JPH08120365A - Hydrogen storage alloy and its production - Google Patents

Hydrogen storage alloy and its production

Info

Publication number
JPH08120365A
JPH08120365A JP6253611A JP25361194A JPH08120365A JP H08120365 A JPH08120365 A JP H08120365A JP 6253611 A JP6253611 A JP 6253611A JP 25361194 A JP25361194 A JP 25361194A JP H08120365 A JPH08120365 A JP H08120365A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
storage alloy
crystal
crystal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6253611A
Other languages
Japanese (ja)
Inventor
Takahiro Isono
隆博 礒野
Teruhiko Imoto
輝彦 井本
Hiroshi Watanabe
浩志 渡辺
Shin Fujitani
伸 藤谷
Ikuro Yonezu
育郎 米津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6253611A priority Critical patent/JPH08120365A/en
Publication of JPH08120365A publication Critical patent/JPH08120365A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE: To suppress pulverizing of hydrogen storage alloy by crystal orientation effect after pulverizing in the initial phase while easily pulverizing in the initial phase of storage/discharge of hydrogen. CONSTITUTION: An alloy molten metal 10 in a container 5 is jetted from the tip of a nozzle 6, an inert gas containing the fine powder of hydrogen storage material having the crystal structure different from that of molten metal is blown to the jet flow from an introducing pipe 9, the fine powder is taken into the inside of jet flow to be rapidly solidified. The hydrogen storage material is constituted so that a second alloy grain having the crystal structure different from that of a first alloy coexists in the crystal boundary of a first alloy in which the crystal is oriented in the fixed direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金及びその
製法並びに電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy, a method for producing the same, and an electrode.

【0002】[0002]

【従来の技術】水素吸蔵合金は、水素の吸蔵、放出に伴
って膨張、収縮するため、そのときの応力により粉砕が
起こり、サイクルが経過するにつれて微粉化が進行す
る。この微粉化は、水素吸蔵合金充填層の熱伝導度の低
下や、水素吸蔵合金のサイクル寿命の低下をもたらす。
2. Description of the Related Art A hydrogen storage alloy expands and contracts as it absorbs and releases hydrogen, so that the stress at that time causes crushing, and pulverization proceeds as the cycle progresses. This pulverization causes a decrease in the thermal conductivity of the hydrogen storage alloy packed bed and a reduction in the cycle life of the hydrogen storage alloy.

【0003】そこで、水素吸蔵合金の微粉化を抑制し、
熱伝導度の向上を図るために、合金溶湯を急冷凝固させ
て、結晶をc軸方向に配向させた水素吸蔵合金が提案さ
れている(米津育郎ら;電気化学;58(No.8),1990,pp742-7
47)。この文献では、結晶が一定方向に整列することに
よって、膨張、収縮時の応力が緩和され、これが微粉化
を抑制することが報告されている。
Therefore, it is possible to suppress pulverization of the hydrogen storage alloy,
In order to improve the thermal conductivity, a hydrogen storage alloy in which crystals are oriented in the c-axis direction by rapidly solidifying molten alloy has been proposed (Ikuo Yonezu et al .; Electrochemistry; 58 (No.8), 1990, pp742-7
47). In this document, it is reported that when the crystals are aligned in a certain direction, the stress at the time of expansion and contraction is relaxed, and this suppresses pulverization.

【0004】この結晶配向された合金は微粉化し難く、
水素の吸収・放出サイクル寿命が向上する利点はある
が、初期の水素化粉砕も抑制するため、初期活性化が悪
く、サイクル初期の段階では高率放電を得られない問題
がある。
This crystal-oriented alloy is hard to be pulverized,
Although there is an advantage that the absorption / desorption cycle life of hydrogen is improved, there is a problem that the initial activation is poor and high rate discharge cannot be obtained at the initial stage of the cycle because the initial hydrogenation and pulverization is also suppressed.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、水素
の吸蔵・放出サイクル初期に水素化粉砕され易くする一
方、サイクル初期に粉砕された後は結晶配向効果によ
り、微粉化の進行が抑制される水素吸蔵合金及びその製
法並びに前記水素吸蔵合金を用いた電極を提供すること
である。
The object of the present invention is to facilitate hydrogenation and pulverization at the beginning of the hydrogen absorption / desorption cycle, while suppressing the progress of pulverization due to the crystal orientation effect after pulverization at the beginning of the cycle. The present invention provides a hydrogen storage alloy, a method for producing the same, and an electrode using the hydrogen storage alloy.

