Example 7 of the present invention, the dissolution yield is as high as about 98%, and the target alloy is obtained with high accuracy within ⁇ 2% with respect to the target Ni composition ratio. .
  • a La 1 Ni-based hydrogen storage alloy (Invention Example 8) prepared by dissolution in a helium gas atmosphere at 100 V o 1% and an argon gas at 100 V o 1% atmosphere were prepared.
  • the pressure composition and other figures were measured, and the results are shown in FIG. From Fig. 3, the alloy of Invention Example 8 has a flat and wide plateau region compared to the alloy of Comparative Example 2, and the alloy of Invention Example 8 that has been rapidly solidified by helium gas has excellent homogeneity. It can be seen that it is an alloy.
  • the technology of the present invention is not only used as a mass production technology for alloys containing metals with low melting point, low boiling point and high vapor pressure, such as Mg, Ca, Zn and Li, but also The present invention can also be applied to the case where a metal is dissolved alone, or to the dissolution of a compound used in a semiconductor such as gallium monoarsenide or other compounds. Furthermore, the technique of the present invention can also be applied to a dissolution technique for structural materials, functional materials, semiconductor compounds, and other compounds made of lightweight metals and alloys used in the next generation.

Abstract

A method of producing an alloy containing a metal which has a low melting point, low boiling point, and high vapor pressure, such as, e.g., magnesium, calcium, lithium, zinc, manganese, or strontium, through melting, wherein a helium-containing gas as an atmospheric gas is used for the melting. As a result, an alloy containing such metal and having a target chemical composition can be safely and inexpensively produced with satisfactory precision while preventing the problem that fine particles of a vaporized active metal incur a danger, e.g., ignition, or cause pollution. Furthermore, use of the helium-containing gas as an atmospheric gas enables the molten metal to be rapidly cooled and solidified due to the high thermal conductivity of helium gas. A special alloy can hence be produced even with an ordinary melting apparatus.