【0006】[0006]

【課題を解決するための手段】本発明の水素吸蔵合金の
製法は、容器内の水素吸蔵合金の溶湯を、容器下部に配
設されたノズルの先端から噴出させ、その噴出流の中
に、前記合金の結晶構造とは異なる結晶構造を有する水
素吸蔵合金の微粉末を取り込ませた後に、急冷凝固させ
るものである。具体的には、容器内の水素吸蔵合金の結
晶構造とは異なる結晶構造を有する水素吸蔵合金の微粉
末を含んだ不活性ガスを噴霧し、その不活性ガスの雰囲
気中に合金溶湯を通過させ、合金溶湯中に微粉末を取り
込んだ後に合金溶湯を急冷し、凝固させるものである。
Means for Solving the Problems The method for producing a hydrogen-absorbing alloy of the present invention is to cause a molten metal of a hydrogen-absorbing alloy in a container to be ejected from a tip of a nozzle arranged in the lower part of the container, and into the ejected flow, After the fine powder of the hydrogen storage alloy having a crystal structure different from that of the alloy is taken in, it is rapidly solidified. Specifically, an inert gas containing fine powder of a hydrogen storage alloy having a crystal structure different from the crystal structure of the hydrogen storage alloy in the container is sprayed, and the molten alloy is passed through the atmosphere of the inert gas. After the fine powder is taken into the molten alloy, the molten alloy is rapidly cooled and solidified.

【0007】本発明の水素吸蔵合金は、結晶が一定方向
に配向された第1の水素吸蔵合金の結晶粒界に、第1の
合金の結晶構造とは異なる結晶構造を有する第2の水素
吸蔵合金の粒子が混在した組織を有するようにしたもの
である。
In the hydrogen storage alloy of the present invention, the second hydrogen storage alloy having a crystal structure different from the crystal structure of the first alloy in the grain boundaries of the first hydrogen storage alloy in which the crystals are oriented in a certain direction. It has a structure in which alloy particles are mixed.

【0008】本発明の水素吸蔵合金電極は、結晶が一定
方向に配向された第1の水素吸蔵合金の結晶粒界に、第
1の合金の結晶構造とは異なる結晶構造を有する第2の
水素吸蔵合金の粒子が混在した組織を有する合金を、水
素の吸蔵及び放出材料として具えるようにしたものであ
る。
In the hydrogen storage alloy electrode of the present invention, the second hydrogen having a crystal structure different from the crystal structure of the first alloy is present in the crystal grain boundaries of the first hydrogen storage alloy in which the crystals are oriented in a certain direction. An alloy having a structure in which particles of a storage alloy are mixed is provided as a material for storing and releasing hydrogen.

【0009】[0009]

【作用】本発明の水素吸蔵合金の製法では、溶湯合金が
急冷される直前に、微粉末を取り込んでいるから、その
後、溶湯合金が急冷され、結晶粒が一定の方向に整列す
る際、結晶粒界に微粒子が混在した状態で凝固する。
In the method for producing a hydrogen storage alloy of the present invention, since the fine powder is taken in immediately before the molten alloy is rapidly cooled, the molten alloy is then rapidly cooled, and when the crystal grains are aligned in a certain direction, It solidifies in the state in which fine particles are mixed in the grain boundaries.

【0010】結晶が一定方向に配向された第1の水素吸
蔵合金と、溶湯合金中に固体微粒子として入り込んだ第
2の水素吸蔵合金とは結晶構造が異なるから、水素の吸
蔵及び放出時の膨張、収縮量が異なる。このため、サイ
クルの初期段階で、相互に結晶構造が異なる粒界に大き
な応力が作用し、そこが割れの起点となって粉砕が起こ
る。
Since the crystal structure of the first hydrogen storage alloy in which the crystals are oriented in a certain direction is different from that of the second hydrogen storage alloy in which solid particles are introduced into the molten alloy, the expansion at the time of storage and release of hydrogen. , The amount of shrinkage is different. Therefore, in the initial stage of the cycle, a large stress acts on the grain boundaries having different crystal structures, and this acts as a starting point of cracking, causing crushing.