Description

高蒸気圧金属含有合金の溶解方法 Method for melting high vapor pressure metal-containing alloys
関連出願の記載 Description of related applications
本出願は、 2005年 3月 2日に出願された日本特許出願 2005- 5698 This application is a Japanese patent application filed on March 2, 2005 2005-5698
5号を基礎出願として、 優先権主張する出願である。 It is an application claiming priority with No. 5 as the basic application.
明 技術分野  Akira Technical Field
本発明は、 Mg, C a , L i , Z n, Mnおよび S r等の融点や沸点が低く、 書  The present invention has a low melting point and boiling point such as Mg, C a, Li, Zn, Mn and Sr.
高い蒸気圧を有する金属を含有する合金を、 溶解法により製造する際の溶解方法 について提案するものである。 We propose a melting method for producing alloys containing metals with high vapor pressure by the melting method.
背景技術 Background art
Mg, C a, Z nおよび L i等に代表される金属やこれらの金属を含む合金は 、 鉄等の遷移金属やそれらの合金などと比較すると軽量で比強度が高レ、こと力、ら 、 構造材料や機能性材料としての応用が広く期待されている。 中でも、 Mgおよ び C aは、 地殻や海水中に豊富に存在し、 低コストであること、 また、 人体に悪 影響を及ぼすことがないことから、 その利用拡大への期待が大きい。  Metals such as Mg, Ca, Zn and Li, and alloys containing these metals are lighter in weight and higher in specific strength than other transition metals such as iron and their alloys. Applications as structural materials and functional materials are widely expected. In particular, Mg and Ca are abundant in the earth's crust and seawater, are low in cost, and do not adversely affect the human body.
しかしながら、 Mg, C a, Z nおよび L i等の金属およびこれらの合金は、 融点や沸点が低く、 蒸気圧が高いことから、 これらを含有する合金を溶解法によ り製造しょうとすると、 蒸発により発生した金属微粉が溶解炉内を汚染するとレヽ う問題がある。 とくに Mgは、 非常に活性であり、 これが溶解炉の内壁等に付着 すると、 大気に触れた際に、 発火や爆発を起こす等の危険性が高い。  However, metals such as Mg, Ca, Zn and Li, and their alloys have low melting points and boiling points, and high vapor pressures. There is a problem that metal dust generated by evaporation contaminates the melting furnace. Mg in particular is very active, and if it adheres to the inner wall of the melting furnace, there is a high risk of ignition or explosion when it comes into contact with the atmosphere.
また、 蒸発した金属微粉の煙により、 溶解炉の目視観察用窓が汚染されたり、 視界が遮断されたりして、 合金が完全に溶解した力否かの判断や、 攪拌が充分で ある力、否かなどの目視による確認や判断ができない等の問題もある。 さらに、 正 確な蒸発量の推測が困難になるため、 目標とする化学成分の合金を製造すること ができないという問題もある。 In addition, the smoke of the evaporated metal fine powder contaminates the visual observation window of the melting furnace, or the view is blocked, and it is judged whether or not the alloy is completely dissolved, the power that the stirring is sufficient, There are also problems such as being unable to visually confirm and judge whether or not. In addition, positive Since it is difficult to accurately estimate the amount of evaporation, there is also the problem that it is not possible to produce an alloy with the target chemical composition.
なお、 上記 M g, C a , Z nおよび L i等を含有する合金は、 溶解法の他に、 ボーノレミリング等のメカニカルァロイング法によっても製造することができる。 この合金製造方法は、 原料の金属を溶解せずに製造する方法であるため、 金属微 粉発生による上記のような問題は生じないものの、 ミルポットからの鉄等の混入 による汚染や合金の均質性の低下が起こる等の問題がある。 また、 製造に長時間 を要するため、 製造コストが高いという問題もあり、 大量生産には適していない  In addition, the alloy containing Mg, C a, Zn, Li and the like can be manufactured by a mechanical alloying method such as Bono remilling in addition to the melting method. This alloy manufacturing method is a method that does not dissolve the metal of the raw material, so the above problems due to the generation of metal fines do not occur, but contamination due to mixing of iron etc. from the mill pot and the homogeneity of the alloy There are problems such as a decrease in In addition, since it takes a long time to manufacture, there is a problem that the manufacturing cost is high, and it is not suitable for mass production.
発明の開示 Disclosure of the invention
以上説明したように、 M g , C a , Z nおよび L i等を含有する合金を製造す る従来の方法は、 いずれも様々な問題を抱えているため、 こうした問題点のない 、 新しい製造技術の開発が強く望まれていた。 そこで、 本発明の主たる目的は、 低融点、 低沸点で蒸気圧の高い金属を含有する合金を、 溶解法で製造するのに有 利な溶解方法について提案するものである。  As explained above, the conventional methods for producing alloys containing Mg, C a, Zn, Li, etc. all have various problems. Technology development was strongly desired. Therefore, a main object of the present invention is to propose a melting method that is advantageous for producing an alloy containing a metal having a low melting point, a low boiling point, and a high vapor pressure by a melting method.
また、 本発明の他の目的は、 目標とする化学成分の合金を、 蒸発した活性な金 属微粉による発火等の危険や汚染を低減しつつ、 目標とする化学成分の合金を精 度よく、 多量に、 しかも安全に製造する方法を提案することにある。  Another object of the present invention is to reduce the risk and contamination of the target chemical component alloy by ignition and vaporization of active metal fine powder, while accurately controlling the target chemical component alloy. The purpose is to propose a method for manufacturing a large amount and safely.
発明者らは、 上記目的を実現するために鋭意研究を重ねた。 その結果、 溶解雰 囲気を構成するガス成分を適正化すること、 とくにヘリウムガスを用いることが 有効であるとの知見を得て、 本発明を開発するに至った。  The inventors have intensively studied to realize the above object. As a result, the inventors have obtained the knowledge that it is effective to optimize the gas components constituting the dissolved atmosphere, and particularly to use helium gas, and have developed the present invention.