【0011】サイクル初期の段階の粉砕では、水素吸蔵
合金は、結晶の構造と配向を同じくする結晶群に分かれ
る。これらの結晶群では、その後にサイクルが繰り返さ
れても、結晶配向効果によって結晶粒界の応力が緩和さ
れ、微粉化が抑制される。
During pulverization in the initial stage of the cycle, the hydrogen storage alloy is divided into crystal groups having the same crystal structure and orientation. In these crystal groups, even if the cycle is repeated thereafter, the stress of the crystal grain boundary is relaxed by the crystal orientation effect, and the pulverization is suppressed.

【0012】[0012]

【実施例】本発明を実施例に基づいてさらに詳細に説明
する。Zr、Ni、V、Mnの各合金成分金属を所定量
秤量して混合し、アルゴンガス雰囲気のアーク溶解炉で
溶解し、ZrNi0.70.5Mn0.8と、ZrNi1.5
0.5の2種類の合金インゴット(約20g)を作製した。
ZrNi0.70.5Mn0.8はC14型六方晶の結晶構造
を有し、ZrNi1.50.5はC15型立方晶の結晶構造
を有する。結晶を配向させる第1の合金にはC14型立
方晶のZrNi0.70.5Mn0.8を用い、第1の合金の
結晶粒界に混在させる第2の合金にはC15型六方晶の
ZrNi1.50.5を用いた。ZrNi0.70.5Mn0.8
の合金はインゴットのままで使用し、ZrNi1.50.5
の合金はアルゴンガス雰囲気下で平均粒径約2μm以下
の微細な粉体に粉砕した。
EXAMPLES The present invention will be described in more detail based on examples. Zr, Ni, V, and Mn alloy component metals were weighed and mixed in predetermined amounts and melted in an arc melting furnace in an argon gas atmosphere, and ZrNi 0.7 V 0.5 Mn 0.8 and ZrNi 1.5 V
Two kinds of 0.5 alloy ingots (about 20 g) were prepared.
ZrNi 0.7 V 0.5 Mn 0.8 has a C14 type hexagonal crystal structure, and ZrNi 1.5 V 0.5 has a C15 type cubic crystal structure. C14 type cubic ZrNi 0.7 V 0.5 Mn 0.8 is used as the first alloy for crystal orientation, and C15 type hexagonal ZrNi 1.5 V 0.5 is used as the second alloy mixed in the grain boundaries of the first alloy. Was used. ZrNi 0.7 V 0.5 Mn 0.8
Alloy is used as it is in the ingot, ZrNi 1.5 V 0.5
Alloy was crushed into a fine powder having an average particle size of about 2 μm or less under an argon gas atmosphere.

【0013】実施例 実施例では、結晶配向の付与は急冷ロール法により行な
った。図1は、急冷ロール装置を用いて合金薄帯を作製
するときの概要説明図である。図1の装置を説明する
と、装置内部は、上部の溶解室(1)と下部の急冷室(2)か
らなる。溶解室(1)の内部は密閉状態に保持できるよう
に形成され、上部の側面にアルゴンガス導入管(3)、天
井部にアークトーチ(4)が配備される。溶解室(1)の下部
には、容器(5)が配備され、該容器は下部にノズル(6)を
具えている。ノズル(13)は急冷室(2)に臨出している。
急冷室(2)は、ノズル(6)の下方に銅製のロール(7)が回
転可能に配備され、下部の側面にはアルゴンガス排出管
(8)が配備される。また、ノズル(6)からロール(7)に向
けて噴出される溶湯合金に第2の合金の微粉末を取り込
ませるために、合金微粉末を運ぶアルゴンガスの導入管
(9)が側面に配備される。
[0013] In the embodiment example, application of the crystal orientation was performed by chill roll method. FIG. 1 is a schematic explanatory diagram when an alloy ribbon is produced using a quenching roll device. The apparatus of FIG. 1 will be described. The inside of the apparatus is composed of an upper melting chamber (1) and a lower quenching chamber (2). The inside of the melting chamber (1) is formed so as to be kept in a hermetically sealed state, and an argon gas introduction pipe (3) is arranged on the upper side surface and an arc torch (4) is arranged on the ceiling part. A container (5) is provided in the lower part of the dissolution chamber (1), and the container has a nozzle (6) in the lower part. The nozzle (13) is exposed to the quenching chamber (2).
In the quench chamber (2), a copper roll (7) is rotatably arranged below the nozzle (6), and an argon gas exhaust pipe is installed on the lower side surface.
(8) is deployed. Further, in order to incorporate the fine powder of the second alloy into the molten alloy ejected from the nozzle (6) toward the roll (7), an argon gas introduction pipe for carrying the fine alloy powder is introduced.
(9) is deployed on the side.