即ち、 本発明は、 M g , C a , L i , Z n , M nおよび S rのうちのいずれか 1種以上を含有する合金を、 溶解して製造する方法において、 その溶解の雰囲気 ガスとして、 ヘリウム含有ガスを用いることを特徴とする高蒸気圧金属含有合金 の溶解方法である。  That is, the present invention relates to a method for melting and producing an alloy containing any one or more of Mg, Ca, Li, Zn, Mn, and Sr. As a melting method of a high vapor pressure metal-containing alloy, characterized in that helium-containing gas is used.
なお、 本発明においては、 前記雰囲気ガス中のヘリゥム濃度は、 1 0 V o 1 % 以上であること、 また、 前記雰囲気ガスは、 ヘリウムと、 窒素やアルゴンなどの 原料金属と反応しないガスとの混合ガスであることが好ましい。 また、 前記雰囲 気ガスの圧力は、 0 . 0 I M P a〜 I M P aであることが好ましレ、。 以上の構成とした本発明方法によれば、 M g, C a, L iおよび Z n等の低融 点、 低沸点で高蒸気圧の金属を含む合金、 例えば、 前記金属と A 1や N i等との 合金を、 蒸発した活性金属の微粉による発火等の危険や汚染を招くことなく、 目 標とする化学成分の合金を精度よく安全にかつ低コス トで多量に製造することが できる。 In the present invention, the helium concentration in the atmospheric gas is 10 V o 1%. In addition, the atmospheric gas is preferably a mixed gas of helium and a gas that does not react with a source metal such as nitrogen or argon. The pressure of the atmosphere gas is preferably 0.0 IMP a to IMP a. According to the method of the present invention configured as described above, an alloy containing a low melting point, low boiling point, high vapor pressure metal such as Mg, Ca, Li, and Zn, for example, the metal and A 1 or N Alloys with the target chemical composition can be produced in large quantities with high accuracy and safety at low cost without incurring dangers such as ignition and contamination due to evaporated active metal fines. .
さらに、 雰囲気ガスとしてヘリゥム含有ガスを用いる本発明の溶解方法は、 上 述した活性金属微粉による問題点を解決できること以外に、 ヘリゥムガスが有す る高い熱伝導率によって、 溶解した金属の凝固速度を高める、 すなわち、 急冷凝 固の効果が得られるという特徴を併せ持つている。 従って、 本発明の方法によれ ば、 従来、 急冷凝固専用の溶解装置を用いて製造していた特殊な合金を、 通常の 溶解装置でも製造することが可能となる。  Furthermore, the melting method of the present invention using a helium-containing gas as the atmospheric gas can solve the above-described problems caused by the active metal fine powder, and the solid metal has a high solidification rate due to the high thermal conductivity of the helium gas. It also has the feature of increasing the effect of rapid solidification. Therefore, according to the method of the present invention, it is possible to produce a special alloy that has been conventionally produced using a melting apparatus dedicated to rapid solidification, even with an ordinary melting apparatus.
以上のことから、 次世代で用いられる軽量金属や合金からなる構造材料や機能 性材料の開発および実用化が、 本発明の溶解方法を用いることで、 大きく進展す ることが期待される。 図面の簡単な説明  From the above, it is expected that the development and practical application of structural materials and functional materials made of lightweight metals and alloys used in the next generation will be greatly advanced by using the melting method of the present invention. Brief Description of Drawings
図 1は、 C a M g 2合金を溶解する際の雰囲気ガス中のヘリゥムガス濃度が、 M gの溶解歩留まりに及ぼす影響を示すグラフである。 Figure 1 is Heriumugasu concentration in the atmosphere gas at the time of dissolving the C a M g 2 alloy is a graph showing the effect on dissolution yield of M g.
図 2は、 C a M g 2合金を溶解する際の雰囲気ガスとして、 ヘリウムガスを用 いた場合とアルゴンガスを用いた場合に、 得られた合金の X線回折曲線を比較し て示した図である。 2, as the atmosphere gas at the time of dissolving the C a M g 2 alloy, in the case of using the case and argon gas had use of helium gas, as shown by comparing the X-ray diffraction curve of the resultant alloy Figure It is.
図 3は、 L a— N i系水素吸蔵合金を、 ヘリゥムガス雰囲気中で溶解した L a - N i系水素吸蔵合金と、 アルゴンガス雰囲気中で溶解した同じ合金の圧力組成等 温線図を比較して示した図である 発明を実施するための最良の形態 Figure 3 shows the pressure composition of the La-Ni hydrogen storage alloy dissolved in a helium gas atmosphere and the same alloy dissolved in an argon gas atmosphere. It is the figure which compared and showed the temperature diagram. The best form for inventing
以下、 本発明の溶解方法について詳細に説明する。  Hereinafter, the dissolution method of the present invention will be described in detail.
本発明の溶解方法は、 M g , C a, L iおよび Z n等の低融点、 低沸点でしか も蒸気圧が高い金属のうちの 1種以上を含有する合金を溶解する際に、 その溶解 雰囲気としてヘリゥム含有ガスを用いる点に特徴がある。 このヘリゥム含有ガス を溶解雰囲気として用いた場合には、 溶解時に蒸発して発生した金属微粉の凝集 を防ぐことが可能となり、 金属微粉の凝集体による発火等の危険性や汚染を大幅 に低減することができるとともに、 目標とする化学成分の合金を高精度で多量に 、 しかも安全に製造することができる。  The melting method of the present invention is used when melting an alloy containing one or more of low melting point, low boiling point and high vapor pressure metals such as Mg, Ca, Li and Zn. It is characterized in that helium-containing gas is used as the melting atmosphere. When this helium-containing gas is used as a melting atmosphere, it becomes possible to prevent the agglomeration of fine metal powder generated by evaporation during melting, greatly reducing the risk of ignition and contamination by the fine metal agglomerates. In addition, it is possible to manufacture a large amount of an alloy having a target chemical composition with high accuracy and safely.