【0014】ZrNi0.70.5Mn0.8のインゴットを
容器(5)に入れ、アークトーチ(4)により溶解して合金溶
湯(10)を作る。なお、溶解前に、バルブ(12)を一旦開い
て溶解室(1)をアルゴンガス雰囲気とした後、バルブ(1
2)を閉じる。合金鋳塊を溶解した後、バルブ(12)を再び
開いて、溶解室(1)の内部を加圧し、容器(5)内の合金溶
湯(10)をノズル(6)を通じて、直径約30cmの回転ロー
ル(7)に向けて噴出させる。ノズル(6)の孔径は約2mmで
ある。合金溶湯(10)がノズル(6)から噴出する直前に、
バルブ(15)を開いてアルゴンガスを、導入管(9)を通じ
てノズル(6)の下方に噴霧する。なお、平均粒径約2μm
以下に粉砕したZrNi1.50.5の微粉末(17)は、導入
管(9)のアルゴンガス流路中に装填しておく。ZrNi
0.70.5Mn0.8の合金溶湯はノズル(6)から噴出され、
導入管(9)からアルゴンガスにより運ばれるZrNi1.5
0.5の微粉末を取り込んだ後、回転ロール(7)で急冷さ
れ、直ちに凝固し、合金薄帯(20)が作製される。
An ingot of ZrNi 0.7 V 0.5 Mn 0.8 is put in a container (5) and melted by an arc torch (4) to prepare a molten alloy (10). Prior to melting, the valve (12) was once opened and the melting chamber (1) was set to an argon gas atmosphere.
2) Close. After melting the alloy ingot, the valve (12) is opened again to pressurize the inside of the melting chamber (1), and the molten alloy (10) in the container (5) is passed through the nozzle (6) to a diameter of about 30 cm. Eject toward the rotating roll (7). The hole diameter of the nozzle (6) is about 2 mm. Just before the molten alloy (10) spouts from the nozzle (6),
The valve (15) is opened and argon gas is sprayed below the nozzle (6) through the introduction pipe (9). The average particle size is about 2 μm
The fine powder (17) of ZrNi 1.5 V 0.5 pulverized below is loaded in the argon gas passage of the introduction pipe (9) in advance. ZrNi
The 0.7 V 0.5 Mn 0.8 alloy melt was ejected from the nozzle (6),
ZrNi 1.5 carried by argon gas from the inlet pipe (9)
After taking in V 0.5 fine powder, it is rapidly cooled by a rotating roll (7) and immediately solidified to produce an alloy ribbon (20).

【0015】試験条件は、銅製ロールの回転数は500
rpm、導入管(9)から供給されるアルゴンガスの圧力は約
2.5kg/cm2である。容器(5)に装入したZrNi0.7
0.5Mn0.8は20gである。ZrNi1.50.5の微粉末
は、1gの場合(発明例1)、10gの場合(発明例
2)、微粉末を含めない場合(比較例1)の3例につい
て供試合金を作製した。なお、得られた合金薄帯(20)
は、厚さ約50μm、幅約3mmである。
The test condition is that the number of rotations of the copper roll is 500.
The pressure of the argon gas supplied from the inlet tube (9) is about 2.5 kg / cm 2 . ZrNi 0.7 V loaded in container (5)
0.5 Mn 0.8 is 20 g. The amount of ZrNi 1.5 V 0.5 fine powder was 1 g (Invention Example 1), 10 g (Invention Example 2), and no fine powder was included (Comparative Example 1). The obtained alloy ribbon (20)
Has a thickness of about 50 μm and a width of about 3 mm.