このへリウム含有ガスによる上記効果は、 へリゥムが他の不活 ガスと比較し て、 熱伝導率が高く (アルゴンの約 3倍) 、 密度が低く (アルゴンの 0 . 1倍) さらに平均自由行程が長い (アルゴンの約 3倍) ことにより得られるものと推察 している。 なお、 ヘリウム以外では、 水素が同様の特徴を有しているが、 水素は 原料金属と反応して金属水素化物を構成することがあるので、 溶解雰囲気ガスと しては適当ではない。 ただし、 水素と反応しないような低融点、 低沸点かつ高蒸 気圧の金属を溶解する場合であれば、 水素含有ガスを雰囲気ガスとして用いた場 合には、 ヘリゥムと同様の効果を期待することができる。  The effect of this helium-containing gas is that helium has a higher thermal conductivity (approximately 3 times that of argon) and lower density (0.1 times that of argon) than other inert gases. It is presumed that it can be obtained by a long process (about 3 times that of argon). In addition to helium, hydrogen has the same characteristics, but hydrogen reacts with the source metal to form a metal hydride, so it is not suitable as a dissolved atmosphere gas. However, if a metal with a low melting point, low boiling point, and high vapor pressure that does not react with hydrogen is dissolved, the same effect as helium should be expected when a hydrogen-containing gas is used as the atmospheric gas. Can do.
ただし、 ヘリウムガスは、 非常に高価である。 従って、 コスト低減の観点から は、 このヘリウムガスを、 前記原料金属と反応しない、 安価なガスで一部置換し て用いることが好ましい。 そこで、 発明者らは、 ヘリウムを他の様々なガスで置 換する実験を行った結果、 ヘリゥムガスの一部を窒素やアルゴンなどの原料金属 と反応しないガスで置換したガスであれば、 蒸発により発生した金属微粉が凝集 することによる発火等の危険性や汚染を、 かなり低減することができることがわ 力つた。  However, helium gas is very expensive. Therefore, from the viewpoint of cost reduction, it is preferable that this helium gas is partially replaced with an inexpensive gas that does not react with the raw material metal. Therefore, the inventors conducted experiments to replace helium with various other gases, and as a result, if a gas in which a part of the helium gas is replaced with a gas that does not react with the source metal such as nitrogen or argon is evaporated, It was proved that the risk of ignition and contamination caused by agglomeration of generated metal fines can be considerably reduced.
なお、 ヘリウムガスを置換するガスとしては、 アルゴンガスが最も好ましい。 その理由は、 アルゴンガスは安価であり、 高温においても Mg, C a , L iおよ び Z nなどと反応することがないためである。 Argon gas is the most preferable gas for replacing helium gas. The reason is that argon gas is inexpensive and does not react with Mg, C a, Li and Zn even at high temperatures.
ただし、 ヘリゥムと他の不活性ガスとの置換には限界があることがわかった。 発明者らの知見したところによれば、 力かる混合ガス中のヘリウム含有量は、 少 なくとも 10 V o 1 %とすることが必要であり、 好ましくは 25 V o 1 %以上、 より好ましくは 50 V o 1 %以上である。 さらに好ましくは、 95 V o 1 %以上 であるが、 もちろん、 90〜 100 V o 1 %であってもよい。 このように、 雰囲 気ガスとしてヘリウムが占める割合の下限を、 10 v o l %としたのは、 Ι Ο ν o 1 %未満であるとヘリゥムの上述した作用効果が得られないためである。 また、 本発明に係る溶解方法においては、 ヘリウム含有ガスからなる溶解雰囲 気の圧力は、 0. 0 IMP a〜 IMP aであることが好ましい。 その理由は、 こ の圧力が 0. 0 IMP a未満では蒸発温度が著しく低下するため、 蒸発が促進さ れて、 金属微粉の発生量を低減することができないからである。 一方、 IMP a を超えると、 蒸発量は減少するものの、 融点が上昇して溶解が困難となるためで ある。  However, the substitution of helium with other inert gases was found to be limited. According to the knowledge of the inventors, the helium content in the powerful mixed gas needs to be at least 10 V o 1%, preferably 25 V o 1% or more, more preferably 50 V o 1% or more. More preferably, it is 95 V o 1% or more, but of course, it may be 90-100 V o 1%. In this way, the lower limit of the proportion of helium as the atmospheric gas is set to 10 v o l% because the above-described effects of helium cannot be obtained if it is less than 1%. In the melting method according to the present invention, the pressure of the melting atmosphere made of helium-containing gas is preferably 0.0 IMP a to IMP a. The reason is that if the pressure is less than 0.0 IMP a, the evaporation temperature is remarkably lowered, so that evaporation is promoted and the amount of metal fines generated cannot be reduced. On the other hand, if it exceeds IMP a, the amount of evaporation decreases, but the melting point rises and dissolution becomes difficult.
なお、 前記ヘリウム含有ガスの圧力範囲は、 溶解前の室温の状態における圧力 のことであり、 溶解工程中に炉内が高温になった場合には、 前記範囲を超える場 合がある。  The pressure range of the helium-containing gas is the pressure at room temperature before melting, and may exceed the above range when the temperature of the furnace becomes high during the melting process.
また、 上記の雰囲気ガスとして用いるヘリゥムの濃度および圧力の最適範囲は 、 主にコス トの観点から考察、 開発を重ねた結果、 得られたものである。  The optimum range of helium concentration and pressure used as the above atmospheric gas was obtained as a result of repeated consideration and development mainly from the viewpoint of cost.
また、 本発明の溶解方法においては、 雰囲気ガスとして供給する前記ヘリウム 含有ガス中には、 酸素、 二酸化炭素、 水蒸気等の不純物ガスを、 本発明の作用を 害さない範囲で含有していてもよいが、 その含有量は、 lma s s%以下とする ことが好ましい。 その理由は、 lma s s%を超えると、 溶解中にこれらのガス と Mg, Ca, L iおよび Z n等とが反応し、 酸化物、 水酸化物および炭化物等 が生成して、 目標とする化学組成合金および化合物を製造することができなくな るためである。 実施例 In the melting method of the present invention, the helium-containing gas supplied as the atmospheric gas may contain an impurity gas such as oxygen, carbon dioxide, and water vapor within a range that does not impair the function of the present invention. However, the content is preferably lma ss% or less. The reason for this is that if it exceeds lma ss%, these gases react with Mg, Ca, Li, Zn, etc. during dissolution, producing oxides, hydroxides, carbides, etc. This is because it becomes impossible to produce chemical composition alloys and compounds. Example
以下に、 実施例を掲げて本発明を詳しく説明するが、 本発明はこれらの実施例 に限定されるものではないことは勿論である。  EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.
(発明例 1)  (Invention example 1)