【0016】前記の供試合金について、粉末X線解析を
行ない、C14相(ZrNi0.70. 5Mn0.8)とC15
相(ZrNi1.50.5)のピーク強度比により、C15相
の混在量を求めた。C15相の混在量は、発明例1が
1.3原子%、発明例2が8.6原子%であった。発明例
1の結晶構造を、図2に模式的に示している。図2中、
符号AはZrNi0.70.5Mn0.8合金、符号BはZr
Ni1.50.5を示す。ZrNi0.70.5Mn0.8合金は
結晶配向され、その結晶粒界に、ZrNi1.50.5の微
粒子が混在している。
[0016] The above test game gold performs a powder X-ray analysis, C14 phase and (ZrNi 0.7 V 0. 5 Mn 0.8 ) C15
The mixed amount of the C15 phase was obtained from the peak intensity ratio of the phases (ZrNi 1.5 V 0.5 ). The content of the C15 phase was 1.3 atom% in Invention Example 1 and 8.6 atom% in Invention Example 2. The crystal structure of Inventive Example 1 is schematically shown in FIG. In FIG.
Reference A is ZrNi 0.7 V 0.5 Mn 0.8 alloy, Reference B is Zr
It shows Ni 1.5 V 0.5 . The ZrNi 0.7 V 0.5 Mn 0.8 alloy is crystallographically oriented, and ZrNi 1.5 V 0.5 fine particles are mixed in the crystal grain boundaries.

【0017】供試電極の作製 発明例1、発明例2及び比較例1で作製した合金を平均
粒径約50μmに粉砕した。この水素吸蔵合金粉末と、
導電剤としてのNi粉末と、結着剤としてのポリテトラ
フルオロエチレン(PTFE)を、重量比にて、1:2:0.
3の割合で混合し、圧延して合金ペーストを得た。
Preparation of test electrodes The alloys prepared in Invention Example 1, Invention Example 2 and Comparative Example 1 were crushed to an average particle size of about 50 μm. With this hydrogen storage alloy powder,
Ni powder as a conductive agent and polytetrafluoroethylene (PTFE) as a binder in a weight ratio of 1: 2: 0.
The mixture was mixed at a ratio of 3 and rolled to obtain an alloy paste.

【0018】次いで、この合金ペーストの所定量をニッ
ケルメッシュで包み、1.2ton/cm2の圧力でプレス加工
して、直径20mmの円板状の水素吸蔵合金の供試電極を
作製した。
Then, a predetermined amount of this alloy paste was wrapped in nickel mesh and pressed at a pressure of 1.2 ton / cm 2 to prepare a disk-shaped hydrogen storage alloy test electrode having a diameter of 20 mm.

【0019】このようにして作製した供試電極を負極に
使用して試験セルを組み立て、常温(25℃)下、50mA
/gで8時間充電して1時間休止した後、50mA/gで放電
終止電圧1Vまで放電して1時間休止する工程を1サイ
クルとする充放電サイクル試験を行ない、各試験セルの
放電容量(mAh/g)を調べた。なお、使用した電解液は3
0重量%のKOHである。1サイクル目の放電容量の測
定結果と最大容量との関係を表1に示す。
A test cell was assembled using the test electrode thus prepared as a negative electrode, and was heated at room temperature (25 ° C.) to 50 mA.
After charging for 8 hours at / g for 1 hour and then for 1 hour at 50 mA / g, discharge to a discharge end voltage of 1 V and pause for 1 hour. mAh / g) was investigated. The electrolyte used was 3
It is 0% by weight of KOH. Table 1 shows the relationship between the discharge capacity measurement result at the first cycle and the maximum capacity.