水素吸蔵合金 C a Mg 2の原料として、 Mgと C aの金属を、 それらのモル比 が 2 : 1となるように、 合計 l k g用意し、 これらの全量を誘導溶融型溶解炉内 に装入し、 この炉内を 8 X 10_3T o r rにまで排気し、 次いで、 雰囲気ガス としてヘリゥムガス (濃度 1 O O v o l %) を 600To r rになるまで導入し た。 その後、 この雰囲気ガスで炉內を満たしながら、 溶解炉の温度を 1 100°C まで加熱して上記原料を溶解し、 さらに、 上記合金の溶湯温度を 1050°Cに維 持しつつ 30分間保持した。 その後、 上記合金の溶湯を、 水冷した定盤上に注い で、 冷却速度 1000 °CZ秒で冷却して凝固させ、 C a M g 2合金を作製した。 このようにして得た C a Mg 2合金について、 下記 (1) および (2) の方法で 、 溶解歩留まりおよび化学成分を測定した。 As a raw material for the hydrogen storage alloy C a Mg 2 , prepare a total of 1 kg of Mg and Ca metals so that the molar ratio of them is 2: 1, and charge all of these into the induction melting melting furnace. and, the furnace was evacuated to 8 X 10_ 3 T orr, was then introduced until Heriumugasu (concentration 1 OO vol%) to 600To rr as the atmospheric gas. Then, while filling the furnace with this atmospheric gas, the melting furnace temperature is heated to 1 100 ° C to melt the raw material, and further, the molten metal temperature of the alloy is maintained at 1050 ° C for 30 minutes. did. Thereafter, the molten alloy was poured onto a water-cooled surface plate, and cooled and solidified at a cooling rate of 1000 ° CZ seconds to produce a C a Mg 2 alloy. With respect to the Ca Mg 2 alloy thus obtained, the dissolution yield and chemical composition were measured by the following methods (1) and (2).
(1) 溶¾?歩留まりの測定  (1) Measurement of melt yield
溶解前の原料の質量および溶解铸造後の合金の質量を、 それぞれ測定すること により、 蒸発による減少した質量を求め、 溶解歩留まりを算出した。  By measuring the mass of the raw material before melting and the mass of the alloy after melting and casting, the mass decreased by evaporation was determined, and the melting yield was calculated.
(2) 化学成分の測定  (2) Measurement of chemical components
I C P発光分光分析法により、 溶解鍩造後の合金の化学成分を定量分析した。 上記測定の結果を表 1に示した。 この結果から、 溶解雰囲気ガスとしてへリウ ムガスを用いた本発明例 1では、 溶 歩留まりは 98. 2%以上と高く、 さらに 目標合金組成に対して ± 1%以内の高い精度で合金が製造できていることがわ かる。 【表 1】 The chemical composition of the alloy after melting and forging was quantitatively analyzed by ICP emission spectroscopy. The results of the above measurements are shown in Table 1. From this result, in Example 1 of the present invention using helium gas as the melting atmosphere gas, the dissolution yield is as high as 98.2% or more, and an alloy can be manufactured with high accuracy within ± 1% of the target alloy composition. I can see that 【table 1】
Figure imgf000009_0001
Figure imgf000009_0001
(比較例 1 ) (Comparative Example 1)
雰囲気ガスとしてアルゴンガス (濃度 1 00 V o 1 %) を用いた以外は、 発明 例 1と同様にして C aMg 2合金を作製した。 この C aMg 2合金について、 上 記 (1) および (2) の方法で溶解歩留まりおよび化学成分を測定し、 結果を表 1に併記して示した。 A CaMg 2 alloy was produced in the same manner as Invention Example 1 except that argon gas (concentration: 100 V o 1%) was used as the atmospheric gas. For this CaMg 2 alloy, the dissolution yield and chemical composition were measured by the methods (1) and (2) above, and the results are also shown in Table 1.
(発明例 2〜 4)  (Invention Examples 2 to 4)
雰囲気ガスとして導入するヘリウムガスの濃度を、 75, 50, 25 V o 1 % (残部アルゴンガス) と変化させたこと以外は、 上記発明例 1と同様にして C a Mg2合金を作製した。 これらの C aMg 2合金について、 上記 (1) および ( 2) の方法で溶解歩留まりおよび化学成分を測定し、 そ結果を表 1に併記して示 した。 これらの結果から、 ヘリゥムガス濃度が 50 V o 1 %を超える場合 (発明 例 2および 3) には、 溶解歩留まりが 98%程度と高く、 さらに目標とする合金 組成が高い精度で得られることがわかる。 一方、 ヘリゥムガス濃度が 25 V o 1 %の場合 (発明例 4) には、 溶解歩留まりおよび合金組成が、 発明例 1〜3に劣 るものの、 ヘリウムガスを含有していない場合 (比較例 1) より溶解歩留まりお よび合金組成の精度が向上しており、 ヘリゥムガス導入の効果が確認できる。 上記発明例 1〜 4および比較例 1の結果から得られるヘリウムガス濃度と溶解 歩留まりとの関係を図 1に示す。 図 1より、 ヘリウムガス濃度が高くなるととも に溶解歩留まりが向上していることがわかる。 A Ca Mg 2 alloy was produced in the same manner as in Invention Example 1 except that the concentration of helium gas introduced as the atmospheric gas was changed to 75, 50, 25 V o 1% (remaining argon gas). For these CaMg 2 alloys, the dissolution yield and chemical composition were measured by the methods (1) and (2) above, and the results are also shown in Table 1. These results show that when the helium gas concentration exceeds 50 V o 1% (Invention Examples 2 and 3), the dissolution yield is as high as about 98%, and the target alloy composition can be obtained with high accuracy. . On the other hand, when the helium gas concentration is 25 V o 1% (Invention Example 4), the dissolution yield and the alloy composition are inferior to Invention Examples 1 to 3. However, when it does not contain helium gas (Comparative Example 1), the accuracy of dissolution yield and alloy composition is improved, and the effect of introducing helium gas can be confirmed. FIG. 1 shows the relationship between the helium gas concentration obtained from the results of Invention Examples 1 to 4 and Comparative Example 1 and the dissolution yield. Figure 1 shows that the dissolution yield improves with increasing helium gas concentration.
さらに、 上記発明例 1および比較例 1で得られた C a Mg 2合金について、 X 線回折強度の測定を行 t、、 合金および化合物が目標通りの単相構造を有している か否かを確認し、 その結果を図 2に示した。 図 2より、 発明例 1の C aMg2合 金は、 C a Mg 2相の単相構造合金となっているが、 比較例 1の合金は、 C aM g 2相と C a相の 2相が混在した構造の合金となっていることがわかる。 Further, for the Ca Mg 2 alloy obtained in Invention Example 1 and Comparative Example 1 above, X-ray diffraction intensity was measured, and whether the alloy and the compound have a target single-phase structure. Figure 2 shows the results. From Fig. 2, the CaMg 2 alloy of Invention Example 1 is a single-phase structural alloy of C a Mg 2 phase, but the alloy of Comparative Example 1 has two phases of C aM g 2 phase and C a phase. It can be seen that the alloy has a mixed structure.
以上、 表 1、 図 1および図 2からわかるように、 本発明の方法に従えば、 目的 とする組成の単相合金をばらつきなく製造することが可能である。 これに対し、 比較例の方法では、 原料の蒸発損失が制御できず、 目標組成から大きぐはずれ、 しかも合金組成のばらつきが生じている。  As can be seen from Table 1, FIG. 1 and FIG. 2, according to the method of the present invention, single-phase alloys having the intended composition can be produced without variation. On the other hand, in the method of the comparative example, the evaporation loss of the raw material cannot be controlled, deviating greatly from the target composition, and the alloy composition varies.
(発明例 5)  (Invention example 5)
合金原料として C aと A 1を用いたこと以外は、 上記発明例 1と同様にして C a A l 2合金を作製し、 得られた C aMg 2合金について、 上記 (1) および ( 2) の方法により、 溶解歩留まりおよび化学成分を測定し、 その結果を表 1に併 記して示した。 この結果から、 本発明例 5では、 溶解歩留まりが 98%程度と高 く、 さらに目標の A】組成に対して ± 1%以内の高い精度で目標合金が得られ ていることがわかる。 Except for using the C a and A 1 as an alloy raw material, to produce a C a A l 2 alloy in the same manner as in Invention Example 1, the C AMG 2 alloy obtained above (1) and (2) The dissolution yield and chemical composition were measured by this method, and the results are also shown in Table 1. From this result, it can be seen that in Example 5 of the present invention, the dissolution yield was as high as about 98%, and the target alloy was obtained with high accuracy within ± 1% of the target A] composition.
(発明例 6)  (Invention example 6)
合金原料として Mgと N 1を用いたこと以外は、 上記発明例 1と同様にして M gN i 2合金を作製し、 得られた MgN i 2合金について、 上記 (1) および ( 2) の方法により、 溶解歩留まりおよび化学成分を測定し、 その結果を表 1に併 記して示した。 この結果から、 本発明例 6では、 溶解歩留まりが 98%程度と高 く、 さらに目標の N i組成比に対して ± 2%以内の高い精度で目標合金が得ら れていることがわかる。 Except using Mg and N 1 as alloy materials, to produce M gN i 2 alloy in the same manner as in Invention Example 1, the obtained MgN i 2 alloy, a method of the above (1) and (2) Thus, the dissolution yield and chemical composition were measured, and the results are also shown in Table 1. From this result, in Example 6 of the present invention, the dissolution yield was as high as about 98%, and the target alloy was obtained with high accuracy within ± 2% of the target Ni composition ratio. You can see that
(発明例 7 )  (Invention Example 7)
合金原料として C aと N iを用いたこと以外は、 上記実験例 1と同様にして C a N i 2合金を作製し、 得られた C a N i 2合金について、 上記 (1 ) および ( 2 ) の方法により、 溶解歩留まりおよび化学成分を測定し、 その結果を表 1に併 記して示した。 この結果から、 本発明例 7では、 溶解歩留まりが 9 8 %程度と高 く、 さらに目標の N i組成比に対して ± 2 %以内の高い精度で目標合金が得ら れていることがわかる。 Except for using the C a and N i as an alloy raw material, to produce a C a N i 2 alloy in the same manner as in Experimental Example 1, the C a N i 2 alloy obtained above (1) and ( The dissolution yield and chemical composition were measured by the method 2), and the results are also shown in Table 1. From this result, it can be seen that in Example 7 of the present invention, the dissolution yield is as high as about 98%, and the target alloy is obtained with high accuracy within ± 2% with respect to the target Ni composition ratio. .
(発明例 8および比較例 2 )  (Invention Example 8 and Comparative Example 2)
本発明に従って、 ヘリゥムガス 1 0 0 V o 1 %雰囲気中で溶解作製した L a一 N i系水素吸蔵合金 (発明例 8 ) およアルゴンガス 1 0 0 V o 1 %雰囲気中で溶 解作製した同じ化学組成の L a— N i系水素吸蔵合金 (比較例 2 ) について、 圧 力組成等 図を測定し、 その結果を図 3に示した。 この図 3から、 発明例 8の 合金は、 比較例 2の合金に比べてプラト一領域が平坦でかつ広くなつており、 へ リゥムガスにより急冷凝固された発明例 8の合金は、 均質性に優れた合金となつ ていることがわかる。 産業上の利用可能性  In accordance with the present invention, a La 1 Ni-based hydrogen storage alloy (Invention Example 8) prepared by dissolution in a helium gas atmosphere at 100 V o 1% and an argon gas at 100 V o 1% atmosphere were prepared. For the La—Ni system hydrogen storage alloy with the same chemical composition (Comparative Example 2), the pressure composition and other figures were measured, and the results are shown in FIG. From Fig. 3, the alloy of Invention Example 8 has a flat and wide plateau region compared to the alloy of Comparative Example 2, and the alloy of Invention Example 8 that has been rapidly solidified by helium gas has excellent homogeneity. It can be seen that it is an alloy. Industrial applicability
本発明の技術は、 M gや C a, Z nおよび L i等に代表される低融点、 低沸点 でかつ蒸気圧が高い金属を含む合金の大量生産技術として利用されるだけでなく 、 それら金属を単体で溶解する場合や、 ガリウム一ヒ素の如き半導体等に用いら れる化合物やその他の化合物の溶解にも適用することができる。 さらに、 本発明 の技術は、 次世代にぉレ、て用いられる軽量金属や合金からなる構造材料や機能性 材料や半導体化合物、 その他の化合物の溶解技術にも適用が可能である。  The technology of the present invention is not only used as a mass production technology for alloys containing metals with low melting point, low boiling point and high vapor pressure, such as Mg, Ca, Zn and Li, but also The present invention can also be applied to the case where a metal is dissolved alone, or to the dissolution of a compound used in a semiconductor such as gallium monoarsenide or other compounds. Furthermore, the technique of the present invention can also be applied to a dissolution technique for structural materials, functional materials, semiconductor compounds, and other compounds made of lightweight metals and alloys used in the next generation.