【0020】[0020]

【表1】 [Table 1]

【0021】表1の結果から明らかなように、発明例1
及び発明例2の供試電極は、比較例1の供試電極に比べ
て、1サイクルの段階で高い放電容量が得られることを
示しており、発明例が初期活性化にすぐれることがわか
る。これは、相互に結晶構造が異なる粒界に大きな応力
が作用し、そこが割れの起点となって粉砕が起こり、活
性な表面が現われたためである。なお、この粉砕によ
り、水素吸蔵合金は、結晶の構造と配向を同じくする結
晶群に分かれる。これらの結晶群では、その後にサイク
ルが繰り返されても、結晶配向効果によって結晶粒界の
応力が緩和され、微粉化が抑制される。
As is clear from the results shown in Table 1, Invention Example 1
Also, it is shown that the test electrode of Inventive Example 2 can obtain a higher discharge capacity at the stage of one cycle than the test electrode of Comparative Example 1, and it can be seen that the Invention Example is excellent in initial activation. . This is because a large stress acts on the grain boundaries having different crystal structures from each other, which acts as a starting point of cracking to cause crushing, and an active surface appears. By this pulverization, the hydrogen storage alloy is divided into crystal groups having the same crystal structure and orientation. In these crystal groups, even if the cycle is repeated thereafter, the stress of the crystal grain boundary is relaxed by the crystal orientation effect, and the pulverization is suppressed.

【0022】C15相の混在量とC1/Cmaxの関係を図
3に示す。図3から明らかなように、C15相の混在量
が約1.3原子%までは、その混在量の増加と共に初期
活性化は著しく向上することを示している。この結果か
ら、第1の水素吸蔵合金の結晶粒界に混在させる第2の
水素吸蔵合金の粒子の量は、微量でも効果は認められる
ものの、望ましくは約0.5原子%以上、より望ましく
は約1原子%以上とするのがよい。なお、第2の水素吸
蔵合金の混在量があまりに多すぎると、第1の水素吸蔵
合金の結晶配向効果が損なわれるので、その上限は10
原子%以下にすることが望ましい。
FIG. 3 shows the relationship between the mixed amount of the C15 phase and C1 / Cmax. As is clear from FIG. 3, when the amount of the C15 phase mixed is up to about 1.3 atomic%, the initial activation is remarkably improved with the increase of the mixed amount. From these results, although the amount of the particles of the second hydrogen storage alloy mixed in the crystal grain boundaries of the first hydrogen storage alloy is effective even if the amount is small, it is preferably about 0.5 atomic% or more, more preferably It is preferable to set it to about 1 atomic% or more. If the amount of the second hydrogen storage alloy mixed is too large, the crystal orientation effect of the first hydrogen storage alloy will be impaired, so the upper limit is 10.
It is desirable that the content be at most atomic%.

【0023】充放電サイクル数と放電容量の関係を図4
に示している。図4から明らかなように、比較例1では
最大容量に達するのに約7サイクルを要しているのに対
し、発明例1及び発明例2では、約3〜4サイクル目で
最大容量に到達しており、本発明合金が初期活性化にす
ぐれることを示している。なお、最大容量に到達後の放
電容量の変化については、発明例と比較例の間で実質的
な差異は認められない。
FIG. 4 shows the relationship between the number of charge / discharge cycles and the discharge capacity.
Is shown in. As is clear from FIG. 4, in Comparative Example 1, it took about 7 cycles to reach the maximum capacity, whereas in Invention Example 1 and Invention Example 2, the maximum capacity was reached at about 3 to 4 cycles. It shows that the alloy of the present invention has excellent initial activation. Regarding the change in discharge capacity after reaching the maximum capacity, no substantial difference is observed between the invention example and the comparative example.

【0024】本発明の水素吸蔵合金の製法は、急冷ロー
ル法に限定されるものでなく、例えばアトマイズ法にも
適用できる。アトマイズ法の場合、ノズル内の合金溶湯
は、ノズルの下方位置で高速流動している不活性ガスの
中に噴出されるから、溶湯合金の結晶構造と異なる結晶
構造を有する水素吸蔵合金の微粉末は、高速流動する不
活性ガスの中に含有させればよい。
The method for producing the hydrogen storage alloy of the present invention is not limited to the quenching roll method, but can be applied to, for example, the atomizing method. In the case of the atomization method, the molten alloy in the nozzle is ejected into the inert gas flowing at a high speed in the lower position of the nozzle, so fine powder of hydrogen-absorbing alloy having a crystal structure different from that of the molten alloy. May be contained in an inert gas that flows at high speed.