Claims

請求の範囲 The scope of the claims
1. Mg, C a , L i , Zn, Mnおよび S rのうちのいずれか 1種以上を含有 する合金を、 溶解して製造する方法において、 その溶解の雰囲気ガスとして、 へ リゥム含有ガスを用いることを特徴とする高蒸気圧金属含有合金の溶解方法。 1. In a method for melting and manufacturing an alloy containing at least one of Mg, C a, Li, Zn, Mn, and Sr, helium-containing gas is used as the melting atmosphere gas. A method for melting a high vapor pressure metal-containing alloy, characterized by being used.
2. 前記雰囲気ガス中のヘリウム濃度は、 10 V o 1 %以上であることを特徴と する請求項 1記載の高蒸気圧金属含有合金の溶解方法。 2. The method for melting a high vapor pressure metal-containing alloy according to claim 1, wherein the helium concentration in the atmospheric gas is 10 V o 1% or more.
3. 前記雰囲気ガスは、 ヘリウムと、 窒素やアルゴンなどの原料金属と反応しな いガスとの混合ガスであることを特徴とする請求項 1または 2に記載の高蒸気圧 金属含有合金の溶解方法。  3. The high vapor pressure metal-containing alloy according to claim 1 or 2, wherein the atmospheric gas is a mixed gas of helium and a gas that does not react with a source metal such as nitrogen or argon. Method.
4. 前記雰囲気ガスの圧力は、 0. 01〜 IMP aであることを特徴とする請求 項 1〜 3のいずれか 1項に記載の高蒸気圧金属含有合金の溶解方法。  4. The method for melting a high vapor pressure metal-containing alloy according to any one of claims 1 to 3, wherein the pressure of the atmospheric gas is 0.01 to IMP a.
PCT/JP2006/304525 2005-03-02 2006-03-02 Method of melting alloy containing high-vapor-pressure metal WO2006093334A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800067151A CN101132871B (en) 2005-03-02 2006-03-02 Method of melting alloy containing high-vapor-pressure metal
JP2007506056A JP4956826B2 (en) 2005-03-02 2006-03-02 Method for melting high vapor pressure metal-containing alloys
EP06728794.6A EP1875978B1 (en) 2005-03-02 2006-03-02 Method of melting alloy containing high-vapor-pressure metal
US11/817,459 US20090007728A1 (en) 2005-03-02 2006-03-02 Method For Melting an Alloy Containing a Metal of a High Vapor Pressure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-056985 2005-03-02
JP2005056985 2005-03-02

Publications (1)

Publication Number Publication Date
WO2006093334A1 true WO2006093334A1 (en) 2006-09-08

Family

ID=36941358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304525 WO2006093334A1 (en) 2005-03-02 2006-03-02 Method of melting alloy containing high-vapor-pressure metal

Country Status (6)

Country Link
US (1) US20090007728A1 (en)
EP (1) EP1875978B1 (en)
JP (1) JP4956826B2 (en)
KR (1) KR20070107757A (en)
CN (1) CN101132871B (en)
WO (1) WO2006093334A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162385A1 (en) 2010-06-24 2011-12-29 株式会社三徳 PROCESS FOR PRODUCTION OF (RARE EARTH)-Mg-Ni-BASED HYDROGEN STORAGE ALLOY
CN106978557A (en) * 2017-05-11 2017-07-25 江苏理工学院 A kind of magnesium lithium alloy and preparation method thereof
CN107227421A (en) * 2017-05-11 2017-10-03 江苏理工学院 Magnesium lithium alloy and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10331434B2 (en) * 2016-12-21 2019-06-25 Quanta Computer Inc. System and method for remotely updating firmware

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10156577A (en) * 1996-11-20 1998-06-16 H K M Co:Kk Treatment room
JP2003113430A (en) * 2001-10-03 2003-04-18 Sumitomo Metal Ind Ltd Melting and casting method for magnesium and magnesium alloy
JP2003239033A (en) * 2001-12-14 2003-08-27 Matsushita Electric Ind Co Ltd Magnesium alloy cast and its casting method
JP2004195527A (en) * 2002-12-20 2004-07-15 Seiko Epson Corp Material melting apparatus and injection molding machine with the apparatus installed therein