【0025】また、第2の合金の微粉末の供給は、アル
ゴンガス等の不活性ガスの中に含ませる方法に限定され
るものでない。例えば、急冷室の中で合金粉末をファン
等により攪拌して浮遊させておき、その雰囲気中に合金
溶湯を噴出させることもできる。不活性ガスは、アルゴ
ンガスに限定されるものでなく、当該技術分野で使用可
能なその他のガスを用いることもできる。
The supply of the fine powder of the second alloy is not limited to the method of including it in an inert gas such as argon gas. For example, it is also possible to stir the alloy powder with a fan or the like in a quenching chamber and float the alloy powder, and then jet the molten alloy into the atmosphere. The inert gas is not limited to argon gas, and other gas that can be used in the technical field can be used.

【0026】[0026]

【発明の効果】水素の吸蔵・放出サイクル初期に水素化
粉砕され易く、初期活性化が容易に行なわれる。このた
め、充放電のサイクル初期において、高率放電特性を達
成できる。また、サイクル経過後は、結晶配向効果によ
り微粉化の進行が抑制されるため、高寿命を得ることが
できる。従って、本発明の水素吸蔵合金電極を用いた電
池は、容量増大等の特性向上が可能となり、その工業的
価値は大きい。
EFFECT OF THE INVENTION Hydrogen is easily pulverized at the initial stage of hydrogen absorption / desorption cycle, and initial activation is easily performed. Therefore, high rate discharge characteristics can be achieved at the beginning of the charging / discharging cycle. Further, after the cycle has passed, the progress of pulverization is suppressed due to the crystal orientation effect, so that a long life can be obtained. Therefore, the battery using the hydrogen storage alloy electrode of the present invention can be improved in characteristics such as increased capacity, and its industrial value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】急冷ロール装置を用いて合金薄帯を作製すると
きの概要説明図である
FIG. 1 is a schematic explanatory diagram when an alloy ribbon is produced using a quenching roll device.

【図2】本発明の水素吸蔵合金の結晶構造を模式的に示
す図である。
FIG. 2 is a diagram schematically showing a crystal structure of a hydrogen storage alloy of the present invention.

【図3】C15相の混在量とC1/Cmaxの関係を示すグ
ラフである。
FIG. 3 is a graph showing the relationship between the mixed amount of C15 phase and C1 / Cmax.

【図4】充放電サイクル数と放電容量の関係を示すグラ
フである。
FIG. 4 is a graph showing the relationship between the number of charge / discharge cycles and the discharge capacity.

【符号の説明】[Explanation of symbols]

(1) 溶解室 (2) 急冷室 (5) 容器 (6) ノズル (10) 第1の水素吸蔵合金溶湯 (17) 第2の水素吸蔵合金微粉末 (1) Melting chamber (2) Quenching chamber (5) Container (6) Nozzle (10) First molten hydrogen storage alloy melt (17) Second fine hydrogen storage alloy powder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤谷 伸 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Shin Fujita, 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd. (72) Ikuro Yonezu, 2-5 Keihan Hondori, Moriguchi City, Osaka Prefecture No. 5 Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 容器内の水素吸蔵合金の溶湯を、容器下
部に配設されたノズルの先端から噴出させて急冷凝固さ
せる水素吸蔵合金の製法において、溶湯合金が凝固する
直前に、溶湯合金の噴出流の中に、前記合金の結晶構造
とは異なる結晶構造を有する水素吸蔵合金の微粉末を取
り込ませることを特徴とする水素吸蔵合金の製法。
1. A method for producing a hydrogen storage alloy in which a molten metal of a hydrogen storage alloy in a container is jetted from a tip of a nozzle arranged in a lower portion of the container to rapidly solidify the molten alloy, immediately before the molten alloy solidifies. A method for producing a hydrogen storage alloy, characterized in that fine powder of a hydrogen storage alloy having a crystal structure different from that of the alloy is taken into the jet flow.
【請求項2】 結晶が一定方向に配向された第1の水素
吸蔵合金の結晶粒界に、第1の合金の結晶構造とは異な
る結晶構造を有する第2の水素吸蔵合金の粒子が混在し
ていることを特徴とする、初期活性化にすぐれる水素吸
蔵合金。
2. The particles of the second hydrogen storage alloy having a crystal structure different from the crystal structure of the first alloy are mixed in the crystal grain boundaries of the first hydrogen storage alloy in which the crystals are oriented in a certain direction. A hydrogen storage alloy with excellent initial activation.
【請求項3】 結晶が一定方向に配向された第1の水素
吸蔵合金の結晶粒界に、第1の合金の結晶構造とは異な
る結晶構造を有する第2の水素吸蔵合金の粒子が混在し
た組織を有する合金を、水素の吸蔵及び放出材料として
具える水素吸蔵合金電極。
3. Particles of a second hydrogen storage alloy having a crystal structure different from the crystal structure of the first alloy are mixed in the crystal grain boundaries of the first hydrogen storage alloy in which the crystals are oriented in a certain direction. A hydrogen storage alloy electrode, comprising an alloy having a structure as a hydrogen storage and release material.
JP6253611A 1994-10-19 1994-10-19 Hydrogen storage alloy and its production Pending JPH08120365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6253611A JPH08120365A (en) 1994-10-19 1994-10-19 Hydrogen storage alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6253611A JPH08120365A (en) 1994-10-19 1994-10-19 Hydrogen storage alloy and its production

Publications (1)

Publication Number Publication Date
JPH08120365A true JPH08120365A (en) 1996-05-14

Family

ID=17253780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6253611A Pending JPH08120365A (en) 1994-10-19 1994-10-19 Hydrogen storage alloy and its production

Country Status (1)

Country Link
JP (1) JPH08120365A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1875978A1 (en) * 2005-03-02 2008-01-09 Japan Metals and Chemicals Co., Ltd. Method of melting alloy containing high-vapor-pressure metal
CN114309629A (en) * 2021-12-28 2022-04-12 云航时代(重庆)科技有限公司 Gas-solid two-phase atomization method for superfine spherical hydrogen storage metal or alloy powder thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1875978A1 (en) * 2005-03-02 2008-01-09 Japan Metals and Chemicals Co., Ltd. Method of melting alloy containing high-vapor-pressure metal
EP1875978A4 (en) * 2005-03-02 2008-11-05 Japan Metals & Chem Co Ltd Method of melting alloy containing high-vapor-pressure metal
CN114309629A (en) * 2021-12-28 2022-04-12 云航时代(重庆)科技有限公司 Gas-solid two-phase atomization method for superfine spherical hydrogen storage metal or alloy powder thereof

Similar Documents

Publication Publication Date Title
EP0751229B1 (en) Age precipitation-containing rare earth metal-nickel alloy, method of producing the alloy, and anode for nickel-hydrogen rechargeable battery
US6074453A (en) Ultrafine hydrogen storage powders
JP3212133B2 (en) Rare earth metal-nickel based hydrogen storage alloy ingot and method for producing the same
US5725042A (en) Method for producing hydrogen-absorbing alloy
JPH08120365A (en) Hydrogen storage alloy and its production
JP3697996B2 (en) Hydrogen storage alloy for battery negative electrode that enables high discharge capacity with a small number of charge / discharge cycles and improvement of low-temperature, high-rate discharge capacity with high-rate initial activation treatment
JP3668501B2 (en) Hydrogen storage alloy for batteries and nickel metal hydride secondary battery
JPH05303966A (en) Hydrogen storage alloy electrode
JPH06145851A (en) Hydrogen storage alloy and its production
JPH04362105A (en) Production of fine intermetallic compound powder
JPH108180A (en) Hydrogen storage alloy
JPS63291363A (en) Hydrogen absorption alloy
JP3981423B2 (en) Hydrogen storage alloy for batteries and nickel metal hydride secondary battery
JP2000169903A (en) Manufacture of hydrogen storage alloy powder
JP4235721B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode, and method for producing hydrogen storage alloy
JPH06228613A (en) Production of granular hydrogen storage alloy
JP3301792B2 (en) Hydrogen storage alloy electrode
JP2776182B2 (en) Method for producing hydrogen storage alloy powder
JP3318197B2 (en) Method for producing hydrogen storage alloy powder
JP3024402B2 (en) Manufacturing method of hydrogen storage alloy
JPH11297319A (en) Hydrogen storage electrode material, and alkaline storage battery
JPH10265888A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH10280112A (en) Production of hydrogen storage nickel base alloy contributing suppression of secular reduction of discharge capacitance
JPH05331506A (en) Production of granular hydrogen storage alloy
JPH07316610A (en) Method for surface-modifying hydrogen storage alloy

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020806