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3845805A (en) * 1972-11-14 1974-11-05 Allied Chem Liquid quenching of free jet spun metal filaments
US4375371A (en) * 1981-06-12 1983-03-01 Allegheny Ludlum Steel Corporation Method for induction melting
JPS6217144A (en) * 1985-07-15 1987-01-26 Alum Funmatsu Yakin Gijutsu Kenkyu Kumiai Manufacture of al-li alloy
US4948423A (en) * 1989-07-21 1990-08-14 Energy Conversion Devices, Inc. Alloy preparation of hydrogen storage materials
JPH0611889B2 (en) * 1989-10-06 1994-02-16 住友軽金属工業株式会社 Method for melting A1-Li alloy
JPH08120365A (en) * 1994-10-19 1996-05-14 Sanyo Electric Co Ltd Hydrogen storage alloy and its production
JPH08158043A (en) * 1994-12-05 1996-06-18 Nisshin Steel Co Ltd Supply of mg to evaporation vessel
FR2746112B1 (en) * 1996-03-13 1998-06-05 METHOD OF CONTINUOUS HEAT TREATMENT OF METAL STRIPS IN ATMOSPHERES OF DIFFERENT NATURE
AT2420U1 (en) * 1997-11-24 1998-10-27 Unitech Ag METHOD FOR THE OPERATION OF OVEN PLANTS FOR MAGNESIUM ALLOYS
JP2000239769A (en) * 1998-12-22 2000-09-05 Shin Etsu Chem Co Ltd Rare earth hydrogen storage alloy and electrode using it
CN1296502C (en) * 2001-12-14 2007-01-24 松下电器产业株式会社 Magnesium alloy sectional stocks, their continuous casting method and device
JP4183959B2 (en) * 2002-03-22 2008-11-19 株式会社日本製鋼所 Method for producing hydrogen storage alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10156577A (en) * 1996-11-20 1998-06-16 H K M Co:Kk Treatment room
JP2003113430A (en) * 2001-10-03 2003-04-18 Sumitomo Metal Ind Ltd Melting and casting method for magnesium and magnesium alloy
JP2003239033A (en) * 2001-12-14 2003-08-27 Matsushita Electric Ind Co Ltd Magnesium alloy cast and its casting method
JP2004195527A (en) * 2002-12-20 2004-07-15 Seiko Epson Corp Material melting apparatus and injection molding machine with the apparatus installed therein

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162385A1 (en) 2010-06-24 2011-12-29 株式会社三徳 PROCESS FOR PRODUCTION OF (RARE EARTH)-Mg-Ni-BASED HYDROGEN STORAGE ALLOY
US9293765B2 (en) 2010-06-24 2016-03-22 Santoku Corporation Process for production of (rare earth)-Mg-Ni-based hydrogen storage alloy
CN106978557A (en) * 2017-05-11 2017-07-25 江苏理工学院 A kind of magnesium lithium alloy and preparation method thereof
CN107227421A (en) * 2017-05-11 2017-10-03 江苏理工学院 Magnesium lithium alloy and preparation method thereof
CN107227421B (en) * 2017-05-11 2019-04-09 江苏理工学院 Magnesium lithium alloy and preparation method thereof

Also Published As

Publication number Publication date
CN101132871B (en) 2011-04-20
US20090007728A1 (en) 2009-01-08
KR20070107757A (en) 2007-11-07
EP1875978B1 (en) 2019-05-08
JP4956826B2 (en) 2012-06-20
EP1875978A1 (en) 2008-01-09
EP1875978A4 (en) 2008-11-05
JPWO2006093334A1 (en) 2008-08-07
CN101132871A (en) 2008-02-27

Similar Documents

Publication Publication Date Title
US20160089724A1 (en) Process for manufacturing metal containing powder
AU2015376067B2 (en) Processes for producing nitrogen, essentially nitride-free chromuim and chromium plus niobium-containing nickel-based alloys and the resulting chromium and nickel-based alloys
KR20120074037A (en) Magnesium alloy for high temperature and manufacturing method thereof
KR101402897B1 (en) Manufacturing method of alloys and alloys fabricated by the same
WO2006093334A1 (en) Method of melting alloy containing high-vapor-pressure metal
JP4601755B2 (en) Method for producing hydrogen storage alloy
EP1281780B1 (en) Method of grain refining cast magnesium alloy
RU2699620C2 (en) New method and product
EP2939761B1 (en) Production method for a niobium granulated product, production method for a sintered body, production method for a chemical conversion body for nobium capacitor positive electrode and production method for a capacitor
CA1175661A (en) Process for aluminothermic production of chromium and chromium alloys low in nitrogen
Kim et al. Effect of Na and Cooling Rate on the Activation of Mg–Ni Alloys for Hydrogen Storage
JP2001262247A (en) Method for producing magnesium series hydrogen storage alloy
JP2926280B2 (en) Rare earth-iron alloy production method
CN110923476A (en) Method for producing high-purity metal vanadium ingot by three-step method
KR101147648B1 (en) Magnesium alloy and manufacturing method thereof
Xu et al. Thermal reactivity of Al–Mg–Li alloy powders
EP2695953B1 (en) Method for adding zinc to molten steel and process for producing zinc-containing steel
JP4634256B2 (en) Hydrogen storage alloy, method for producing the same, and nickel metal hydride secondary battery
JP2007291517A (en) Magnesium alloy casting having excellent corrosion resistance
JP2006124728A (en) Method and device for producing metal material containing active metal, and metal material containing active metal obtained by the production method
JP5114777B2 (en) Method for producing hydrogen storage material
CN113584353A (en) Aluminum-molybdenum-vanadium-chromium-titanium intermediate alloy and preparation method thereof
JPS60145339A (en) Manufacture of cobalt alloy containing boron
JP2004027247A (en) Hydrogen storage alloy and its manufacturing method
CN102560166A (en) Method for smelting low-oxygen high-purity aluminum alloy at high altitude

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680006715.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007506056

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11817459

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006728794

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: KR

Ref document number: 1020077020769

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006728794

Country of ref document: EP